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I. INTRODUCTION

There is by now an ever increasing experimental evidence which
confirms the QCD-parton model picture of high energy and high PT reaction
based on single hard collisions between elementary point-like constituents.
The composite hadron structure however allows for a new kind of subproces-
ses to occur already at the naive parton level, that is multiparton pro-
cesses. The class of disconnected multiparton processes was first con-
sidered sometime ago by Landshoff(l) as a model for a wide-angle elastic
hadron-hadron scattering. Their phenomenological consequences appear to
be successful. The point was however that higher order QCD corrections(
(virtual gluons only) are believed to introduce, in this case, a Sudakov-
like suppression. If one looks at an inclusive single particle or jet
cross section where initial and/br final partons are allowed to radiate
real gluons in all possible ways compatible with the available phase
space, rather than an exclusive one, the unwanted virtual gluon contribu-~-
tions which are responsible for the Sudakov~like suppression are cancelled

out by the real gluon contributions. Therefore no Sudakov suppression

is expected to hold. Thus high PT physics offers the opportunity to

test, in principle the multiscattering mechanism.

Multiple parton processes represent in general, for dimen-

L]

sional reasons power-like corrections( ) to the leading QCD terms.
However in some kinematical regions the correct scale parameter for
the suppression factor turns out to be not the C.M. energy vV S (in

which case they would be totally negligible at Collider energies) bu

rather ET (for multijet cross section ET stands for the jet total trans-

verse energy). They provide thus corrections to the leading QCD terms of
the form (-%.)P. Furthermore, disconnected processes are less suppressed
than predicted by the naive counting rules(S) with respect to any connected
process involving the same number of constituents. The apparence of ET

as the appropriate scale parameter for the suppression factor rather than



J% in the multijet cross sections has been first pointed out by

M. Jacob, reference (5) and shown explicitly in their analysis of the
double scattering by N. Paver and D. Treleani, Reference (7) and

B. Humpert, reference (8). They conclude that the effect can be observ-
able even at very large C.M. energy provided that ET is (although
large) limited with respect to VS and conversely at fixed ET, the
cross section is expected to increase with increasing vS. The origin
of this is that the parton flux increases with V?rat fixed ET as a

consequence of the fact that the distributions are tested at smaller

and smaller values of x.

Experimentally, in addition to the two-jet events a consider-
able number of multijet events have been observed at CERN SPS pE collider.
According to the above considerations, one can hope to observe, in that
sample, the events generated by the multiple sub-processes. One other
interesting aspect of multiparton processes is related to the informa-
tion on hadronic structure that they can provide through their connec-

tions to multiparton distributions _G(xl,xz,...,xn).

All these phenomeqological as well as experimental consider-
ations lead to the need of analysing properly this kind of new sub-
process in the framework of perturbative QCD. The simplest process
to analyse analogous to double scattering is the aouble Drell-Yan
process ). The latter has already been studied in the simplest case
of colourless and spinless quarks by C. Goebel et al. for an order
of magnitude estimate and they conclude that also this process is .at
the limit of observability. The importance of analysing the double
Drell-Yan in the QCD framework however, lies mostly on the common
features it shares with the double scattering which is relevant to
high PT Jjet processes and whose analysis so far has been limited to
qualitative estimates. A very large part of our analysis will be
thus common to both processes and shows a quite new structure of
multiparton processes not put properly intc evidence by previous

studies owing to the spin and colour str.cture of the interacting partons.



The spin and colour degrees of freedom introduce six newly

c
defined structure functions G (x ..)(c=1,2; b=1,2,3) for each

b 172"
hadron. They describe more than just the x-distributions of the parton,
but contain also information about how the incoming partons are colour
and spin correlated inside the hadron. These structure functions depend
also on the relative transverse distance A 7 separating, inside the
hadron, the two incoming partons. It should be mentioned however that
the AJT dependence is not a quantum mechanical effect. The transverse
distance zﬂT separating the two incoming partons inside the parent hadron
already appears in the definition of the double density functions in the

analysis of the double collision from the point of view of classical

mechanics.

The study of the double Drell-Yan mechanism is conceptual and
proposes to properly formulate the problem in the context of the now

well-admitted theory of QCD.

The thesis is organized as follows: in section II, devoted to
the phenomenology of disconnected processes, we review successively
the multi-constituent scattering as a model for elastic scattering at
wide-angle, the production of baryons with large transverse momentum
and account at some length for the recent phenomenological development
of high PT multi-jets, gauge boson pairs etc. produced via the double
scattering mechanism. We end up the section with a brief review of the

single and double Drell-yan cross sections.

Section III deals with the conceptual aspect of the multi-
parton scattering, where we analayse the double Drell-Yan mechanism

in the QCD framework.



II MULTIPARTON PROCESSES: PHENOMENOLOGY

A. Multi-constituent scattering as a model for elas%ic scattering

at wide angle

Al Introduction

There is a considerable amount of accurate data from wide-
angle proton-proton elastic scattering at high energies. For s, the
2 2
C.M. energy between 15 and 60 Gev and | t] > 2.5 Gev, an excellent fit

to these data is given by

.i/_i_' A S—h_’[m) (1.4)

with n ¢ 9.7, here @ is the C.M scattering angle. It is widely
assumed that these simple features of the data indicate that some

sort of asymptotic regime, for s and t both large, has set in and fur-
ther that they are a manifestation of a constitutent structure of the
scattering hadrons. However the mechanism underlying these consituent
scattering is not quite clear and indeed various models(S'lo’ll’lg)
are proposed to account for the result (1.A). In most of the models,
it is assumed that only one constituent of each hadron plays an active
role in the scattering, in the sense that it alone is exchanged or,
alternatively scatters directly on a constituent of the other hadron

according to the precise version of the model (Fig. 14)

(2) (b)

(<)

x
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<

Fig. 1A: Models already proposed for In  wide angle elastic scattering;
The cross refers to '"hard propagator".
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A crucial consequence of these models is that the scattering
depends on constituents that have a large component of momentum trans-
verse to the momentum of their parent hadron. Therefore, the differential
cross section that results for the scattering is small because such
constituents are found comparatively rarely. Also in these models there
exist "hard propagators" which subsequently reduce the resulting ampli-

tude.

An alternative and original model has been proposed by Landshoff,
in which, contrary to previous models (single scattering) it is assumed
that the important contribution to the cross section comes from constitu-—
ents with vanishing transverse momenta. The model is referred to as the

(1)

multiparton-scattering model .

We shall review in detail here the multiparton-scattering
mechanism and show to what extent it may play a role in the description
of exclusive processes. The generalization of the mechanism to inclu-

sive processes will be the subject of the following sections.

A2 Description of the multiparton scattering

a) Lowest order QCD results

Each initial-state hadron is pictured as breaking up into
a number of constituents whose momenta are all more or less collinear
to the momentum of their parents; each constituent of one hadron then
scatters at wide angle on at least one constituent of the other hadron
in such a way that after the scatterings, the momenta of the constitu-
ents are so aligned that they can readily recombine to make up the final-
state hadrons (Fig. 2A). This roughly means that the scattering occurs
at equal angles. In this case it is mainly this limitation of the phase
space (to be opposed to the existence of hard propagators in conventional
single scattering models) which reduces the elastic cross section.
This limitation is however not necessary for inclusive processes where

we do not expect such phase space suppression.
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Fig. 2A: Model used for 7777

The complexity of the interaction increases with the number
of hadronic constituents. Thus it is assumed here that the pion for
instance is regarded as being composed of a single quark-antiquark
pair. It should be noted however that such an assumption is not needed
in the description of inclusive cross sections where spectator quarks
also participate. In the diagram of Fig. 2A, the four external vertices
are coupling functions that restrict the momentum compeonents of the
quarks transverse to the momentum of their parent hadron, and also
their off-shellness. For 717 scattering and to lowest order(lB) in

perturbative QCD, there are two topologically distinct diagrams, shown

in Fig. 3A

Fig. 3A: Dominant diagrams for 71N scattering at lowest order

Further diagrams are obtained from these by crossing. The
spinor structure of the external vertex functions is taken into account,
assuming a simple 8% coupling of the pion to the quarks, together with
a forw factor to provide the necessary damping, hence the coupling of

the pion to the quarks is taken of the form
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‘}; ?[k/z'lz’z) ' (2.8)

Having specified all the elements of the amplitude (Fig. 24),
one can work out the differential cross section for the elastic scat-
tering at wide angie. The model gives a result which has the simple
structure of fomula (1.A). The result comes essentially from a phase-

space calculation

dr cle -5
e S;fﬂ. ~ S {(9) (3.4)

where s, t and u stand for the usual Mandelstam invariants. This
result corresponds to n=5 for 777 scattering in formula (1.A) since

s A~ ta u.

It is very important to notice that the multiparton scattering
model we are dealing with predicts a quite different result with res-
pect to those obeying the dimensional counting rule(5)(DCR) which gives
instead n=6 for TN scattering. We recall here that the dimensional
counting rule predicts that the differential cross section for the
scattering AB - CD at lérge t has a form that depends on the total num-

ber of valence constituent quarks in the four participating hadrons

-n '
%N S %(9} (4.4)

where /)= /}47‘/751#/)('/’79"2

which corresponds effectively to n=6 for /]l scattering. Therefore
one would expect the process under study to dominate the ordinary ones
briefly introduced in Fig.(14). The corresponding model for nucleon-
nucleon scattering where each nucleon is regarded as a bound state of

three quarks is drawn in Fig. (4A).



v N
Fig. 4A: Model for N-N scattering

The differential cross section corresponding to N-N scattering
has the form

dr . -4
e

(5.4)
This corresponds to n=8 in formula (1.A) which has to be compared with
the value n=10 obtained for the conventional single scattering mechanism
from dimensional arguments. The associated function f( & ) has a
complicated form and its detailed structure depends on the structure

of the hadron wave-function. However for momentum transfers -t & s,
the single exchange of gpin—l gluon makes f( € ) independent of & ,

so that

db (6.A)

with no dependence on s at fixed t. The data at FNAL and ISR energies
are in agreement with this prediction, being essentially energy-independ-
ent and fitting well to the shape t—s. This is however in contrast with
lower energies where there is a very marked energy dependence and the

value of n is close to 10 which is the value predicted by DCR.

So far the multiparton scattering at the lowest order in QCD
seems to play an important role in the dynamic of exclusive processes

and one is tempted to see how much higher order QCD corrections will
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modify the simple result of formula (1.A). It has been suggested

) (14,15,16,17) : .
however by various authors that higher order corrections
to the double scattering mechanism will result in important modifica-

tions.

b) Higher order corrections to multiparton scattering in

exclusive processes

The problem now is to consider radiative corrections to the
diagrams of Fig. (3A). There are two kinds of radiative corrections.
They involve what we shall call from now on "non-connecting gluons"
and "connecting gluons'. The former correct the hard scatterings in-
dividually, like for instance, the vertex corrections; the latter
connect the two separate parton-parton scattering. Examples of con-

necting gluons aredrawn in Fig. 5A.
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Fig. 5A: Examples of connecting gluons (wavy lines)

Connecting and non-connecting gluons are quite similar with
howevef a very remarkable differenée, that is the component kT gf the
connecting gluon, transverse to all external momenta of the diagram
cannot become large without the transverse momentum flowing through
at least one. of the pion wave-functions becoming large. This simply
means that, according to the previous assumption on the behaviour of
the hadron wave function, kT is bounded. We shall see that this

important feature is common to all disconnected processes.
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The important contributions of both kinds of gluons come from
their soft components and so the problem is to analyse the infra-red
behaviour of all possible diagrams. We shall not enter into details
here but only mention the main results of these compgtations. For more

details see Reference (2) and the Appendix.

For fixed non-zero scattering angle 6 , one finds that in the
leading log approximation (LLA) the effect of inserting an additional
gluon in the multiparton scattering is to modify the result (1.A) by

the factor

—/}&fs

with #= 22 g n

——

en?

(7.4)

where g is the coupling constant, N=3 is the number of colour and n is

the number of multiple scattering i.e. n=2 for 777 and n=3 for pp.

Adding a second additional gluon gives instead of (7.A) the

factor
: 4
‘—2’—5%5

(8.4)

So it seems likely that in (LLA) order by order, the effect of adding
any number of gluons is to muitiply the result (1.A) by an exponential

€Xp(—4&f5]. (9.4)

14,15,16,17
This result agrees with the conjecturs of previous authors( e ),
except that there is a larger number of important diagrams that had

been suspected and in consequence b is smaller than had been supposed,

by a factor 2.

We note here that the result (9.A) is obtained by the formal

procedure of extracting the leading behaviour diagram by diagram, and
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then summing. Because the resulting sum (9.A) goes to zero very
rapidly when s is large, it could well be that lower order contributions

from the individual diagrams sum to a more important result.

The computation of various diagrams leading to this exponential
factor are restricted to the case where s &4 t so that lns 4 1nt. It
is found that when t is large but much less than s, additional diagrams
(involving the triple gluon vertex) become important. Up to two additional
gluon insertions the factor that multiplies the result (1.A) again
exponentiates

ex/oé-fé Ins ut + b, %t}

(10.4)

2
with %= _9— Non -

snt
4 é
b= 2 Mt
¢ ot N

The exponential (Sudakov) form factor obviously falls faster
than any power of s as s £ @@ so that in the end, the multiple exclu-
sive cross section will be asymptotically suppressed with respect to
the conventional single scattering, obeying the DCR. Phenomenologically
at present energies the situation is not clear: probably what one sees
is a combination of the two\effects. The presence of the ''Sudakov double
log'" in multiparton scattering (exclusive processes) can be easily ex-
plained and occurs in the following way. The diagram (6Aa) has a double
logarithm i.e. is proportional to l%t (vertex correction), since we have
both infra-red and mass singularities. One of these logarithms comes

from the kT integration of the corresponding gluon which is

£
[ LJgT N jw{.ﬁt. ) p is the quark momentum (11.A)
Pr A ‘
r

- 11 -



The only diagram able to cancel the double log of diagram (6Aa) is
the diagram of (6Ab). However we have already said that the kT

associated with connecting gluons has a cut-off of order

=

()
' H H
D

(@ (b)
Fig. 6A: diagrams (a) and (b) do not cancel each other.

(;é) where R is the hadronic size, therefore the corresponding integral
is independent of t and no cancellation of the double log factor occurs.
There seems to be no way of avoiding a Sudakov suppression of the multi-
parton scattering diagrams in exclusive reactions. The suppression of
the multiparton scattering mechanism in the area of exclusive processes
is due precisely to infra-red double log factors as we have already seen
These unwanted contribu;ions can be cancelled however by real gluon
contributions if one allows initial and/or final partons to radiate

real gluons, which we have not allowed in the exclusive cross section.
Therefore one may expect the multiparton scattering not to be affected
by Sudakov suppression in the description of inclusive reactions e.g.
hadroﬁ production at large PT’ multijet systems etc. where partpns are

allowed to radiate in all possible ways, more precisely over the avail-

able phase space.

In the following sections we shall describe the physics of
inclusive multiparton scattering showing the progress made in this
direction and point out the new features which are inherent to this

mechanism.

- 12 -



B. Production of baryons with large transverse momenta via the

multiple scattering mechanism

Bl Introduction

Experimental data on the production of hadrons at large trans-
verse momentum P_ are generally summarized in the following simple

(18)

formula

-n
E2r = 7 Jox,8). X,=\/i§@ (1.5)

with 9 y the centre of mass angle of the out-going proton. The
effective value of n varies with XT and at large XT it remains nearly
constant with the value n=8 for mesons and n=14 for protons., It is
also found experimentally that the production of high PT baryons is

surprisingly copious.

While there are a number of theoretical models(lg) proposed
to explain the production of mesons at large PT, the corresponding
production of protons has proved more difficult to understand(zo). The
single scattering model-in the framework of QCD cannot
explain formula (1.B) for protons, since it gives too slow a
value for n (n=4) at the parton level. It has been shown by various
authors(21’22) however that scaling violations can enhance the above
value, thus making the model (single scattering plus QCD) adequate
for large PT meson production. However one does not see how the model
could manage to reach the rather high value n=14, since in the parton
model description of large PT hadrons, mesons and protons cross sections

are similar in form and differ just in the definition of the fragmenta-~

tion functions which are dimensionless quantities.

The authors of reference (23) proposed as an alternative the

multiparton scattering model to describe the production of protons at

- 13 -



high PT. They work out the corresponding cross section which has the
form of formula (1.B) with the desired value n=14, provided the hard
scattering are scale invariant (in current computations one can take
QCD Bornterm which is scale free). We shall briefly expose the model
in the next section and introduce some of the materials necessary for

the forthcoming studies.

B2 Description of the model

The proposed mechanism for the production of baryons at large

PT is shown in Fig. (1Ba)

Fig. 1Ba: The triple-scattering mechanism for the production of a
large PT proton

Each proton emits three quarks of finite "mass" and with momenta
closely aligned with the momentum of their parent. Each quark from one
of the proton scatters on a quark from the other proton in such a way
that there are three closely aligned quarks in the final state capable
of recombining to produce the observed large PT proton. The other three
quarks which have undergone a wide-angle scattering into the final state
do not have to recombine into a definite single baryon. Theéir combined
invariant mass is, in general large so that they are expected to materi-

alize as a system of hadrons, usually one baryon and a number of mesons.

- 14 -



do~
The differential cross section E a; is related to the discontinuity
in the missing mass of the following forward elastic scattering Fig.

(1Bb).

Fig. 1Bb: The Mueller diagram for the process of Fig. 1Ba

The authors of reference (23) have been able, in the spinless
and colourless case, using dimensional arguments, to work out an approxi-
mate form for the cross section at sufficiently large s and PT. They

write the result as

4
5£0E¢M%%¢%%#@¢®MM@MMM%M

5 F- 2 2
) T2t - Bz .
J/Z’{ZZ"Z-’ 1//.'-; ("f'af;v‘é’*/;édnzia ‘/3.-‘/,{3 [7?”)7'2’47' (2.B)

Here GA(xl,xe,x3) is interpreted as the probability to find three
constituents with fractional momenta xl,xz,x3 simultaneocusly within
th 1 d simi ly £ . T f tion D z

e nucelon and similarly for GB(yl’YZ'YS) he functio (zl, 2,z3
is the square of the wave function for the nucelon being in its pure

)

three-quark configuration (with no sea), the quarks having fractional
momenta zl,z2 and 23. The amplitude T(Xi'yi’zi) which is dimension-
less corresponds to the central wide-angle scattering. The above

- 15 -



formula can be seen to correspond effectively to n=14 in formula (1.B),

in fact
£ d&.,u 1 ~ —l— at A %F
a5 L P Jired ¥z 2 |

This is one of the most important predictions of the model. Now it is
an experimental fact that the value of n is xT—dependent, more precisely
it increases asymptotically with xT and reaches the value n=14 at very
large xT. In this regime the lowest order QCD diagram (i.e. parton
model) give a good prediction (n=14). The increase of n with X0 is

also well accounted for in the multi-scattering model but we do not

23)

discuss that here but rather refer to the literature(

Another qualitative prediction of the model is that the function

f(xT,a ) in formula (1.B) has the important property
,/(19./ #/) remains finite as X7951h5 for any fixed S (4.B)

In fact, all subprocesses are forced to the edge of their phase space
in the limit (xT-; sin® ), so that the effect is that the top and
bottom blobs of Fig. (1Bb) i.e. GA and GB, are evaluated in the limit
in which the emitted partons take all the available momentum. In the
analogous situation this forces the relevant amplitudes of single-hard
scattering to vanish. This is not the case for multiparton scatterings

since the disconnected contributions to the blobs, e.g. Fig. 2B.

P P
g e
k

i i

Fig. 2B: Disconnected contributions to the top blob of Fig. (1Bb).
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remain non zero in this limit. That is, as xT.9 sin@ the figure
(1Bb) reduces simply to the case where the incident protons couple

to just three quarks, just as in the proton-proton elastic scattering
of Fig. (4A). Therefore the multiparton scattering mechanism is the
only known one which does not vanish towards the edge of phase space
(xT-; sin@ ) so that it must dominate at sufficiently large X for any

fixed s.

So far, we have seen that multiparton scattering could play a
central role in the description of high PT hadren production at least
at the parton level. The scaling violations introduced by collinear
gluon radiations in QCD can modify the PT dependence of the parton-
parton hard scattering. Therefore a triple-quark scattering of Fig.
(1Ba) (the authors of reference (23) did not specify the theory for
the hard scattering) will give the experimental value i.e. n=14 only
at the parton level (QCD Born term). It has not yet been discussed
whether gluonic corrections to the proposed triple-quark scattering
will modify the PT—dependence of the cross section, as it is in the
case of single scattering, or whether different gluonic contributions
will arrange themselves-in such a way as to preserve the formula (1.B)

with the correct value n=14.

We have said that in order to produce a large PT hadron, final
state quarks should be closely aligned, thus allowing the recombination
into the observed hadron. The resulting cross section is reduced by the
restricted phase space. In the following sections we shall be interested
in the inclusive jet production, where such limitation of phaseAspace is

completely absent, thus enhancing the measured cross section.
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C. Multiparton scattering and large PT Jjet production in hadronic

collisions at collider and tevatron enq{gies

Cl. Introduction

At observed transverse energy ET larger than 40-60 GeV, jet
events start to dominate in the high P_ hadronic production as indicated
by the CERN pg collider experiments(24 . Apart from the copious and
familiar two-jet configurations predicted by the leading QCD parton
model, a great amount of three-jet and four- jet events have been
also observed(25). These events might be produced via the leading QCD
mechanism similarly to the e+e— case where also multi-jet events show
up(26). In hadron-hadron collisions, the composite structure of the
beam and the target permits a rather large number of quark and gluon
processes to occ:ur'(2 . This complex hadron structure also allows the
partons of the projectile and of the target to undergo a nuclear-like
multiple collision with large transverse momenta described in the pre-
vious sections. This type of interaction will contribute a large amount
to the high PT multi-jet cross sections in some kinematical regions
(ET<K S) as will be shown in the forthcoming subsections(7’8’28).

In this section we shall concentrate on this last aspect and discuss
at some length the role of the multi-parton-scattering mechanism in the
production of three and four jets at large PT. Two processes will be
considered which have the same order in the strong coupling constant a;.

These are the disconnected double scattering and the rescattering pro-

cess represented in Fig. (1Ca) and Fig.(2C),

c2. General considerations on power behaviour of the cross-sections

Let us start by recalling that one can naturally classify the
various possible processes producing n-large PT jets on a dimensional

basis. The leading hard amplitude in the QCD parton model is character-
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ized by two incoming parton lines and any number of outgoing ones (n),
with the condition that all the kinematical invariants are large and
of order of the reaction C.M energy squared S (S?aj, tiA/ S i= ,...n).
To these amplitudes correspond an order a; and also' a power of (é)
(all the kinematical invariants ti being of the same order, one chooses
S for convenience). This power of é depends on the number of the

external lines and can be obtained from the familiar DCR based on di-

mensional arguments (neglecting log factors).

If one increases the number of incoming lines, giving rise to
a multiple disconnected subprocess, the situation is quite different in
the sense that some of the kinematical invariants in the hard process
are no longer constrained to have large value of the order of S. For
instance the invariant mass of two incoming partons belonging to the
same hadron is not allowed to grow with S but is rather limited by the
hadronic size of order R, where R is a typical hadron dimension (R 4 1Fm).
Therefore increasing the number of incoming parton~lines which sub-
sequently undergo multiple disconnected hard scatterings introduces new
dimensions other than S into the cross section. The corresponding con-
tributions to multi-jet production will be depressed with respect to
the leading ones by powers of E%g if one keeps the constraints that
tiA/ S and therefore the leading terms will still safely dominate the
n-jet production cross sections. There arehowever some kinematical
regions where some of the ti although much larger so that we are still
in the QCD perturbative regime are much smaller than S, the terms of
order ﬁZ%- , might however in that case not be so negligible. An
estimate iof the suppression factor for a moderate value of tifv 1000 GeV
and R arlFm gives a value n,lO_A. This seems to be quite big a
suppression. The point is that independently of dimensionalities, the
steepness of the cross-section in the PT of the jets has a crucial role.

In fact due to the steepness of the parton cross sections, it may

become more economical at fixed ET to have several parton scatterings,
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each at relatively low PT, rather than a single one with a large PT
and this could allow for an appreciable comeback on the suppression

factor.

1
Another intuitive way to understand the ;gg .- suppression factor
) 3
of multiple processes is to follow the arguments developed by D. Politzer(

and look at the form of the disconnected double scattering cross section.

Assuming the validity of the parton model at high S for such

processes one obtains

-~ -~ ¢
%~ & Sdicdpdy G o M) Gltsiwy o TF 1T

(1.C)

where Tl and T2 are the hard two into two parton amplitudes and are

4
dimensionaless according to DCR. The 3 (0) is the singularity asso-
ciated with Collinear quarks and which characterizes the disconnection

of the process.

The formula (1.C) has extra dimensions with respect to the

leading QCD term (single scattering), they are carried by the guantity
“ ~ ¢
4
@("’/’/”/5}/&}2,/’72/5(0}. (2.C)

The mass M2 is an arbitrary momentum scale introduced to divide soft
from hard effects. The point now is to extract the dimensions of the
quantity (2.C). The singularity AAKO) comes from the plane wave con-
vention and is similar to that appearing in the proper definition of a
cross section. It only appears because we treat the incoming partons
as plane waves, which then scatter everywhere for all times. Therefore
it actually represents the space time volume of the second collision
relative to the first one, and is easily estimated in the C.M frame.
The second pair must collide within the same hadron-hadron spatial

volume sometimes while hadrons overlap. The hadron's transverse
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dimensions are uncontracted in the C.M frame, but their longitudinal
1 . . . .

diameters are of order E’ where E is their energy. The time in the

C.M frame for which these two relativistic pancakes overlap is also

1 . o .
order E. Hence one makes the identification

4
Sty TR L RY
ErE S~ (3.C)

Now the double-constituent distribution functions 6; and Eg are dimen-
sionful and may be written as
- )
Gy (B M) = M* G (o, ;)
~ , (4.C)
Gl h MY =M Glh,5) .

1 2 !
If one chooses M2 to be a hadronic cross sectional area i.e. M :=7ié2,

the quantity (2.C) will be of the form

~ A b4
Gy b Y Gy bk, MY S(0) . -5;5 G4) Golht). (5.0)

Therefore the suppression factor with respect to single scattering is
A
R

C3. The large-PT multi-jet cross section formulae

The purpose of the following analysis is to report some esti-
mates of the double-parton scattering contribution to the large—PT
multi-jet cross section in high energy pE collision. The form of the
double cross section has been worked out by the authors of references
(7,8,23). This form will serve as the starting point of all the forth-
coming phenomenological applications. The theoretical study of the

double scattering cross-section is however incomplete in the sense that

- 21 -



it does not account for the parton colour and spin degrees of freedom.
In the last section we shall analyse the double Drell-Yan cross section
and show that the colour and the spin are a nontrivial complication in
the description of multi-parton processes. To have an idea about the
form of the double scattering cross section we consider the simplest

case of the 4-jet system shown in Fig. (1Ca).

Fig. 1Ca: The 4-jet process under consideration

The cross section for the above process is given by

(2 (Zﬂ)sfzfzf}l oo =2 Dig M[”/g/]//];/.

a5, d%, 25 (s) (6.C)

Where M[A,BI.Z/],} is the forward elastic amplitude (Mueller) correspond-
ing to the diagram of Fig. (1Ca). We sketch in Fig.(1Cb) its correspond-

ing diagram

Fig. 1Cb: Feynman diagram for the amplitude M(A,E;J,,J,).
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To compute the forward amplitude Jvi(A/Epl)jZ ) one has
to perform complicated integrations where all the momenta are involved.
At the first sight, due to the complexity of the integrations, one would
expect interferences to be important. Writing the jet cross section only

in terms of kinematical variables which grow with V'S and neglecting all

those of order 7é , the various integrations in eq. (6.C) get
disentangled. Keeping only leading terms in :@? is not enough to get

a probabilistic interpretation of the jet cross section. In order to
achieve that one introduces Fourier transforms with respect to the trans-
verse variables

e“.[q; ‘;7'* % 4!7/

Nﬂ-ﬂ/z a -1 2 2
L’y(—/é—/q;qz/))" (2n)? 3,4)da, g, (7:C)

Wa,

/

(/’(417}42.,} 4) describes the hadronic initial state, 4,4, indicate
the transverse coordinate and J refers to the longitudinal degrees
of freedom. Therefore one gets a probabilistic interpretation of the
Cross section in terms of the "impact parameter" 4;;4}% (relative
transverse distance separating the two incoming partons inside the hadron)
and not in terms of their relative transverse momentum. The structure
functions which describe the initial hadrons get dependent on A?/,Q
and AT . It is shown(7) that the structure function 6;'(4’4)11/ dr/

is related to the vertex function %(4;,4,/ 4) by the relation (and

similarly for 6‘@/}7,}2/0,.) )

Gl 4 )= SH4 R
T Tty (277)‘/ Ml ds, - (8.0)

where %3 is the Fourier transform, see eq. (7.C) of fg which in

turn is related to ?% through

(4.4 = - G, 4,4) do . [q-, (9O
% 71 4rs @4/@44/’-#/ 2(a,) O(as) *7 / I'z‘

D(al), D(az) are the quark propagators.
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The authors of reference (7) arrive at the following expression for
the cross section which has a very simple form (for details about its

derivation see their reference).

- d 44 A A J/7 A n
G4 T RCTITY L LT o
oy ot bp ) Ay d, df; df, ‘{2

7

where the Mandelstam invariations %, %, o refer to the hard subprocess
and the sum is over all independent subprocesses. Equation (10.C) has
some analogies to the expression one obtains for the single large PT
jet cross section. The dependence on the target and the projectile is
represented in this equation by the multiconstituent distributions
GA(xl,x2 45) and GB(yl,y2 A%) generalizing the familiar structure func-
tions. We note here again the extra dependence of these functions on
the variable ‘jT which is the relative transverse distance separating
the incoming partoné inside the parent hadron. The dependence on ¢3T
can be easily understood by observing that the two partons of A and

the two partons of B must be at the same relative transverse distance,

in the limit where the two hard interaction regions vanish.

The leading behaviour of the cross section (10.C) with S can
be easily obtained using the scaling behaviour of éﬁi A/:§2 (up to
log factors) and the fact that the dimension of GA’zéis 2% where R
is the hadronic size, therefore we get for finite T

/57[ dr w 1 xr= 2&r .
d@z 4%7 RLSH T JF (11.¢)

As expected, for XT large i.e. all the kinematical invariants t, u,
etc. are of the same order as S, the process under study is suppressed

with respect to the dimensional behaviour —%; , SO0 that,

" .
RS
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for energies at which this last is reached, it would represent a very

small contribution.

In order for the double-scattering to give a non-negligible
contribution with respect to the leading cross-section, one may look

to the small XT region.

To work out the cross section at small XT we cast it in terms
of the jets transverse momenta which grow with S and rapidities.

Notici that th ternal jet variables (J_+J nd (J
oticing tha e external jet vari ( 1t 3)T and ( 2+J4)T are

1
small and of order E’ we integrate over these and take as independent

variables < )

47 0 Vep yi(i=l,...4). We therefore define the quantity

_ do - EfEZEZ EL/ dr
ATy A, Ay dy dy,dy, 4y o7,

e/f;»g/dfz,g/, (12.C)
7 a

starting from equation (10.C) one can get the expression correspond-

ing to the cross section (12.C) which has the following form

ol - f/d‘ “
= 4 & (x4 18
d{/]rd%d‘id/zd«ff‘/fu q/j T 4[ ”4/6?(/7//34-//—7&%%2 %: }4—2 - (13.C)

The cross section (13.C) has the physical property that at ET &K S
where ET is the total transverse energy, it is suppressed by a factor
2;2? and not 75% (as it might appear at first sight) with res-
pect to the leading perturbative QCD cross section for producing four
jets. The kinematical region of interest (ET|4< S) corresponds in
fact to configurations with small incoming fractional momenta xi,)1.

(i=1,2). In these configurations one may expect the parton distribu-

tions to have the following behaviour.

%(194/4’_/¢ %’L"/_"/ and 5@/},}};A/4, Felhike) . (14.0)
Rk 1y 27"
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with gA,gB finite as Xl’XZ’Yl’Y§9 0. Equation (13.C) would then

behave as
oo N A
T A " k) &G
0 e Gl RES 5, ndi m dE, (15.C)

The right-hand side of Eq. (15.C) depends only on the kinematical in-
variants of the subprocess that is gi’ %i’ Gi (i=1,2) and not on the

C.M energy Vg, since the functions gA(X ,X2) and g (Y_,Y ) are finite

1 B 1 2
at very small Xi,Yi and therefore the four-jet cross section of Eg. (15.C)

depends on ET and not on S.

7 and not —4—
TRTEE RIS

would be exceedingly small, the effect might be observable even at

Since the depression factor is , which
large C.M energy, provided ET is (although large) limited compared to

¥S. Also the cross section can be expected to grow with increasing

V§ at fixed ET’ because smaller and smaller values of fractional momenta
in the parton distributions are tested in this case; More information
on these points as well as the derivation of formula (13.C) can be found

in reference (7).

The other interesting process (the rescattering process) depicted
in Fig. 2C which may play a role in the description of the 3-jet cross-

sections have been proposed by the authors of reference (7).

Fig. 2C: The parton rescattering process under consideration
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The process is such that one parton (e.g. of the projectile) first
undergoes a hard scattering, and after propagating for a long distance
(of the order of the hadronic dimension R) with a low virtuality has

a second hard interaction with another parton within the target. Thus
the structure of the (3 < 3) amplitude in Fig. 2C would be that of two
(2-p 2) amplitudes connected by an almost on-shell propagator. The
cross-section corresponding to the rescattering process has the simple

form

0/0' Z & - A A A
- G) (0, d=0) 5, & 5, 5 2 yaep)(16.c)
/] A ar S dg :
o, o, 2y dy,dy, Vs T m E

S
(5
X

As for the formula (13.C), the supression factor with respect to the

leading QCD cross section for producing three-jets will be :E#Z'

7

at

a given E .
g T

The three and four jet processes have the same number »f hard
interactions. They are both of order aiq , therefore they are expe~ted
to have comparable rates.

We have used the small x behaviour of the double structure functions
given by formula (14.C) in the derivation of the cross section furmulae

(15.C) and (16.C). Here we want to make few remarks on that behaviour.

The kinematical region we are interested in is that where
ET<2 S, this corresponds to small x. In this region one would expect
the gluons to play an important role. If one can neglect the self-
gluon coupling, one can guess rather naturally, in analogy to electro-
dynamics, that independent gluon emission should occur according-to a

Poisson-like probability distribution. For n-emitted gluons with frac-
(29

tional momenta xl,xz....xn , the distribution is of the form
-[v Aoody
ﬁ)“/l.’/‘"'/*h}='h!'l P{'”}P(}f}'“" Pl) € ™= : (17.C)

The function P(x) which characterizes the one gluon emission with
fractional momentum x is the inclusive distribution for the emission

of one gluon; this can be seen as follows
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The single inclusive T .1/°! 11
distribution = Pae +21 Féje!/’(mdr,.,.jlfb}e!@/,'“...
[ f'n

PSS
= Pwe (4+I+2.f~1¢*.... )= Fox) (18.c)

q
where I:f'”(x}dx .
Koy
At small x, P(x) has the diverging behaviour, therefore to make the
integral in Eq. (17.C) well defined one has to introduce a cut-off

xmin' The exponential factor is introduced in such a way as to have

(19.C)

o0
,12_; f’;%@---d’n} c{l,a/r,----a/r,, =1

The quantity of interest is rather the inclusive double distri-
bution function G(xl,xz). To construct it one has to sum all gluon con-

figurations with two and more than two gluons, thus we have

I -1 .1
Gty )= 5 Rin) ) € 4 2 Peci )€ [ Aol +£ FiAty) ¢ //m,g,,][/pm/@,,,

| 2
=3 PORR) € (1420415 ) = 4 FlryPrn, ) 0.

N

Therefore in this simple scheme, the inclusive double distribution
function factorizes into two independent inclusive single distribution

P(x) defined above

6(19{,}:2—’ /’('47//?'{,). (21.C)

This form generalizes easily to the multiple inclusive distribution

function G(x_,x ,...x ) i.e.
1 2 n

Gf"/tr#ﬂ/:;’, i) Pt)--....Play) - (22.0)

We note that in the limit xmiﬁ’ 0 the configuration with a finite num-
ber of gluons gives a vanishing contribution to average quantities due
to the presence of the exponential factor inEq. (17.C). In order to get
an average quantity different from zero one has to sum up all configura-

tions with an arbitrary number of gluons. For example the average frac-



tional momentum carried by the emitted gluons is given by

> y
(X):Z f[r,ix,f.-;xn)f[rbx,/....andﬁdr,... Axy :fx Pr) oy
i ’ (23.C)

The picture outlined above, namely the factorization of the
n-gluon distribution is valid only if one neglects gluon correlations
of any kind (kinematics, colour, etc.). It has been however emphasized
by the authors of reference (29) that self-gluon interactions spoil this

simple scheme in the infra-red region.

Another important point connected with the small x region is
that the parton densities increase rapidly with vanishing x and this
behaviour cannot go on without violating the unitarity bound. L.V. Gribov

(30)

et al. have shown that at very small x such that
-2
I L 4
X q;czp‘} . (24.C)

semi-hard cross sections reach values comparable to the geometrical
dimensions of hadrons, and what prevents the unitarity violation is the
parton-parton interactions (screenings) which stop the increase of the
cross sections near their unitarity limit. We sketch very briefly here
how the result (24.C) comeé'out in the case of deep inelastic scattering
and in the double log approximation (DLA). DLA means that one considers

only diagrams containing the term (x being small,.]%f is large)
? 7
(% @) )" (25.c)

It turns out that these diagrams are all ladders and where only vecfor
particles (gluons) propagate inthe t-channel of the diagram. Summing

all these ladders one arrives at the following form for the structure

/2§y

G(x) @Yy~ e : (26.C)

2
function G(X,Q ) i.e.

Here 15{4, '&:YL
and ?'4, -¢5t'fab dPL



One can notice that the DLA result (26.C) increases rapidly at small

1
x and in the region of validity of DLA exceeds the Froissant limit )
X
according to which the total cross section o  must not be larger
than the squared radius of interaction R, i.e.
£ Yom G :
a’ _ﬂ” [’5@/(27710 ’ (27.C)
Qe
This can be rewritten as
2
Yy © 2
o6(0Y & GrpYe 1 . (28.C)
o
2 .
where K A«E;Z . QO is the target mass and we have replaced A?m by
®

q; in the case we use a gluon as a partonometer rather than a photon.

The DLA structure function, given by Eq. (26.C) satisfies

- 2
Eq. (28.C) only at .Zn;l( 4;.[0) as we have said.
Cc4 Numerical estimates
In the region of interest i.e. small AX.= 43 , the
T /_Y—

typical parton fractional momenta involved are rather small. Also in
that region the most important contribution comes from gng gg and
ag < qg, therefore we limit ourselves to take into account these pro-
cesses only. A factorized form for the double structure function
G(xl,x2) will be assumed as has been discussed at the end of the pre-

vious section, thus we write
G(A'M;,,Z]r )= GCr)Gen) (k-4 /’/47/ 801-4-1,) (29.C)

This form Eg. (29.C) constitutes however an excellent approximation
39
to the generalized Kuti-Weisskopf model( ). In Eq. (29.C) the factor

(l—xl—x2) takes into account the kinematical correlations among the
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partons. Any power of the above factor however is permissible but this
is irrelevant here since in the region we are interested in, all x are

small.

The authors of reference (7) work out numerically the cross
sections Eq. (13.C) and Eq. (16.C) assuming a Gaussian form for f(;%)

i.e.
. - 4 /g

4. L e

/7/' i (30.C)

and taking for R the value R Aﬂjfm. They also take into account scal-

2
ing violations. The scale Q 1in the single parton momentum distribu-
A A
6% 25ty
SHEPLAL
for producing three and four large PT jets at zero rapidities by the

tions is chosen to be The differential cross section
mechanism discussed above are represented in Fig. 3C and Fig. 4C in the

case of the Sps collider ( VS = 540 GeV) and of the Tevatron ( VS = 2000 GeV),
for various values of the jet total transverse energy ET. In Fig. 3Ca

and Fig. 4Ca, the results are given in the case where every jet has a
transverse energy larger than 10 GeV, while Fig. 3Cb and Fig. 4Cb repre-

sent the case where the transverse energy of one of the jets starts at

5 GeV. For comparison the analogous two-jet cross section is also re-

ported.

According to these estimates one notices that the multiple-~jet
cross sections are only two or three orders of magnitude smaller than
the two jet cross section taken at the same value of ET. This estimate
is quite different from that given by dimensional arguments which has
the value .Zg%i Aw/ié. The point is that (as we have said in the
introduction torthis section) at a given ET it becomes more economical
to have several parton scatterings, each at relatively low PT, rather

than a single one at very high PT due to the steepness of the parton

cross sections.
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An important feature which characterizes all cross-sections is
that they all rise as one goes from the SPS C.M energy to the Tevatron.
The increase of the three and four jet cross-section (disconnected) is
however larger than those of the leading perturbative QCD and correspond-
ingly the relative number of events is also expected to increase. We
sketch in the following table the integrated cross sections. The inte-
grations are done from a transverse energy of 40 GeV upwards and a

typical rapidity interval of two units for each Jjet.

CERN COllider nergy = S 4o 4oy Tevatron bnergy V5 opo a1
Can a Cane b Care a Cane b
(3)
(
'57;, & 0005 | ~ p.e33 3%-; ~ 0.008| ~ 0024
a_(ul oA
Ty | 0.008 | x=0.060 gl - 0-03¢ | > 0.230

We notice in this table that the mechanism considered here
represents an appreciable corraction to the leading perturbative QCD
processes for producing three and four Jjets. For these latter ones

2
the ratios above should be respectively ds 0.2 and a &~ 0.04 .

Another numerical calculation has been done, see reference (8),
in which the author estimates the cross section for the production of
4~jets via the double scattering mechanism; one of these results is

shown in Fig. 5C.

The above numerical estimates, although qualitative because
based on unknown structure functions and forgetting the colour and spin
degrees of freedom give some hope that the above mechanism will show
up with a considerable number of events, in the near future at collider
pE experiments. Particularly interesting is the rather unique signature

of the four-jet events, which should manifest themselves
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with the transverse momentum balanced pairwise. Such an event
might have been already observed by the UAl experiment(e), see Fig. 6C.
Another important signature of the four-jet events is that their cross
sections are independent of the angle ébji between the two observed
jets. On the contrary, the leading source of 4-jet events i.e. hard
gluon radiation, sharply depends on it. Thus the two effects can in

principle be distinguished.
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Fig. 3Ca: Three (continuous) and four (dashed) jet differential cross sections
at yj=0 as a function of E_. All jets have transverse energy larger
than 10 GeV; v’§=54Q GeV, the upper curve is the two jet cross section.

Fig. 3Cb: Zcme as 3Ca, but the threshold for the transverse energy of one of the
jets starts at 5 GeV; ¥S=540 GeV.

Fig. 4Ca: Same as Fig. 3Ca, but §S=2000 GeV.

Fig. 4Cb: Same as Fig. 3Cb, but ¥5=2000 GeV.
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Fig. 5C: The integrated cross section for 2-,...,6-jet production (solid
line). The transverse momentum of all jets is limited to q?Pcuta-lSGeV.
In the same figure is pregented the influence of the process
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Fig. 6C:
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a) - The angular distribution of the transverse energy in

the central region for a two-jet system as observed
by UAl and UA2.

b) - The same for the four-jet systems (double hard parton
scattering) observed by the UAl experiment.
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D. Production of gauge boson pairs at collider and Tevatron energies

The recent experimental observation at the CERN pB collider of

the weak intermediate vector bosons W and Z has opended the possibility
4+ -
for their detailed study. The production of gauge boson pairs W W ,

- - - 33
W Z°e, W ( at pp and pp collider has been analysed by several authors( ).

In this section we briefly report on the work done by the author
of reference {(8). The aim of his study is to analyse to the lowest
order (weak and electromagnetic) the production of any pair of gauge
bosons initiated by 2 partons (similar to Fig. IDa-c) together with the
background originating from the 4-partons processes (Fig. 1Dd-e). The
identification of a W or Z, together with another gauge boson, via a
pair of hadron jets is likely to become possible, thus the quark/gluon

Jjets of Fig. 1D-e have an imposed cut-off of M 2 70 Gev,
JJ
The set of investigated 2-parton processes is

= e e . -
995 2°2°, Ww", wz2°

(1.D)

o - #
M2, wi, r7 (2.D)

The parton cross sections of the above subprocesses are given in Ref.

(33) and (34).

Similarly, the list of analysed background 4-parton processes

reads

@9)+59, > 225 ww, w'w;, wze (3.0)
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(9 ’"@‘f/g"’z‘:" Y}, Wiy, )'j-ﬂ‘ : (4.D)
(9)+ (77, > 7%4/%47} /}’14;;}5 , (5.D)

+
where j stands for a quark/gluon jet and the rate for ) always involve

y*”' (or ee) production.

In Fig. 2Da the integrated cross section of the 2-parton
processes (1D) and (2D) is presented, in which the lower transverse
momentum cut-off of the '"direct" photon was set at PT = 5,10 GeV in
agreement with the typical transverse momentum thresholds imposed by
the experiments, and the l+l——mass of J’ production was chosen at

Ma} - 10 GeV. At VS = 540 GeV, typical cross section values are

. - -3y =3 -3¢
alrr, 2%, W)= (10300 ; 07) af (6.D)

whereas all others are at least one order of magnitude lower. In

Fig. 2D.b is exposed the integrated cross section of the 4-parton pro-
cesses in (3.D)-(5.D). The results reveals that at VS = 540 GeV the
4-parton production of two gauge bosons is insignificant, at most a few
percent of the analogous 2-parton process. Assuming that W and Z could
be identified via their two-jet decay modes with the branching ratio
BR(W 9 jj) ~ 75%. It is noticed that the cross section for W jj etc.

+ -
Fig. 1D.e is a substantial background for the signal such as W +(W-%)jj.

An increase of VS to 620 GeV, or even very much higher, increases
substantially the rates. Whilst going to VS = 2TeV one may expect a
gain of two orders of magnitude in the production of a gauge boson

pair and three orders of magnitude for W+jj etc.
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Taking into account the possibility of observing experimentally
the mechanism under investigation, it becomes worthwhile to analyse it
more rigorously and in detail. The simplest and analogous mechanism
which can enlighten the structure of the double scattering for instance
is the double Drell-Yan annihilation. We shall study this process in
the QCD framework in the last section. In the following sections we
shall briefly comment on first the single Drell-Yan process and then
account for the few available pheomenological considerations on the

double Drell-Yan mechanism.
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9.

(a) (b) (c)

Fig. 1D: a-c) The 2-parton production of gauge boson pairs by
' the abelian graphs (a), (b) and the non-abelian
diagram (c).

d-e) The 4-parton production of a gauge boson pair (d);
and one gauge boson with a pair of gquark/gluon jets
(e) where the mass cut ij;> 70 GeV is imposed.
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Fig. 2D: a) The integrated cross section for the 2 parton production
of a gauge boson pair with a transverse momentum cut-
off: P_( ¥ )=5.10 GeV for the processes involving a "direct"
photon. The Drell-Yan mass is M *=10 GeV.

b) The integrated cross section for the 4-parton production

of a gauge boson pair, one gauge boson with a "direct”
photon accompanied by a quark/gludh jet, or one gauge
boson and a pair of quark/gluon jets. The transverse
momentum cut-off P_(J¥ )= 10 GeV is applied whenever a
"direct'" photon or a cuark/gluon jet is produced M.*=10GeV.



E. Single and double Drell-Yan mechanism: phenomenological

considerations
El. Single Drell-Yan process in the parton model
(35) X .
The model proposed by Drell and Yan to describe the massive

lepton pair production in hadron-hadron collisions is depicted in

Fig. 1E
p =
A Xa a U
8y
%
PG

Fig. 1E: Single Drell-Yan mechanism

In this model a quark from one of the incoming hadrons annihi-
lates with the corresponding antiquark from the second hadron producing
a virtual photon of mass Q, which then decays into a pair of leptons.
For simplicity one usually neglects the transverse momenta of the
quarks inside the hadrons and the masses involved. The differential
dor

cross section in the naive parton model is given by

dr _ Gnal 57 70! diadn, G%e) G(re) @-xr ) +(con) - (1.E)
et 9a? mmf& ‘494 83( )

The functions 626&9 and G;CXA) represent the probabilities of
finding the quark and the antiquark with a fraction xa and xb of
the parent particle momentum. While the scaling variable T:.%}
represents the fraction of the total C.M energy used in the formation
of the virtual photon. Written in a compact way, the formula (1.E)
becomes
Aor - %Jﬂyz F???
dqt 96!

(2.EF)
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Here the scaling functional F(T) is formed entirely from the dimen-

sionaless variables.

The form of the cross section (2.E) had many phenomenological
successes. It predicts the scaling of the cross section that is
F(T) is independent of S or Q2 at fixed T . The best test of scaling
existing so far is shown in Fig. 2E. The principal failure, however,
of the above picutre is incontestably the large transverse momentum
of the lepton pair observed experimentally. In the simple Drell-Yan
mechanism, the transverse momentum of the virtual photon is related
to the transverse momentum of the annihilating quarks. In the parton
model, such transverse momentum is related through the uncertainly
principal to the size of the parent hadron and is expected to be of
the order of about 300 MeV/C. It was therefore a surprise when the
observed transverse momentum of the lepton pair was found to be large

at large masses and to increase with S.

The Drell-Yan mechanism will recover its validity in the
framework of the QCD parton model which introduces modifications to
the simple picture of Fig. 1E in the form of the possible emission

of gluons.

E2 Single Drell-Yan process in QCD

Quantum chromodynamics introduces modifications to the parton

model in the form of the possible emission of gluons.

The first order diagrams in the strong coupling constant OQ s

which contribute to the Drell-Yan process are shown in Fig. 3E
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Fig. 2E: Scaling function and the corresponding ratios at 200, 300
and 400 GeV/C
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Fig. 3E: a) "Annihilation", b) "Compton", First order in & QCD
diagrams contributing to the Drell-Yan process

We shall develop in the last part of the present subsection,
the one gluon insertion in the single Drell-Yan process in the lead-
ing log approximation. The result of it will be used in our analysis
of the evolution of the double structure functions in the double

Drell Yan process.

Of course, there are many higher order diagrams which contri-
bute less to the cross section due to the higher powers of % . These
are usually neglected in the phenomenological calculations. The first
order diagrams correspond:to the "compton'" and "annihilation" pro-
cesses respectively, where the gluon plays the role analogous to the

A

photon in QED. The subprocess variables f, %, M are related to

the overall C.M variables through the following set of relations

= ans
= Xt+ (-5 Q¢ (4-E)

Dy MWy

2 hu t-h)R"

Here, the transverse momenta of the quarks and the masses involved

has been neglected. Both the "compton" and "annihilation" cross
36

sections can be calculated( ) and expressed in terms of the sub-

process variables
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La ALt
da;": l(%f:f",’- 28 :u’\"é (annihilation) (5.E)
At 27 3w
A AL AL
dr _ = Loy e; 28 + 53 £ (compton) (6.E)
Ag*of I 524

Both formula (5.E) and (6.E) are divergent for the small value of %
or U and therefore are difficult to use in phenomenological applica-
tions. Politzer(37) and Sachrajda(38) have proposed a perturbative
approach which includes the first order diagrams in the leading log
Q2 approximation. For qa annihilation, Politzer found that the di-
vergent parts of the contributions due to the soft emission have a
factorizable form and that they can be absorbed into the incoming
particle wave functions. Similar results were obtined by Sachrajda
for the quark-quark, quark-gluon and gluon-gluon subprocesses. The
structure functions of the parent particle become Q2 dependent, but
they are again the same as in deep inelastic lepton scattering. As
a result, the parton model description of the Drell-Yan is recovered
but with additional scale violating component,see Fig. 4E. The
cross section takes the form

dr _ ¢odt Lo e
det 90" (7&°). (7.E)

There are several steps in this approach for which the theoretical

understanding is not yet complete.

1 - Diagrams of higher order in k} contributing to the process also

have similar types of divergencies in the cross sections.
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Fig. 4E: Illustration of the diagrams contributing to the renormaliza-
tion group improved quarke and antiquark distributions

Although some second order terms have already been calculated,
it is so far not proven that all those divergencies may be treated in

the same way as in the case of the first order diagrams.

2 - Non-leading terms, neglected in first approximation, may have
substantial contributions to the cross section, thus modifying the

results.

2
3 - The identification of the scale breaking variable Q with the
photon mass may not be correct in the kinematical regions of pahse
space with two or more large dimensional variables, e.g. for large

mass letpon pairs produced at high transverse momentum.

E3 QCD phenomenology of single lepton-pair production

Until recently most of the features of the lepton pair data
such as beam dependence, scaling, longitudinal momentum distribution
etc., were well described by the Drell-Yan parton model. The need for
the departure from such a simple picture is, however indicated by the
large transverse momentum of the lepton pair. The QCD procedure des-

. . . A (36,39,40,41)
cribed in the preceding section was used by several authors
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to calculate the first order diagram predictions for the Drell-Yan
process. The calculations required as imput the individual quark
structure functions. The agreement of such calculations with the
measured mass spectra and the longitudinal distributions seems to be
quite satisfactory(Az), thus reproducing the success of the parton
model. The transverse momentum distributions require, however, a

more complicated approach. In the perturbative QCD the virtual photon
acquires its transverse momentum through the emission of hard gluons.
The first order in 0@ diagrams can be calculated according to formu-
lae (5.E) and (6.E). Their contribution to the total PT spectrum is
shown in Fig. 5E. In the region of small transverse momenta, where
both '"annihilation'" and "compton" contributions diverge, one can argue
that the non-perturbative confinement phenomena dominate. Neverthe-
less, even above PT = 1 GeV/C the contribution of the first order
diagrams is about a factor of two smaller and has the curvature opposite
to that of the data. This does not mean, however, that the QCD is
necessarily failing to describe the Drell-Yan process. There are in
ti.e literature several ways of explaining this problem, namely 'pri-

mordial" transverse momentum, "higher twist'" effects, etc.

Independently of the various approaches, it is clear from
Fig. S5E that the measurements of the lepton pair production at very
large PT will provide a sensitive test of QCD. In this region the
higher order corrections are expected to be negligible and numerical
comparisons of the first order calculations with the data will be

possible.
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Fig. 5E: Comparison of the QCD calculations of dimuon transverse
momentum
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E4 Diagrammatic analysis of the first order (& ) contributions in

the (LLA) to the single Drell-Yan process

In this subsection we propose to study diagrammatically all
the first order diagrams in detail, in the leading logarithm approxi-
mation. The set of diagrams to be investigated are the following

Fig. 6E.

S em s
- -

(9] {.‘)

Fig. 6E: All first order ( 0 ) corrections to the Drell-Yan process.
Wavy lines are gluons and dashed lines are massive photons.

I) Infra-red and collinear singularities

1) Real emission

To compute real emission diagrams (a), (b), (c), (d), we
adopt the physical gauge ( 6%—./, Shs 3?;:0 i S is the gluon
polarization). 1In this gauge the diagrams (c) and (d) do not contri-
bute to the leading log approximation, while (b) gives an identical
contribution to that of (a), therefore we have to compute only the

diagram (a) for the real emission.

To set up the kinematics we draw up again the diagram (a)

Py k

P A
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The contribution to the total cross section of the diagram (a) has

the form
AN dé 12 2.
o ;/? Pt & Gpiny (PH) /(”) Zﬂ;(k 17208 (%09
« BORIY %) £ wip Uip) £ (#£) 1 vip) (5.8)
,é!'

where f=(PA)° S,(PY = E) (P and 4 is the photon

regularization mass. We use the Sudakov decomposition to parametrise

the gluon momentum

#=ap's (- g)p1 by - (9.E)

-
the phase space integral in terms of Sudakov variables q/,/? ”é;

reads

[ cM ZENCIVE ff /cé/ d/MZ’ S[etppp k]

em"
= '/577z fdﬂ&'

(10.E)

Therefore (O~ takes the form
o MG z,/ff,ﬂ”“ s W’a’”/mz&éwm% g (1

We perform the sum over the gluon polarization

- ft - :SE-‘é g y %/~ 12.E
X-(%)( ﬁjz/zwjm (Fe) (FA)- A s fps jpt) £ (128
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3/2
The last term is proportional to (-t) and therefore does not give
rise to logarithms after integration over t, while the first and the

second do. To sum over the polarization, we use the formula

Z OZE)Z_»_\- -t (13.E)

() 1-B

Therefore the quantity X is simply written as

X= - 24 _/’_‘_ﬁz (’ﬁf) (14.E)
ﬂ[/»ﬁ/

Putting this into formula (11.E) we get

2

¢

One needs to know the integration bounds tm and tM in the case where

the gluons have been attributed a small regularization mass. The

upper and lower bound tm and t are given by

M
Am= - AQF
K X] (16.E)

The integration over t reads now

tn :
[t hfen] L TAE L prat (17.5)
4, £ tm (5. 4! ®2

The integral over f3 is straightforward

a3 ey 48 d(2Bpp. g1): - , kuﬂiaﬁzz
J2 dtg'as= J 4 I ) 35, PREE o
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The trace of ]’ matrices gives
/yv
{ - . /
A 72 &4 ﬁﬁ}/&’;- 2F Fr  (19.E)
where we have put g_ 7}-/4\___ /g_ﬂ

Thus inserting all these details into the formula (11.E) gives the

final result

b4 AL
o= 2 Wii_fi’ /_;_’/ e é’% H&(}c_pl‘ (20.E)

The factor 2 in front is added to account for diagram (b) which gives

an equal contribution.

Adding real gluon contributions to the zeroth order we get

t, 2 ., a2
2 (f,z_;%[fﬂ?/# Z. _;__f 3(/ _f_’j_g %%l,;...,_] (21.E)

~N

Real emission alone is infra-red divergent, this is manifest in the
I+5¢

/-7
These infinites are cancelled out by virtual emission, so in order

A
above expression since for T = 1, the quantity diverges.

to get an infra-red stable result, one has to consider all possible

virtual diagrams present at order A?

2) Virtual emission

Here we study infra-red and collinear singularities associated
with diagrams (e) and (f). This correction to the vertex contains
ultraviolet divergences as well as infra-red and collinear ones. The

former will be the object of the next subsection.

- 2> »
The collinear divergence along the momentum p i.e. k//p arises
from the situation where the disintegration p $ k + (p-k) is nearly

physically realized, i.e. we have
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Fxo o (Ph'so  b5o and (Ph) > 0 (22.E)

e 2N 4 -  » .
The case k//p' is obviously identical to k//p. It is again useful to

use the Sudakov parametrization

’é’a//’/‘i‘(/‘/;)/’*'éT (23.E)

The amplitude corresponding to diagram (e) or (f) is given by

4. /9%, b PAIGGR)E  ap
- @2)% (R2135) [ Cpia)*+isd L (Ph) s ) (24.8)

we have adopted here the Feynman gauge.

The different terms of the denominator read in terms of d /Z

I
T

%Jilf = za///-/éjffi ,é;-,/'z,u'g
(/‘”-(’}i‘/'f -2 a//g FPr- ,é; 18
/ﬂc’,é}z,n,'; = ?('/Jo/j[/.ﬁ/ﬂ//_,g’ +/5 (25.E)

The integration over & is different from zero as it should be only
ifog [3 £ 1. That is, the different poles do not gather in the
same half plane of the complex o variable. For O\(p\( 1, there is

only one pole in the upper half plane
2 .
g -Ht1E
% PP

(26.E)
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And so we close the contour as sketched below. Fig. 7E

x

oA x

1%

Fig. 7E: Contour of integration in the complex (& ) plane

Therefore the integral becomes

(4L |2 /{/[/fé/-f/fj ,é;‘#ﬁ/]z

(
/zﬁé - //,,Z oAt (27.8)

The logarithmic term will be given by the kT integration, therefore

2
one can neglect in the numerator all terms proportional to kT or to

of since ’bkfz . Thus we just put

b~ (- £ P (28.E)

Now the amplitude A takes the form

An =97 [caided  THIKER) 4p) g
kv ?&/ (2" rtp1Y (Fik)r 1

/7227? means that we consider only the part of the phase space where

k is collinear to p.

A= = 774'4 /fd,@ ?/3 1/{///'{/[/,} (30.E)

aé//P L

The contribution of diagram (e) and (f) to the total cross section

then reads
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%
.

-

[_.%/ffo

[;%)’7 f(/-;))- (31.E)

Lo
“)

In this result we have taken into account the contribution of the

-3

gluons collinear to p' (A k// ) by multiplying the above result by

a factor 2.

I1) Ultraviolet singularities

1) The renormalized vertex l;R

As it is well known, the vertex correction is ultraviolet
divergent. To work out the renormaized part we adopt the Feynman

gauge and the dimensional regularization scheme.

In the Feynman gauge, the expression to first order in 3

of the vertex correction reads

4 ! f
=8 g.//g d/cp b (F+8) (P4) &
€n’ (RAY(Pir) (pi)t

(32.E)

Here f: ? .Dé and we introduce a mass / » since the coupling
constant has a dimension in D-dimension. The denominator has an
ultraviolet behaviour of the form k‘, therefore only terms propor-

2
tional to k in the numerator give rise to ultraviolet divergence.

The part of the numerator which gives a divergent integral

is given by
/l};= - /Z-ﬁ//?éf-,é’/;/, (33.E)

We combine the terms in the denominator using the Feynman identity

and make the change of variable
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é?;év‘ 2/P+Ig /)/

(34.E)

~r
The part of /F- corresponding to N

F is simply written

<’ 25/ y @zy(/é,{-,é (35.E)
[ 9 - 5 [ CBEAE,

with

2 z
Rexi)z =4 (1-0) P"- (1) P iy @' Ak

integrating over k in D dimensions using the substitution

Lk LKL

Hence [7 becomes

N

(36.E)

ﬂ&‘ // / 2///*5{12/[;/7,2*) /7/;‘0/’/ r (37.E)
(ny ¥ 2

/=y

(g =%
where we have used the general formula
[A% kE N A VA
)0 (Rirtisiw 4 lan)%

row e e

Developing the expression (; around & = O and taken the asymptotic
2 2
limit R (x,) A~ Q@ , the renormalized quantity /
i

obtained by sub-
stracting, the pole in 3

is given by

=+ s 6« fa:,,n, dr, d(- 51, A /gl

(39.E)
Therefore we get
[ ox-d &G4
Aﬁ? un / (40.E)
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2) The renormalized self-energy J_ ﬂf?j.
'3

Let us compute the renormalized self-energy ;Z'(fy
r

associated with the diagram

z-12(f7)

Its expression is given in the Feynman gauge by

y
Z(ﬁ"‘"ﬂz&/’“/& 0‘1@ (41.E)
e’ e

combiring the denominator with the help of the Feynman identity and

making the change of variable

vé—>/€’-Xp (42.E)

we get
[’ / g ts 7 /
2 f"/ﬂa// (é-&jﬁdxﬂ_x//g— 4
(22/9465$1ZZ{7/3ﬁ{}]iZZ

- ég %ﬁ-E//:%M 7 (43.E)
tn Q/Jl{a%?l;y(?;(;zQ&E;é]

. z
i p= //Z//-Y/ “X(1-x) p2.

neglecting constant terms, 2}%67 becomes
Y P MG /25 (44.E)
207 A g %ﬁ’[)dx(/x)/a/__/_g/

2 2 2
Now for p =0 and )\ « p the renormalized self energy behaves

like

- 57 -



S B L)
—%Jf—’

The renormalized propagator is obtained simply by

(45.E)

IR P A ) = 4 ). (46.5)

Since a propagator is a bilinear expression in the fields, the
renormalized wave function is obtained by multiplying the bare wave-

1 4
function by only Ed( ﬁl.z) .
Y%

Adding the contributions from diagrams (e), (g) and (h) we

get
_ bty ! 2/ Lo« '
O = 27 é? C?Zf;}(’zé; 4} f&jé; - _j; G {éjf;// (47.E)

=-41'% 5 S5 ¢ .
= é; //?/_g%/%/.

We notice that ultraviolet corrections to the vertex and to
the external legs come out equal in absolute value but differ in sign

and therefore the renormalizationpoint (M) disappears in the sum.

. So far all radiative corrections to the single Drell-Yan
process at the (LLA) are computed. Adding all these contributions
P 3
we get the expression for the cross section (qq.aa’ ) at first order

in e

4

2 Z
o Anw,?[a“// 2 8.4 %? bt o[ - 4 g
-9 % .4 gt 5(1-3)] (48.E)
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o= %«’e;[gn-mz 4 L Q0[BT LAy
ﬁ (49.E)

//rz

One can rearrange the above expression using the identity
o z
J=‘/ A4p- o g (50.E)
Z ° -

Therefore we get

_ bkt Lt 2 p > 2
o= 47 %[J//-z/* 2.?»: 39 A§;ﬂi.§/1l«-‘] (51.E)

n 1-7
A2 22 7
where {"?/5 4JZ: —j—/‘ﬂdf J//.;} (52.E)
1-3/y At 0 AF

) . . 4 Z . .
the distribution {/ + /) is defined by
+

/éfgz/é/?//r -/ /1‘ Z/[/l/;r/./,/,,// (53.E)
-7 4 —_—

-7
The final expression we arrive at and which will be used in the study

of the double structure function evolution is given by

_lpo g . E
o= % %[Jf/-?/iz}‘% /’/?/%3‘?.:,«--- J (54.E)

where f?i:) is the Altarelli-Parisi probability

A 1
Pré): % (4 RSt 50-2)] .

(55.E)

E5 The double Drell-Yan annihilation: phenomenolggx

The double Drell-Yan mechanism depicted in Fig. 8E has been
already studied by the authors of reference (34) for an order of
magnitude estimate
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Fig. 8E: The double Drell-Yan mechanism

They propose for the cross section to observe a double pair of mass

Ql and QZ, an expression of the form

EEANER s é_r (EAAD (56.E)

where ol = I/ Ao / (57.E)
d8df; A9 dy i dys’ fr gm0

and ,F(Xf,)’g/f’ fe /= 12/; @, /. [4’)’,)58 u}/l/ (8.E)

The summation is over the quark types, €&, is the charge of the

quark il, the valuesof x_, yi are fixed at zero rapidities (yl=y2=o)
i

by

,Y,:rl:‘/%’ and Xf);:f{ (£9.E)

v

The double structure functions GA(Xl’XZ) and GB(yl,yz) are the same

as those introduced in the preceding sections. The transverse distance
é% between the two incoming partons which should appear in the
definition of the GA,B'SiS reflected in the factor ——?z . To get

an estimate of the cross section (56.E), the authors of reference (34)

have parametrized the unknown structure functions as follows
éiwchﬂ&):éiy(k?lﬁ}
1-x7
L7 dx, G by o6, e AL)”

%7 (60.E)
/Jx G x)=1
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Where GVv denotes the double distribution of the two valence partons
in a hadron. A definite result for G(xl,xz) is obtained in the limit
that hadrons are made up of (identical) valence quarks only. Taking
n in Eq. (60.E) to be 1 and 3 for a 7] meson and a nucleon (N) res-

pectively one gets

N S,
&, )= 2 (1-4-%2) % (61.E)
(Hi5)%
7 4
Gy, () = 2 (- -4 ) (62.E)
n
1 )%

At the valence-quark level Eq. (61.E) is sufficient to determine the
cross section in a pg interaction. However, 7T/ and pp interactions
involve the double distribution of a valence and a sea quark in a
nucleon. This distribution can be taken from phenomenological analysis
using the recombination model, and probably an adequate guess according

to the authors of reference (34) is

v
G (N, 1) QG (6] 6 00) (1-4-1 ) (63.E)

The constant a' can be inferred from the condition

18 ¢)
J, i Gyl )= G.(%) | (64.E)

The authors make an order of magnitude estiamte and claim that the

cross section, though small is accessible with present high intensity
71 and p beams. They give different rates on a hydrogen target for

an, Qzﬂ, 4 GeV and incident genergy VS = 27 GeV, summarized in the

following talbe.

Beam-particle Cross section
type in Mmb/gey
P > 16”%
Vil > 16"
-/
P S 516"
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So far we developed in detail the existing pheomenology of
multiparton disconnected scattering in exclusive as well as inclusive
processes. We have shown that such new processes may play an important
role at the CERN collider. In the following section we concentrate
on the conceptual(S) side of the problem, thus analysing the double
Drell-Yan annihilation in the QCD framework, pointing out the features
of multiparton processes not properly put into evidence, so far by

phenomenological considerations.
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I1I THE DOUBLE DRELL-YAN ANNIHILATION: CONCEPTUAL CONSIDERATIONS

In this section we investigate double quark-antiquark annhila-
tion as a multiparton process in the framework of Quéntum Chromodynamics
The spin and colour structure as well as factorizability of the process
will be analysed in detail. The analysis shows that the existence of
connecting gluons does not spoil factorizability in the leading-log
approximation. We also find that the spin and colour degrees of freedom
play an important role in the description of disconnected processes. As
a consequence, hadrons are described by a set of six newly defined struc-
ture functions, and it is found that these are convoluted with two com-

pletely uncorrelated single Drell-Yan cross sections.

E) Formalism of the double scattering

We study in this subsection the amplitude A associated with the

diagram in Fig. (1.%)

Fig. 1.2: The diagram corresponding to the amplitude A, arrows indicate
the momentum flow. The hard blob S is disconnected (up to
radiative corrections).
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There are six independent internal momentum variables, we
- - / /
choose them as ¢, 2, A, B,o , S

with
o= 44
2
2‘: b,-‘z
7
I o~
Cs aj-a; (1.7)
2
37s by-by
=z

The amplitude A according to Fig. (1.A) can be written as (the

Ad's
are Dirac indices, colour indices are understood for the moment) .
lal
o4 4wy 4 ﬂﬁhh
_d&‘d__é_-dﬁ dgdf’d_g./ J‘/T’ in ’ PO’
A= En“ €)' ent an4en ant Q’C ) 5(4434,5,°,J£j£ (2,85, i
Ve ] PAPp; (2.3)

The disconnected hard amplitude S possesses an extra delta function

which we factorize so that S takes on the following form:

ple” eULE ) )
f@%ﬂ,éﬂj’f’/-—ff%@é@’i}éﬂ) J (ns.si57) .
L/ ~4...

(3.3)

To cefine the longitudinal fractions of momenta carried by the partons
of hadron A, we introduce the light-like four vector

? in terms of
A
which we write the Sudakov decomposition.

2 2
Y /2;/ Qx 04/ /2

with
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One can take for pA for instance ;z:-lg
P
A

i

Similarly:
2 <2
242
Z 76+ T
» y‘ﬁl 2r PK/"Z;;/
— =7 =2 (5.4)
AP A+ Ay =
» * *
T bk /24/ %,
- ke, 838, =
/: - P 7
¢ 9 Zie ?’g/"- T
€
and the same for primed variables o"), Z/ . Here J?B O _Iiﬂp . We
write the delta function (S.X) as Ale
5(;/2 /2—// J(Z// ’ y )
4.0 = O+ S g’ - )y’ _
4 SR 2;/37*@4 Y5, ) ,Sm% Fe )

(6.3)

)
=L g (5+s- 7%/ ear lrpy.

where VS is the centre of mass energy and PA PB A 5. The trans-
(¢) -
verse component d {0;1"; -d_;'- Z’/ mixes the upper and lower
7

parts and it is singular for collinear interacting partons.

In order to achieve factorization of the upper, middle and
lower parts, we use the integral representation of the J-~function

) , —dlTsS-al5) “ ~
S (ris-s" -f v 7T TS 2 i (7.8)
(Tz; 7.3)=Je oD

7 @n)t

The parameter 43T, being the coordinate conjugate to the relative trans-
verse momentum ch for instance,is interpreted as the relative trans-
verse distance, within the hadron, which separates the two incoming
partons. This AﬂT dependence is a characteristic of disconnected pro-

cesses.
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Since the hard amplitude ;gy is no longer singular in
)

the collinear direction, one can Taylor expand it around

X//?,u ///g, i 45 ﬁ,, /'X//j;}, /'}/)@,,/' )2,. é}/ , thus

A, Y/ c)/‘/% (87R)
- _ 5”
1°’z~(--6 A /F/S/‘ %”’5 )// %)"‘;;:74/ /f”r/ﬁﬂ/-/

We shall retain only the first term of the expansion which depends
solely on the X-components of the parton's momenta. The remaining

1 (4
terms correspond to higher power corrections in g ). To integrate

over the off-shellness and the transverse momenta of the incoming par-

tons, keeping the X-components fixed, we introduce the identity
4 4 ~
fdr = [ dsrolx -6, ). (9.7)

and similarly for the other variables. Therefore the amplitude A in

Eq. (Z.K) takes on the form

A:g’fd&/)@c/};dfzqf fg@d,?)q}/?q)f?fll/),,? 44 ){; W?P)(lo )

, _ aﬂf’a/ﬂ1 dor
where /A:’(;/[ /E o @n)* (zn)‘-(gﬂ_)z.or( 7/3-[L‘47/J/l-/y/

x/"(""?"'/e 9eg?

Aad,...

(11.%)

and similarly for /5—',;‘17; 7;;"-) . The integrations over X' and Y' have
Wo. - .
been performed using the last delta function in Eq. (6.A) and we have

converted in formula (10:2) to the variables Xl’XZ and Yl, Y2 which
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are the momentum fractions corresponding respectively to al, a2 and
b_,b_ in Fig. 1.A. The total cross section is obtained from the ampli-

tude A by the formula

’/3 2 Dise A (12.%)

Taking the discontinuity of A in the variable S, the cross section

reads

b o ~
=2I' /‘{Wdlzd/"/fg@ﬂ[bb,d jéygc,f /7(}’ 4, }.(13°A)
- (j) 4/4’ ﬂﬂ[ 7

2
where /11(ubib / is a cut amplitude in the variable & and similarly

A /1 -2
for 4; where the variable is B . The discontinuity in the hard ampli-

tude S is taken over S = (X1+X2)(Y1+Y2)S. Tt has been shown by the
authors of Ref. (7) in the rather simple case of colourless and spin-
less quarks, that one recovers the parton model picture from Eq. (lS.K),
thus allowing the identification of XlX2 fZ(M}Q/." ) in that case as

the appropriate structure functionup to a normalization constant. We
shall not prove it again here but rather concentrate on the generaliza-
tion of this result to the case when the guarks carry spin and colour

degrees of freedom.

a The spin structure of the cut amplitude /7
) p p " tpety ot}

In order to investigate the spin structure of Eg. (13.A) one
e
has to expand the tensor C/"M’é o in the basis of the 16- ¢
matrices for each pair of indices (a&aé) and (afxé). For massless

quarks and to leading order in 5, we have the general expansion
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F(ﬂﬁ,/}ﬁ,d £ 4 (o, Cﬂ (14.%)
Wz«’{djz 95 "/"’44'4/ é 7 %t é—”) 44/’ fj’nﬂ

ngébéy ,dek) + higher order corrections
g G,
]
. . (4)
Terms proportional to zﬁT as well as c>—terms are not leading ,
since dim é]T = dim 7 = -1, also there is only an even number of l}
matrices, due to partiy conservation. It might appear at first sight
that the four tensors are independent. This is not so; to see it,

one converts to the helicity basis using the identities

B! %, AN U['D'U ” fﬁ”/ (15.R)
=2 /JJ U (pd) T, (p)
and @U"’m 447 o, 64 Yy P 4)

The quantum number A is twice the helicity and takes on the values
.

A =% 1. Therefore [?7 takes on the form

&z/l' +4£ é:l,,i; A,;z,;;-} b A ‘52’ ‘gy

2 (16.3)
1G4, NN ]u(zr/;,, ,/wx/o,?,M, g, /;,/,% !)
Now the four tensors in formula (16.2) are not all independent. They

are related by the identity

(4d)g 1 ¥, (e M 175

The quantities GD GE GDS 5 are however not all positive definite.
In order to write /1 in terme of well-defined structure function, we
express the above mentioned tensors in terms of the following pro-

jectors.
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g#),l--)) 2 (7*-)4/4)) d /(64.>-/-+> )

which are respectively the projectors on the subspace spanned by the

states (L++) , 1--) ), on the state tt%é?:f) and /*;;—/-+)

These are the irreducible states of the tensorial space [LJL):LL)éaL%) .

The matrix elements of the above projectors are given by

(/‘ /)IA/ - S /[ , //'ffl,/)g/
Hz/[/#;},l-»)) ) Aids A4, 2

<A ";/ //‘*>+/ ) Iﬂlf,);): JJ'JZ,JJZJ,/,-J")ZQI,]”‘ cg;';g (19.,&)
2

el 1o, A Ap -y D,
2

A
One may invert the above expressions (19.A) and write down the tensors

~
of Eg. (16.A) in terms of the three independent projectors. Thus one
™

can write down the cut amplitude gd in terms of the above pro-
(.

Jjectors.

P sk 2 [FEAMIE NG ChIg L 14

el Ad’ s1--2)
§(A/f J’J’J 7
4 Uu by by - ~
1) -1- ) LA AF 24 x) (20.2)
The normalization factor K and the factor % (Tr P = 2)

(I#)/ /“ '))
are introduced in such a way that Ggs are the probabilities to find

two quarks within the proton in the helicity state Ib) corresponding

to the projector P .
pred (b)

The structure functions Gb's (b=1,2,3) being now properly
defined, one can use the matrix elements (19.1) and performs the sum-

mation over the helicities to recover a well-defined expansion in JL
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and _ﬁd} . Thus we arrive at the final expansion of the tensor

on the physical basis for Dirac indices.

é;ﬂbnggg,ﬁA:kz; 6’45;,¥d (Z?j » /

&ﬁ¢
: @1, w)mwj

ot (21.8)
1 & [fi’%ﬂ @QQL,QﬂﬁJ )]

Now going back to the formula for the cross section o Eq. (13.4)

and inserting the expansion (Zl.Z) we get an expression which can oe

written in a matrix form.

quqm ;

(44,0) o 6(,‘,:}30) (22.%)
where GZ = (GAl,GAZ’GAS)’ similarly for GB, and 57 is a 3 by 3
matrix
% 7 %
=% g 7
% %z 2, (23.3)

The compoennts q;d' are linear combinations of the elementary cross
sections* o .o- . O . o
Ob27EE/ PE’ ED

for instance

#

Here D refers to the direct term and E to the exchange one.
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The cross sections OI/L [A’}Z: A/E) are the elementary cross-sections
associated with definite helicity diagrams. We sketch in Fig. ZX; for

a particular colour projection, the four helicity diagrams corresponding
to different helicity projections. In these diagrams the loops with

arrows indicate the helicityflow.

Fig. 2.a: The four helicity projections defining the cross-sections

()

7 _J_IJ _ IT 7 I7
0",'[ ; 4s Y A: OEE (2 60‘5 , d":%o where the loops

indicate the helicity flow.

——

/ " l./l./
b) The colour structure of the cut amplitude /7 r'e’e T

Here the indices (i) are colour indices and Dirac indices are

understood. The cut amplitude has the following form

4 ' e
/111 4‘12 h

oy
/_mzlzl;z ,77"{11/ ‘f’m:Z(ﬂﬁ/"{/}')@l}/ﬁn} (257
QY
In this notation, we keep only the colour indices and omit all the
remaining quantum numbers. K (7)) refers to the spectator (anti-
spectator) system. The quarks belong to the 3-dimensional representa-
tion of SU(3) and since 3m3 = §e6, one can expand the two quark state

liliz) in the irreducible basis [3), |6 i.e.

JGi = 2 <alggyas (26.%)
4=3,6
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Therefore the cut amplitude takes on the following form

)
/’:/41215/, b (27.A)
=2_ 2 & Catzlad@alcy)y .
d=3,0 i’
~ 00! . .
Since [ "9 is a colour singlet, only the projectors on the

s

state |3) and |6) appear in the sum. To rewrite [~ with normalized

a
G 's we divide the projectors by their traces. Then we arrive at

= Inly 1] ] 1. 7 2., v 28.1%
/— 2 :_g. & (/1I1/ P_ /L,,‘z) -}_l 6‘(’1/2/ P /1,1,[;) . (28.4)
Ny (3) Wap (€
1 2
with N the number of colour, N=3 for SU(3). here G and Q stand
respectively for the probability to find two quarks within the proton

in the colour states [3) and |6) and P are their corres-

-, P
(3)" (8)
ponding projectors. Their matrix elements are given by the following

expressions

il B lenigy s Jait iy - o o
2

(29.%)
11ty é)/f,’('z’) = ‘);Ju'; J;‘z/‘;-ﬁfq(; J}g[',,
2

Now putting the spin and the colour all together we get six independent
c
structure functions Gb()glgk/zg ) (C=1,2; b=1,2,3) which are the pro-

babilities to find two quarks within the proton in the helicity state

(Jex > or |==) ; D=>+/- . Lt’?_‘_}_ﬂ'i and in the
- V2 2
colour state |3) or |6
Finally the cross section OB takes on the form

(30.A)

+ ~
OB -‘flnoll‘zdbdbd% 6;1/"”/1!14/ o é'zz[h’bldrj

‘ t 0,2 1,2 / 2 ~ 71"’ Co
with 54:/%1'6;7;/ 6’2/6}2/6)3/ 6)13/ and ‘Z,;I,I /4;‘4'//2/!1' /:',:1/2}
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is a 6 by 6 matrix generalizing that of Eq. (23.%). The upper indices

1t c
in both Eﬁyl and Gb refer to colour and the lower ones to spin.

These cross sections are linear combinations of the elementary cross

sections 3&. (I,J,K,L = D,E) generalizing those introduced in Egq. (24:3).
They correspond to definite colour and helicity diagrams. For a given

17
helicity projection e.g. 950 , the cross sections are sketched in

o~
Fig. 2.A where now the loops indicate the colour flow.

So far the :pin and colour analysis leading to formula (30.3)
is quite general and o may describe any hard disconnected process
(e.g. double Drell-Yan, double scattering and so on), so there is a
set of structure functions and a set of hard cross sections to compute
in order to write down a hadronic cross section. Until now all the
attempts to evaluate the double scattering cross section limit them-
selves to the direct term and this amounts to considering only the
component C?ﬂfb represented in Fig. (Z.Xé), all the exchange terms
represented by the remaining components are neglected. This is valid
of course only for an order of magnitude estimate. We shall see in
the next section that the basis in spin and colour on which we have
expanded f: diagonalizgs the matrix 5: for the double Drell-Yan
process. We also show that all the components Q;Z can be expressed
in terms of the direct one, i.e. CB:A and furthermore that ;z:b
factories as c&?g 0;02 where O; and G} are the cross sections

for two uncorrelated single Drell-Yan processes .

~
B) Application to the double Drell-Yan process

a) Limited phase space of the connecting gluons in double

Drell-Yan mechanism

Here we want to show an important feature of connecting gluons
(see Fig. (l:ﬁ) in the double Drell-Yan (Fig. 2:5), namely that in a

given diagram the sum of their transverse momentum components
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b:2 k.
T )

. (lg>

1
is always limited and of order E’ where R is the hadronic size. The
above statement is trivial and purely kinematical. As can be seen for

’”~
instance by inspection of Fig. 3B . Momentum conservation requires

é%: a4 +A -a’. é)l (2.B)

IT 17 AT AT

/
/ s
) and éhr) éhT are limited iy the
hadronic wave functions, kT must be of the order of magnitude E' The

Therefore since 497 ) A

importance of the above statement comes from the fact that the leading
contributions of connecting gluons is just a constant term as we shall
see, so at ( /LA ) one could just ignore them with respect to non-con-

necting gluons to any order in A

(a) b) ) o)

~
Fig. 1B: The four different types of connecting gluons to order Q;‘
Gluons are represented by wavy lines, dashed lines correspond
to massive photons

Qe et

e
A ET
b, {’"

P

Fig. 2B: The double Drell-Yan process under investigation, with two
+ - + -
different pairs (e e )and ( vV oy )
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al aa

b4

av a}

:g :
ig. : he b ded fk = k ~ —
Fig. 3B The boundedness o T . i R
b) The double Drell-Yan cross section formula

We generalize to the double Drell-Yan the formula which relates

A A
the differential cross section ob” to O , where O is the total

A

cross section for partons to annihilate into a massive photon of mass Q.
For the double Drell-Yan and for the case of two distinct lepton pairs

+.. -_—
e.g. (e e, F; N) we get the simple generalization

2
dor -{2‘5)3’4 f 7’ ~ ~
o0 (anl e ) dndndely dl Gl d) 5 Golh 0). 0B
4§t Q4 7T
| 4 t
~~ A
In Eq. (3.B) (0" is the disconnected (up to radiative correction) cross
section to produce two massive photons of mass Ql and Qz. The factor
o {_1_ comes from integrations over the angular distribution of

3N/ &'at
the double lepton pairs.

From now on we concentrate on the hard cross section é; in
formula (3:5). We have said that the cross sections Eibff) are
linear combinations of well-defined elementary cross sections C&fj
Does one include connecting gluons in computing these cross sections?

At ( LLA) and to any order in 0§ , €.g2. Dg )‘1 non-connecting gluons

. . . L4 .
contribute a logarithmic term of the form (;;_ﬁL 45-) , while at
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the same order connecting gluons contribute just a finite term at
high Q; owing to the boundedness of kT = ZZ kT' , in fact we have the
N 1

result

(4.8a)

R
| o[':ér, 6_1_/_‘?72 E/_‘/y_én 8[(52)-/,@_+,éc7;...4é_/2)_/_bct.
g : ' " Gha

Ti 7y T

where <7%%,> is the mean value of the squared intrinsic transverse
momentum of the partons, Q mei(i=1,2) and A is a gluonic infra-

red regularization mass.

Vo
Eg. (4.Ba) can be seen rather easily in the case of one or two

gluons insertions, for example. In the one gluon case we have the

integral
o, o \
[l gg) S e L,
k7l 7}z

For the two gluons one has to compute the following integral

[l dby By (k')

é% Ty (4.Bc)

For fixed kTZ’ the momentum le spans the whole circle shown in Fig.
ag.
brs

'?C) kT,
.

_/

I

Fig. 4%: Domain of integration
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For large Q one can put kmlﬂl sz and therefore the integral reads
T

PO
& T ey '
/ Ak, / di, ~ 1= . (4.8a)
( 1)2 ! &Z
3
~

Therefore owing to the result (4.Ba) connecting gluons are not
leading with respect to non-connecting ones and so one simply ignores
them. Thus the double Drell-Yan process which is disconnected at the
parton level (zeroth order in t% ) remains disconnected to any leading

order in G;

At first sight, one might think that there is no simple relation
7

between the elementary cross section defined above C;Z . This however
is not true in processes where connecting gluons are not present as it
is in the case for the double Drell-Yan under study. In fact we have

the following relationships

017 W(o/IJ @ p

J— = o oy
7. 74 ) (5.B)
@7y
where L%;Z are simple numerical constants, and the cross sections
are computed at the zeroth order in q; W °) has the simple form
4L L0
N 2 2y
(o) | 2 1
- ZN 2 ~
£ ?l_ 4 3 (6.B)
2 LA 2w
40 A
v 2 2w '2L
(o) J .
To work out W ~°, one computes the components CEZ . They involve

the following traces
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I1J
where the coefficients C have the values

ED  Af (8.8)

The above traces are easy to compute and give the following relations

W1y 1y (©z7 () 27 g
& - ) ) ; (9.B
06 T %0 TG T Tow LI:DE )

o)) (9 ED

() pb B

o - ‘

&t T Tk < f*’- o

N
6_&155 (2 )b Ki=bE o1
Z - ) (11.B)

Now does the above relationship remain valid to any order in & ?
T
This is true for all the components qzz except for the particular
EE ~

/ Eq. (9.B) referring to the spin are true

at (lWUA) to any order in A; due to the helicity conservation. For

colour projection q;

A
Eq.(10.B) their generalization to any order may be seen by direct cal-
culations of the colour factors of the cross sections 0;1 . Another
method consists in replacing each gluon line by an oriented colour anti-

43
gluon line( ) and counting the number of the resulting colour loops.
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EE

The component q;L needs more care, in fact inspection of

EE ~ .
(Ei Fig. 2A.b shows that its colour structure does not allow the

p
emission of one real gluon only (Fig. 5B)

7/ ’)

(a) (b)

~
Fig. 5B: a) This real gluon is forbidden by the colour structure
b) The corresponding virtual gluon is no longer compensated

Therefore the virtual non-connecting gluon is no longer com-

pensated as is the case for single Drell-yan or deep inelastic scatter-

ing. Hence at ( LLA) and to order & |, a’tE has the form
S KL

b

03 . ¢ (eI EE
- ()Y 08 ) ede DAt . (
7, : (! _g;é..(ﬂ) & &/thp ) o,

i
N
lws}

Now at second and higher order only the singlet part of the virtual
gluonic non-connecting system is compensated by the ccrresponding part

in the real non-connecting system. To see it define

D
23 €€ .
O (n)= Z o (n) (we omit the indices X,L) (.3.B)
f=0
EE

where (0 (m4)) 1is the contribution to the cross section of the diagrams

with n real gluons and r virtual gluons. We have the following relations

od
U’Ol}o) ol Orq) X 0 ( suelaboy Supprml'm)

a‘,ao @"le
73 Yy,
0"(0/ - 0'[0)

EE (14.8)
o 6’} = 0

v
[\ )

bD
6”554}:: f: ‘n) N
A/!

- 79 -



Therefore the cross section g o all orders is given by

xX) )

o2 i 0, 00

LS o s I T L (5 %)
Heo 4’549 V/ED) ”2 Nz

2 .
So at very large Q we have the relation

0‘t€. o‘Dp <52)9/) and all radiative corrections(6 .B)

s

n

to any order are summed up

EE
As a consequence the component %41 takes on the value 1
1
when only the Born contribution is taken into account (case a) or the value ﬁﬁ
2
at very high Q@ and when one includes all radiative corrections (case b)

in which case W takes on the following form

I N |
N2 2y
Ly
Wz |~ yr o2y Wt
1 1 (17.B)
2w 3 4
€ | N v
N g 4
VEOAN Syt
Thus we succeed in writing for the double Drell-Yan, all the colour and
IT
spin projections qu in terms of only one i.e. Qifb . More-
over since connecting gluons are neglected qagb factorizes as
0D
GZD z G, 0, (18.B)

where O, and U, are two uncorrelated single Drell-Yan cross
sections which are computed to all orders in 4; in the usual way.

To compute the hadronic cross sections in Eq. (3.~3 we come back to
it . . . . 7 .
Czc¥, which are linear cominations of C;Z whose coefficients

are fixed by the 7 expansions Egq. (21.%) and Eq. (28:K). Using the

. (o) . ~IrY :
matrix W or W we can write q;i, in terms of gy only and
—“ 5
we find that Ci; , is diagonal. in the physical basis we have
o
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~
chosen for the expansion of the cut amplitude [7?

n.,
q;{/ - /%"g}”agd’ q:gz (no summation over i) (19.B)

with A= #W

Nl (case a, Born approximation)
Ag= s
A+l
and (case b, sz» 1 and all radiative
Ai= Ay = 2 corrections to any order are

summed up)

Going back to formula (3.B) the cross section for the double Drell-Yan

takes on the final and very simple form

aﬂPﬂﬁQ KfﬂJdpz ng{ aﬁg‘17249a49Z?4,/&%ﬂ%g é%? & " Aﬁ &2/
+ A6, %z‘%z"@ﬁg;/]”’ . (20.B)

?3 The evolution equation of the structure functions

The structure functions C;i: defined in the previous sections
evolve in a non-trivial way in the sense that radiative corrections mix
between them. In the present section we propose to study this evolution
in the approximation that all exchanged terms are neglected. Therefore
only the direct term will be considered and it is described by the com-
ponent QagA . This approximation amounts to considering just the
diagram (éz.a) which corresponds to two uncorrelated Drell-Yan cross
sections. At order ¢ , the gluon distributions are also participating
in the evolution of the quark distributions. We shall neglect their
contributions in the following analysis, therefore the evolution equation

we shall get should be taken as an approximation. The double Drell-Yan

cross section in the Born approximation reads
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dr  _/¢ !4 2 . )
— Tz Wl g L LG di df diy ) S0
dt?/'d(?f /3 / %r'a)’z.@zz fxz * 7:// FZz 75};5@ J{ Z,/f// 7(/_ i 6)

— 14
Where 'T::ga‘ and C%q/é&g are the double structure functions summed
5
over spin and colour quantum numbers.

At the one gluon level where the gluon is inserted in all

possible ways, the cross section has the form

Al
d&; ¢ / % i— f[f(’ ?/J//J,/;‘ 2“0 AENE H-7y )4 2 ‘?/’/z )é -3 )]
1
y Cﬂ(*f"’/@(fro)“'dwh body . (2O
‘hh
where /D/é/'/ is the Altarelli-Parisi probability
Az )- ’" ”?' *fﬂ/-i'/] : (3.)

“1-z,),
and t .ZM 4%.

In analogy with the single Drell-Yan case we proceed by

"renormalizing" the mass singularities, therefore

—i”— = (3 “’“"/-J_ JC2)d i) B 0ty 0 ) 281 mzj
r Gpbg dﬁvefxz a/[y g(f 5149
AR RT

2
. i = ¥4 . L .
where now &= %{IL , here g’,q- 5‘[(/}1’2,4/&” a) is finite in
the limit A2 and QO is a mass introduced by writing as usual.

[# AU S8 g ... =(ltady fy@*s... )(1 404 A._t&_z,:....] (5.0)
A2 @t 4¢

2
The Q 1independence of the second multiplicative factor allows its
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d—~
a/‘p/ L a/o zL

$ . ~
absorption into ¢’ . The equation for , Eq.4C can formally

be rewritten as

b z ¢
) (6.C)
e font)h ,/f Aol 48 Gy 18t 4)
'} s@9t =
Xég[}zh/{llf?/é/ J(//' ?7/J/4- ?f) ’
We can do this if G, obeys the following differential equation
26 ‘"
5’5;4[’”/2/&,{2/:;:7'4, %P[g’/@{@lzﬁv&‘(}.
A (nyn, o, b). &5 ("2 7O
9_2?(!)”/ t’) 7E 7 [Z i;_lj P/E;-Q/é}l{nl y/{’l'l.l/‘

and similarly for GB. Phenomenologically one is interested in the small
x region so one can forget about the x-dependence of the upper bound of

the integrations in Eq.(7.0C).

This system of first order differential equations is simply

rewritten in terms of double moments /4”,/h/£z} . We define them
as
-¥,
£-1 p-i o
8.C
Map (bote) - /d”/"'*z ALY (8.0)

The system is relatively simple in terms of these moments

QM/;fe{ébél) - .3/_; '4” Mn,/jh"‘l/
/

Z
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1 7
. - | - - —
With An-_{z Fl(z)dz and ///,- /OZ Flz)dz 10.7)
The solution of it is straightforward.

/W/// /é'/b/: /l/,,,/a,a/[4 4 g-;/gﬂ{/‘/ "gpfé,j,t.--. _7 (11.c0)

We have defined the moment of Gayfyb)k,dblda/) which depends on two
large masses Ql and Q2 . We concentrate on the case where Ql and Q2
are of the same order of magnitude. In this case the moment is a
function of a unique large scale c?/@.fa'),p,) and a parameter /7 S p:_gz
/

which can eventually be kept fixed.

Define A= Liidy - 4 @
2 @*

7 - /,-t‘z . %7 (12.C)
2

then

M”f[&/tz/l:/’/l,,, /@;’,7/:/14”//4702)ﬁfj—‘;/%*ﬁﬁ/%%f T (13.C)

+ 2 Bp) ) b ]

First order corrections at ( l{A) are of the form

“f(}/z/ﬁx@z (14.7)

h
In order that the correction of the order ﬂﬁ) be negligible, it is

natural to choose the renormalization point as
z 2 ~
V=8 (15.C)

In this case 4;[&8}.4%1,692 is of order unity and to be consistent,

one has to sum up all terms of the form
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@e) bgt)”

(16.0)

This is done usually by using the renormalization group equation. One

finds that

- fnp
Mp= G, (0 09] ¢ (17.5)

where q" is the presently uncalculable non-perturbative part and
/4/,/, is related to the anomalous dimension which is unknown. The

coefficient b is given as usual by

A: 33- 2"//' /2{’ = number of flavour (18.C)
127

Expanding M,,}, one obtains
t- 2 iy 2 5
Mﬁ,[@/- /"7”[:?,}[/! ff?_?f/,q,,’ ,4,%2 4] (19.C)

The unknown coefficient is then given by identification with the first

order calculation Eq. (11.C)

/4/;,--4,, +Ap (20.%)

L

The result of Eq. (17.C) is the solution of the differential equation

M;‘E/W’ %*"4,,,, Maplt2) (21.%)

Going back to the structure function 5,9 [I//X,II} ?_) one obtains the

evolution equation for the double structure function which reads

/-7
7
96'__4__::"/"/99/’ %f’fx—‘;—" AE)G, (4,824
1-% _
A . |
Pl | Lr)Gmyatg) . 20

A similar equation is obtained for 62[};) }’2, [./?/ AT} .
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v CONCLUSIONS

In this thesis we have discussed hard disconnected multiparton
processes. We showed that they may play a central role in the descrip-
tion of a large class of reactions such as, wide angle elastic scattering,
single particle inclusive reactions, multijet production and w + multi-

jet production.

Multiparton processes are power corrections to the leading
process (single scattering). It is however particularly important
to note that
-~ The suppression factor, in the kinematical region ET<2 S, is not

233 as it might appear at first sight but rather —%

R

- Due to the steepness of the parton cross sections, it may become
more economical at fixed E} to have several parton scatterings, each
at relatively low PT’ rather than a single one with large PT. The
multiparton mechanism is also interesting in that it provides a probe
of th parton correlations in X (longitudinal momentum fraction). in
zﬂT (relative transverse distance), in spin and in colour. A number
of theoretical problems have been already clarified, in particular the
correct introduction by N. Paver and D. Treleani of the transverse
degree of freedom (‘AT) in the double structure function. For our
part we have analysed the double Drell-yan mechanism as the simplest
example of multiparton scattering. Particular attention has been
given to the spin and colour structure as well as to the factoriza-
bility of the process. We have shown that connecting gluons which
apparently lead to violation of factorizaion, in fact have no influence
at the leading log approximation. We worked out the double Drell-Yan
cross section by taking explicity the quark spin and colour degrees
of freedom. These led us to introduce six newly defined structure
fucntions G{VGZKVATJ generalizing the familiar ones and showed

that these are convoluted with two completely uncorrelated single '

Drell-Yan cross sections.
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The method we have developed in this thesis to deal with the
double Drell-Yan cross section is generalizable, in principle, to any
multiparton scattering. Many other problems remain to be investigated,
a particularly interesting one is the analysis of the evolution of the
multiparton distribution functions é&f , which is not a trivial matter

due to their mixing under radiative corrections.
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V) APPENDIX

We first consider the contribution of 'non-connecting" gluons
to the diagrams of Fig. 3Aa. This amounts to correcting the quark-

quark or the quark-antiquark scattering depicted in Fig. I

(@) (b)

Fig. I: First order correction to quark-quark or quark-antiquark
scattering (wavy lines are soft gluons)

The gluons in Fig. I are soft in the sense that one may neglect in
the numerator their momentum k compared with an external P (provided

that one is interested only in the leading log contribution).

The calculation of the integrations in Fig. I is exactly
similar to that of the quark form factor. In fact one can ignore the
hard gluon propagator in the case of Fig. Ib provided that t is of the
same order of S, because it already carries momentum transfer of order
t and so the addition of the soft gluon momentum to it is negligible
in comparison. therefore we only sketch the vertex correction calcu-
lations using a phase space technique to work out directly the leading
log terms. This technique has the advantage of being suitable to

higher order corrections.

a) The one gluon insertion

We calculate the leading contribution to the quark/photon

vertex Fig. II k
/
ava
" (Phokw)
Fig. II: First order QCD contribution to the quark form factor
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Both external quark lines are taken to be off shell i.e. 4 :/87ut¢o

Al /"_zmz,to and we put [z2pp .

The gluon being soft in the sense discussed above, the domin-
ant term requires no cut-off in the integral, and the numerator is
just 2 T times the bare quark/photon vertex. The colour factor is
CF. Hence the net effect asymptotically is to multiply the bare

quark/photon vertex by

4
gt db
2T¢e i :
5’;7)(‘ (/Z';/i)[(,b-f} LmYy :'{][(Avfy Lomibie] )

We evaluate the asymptotic behaviour of the integral by writing
’
k= Xpt ypiré, .

where kT is transverse to both p and p'. We then use X,y and kT as

integration variables instead of k. We have
k= Yy +xt Py ng/l_ ,é; v RYT ../_:/-2 -
(bep)’= ) Y 4 (a-)p2y 42 prt 5o Jript

-3 (2)

bpi) = 3047+ 2p2 sy b o xrap B

We note that all three denominator factors in (1) are smallest when
both x and y are small, so that the region of small x and y gives
the dominant contribution to the integral. This justifies the approxi-

mation in (2) and gives

1

GTle) i 2 [dedy l
4] (et - krrie)(-97 - ket + DoYs //-xr-hT Wb )(3)
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This x integration vanishes because of the i £ wunles y > 0. It gives

. 1
T2 dga’é, e (4)

¥nt, (-yz ley "ﬁ-f/f)[ /< (hy)+yd ws]

Now instead of doing the y integration which is the simplest way to
do it, we use instead a phase space method which is most readily

applicable to the study of two-gluon insertions. We write

-
y=l2]
. 3 (5)
/</—: /2]

ES) ? ” 94«
o tmae [yl = [T i g )

The dominant contribution to the integrations comes from values of

ﬂ and & such that the denominator cancels the variable power of
[Zj in (6). This is so that doing the integrations does not again

remove the ln2|z[ factor. To achieve this, (-yy) must dominate over

the other terms in the first factor of the denominator, and (—k?)

must dominate in the second factor. This determines the dominant

part of the integration region to be

Do o
1-0> 1) -w

(7)

This region has a unit volume (see Fig III)
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Fig.III: Dominant phase space

So we have the final result —CFF(r), where

L 2
Fley= & Aaln]. (8)
gnt
b) The two gluon insertion

4
Now we are interested in diagrams that give a lnt contribu-

tion. These are given by Fig.IV

Py kb

W4
(b) (¢)

(a)

Fig. IV: Second-order correction to the quark form factor

In the case of Fig. IVa, the bare vertex is multiplied by

Ly oy L t
-Gt ¢ f‘{*‘ dy dby oly, dy, db,
tn)? (2’9’2“’&/; He) it klzT #tic )(- L~k 40455 )

» (099, )7 - (k;+ Z,, ) ioﬂ‘g][:a,*r, e - (,(;:7.7‘-;;7 Seobiy]. 2
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The xl and x2 integration can be done by counter manipulations, given

o t L
clrt -?-L)Zf _’Z// ff_ﬁz g/[_rr ‘;/.én ! =
snt/ o Sy om0 W (-(72'-%;7‘0/[:[9,*‘71}? (kb + z;/iA]

s e L (10)
o(-Ez -k 8) ki -k g )Y 00,
‘_'1, yl 32

We next change variables as in (5) and obtain inequalities analogous
to (7) that produce cancellation of the variable power of |z| coming

from the Jacobian (see 6) i.e.
1>, )ap> 0
(11)
410,34+ )0

1
The volume of the integration region (11) is 2 (see Fig. V), so we

have the result
b 2
f%}#ﬁj

F(r) is again given by (8)

%41%:%;‘?L7
;ﬂ gf:_d
\7/7&\‘ Y2
s
RLAZNY AV YR RERL L

Fig. V: Dominant phase space for the diagram IVa.

One can go along the same lines for the diagrams of Fig. IVb,c.

Other diagrams to consider are those depicted in Fig. VI
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P4

'

Fig. VI: Soft gluon insertions, with hard interactions denoted by
the square blobs. All three external invariants are large

It turns out that in the fixed angle limit the type of
4
insertion shown in Fig. VIb does not yield a log factor, but Fig. VIa

does.

To deal with the multiple scattering diagram, one has to
insert "connecting" gluons as well. The calculation of their contri-
butions is similar to that for the '"non-connecting" gluons with the
important difference that kT is bounded, and this reduces the corres-
ponding phase space volume. Summing the contributions of all diagrams

one gets the factors necessary to build up the exponential factor.
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