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INTRODUCTION

- During the past few years several people studied the

Hamiltonian system of the form

[
L3 H
p=- ‘g’é‘(tlprq)
(FHS) ) SH
q = a—p(t,prq)
where p, g € ]Rn, H :IR2n+1-—>Ris differentiable and

T-periodic and - denotes é% .

This system can be represented more concisely as

(FHS) -z = JHZ(t,z)
dH 0 -I . . .
where z=(p,q),HZ==§E and J = (I O)' I being the identity

matrix in R .
If H depends explicity on t, we shall speak of "forced
Hamiltonian systems"; if H(z) do not depends on t, the

Hamiltonian system

(HS) z = JHZ(Z)

is called autonomous.

There are many types of guestions both local and
global in the study of periodic solutions of (FHS) and
(HS) (cf. e.g. the review articles [2],[13],[36] and
their references). A first kind of problems is the exist-
ence of solutions of (HS) having a prescribed periéd and

the solutions of (FHS) having the given period of forcing




(i.e. the period of H). Another question is the exist-
ence of pericdic solutions cf /HE) o~n a given energy
level (let us observe that H is an integral of the mo-
tioﬁ for (HS), i.e. if z(t) is a solution of (HS),

H(z(t)) is independent on t).

The aim of this thesis is to deal with the first
problem: we shall study periodic solutions of (HS) and
(FHS) in the large by using a variational approach; na-
mely the solutions found are the critical points of a
suitable functional. In the section 1, we recall some
abstract critical points theorems: in these theorems a
weaker version of the Palais-Smale condition is utilized.
Section 2 and 3 are devoted to the study of asymptotically

quadratic Hamiltonian systems, i.e. we assume that

Hz(t,z) = bo(t)z + g(t,z)
and

E-T(—E—i—?—)— ~> 0 as|z|—> +« uniformly in t € RR.

If we denote the "linearized operator at infinity" by L,,

i.e. Lygz = - Jz-b_(t)z (for a more precise definition see

section 2), we shall say that "resonance" occurs if 0€ o(Ly),

o(L,) being the spectrum of L.

In section 2 we shall find at least one T-periodic
solution of (FHS) under a "noresonance" assumption; in
section 3 we shall study the case in which the "strong re-

sonance” occurs, i.e. there is the resonance and the non-




linear part goes very rapidly to zero at infinity.

The resonance assumption prevents in ageneral to get sui-
table a priori bounds which assure that the set of criti-
cal level is bounded, and therefore the (P-S) condition
could not be satisfied.

We shall prove that the strong resonance assumption implies
a weaker version of the (P-S) condition and this permit to
use the abstract framework of § 1.

In section 4 we shall deal with the Hamiltonian function
H(t,p,q) of the form

n

= X
(0.1) H(t,p,q) i,5=1 al] (ttq)pipjfv(th)

where {aij{t,q)} is a positive definite matrix and V(t,q)
is bounded.
Such hamiltonian function often occurs in the study of
mechanical systems.

First we shall assume aijﬁq) constant: then the Ha-

miltonian system (FHS) can be written as

(0.2) -x = VV(t,x) .

This problem has been studied by many authors when V(t,x)
has a superquadratic or subquadratic growth at infinity.
If V is asymptotically gquadratic, it is known that there

exist T-periodic solutionsunder a nonresonance assumption

or, if the resonance occurs, under a "Landesmann Lazer
type condition" for the nonlinearity (cf.[6] and its
bibliographie).

Now we are dealing with a nonlinearity which rapidly goes



to O (strong resonance case): arguing as in section 3, we
shall find existence and multiplicity results for (0.2).

In section 5 we consider the Hamiltonian function of
typeA(O.T) with aij depending on g: T-periodic solutions
of (HS) and (FHS) are found under the assumption that V(q)
goes to infinity as|g| ++e«.

On the other hand if V(g) is bounded, we do not know
a direct proof of the géneralized Palais-Smale condition.
Then in section 6 we have studied this problem by restrict-
ing the action functional to a suitable subspace which has
trivial intersection with the linearized operator at infi-
nity. So we find some solutions of (HS). in the case in
which V(g) and VV(g) are bounded. Amoung the various physical
problems, to which the results of § 6 can be applied, we

shall recall the equations of the "double pendulum”.




§ 1. Some abstract critical points theorems

In this section we recall some critical point theorems
we éhall need in the following for a real functional f on
a real Hilbert space.

Let us give the following notations and definitions.
We denote by E a real Hilbert space, by (-,-) the inner
product in E and by ||+| the corresponding norm. By C!(ER)
we denote the space of continuously Fréchet differentiable
maps from E to R and by f'(u) the derivative of f at u€E.
We shall identify E with its dual E'. For u € E and R > O,

we set Bp(u)={v € E | |v-u]|< R} B =B,(0), S, = 9B =

R R R

={ueE| |u] =Rr}.

Classical critical points theorems have been proved
under the assumption that £ € C1(EJR) satisfies the well-
known Palais-Smale condition, which can be expressed as

follows:

Definition 1.1.

f satisfies the Palais-Smale condition in
]c_lc2 [ (-g c, < c, & +w) if
every sequence {u }c f_T(]c1,c2[) for which f(u ) is

(PS) v
bounded ané.f%qg+o,possesses a convergent subseguence.

Obviously (PS) can be expressed in a equivalent way as

follows:

( i) every bounded sequence {uk}cf-1(]c1,c2[) for which

{f(uk)} is bounded and f'(uk)—é»o, possesses a

convergent subseguence;

i




(ii) ({uk}c:f—1(]c1,c2[),{f(uk)} bounded and
lupl + + = for k++w)=> (llf;(uk)l|20c>0 for

k sufficiently large).

Condition (i) is a "compactneéé" condition which is
satisfied by a large class of functionals (cf. remark 1.7).
Condition (ii) is easy to verify in problems "non resonant"
at infinity, i.e. with a linear part at infinity invertible;
on the other hand the following "weakening" of (ii) is
needed to study problems with "strong resonance" at infinity

(cf. section 2).

Definition 1.2 We shall say that f € c1(x,:m) satisfies

the condition (C) in ]01,c2[ if

( 1) holds, and
(i)' ¥ c € ]c1(c2[’:3c,R,u > 0 s.t.[c-0, c+0] c ]c1(cz[

and v u € £ ' ([c-o,c+0]),Jul 2R : £ (@ ]]u] > @

In a more compact form the condition (C) becomes

"Every sequence {u }cC f—1(]c1,c2[) for wich {f(u. )} is
bounded and [£'(u )| |u. | ~0 possesses a convergent sub-
sequence”.

A condition similar to.(C) has been introduced by Cerami
in [23] and applied to the search for critical points of

a functional on an unbounded Riemannian manifold.

Let us assume now that the functional is invariant for the
action of a compact group, more precisely let us consider

a functional f even. The following theorem holds(cf.[4]).




Theorem 1.3 Suppose that f € C1(E,:m) satisfies the

following properties:

(£,) f satisfies condition (c) in ]O,+e [ and £(0)> 0;
(fz) there exist two closed subspaces V and W of E,

with codim V < +«, and two constants c,> co>f(0)

such that

a) £(u) 2 co ¥ u€sSpnNn vV
b) f(u) < ce ¥Yuew
(f3) f is even.

Then,if dim W > codim V, f possesses at least m = dim W-co

dim V distinct pairs of critical points whose corresponding

critical values belong to [c_, cy]

Theorem 1.3 is a generalization of theorem 2.13 of
[3]. Ambrosetti and Rabinowitz have used Palais-Smale con-
dition :instead of the weaker assumption (C); moreover
they have replaced the assumption (fz)(b) with the stronger
requirement that for any finite dimensional space Ex c E
the set {u € E |£(u)2> O} is bounded.

In the case in which the functional do not exhibit
symmetries, linking arguments need. Let S be a closed set
in E and Q an Hilbert ﬁanifold with boundary 3Q. We shall
say that S and 3Q link if: '

(Lz) if ¢ is a continuous map of E into itself such that

d(uj=u ¥ u € 3Q, then 2(Q) n S # @.




Examples of linking sets are given in [4].

The following theorem holds:

Theorem 1.4 Suppose that f € C1(EJR) satisfies the following |

properties

e i

(fq) £ satisfies condition (C) in ]O, + «[;

(f4) there exists a closed subset S and a Hilbert manifold

Q with boundary 3Q such that b

a) S and 9Q link;

b} there exist two constants B > o > O s.t.

DS

f(u) <o ¥ ue€ 30 and f(u) 2B ¥ u € S;

apur P R e

c) sup f(u)<+e
uegQ

Then f possesses a critical value ¢ 2 B.

Linking arguments have been used by many authors (cf.
[3],[5],[12],[32],[33] and [34]) under the Palais-Smale
condition.

We shall apply theorems (1.3)-(1.4) in order to study
the periodic solutions of the second order Hamiltonian
systems.

In these cases the functional of the action is semidefinite,
i.e. is bounded from above (or from below) modulc weakly
continuous perturbations. Infact, if we denote E* (respectively
E”) the subspace of E where the quadratic part of f is positive
(resp. negative) definite, it results that dim E7<+® or dim
E*<+o, and therefore we can write f as a gquadratic positive'
(or negative) part plus a functional with compact derivative.

We shall consider now the case in which f can be strongly :




"indefinite", i.e. E* and E- are both infinite dimensional,
as it occurs in the study of periodic solutions of Hamil-
tonian systems. In this case, we have to assume that f has
a particular form. First we recall the following theorems

for a functional with symmetry.

Theorem 1.5 Let E be a real Hilbert space, on which an

unitary representation Tg of the group S1 acts. Let

f € c'(E, R) be a functional on E satisfying the following

assumptions:
(I, £(u)=%(Lu,u) - ¥(u) where

( i) L is a continuous self-adjoint operator on E,

( ii) v € clER), P(0)=0 and V' is a compact operator,
(iii) . L and Y' are S1—equivariant.

(12) O does not belong to the essential spectrum of L;

(I;) every sequence {un}c E, for which {f(up)} +c €]0O,+=[

and | £'(uy)] ljup] + 0, possesses a bounded subsequence;

(14) there exist two S1—invariant closed subspaces V and

Wof E s.t.
( i) dim (VNW) <+o, codim (V+W)< + =
( ii) Fix(sV)c Vv or Fix(sl)c w

(iii) there exist two positive constants c, and p s.t.

f(u) 2 ¢, for every u € Vnsp
( iv) there exists co €R s.t. £(u) < ¢, for every

u € w,
( v) £(u) < ¢y for u € Fix(s') s.t. f£'(u)= 0.

Then there exist at least

3[@im(VAW) - codim (V + W)]
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orbits of critical point, with critical values in [¢O, caJ.

Theorem 1.6 Let f € C'(E,R) be a functional satisfying the

preceding assumptions with(I,) (iii) and (I4) replacedby

(11)(211) Y' is odd;

(54)there exist two closed linear subspaces V, W c E which

satisfy (14)(i),(ii),iv).

Then there exist at least

dim(VA W) - codim (V + W)

pairs of nonzero critical points with critical values

greater or equal than c,.

Remark 1.7 We shall prove that (I,)(I,) and (I3) implie

condition (C) on JO,+= [.

Namely, let {uylc f_1(]0,+w[) for which {f(u,)}is bounded
and |£'(uy)| Jupl » 0. By (I3), there exists a bounded
subsequence which we shall denote always by {up}. If uﬁ+0,

the proof is achieved, otherwise |f'(upy)| +O. Then

(L upsuy) - ¥luy) is bounded

L u, - V' (up) +0

Obviously, we can select a subsequence {uh} weakly converging
to uy € E.

By (I,), O < dim ker L < + =.

If dim ker L=0, there exists L—1: E -+ E continuous s.t.

' =1 1 (47 >
u, - L (un)) 0

T T
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and L—T(w'(un»COnverging”uiL4(W'(uo)) by compactness of
y', the convergence of uh to u, follows.

If O < dim ker L<+x», it can be proved as above that ﬁh is
convergent, ﬁh=un—u;, u; € ker L; moreover the boundeness
of u; implies its convergence in E and therefore the con-

clusion follows. L

Remark 1.8 We recall that in our applications the functional

of the action will be always of the type

f'= L+y° ¥' compact 0 ¢ o (L) .
So we shall replace condition (C) by the weaker assumption

(13) also in the semidefinite caée.

Remark 1.9 Theorem 1.5 generalizes theorem 4.1 of [7] in
two points; the condition (Iz)-(IB) are more general than
(P-S) and (f4)-ﬁii)is replaced by the stronger assumption
Fix S1C W.

Tn the case in which the functional f is indefinite and
does not exibit any symmetry, we shall need the following

theorem (cf.[14]).

Theorem 1.10 Given o, 8 € R, a<B, let £ € C' (ER) a

functional satisfying the assumptions(I1)(i)-(ii),(Iz) and

(1) for any c € Ja,+o[.

Moreover suppose that

{1 there exist a constant R > 0 and two closed L-invariant

5)

subspaces E1 and E, such:that E=E1$E2 and if we set

S=q+E, (with g € Q,]q]<R) assume that
2 ‘I =

Q=BR('\E1 r

- s
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(1 ) £(u)2 B on S
(ii ) f(u)g o on 9Q

(iii) sup f(u)=c, where c, <+

Q

Then f possesses at least a critical value ¢ € [B,Ce] -

Remark 1.11 This theorem generalizes theorem (0.1) of
Benci-Rabinowitz (cf.[12]) because (I,)-(I;) are weaker

assumptions than the respective assumptions in [12].

o .
T o rn




- 13 -

§ 2. Asvmptotically linear and non resonant Hamiltonian
ymp Y
systems

Noh s

B e A T

In this section we are looking for T-periodic solutions
of (FHS) in the case in which H(t,z) is aéymptotically qua-
dratic, i.e. there exists a symmetric matrix 2nx2n b, (t)

for any t € [0,T] such that

H,(t,z) = bo(t)z + g(t,z)

(H1) and
| g(t,z)/|z| +0 as|z|++= uniformly in t € R
where || denotes the norm in Rzn and (°,°) the correspond-

ing inner product.
If we denote by L the linearized operator at infinity,
i.e. Lez==J3~-bs(t)z (for a more precise definition let us

see the following) we assume that (FHS) is not resonant,i.e.

(H,) , 0 ¢ 0(La)

The following results are contained in [38].

First, we shall state the following theorem:

‘Theorem 2.1 If (HT)'(HZ) hold, then (FHS) has at least

one T-periodic sclution.

The sclution found can be constant. If we suppose that O

is an equilibrium point of the Hamiltonian vector field,
it is interesting to find a T-periodic and nontrivial so-

lution. Precisely, we shall require that
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(H3) H(t,O)=Hz(t,O)=O for any t€R H is C2 at z=0.

In this case, we can write

(2.2) H, (t,z)=bg(t)z + o(lz|) as |z|+0 i
where ;
(2.3) b (t) = be(t) + gz(t,O) .

We set

(2.4) G(t,z)=H(t,z)—%(bw(t)z,zh=5(git,sz)Iz)ds. ;
Let be denote by if(resp. %ﬁ1)thé»smallest positive (resp. %

the greatest negative) eigenvalue of L, in W%([D,T]ﬁmzn)
(cf. the following for its definition).

The following theorem holds:

Theorem 2.5 Under the assumptions (H1),(H2),(H3) and

(H,) G(t,z)$ 0 teR,zeR°" (resp. (Hy) G(t,z)2 0)

(H5) A=max [max c(gz(t,o))]<%i1 ,
O<tLT | : N
(resE.-(Hg)A =min [min c(gz(t,o))]>X?)
O<ELT '

there exists at least one T-periodic nontrivial solution

of (FHS).

Analogous results have been obtained

by Amann and Zendher in [1] under the assumptions that bg

PRIy
A B A

and b, do not depend on t, the Hamiltonian function
H(t,z) is Cc2 and the Hessian sz(t,z) is uniformly  bounded.

On the other hand in theorem 2.5 we need an additional
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condition on the sign of G; (H5) establishes the connection
between bo(t) and be(t) which guarantees that the solution
we find is nontrivial. (HS) corresponds to the assumption

of theorem 2 in [1]

. 2T
(*)  ilbgs by F) >0 ;

infact in the special case of two harmonic oscillators with
frequencies a° and o, we can easily verify that (H5) and
(*) are equivalent. More recently Conley and Zendher (cf.
[24]) have studied the general case in which the lineariza-
tions at zero and infinity are time-dependent:. they used a
generalized Morse theory and assume, as in [1], that H(t,z)
is C2 and the Hessian is uniformly bounded in order to re-

duce the problem to a finite dimensional problem.

Proof of the theorems

We initially introduce some functional spaces we shall need
inthe following. If mER and t>1 we set
AL L
If s€ R we set
S_ 2,.1 ,2n 7 12,8 2
W-&ueL(s,g )‘iez (1+]3]%) hﬁkl<+”}
k=1,...,2n

where u.. (j€ %,k=1,...,2n) are the Fourier components of

ik
u with respect to the basis(in L2(S1,R2n))

(2.6) v, = el Ve = coét(jt)¢k+Jsen(jt)©k

A
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where {dp} (k=1,...,2n) is the standard basis iniRzn. WS

equipped with the inner product

_ 12y S
(2.7) (@lv) o =5 1310 Suyy vy

is an Hilbert space. We recall that the embedding‘ws—a»Lt

is compact if %:>%'- s. So in particular W%

embedded in LY for any t2>1.

is compactly

Let us denote by (-,°)LE and ((¢,¢) the inner products in

Lt and W? and by |°[Lt and the corresponding norms.

Now consider the Hamiltonian system where H(t,z) is
: 2
T-periodic in t. Making the change of,variable.t—>—%z,(FHS)
becomes

(FHS)-1 ~ -J% = uwH_(wt,z) where w=T/2m

Obviously the 2m-periodic solutions of (FHS)-1 correspond
to the T-periodic soluticns of (FHS).
In order to construct the action functional whose

critical points are the 27-periodic solutions of (FHS)-1 we introduce

the following bilinear form

v = n 3 %
a'u,v) ) I j u. u,vEe W

V.
jez k=1 IF

ik

where ujk,v. are the Fourier-components of u,v with respect

jk k ,
to the basis (2.6). The bilinear form a (°,°)issymmetric and
3

continuous in W%. Let L:W%—€>W be the self-adjoint,continuous

cperator defined by

((Lu,v)) = alu:v) u,v e wo.
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Observe that if u,v € C1(S1iIR2n)

27T
((Lu,v))=ﬂ) (-JG,v)dt.

Let us consider now the operator L.: W%-%W% s.t.
- 2m : 1
(2.8) ((qu,v))=((Lu,v))—wf‘D (b_(wt)u,v}dt u,v € W2
By (H1), standard arguments show that the functional
om !
(2.9) f(z)= %((Lmz,z))-m4) G(wt,z)dt z EW

is Fréchet differentiable and that its critical points
correspond to the 2m-periodic solutions of (FHS)-1.
For simplicity, in the sequel we shall take w=1,i.e. T=2m.

So (2.9) becomes

(2.10) £(z)=3((Lyz,2)) -V (2)

where w(z)=={3ﬂG(t,z)dt.

Since W? is compactly embedded in Lt for any t21, by (H1)
we have that the map z =>G,(t,z) is compact from W? on W;%,
then y¥' is compact.

Now it is easy to verify (c£.[11] sect.3) that the spectrum

of L. consists of the limit points +1,-1 and of the eigen-

ERE L jex

and that each eigenvalues has multiplicity 2n.

values

Since Lo is a compact perturbation of L,ce(Lm)=Gé(L)={+1,-1}.

e
TR

Ry
il ahe s
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So the functional f is strongly indefinite and does not
presents any symmetry: therefore we shall apply the abstract
theorem 1.10 in order to find its critical points.
Assﬁmptions (I1)(i)—(ii) and (12) are obviously satisfied.
For completeness we shall prove assumption (I3), which is
always verified under the nonreéonance condition (Hz).

Since 0 € 0 (Ly), we can denote by ¥ . (resp. %?) the first

1 .
negative (resp. positive) eigenvalue of L_ in W% and by
Af1 and AT the analogous in L%, Let be H_ (resp. H.) the
subspace of W? where L, is negative (resp. positive) de-

finite; every z € w? can be decomposed as follows
+
(2.11) z=zt + 27, 25 e u:

and it resalts
+ o+ X +] 2 - o= Joo -12
(2.12) ((Loz*, 2 ))zx; lz*] <, (L z=y27) )< }\._1][2 |

The following lemma holds:

Lemma 2.13 Let us assume that‘(H1) hold. For any e>0 there

exists two positive constants c, and M such that

le(t,2) | scfz|+ e/2|z|? z e R®®, |z| 3 M.

Proof By (H1) we have that

{1 [, (£,52) -b, (£)(s2,2]]ds = Mg (e,sz) |2)as

and

Gtz
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G(t,z)=H(t,z)—%(bw(t)z,z)=.Ql(g(t,szb z)ds .
Then
(2.14) la(t,2) ] < Izlf;[g(t,sz)[ds z @ R2",

By (H1), for every & > O there exists M>0 such that

(2.15) lg(z)| < e|z] for |z|> M.

Let be |z|> M and

U}

A, (z) {s € [0,1]] |sz] < M}

A, (z) = {s e [0,1]] |sz| 2 M}.

Then by (2.15) we have
1. . . .
(2.16) [ lg(t,sz) Ids—A{(z) lg(t,52) lds+A£(z) |g(t,sz) |ds <
£ C1+€/212Iv

where c,=sup{|g(t,z)|, t € [0,2n], |z]|<m}.

By (2.14) and (2.16) the conclusion of lemma follows. B

We are proving the following lemma

Lemma 2.17 Let us assume that (H1)—(H2) hold. Then every

sequence {up}, for which f(un)-%c,lc>0, and [[£' (up)| fluyl +o0,

possesses a bounded subsequence.

Proof.- Let be {u,} € W} such that f£(up) +c and|| £' (up) ||| uy |+ o0
it follows that

<£'(up), @ > —0
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where <-,:> denotes the pairing in W:. Then there exist

two positive constants CqsC, such that

) 5
(2.18) cy < %((Lmun,uan —éiﬂg(t,un)d; dat < c, -

By (2.16) for e>0 small there exists ¢, € R, such that

2m ﬂ
(2.19) [ g(t,uy)ul dtg c3|u; + elu| Z[uLI .

‘L1 1.2

By (2.12), (2.18) and (2.19) it follows that

~ 2 .
(2.20) X[ |7 Lou s ut ) < coflut f+efu [[ut] + c

3” n 2°
Arguing similarly

. ~V, _ 2 _ _ _
(2.21) =% g %< - (o, uDee lus] vefugluzl +c, -

If we take A=min (%°,—%i1), X>O, we have adding (2.20)

and (2.21)
~ 2 2
Mupl®™ < e lupf+efupy] “+c,
> 2
or (=) [u,| —c4l|un|[--c2 <0
This proves that ﬂunﬂ is bounded. B

Proof of theorem 2.1

Now we have to show that the geometrical condition (15)

holds. Let be
Q = Hy n By S=H} .

By lemma 2.13 it follows easily that




f(z)=3(L _z,2)) —4jﬂG(t,z)dt 2 B for any z € S

Moreover there exist two real constants o and ¢, such that

for.-z € Q

Yo 2 2
£(z)<k 2Zllel "+ e/2lzlizeqlzln c) <

< %(k_1fe)ﬂzﬂ +c3llz|+c2 < c,

and

f(z) < o z € 30.

We can choose R large enough such that o < B.
Theorem 1.10 assures that f has at least one critical wvalue

¢ 2 B. Clearly, we can not exclude the trivial solution. B

Proof of theorem 2.5 Let Ly be the self-adjoint realization

of -J%-b,(t)z in Wi,
. - 1
Let H; (resp. HO) be te subspace of W? where Lg:is positive

- (resp. negative) definite. The following lemma holds:

Lemma 2.22 Under the assumptions of theorem (2.5) it results

. - + . ' . + +
(i) H, N H + {0} (ii) H, c H0 .

Proof. Let g be an eigenvector corresponding to the eigen-

o

value A_1

eigenvector corresponding to {: in W!. Moreover

in L2. Thenit is known that q € W% and g is an

((Lo2,a)) = ( (Lo q,q) )= (9, (£,0) ) _, 2 = lal® -

- (max o(gz(t,O))qrq))L2 2 Xf1”q"2“X!Ql2 =

== -%lal® > o.
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Obviously g € H} and i) follows. Proving (ii), we observe

that if z € HY ,

® 2
((Log,a))=((Le q,q))-(gz(t,O)q,q)Lz 2 274l

and by (i) the inclusion (ii) is strict. &

Let us prove theorem 2.5. It is obvious that the func-
tional (2.10) verifies the assumptions I1kJ3)of the
abstract theorem 1.10; the geometrical aséumptions hold
as in the proof of theorem (2.1) setting

Q=H';,nBR S =q + HY

where g is an eigenvector of L, corresponding to &21 (and
to Xf1) with ||g] < R. We shall show that, in this case, f
is bounded from below on S by a strictly positive constant B.

In fact, taken z € S, z=q+z 4, Z4 € Hi,, we have
_ T i ~w 2 Yoo 2
f(Z)"%((Loo ZIZ))_{)G(tIZ)dt22 ()\1 uz-;.;“ +)\—1"qu =
-Jete,ziae 2 30 2,025 1d®) .

Fixed ¢ small, we distinguish two cases

=2}

a) 2,07 < = 2= % falPs e

co

b) flz,1% 2 - 22/

2
lal®+ e .

In the first case, if we choose |g| small enough, |z| is

small and it turns out that

£(z) = (L z,2z)+ o(]z]®) 2 B> 0
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because z € H; by (ii) of lemma 2.22 and | z| 2 |q| > o.

In the second case, it results

£(z) 2 3050z, 1%4= [ql®) 2 e+ 7% > o.
Setting B = min(8, i? €) we conclude that
f(z) 28>0 ¥z € S.

Thus, there exists a critical value ¢ 2 B > O and therefore,
being £(0)=0, there exists at least one critical nontrivial

point. B

Remark. If (H1),(H2),(H3)(HZ) and (H%) hold, we wan prove
that HY n qg#{o} and the functional -f satisfies the as-
sumptions 6f the theorem 1.10 setting Q = H;,r\BR ’
S=qg+Hg, g€ HLN H, lal smaii.
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§ 3. Hamiltonian systems with strong resonance at infinity

In this section we shall study now the case in which
H(t,z) is asymptotically quadratic and verifies the reso-

nance assumption

(R.) 0 € o(Ly) .

1 .
In this case condition (13) is not generally true, because
we cannot controle the component of z in the Kernel of L.
Depending on the growth of nonlinearity at «, we have
different "degrees" of resonance (c£.[4]). We shall consider

a "strong resonance" condition, i.e.

G(t,z)—>0 as|z|++e» uniformly in t € R

(R,)
2 .
(g(t,z),2)_o2n —> O as|z|++o, uniformly in t € R.

The assumption of g and G has been introduced in [4] for a
semidefinite problem. In order<m3prové113)in this situation,

we need the following lemma, which generalizes lemma 3.2 of

[4].

Lemma 3.1 Let Q@ c R™ be a bounded open set and Z a finite

dimensional subspace of c(Q,:mk) such that evéry u € z\{o}

is different from zero a.e. in §. Let h € L® Gﬁk) such that

h(x) >0 as |x|++o.

Let K be a compact subset of LP(QRK) with p > 1. Then

lim S lhOu(x)+v(x)|dx = O
‘)\I-)--{-co f ’
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uniformly as v € XK and u € S, where

s = {u € z| sup|u(x)|=11 .
x€0

Proof. The proof is analogous to the proof of lemma 3.2.

in [4].

We prove the following lemma.

Lemma 3.2. If R1), R2) hold, then for every c € R, there

exist positive constants o,R,a such that

I£' ()| |ul2 o for any u € m-1([c-0,c+0]) lu] 2 Rr.

Proof Let be HY, , H3 and ker Lo the subspaces of W%
where L, is positive, negative and nulle definite; every

z € W can be decomposed as follows

+ -
z=z + z +2° .

1
The operator L, being continuous and bounded in w2, there
exist X; and X§ the smallest and the largest eigenvalue of

Le . It results, if i? and Xf are the eigenvalues of L

1
defined in section 2,

~e e 2 _ o I o=p 2
2 277 ¢ (Lo 27,27 < A_1||_z |

(3.3) . 2 ~ 2
A7 1zt < (@e 27020 < AG 127

and the analogous with L, replaced by L, .

Now given ¢ > O, let & > O such that

(3.4) {f(g(t,u),v)dt < 8|v| for any u,v € WI .
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We set (cf [4])

(3.5) o =<, o =min{3/4(c-0), -1}

1

[\ Ko

and we choose p > O such that

2
p“=2(c+otqg) s ( $ . 1)2

AT TR -AZ

(3.6)

where g=2m sup|G(%t,u)|. By the compactness of Bp=h1€EHHqup}

in L2, lemma 3.1 implies that if zt+2z7 € Bp then

. T Zo - +
(3.7 lim |Gt ]zl e +2z7 +z%)|dt =0
gl = I=d]

and the analogous with G(t,z) replaced by (g(t,z),z).
By (3.7) these exists y > O such that

plotea ja < 57 2 ewt |z >y
(3.8) ) )
- + €B. .
4?|(9(tz2),2)(dt < EZE and z z 5

Now we set R=max{1,v} and in order to prove the lemma
we consider z € f-1(]c—0,c+c[),UzH > R and distinguish two
cases i) and ii):

i) z¥ + 27 €B, ;
in this case we have that

(3.9) c-0 < %((La,z,z))-{SG(t,z)dt <c+ao

(3.10) {fle(t,z)[dt < &2

hence
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(3.11) ((Lo z,2)) 2 c-0O.

By (3.8) and (3.11) we have that

£ @] Jzl 2(@e 2,20)-L (g(t,z)at 2 a
and the conclusion follows.
ii) zT o+ z7 & By ;

in this case (3.9) still holds, then we have that

(3.12) %ﬁ Hz*“z + X§ "z'ﬂz (L z,2))< 2(c +0+ q).

By (3.12} we deduce that

SRzt PR - 2(eror)
lz=]"> — 2
- X1 - km
(3.13) -
A1p -2 (c+o+q) 5 2
2 = = 2(—— + 1)
A?v_ m “A-1

Finally by (3.13)

L€' ¢z)| J=]2 —ur<z),fﬂ%§l" =(-((Lez, 27)) +

+ ﬁf(g(t,z)hz_)dt)w ﬁgiuk(‘if1"2‘f15HZ’i)%gl" =

= (k= Jzm|-e) | zl2 A= fzl2afz] > a R 2 @,

and the lemma is proved. =

We are looking for T-periodic solutions of (FHS) in

the case where strong resonance assumption occurs.

S a1 L LN Rt e A NP A A T S M 0 e W RS o A RS S L o TR

b0 T A Ay A M BN SEICR e s e PRl BGSE So Piarield chl it
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First we consider the problem without symmetry'(cf[38]).
The following theorem holds:

Theorem 3.14 If H(t,z) satisfies (H,),(R,), (R,) then (FHS)has

at least one T-periodic solution.‘MorEOVer;'if'(H3),(H4),

(H5) (resE.(Ha), (Hé)) hold too, then there exists at least

one T-periodic nontrivial solution.

Proof. We say that the functional (2.9) satisfies (I1)—(I3).

We set now

Q=(Ker L, ® Hg ) n By S =g+ Hyg,

g being an eigenvector corresponding to &ﬁ as 1in section 1

2,|lgl small enough and R the constant which will be determined

in the following. As usual, ve have

f£(z) 2B >0 for every z € S.

i

Let M = 27 sup {|G(t,z)],z e r%®, 0<t<T} and p a positive 0

. :

constant such that P

o 2 |

(3.15) 3 A°_°_1p + M <O . E

By lemma 3.1 there exists R>0 large enough such that for g

Z € Ker Lo, ® Hy , [2] = R, z=z°+2z~, 2z~ € B, , we have ;

%

(3.16) {3|G(t,z)1dt < B/2 |
Taking z € 939Q, there are two poSsibilities:

i) z= € B, ii) z= ¢ B, .

In the firét case, by (3.16) we have

£(2) = Ly z,2) - [G(t,2)dt < 8/2 < B .
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In the second case, by (3.15) it follows that

Ton "

£(z)< %A_1“z_ﬁ2Tﬁ5% A® p2+M<cO<B/2<B .

1
Then (15)(11) holds with 0=8/2; on the other hand it is
obvious that f is bounded from above on Q. So by theorem

1.10, the conclusion of theorem 3.14 follows. e

Let us consider now an autonomous Hamiltonian system
with a strong resonance at infinity. It is known that T=-pe-
riodic solutions of (HS) correspond to 2m-periodic solutions
of

(HS) -1 -J% = o Hy(z). L

Let Ly and L, be the operators linearized at zero and at

the infinity, i.e.

-

Loz = - Jz = bgz z € wt

Le2==J2 = bgz zew .
The following theorems hold (cf.[21]).

Theorem 3.17 If H(z) satisfies (H1),(H3),(R1),(R2) and

-(Hs) by is a positive definite matrix

%

g
I

2n -
(H7) H(z)2 O for any z € R s.t. Hz(z)-o,

then (HS) has at least { dim (ng\H;) non constant

T-periodic solutions whenever ng\H; #{o}.

Theorem 3.18 If H(z) satisfies (H1)(H3)(R1)(R2) and

(H.) b, is positive definite
6 o

2n
¥ —
(H7) H(z)< 0 for any z € R s.t. Hz(z) 0

then (HS) has at least } dim(H_n Hf) non constant T-periodic

solutions whenever H;r\H; #{0}.
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Proof. The functional of the action being S1-invariant;
in order to find its critical points we shall apply theorem
1.5.

Obviously the functional f verifies 11) 12) I3). Now we
shall prove that also (14) is satisfied. By (H6) we have
that

{constant functions} = Fix S! ¢ H
then (I F(ii)holds. Since Lo,-L, is compact (cf.[8]) also

114)—(i)is satisfied. Let z € H;, then

£(z)=£(0) +<£' (0) ,2z> + $<£"(0)z,2> + 0(|z]?) =

A
=tz ozl D)2 3 21? + odzl?)

and (I4)—(iiﬂf0110ws. Now let z € H;, then by lemma 2.5

F(z) <X ”z“z—wa(z)dtsf° "zﬂ2+d(}z| +s/2[z|2)+c
-1 -1" L1 12 2
where c, is a positive constant depending on €.
Hence if we choose € sufficiently small, by the above
formula £ is bounded from above on Hg, i.e.(I4%-ﬁv)holds.

Finally by (H7) also (I4F(v)is satisfied and the theorem
3.17 is proved. &

Remark The proof of theorem 3.18 is analogous to the

proof of theorem 2.4.

SR By A AR e B T Tt e L

D
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§ 4.Hamiltonian systems of the second order with strong
resonance at infinity

In the previous sections we have studied Hamiltonian
systems with an asymptotically quadratic Hamiltonian function;
moreover many authors consider the case in which H(t,z) is

superquadratic in z, i.e.

Ho = o as |z] —+ =

(c£.[7],[11],[12],[26],[35])

or subguadratic in z, i.e.

Eféfgl —> 0 as |z] =+
(c£.[6],[71,[12] ana [14]).
Unfortunately the above results do not cover the classical
mechanical problems: namely the Hamiltonian of a mechanical
system with holonomous constraints in a conservative field
of forces has the form

n n
- (4.1) H(t,p,q)=, % a.j(t,q)pip.+i§1§i(t,q)pi+V(t,q)

i,j=1 1 J
where {aij(t,q)} is a positive definite matrix for every
t and qg.
In this case H is quadratic in p, but is not globally
quadratic, or superquadratic or subquadratic in z. These
Hamiltonian has been studied by Benci-Capozzi-Fortunato
in [10] in the case V(g) is superquadratic. The problem

has been examined also in [27] in the case b; (g)=0. 1In
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the following we shall distinguish three different situations.

(i) {a..(t,qg)}is constant

1]
(ii) V{(g) is subquadratic but V(g)— + as q —> +
(iii) V(g) is bounded.

In this section we deal with an Hamiltonian function of the

form (4.1) in the case

b;=0 and aij(q) constant, i.e.

n
= &
(4.2) H(t,p,q) i,j=1_aijpip + V(t,q).

3
By a change of variables, (4.2) becomes

(4.3) H(t,p,q) = % A p2 + V(t,q)
and {HS) is

P VV(t,q)

o

g = =Ap

This system is obviously equivalent to the system of n

differential equations of the second order
(4.4) =% = VV(t,x)

where V(t,x)€ ¢ m xZRnJR),;V(t,x)=V(t+T,x) for any x e:Rn,
t €R and VV(t,x) denotes the gradient of V respect to the
space vaiiable.

It is known that T-periodic solutions of (4.4) correspond
to 2m-periodic solutions of

(4.5) % = 0w’ VW (ot,x)

This problem has been studied by many authors under different

£
.
fod
B
o
i
7
o

bichict it

&

B e S S R s

L R
bRzt bl ot
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assumptions on the growth on U (cf.[6] and [39] for a rather
complete bibliography). Let us assume that the problem (4.4)
is asymptotically linear, i.e. there exists for any t € [o,T]

a symmetric matrix n x n M(t) s.t.

WW((t,x) = M(t)x + VU(t,x)
() YU (t,x)

oy —> 0 as|x|— +o uniformly in t € R.

Then (4.5) can be written aé

2

~% - w2 M(to)x = 0 VU(tw,x) .

Let be .# the selfadjoint realization in L2 of the operator
X+ =% - dz M(tw)x with periodic conditions.
As in section 3, let us assume that the problem has a"

strong resonance at infinity",i.e.

0O € o)
(U,) U(t,x)>0 as|x|++w uniformly in t € R
(VU(t,x),x) +0 as|x|++eo uniformly in t € R .

The nonlinear term going rapidly to O, we shall prove that
the generalized Palais-Smale condition (13) holds by arguing
as in section 3. ’

Let be I, and L, the linearized operators of‘x—>;§—Q2VV(dt,x)

at infinity and at origins, i.e.

Tp X = - % = QZM(Qt)x

LO X = = § - wZM(wt)X-(Dszx(wt,O)X.

We denote by m, (resp. mo) the dimension of subépaceé where
L, (resp. Lo) is negative semidefinite.

The following theorem holds (cf.[19]):
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Theorem 4.6 If the problem (4.5) verifies (U1),(U2)

(U,) U(t,x) is ¢° at x=0, U(t,0)= VU(t,0) =0 ¥ t€ER
(U4) U <O where u= sup (sup 0(Uy,(t,0)))

[o,T]

. 2
(US) there exists Xh € o(.#) AhsC) s.t. Ah-w >0

(U) U(t,x) = U(t-x) vxeRr?, wtem

problem (4.5) possesses at least m distinct pairs of non-

trivial 2m-periodic solutions with

m=m, - m, -

The same results hold in the autonomous case, namely (cf.
[20]):

Theorem 4.7 Assume that %% = 0 and (U1)-(U5) hold.Moreover
R — B \ -

(U7) M is positive semidefinite or v 5—5% , where v =max o (M)

(Ug) =U(x) < 3 (Mx,x) ¥ x eRY s.t. VU(x) = Mx .

Then problem (4.5) has at least m distinct orbits of

nonconstant solutions with m = EE%—EQ— .
Theorem 4.8 We can replace assumptions (U4),(US),(U7),
(UB) by |
(Ué) u>0 where p=min G(UXX(O))i.e. Uxx(o) is positive definite,
N 2
[} : , -
(U5) there exists Xs € 0(¥) X200 s.t. Xs w” u <0
AAAAA )\

(UY) M is negative semidefinite or v> - ~% where v=minG(M)
7 d = W ———

(Ug) 3 (Mx,x)< - U(x) ¥x €R™  s.t. VU(x) = Mx .
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Then (4.5) has at least m distinct orbits of nonconstants

solutions with

Proof of theorems

Let be H1=H1([b,2ﬂ])jRn) and H={u € H'|u(o)=u(2m)} equipped

with the scalar product of H1; i.e.

(u,V)H = (u,'v)H1 .

It is easy to show that classical solutions of (4.5) are

the critical points of the functional defined on H

. 2 2 .
(4.9) £ =3 [a(e) [Pae- S 2T mue)ale) uce))at -

- m2{f“U<t,u(t))dt.

This functional being semidefinite, we shall apply theorems
(1.3) and (1.5). We denote by B(t) the largest eigenvalue
of M(t) and by I,, the identity matrix in R™ and we set

B= sup B(t). We consider the bilinear form on H
[o,T]

a(u,v)={fﬂ(ﬁ,&)dt+{f“(u,v)dt-QZQf“(M{Qt)u,v)dt+e{f“(u,v)dt.

By easy computations it can be proved that a is continuous
and coercive on H.

Then by standard theoremé'(cf,[ZSJ) there exists a unigue
bounded linear operator S:H-» H with a bounded linear inverse

s™1 such that (Su,u) c=a(u,v) Vu,v € H. We set

A

ST T
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_ 2 _
D( %) {ueH|sue L} andy’stn ()"

¥1s a linear self-adjoint operator with compact resolvent.
Then 0(%) consists of a positively divergent sequence of
isolated eigenvalues with finite multiplicities (cf.[28]).
If we denote by So<55< oo <sj<... the eigenvalues of

and by M.

J
If we denote by % the self-adjoint realization of

the corresponding eigenépaces, then L2 = ? Mj .

-i-sz(@t)x in LZ, we have that £?=5P-(B+1)I; I:1.2-1.2

being the identity map and Xj=éj-(8+1);. We observe that
the eigenspace corresponding to Aj is Mj for any j. 1If

m > O is an integer, we set

- +
H (m) =0 M, and H = & M.
(m) 32 n (m) 5¥m ¥

where the closure is taken in H.
By (U2) there exists khe () s.t.kh=0. Obviously for any
ue€eH

. S
u=u +ug+-u ,

where u, € M , u* € H (k+1), u € H (k-1).

The following lemma holds:

LEMMA 4.10 There exist n,r,v > 0 such that

RISy

. + + 2
(1) (#Lu,u )L22 nlu le, YVue€eH
(ii) -Tlu"lz (&Lu,u”) < - vju” 2 wuesn .
1.2 1.2 EZ
Proof It suffices to take h=the firét positive eigenvalue

of ¥, =1 and -v the smalleétand the largest negative eigenvalue
of ¥ .
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Remark 4.11 By lemma (4.10) and by the same arguments
used in section 3, we could prove that the strong resonance
assumption implies condition-(13) of theorem 1.5.

Moréover the following lemmas hold:

LEMMA 4.12 Under the aséﬁﬁpfioné'(U1),(U3) and-(U4), there

exist p, cg > 0 s.t.

f(u)2 cq ¥ ue H'(h)n Sp
Proof Let be u € H'(h)n Sp, p small enough, then
(4.13) f(u)=f(0)+<f'(O),u>+%(f“(0)u:u)+0(uuné) =

, 2.2 - 2
=H(Luu) , -30° L (U, (0t,0)u,u)de+0(ful ) >

+ - 2 2
23 (Lu,u &2 3w p}u}L2+ o(flu

-1 5 2 2
=1L OgmeT fuy |5y + odlul )

There exist t>h and 6>0 s.t.

xj—mzp > 8y >0 ¥ it

then

2
2 t A.=w u

© -2 ) .
4.14 T O Ty B e T B R e W LT
(4.14) jen (A7 | 3&2 J=h A, Jl 3

2 2
' j=§+1ﬁkj_w P)'ule
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By (4.13) and (4.14) we have

£(u) > const Huﬂé + O(Huﬂé) 2 ¢4 . &

LEMMA 4.15 There exists c, € R s.t.

f(u)< co Yue€eHd (k).
Proof. Let A= sup |U(t,u)| , then for any u € H™(K):
lo,T] >

o - 2 ZTY . 2
f(u)=(¥u ,u )2— w fo U(wt,u)dt = 2m0°) . B
L

Proof of theorem 4.6

The functional f being even, we shall apply theorem (1.3).
By the remarks (1.7) and (4.10) condition (f4) holds;
lemmas (4.12) and (4.15) implie (f,) with V=H*(h) and
W=H" (k) . The the problem (4.5) possesses at least

m = dim (Mh ® ... & Mk)

distinct pairs of nontrivial solutions. Obviously m=mm-mo.il

Remark 4.16 Let us assume, as in [18], that

M(t) = AT A=k k=0,1,2,...

i.e. Ak € o(-%) in L2 with periodic conditions. Problem

(4.5) becomes

(4.17) ~-u’A x = o’ Ot x).

-Assumption (U3) can be replaced by
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2
i : - - — 8
there exists Ahe of{-%), thkk s.t. kh Kk w u>o ",
Problem (4.17) posseSses at least

m = dim H (k) - codim H' (h)
distinct pairs of nontrivial solutions.

If Ak=0, we obtain the case studied by Thews (cf.[39]).

Proof - of theorem (4.7)

We shall use theorem 1.5 for 51—invariant functionals.
Namely the functional of the action is

23¢- 3 m2{3“(Mu,u)dt—dzﬁfﬂU(u)dt

-1 ,2’”-
f(u)-ifo Iu

which satisfies obviously (11),(I2) and (13). As above,

there exist Cor Cwo GIR+ s.t.

v

(I,)-(ii5)  £(w) 2 ¢ ¥u€evns, V=g (h),

Coo Yuew==H (k.

 Za

(14}-{iv) f(u)

(14)—(i) is obvious; in order to prove (14)-—(ii)it is sufficient
to prove that all the eigenvectors of M belong toVorW.Let

c be an eigenvector of M and A be the corresponding eigen-

value. It results

2 2

Lc = - w Mc = = © AC,

-3
then -w"A € o(L), where (Lu,u)H=(§?u,u)2 . If M is positive
: L A
semidefinite, we have ~w2A50=kk, therefore ¢ € W; if vg- *%
w

‘we have -szg-&zvzkh and c € V.
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Finally, if u is a constant and f£'(u)=0, by (US)
2

| 2 | 22
£(u) == = fO“(Mu,u)dt—wzfo "U(u)dt € 0 < cp .

Then (£,)-(iii) is satisfied.
Remark 4.18  Under the aééumption of the theorem 4.8, the

conclusion followé by applying the abétract theorem (1.5)

to the functional -f.
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§ 5. The case H(p,q)=a(q)p2+v(q), V{g) unbounded

Let us consider now an Hamiltonian function of the
form (4.1) and with subquadratic growth in g (cf.case (ii)
of the section 4).
We make the following assumptions:
Assumptions (HO)

(V1) There exist constants R>0, 0<2 s.t.

(V'(t,q),qHRn-uV(t,q)SO for |g|2R, for every t € R.

(v

1

2) There exist constants R1,c >0 s.t.

]V'(t,q)]5c1v(t,q) for |ql2R1 , for every t € R.
(V,) V(t,q)++> for |g|++e uniformly in t € R.

3

(A1) There exist a real, continuous function v(g)>0

" and a constant M s.t. ‘

2 1 2
vi(g) |p|“s = a,.(t,q)p;ps<M|p] for every p,q € R".
i,j:‘! 1] 153
(A,) There exist a constant Belo,2-a[ such that
oo A , A L
{k§1,3§" aij(t,q}qk-Baij(t,q)} is negative semidefinite.

k

(A3) There exists a constant c, s.t.

P
i,5=1%%

I

n
aij(t,q)pipjlsczi;§=1aij(t,q)pipj

for every k=1,...,n g €R?, t €R.

&
B

i
A
g
)
|
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- by (t,q)2

B im = 0 for eve i = 1,000 .

Vgl e V@VESD e T e
ob; 2

] I?&i(th)qkl

(Bz) lim = O for every k,i=1,...,n .

o V@V
() H(t,z) is C° in O and (H,,(t,0)z|z) 21, ||

)\1>M,for every t € R.

Remark. - The assumption (VT) implies that V is subquadratic
in g but, obviously, H(t,z) is not subquadratic in z.

(A1) is a phisical assumption wich depends on the fact
that the "Kinetic energy" is positive. The other assumptions
are technigal éssumptions wich control the growth ad infinity
of the coefficients of (4.1).

We shall prove the following theorems (cf.[37]):

Theorem 5.1 - Suppose that H satisfies the assumptions

(Hg), o2
H,) H(O)=H'(0)=0, H'(z)%0 for every z # O.

Then there exists T € R such that (HS) has at least n

= 0 and

non-constant T-periodic solutions for every T>T.

Theorem 5.2 - Suppose that H(t,z) satisfies the aSSumptions

(H,) and
HE) H(t,z) is even in z,T-periodic in t and H(t,O)=Hz(t,O)=O

for every t € R.
Then there exists T € R such that (FHS) has at least

2n non trivial T-periodic solutions, if T >T.
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Proof of theorems

As usually, the T-periodic solutions of the Hamiltonian
systems (FHS) correspond to the critical points of the

functional defined on W%

£(z)=} ((Lz,z))-mfoz“nmt,z)dt )

. By the assumption (H,), there exist c3,c4p s pasitive

constants s:ot.
|5, (t,2) | < c3+c4|z|S for any t and z.

Then standard arguments show that £ is Fréchet differentiable
and satisfies (I1) of theorem 1.5. We recall that KerIFﬂRzn
and therefore O ¢ o (L) . We shall prove now (I;) arguing

as in [10]?

In the sequel we shall use the following shortened notations:

= I ? = "X P, .
alglp 1,51 aij(trq)pipj a'(glgp 15k=1 aqkaij (t.q)qkplpj
n n 3 .

bla)p=;L,b; (t,a)py bwq)qp:i}x?:ﬂ 8q; b; (t,a)qyp; -

We recall the following lemma:

3

Lemma 5.3 - Let {zn}c:W ’ zn=(pn,qn), be a sequence satisfying

(5.4) f(?n) + C

(5.5) ezl > o
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Then the following sequences

27
(5.§) fo (H(t,zn) - (Hp(t,zn).pn)}dt

2m,
(5'7) -C) (H(trzn) - (Hq(trzn) rqn))dt

are bounded.

Remark. - The Hamiltonian being of the forme (4.1), the

sequences (5.6) and (5.7) become

27 2
(5.8) {) vit,q ) - a(q )p dt

2 2
(5.9)  [""[-a'(q)a p -b' (q )q p - (V' (t,q ) ,q ) +

2
+a(qn)pn+b(qn)pn+V(t,qn)]dt.

In the sequel we omit the index n and we denote by Mi

a positive constant.

Lemma (5.10 - Suppose that V ) A ) A, ) B, ) B, ) hold and that

{z} is a sequence in w2 satlsfylng (5 4). and (5.5); then the
seguences

£2Mv(t,qat ana 12" (q) p2at

are bounded.

Dim. = Let § >0 be a constant such that a+B+28=2,
Multiplying (5.8) by 1-B-6 and adding the product to
(5.9) we obtain that the sequence
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f2ﬂ

" [(8+8)a (@) p®-a" (2) ap’+b () p-b' (q) qp +

(5.11)

+(2-8-8)V(t,q)-V' (t,q),q)]at

is bounded.

By (V1} and AZ) there exists M1

>0 s.t.

M, 2 43”[5a(q)p2+(2—a—8—6)v(t,q)+b(q)p-b'(q)qpﬂdt

that is

(5.12) Qfﬂ[6a(q)p2+6V(tfq)+b(q)p-b'(q)qp]dt5M1 .

By B1) and BZ) there exists M2>0 s.t.
’ 2 2
Ib(g) [“+|b' (g)q] 8 .
(5.13) * 59 (Q) < > V(t,q}vM2 for every t € R

and g er” .

Then, using (5.13) we get
27 27
(5.14) [ [b' (@ ap-b(a)plat</ " [|b' (a) gl |p|+|b(a) | p|]ats

; 2 , 2
QZHEJEML +lp|2 —2—v(q)+ ..i.}_);{.gl_!__ + .gv(q) Iplzjdts

sv{qg) Sv(qg)

in

278 ) 2
LG Vit sv(a) [p| “Jat+m

A

3
and by (5.12)

2 8
M12€)ﬂ[Ga(q)p2+6V(t,q)-gV(t,q)— Ev(q)pzjdt—MB

216 2 ¢
_>_J;3 [—2- alg)p™+ 2V(t,q)]dt-M3.
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The lemma (5.10) is proved. . e

Lemma (5.15) - Under the assumptions A1),A2),A3), V1),V2);

V3)s By),B,), £;) holds |

Proof. = By lemma (5.10), V2) and A3), it follows easily

1

that {H_(t,z)} is bounded in L . L is continuously embedded

into W 2 2, for any n>0. Then H_(t,z) is bounded in W 72,

Assume now that {z} is unbounded. Then, by (5.5)

-1
Lz-wH_(t,z) 0, in W z

It follows that
n

~1.n
{Lz} is bounded in W 2 2

If z,-denotes the component of z belonging to M,=KerL,

and Z=z-z it is known that

ol

Mji=

¥z € W

: | 2]

W -1

,_n < cost|Lz|
272 2

W

and therefore
{Z} is bounded in W%mEl .

We prove now that'{zé} is bounded in L. ‘ i

If zo=(po,qo), by lemma (2.2) and by V3) it follows

that {g®} is bounded in 1!, Infact by V3) there exists a
function x:R_+R (cf.[8]) such that

a) x (0} =0 lim y(s)=0 x'(s}>0
g-+c0

(5.16)
b)  V(t,q)2 x(lq|)-c

Since KerL is a finite dimensional space, if quuL1*+m,
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then |g®|++~ and

-fﬂxﬂqoﬁdt++w-
On fhé other hand, by (5.16) b) we have

Qfﬂx(lqol)dt < {3“V(t,qo)dt+2ﬂc <M, .

Therefore also {g®} is bounded in L1. The conclusion

follows as in lemma (6.5) of [10]. 2

We shall prove now the geometrical condition (14). Let be

where Mxk is the eigenspace corresponding to the eigenvalue

i H

and the closures are taken in W° .

k : o
}\k—- a—m of ~Jz in W
1

It is known (cf. section 2) that a basis of W? is

_Jtd, : _
wjk—e e J €& k=1,...,2n

where @k is the standard basis inimzn. Therefore, if ¢ € W%,

we have

.- s GEeF- ,2: s .k
5e2,K=7,..,n%1k"0% I8 seg i, | nPyiSin 1t0

. sy oz s, = ¥
sin 3t®k+ b-kcos Jtoy

jez,k=1,..,n ik jez ,k=1,..n" 3

*

X being the standard basis in R".

o

Let v', ¥~ and ¥, be the components of z belonging to

+ -
W1, W__1 and Mj.
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It results

. Lk
521,k=1,.,.,n[ajkcos Jt bjk sin JL]Qk

+
Ve [a., sin jt+b it] e
331,k=1,...,n+t34k510 Jt+by cos Jtle,
and

] o - *

jg—Lk=1,...,n[ajkcos jt bjk sin jt] oy

Yo o= 5:

. . . *
S<=1,551, ... n [ajk51n jt+by cos jt]e,

Let p+,q+, p ,q be the components of v* ana w—;obviously

+12 +,2 - -
(5.17) lp" 1% = la| lp71%=1q7|% .

In order te prove (14), the following lemma need:

Lemma (5.18) - There exists j € N such that f is bounded

from below on W§ .

Proof. - We have

£(z) =3(Lz, 2) [’ "a () p2at-uf b (@) pat-ul "V (£, q) at

(5-13) 112 2 .27 2m
>%jlz| " -oM|p| ,~wl bla)pdt-w/ TV (t,q)dt .
L2 L o o

We observe (cf. (5.17)) that

2 2
(.20 [pl%= lal’,

5 for any z = (p,q)€ W} <3>0
Le .

J

and
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27 27 Zﬂlb( |,
Jy (@) pat</7 b (q)platss /«—-L v (Q)

ev(q)

2my,2 b~ (g) 3 24,13 b2(q) ., . 27, . o
(5.21) (4) via) dt) (f Tev (q) p2dt) <%[f (q)dtv€£> viq) p?dt] <

2 2
<3V (e, q) At e | pl_,]

By (5.19),(5.20),(5.21) it follows

f(z)zj!p{iz—wM!p[iz—Zw{fﬂV(t,q)dt—mgM{pliz—%MS >
Z(j—wM(1+§))|q|22-2m{qlau—%M5>M6 .
L L
The last inequality holds for j—mM(1+%)>O i.e.
(5.22) j > wM . - &

The lemma holds for j sufficiently large.

Lemma (5.23) - There exist positive constants p,8§>0 and

m € N such that

f(z)<-§ on ‘QJWV V=W

Proof. - We have
£ (z) =£ (0) +£' (0) [2] +3(£" (0) z,z) + O (] 2| %)

“3(wz,2- § 17 (0, 0)z,2)aev0 (| z|?) <

- 2 2
1+3+ml! 2*] %~ -l 1% A, %izlem(nz{] ) <

i % azn2+%uzﬂ[2+g-uzouz->~1%|zli;o(uzu2> -
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o 3@ m+ty g2 3 2_ 2_, w42 1 2 2, _
== el el el Szl eglagl” ~odlal®-

3(j+m)*+1 1 2 -12- (Ao 2 ?
-l 1= G -0l %= e 2170 5 12717, -

(1+j+m) 2 L2
w, ;2 ® 2 2 2
e DR E TR
: % AL w A
3(3+m)+1 1 _ Aqw o2 _ 2_ 2 2
U oo byl el zg P-el =l ol
If
: ALw
3(4+4m+1 1 M
(5.24) i(5m ~@ 8 "3 $°
it follows
f(z) & -¢ su %wawg+m .
By (5.24) we obtain B
2(j3+m) -2) w+de (143+m) < O,
therefore |
2(j+m)—2k1w < 0,
i.e. |
(5.25) j+m < )\1@ o

Remark - The term b(g) does not change the proof of the
lemma (5.23) being sz(o) unvaried.

We shall prove that, for w large, {(5.22) and (5.25) hold
at the same time and, consequently, lemmas (5.18);(5.23) are

verified.
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Lemma (5.26) - There exists w€ R such that

for w>w lemmas

(5.22) and (5.25) hold.

Proof. - Lemmas (5.22) (5.25) hold if there
m>0 such that

j+m 3
(5.27) , <w< .
First, from (5.27) it follows that we
If m=0, (5.27) becomes
(5.28) - cp<d ;
A1 M

j being a convenient positive integer.
Since -the sequence{g%T}'is increasing

to 1, fixing %£ < 1, we can'say that there
1

for every jzj _: %i < —- i.e. there exists
1

o j+1_
R P i
every 3230. M> A1 .
Then it results
R VR LAY,
4 e ¥ -
)\1‘ 32ig M M
Finally 5
There exists jO large enough s.t. for d>xg it follows
1
. 3 ' . .
—%? <w< M for a suitable j 2 Jg
- Jo
The conclusion follows with w = — 2

1

exist j21 and

must suppose A1>M.

and it converges

exists j, € N s.t.

Jo € N s.t. for

R e R R R T

B e e S s T L
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Lemma 5.26 implies that the functional -f verifies assumption
(14)for w large enough and V=W§ , W=W§. Theorem 1.5 assure the

existence of at least

3 [dim (VAW)- codim(V+W)] = n

nonconstant and geometrically distinct critical points of £.

Remark 5.29  We can improve the thesis of the theorem 5.1
as it follows.
We set

- - jm .3
M = {meN|] 3JjENs.t. , <w< oy }o.

If w > &, Mw is non empty; if we set m = max Mw’ we can
observe that for w> b there exist at least n(mm+1) critical

points of f.

Remark 5.30 The proof of theorem 5.2 directly follows by

theorem (1.6).
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§ 6. The case H=a(q)p2+V(q), a(qg)=const.and V(g) bounded

The Hamiltonian system studied in the section 5,does
not correspond to a physical situation, because the potential
V(g) is generally bounded in the physical problems. On the
other hand if V(q) is bounded, we cannot use the methods
of the section 5 in order to prove the P.S condition, be-
cause we can not controle the growth of the component of
z in the kernel.

The idea exploiteed in this case is to reduce the re-
sonant problem to a one in which no resonance occurs. More
precisely, using a trick introduced by Marlin, Mawhin, Coron
(cf£. [30],[31],[25]) we restrict the functional of the action
f to a sub;pace E disjoint of the kernel such that the criti-
cal points of f[E are critical points of f. Therefore it will
be sufficient to prove that flE satisfies (P-S) condition.

First, let us consider the second order Hamiltonian
system (case a(g)=const.); in the next section we shall deal -
with the general case H(p,qg) of the form (4.1) and V(qg)
bounded. |

Let us given the system
W2l 200
(6.1) , -¥-kx= w*VU(wt,x)

where k is a nonnegative integer number.

If

U(t,x)=>+o for x —> » uniformly in t € R.

it is possible to obtain suitable a priori bounds which

permit to verify the (P-S) condition (cf.[6]). On the other
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hand if

U(t,x) is bounded,

the (P-S) condition is not in general satisfied.
In section 4 it has been studied (6.1) under the strong

resonance assumption. Here we assume that
(Ug) U(t,x)and VU(t,x) bounded.
The following theorem holds (cf.[16]):

Theorem 6.2 Assume k # O, kis even (resp. odd), U(t,x)

is T/2-periodic in t and satiéfies (Ug) and the assumptions

(U3),(U4),(U6) of theorem 4.6.

Then there exist at least 2mn pairs of T-periodic nontrivial

solutions of (6.1), where

m= # {JEN |j odd (resp. even)s.t. k2+Q2y<j2<k2}

Remark 6.3 Obviously m is strictly positive if T > T,

Remark 6.4 If we replace (U4) by

(T u>0 where u ='inf (inf G(Uxx(t,o))

O,

then the same conclusion of theorem (6.2) follows (in the

4)

case k=0 too)with

2<j2<k2+m2p}.

-2 (k+1)2-k2

Obviously m is strictly positive if T>T=27®, w°= -

m = # {j € N|j odd(resp.even) k

Now we shall consider the more general case in which there

exists a symmetric matrix n x n Such that



- 55 =

VWit,x}) = Mx + VU(t,x),

i.e. we shall look for the solutions of
{6.5) -% - Mx = VU(t,x).
Let us assume the resonance condition

(R1) there exist k € N and K, eigenvalue of M such that

2 2 5
kT=w ui = 0

Assume k even (resp. odd). Moreover suppose that

k k. even and k. odd

T2 1 2
(RZ) and two eigenvalues Hy and My of M s.t.

There are not two integers k

2 2 .2 2
k1fw gT-O-kZ wou

5
The following theorem holds:

Theorem 6.6 Suppose that U(t,x) verifies all the assumptions

of the theorem 6.2 and moreover the assumptioné (R1) and (Rz).

Then there exists at least 2mn pairs of T-periodic nontrivial

solutions of {(6.5) where

m= H{j,ile N x {1,...,n}]j] odd(resP.even}O<j2—®2pi<m2u}.

Remark 6.7 Assumption {Rz) is satisfied for exemple if

1} M is negative semidefinite

2} for any pi,uj € o(M): pi/pj é Q
' 2
3) for any Moy € G(M).[pi pjlz 1/w”.

Proof of thecrem (6.2)

As usual, we shall find the critical points of the functional

defined on H
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2 .27

L lu(t) |2at}- mz.f“vgtuj,u)dt .

£ =2y o) [Ptk

Let us denote by & the self-adjoint realization in
LZ(ED,ZW]JRB) with periodic conditions of the operator
u+—ﬁ—k2u. The spectrum of ¥ consists of the eigenvalues
{Xj=j2-k2}, j € N, and the corresponding eigenvectors are
{cos jt @;, sin jt @2}, {@;} being the standard basis in RD.
Clearly kerL = Span{cos kt @;, sin kt @:}.
The difficultie arising from the resonance assumption and
the boundeness of V can be avoided by a trick used in [30],
[31] and [25]. More precisely if k is even, we shall restrict

the functional £ to the subspace
E = {u € H u(t+n)=~u(t)}.

Ult,x) beiﬂg T/2-periodic int and even in x, easy computations

show that E is a closed subspace of H such that

(1) L{(EJC E

(ii) ker LNE = {0}

(6.8) (iii) E is invariant under VU(i.e. u € E=> VU(t,u)€E)
(iv) u € E <> u=r (a.cos jt ® +b; sin jt o%)
. i J i
JEN
jodd

{6.8) (1)~ (iii) assure that the critical points Of'fIE are
critical points of £ on H and therefore solutionsof (6.1).
By (6.8)(ii) o0 ¢ G(L!E)f then standard arguments show that
fIE satisfies €I3).

Let be ET (resp E”) the subspace of E where L is positive

(resp. negative) definite, i.e. if we denote as usual by Mj
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the eigenspace corresponding to Kj' then

ET =@ My (resp. E- = @ Mg)
>k j<k
j odd j odd

where the closure is taken in H. Clearly E=E' & E~ .

Now we can apply theorem 1.5 to the functional £ . It is

|E
known that f[E satisfies the assumptions (IT)°(13)7 (14)

pr———

follows easily choosing W = E and V = @ 5 M. . By this i
o aa . j2*k2>w U J f
definition it results that - L

dim(VN W) -codim{V+W}= dim (VA W)= 2mn , i
where m is defined in theorem (6.2). f
In the case k is odd, we can repeat the above arguments i

choosing

E = {u € H|u (t+m) = ul(t)} .

Remark 6.9 If we suppose g > O, we can apply theorem (%.5)

taking V = ® M. and W = Et, |
j2—k <w2p
j odd

E

to the functional _f§

Proof of theorem 6.6

In order to prove theorem (6.6) we recall that
{jz—wzpi!j € N, i=1,...,n} are the eigenvalues of the
operator L:x~%-§—m2Mx ih 12 (cf£.[6]) corresponding to
eigenvectors {f, cos jt, f, sen jt}, £, being the eigen-—
vectors of M. Assumption'(Rz) assures that the eigenfunctions
of the Kernel of L are 2n/k-~periodic, k even (resp. odd) and
therefore we can repeat the above argquments and we find at

least 2mn pairs of solutions. We shall prove now that m is
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strictly positive for w large enough.

By resonance assumption (R1), we have

By = max c(M)> O.

Then it is sufficient to prove that if w is large enough,
. . , .2 2 2
+H{j € N |j odd (resp.even),0<i " -w uy<w ul> o.

In the case yM=O, the proof is obvious. Assume pM>O.
Clearly

.2 .2
O<j2-w2uM<w2p¢=$ wl:T <w2< 1 ;

Hy*H Hm
if we fix FM/UM+P <1,there exists j € N,

Jo odd, s.t.
(3£1)° j2

JF1. ‘ , . . .

Ut < . for every j 2 Jjgor Jo odd.

Then we have

2 2 2

j j j
1—= - = U ] , — [
Myt 323, 7 wytw T ow

"M
3 odd
2 - .2 .

and for w >w ==jo/pM+p the conclusion follows.
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§ 7. The case H{p,q}=a(q}p2+V(q), V(g) bounded

In this last section, we shall find periodic solutions
of Hamiltonian systems (HS) in the case in wich H has the

form
n

= Z 7
H(p,q) i,5=1 aij(q)pipj+ V{g)

and V{g) is bounded (cf. case (iii) of section 4) .

From now on, we essentially follow [17].

Theorem 7.1 Assume that assumption (A3) of theorem 5.1

hold, moreover

(A%) there exists a positive constant M’Such thét

n
2 n
i z L <
0-< i'j=1'aijiq)pipj_M€p) for any p,q € R
(V4) Vv{g) and VV(g) are bounded
(V5) Vi{io) = VV{o) =0
(V6) V(g) is twice differentiable at g=0 and

(V" (o)g,q) z}’clqlz with I_<'2>M2/2a(o)

where V" (o) denotes the Hessian matrix of V at O and a(o)

is the smallest eigenvalue of the matrix {aijéo)} .

R . ' 2
(B} H{(z) = H{-z)} for any z €R no

Then there exists T > 0 such that (HS) has at least n

nonconstant and geometrically distinct T-periodic solutions

for any T > T.
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gemarks 7.2 Theorem 7.1 still holds in the not autonomous

case with suitable modifications.

Remark 7.3 Let us observe that this theorem is very
interesting from a physical point of view because it can
be applied to different problems, for exemple to the case

of "the double pendulum".

Proof of theorem 7.1

In order to find the critical points of the functional

[N

£(z)=} (Lz,z)) - wfj“H(z)dt z €W

we shall apply theorem 1.5.

Obviously the functional g{z)=-£f(z) verifies the assumptions

{I.) and (12).

1
Now we have to prove that (13) holds. As in section €, the
boundness of the nonlinearity does not permit to verify

directly this assumption. Then we restrict g to the closed

1
subspace of W?

F={ue€ W%;u(tm):—u(t)} .

It is easy to see that

(i) L(F) ¢ F

(ii) kerLnF = {0}
(7.4) e C .
(iii) F is invariant under VV
d T =
GVl F =4ez,% 0aa M
Observe that the eveness of H guarantees (7.4)-(iii} and

this is the only point where we need of the assumption(H).
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Conditions (7.4) (i)-(iii) assure that the critical points

3

of ng are critical points of g on W, hence they are
sclutions of (HS).

In the seguel we still denote by g the restriction ng'

By the same arguments used in section 5 it can be proved

the following lemma:

Lemma 7.5 Suppose that H verifies (A;) and (V,). Let

zn=(pn,qn) be a sequence in F satisfying

(7.6) g(zn)-+c with ¢ > 0O

(7.7) tg* tzp) Izl 0

then there exists a subseguence of’{zn} bounded in F.

Proof Arguing as in section 5, it can easily seen that

the seguences
27 2 ‘ 2n
é} a(qn)pndt and {3 V(qn)dt

are bounded and therefore {Hz(zn)} is bounded in L1¢ The
seguence {zn} being in ¥, the conclusion follows (cf. lemma

5.15) by

| Znﬂw%_‘ % £ cost HLZ"W%: g

In order to prove the gecmetrical condition (14), we shall

need the following lemmas:
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Lemma (7.8} If (A%) and (V4) hold, then for any j € N,

j eodd, such that
(7.9) 3> wM

we have that

(7.10) sup g{z) = Cx<l+m
Fr

Lemma 7.11 - If (A1), (VS), (V6) hold, then there exist

two positive constants p,6 such that for any J, m € N,

37 odd and m even, for which

j+m

2k a(O))%

(7.12) e o>

(7.13) gl(z)>8 for any z € F§+m’ lzll=p .

Lemma 7.14 If (AT)'(vé)’(VS)'<VG) hold, then there exists

%>0 and j;m €N, j odd and m even, such that for any w>B

- (7.10) and (7.13) hold.

Before proving these lemmas, we conclude the proof of
theorem 7.1.

If we set W=F. and V=F§+m' where j and m are obtained by
emma 7.14, then by theorem 1.5 we have that there exists

1
T = 2n6 such that for any T>T the system (HS) has at least

3[aim (VW)= codim (V+W)]] 2 n

nonconstant and geometrically distinct T-periodic solutions.

More precisely, if we set
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j+m

m = H {meW|m even,3i21 s.t. —
{2k a(0))

3
<w< M}

for T>T=27mx the system (HS) has at least n(mw+1) nonconstant

and geometrically distinct T-periodic solutions.

Proof of lemma 7.8 - Let V¥=max V(g). Then for any j € N,

j odd, it results

2T
gl{z)=w/ a

2Ta (q) pPat+u 2"V (q) dt- 3Tz, 2) <

{7.15)
lip|2+2ﬂwV*-%j[zi2 .
Therefore by (7.15) and by (5.20)
S 2 ok
- glz)<(wM=3) |p| “+2mwV” .

The conclusion follows with j 2 wM.

Proof of lemma 7.11 - Let z € W§+m’ then

. j+m :
P B, z€
z=Z_+2 z_€ E=3—-m-—2 ¢ Z @ Mkk :

By the definition of {wjh}, 5 € %z, h=1,...,2n, we have

n [a..cosit—b
z_= D) z 1%
ig=3-m-2 k=1

3 odd

. . *
jSinit] o

I~ A et *
Laik51nlt+biku051£3¢k
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.L— 3 13 *
. [aikCOSl“ bik51n1t]®k
5+m n
5 = Z Z =
i=-j-m k=1 %
i odd [aik51nlt+bik0051t]®k
. .. *
N / [(aik+a_ik)c051t (bik~b_ik}51n1ﬁ]®k
J+m n
= 3z
i=1 k=1 N
i odd [€aik-a—ik}Slnlt+(bik+béik)005lﬁ]Qk
If we set Z=(p,d) it results
J+m n
L2 " 2 _ 2
[BI7= = I flag e g )by b )]
i=1 k=1
i oda
o j+m n 5
7 l~ é: . - 3
(7.16)  lg|®= 7 2 L [(a;may, )+ (b, +b ikﬂ
i=1 k=1
i odd
j+m n
w2 2 2 2 2
I
12l7=2m I L o{agva gy bt gy )
i=1 k=1
i odd
Moreover we have that
n 42
%Q(Lz_fz_)) =3 ) Z i|zi| =
1g-3-m=2 k=1 12

i odd
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n 2m 2
(7.17) =143 I L oif [(a{kcosit—biksinit) +
ig-j~-m=-2 k=1 -
i odd
+ (a,,sinit+b cosit)zjdt =1 I 'g i(a2 +b2 )
ik - ik . . ik Tik’ ¢
ig=j-m=-2 k=1
i odd
P R L . 02
{(Lz,z)=3 I r if"7 [(a, cosit-b, sinit)” +
. (o} ik ik
i==j-m k=1
i odd
jtm n
(7.18) +{a,. sinit+b cosit)21dt=w ) L i&g +b2) =
- ik ik - .. . ik Tik
i=-j-m k=1
i odd
j+m n 5
=1 I L ifa) 2 2 2
=1 k=1 EPgma_ gpmPog) -
i-odd

Now let be z € SQF\Eg+m; if p is small enough, it
results

e 2

g (z)=g(0)+g'(0) [z]+3g" (O)z,z)) + O(fz]") =

{f“<azz§o>z,z>at~%«Lz,zﬁ s ozl >

NiE

> ma<o>Ip|2+§<V“(o)q,q)—%«Lz_,z_n~%«L%,£»+0<ﬁzﬂz)-
By (VG) and (7.18)
g(z)2ua(0) |5 %+ Klg|%+1]2_|” -
(7.19) j+m n
) T i(al, +b°, —a° —bfik)+o(uz

i21 k217 '%ikTPikT%-ix
i odd

1%).
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The conclusion of lemma is achieved if we prove that

there exists y>0 such that

j+m n

!.,,[2 w:" -~ 2 -~ . 2 2 2 2
Eo LI, I i(-af - *
wa (0} |P| +2K1Q! +ﬂi=1 k=1l( ik bik+a—ik b—ik) >
(7.20) i odd
W ooy
> X2 g

or equivalently we have to prove

J+m
{(7.21) D)
i=1 k
i odd

1[¢i€aik‘@ﬁk’+¢i(bik'b—ik)j >0

Nt

where for any i=1,...,J+m, 1 odd

2

¢i(x,y):@a(0){x+y)2+m§{x~y)2+i(y2-x2)~%§(x +y2)

By (7.12) it can be shown that
¢iéxiy)>0 i=1,...,j+m i odd

then (7.21) holds.

roof of lemma 7.14 - Lemmas (7.8) and (7.11) hold at the

same time if there exist j,m€E€N, j odd and m even such that

jtm

(2k a{o))

5 |
(7.22) <w< o

3

First of all, (7.22) is poééible if it occurs that
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G d
(7.23) (2 a(o)?
or equivalently

M

(7.24) (2K a(o)F

Assumption (VG} implies
2 =
(7.25) M~ < 2k a(0) ,

so (7.24) 1is satisfied. We shall prove that there exists
® € R such that for w>w (7.22) is verified with m=0.

J
1
and goes to 1 as j goes to infinity, and the number

Namely, since the sequence { i oddl} is incresing

_ 1
M/ {2k a(0))® is less or egual than 1, there exists J, €I,
joodd, such that
M < 3
(2k a(0})

for every jzjo, j odd.

(S

3+t

Then it results

jg j i
_ : J
1 — %'*w['ﬁ%oj = ;orw Lo
(2k a(0)) 5 oaa {2k a(0}}
. ' . . jo =5
The conclusion of lemma follows with w = . S

(2k a.(O))%

Remark 7.26 - We recall that if z, is a solution of (HS),

1

zz=--z1 is still az solution of'(HS); Since z1 and z,

to F, they have the same orbit and therefore correspond to

belong

the same solution feound in the theorem (7.1).
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Now we shall give an application of thecrem 7.1 to the
eguation of the double pendulum.

Consider a system of two unitary masses in a double pendulum
constrained to move in a plane. Two angles 6, and 6. com-

1 2
pletely specify the position of masses m, andvm2 and they
can be considered as the "generalized coordinates"™.

Let us denote by Py i=1,2, the "generalized momentum"” as-
sociated wit the generalized coordinates Gi.

The Hamiltonian of this system (cf.29]) is

Hi{p.q) = (A{glp,p) + V(q)

where g =(61,8 )

2
- 1 1 ~cos{8,~56.)
A(8,,0.) = ( 1772 )
— — 2 .
1772 2[2m0052(61—62)] cos(6,-6,)
(7.27) |
V(e1'62) = 3g-2900561fg00362

Let us consider the Hamiltonian system
{7.28) ~Jz = Hz(z)

~

where H is as in (7.27). It is easy to verify that

(7.29) Egii ’<(A(q)p,p) < 32/5 p’
. 42 3+/52 1
(7.30) (v'(0)g,q)2glqa|” and g> (=) 35
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By (7.27), (7.29) and (7.30) it follows that H verifies

the assumptions of the theorem (7.1). Then:

Theorem 7.31 - There exists T>0 such that for every T>T

there exist at least two T-periodic solutions of Hamiltonian

system (7.28}.
Now we want to compare this result with those contained

in [8]. We need of the following

Definition 7.32 - We say that z(tj(plt)alt)is a "generalized

T-periodic solution" (or "revolutionary solution") of (7.28)

if there exist kT,,k2 € N such that

g{t+T)-g(t) = ZW(ki'kz) .

Chserve that if k1=k2=0, g is a T-periodic solution of (7.28).
Benci in [8] has studied the existence of T-periodic solution
of Langrangian systems on manifolds. In particular the con-
figuration space of the double pendulum is T2=SLKS1; Then
from the results of Benci, it can be deduced that (7.28) has
a generalized T-periodic solution for any T>0. Putting to-
gheter the results of Benci and theorem (7.31) we can conclude
that there exists To such that for any T>T, (7.28) has two
T-periodic solutions, and for any T>T (7.28) has a generalized
T-periodic solution.

Obviocusly it is reasonable to think that the energy E
corresponding to the T-periodic solutions, T>T, is less

than max V(g). If E>maxV(g), the double pendulum has a "gene-

ralized solution", whose "period" is decreasing as E increases.
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