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INTRODUCTION

Soon after Einstein’'s discovery of General Relativity, a model for
unifying gravitation and electromagnetism based on the assumption that
the spacetime has more than four dimensions, was proposed by Kaluza [1].
He proved that the equations of general relativity in five dimensions, with
a metric tensor independent from the fifth coordinate, can be reduced to
those of four-dimensional General Relativity coupled to electromagnetism
in such a way that the gauge invariance of electromagnetism can be seen
as a part of the 5-dimensiona] coordinate invariance.

Kaluza's idea was developed by Klein [2] who, looking for a wave equation
in a 5-dimensional space, noticed that the fifth dimension can be taken of
constant size and then closed into a circle, so that the effective
4-dimensional charge and mass of the particles can assume only discrete
values.

At that time, however, the significance of the unobserved extra
dimension was not clear. The general opinion was to think apout it as a
mere mathematical artifice. The first who gave a consistent physical
interpretation of the fifth dimension were Einstein and Bergmann [3]. They
proposed to take seriously into account the possibility of considering it as
a reaHy‘physical dimension, and suggested that its unobservability is due
to the fact that it is curled up into a circle of very small radius. As a
consequence, the fields are periodic in the fifth dimension and only their
average values over the fifth coordinate are observable. This can be
considered the first proposal of the concept of compactification, which
will become very important in the future developments of the theory.

Further investigations were performed by Thiry and Jordan, who
considered the possibility that the size of the internal space depend on the
ordinary spacetime coordinates, giving rise to a massless scalar in the
effective 4-dimensional theory [4].

The idea was then almost abandoned for a long time. Only in more recent
years was the interest renewed when it was realized that nonabelian
symmetries also can be implemented in the theory, by considering a higher
number of dimensions. Starting from a suggestion by De Witt [S], the idea
was first developed by Rayski and Kerner [6], and then by Cho and others
[7]1. A1l these works considered the case of an internal manifold
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constituted by a group manifold G, which is invariant under the action of
the group G itself, and showed that the the theory so constructed contains
4-dimensional general relativity coupled to Yang-Mills theory with gauge
group G. Only later Luciani [8] and Witten [9] realized that it is sufficient
to consider as internal space any homogeneous space G/H. In fact, any
gravitational theory defined in 4+K dimensions, admitting a ground state
in the form of a direct phoduct of the flat 4-dimensional Minkowski space
M4 with a K-dimensional compact space BK with isometry group G, can be
shown to contain 4-dimensional gravity and Yang-Mills theory with gauge
group G.

Kaluza-Klein theories can then be viewed as theories where a special
kind of spontaneous symmetry breaking occurs: the original coordinate
invariance in 4+K dimensions is broken by the choice of a particular ground
state to the smaller group P4x G, with P4 the Poincaré group and the
gauge symmetries of the theory can be explained in terms of symmetries
of the internal space. At this stage, however, it is not clear why the
ground state should be of the form M4x BK instead, for example, of the
(4+K)-dimensional flat space.

A first step toward the solution of this problem was taken by Scherk and
Schwarz [10], who in the context of dual models, took up the old idea of
Einstein and Bergmann of a compact internal space noticing that it is
consistent with the higher-dimensional Einstein equations and with a
physical interpretation of the theory to have an N-torus as internal space.

But the most important achievement was the proposal by Cremmer and
Scherk [11] of a mechanism of "spontaneous compactification”. They
showed in fact that some solutions of the field equations exist of the form
M4x BK where BK is a compact space with a non-abelian symmetry group,
if matter fields are added to the higher-dimensional action.

This mechanism, if on the one hand explains why some of the dimensions
are compactified, on the other hand loses the simplicity of the original
Kaluza-Klein theories, which were based only on the geometry of the
higher-dimensional spacetime.

Some alternative mechanisms of spontaneous compactification were
then proposed. The most interesting are probably those based on
supergravity. These theories, in fact, are formulated in a natural way in
higher dimensions and contain some extra matter fields which can give
rise to spontaneous compactification [12]. In particular 11-dimensional
supergravity attracted much attention due to the possibility of obtaining
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solutions with the phenomenological invariance group SU(3)xSU(2)xU(1)
[9,13]. |

Another interesting possibility is that of considering one-loop quantum
corrections as a source for compactification [14]. Also modifications of
the Einstein-Hilbert action in more than four dimensions were proposed to
obtain compactification from pure gravity [15,16],

A different point of view is to consider the anisotropy between the
physical and the internal space as a consequence of the cosmological
evolution of the universe. Some solutions were found of the higher
dimensional Einstein equations describing a universe which, starting from
a phase where the 4-dimensional and the internal space are of the same
size, evolves towards a phase where the internal dimensions compactify,
while the observed ones continue to expand [17,18] More refined models
[19-21] showed the possibility that the shrinking of the internal
dimension may cause an exponential growth of the physical space in the
early epochs, thereby solving the well known problems of the homogeneity
and flatness of the observed universe [22]

Many problems are still unsolved in the context of Kaluza-Klein theories.

A first problem is that of establishing what is the true ground state of
the theory. If on the one hand the stability against small perturbations of
a given ground state can be studied [23] using the methods of the harmonic
expansion on coset spaces, introduced by Salam and Strathdee [24], it is
not possible to compare the energy of ground states exhibiting different
topologies and it is then difficult to establish criteria of stability against
semiclassical decay [25].

Another problem is constituted by the difficulty of obtaining in a natural
way (i.e. without extremely accurate fine tuning of the parameters of the
theory) a flat 4-dimensional space after compactification.

Finally, the impossibility of obtaining chiral fermions from dimensional
reduction of standard higher-dimensional theories was proved by Witten
[26]. Some proposals have been advanced in order to solve this problem.
One of them is the introduction of elementary gauge fields in topologically
nontrivial configurations in addition to the gravitational field [27,23].
Another possibility is to give up the requirement of compacteness of the
internal space, allowing the introduction of noncompact spaces with small
finite volume [28,29]. The smallness of the volume is sufficient to explain
the unobservability of the extra dimensions, and under suitable boundary
conditions physically acceptable models can be obtained.
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Finally, one may think to abandon the Riemannian geometry. As has been
pointed out by Weinberg [30], there is no compelling physical reason why
the geometry of the higher-dimensional space-time should be the same as
that of the 4-dimensional spacetime of general relativity. In some sense,
one has again to take seriously the extra dimensions and then to consider
the possibility that they carry alternative geometrical structures, which
could give rise to more realistic models.

A first possibility is for example the .introduction of torsion in the
theory [31] This can lead to an explanation of the vanishing of the
4-dimensional cosmological constant [32], but seems not to be successfull
in solving the chirality problem [33].

A more drastic alternative was proposed by Weinberg [30]. He suggested
the possibility that the tangent space invariance group of the higher
dimensional spacetime is different from the orthogonal group of
Riemannian geometry. Clearly, the freedom in the choice of the
higher-dimensional tangent group is limited by the requirement that the
theory be consistent with the observed Lorenz invariance of the
4-dimensional spacetime, but this request still leaves many possibilities
of choice. It has been shown in fact that, in order to recover the usual
4-dimensional Lorentz invariance, it is necessary that the tangent space
group have the structure SO(1,N-1) x GT', where Gt< GL(D-N) and N>4 [34].
The resulting geometry has been called quasi-Riemannian.

Since then a few authors discussed some aspects of the theory, mainly
in a Kaluza-Klein context, but the literature on the subject is at present
very poor [35-42],

The aim of this thesis is to examine to some extent the physical
implications of quasi-Riemannian theories, with particular attention to
the modifications they introduce .in higher dimensional theories of
gravitation and to the applications to the Kaluza-Klein theories.

With the matter of investigation so vast, we preferred to study various
~features of the theory rather than specialize on one single subject.
However, we limited ourselves to the case of a tangent space group of the
kind OC1,N-1)xO(M). This is the simplest nontrivial choice but nevertheless
it contains all the essential features of the quasi-Riemannian geometries.

The plan of the thesis is as follows.

In chapter | a short review of differential geometry and general
relativity in higher dimensions is given, with special attention to the
problems related to the choice of the tangent space group. The special
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features of the Riemannian geometry compared with more general
structures are emphasized.

Chapter Il contains a brief review of standard Kaluza-Klein theories. The
problem of the fermion chirality is examined and some simple examples of
spontaneous compactification are discussed.

In the next chapters quasi-Riemannian theories are studied in great
detail. Most of the material contained there is based on my contributions
to the subject either ah*eady published or being prepared for publication.

In particular, in chapter IlIl the most general action for quasi-
Riemannian theories with tangent space O(1,N-1)xO(M) compatible with
some simple physical requirements is established. It is shown to depend
on 9 independent parameters.and is compared with the actions obtained
from different approaches to the theory.

In chapter |V the stability of the flat space under small perturbations
and the particle content of the theory are studied and it is shown that
some very strong conditions must be imposed on the parameters of the
theory in order to achieve stability. In fact, a gauge invariance must be
introduced at the linear level, in order to avoid the appearance of ghost
states.

In chapter V, the investigation is briefly extended to the classical fields
defined on a quasi-Riemannian background and the definition of the metric
and of the geodesics is discussed.

Chapter VI is devoted to the study of the solutions of the classical field
equations stemming from the action introduced in chapter Ill. In
particular, a quasi-Riemannian cosmological model is described and
compared with its Riemannian limit. Also the possible generalizations of
the Schwarzschild solution of general relativity are discussed.

Finally, chapter VII deals with the applications of quasi-Riemannian
geometries to Kaluza-Klein theories. Some simple models exhibiting
spontaneous compactification are introduced and the "zero-mode ansatz”
is discussed. Unfortunately, the results are not satisfactory from a
phenomenological point of view. A discussion on the possibility of
obtaining more realistic models by using different tangent space groups
concludes the chapter.



| . DIFFERENTIAL GEOMETRY AND GENERAL RELATIVITY
IN HIGHER DIMENSIONS

We start by giving a brief account of differential geometry and general
relativity in higher dimensions, which permits us to introduce the basic
framework which will be used in the following and to establish some
notations (*¥). We shall try to be as general as possible, not specializing to
Riemannian geometry, but including the most general case of any tangent
space group [36]. |

I .1 Covariant derivatives

Let us consider a D-dimensional space BD parametrized by a set of
coordinates z'. General relativity can be regarded as a field theory on
this manifold based on two kinds of invariance: general coordinate
transformations invariance and local tangent space invariance.

General coordinate transformations transform the coordinates zM which
parametrize the space into arbitrary functions z'™ or zM.

ML Z2M M (1

Covariant vectors Vpy and controvariant vectors W' are defined to
transform as:

N ' M
Vi = 2= vy, WM 5 22 N (2
2z ™ azN

In order to define a derivative operator which transforms like a vector,
one must introduce an affine connection FLMN which transforms as

Q L Q R 2L
a7Y 7R oz o 2z a5z 347 3

oz™  ozN  3zP az™M 5zN 57 2R

by = by =

(*) See also appendix A for the conventions adopted.
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and which permits to define a covariant derivative, denoted by a semi-
colon:

VN;M = MV - T VL
(4
WN;M = GMwN = PNU"] WL
For the moment, we do not impose any symmetry on the indices of I", but
simply note that the antisymmetric part of the affine connection

Tham = Thvn ~ Tham (5

transforms as a tensor and is called torsion.
The other symmetry of the theory is the invariance under local linear
transformations of the fields of the kind:

yA2) > BAR [y(2) 1yB(2) G

where y(z) is an element of a given Lie group Gt , called the tangent space
group, and BAB is a matrix belonging to a representation of Gr.

~ Also in this case one has to construct a derivative of the field vy which
transforms as (6) under Gy-transformations. In order to do that one must
introduce a new connection wm(z) , belonging to the Lie algebra of the
group Gt and transforming under the action of an element ¥(z) of Gy as

Cam(2) - YD) om(2) ¥ UZ) * K2) 3y v H2) (7

One can then define a covariant derivative:

A Ay gA

VM V™ = oMy RB( (D[v])\{lB (8
where dAB (wpm) is in the representation of the Lie algebra of Gt
corresponding to the representation DAB of the group. The connection oM
is usually called "spin connection", because it must be introduced in order
to define the covariant derivative for fermions.

Till now the group Gt has nothing to do with the geometry of the
manifold. In order to establish a relation, one must assume that Gt has a

faithful D-dimensional "defining” representation /\.AB and that exists at
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every point a nonsingular matrix eAM , called vielbein, which transforms
under Gt as a member of the defining representation, and under coordinate
transformations as a covariant vector, namely:

N
oz oB
0z

efm(z) = e Ay(z) = AARLY(2)] N (9

By means of the vielbein one can convert coordinate indices into tangent
group ones:

yA(2) = eAy(2) vi(z) (10

The vielbein can then be interpreted as a basis for vectors in the tangent
space to the manifold at any point.

One can furthermore transform tangent space indices into covariant ones
by means of the inverse vielbein e,M(z), defined as the inverse matrix of
GAM.

Another basic assumption is the so called ‘metricity postulate”, which
states that the totally covariant derivative Dp of the vielbein is
vanishing (*): |

DMeAN = 5M GAN + (DABM eAN - FLMN eAL= 0 (11

where mABM = KAB [opm]  1s the matrix element of wp in the defining
representation of the Lie algebra of GT.

This property establishes a simple relation between the totally
covariant derivative calculated in the coordinate and in the tangent space
basis:

:eA

Dpy yA N Dy wN (12

| .2 DMetrics

A way to characterize the tangent space group Gt is to consider the

(*) By totally covariant, we mean covariant under both coordinate and Gt
transformations.



constant tensors which are invariant under Gr.

For each of them one can construct a "metric” by contracting the tangent
space indices with the vielbeins or their inverses. For example, from an
invariant Gy-tensor mag , one can construct the metric

9MN = MAB GAM e'BN (13

By the definition of nAB and the metricity condition (11) one can easily
deduce that gvy has vanishing covariant derivative:

IMN;L = O (14

and moreover transforms as a tensor under coordinate transformations.
Let us consider some examples.
In Riemannian geometry Gt = O(D), apart from the signature. O(D) can be
defined as the set of real DxD matrices /\AB which leave invariant some
nonsingular symmetric matrix mag :

nag = ACa APg nep (s

In this case we have only one invariant tensor naR and then only one
metric can be defined as in (13).

For Gt = Sp (D,R), the situation is similar, but the matrix MAR 1S now
antisymmetric, so that one can construct a unique metric gMN » Which is
antisymmetric. The geometry so defined is called symplectic,

Finally, for 61 =U (B/5) | it can be shown that two real constant
Gr-invariant tensors exist, of which one is symmetric and the other
antisymmetric, and then two metrics can be constructed. A manifold with
this structure is called a Kaehler manifold.

| .3 Connections

Egn. (11) permits to establish a relation between the affine and spin
connections and the derivatives of the vielbein, but it is not sufficient to
determine one of them in terms of the others unless some information is
added. In the case of Riemann geometry and vanishing torsion one can
determine both I" and w as functions of the vielbein, as is well known from
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general relativity:

Thun = % g-PCay gpm + ay IpN * 9p gMN ) (16

COABN = GAL e BM FLMN - e BM ON GAM (17

But this is not possible in the general case. It can be shown, in fact, that
a unique torsion free solution does not exist unless dim Gy < % D(D-1). On
the other hand, if dim Gt <'2 D(D-1) , no torsion free solution exists,
unless some constréints are imposed on the vielbeins and their derivatives
[30,351. ‘

A different approach to the problem is to give up any a priori condition
on the torsion and require simply that w and I are linear combinations of
the first derivatives of the vielbein. In the case of tangent group O(D) this
gives rise again to the unique solution (16,17), whereas if Gt € O(D) it is
always possible to construct at least one solution to the equations (10).
No solution is known if Gt € O(D), and it has been conjectured that it does
not in fact exist [351].

A third possibility which we shall consider in the following is to regard
the vielbein and the spin connection as independent variables and to
determine the relations between them by means of the field equations
obtained from a suitable action. Given e and o, " is then determined

uniquely by (11).

| .4 Geodesics

A geometrical object w(z) is said to be parallel transported along a
curve zb(s) if Dy=0 along the curve, or more precisely

Duf:dz[—(s)D -0 (18
Ds ds LY
R o | . dzb(s) |
geodesics is defined by the request that its tangent vector e is

parallel transported along the curve, i.e.



D|dzts)| = d?z L+FLMN9-Zﬁ-gZ—N=O (19
Ds| ds ds? ds ds

It is easy to see that in Riemannian geometry with vanishing torsion
free particles move along geodesics. In fact, their action is usually
defined as

- dzM" dzN
i mJ’ds— mj\/gMN g5 ds °F 20

By varying this expression with respect to dMN, One obtains the equation

d?zk o dZM azN
+ | L 22 - (21
ds2 MN"T4s Tgs

where

(bnd = 72 g-PCangpm + amapn + 2pgin ) (22
which coincides with the expression (16) for FLMN . In-more general cases,

however, the affine connection may have a different form and the free
particles do not follow geodesics.

| .5 Curvature and torsion

From the connection and the vielbein and their first derivatives one can
construct two covariant objects, which are called curvature and torsion
and are defined respectively as:

RABMN = oy @ g *+ 0 ey ol = (MeN)

(23
TAMN = oM eAN + O)ABM eBN - (MeN)

It is easy to see that this definition of torsion is equivalent to the one
given previously.



To perform the calculations it is useful to write them in a tangent space
basis [31], by introducing the so called anholonomity of the vielbein
defined by:

CABC = _CACB =g BM e CN (oM eAN - ON GAM ) (24

The name is due to the fact that the tangent space basis is anholonomic
and ‘

[5A’aB] = CCAB e (25

In this basis, the definitions of curvature and torsion read:

RA4cp = eclepN RAgM = o¢ ogp - op o ge
A E A E A E (26
TOVECc 0tgp T OTEp @-RC t ®TRE Ccp
TAgc = egllecN TAyN = 0fcg - wige + chpe (27

where (OABC = GCM O)ABM (

The above tensors are clearly antisymmetric under exchange of the last
two indices. Furthermore, from the definition (23) follows that RABMN can
be seen as a matrix in the two indices A and B belonging to the algebra of
Gt. Then, if Gy is a subgroup of O(D), Ragcp =~ ReacD - For more general
groups different symmetries may hold between the first two indices.

Other relations can be found between the curvature and the torsion and
their covariant derivatives:

Z RABcD = Z Vo Th8c * T TE¢p
(BCDy (BCD)

(28

Z VE RAgcp = Z R sre TMep
(ECD» (ECD)



The second one is the well-known Bianchi identity.

IT Gt is a subgroup of O(D), another quantity can be introduced which
Will be useful in the following. It is the so-called contortion Kagc which
is defined as

KAaBC = @aBc ~ LABC (29

where

LaBC =~ *2 (CcaB ~CABC ~CBCA) (30

and WARC = MAD (DDBC , MAB Dbeing the unique O(D) invariant constant
tensor defined in (15).

Lagc 1s the classical expression for the Riemannian spin connection for
vanishing torsion, and it can be obtained by solving (27) for T=0. It follows
that

TABC = Kacs “KaBc (31
Conversely, the contorsion can be expressed in terms of the torsion as

Kapc = 2 (Tcag “Tasc ~Teca) (32

The above expressions can be written in a more concise way by
considering e” and (DAB as 1-forms on BD. One can then define the 2-forms:

RAB = (.OAB + (DAC A (DCB

(33
TA = deA + (DAB A B
which are related to the previous quantities by:
RAB = 5 RABMN dxMa axN
(34

TA = 5 TAMN dXM/\ dXN

The anholonomity coefficients are then defined by the relation:
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deA + 15 cAge eBael = 0 (35

| .6 Action

We pass now to discuss the dynamics of a gravitational theory on a
D-dimensional manifold, by establishing an action functional from which
the field equations can be derived. For the moment, we shall limit
ourselves to the Riemannian case.

In General Relativity, one can proceed in two ways in order to construct
an action functional. The usual way is to consider the vielbeins as the only
independent fields, imposing a priori the form of the connection as a
function of the vielbein, by requiring the vanishing of the torsion (second
order formalism).

In this case the action invariant under coordinate transformations and
tangent group rotations can be determined uniquely by requiring that the
field equations obtained by its variation be second order differential
equations for the vielbein [43]. The action so defined is the well-known
Einstein-Hilbert action with an arbitrary cosmological constant A;

S=——]—feDdDz(R+k) (36
2

where R is the Ricci scalar R =Ragga Calculated for wagc = Lagc and
ey = ldet eAml.

A more natural approach is the Einstein-Cartan (first order) formalism,
according to which one can regard the vielbein and the spin connection as
independent fields and vary the action with respect to both of them [44].

In the case in which the field equations for the connection reduce to
algebraic ones (i.e. do not contain derivatives), one can be reconduced to
the second order formalism by means of the so-called Palatini formalism
which consists in solving the field equations for the connection in terms
of the vielbein, and then substitute them back into the original action.

This procedure is equivalent to the previous one only if no matter fields
are present which can act as sources for the connection field equations,
otherwise the action obtained by means of the Palatini formalism may
differ from the Einstein-Hilbert one by some contact terms.
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At this point one can ask what is the most general action which gives
rise to second order differential equations for the vielbein in
Einstein-Cartan theory [45] It must clearly be a scalar under coordinate
and Gr-transformations and must be a function of the vielbein, the
connection and their first derivatives. As we have seen, the only covariant
objects that can be constructed from the vielbein, the connection and their
first derivatives are curvature and torsion. It is easy to see that in order
to have at most second derivatives of the vielbein in the field equations
the action can contain curvature only linearly and torsion only
quadratically.

Contracting the indices in all possible inequivalent ways one obtains the
general result

S=—J—Je dDz(aR+X+a TABCTABC+
27 D ! (37

*a, Tasc TBAC * 2, Taac Teae )

Varying with respect to the connection yields, in the absence of matter
fields:

(06—282) TcaB * (481"282) T[AB]C - 2 (o+ a,) MC[A| TDD[B] =0 (38
This equation has the general solution

Tagc =0 (39

©ABC = LABC (40

Substituting back into S, one recovers the Einstein-Hilbert action:

5=-—‘-je 7[R (0=L)+1] (41
Kz P

It is interesting to notice that for a= 0 the same solution is obtained
for any choice of a,, a, and a5, so that they are in some sense redundant
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parameters. This is due to the fact that in the Einstein-Cartan theory with
the action (37) the connection is not real y a dynamical variable, i.e. it
does not propagate.

For future reference, we write here the Einstein-Hilbert action in terms
of the anholonomity coefficients, as can be easily obtained substituting
(40) in (37):

S=- ‘—fe 0"z [0 (-2 2acaaA * L capc CaBC
K2 0 *

1
"5 CABC “BCA ¥ CaAC CBBC ) * ] (42

= - Px Lo L cage - -
5 G @ XU CABC CABC T S CABC CBCA T CAAC CBBC) * A
K .

where the second expression is obtained after integration by parts.

We conclude by noting that the Einstein-Hilbert action can be
generalized in more than four dimensions if one permits that the field
equations contain at most second derivatives of the vielbei n, but not
necessarily in a linear way [43,46] In this case the so-called
Gauss-Bonnet terms can be added to the action. They are defined as:

B -1Bp (43

where the ¢ are totally antisymmetric tensors and p is even and smaller
than D. The simplest examples are given by S, , Which is proportional to
the Einstein Hilbert action, and by

S4=J‘eDdDZ(RABCDRABCD*4RABRAB+R2) (44

where Rag is the Ricci tensor Raccep -

AN important property of these action functionals is that they do not
introduce ghosts or tachyons at the linearized level, contrary to what
usually happens for actions containing powers of the curvature tensor
[46,47]. For this reason they have been extensively studied in connection
with Kaluza-Klein and string theories [16,48].
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| .7 Symmetries

Any specific solution of the field equations necessarily breaks the group
of symmetries constituted by coordinate and Gt transformations down to a
much smaller group.

As we discussed above, the vielbein and the connection transform under
coordinates and Gt transformations as

o 3 M
e (2) > ey (2) = ARG (2) By LN
0z’
(45

( oy - 1y Al oz
oM (2) s oy (Z2) = [ AeoyATH+ ATToMA] =—

>z'N

Given a manifold described by a vielbein eAM and a spin connection oy,
one can define its isometry group G as the subgroup of coordinates and Gt
transformations which keeps invariant the form of e and o ,i.e.

efy (x) = &'y (x)
(46
oM (X) = oy (X)
An infinitesimal isometry with parameter € can be written as:
Mo x ™) = xM+ e kKM (%)
(47

AG)o1+e®(x)

where the vector field KM is called Killing vector, and the matrix @,
belonging to the Lie algebra of Gy is called Killing angle. From (33) and
(36), they satisfy the equations [36]:

KM;N = TMLN KN + eAM (@ - KM (’JM)AB eBN
(48
Kn;p = RMap K& + (Mg K.p

From these relations it is possible to derive an important property of
the isometry group: G is always finite-dimensional and dim G < D + dim Gr.



Another important group which describes the symmetries of a manifold
Is the isotropy group at some point x4, H(xy). It is defined as the subgroup
of G which Teaves the point Xq fixXed, i.e.

xTH(xgMy = x M (49
For infinitesimal isotropies this can be written as
KM xg) =0 (50

It can be shown that the isotropy group is always a subgroup of the
tangent space group:

H(xo) €67 (51

IT the isometry group G acts transitively, that is to say, if any point x
can be carried into any point x' by some element of G, the space is called
homogeneous. For these spaces the structure of H( Xq) s independent of G.
This permits to identify the homogeneous space with the coset G/H.



. KALUZA-KLEIN THEORIES

In this chapter, we discuss some general features of Kaluza-Klein
theories. More extended reviews can be found in [49,50], and in [13,51] in
the context of supergravity. There are also two books containing excellent
articles on the subject [52,53].

Il .1 The Kaluza theory ()

The simplest example of unification of gravitational and gauge
interaction by means of extra spacetime dimensions is provided by the
original Kaluza theory [1].

Let us consider a five dimensional spacetime with coordinates
X = (xk x9) | 1,2,3,4, metric yqy and signature (-++++)  and assume
that the fi fth dimension is curled up in a circle so small as to render it
undetectable [3] The physical fields will then be periodic in the fifth
coordinate and can be expanded in Fourier series [2]. For example,

'HXS
B :

Let us however assume for the moment that the metric YMN 1S
independent from the fifth coordinate, i.e.

In this way we discard the massive modes from the theory and keep only
the massless ones, corresponding to n =0 (zero-mode ansatz).
For simplicity we also assume that

(¥*) In this section we use different conventions from the rest of the
thesis.
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This condition means that the fifth coordinate has a constant radius. If
we give up this condition the theory will contain a massless scalar
besides the graviton and the photon [4]. We point out that strictly speaking
the condition (3) is not compatible with the equations of motion of the
theory [54], but this is not important for our considerations,

A special coordinate system can now be found where

Furthermore, one can define a new metric

Ouv = Tuv ~ 3 3y Jsu= Ysu =y (5
The ground state of the theory, due to its particular topology, is not

invariant under the original group of 5-dimensional coordinate
transformations, but only under the subgroup

X H o x'H(xH) X2 — XO (6
X B xH X2 — xS+ f (xH) (7

It is easy to see that under (6) ayv and gMmN behave like 4-dimensional
tensors, while under (7), they behave in the following manner:

guv_)g“v auaau—au f(x) (8
i.e. am behave as a gauge field under (7) . We can therefore identify (6)
with 4-dimensional coordinate transformations and (7) with gauge

transformations of the electromagnetic field aM.
Furthermore, the S-dimensional Einstein-Hilbert action

__ 1 {5 MN
S = v, J.d X /IdethNl R m (9
can be Writteh in terms of the S-dimensional quantities as
S =- _[d x fldet guvl [——Kz AT p v (
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; 272 . .
with F =9 A =
v Tat, avAu and Au 2 aH . The constant a is the radius

of the Klein circle. If one puts

27a _ I (11
2 16ﬂGN

where Gy is the Newton constant, one recovers the action of 4-
dimensional I gravity coupled to electromagnetism ().

Moreover, projecting on the 4-manifold the 5-dimensional 1 geodesic
equation ~

0" L o N (5
ds? MN 4s ds
one obtains
20A V
e M O N A (13
ds? HV ds ds P vV ds
where
q 5
Q=3 = constant (14
ds .

and 1, = (16TGy)*2 = 10731cm is the Planck length. if we put Q = e (M1)71

With e the electric charge and M the mass of the particle, this is the
equation of motion for a charged particle in general relativ vity. We may
then identify the electric charge with the component of the momentum
along the fifth dimension in suitable units. Hence particles follow
geodesic trajectories in five dimensions , but in four dimensions particles
with different electric charge follow different trajectories because their
‘momentum” in the fifth dimensions is different.

(*) IT a timelike signature had been chosen for the fifth dimension, the
wrong sign would have been obtained for the Maxwell action.



Let us now consider a scalar field coupled to gravity in five dimensions.
It obeys the Klein equation [2]:

V'V, ¢ = 0 (15

Expanding ¢ as in (1) and substituting in (15) one can obtain the field
equations obeyed by the harmonics:

(V “2ﬂa> (2ﬂa> e

Then the nth harmonic has a four dimensional mass N/21a and an
electric charge Nlb/2ma and both electric charge and mass are quantized.
It one identifies lp/2ma  with the elementary electric charge e, he can
obtain for the Klein radius the value a =10732 cm, corresponding to
masses of order 1079 GeV for the charged particles, which are clearly
unobservable at present.

We stress, however, that the Klein radius cannot be determined directly
from the equations of motion, at least classically.

To obtain the complete spectrum generated by the theory one must
compute the part of the action bilinear in the fluctuations around the
ground state M4xsT In order to do this, one expands the metric as

IMN = MMN * KMy (17

and substitute into the action obtaining:

1
_[d o L NS N R VECTRUN Y
] ] (18
"3 ML ONNL T S 2 2L ]

At this point it is necessary to impose a gauge condition. The most
useful choice is the Tight-cone gauge, since in this gauge only the physical
degrees of freedom appear in the spectrum. The gauge condition is given

by:
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Nac =272 (hpy=hyy) =0 (19

In this gauge the action becomes

5= fdsx[]z htu’ (auz ' a52) htiJ “;_hJS ( au2+ 352) s
. .gl hes( 3,2+ 00) . | >
where
nbij = hig = %% hyge i (21
and i,j =2,3.

By Fourier expanding the hyy as in (1) it is then easy to realize that the
spectrum of massless states, corresponding to n = 0, is composed by a
particle of helicity 2 (graviton), one of helicity 1 (photon) and one of
helicity O (Brans-Dicke scalar). The massive spectrum is constituted by a
tower of spin 2 particles with masses "/21a , obtained combining the
modes with the same mass and helicity 2,1 and O.

I'l'.2 Non abelian gauge symmetries from extra dimensions

The Kaluza-Klein mechanism can be generalized to non abelian groups by
going to higher dimensions [5-8]. As in the S-dimensional case one
considers a gravitational theory with an action (usually the
Einstein-Hilbert one) invariant under D-dimensional coordinate and
tangent group transformations, and assumes that the ground state of the
theory is given by a spacetime with topology M4 BK, where M4 is the flat
Minkowski space and BK is a compact space with K = D-4 dimensions
admitting an isometry group G generated by a set of Killing vectors Kﬁﬁ(y)
with A = 1,.., dim G. By definition, the Killing vectors satisfy the
commutation relations (*)

(*) For the conventions adopted, see appendix A.
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c
f/\/\
AB

N
K/'i -

@ =,

(22

O =

-Ky 0 K

2 =)

o~ K

> 7y

Ka 9~ ~
M M
where fC,g are the structure constants of the group G and a is the fength
scale of the internal space. A simple example of such a space is a group
manifold G, which is invariant under the action of G itself by right and left
multiplication. A more interesting example are the coset spaces G/H,
which will be discussed in detail later on.

In any case, the choice of the ground state breaks the original invariance
of the theory, which reduces to the subgroup of the original
transformations which leaves the ground state invariant, namely P4 %G,
with P4 the Poincaré group. ‘

In analogy with the S-dimensional case, one can now state a "zero-mode
ansatz” which relates the higher-dimensional vielbein eAM to the 4-
dimensional vielbein eAM and to the Yang-Mills field ABM of the gauge
group G:

B N, A
e . (X) —a A (X)) Ka(y) e~(y)
M M B N
eAM: _ (23
A
0 € E(Y)

The ansatz (23) is in general invariant under 4-dimensional coordinate
transformations and x-dependent G transformations of the internal space,
which can be written infinitesimally as:

~

oy e 0Ky (24

with e A arbitrary. From this condition it is easy to obtain that A%y must
transform under (24) as

A_ . A, .C A B
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which is precisely the transformation rule of the Yang-Mills fields with
gauge group G.

IT one now inserts the ansatz into the Einstein-Hilbert action, one
obtains

WJ'D
-—1dze R
k2 bb

| (26
5 o~ o~ a4
=——‘—fd4><d'<ye e (R +R+2KSKSFALFB )
K2 4 K 4 K 4 A B MN - MN
where FAvy is the Yang-Mills.field strength:
A A A A B

and Rp, Ry, Rk are the Ricci tensors calculated in the subspace to which
the subscripts refer, and analougously for the determinant of the vielbein

ep, €4, ek
It is always possible to choose the Killing vectors so that [55]:

K C C=

where Vi is the volume of the internal space and g is a constant depending
on the particular model (g=1 for a group manifold and g=(dim G/H)(dim G)"'
for a coset space).

Substituting in (26) one obtains:

Y, J‘4
N a

=——Jldxe (R +=qgF") (29
K2 4 4 4

which is the Einstein-Yang-Mills action, provided one puts

VN 1

V
N 57 (30

-2
K2 IGﬂGN 92 K2
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where ¢ is the Yang-Mills coupling constant. A more precise definition of
the scale length a of the compact space and its relation with the
Yang-Mills coupling constant is given in [55].

Il .3 The geometry of the coset spaces

As we have mentioned before, the most interesting case of
compactification is that on coset spaces, due to the fact that, for a given
invariance group G, they provide the space with the maximal number of
dimensions which is invariant under G.

Let us consider a group G which acts on a space Y [24,56]. Given any ¢ eG
andy eY, we denote this action by g (y)=gy. For any point Yo Y one can
consider the subgroup H of elements of G which leave Yo Tixed (hyy =y,
for any h e H). H is called the isotropy subgroup of G. Then for each ge G,
we can define an equivalence class [g]l by [gl=(g eG: ¢ =gh for some
heH ) The set of all distinct equivalence classes is denoted by G/H and
is called a coset space.

Let us assume that G acts transitively on Y (i.e. any two points of Y can
be related by the action of some element of G). Then any y €Y can be
written as y =gy, But (gh)y,=g(hyy) =gyyforanyheH. Therefore,
any two elements belonging to the same equivalence class correspond to
the same point in Y, and there is a natural identification between the
points iny and the elements of the coset space.

The simplest examples of coset spaces are the N-spheres SN, which can
be identified with the coset space SO(N+1)/SO(N). Another important
example are the complex projective spaces cPN = SU(N+1)/UN).

It is easy to see that the dimension of G/H is given by dim G - dim H.
Let the Lie algebra & of G be generated by a set of generators QR,
obeying the commutation relations

L .C
[Q;,Qq1=1%

Q (31

B¢

Let us denote by Qz the subset of the Qz which generates the subalgebra
%, corresponding to the subgroup H:
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[a_,Q_1=f%_qQ- (32
A B AB C

The remaining generﬁators, which we shall denote Qp, generate the coset
space G/H. Clearly, f C,;E;= O, because $ is a subalgebra and we can write
8 =9+¢ where ¢ =(Q5).

The coset space is called reductive if [ $, ¢ ]c ¢, which corresponds to
the conditions on the structure constants:

f¢_=0 (33
AB

An important theorem states that if H is compact, G/H is reductive. This
Is always the case with-Kaluza-Klein theories.

If, in addition, [ €, & ] C %, G/H is called a symmetric space. This
condition is equivalent to the condition on the structure constants

¢ =0 (34
AB

The matrices of the adjoint representation of G are defined by

- B

For reductive algebras the matrices corresponding to elements of $
split in a block-diagonal form:

D%t =p-%h)=0 (36
A A

Let the points of the coset space be labeled by the coordinates yM. For
each point yM one can choose a representative element Ly from the
corresponding equivalence class of elements of G. (For example one may
choose I_y = exp (\/2* Qa). Under left multiplication by an element of G one
obtains from Ly a new element of G/H which in general lies in a different
equivalence class. One can write
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g Ly = Ly' n (37

for some he H.

To define a covariant basis on G/H one can consider the algebra valued
I=form

B
e(y) =L, dLy, (38

Since it belongs to the algebra of G, it can be expressed as

e(y)=e"(yyay =gy e (), (39

From (37) and (38) one can deduce the behaviour of e(y) under the action
of G. The result is:

~ ~

" (yr=e” D h+ (han ™ - (gag™’ D" w, h ') (40

From this formula, making use of egn. (36), one can obtain after a long
calculation the transformation rules for the components of e Ag. They are:

~

~ ~

ayN

A B A -
e’ (y) == & p A h (41
M aym N B
_ 3 N - - -
eAﬁ (y')=L~ eBN D-"(h""y+ (ha~h "=
oy B N
(42
N ) -
Y hlech+nanT®
3 M N N
Y

These transformation rules show that if ng (h) is a matrix belonging to
the defining representation of Gy, then the metric is G invariant (because
the G-transformations are compensated by tangent group ones), while the
eA behaves as a connection on G/H.

This requirement fixes the embedding of H into Gt. In particular, if Gt is
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the K-dimensional orthogonal group or one of its subgroups, one has for
infinitesimal transformations:

NEs _ <3 ESN_Z 3 3
DA (h) SX + 8h fAC BK +8X (43

where g g = ~ gga. Viewed as an SO(K) transformation with generators
v, AB this reads '

| K8 _ T

which yields:

ABC (45

From (40) it is also possible to obtain an explicit expression for the
Killing vectors in terms of the adjoint representation of G:

- N NM
K% —DB e (46

The transformation rules obtained above can be used to discuss the
invariance of the zero-mode ansatz (23) in the case of compactification to
a coset space. It is easy to see that the ansatz is invariant under the
subgroup of the D-dimensional symmetries given by the 4-dimensional
coordinate transformations '

.M(

x5 %™ x) (47

and G-transformations (i.e. x-dependent left translations of the coset

space):

ymey‘m(x,y) (48
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with associated frame rotations Dg’z(h). In fact, under these symmetries,
the components eAM transform according to (40) and

1 M 1
|AM= axl eAl (49
ax'N N
- Moo~ g ~ -
A B -
e 0" l:ax—me.N + aYNeBN] DEA(hl) (50
ox' ax‘N N

From (50) and (23) the transformation rules of the gauge field can be
deduced: "’

~

B

~

B

' - E: B "'1 _ N _1
A,‘A\_AMDE (g ) e/-\ (gaNg ) (51

or equivalentely

. ~ -1 -1
AM<X)_[9AMQ 929 ] (52

with Ay =ABMQé. It is then evident that Ay transforms as a Yang-Mills
field for the group .

We stress again that, in order for an action constructed out of this
ansatz to be invariant, the embedding of H in Gy discussed above is a
necessary and sufficient condition,

The curvature and the torsion of a coset space can be obtained in terms
of the structure constants of G. The r‘esult, however, is not unique, because
of the freedom in the choice of the torsion.

Deriving (38) one finds

de(y) = dLy"‘A dLy = - e(y) aely) (53

This is called the Maurer-Cartan equation. It can be written, using (39)
and the commutation relations of G

b
>

(54
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Combining (54) with the definition of torsion
Th=detrofiae’ (55

one obtains

~ ~ ~ ~ ~

eB/\ ec + A eB
B¢ O A (56

In general, one can solve (36) by putting

e Ae (57

and

X A -y A T
o’ =-f ec—]—;—r e (58

An important case occurs when w= 0. In this case the torsion vanishes
and

—_— ~

A C

O’K’é:”frz%E ec‘"]{f"a‘ee (59
and consequently
RX%E”D - fKEEfEE”D = fZEEfEEB— < fXEEfEE’B (60
A more natural choice is to put uw= 1. In this case one has:
e - _fZEE:’ (61
(DKB hf;BE eE (62



A
¥¢% - | BE! ©F (63

For a group manifold (H=1) this choice gives vanishing curvature.

If the coset space is symmetric ( fAgg = 0 ) the two choices are
equivalent.

Finally, we notice that in some cases more general results can be
obtained by rescaling the vielbeins [57].

[l .4 Harmonic expansion on coset spaces

In order to calculate the effective 4-dimensional theory, it is very
useful to consider the harmonic expansion of fields on the internal space
[24,49]. This is essential if one wants to calculate the spectrum of the
massive modes.

It is well known that, given a function ¢ on a group G, it can be expanded
as

¢ (g) = 22\/3; anq (9) (anq (64

n p.g
where D“Dq are unitary matrices of dimension dn and the sum is
performed on all the matrix elements of all the unitary irreducible
representations g — anq (g).

To expand functions on a coset space G/H, one must consider the

representations anq of G constrained by the requirement that they should
contain a representation [Dk]-j of the group H, namely

DN (hg) = DK (h) DN(g) (65
with
¢1(hg) = DKy ;(h) ¢(g) (66

Every function belonging to an irreducible representation of H, DK(h) of
dimension dy can then be expanded as
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¢, (L )—ZE (Ly) <1> (67

where the notation Dnié;,q means that from the matrix DM only the rows
that correspond to the subspace which carries D (h) must be taken and the
index { is needed if [Dk(h) is contained more than once in D"

A generic function ¢i(x,y) on M% x G/H-, belonging to an irreducible
representation of H, can thus be written as

¢><xy>-22 q by " (68

n &a K

The DN are normalized so that

_fd p" .. p", % V. 8.8 .3 (69
K q,1¢ iC',q dn G/H nn" qq’ “CC
G/H

where du is the invariant measure of G and Vg, 1s the volume of the coset
space.

An important property of the harmonics is their simple behaviour under
covariant differentiation. It can be shown, in fact, [49] that using the
canonical connection (62)

o0 - 150 o pn
Vi 0y (k) = - 0 0 (70

This formula permits to reduce all differential operations on G/H to
algebraic ones. For example

n - L pn 1 ny _ Ky
vy D (L) a2 D" @70z L,) . [, ®M-c, @ND L) (7

where Cg (DM) and CH([DK) denote the values of the Casimir operators of G

and H in the representations DM and DK respectively.
As an example of application of the formalism, let us consider the case
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of a 2-sphere S2 = SU(2)/U(1).

The tangent space group O(2) coincides with H = U(1) , so that the
embedding is trivial. Any 2-vector V, reduces into helicity A= #I
combinations V, :

V, = V1i1V2) (72

S
/2
A function ¢ of helicity A integer or half-integer can be expanded as:

[57+1 ]
by (X, y)—E 2]+ 1 2 D A (L )‘bjxm (73
J2h
where j takes the values A LIA 1 +1,.. and DJ denotes the (2j+1)-

dimensional representation of SU(2).
The covariant derivatives can then be expanded as

v. pl ol (a1 \/(J O D o) .
v, D Xm(Ly) by m ¢ y) - 5 A m (Ly) (74
where Q. is the combination of the generators Q; of SU(2) given by:
Q+=T]:(Q+1'Q2) (75
- 2

Il .5 Spontaneous compactification and stability

As we have seen, generalized Kaluza-Klein theories may provide an
interesting framework to deal with the unification of gravitational and
gauge forces. Unfortunately, however, some problems arise when one tries
to obtain a realistic theory.

The first question one must answer is why one has to choose a seemingly
arbitrary ground state of the kind M4xBK instead of the more obvious
background provided by the flat D-dimensional space.
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A first possible answer to this problem was given by Cremmer and
Scherk [11]. They proposed that the ground state M4xBK should be a
solution of the field equations of the D-dimensional theory, which breaks
the original invariance of the action, whence the name of "spontaneous
compactification® given to this mechanism. Unfortunately, pure
Riemannian gravity with the Einstein-Hilbert action does not admit a
solution of the kind we are looking for.

In fact, let us consider the equations of motion of D-dimensional general
relativity in absence of matter fields [58] They can be written as

RA =~ TS A

R WS
'AB T T D2 NAB

For A = O they admit a solution consisting in the product of the flat
Minkowski space with a Ricci-flat space. But compact Ricci-flat spaces
cannot admit non-abelian symmetries and then are not useful to unify
gravitation and Yang-Mills fields.

One could be less restrictive and let the 4-dimensional spacetime to be
deSitter or anti-deSitter (i.e. Rmy = ~3hmmy , With >0, h<O respectively).
This can be achieved for nonvanishing A. From (76) it is however evident
that the internal space must be an Einstein space with negative curvature
if the 4-dimensional spacetime is deSitter and with positive curvature if
it is anti-deSitter. In the first case, one gets in trouble because deSitter
space is not a suitable ground state (a positive energy theorem cannot be
defined on it). In the second case one has an antideSitter spacetime, which
is less problematic, but the internal space must be an Einstein space with
positive curvature and hence, by a theorem of differential geometry,
cannot possess any nonabelian symmetry [58].

An even more serious problem is that, according to egns. (76), both the
physical and the internal space should have the same length scale. But this
is wrong by 120 orders of magnitude! The internal space, in fact, should be
of the size of the Planck length to fit with the Kaluza-Klein unification,
while the observed 4-dimensional cosmological constant is very near to
Zero.

One must then look for a different mechanism of compactification, by
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adding an energy momentum tensor to the field equations (76).

Many solutions have been proposed to this problem: to stay in the context
of pure gravity, one could add to the lagrangian terms of higher order in
the curvature, like those discussed in section 1.6 [16,48], or consider
Casimir-like quantum effects as a source for compactification [14].

Another possibility is to couple elementary matter fields to D-
dimensional gravity. Several models have been studied with couplings to
Maxwell or Yang-Mills fields [11,23], scalar fields [59], fermions [60,31],
or three index antisymmetric fields like those appearing in 11-
dimensional supergravity [12]. In particular, many solutions of 11-
dimensional supergrévity exhibiting the phenomenological invariance group
SU(3)xSU(2)xU(1) have been discussed [13,611.

Finally, one could overcome the difficulties by relaxing the condition
that the internal space must be compact [28,29]. As discussed in more
detail in section 8, physically acceptable models can be obtained in this
way.

Unfortunately, most of the mechanisms proposed give rise to a vanishing
effective 4-dimensional cosmological constant only after fine-tuning of
the parameters.

Once a solution of a specific model has been found, one must check its
stability. This is usually done by studying the spectrum of fluctuations
around the ground state and showing that it does not contain tachyons nor
ghosts [23]. In order to perform the calculations, the harmonic expansion
technique introduced in the previous section is very useful. A variety of
models have been studied in this way [62,63], but no general criterion for
stability is known.

Unfortunately, the stability against small fluctuations is not sufficient
for a solution to be the real ground state of the theory, because one should
consider also the stability against quantum tunnelling effects [64].

This is a very difficult problem, because in general relativity it is not
possible to compare the energy of solutions having different topologies,
since the definition of energy depends on the asymptotic behaviour of the
spacetime [25]. However, it has been explicitely shown that if changes of
topology are admitted, the S-dimensional Kaluza-Klein theory is unstable
against semiclassical decay [25].
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[l .6 Fermions

In order to construct a theory which describes the observed world, one
has to introduce fermions. One may think of fermions as originating from
supergravity, which contais spin 72 and 3/2 multiplets [65], or simply as
independent fundamental fields, minimally coupled to gravity in higher
dimensions. ;

In order for spinors to be defined in a D-dimensional space, the tangent
group must obviously be an orthogonal or pseudoorthogonal group SO(D',D").
The physically relevant case is SO(1,D-1). The spinor y(z) has in this case
2MD] components' which transform as scalars under coordinate
transformations and as spinors under SO(1,D-1):

W(z) =y (2) =D [ Y] w(z) (77

with D belonging to the spinor representation of SO(1,D-1).
Infinitesimally

dy(z) =% epp T AB (78

where »u=AB are the generators of the algebra of O(1,D-1) in the spinorial
representation:

sAB=y [ TA 1B] (79

and I'A are the D-dimensional Dirac matrices, obeying the anticommutation
relations:

(rA, mBy=-2nAB (80
The covariant derivative of a spinor is defined as:
VM = (O + om) ¥ (81

where oM belongs to the algebra of O(1,D-1). and can be written as:

] ZAB=~—L03

. A _B
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The straightforward generalization to D dimensions of the 4-
dimensional lagrangian invariant under coordinate and G transformations
is given by

' A M

=1+
L=V e, Vovene, (83

One may now substitute the zero-mode ansatz (23) into (83) and obtain
the effective 4-dimensional lagrangian. This is done, for example, in [24].
The result is the usual 4-dimensional lagrangian for a spinor minimally
coupled to gravitation and to the Yang-Mills fields, containing in gehera]
also a mass term and an additional "Pauli momentum term", ie. a
nonminimal coupling between spinor and gauge fields.

What is more interesting, however, is to study the presence of massless
spinors in the spectrum. This is due essentially to the fact that the
observed spinors have very light masses with respect to the Planck mass
and must then be identified with the massless modes of the dimensionally
reduced lagrangian. Their mass will be explained by other mechanisms, at
a much lower mass scale.

- Witten [26] has shown that the analysis of the massless fermions can be
done by purely topological methods.

First of all, one can split the Dirac equation stemming from (83) in two
terms:

~

A A A =
irv,y=ir VA\y+1F Vay =0 (84

where the first term is the usual 4-dimensional Dirac operator, while the
second gives rise to an effective mass term. One can then classify the
massless states by studying the zero-modes of the Dirac operator on the
internal space.

A theorem by Lichnerowicz [66] gives a strong 1imit to the possibility of
having zero-modes in the case of a compact space. The theorem states that
the Dirac operator has no zero eigenvalues on a Riemannian manifold with
vanishing torsion and Ricci scalar negative everywhere. This can be seen
as follows [26]: consider the Dirac operator FAVA on a Riemannian
manifold with positive signature and take its square:
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A B _ . 1 rA B -
TV, I Vg =V,\V, p [rr ][VA,VB]
. o (85
) | A B C D _v2., R
V+—§[F T = T71 Ragep Vi D
where the commutation relation
[VA, VB] = RARBCD 5CD - (86

has been used. A
Since V2 is negative definite on a compact manifold, if R<O everywhere,
the Dirac operator cannot havé zero-modes at all.

Another constraint imposed by the phenomenology on the spectrum of
fermions is that they should be chiral, i.e. should belong to a complex
representation of the gauge group G. This means that right-handed and
left-handed fermions transform differently under G.

Some considerations on the spinorial representations of O(1,D-1) limit

the possibility of obtaining chiral fermions from dimensional reduction.
- Let us consider a (4+K)-dimensional spacetime. For odd K, the O(K) group
has only one spinor representation. Likewise, O(1,3+K), has only one spinor
representation which transforms under O(1,3)x0(K) as the product of a
Dirac spinor of 0(4) with the spinor of O(K). Therefore, right and left
handed spinors in 4 dimensions transform in the same way under the
internal space tangent group.

In even dimensions the situation is more complicated. In fact, in this
case the operator I'=T"y ... 'x commutes with the generators of O(K) and
the group has then two inequivalent spinor representations, labeled by the
eigenvalues of T

In 4+K dimensions, one can define:

r=rl.. 4K Te=r1. 14 [y=T>.. 4K (87
For fixed I', the 4-dimensional and internal chiralities are related, since

=TTy (88
For example, for I'=1, fermions have the same 4-dimensional and internal
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chirality, and then right-handed fermions transform differently from
left-handed under the internal group. Therefore they obey different Dirac
equations and their zero-modes may have different quantum numbers.

This however is not true if K is divisible by 4. In this case, in fact,
r'2=-1 and its eigenvalues *i are complex conjugates and are then
correlated by CPT, which requires that an equal number of fields with I'=i
and I'=-1 are present. Therefore, to any left-handed fermion corresponds a
right-handed one which transforms in the same way under the internal
group.

In 4k+2 dimensions, instead, I'2=1 and T has eigenvalues =1 which are
not related by CPT. One is then free to consider fermions belonging to one
specific eigenvalue of I" , which have then a definite correlation between
internal and external chirality.

A more drastic Timitation on the possibility of obtaining chiral fermions
was obtained by Witten [26], who proved that there are no chiral massless
fermions in the spectrum of a theory with a compact internal space
invariant under a nonabelian group.

This can be shown by using a theorem of Lawson and Yau [68], which
states that in any compact manifold admitting a nonabelian isotropy group
G, exists a G-invariant metric with negative scalar curvature and then, by
Lichnerowicz theorem, no zero eigenvalues for the Dirac operator. Now, the
difference between left and right-handed zero eigenvalues of the Dirac
equation in a given representation of the isometry group is a topological
invariant and then does not depend on the metric one chooses. Hence it
follows that the eigenvalues of the Dirac operator are always coupled in
pairs of opposite chirality (*).

For what concerns spin 3/2 fields, a weaker theorem states that it is
not possible to obtain chiral spin /2 fields by dimensional reduction if
the internal space is homogeneous [26].

Some ways of escaping the theorem are still possible: one of them is to
introduce in the theory gauge fields in topologically non trivial
configurations [27,23]. Another is to consider noncompact internal
manifolds [29]. Finally, one may change the geometrical structure of the
theory by introducing quasi-Riemannian geometries [30].

We shall briefly discuss the first two possibilities in the next sections

(*¥) This theorem can be extended to the case in which torsion is non-
vanishing, even if in that case Lichnerowicz theorem is not valid [33].
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and will examine the last one in more extent in chapter VII.

[t.7 Compactification with gauge fields

A possible solutions to the problems of Kaluza-Klein theories is given by
the introduction of elementary gauge fields in addition to gravitation. This
is contrary to the spirit of the original Kaluza theory, but can be justified
for example 1in supergravity, where some bosonic fields arise naturally
in the supersymmetric multiplets.

We describe here a simple 6-dimensional model, consisting in pure
gravity coupled to a Maxwell field [23]. This model admits a solution of the
form M4><S2, provided that the Maxwell field assumes a monopole
configuration in the internal manifold. Moreover, if a fermionic field is
added to the model, massless chiral fermions can be obtained by
dimensional reduction.

This model can be generalized to Yang-Mills fields. It can be shown, in
fact, that topologically non-trivial solutions of the Einstein-Yang-Mills
equations of the form M4x G/H always exist if the Yang-Mills gauge group
contains H [69].

The 6-dimensional action is given by:

[ .6 L R+NLF L LF
fd ze6[K2 2 FaB FaB (89

where FAR = 0AAR ~ 9BAA .
The ensuing equations of motion are:

_ - K2 B
RaB = ZMaB R =" FacFec "7 Mas ) "5 Mas

(90
VaFap =0

These equations admit a solution consisting in the product of a maximally
symmetric 4-dimensional space, with effective cosmological constant A,
and a 2-sphere, provided Ap assumes a monopole configuration in the
internal space:



M

AM dx =0
B . (91
M n
A.dy =—(cos8+ 1)d
i ¢ 2e ¢
with n an integer. The metric of 52 is taken to be
gﬂmdymdyN - 2°(d8 % + sin’e de) (92
The parameters a and A must obey the equations:
2 2
TA=- n74+_ 222= 3n24+_7»_ (93
16 e7a 2 ax 16e"a Z

They admit a solution for A=0 if the parameters of the theory satisfy the
relation:

2
e =D H (94
8
which yields
2 2
a?=D_x_ (95
8 2

e

The gauge invariance of the effective 4-dimensional theory
corresponding to the ground state described above is given by
D4><SU(2)><U(1), where P4 is the Poincaré group and SU(2) ~ SO(3) is the
isometry group of S2, while U(1) comes from the original Maxwell
invariance.

An explicit calculation of the spectrum of the theory shows that it is
stable, and that the massless excitations are given by the graviton and the
gauge bosons of SU(2)xU(1) [23],

It is also possible, by using the harmonic expansion technique, to show
that this background admits chiral fermions [23] This can also be proved
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by the following argument [26].

As discussed in the previous section, in 6 dimensions the external and
internal chirality are correlated. It is then sufficient to show that the
number of zero-modes of the Dirac operator corresponding to left-handed
and right-handed spinors on S2 is different.

Let us call A the U(1) quantum number of a spinor on S2. It is well known
that in the harmonic expansion of a particle of "helicity” A on S2 will
appear once all states with j =1 Al, | Al+1,...., where j labels the SU(2)
representation. Now, A takes the value + for states of positive chirality
and -2 for states of negative chirality (%), so that spinors of different
chirality have the same absolute value for A and there is a complete
matching between their SU(2) representations.

But if a monopole of strength e =% n with n integer is placed at the
center of the sphere, the effective helicity A acquires an extra piece,
A— A+ e, so that a fermion of chirality 2 has effective helicity e + %
and a fermion of opposite chirality has effective helicity e - ' . If, for
example, e > O ,the allowed values of j are j=e+W e+ 3,2, . for I'=+]

and j=e-%,e+'% , e+32.. for I'=-1.There is then one more state
with I' = -1. This state must be annihilated by the Dirac operator, since
otherwise the Dirac operator should carry the states with I'=-1, j=e - %

into states with I"'=+1, j=e - % which are not present in the spectrum,
and corresponds then to a zero mode.

This explicit example shows that massless chiral fermions can be
present in the 4-dimensional spectrum if gauge fields in non-trivial
topological configurations are present. In more general cases, some
topological theorems exist that permit to know the difference between
right- and left-handed zero modes of the Dirac operator in terms of the
configuration of the gauge fields on any manifold [70].

[l .8 Non-compact internal spaces
As we have already mentioned, another possibility of escaping Witten

theorem on chiral fermions is to consider nhoncompact internal manifolds
with finite volume admitting a compact isometry group [29,71]. The

(*) We define the chirality of a spinor on S2 as the eigenvalue of the
operator I = il'j , with Iy defined in (87).
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finiteness of the volume is necessary to obtain finite gauge couplings and
to justify the unobservability of the internal space.

To see how this can happen, let us consider a simple model [71]. Let the
internal space be a 2-dimensional manifold admitting a U(1) isometry
group. Let us parametrize the manifold by the coordinates r and ¢ ,with
O<r<ee and 0< ¢ <21

The most general U(1) invariant metric is given by:

ds2 = f2 (r) (dr2 + r2 ge2) (96

Depending on f(r) this metric can describe a compact or a non-compact
manifold. For example, if

f(r) = —2 (97
1+r
one obtains the metric of a 2-sphere.
The volume of the space is given by:
v=2ﬂf drr ) (98

, 0
which is finite if f(r) decreases faster than r~! for large r.

In two dimensions the spinor field have dimension 2. We choose the
basis:

rl=iol r2-ig? (99

We can then define T3 =iTIr2and £12= -4 [r' 2], or explicitly:

3 o 2 3.3 (1 0
' = 2 ==[ == (100
0 -1 2" 2\ -

A bidimensional Dirac spinor can then be written
\lf+
Y= - (101
|z
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where y" and y~ are Weyl spinors , i.e. eigenstates of I3,
We can now expand the spinors in terms of the harmonics, i.e.

eigenstates of the charge operator Q of the U(1) isotropy group, which in a

suitable basis takes the form Q = —ia(p:

via=expliln+%)elyx

(102
Vpn=expliln+)elyp
Qy*h=(n+%) y, (103
with n integer. .
The zero-modes T'A V5 obey the equations:
] «1 __Q_ * =
(ar+"2—f arf > )Xﬂ 0 (104
[P n+1 -
(ar+_2'f o T+ > )xn-0 (105

By charge conjugation, every zero-mode in y* with charge Q corresponds
to a zero-mode in y~ with charge -Q.

Four-dimensional chirality will then result if the harmonic expansion of
yt contains normalizable zero-modes with charge Q, but no normalizable
zero-mode with charge -Q. This gives rise in 4 dimensions to two
massless left-handed spinors with charge Q, one from y+and the other

from vy~ .
Eagn. (104) can be easily solved:

xp=atrhrr) (106

Normalizability of zero-modes requires

J’dr‘rfz(r)IxI2=J.dr PN e (107
0 0
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which, for f(r) going to infinity as r"Nand to a constant for r=0, is
satisfied if N>2 and 0 <n < (N-2).

For the sphere N=2 and no zero-mode exist, in accordance to
Lichnerowicz theorem. For N=3, on the contrary, one has a non-compact
internal space with finite volume and two chiral fermions with charge
Q=%

Another important property of noncompact internal spaces admitting a
compact group of isometries is that they are solutions of the Einstein
equations with arbitrary 4-dimensional cosmological constant, which can
then be put to zero [28,72] In general, however, these solutions have not a
direct product structure, but are of the form: |

2
~ U(F)HMN 0

g =
MN 0 f2<r)nw
M N

The "warp factor” g(r) is nevertheless compatible with the Poincaré
invariance of the ground state.

It is also important to point out that, contrary to what one could expect,
the spectrum of masses arising from this compactification is in general
not continuous, and can admit a finite mass gap between the zero-modes
and the first excited state [731.
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[T1 . QUASI-RIEMANNIAN THEORIES OF GRAVITATION

Quasi-Riemannian geometries were introduced by Weinberg in 1983 as a
possible solution to the problems which plagued the orthodox Kaluza-Klein
theories [30]. He observed that there is no physical reason why the
higher-dimensional manifold of Kaluza-Klein theories should have the
same Riemannian structure as the four dimensional spacetime of general
relativity. In particular he proposed to consider the case of a tangent
space group different from the usual D-dimensional orthogonal group.

However, some conditions must be imposed in order to obtain a sensible
4-dimensional effective theory [30]. First of all, the D-dimensional
tangent space group must contain the 4-dimensional Lorentz group O(1,3),
in such a way that the defining representation of Gt breaks up under
O(1,3) into a simple 4-vector and (D-4) 4-scalars. Moreover, the tangent
group should admit spinorial representations.

It can be shown [36] that the only choice compatible with these
requirements is a group O(Ny, Np) x G' with G1' € GL(D-N;-No) and
N121, No23. In order to avoid closed time-like paths, which can lead to
violations of causality, one must further require that Ny=1, so that the
only physically accettable structure for the tangent space group is Gt =
O(1,N=-1) x G, with N24 and G1' € GL(D-N).

In [34] was also observed that a possible justification for the choice of
these seemingly arbitrary groups may come from supergravity: as is well
known, in fatt, supergravity theories can be constructed starting from a
Lie superalgebra. But the bosonic part of the superalgebra has always a
direct sum structure [74], corresponding to a group of the kind discussed
above.

In the following we shall concentrate our attention on the simplest case
of non-trivial tangent group, namely Gt =O(I,N-1) X O(M) with M =D-N.

We shall denote a D-dimensional manifold with such tangent group as
Q.M.

[11 .1 The action

The group OC1,N=-1) x O(M) can be defined as the group of D x D matrices
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/\AB which Teave invariant the two matrices (*)

10 o0
0l [”as 0] I g
AB 0 0 AB7] 0 m,

where Nap and ngp are two arbitrary real symmetric non-singular
matrices of dimension NxN and MxM respectively, with signature

(-=1,1,.,1)and (1,...,1). This means that
AA: ABg D, 5 =1 10D (2
For definiteness, in the following we shall put Nop = diag (-1,1,..,1) and
Nap = diag (1,..,1). Moreover, we shall rise and lower the indices by means

of the metric NAR = M IAB + M HAB , Which is obviously Gr-invariant
being a linear combination of 7 | and n I,

From the definition it is evident that Gt 1s the subgroup of the
pseudoorthogonal group O (1,D-1) formed by block diagonal matrices with
A%y =A%, =0

By consequence, the Lie algebra of Gt is formed by two sets of
antisymmetric matrices, which respectively mix the greek indices and the
roman ones.

It follows that the components of the spin connection with mixed
indices are vanishing:

w=0 (3

A consequence of this fact is that some of the components of the torsion
are by definition functions only of the vielbeins, i.e.

Tapy = Capy Tabc = Cabc o

T(ap)c = Clap)c T(ab)y = C(ab)y

Therefore, if one imposes vanishing torsion, some non-trivial constraints
are imposed on the vielbeins and their derivatives, in accordance with the

(*) For the notation see appendix A.
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general discussion of section I.3.

For this reason and also because, as shown in [34,37] and in appendix B,
torsion is necessary for a Kaluza-Klein interpretation of the theory, we
shall consider the more general case of nonvanishing torsion.

Our purpose is now to write down a suitable action for a gravitational
theory on a quasi-Riemannian manifold with tangent group Gt = O0(1,N-1) X
oM.

As in the Riemanman'case, we demand that the action be a function of

the vielbein and the connection, invariant under coordinate transfomations
on the manifold:

' N
A A 027 A
e o) - 0 (5
N BM BN
az'M : az"vI

and under local tangent group transformations:

eOCM——)’/\.O‘B eBM maﬁm—)/\a,ymyﬁm (AT )SB +/\a,Y oM (AT ! )YB .
edn— A3y ePy @M= A @Cgm (AT + A3 3y (AT,

Furthermore, we require that the field equations be second order in the
vielbein. In order to achieve this, we proceed as in the Palatini formalism
of general relativity (see section 1.6) and consider an action linear in the
curvature and quadratic in the torsion. In this case, however, due to the
peculiar structure of the tangent space, one has two possible invariant
tensors by which he can contract the indices, and the resulting action has
the more complicate form [41]:
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- D .
S szeDd Z[“RaBBa ﬁRabba+7‘
" 21 Toy Tapy * 22 Topy TBoy * 35 Taoy "By
*0y Tape Tabe * P2 Tabe Thac * Ps Taac Tobe
*Ci Tape Tope * C2 Tape TRac. * €3 Taoc TRBC (7
*dy Tapy Taby * 92 Tapy Toay * 935 Taay Toby
"€ Tapy Tapy.” €2 Tapy Tpay * €5 Taay Tppy
* T Tabe Tabe * T2 Tabe Toac * T3 Toac Tohbe !
where eq = ldet eAMI, k2 is a dimensional constant proportional to the
d-dimensional gravitational constant, and a, B, A, a1,..,f3 are 21 free
parameters.
Contrary to what one may think, the density ey is uniquely determined
[35] In fact, the most general expression one can choose is
ep = ldet e%y + n ey (8
where n is an arbitrary constant parameter. One has however:
| det [ egl (e%q+ned)]]=1det eBy 71| det (% +nedy =
_ (9
=ldet(8°‘B+n83b)l=lnlM
which yields
ldet €% + m 3yl = In M det eAy| (10
Then, apart from an inininfluent constant, ey is uniqgue.
As one may suspect by examining equations (4), this is not the most

economical action one can write, in the sense that some of the parameters
are in fact redundant. This can be seen after varying with respect to the
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connection components to obtain the field equations in absence of spinning
sources:

(0-22,) Ty + (43,-22,) Tigpy ~ 200=25) Mg Ts5(8]
- (esv2a) ny[hodd]B] =0
(B=2b,) Teap *+ (4D,-20,) Tiapic = 2(B*b3) NefaiTddlb]
= (13*2B) ncfa|Taspp] = O
h. (11
(-e)) Togp * 2(C;=Co) Tigpe =0

- They admit the solution:

OBy = Lay ¥ X M{odCdd|p) Wapc = Labe * X MelalCss)p]
(12
w = __ix;..e_2_. C + C w = _..P_:f_i’._. C + C
afc 2(c,-c,) cof * “lalc | aby 2(d,-d,) yab ” “[ably
where
_ 200+ €3
* (N-2) o+ 22, + a, + (N-1) ag s

2B+ fs
(M_z)ﬁ-*' Zb] + b2+ (M—])bB

xlz

and Lagc s defined in ( 1.30).
By means of (12) one can now express the torsion in terms of the
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vielbeins:

Tapy = X NogpICddy] Tabe = X Ma[b|Css|c]
(14
_ _ (1_62 _ ﬁ_f
TaBe = Clap)c 2oy Ccop Taby = Clab)y ~ m Cyab

The solutions (12,14) can now be subétituted back into the action,
together with (4) to read

= - —l— D - N o
i sz o0 4°2 LA 17220580+ % Copy oy = * Capy Bror” Coroy By

" CapyCpya ! * C Clap)c Clop)c * 4 E CapyCapy * C Cooc Cooc

(15
+B[=235Cppa * % Cape Cabe ~ % Cape Chea * Caac Chbe
~ Cobe Coeal * D Clab)y Clab)y ™ % F Capc Cope * H CaayCaay* A}
where
A=a B=08
C=c,+*¢Cy D=d,~+d,
( -e 2 ....f 2
£ = de, - — 2 F=4f;—(B 2! (16
M-1 (2B+ f2)2
G=cCz- b* T

>4 (M-2) B+ 2b,+ byt (M-1)by

4 (N-2)o+2a,*a,+ (N-1) as

I
I
w
|

The action depends now only on 9 parameters instead of the original 21.
This is reminiscent of what happens in general relativity (see section 1.6),
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where the addition to the Einstein-Hilbert action of terms gquadratic in the
torsion has no influence on the dynamics of the theory, so that some of the
parameters present in the original action are redundant.

After integration by parts, eqn. (15) can be written as

~ | J. D '
S = — e~ d”“z { A - — -
D [ [ '/4;(: BYC B'Y e B,Y CB,Y C ’YCBB'Y 2 Caa,Y CﬁBY

" CaByCBya I * C Clap)c Clap)c * % E CapyCapy * G Caac Canc
(17
+B [ Y% cape Cape = “2 Cabe Chea ~ Caac Chbe ~ 2 Cqac Chbe

~ Cabc Cocal * D Cap)yClab)y ™ 4 F Cape Cabc * H CaayCaay* 2)

Comparing this form of the action with ( 1.42) consents to check easily
that the Riemannian limit is obtained if A=B=C=D=E=F=-G=-H.

[11.2 Alternative formulations.

An alternative way of constructing an action for our theory was
proposed by de Alwis and Randjbar-Daemi [38] and in an equivalent way,
but in tensorial language, by Weinberg [35]. In these formulations, only the
vielbein is considered as an independent variable, while the connection is
defined a priori as a function of the vielbein. It can be shown [35] that in
this way one obtains the most general action formulated in terms of the
vielbein which satisfies the general requirements of last section.
Nevertheless it is less general than ours, because it imposes some
unnecessary constraints on the form of the connection. However, the two
formulations are equivalent at second order (i.e. when written in terms of
the vielbeins only) at least if no matter coupling is present,

The authors of ref. [38] start by considering a D-dimensional Riemannian
manifold with tangent group O(1,D-1) and connection QAB. The connection
QAB is by definition a one-form which takes values in the Lie algebra of
O(1,D-1) and can be written as

QAB=(DAB +CUAB (18

.._53_



were ofg is in the Lie algebra of Gt = O(1,N=1) x O(M) and ®Pg is in the
complementary subspace. This means that (Daoc = wo‘a = 0, whereas maB=
Cﬁab = 0,

Under Gt, o transforms as a connection, whereas ® transforms
covariantly.

In order to obtain an expression for m and @ in terms of the vielbein, one
imposes that Q, as an O(1,D-1) connection, is torsion free, i.e.

deA+ @Az aeB =0 (19
This gives the usual expression for QAR = QARC net

QaBc = LaBC (20

Egns. (17) and (19) permit to express ® and ® as functions of the
vielbeins. The Gt connection wpossesses a nonvanishing torsion. This is
evident if one writes (19) as

TA=deA+mABAeB=—mABAeB (21

It is now easy to see that in this formalism, the most general action
invariant under coordinate and Gt transformations which leads to second
order differential equations for the vielbeins can be written as

- -1 D
S sz'eDd z[ 2, Ruppo ™ *2 Rappa * A

* A3 Da[By] Dalpyl * A4 Ba(By) Ba(By) * As Bapp Bayy (22
* g Balbe] Balbe] * A7 Ba(be) Batbe) * *s Bapb Bace |
where Aq,..,Ag, A are nine arbitrary constants.

If one now substitutes in (22) the expressions (20) for w and © as
functions of the vielbein, one recovers the equation (15), where now:
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C=2y D=y (23
E=7\.3+27»1 F=7\.6+27\.2
G—?\.S H*?Lg

A refined version of this formalism was proposed by Viswanathan and
wong [39]. They adopted an action very similar to that of ref. [35];

- -1 Do [ %
S g JeDd z[ M\ RocBBoc+7‘2 Rapba * A Topap * A

* A3 Balpy] Balyl * AaBa(By) Ba(py) * rs Capp Dayy (24

* he Oglbc] Balbe] * A Babe) Balbe) + Ag Bapb Bgce ]

but, instead of imposing a priori the form of ® and , they considered e, o
and @ as independent variables. The field @ is now introduced in the theory
as an auxiliary variable which replaces the "missing” components of the
connection. The term rgypep With

Fabyd = eal"l ebr/| [ (o @Yy + o¥gm ©8gN — 0 v BYan) — (M ©N) ] (25

is the field strength of the auxiliary field ®. It is not present in (22)
because in that case, after integration by parts it can be reduced, by
means of (21), to a term of the kind 2.

By varying the action with respect to w and @, one can obtain as usual the
expression for these fields as functions of the vielbein and then substitute
them back into the action obtaining again an expression like (15).

The fact that (13) can be obtained from many different theories induces
to suspect that it is independent from the model chosen. It is in fact
possible to check explicitly that it is the most general expression
invariant under coordinate and local Gy transformations containing at
most two derivatives of the vielbein.

This can be seen as follows: first of all, the most general expression
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containing the first derivatives of the vielbein dmeyn must be anti-
symmetric in the two world indices, in order to be covariant under
coordinate transformations. It must then be constructed in terms of the
anholonomity coefficients capc , Which can appear as squares cagc CDEF,
or as derivatives daCgcp. By contracting in all possible ways these
expressions with the two invariant Gy-tensors one obtains a list of
possible terms. One must then check their invariance under local
Gr-transformations, for which

5 CABC = €AD(Z) Cppe * eBp(Z) capc *
(26

SCD(Z) CABD * BC EAB(Z) - aB SAc(Z)

WIth €53 = €8¢ 5 €ab = €pa ; €qa = €aq = O - It turns out that the only
invariant combinations are (modulo integrations by parts) those present in
the action (15).

1l .3 The field equations

Varying the action (12) with respect to the vielbein one can now obtain
the field equations for the theory. For convenience, we have added to the
action a matter part with lagrangian M which contributes to the field
equations with a term tyy defined as (*):

(27

The ensuing field equations are very cumbersome. They can be written in
the following way:

(*) In order to render more redeable the field equations, in this section
we use the indices M,N (and m,n,u,v) as tangent space indices and ITas a
world index.
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A TA+ B T8y + c 3 v 0 T0y w B TE,

(28
#F TP 6 T+ H TH L+ mu = @ty

where for example TAMN is obtained varying as in (27) the terms of the
gravitational lagrangian proportional to the parameter A. We report here
the components of the tensors Tyy:

IAHV = (=98 * Caap* Caap ) (Cpuy = 2 C(uv)p ) *+ 2 3 CRBy
* (= 0p * Caab * Caab ) Copy ~ 2 (= 3y * Caay) Copy
= 2 Clap)p C(ap)v ~ Capu Cpav ~ Cpap Capv * V% Cuap Cvop
"My 17 205(Conp* Caap ) CopyCapy ™ ¥ Copy pro
" Cooy Cppy " 2 Caay Coby* 2 Caayppy ~ Capypye !

TBuv = Muv ( =293 Cppa * % Capc Capc ~ *2 Cabce Cbea * Caac Chbe

~ Cabe Chea)

o]
O
|

uv =72 (=9 * Caab * Caab ) C(uvb * Cupc Cvpc - Cabp Cabv
" Muy Cap)c Clap)c

TDuv =~ 2 Clab)u C(ab)v * Mpv C(ab)yClab)y

-7
m
|

wv = 7 Capu Capy " Muv (% CapyCapy)

-
—'—I .
|

uw = 2 Cupbc Svbe * Mpv (% Cope Cope )
TG}.LV ="My (= 29¢* 2 Caac * Conc ) CpRC

w =~ 2 CaapCobv * Muv CaayCbby
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un =~ (- g + Coaf * 3 Caafp ) nup ~ Capu Cnap * “2 Cuap Chop

un =~ (79 = Coab * Caab ) Cnub * (- 3p * Cuop * Caap ) Coun * 2 9y Caan

"2 Caap CpBn ~ 2 C(ab)u C(ablv ~ Capu Cpan ~ Cap (Capn * Cnpa)

un = (7 9B ¥ Cogp * Cagp ) ( CBun ~ Cunp ’* Cpab Cnab ~ CPap CnBa
" 2 Clapu S(op)n

TDun = CaBu Cnap ~ Capu Capn:

un =~ (7% * Caob * Caab ) Cunb * “2 Cuab Cnab ~ Cabp Cobn

un =~ 2 Caap Cnpp

A0 = M~ 2 20, Chgo * % Cagy CaPy™ % Capy Sy * Coor By Capy Cpre)

T8mn = (- 2 * Caup * Caab ) ( Comn - 2 C(mndo ) * 2 9m Caan
+ (- 9B * Coop * Caap ) Cmn ~ 2 (= 3m * Cooam) CB@n
" 2 C(ab)m C(ab)n ~ CBam Capn ~ Capm SBan * *2 Cmab Cnab
*Nmn =293 (Chpa * Capa) * % Cape Capc = “ Cape Chea

* Caac Cbbe " 2 Caac Chbe * 2 Canc CBPc ~ Cabe Chee ]

Tomn= -2 Clapim Capin * Mmn S(aplc C(of)c
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D - _ _
T mn =293 * Cygp * Caap) Cmn)B © Cmba Cnba ~ Capm Cafn

" Mmn S(ab)yC(ab)y
IEmn =15 CmpyCnpy * Mmn (4 Caﬁycaﬁy)
T mn = = Cabm Capn * mn (% Cane Cape )
TGmn = 2 Coam CBpn * Mmn Caac CpBC
T == Mmn (- 2 O * 2 CouB * Caap ) Ccep
TAmy = (- 98 * CaaB ~ Caap ) Cymp * (7 9B * Caap * Caap ) Cmyv

*29m Caav * 2 Caam Cbbv T 2 C(aB)m Claplv Capm Cpav

~ CBam CaBv * Capm Cvap

-
@
3
<
|

= (79 * 3 Coab * Caab ) Cvmec ~ CBam Cvpa * “2 Cmab Cvab
TC = +C C -C C
mv obm “vob abm “abv

D - (-
T mv= (59 * Coab * Caab ) ( Comy ™ Cmvb ) * Cmba Cvba - Capm Cnap

= 2 C(ap)m S(ab)v

I'Emv = ~ (R * CooB * Cazp) Cmvp * 2 Crnop Cvap = Capm Capy

Iva =~ 2 Cyab Cvmb
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THmv =20(-20m * Caam ) Copy * Caap Cvmp ]

It is important to remark that the Tyn are different from the T
This asymmetry is characteristic of quasi-Riemannian theories and is a
consequence of the structure of the tangent group.

An alternative procedure to obtain the field equations of the theory,
which has the advantage of being explicitly covariant, is to adopt a first
order formalism, and consider the system consisting in the equations (10),
obtained by varying the original action (7) with respect to the connections,
and the equations obtained by varying (7) with respect to the vielbein. As
usual, the two procedures are equivalent as long as no source term is
present in the field equations (10) for the connection. This second set of
equations is reported here:

o Rygap

ra[2¢-Vg+ Toapt Taap ) Tuvp ™ 2 Topulopy = TpopTvap ]
25 [ 2 (Vg Too* Taap) Tyup= Tpuv ) * Tepu oy
- a5 -V + Taan) Tppy
F el -V * Toop * Taap ) Tuvd * Tabplaby =~ Tpoab Tvab !
* €5 Vi * Toan * Taab ) Typub | (29
*dy TapuTapy * 92 TabuToav * 41 TaauToby
+2e TaBuTaBV
~Y% e [V + Togp * Taap ) Topy - ToopTabv ~ Tabpboy ]
Vs es [~V Taay * Taap ( Tony = Tppy ) ]
K Tuab Tvab
-% 3 My = ~ '/sztuv

where t,, is defined as before, and
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3 = aRypRe ¥ BRappa * A
“ 21 TopyTapy* 22 Tapy Bay ~ 25 2 Vy* Tooy* 2 Tazy) Tppy
* by TapcTabe * P2 TabcToac * 03 TaacTbbe
*C TapcTape * €2 TapeTpac = €3 (72 Ve * Taac * 2 Taac ) Tppe (30
*dy TabyTaby * 92 TapyTbay * 93 Taay by
* €1 TapyTapy* €2 TapyTpay~ €5 ¢ Vo™ Taay) Tooy
* Ty TapcTape * T2 Tabc Thac = 3 (- Ve * Taac ) Thoe

The equations referring to the mixed components of the energy-momentum

tensor are given by:

“ 23 TupyTnpy™ 22 TpwTnpy ~ 33 TBByTnpy
*C LV Toag* Taap) Tung* Topulopn = Tpob nab
~ e, | (-Vg* Toup* Taap) Tpun - Topulpan ~ Tpay Tnpa ]
-5 1Yy * Taay) Tapn* Taad Tnuo )
*dy TaupTang = 92 TapuTnap * 93 ThugTaap (31
“viey [ (=B Toop* Taop) Trup * TapuTnap - Topunap
+ s ex ( Taaﬁ - T_aaB )THHB
T2V Toan* Taab ) Tunb * 2 TappTaon ~ TuabTnab
Tl CV* Togp * Taab ) Thpp* Topn? * Taop (Toan =~ Thap’
* Thop Tabn * Tabp Thab )
=Y T3 [ -V Taan * Taap ( Tobn - Tgn 2 * Thpa ¢ Thba ~ Tppa ) |
= - 15 k2 th

The other two field equations can be obtained by exchanging greek and
latin indices and at the same time exchanging the parameters as follows:
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OLé—)B a]-<—>b]~
(32
C]'\'-—)d]' e]-e-n’]-

Also in this case the equations for tun are different from those for Ty

It may be interesting to compare these equations with the analogous
ones obtained in the standard Einstein-Cartan theory, which can be found
for example in [75].
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IV . STABILITY OF THE FLAT SPACE IN
QUASI-RIEMANNIAN THEORIES

We undertake now the study of the linearized theory [41]. This is
essential in order to check the stability against small fluctuations and to
obtain the particle content of the theory around a particular ground state
[23]. We shall consider in particular the case of a flat background, and find
some non-trivial conditions that the parameters of the theory must
satisfy so that the flat space should be a stable ground state.

IV .1 The linearized theory

We consider the expansion of the action (111.15) in small fluctuations
around a background constituted by the flat D-dimensional Minkowski
space. It can be easily verified that this is a solution of the field
equations of section I11.3 for A=0. We shall therefore assume in the
following that the cosmological constant A is vanishing.

- We put:

GAM=8AM+KhAM (1
and define

haB = Nac 8g' ' hCy (2

In general, hag = hga. We can now substitute this expression into the
action. The terms linear in hpg vanish, while the bilinears govern the
propagation of the weak disturbances. The bilinear action then reads:

5m=—jd%[AsA+BsB+CQC+DsD+EQE

(3
+FQF+GQG+HQH—tABhAB]
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where:

LA= 9 h(By) 9 N(By) = 2 3o N(ary) 98 N(By) ~ 9a BB 20 Nyy
"2 %y Noa 9 Nepy) * 2yap Oy Mpa =~ 2B Nap Oy My
- 204 ha,y( aﬁ h(BY) - 5,}, hBB )+ 2 ay Nag ( 8[3 h(BY) - ay hBB )

LB =92 Nhe) 2a Nbe) = 2 23 Nac) 9b Nibe) ~ 22 hpp 92 Nec
* 293¢ hag 9p Nipe) * 2¢ Nap ¢ Nba— 9 Now 9¢ Nea
~20g N (Op Nihe)y = 3¢ Pph ) * 2 3¢ hge (3p N(pe) = 3¢ Npp )

£c= 94 h(BY) 93 h(BYj + 15 a,Y hBa 8,Y hBa + 5 aB hBa ay h’ﬁ
-2 aB h(B'Y) d3 hya

D= 9g Nbe) 20 Nibe) * 2 9¢ Npo O¢ Nbo* 2 9p Npg, Oc Neg
=2 9p Npe) 9q Nea

Lp= 1" aYhaB aY haB - % 5{3 haB B,Yha,y

Cp= "2 0cNgp 0c Ngp =2 9p Ngp 2¢ Ngc

L1 = 90 Npp 9g Nee * 9p Moo 9¢ Nea™ 2 9 Npb ¢ Neo

and the parameters A,...,H have been defined above. We have added to the
action a source term hagtag , which will be useful in the following
calculations..

The coordinate and Gt transformations invariance of the original action
is reflected in the bilinear expansion as invariance under the

transformations
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8hag = 9BEA * &AB (4

Where eqg =egq ; €ah = €pa s Ega = €aq = O-
One must then impose some gauge conditions. For what concerns the
tangent space invariance, the most natural choice of gauge is given by the

b2 N(N- 1)+ M(M-1) conditions:

Nlop] = Nlap] =0 (S

With respect to coordinate transformations invariance is convenient to
impose the so called light-cone gauge [76];

ha- =0 (6

where we have defined hay = 2772 (ha N-1 £ha @) - We stress that
combining (3) with (6) one has hy_=h_,=0 and h,. =0, but h_5#0,in
contrast to what happens in the Riemannian case , when all fields carrying
a - index vanish.

A useful property of the light-cone gauge is that it permits to obtain
directly the physical states from the propagators, without recurring to
the conservation laws for the source terms. These can be obtained by
requiring the invariance of the source terms under the same symmetries
as the rest of the action and are:

Uap] = Yap] = O 7
aB tAB =0 (8

We notice that contrary to the Riemann case one cannot exchange the
indices of tag in (8).

In order to study the spectrum of quasi-Riemannian theories, it is
important to observe that they admit a natural interpretation in terms of
dimensional reduction. The reason is the following: in ordinary field theory
the particle states are classified in terms of their spin or helicity and of
their rest mass (i.e. the square of their momentum). This is due to the fact
that these quantities permit to classify the representations of the
D-dimensional Poincare group PD, to which the particle states belong. In
guasi-Riemannian theories with Gt = O0(1,N-1) x O(M), the invariance group
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of the flat space is not anymore PD, but a direct product pN « pM , SO
that one has to classify the particle states by giving their "spin" and
"‘mass” with respect to both PN and PM . This is evident, for example, from
the fact that in this theory the squares of the momentum kaz and ka2 are
two independent quantities that can appear with different coefficients in
the Tinearized action. Thus, in order to give a physical interpretation of
the theory, one is forced to consider the N-dimensional momentum and
spin as the "physical” ones, and the M-dimensional quantities as "internal”
guantum numbers. But this is just the same point of view one adopts when
performing a dimensional reduction of an ordinary (i.e. Riemannian) theory.
The analogy is obvious if one considers that a dimensionally reduced
Riemannian theory has in fact a quasi-Riemannian effective invariance
group. We shall then adopt the language of Kaluza-Klein theories to discuss
the spectrum of the theory.

To perform the calculations it is useful to Fourier-transform the action
to the momentum space. Furthermore, one can choose a particular
reference frame. We choose the one in which only the components k., k_
and ky of the momentum are not vanishing (by ky we denote the first
component of the internal momentum k).

By varying (3) with respect to hag one can obtain the equations of
motion satisfied by the irreducible components of hag under the group
O(N-2) x O(M), which classifies the massless excitations.

In the particular system of coordinates we have chosen, they split into
six non-interacting sectors, corresponding to different values of the
‘physical” and "internal® spin of the states. We report them in the
massless case (kg = O '

Sector 1) :
2AkZ htop= thog
Sector 2)
K2[C A] hOLZ] B toca
A El|Naq Lo
Sector 3)

~4AK_2 hgy = too
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Sector 4)
2Dk2 ht oy = tty

Sector 5)
(C+26)k, %  (3c+26)k,k_ Ak.k_| [P-al [t
(3C+26)k,k_ (C+26)k_2  -Ak_2| |hea] = 11,
AK K ~Ak_? B B LW I L
Sector 6)
' 2 2 1 1 1 3
0 -Ak_ ~Ak_ h,. t_
a2 N-3 2 2
2 Akm AEK AK hO(.OC = t0.0C
Ak 2 2 Dy g2
AK_ Ak (Hr2) & Naa | |taa

where greek indices run from 1 to N-2 and we have put k2 = 2K k.
Moreover:

o
"ap™ Nap T N2 My ap
B (9

t_
Nab = Nap ﬁh

cc Mab

One can now solve the equations of motion with respect to the
components of hxg, and substitute them back into (3). In this way one
obtains the propagator of the physical excitations. The resulting

propagators are:

Sector 1) =
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Clt -t . |2 2
Sector 2) 12=é ax ¢ ea | It
EC-AZ C
: 2
t
Sector 3) 5 =——U o]
8 AkZ
| t 2
t
Sector 4) 4= 1 [tapl
4 pk 2
Sector 5)
lt. .12 Jt_,]? It,-]2
s = ! [AZE(C+26)] | —2—+ —2~| + 8C(C+6) —2
16(AZ-EC)(C+B) K. k- k.2
Re(tX t_.) Re(tiatm)  Re(tZ t,n)
+2[A2-E(3C+26)] ——2 73" 4 8A(C+G) 42 - 2
Ko Kik- k_2

Sector 6) | =

We recall that in the light-cone gauge the x, coordinate is regarded as
“time” and only the equations involving the derivatives 9, are dynamical.
The propagators of the physical particles have then poles in k.. In order to
have stability these poles must be simple and their residua positive
(absence of ghosts). Moreover, the massive states must have positive mass
squares (absence of tachyons) [23,77].

It 1s easily seen that the first condition is not satisfied in our case. In
fact, contrary to the Riemann case, in which the fields carrying a + or -
index do not propagate and can be eliminated, in this case some of them
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are dynamical and must be carefully considered. From the propagator it is
in fact evident that in sector 5 a double pole is present. In order to cancel
the double pole one must impose the condition

A2+ E(C+26)=0 (10

Unfortunately, this is not sufficient to assure stability, because the
residue at the simple pole is not positive definite. One can calculate it
from lg:

2[A2 - E(3C+26)IRe(t¥,t_.) + BA(C+G) Re(t¥,t,_)
Res | = a -4 a-a (11
> Ik.=0 © B8 (C+G) (A2 - EC)

Clearly, this is not a positive definite expression, because the source
terms do not appear as squares. One must then require

A2 -E(3C+2G)=0

(12
A(C+G)=0
It 1s easy to see that the conditions (10) and (12) imply that
AZ-EC=0 (13

If in addition one requires that A 15’ nonvanishing (which is a necessary
condition to have a propagating graviton), the solution of egns. (10) and
(12) is unique and is given by (13) and

C+G=0 (14

We shall discuss in the following section the consequences of these
conditions.

We want just to stress that in the Riemannian case these poles are not
present because of the source constraint (valid for k; = 0) Kytyg = Kglgy =
0. In our case, instead, kqty, cannot be deduced from (8) because ty, is
not anymore symmetric in the two indices, and therefore the double poles
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cannot be Suppressed. This fact can be seen more easily in the covariant
gauge Kghgsq=0. In this gauge it is necessary to use the conservation 1aws
(7,8) in order to determine the physical states.

The propagator of the spin 1 sector (corresponding to sectors 2 and 5 in
light-cone gauge) is given by

o C tT —AtT 2+]_IT|2+_]_[:ELI2
= % FC-A2 | ta C ol c 2(C+G) %@ (13
where
tag = ( - k_ock_ﬁ_ )t
ao = \Mgp 2 ap
‘K (16
L -
taa = ‘%Eﬁ'ta[_’)
and analogously for {4
Now, by use of the source constraint
Koltae = O (17
one can eliminate the dangerous terms from
2 2 2
taol” _ ltagl”  IKgtaol -
2 2 4

K K K
but this is not possible for the terms containing tT,5 and th,4 since,
contrary to the Riemannian case, they do not satisfy any source constraint,

whence the double poles.

We summarize here the spectrum of massless states:
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Sector O(N-2) helicity O(M) helicity Number of multiplets

I 2 0 1

2 1 1 2

3 1 0] does not propagate
4 0 2 . 1

S 0 I 2 ghosts

6 0 0 I

For completeness, we report also the massive spectrum.

O(N-1) spin O(M-1) spin (mass)?

2

C
2 0 =K
Aa

| | 2AB-CD-EF: 3 (CD-EF)2+ A%BE+B2CE-4AB(CDEF) o~
2 (A~ EC)

] 0 - _2C (D+H)

k 2
a
AZ-EC

| 2
0 | - B DE 2
2D (C+0)

B, 2
0 2 —K
D@



V.2 Stability

The conditions (13) and (14) seem to introduce some singularity in the
propagator. This is the signal that a new gauge invariance has been
introduced in the massless sector of the bilinear action [78]. In fact the
action is now invariant under the local transformations

8N, = Eqg(X) Shoa = - %gaam (19

which constitute an NM-parameters abelian group. This invariance is due
to the fact that the fields hgyy and hyg are now present in the action only
in the linear combination hy4 + A/C Naq -

For consistency, it is necessary to extend this gauge invariance to the
whole bilinear action, comprising also the massive sector kg5 = 0. This is
achieved by imposing some further condition on the parameters:

AB BC

D=-H=— F == (20
C A
" One remains then with only three independent parameters.
The new invariance yields a new source constraint:
tyg =D tyg =0 (21
C
which, combined with (7), gives Kg tyg = 0.
The new gauge constraints for the fields arise naturally:
haa-—é‘- Nz = O (22

Because of the new gauge invariance, one must once again perform the
calculations from the beginning, imposing the new gauge condition (22).
For convenience, we define the field
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hgoca = hgaoc =Nga * = Naq (23

With this definition, the bilinear lagrangian can be written as follows:

= Al NBy) %0 N(By) = 2 30 N(ary) 2 N(By) ~ 2 NP 2 Nyy
* 2 3y o 3 N(py) * 2 9y Naa (3p N(py) = oy Npp )]
* B 192 N(be) 2a Nibe) = 2 2a Nac) 3b Nibe) = 2a Nop 92 Nee
*20¢haa 9% Npe) * 293¢ Nag ¢ 9p Nibe) = 9¢ Mpp ) |
=236 9 (3p N(hey = 3¢ hpp )] (24
+ CLCag hepy) 32 Npy) ~ 22 Npp 92 Ny ) + ¥ ( 9y h9p, 2, hYp,
- 93985 9y Sy )~ 2 0509y, (9 h(py) ~ 3y hpp ) ]
ABC™ ' [ 96 N(pe) 20 Nibe) - 3a Nbb 20 Nec 1+
s CBATT [ 2c h9qp 2c N9 = 2p N9gp 3¢ N9ge |

We can now impose the Tight-cone gauge ha- = 0. Taking into account
the other gauge conditions, this can be written as:

(25

The field equations are now (*):

Sector 1) ,
2AkZ htyg= thyg
Sector 2)
Ck?h9gz5 = tya
Sector 3)

~4AK_2 gy = to

(*) In the following, greek indices run from 1 to N-2.
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Sector 4)

AB t _ .t
2 C N“an = Vap
Sector 9)
-2Ck-2h9,, = t,_
Sector 6)
2 2
0 -Ak_“ -Ak h,. t__
3 2 N-3 , 2 2
2 Ak_ A-@ K Ak hOCOC = tO(.OC
_ 2 2 ABM=1 o
Ak _ AK ~—C— —H-k _haa_ _taa_

They give rise to the propagators:

2 2 2 2
| [topl . toal N Itapl .. tootadl (26
| = —
al A Ly AR | ANl _BMot] 2
2 C N-2 C M

It is easy to see from this expressioh that ghosts are absent if

A, B, C>0
(27

MN-1)

B _MN-1D)
C  (M-1)N-2)

The spectrum of the propagating massless states is the following:
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Sector  O(N-2) helicity O(M) helicity Number of multiplets

I 2 0 I
2 1 1 I
4 0 2' 1
© 0 0 1

It is the same spectrum one would obtain by dimensional reduction in the
Riemannian case.

In the massive case (ky = 0), the nonvanishing momentum component ky,
distinguishes a direction in the "internal” space. The field must then be
decomposed by separating the Nth component, and rearranged into
representations of the group O(N-1) x O(M-1) , which classifies the
massive representations. Also in this case the linearized field equations
split up in six sectors (*):

Sectorl1)
2 (AKZ + Cky2) htaB = ttocB
Sector 2)
ca® e B s = tea
Sector 3) ,
K2 h9 t
-2Ck-k oN oN
-2Ck-k, -4Ak-2 | | hos t e
Sector 4)
ﬂ%@ K? ~2Bk K han taN
h9,, tye

- - 2
2Bl<_kN Ck-

(*) Latin indices run now from N+1 to N+M-1.
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Sector 5) |

Sector 6)
N=3 (ak2+ ciy @)
N-2
AkZ+Bky 2
NG
"CKNK_
_Ak_2

AB 2 2\ .t t
2(——k“+Bk h =
N ab t b
2,00 2 2 ) a2
AKZ+BK AK Ckgke  —Ak_
. ) A 2
nzs (AKZ+Cky,2) AB 2 Bk —Ak_
M-1C C
£B 2 0 0 -Ak_2
c
_ L. 2
BKyK 0 k_ 0
~Ak_? -Ak_2 0 0

As usual, one can now calculate the propagators of the massive sectors.

They are:

Sector 1)

Sector 2)

Sector 3)

Sector 4)

t 2
| :l_ltgﬁ[_
b4 akZeck?
g 2
=LA It3¢l
2 40 A% K2
g 2
| =LA [t
20 a2kl
T 2
| = L_C_ ]tab|
4B aPck?
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Sector 5)

Sector 6)

tye- N2 B
4@ N-1 C

4 M AB _ AB” N-2 k2+( N 5_2_.[\4_25)}(2
M=-1 C CZ N-1 N-1 C M- 1 N

2
+ N-2 Itaal
N1 gk s o)

2
tOCOLI

One can then deduce the spectrum of the massive states:

O(N-1) spin O(M-1) spin (mass)2
2 0 L2
A N
| | B2
A N
0 2 L2
A N
N B - M-2 C
0 5 C N Mol e
A M C _ N'—2 B
M-1 N-1

The conditions for the absence of ghosts and tachyons are trivially
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obtained by requiring the positivity of the squares of the masses and of
the residua at the poles. They are:

A, B, C>0
(28
(N-1)M-2) (B _MN-1)
N(M-1) € (M=1)(N-2)

Clearly, we have obtained a continuous spectrum, since kNQ can assume
any positive value. This is because no compactification was assumed to
occur in our model. We shall consider later on the case of compactification
on a torus, which can be easily derived from the results obtained here. We
also observe that in the Riemannian limit one obtains the same spectrum,
but with all the values of the masses degenerate.

We have then established what conditions one must impose on the action
in order to obtain a spectrum free of ghosts and tachyons. The eight
parameters originally present in the action are constrained by the five
relations:

2
A G=-C
C
(29
- _BC Y-}
A C

and reduce to only three independent parameters, which must also satisfy
the inequalities (28).

It seems likely that these conditions are inherent in the structure of the
theory and do not depend on the particular background chosen. It would
however be interesting to check this explicitly, by considering some
models which exhibit spontaneous compactification. Another important
problem which is still open is how the gauge invariance we have
introduced can be extended to the full (non-linear) action, i.e. one should
establish what transformations of the vielbein leave invariant the action
obeying the conditions (29).

We finally notice that in order to have a consistent theory, it seems to be
essential to have a particle spectrum containing the same states as the
Riemannian one.
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V. CLASSICAL ASPECTS OF QUASI-RIEMANNIAN THEORIES

In this chapter we study some classical features of quasi-Riemannian
theories and in particular the generalization of the action for classical
fields and the definition of the metric and of the geodesics on
quasi-Riemannian manifolds with tangent space group SO(1,N=1)xSO(M).

V. 1 C(Classical fields

First of all we consider the electromagnetic field, defined by means of
a vector potential Am and require that the theory is invariant under the
apbelian gauge transformation Am—Apm+IMA.
The gauge invariant field strength is given by

FMN = OM AN 7 ON AM = ANM ~ AMN Y Tham AL (1

From this expression it is easy to see that if torsion is nonvanishing,
some complications arise in the definition of a covariant field strength
[44]. We shall then consider first the case of vanishing torsion.

In order to construct a Gy-invariant action, it is natural to use tangent
space indices, defining

FABzeAM eBM FMN=VAAB_VBAA (2

On quasi-Riemannian manifolds, the Maxwell action can be generalized
by contracting in all possible ways Fag Fcp With the two Gy-invariant
tensors ngg andngp. The resulting action is:

D .
S=J.eDdz(Q~JAAA) (3

gz“%(aFaBFaB’LbFabFab+2CFabFab) (4
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where a, b, ¢ are some constants and Ja 1s @ source term, which satisfies

the conservation law

VA JA =0 (5
Varying (4) one can obtain the field equations:
(6

‘C VaFop * 0 VaFap = p

while the other set of Maxwell equations can be obtained as usual directly
from the definition of Fvn:

FiMn;Ly = oL Fvng = O (7

or, in an orthogonal basis, V[ Fgc]=0.
One can also calculate the components of the energy-momentum tensor,

defined as
- _o%
tAB B aAAC S(aBAC) MAB £ (8

which satisfies the coservation law Vg tag = 0. They are
tap =~ (@FayFay* C Foc Fac = Mop ¢ )

' (9

As is apparent, the components ty5 and L5 0f the energy-momentum

tensor are different. This fact is characteristic of quasi-Riemannian
theories, and is a consequence of the peculiar structure of the tangent

space group.
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AS we h.ave seen, if torsion is present, in order to preserve gauge
invariance, one must renounce to have a minimal coupling of the
electromagnetic field with gravity, because the torsion appears in the
definition of the gauge invariant field strength. In this case the action can
be defined as in (4), with

FaB=ea egl! Fun = VAAR - VBAA ~ Teag Ac (10

The simplest (but not explicitly covariant) way to write the field
equations in this case is:

O[L SMN] = O
aaa%aB+c aa%aB=EB (11
COgq Bgp * D05 ¥p = I

with g =€eFag and Ja=¢e ja.
In this case also the conservation laws assume a more general form [44]:

Vetap * Tcce taB * 2 TeBa tep = O
oA SA=0

In the case of a scalar field, the covariant derivatives coincide with the
partial derivatives and the generalized lagrangian density is

Q= h Vg oVy o+ h,Va0V,0-m2¢2 (13
which yields the field equations:
N VeVq &+ NoVaVa o+ m2 ¢ (14
and the conserved energy momentum tensor:
tap = NV 0 Vg o~ Ngp & tap =h1V20Vpo

tap = NVaoVpho-mgp € Lab = N2V ¢ Vp ¢



The lagrangian can be generalized for a complex scalar field coupled to
the Maxwell field by replacing Vi =V + 1Ax . The new lagrangian is
invariant under the gauge transformation:

0— e 1M2) g Ap = Ap+ 3a M2) (16
and the electromagnetic current is given by:
Joc = h] ((f)* Va¢—¢ Vo(,q)* )
Jja= o (X V50 -6 V5 0% )

Finally, we consider the spinor fields, which will be treated in more
detail later on. We define a spinor as a field which transforms accordingly
to the spinor representation of O(1,N-1). It can however transform in any
representation of O(M). For definiteness, however, we assume here that it

is a spinor also under O(M).
The lagrangian density can be written in general as:

- o Ay _
Q—]w(g]F Va+g21“ Vo-mly (18
where T'®and I'? are a set of Dirac matrices satisfying (T%, h)=2 no‘ﬁ,
(12, 1231=2n20 and [T® T@]=0.(The T®are the unit matrix in the a, b
space and viceversa).
The field equations are:
P(g TV + g, T2V, ) y=0 (19
and the conserved energy momentum is given by:
tap="el g \‘prAvﬁW—VBﬁrAw
(20
tap =% 10 W,V W=V, yT,y)

Also in this case the gauge invariant coupling to the Maxwell field is
obtained by the substitutionVa — VA + 1Ax which renders the lagrangian
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invariant under Y- eiA\u; Ap—AprIaA. In this case, the electromagnetic
current is given by:

It must be pointed out that the spinorial fields, being minimally coupled
to gravity, give rise to a source term in the field equations for the
connection of the form '

s A B rlly (22

By consequence, if one adopts the Palatini formalism, the connection
oagc WIll contain terms proportional to (22),and some contact terms
proportional to \u3 shall appear in the field equations for the spinor.

V. 2 Perturbative expansion

In analogy to what we have done for the gravitational action, we
consider here the particle content of the electromagnetic action, by
studying the fluctuations of the guasi-Riemannian electromagnetic action
(3) around the background Ap = 0, on a flat space. Also in this case the
most convenient choice of gauge is given by the the light-cone gauge A_ =
0. In this gauge, the linearized action reads:

__ 1 D 2 2 2 _ 2,2 2 2 2
52—-—2—J‘d z[(ad, +co, ) Ag aol AJ +(co *boy ) Ay

2 (23
b (2,A 0 2 ca A, o A ]

As in the gravitational case, the linearized action can now be inverted by
means of the field equations and Fourier-transformed, in order to obtain
the propagators. The propagator of the massless excitations is given by:
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I
‘:—1.. __..a +---—--—---a (24
21 ak? ck2

where a = 1,. ,N-1 and a = N,..., N+M-1 and k2 is the square of the
N-dimensional momentum. The propagator describes a helicity 1 state
(photon) and a M-plet of scalars.

The propagator of the massive states is given by:

2, a2 o
. gl EUNI ) N

< 2 2 2 2 (25
21 k% ck? ok bk

where now a = N+1,..,N+M-1 and the reference frame is chosen so that jy is
the only nonvanishing component of the internal momentum.

The massive states are a tower of spin 1 particles with (mass)? =
C/a kNQ and a tower of spin O, (mass)2 = b/c sz particles. As usual, the
values assumed by kN2 depend on the structure of the internal space.

It is evident that ghosts and tachyons are absent if a, b, ¢c> 0, since in
this case the poles have positive residua and the masses squared are
positive.

We also notice that from dimensional reduction of the Riemannian
action, one would obtain the same spectrum, except that both the spin 1
and spin O particles have the same (mass)? = kNZ.

As an example of application of the formalism given above, we give here
the Feynman rules for the quantum electrodynamics on a Q.M pbackground.

As we have seen, the higher-dimensional electromagnetic field contains
a N-vector Agand a multiplet of N-scalars A, We normalize them by the
redefinition

Ag— 272 Ay, Ag— T2 A (26
Moreover, we redefine the parameters of the spinor lagrangian (18),

putting g, =1, g,=gandm =0,
The propagators become:
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o 2. C
ka “‘-é-KaZ
)
Aa: —T—ébb_ (27
KOC +'Eka2
]
\a

o a
I

If kg =0, the spinor propag?tor describes a massless spinor, while for
ks = 0, the spinor carries a (mass)? = g2k,2
The interaction vertices are proportional to

7N -1a™2 T §(3 kp)
(28
7 -iga 2 12 §(Tku)

The electromagnetic coupling constant is then given by a™  while the
coupling constant for the scalar-fermion interaction is given by ¢ a "z

We stress that also in the 1imit of vanishing masses some corrections to
the usual electromagnetic interaction are given by the diagrams involving
~ the scalars.

V .3 Equations of state

In view of the applications to cosmology, it is interesting to obtain the
equations of state for a perfect fluid in higher dimensions.

As shown for example in [79], the energy momentum tensor for a gas of
non-interacting particles is given by

|<(r\) k(n)

= A B
T AB Z o (29
0

where kA(“) are the components of the momentum of the n-th particle.
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For an isotropic fluid on a D-dimensional Riemannian manifold,
considerations of symmetry require that the only nonvanishing components
of the energy-momentum tensor are given by:

Too =0 Tij = Pmjj (30

withi,j=1,.,D-1.
If the field is massles (pure radiation), one has from (29):

K(n)k(n)
' _ A A _
T AA 2 — 0 (31
n |!<o |

since kA2 = 0 for a massless particle. Comparing with (30) one gets:
p+(D-Dp=0 (32

and then the equation of state:

:
_ (33
S

In the quasi-Riemannian case the energy-momentum tensor (30) can have
the more general form :

Too =0 Tij =P Tap = dMap (34
withi=1,. ,N-1and a=N,.., N+M-1. Hence, if kA2 =0, eqgn. (31) yields:
p+(N-1)p+Mg=0 (35

If one puts g = zp , with z a suitable constant depending on the model
considered, one can deduce from (35) that

_ ZP :
=7p = ———— (36
a P N-1 +zM
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However, a consistent definition of massless particle in quasi-
Riemannian theories seems to require that both Ka2 and ka2 be vanishing
(compare with the discussion in section IV.1). This corresponds to put z=0
in (36) and the eguation of state reduces to that of ordinary N-dimensional
radiation.

Similar conclusions can be obtained calculating the equation of state of
electromagnetic radiation starting from the energy-momentum tensor (9)
of the generalized Maxwell lagrangian.

[V .4 Geodesics

In order to define the notion of a test particle in a quasi—-Riemannian
manifold, one has to establish an action for it. By varying the action with
respect to the metric (or the vielbein), one can then determine the
trajectory. We assume that the action is identical to that of general
relativity:

M g N
S =—mjds =-m ,'.\/gMNdaZS ddLs ds (37

This definition is however ambiguous, because in guasi-Riemannian
theories the metric is not defined in a unigue way: as we have seen, in
fact, one can define several metrics which are covariantly constant. In our
case, for example, one can define two linearly independent metrics
QIMN = Maf eO‘MeﬁN and QHMN = MNap eaMebN , which are symmetric in N
and M. Any linear combination of these two metrics can be interpreted as
the physical one. This freedom is related to the fact that the standards of
length in the N-dimensional and M-dimensional subspaces are independent.
The choice of a particular metric can then be seen as a fixing of gauge in
the theory. We make for the physical metric the obvious choice

gvn = 9'Mn 9 M = mag e”meBy (38

This definition of the physical metric will always be adopted in the
following, where classical solutions of the field equations will be
discussed. However, we stress that in gquasi-Riemannian theories the

_87_



primary object is not the metric but the vielbein, even if a definition of
the metric is necessary in order to give a physical interpretation of the
theory.

Anyway, given any metric gvy , the equations of motion for spinless
particles can be easily worked out by varying (37) with respect to gmy, in
the same way as in general relativity. The result is:

d2zh oy aZ azN
+ | d2 .82 =0
ds? MN ds ds

(39

(bynd =¥ g-PCangp + amdpN * 2PN (40

It is important to realize that in general the Christoffel symbol {LMN} is
different from the affine connection Tbyy defined by ( 1.10), which defines
the parallel transport on our manifold (*¥). This is usual in all the theories
with non vanishing torsion [44], as the quasi-Riemannian usually are.

We consider now the coupling of a test particle of charge e with the
electromagnetic field. This is obtained by adding to the free action (37) 3
term

M
S'=—J.egZ——AMds (41
ds

The equations of motion then read:

m

The form of the coupling (41) is dictated by the gauge invariance

(*) For example, for mdefined as in (111.18-20), one has [35]:
rhyy = Ihp (Pyg) I3y + 2hp (Prq) 29 + Thp oy TPy + 2hp 3y 2Py
with TP =eP, e% and =Pq= ePjedq.
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AM — AMtoMA  and the continuity equation

M
[e -QZ-} -0 (43
M

which rule out couplings of the kind

™
AN gz (e

| I
as SO T S 2%y (44
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VI . CLASSICAL SOLUTIONS OF THE FIELD EQUATIONS

We turn now to the study of the classical solutions of quasi-Riemannian
field equations. As in general relativity, one can find a large variety of
solutions, depending on the boundary conditions one imposes. In this
chapter we study two classes of problems: the cosmological solutions, and
the generalization of the Schwarzschild metric. In the next chapter we
shall investigate the possibility of obtaining solutions giving rise to
spontaneous compactification of the higher-dimensional space. ‘

In general, the smallness: of the tangent space in quasi-Riemannian
theories, imposes strong constraints on the kind of solutions one can find.
In fact, as discussed in chapter |, the isotropy group of the solution must
be a subgroup of the tangent space group Gy, so that on the quasi-
Riemannian spaces QN:M the isotropy group of the solution can be at most
OC1,N=1) x O(M),

The only exception to this rule is the degenerate case of the flat space,
which, as we have seen, is a solution of the field equations for A = 0.

VI . 1 Kaluza-Klein cosmology.

An important class of solutions of the higher-dimensional Einstein
equations are those describing cosmological models of the evolution of the
universe. Before discussing how these solutions are modified in the
quasi-Riemannian case, we shall give a brief account of their main
features.

In the standard Robertson-Walker cosmology, the scale factor of the
universe grows with time. A realistic higher-dimensional cosmology
should be approximated by a four-dimensional cosmology for the late
evolution of the universe, but at some early time the Robertson-walker
scale factor must have been of the same order of magnitude as the length
scale of the internal space. The aim of the Kaluza-Klein cosmology is then
to explain why the two scales are now so different as a consequence of the
dynamical evolution of the universe,

The first proposal for a Kaluza-Klein cosmological model was done by
Chodos and Detweiler [17], who generalized to five dimensions the Kasner
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solution of general relativity equations, obtaining a model with the three
spatial dimensions expanding and the internal one shrinking. A
generalization of this model to higher dimensions was proposed by Freund
[18], who established on general grounds the field equations of the higher
dimensional cosmology. The physical implications of these models were
studied by many authors. In particular, it was pointed out that the
contraction of the internal space can give rise to entropy production in 4
dimensions [80] and to an inflationary expansion of the internal space
[19-21]. This possibility is very attractive since, as is well known,
inflationary models for the evolution of the early universe were very
successful in ordinary cosmology to solve some important problems, like
the so-called horizon and flatness puzzles [22]. In the original inflationary
models, the universe suffers an exponential growth, caused by a phase
transition of the matter fields, which produces a large amount of entropy.
In higher dimensional models, instead, the total entropy is conserved, but
its four-dimensional effective value is increased by the shrinking of the
internal dimensions.

To make the discussion more concrete, Tet us examine in some detail the
higher dimensional model of ref. [20].

The metric is a generalization of the Robertson-Walker line element,
where the higher-dimensional space is the direct product of two
maximally symmetric spaces, of dimension (N-1) and M and scale factors
r(t) and R(t) respectively:

.2 212
ds? = - dt? + pt) XD L pP(r) (dXT)

12 2 |
[1+ hx‘x]] [1+ kxaxa] (
4 4

where i runs over the set 1,....,N=-1 and a over N,....,N+M-1.

As usual, h and k can assume the values -1, 0O and 1 , corresponding to
positive curvature, flat , and negative curvature spaces.

The physical case is N=4. We observe however that there is no preferred
way in the Riemannian theory to split the original D dimensions in N
"external” and M "internal”, and the ansatz contains therefore a large
amount of arbitrariness.

Substituting the ansatz into the Einstein equations, one gets:



M-1)

where a dot denotes a derivative with respect to the time and we have
used the most general form for the energy momentum tensor of a perfect
fluid in higher dimension compatible with the ansatz (1) for the metric:

too =0 tij = pmjj tap = dMab (3
It satisfies the conservation law Vgtag =0, 1.e.:

'+ — + ..E..+ + B:
p+ (N-1)(p Q)r M(Cq Q)R 0 (4

To solve the field equations, one must now establish an equation of
state for the matter. We consider the equation for "pure radiation” in
higher dimensions:

0
A M+ N-1
One can now substitute (3) in (4) and integrate. The result is
N+ M
o (rTTRMy M= (6

with L a suitable constant.
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This equation can now be inserted into (2) to solve the system.

Untortunately this is quite difficult and can be solved analytically only
in a few special cases [19,81], but numerical solutions can be obtained
[19,20]. The resulting scenario is the following: the two radii start
expanding until a time t,, when the internal one starts to collapse. During
the collapse, the external radius grows very rapidly (inflation). If no new
mechanism stops the collapse, the internal radius will shrink to zero at
some finite time t,, while the external one expands to infinity. In order to
avoid the new singularity at t,, one must assume that some new
mechanism (presumably due to quantum effects), stops the collapse of the
internal radius near the Planck length at a time t,<ty, so that after t,
the internal space decouples from the ordinary spacetime, which continues
to expand following the usual Robertson-walker solution.

The behaviour of the two solutions near the two singularities at t=0 and
t=t, can be studied by a power series expansion [20]. Let us consider first
the case t=0. We assume that the initial conditions at t=0 are r(t)=R(t)=0,
and both radii behave as powers of the time:

rt)=A t%+ R(t)=B tB+ . (7

~ Substituting (7) into the equations (2) one obtains

2
a=p = (8
B N+M

so that short after the big bang the two radii expand with the same slope.
To obtain the behavior of the solutions near t,, one can proceed in the
same manner, defining 1 =1{,-t, and-expanding:
rt)=C t¥+ .. R(t)=D tB+ . (9
From the field equations, one obtains: |

|- \/——m—-(M+N~2) 1+ \/N“ (M+N-2)
v= N &= M (10

M+ N-1 M+ N-=-1

The knowledge of the coefficients yand & is important, because, as
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shown in [20], at first order near t,

ey [rad]
Q=—% -~ :
r(t) R(t)

X
d

(11

so that one can roughly calculate the amount of inflation suffered by the
physical space during the collapse of the internal one, provided one can
estimate the rate %2)/rt,). This is usually believed to be of the order of
102, while, in order to solve the horizon problem, Q is required to be of the
order of 10729 [20]. One must then have -Y/s=~-15, which can be achieved
only by postulating a great number of extra dimensions (>40).

An alternative solution to this problem without recurring to a large
number of dimensions may be provided by the addition to the action of
higher order terms in the curvature [82].

VI .2 Quasi-Riemannian cosmologies

We wish now to discuss how this scenario is modified in the
quasi-Riemannian case [42]. One of the advantages of the quasi-Riemannian
cosmological models is that, due to the peculiar structure of the tangent
space, the M internal dimensions are distinguished ab initio from the N
‘physical” ones, so that, contrary to the Riemannian case, there is no
arpitrariness in the splitting of the higher-dimensional space.
Consequently, the generalization to QN.M of the Robertson-walker line
element must necessarily have the form (1). More precisely, the vielbeins
are:

o dx! dx?
O O ]_ a e ——
e” =dx- =dt e = 2 e = 2 (12
4 4
where the indices O and 1= 1,...,N-1 belong to the subgroup O(1,N-1) of Gt

and the indices a = N,....,N+*M-1 to the subgroup O(M).
The nonvanishing components of the anholonomity tensor are then:
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. =_Is.. o= VY
(13
Cabo = ~ R dab Cabc ~© K. (X¢ dap ~ Xp 8ac)
R 2R
Substituting in (111.28), one obtains the field equations:
A r%h . HM+D R® . B K FR _ 2
L (N-1)(N-2) -M S—+ = MM-1) ==+ AM(IN-1)— = K¢
2 r2 27 R¢ 2 RZ2 rR 2
P N3 % B M R?
AN-2)—*+*——] + AM=+ = [ (2A+H) M+(D-2A) ] — +
r 2 r? R 2 R2
(14

- 2
SBmem-n v amin-y R - x2
2 R2 rR 2

£ 2

D) B L pmB 0-2mM - 2D 1B Bm- vy X
R 2 R2 2 RZ
P, N-2 % n] FR 2
*AN-D | =+ > - (N-D) (HM+D) —= = - - ¢
r 2 r rR 2

where the general form (3) of the energy momentum tensor has been used.
We shall assume in the following that the conditions (1V.28,29),

necessary to have a stable flat space, are valid in our case. Under this

assumption, the action depends on three parameters only. For convenience,

we shall take as independent parameters A, B and D, which must satisfy
the conditions:
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A,B,D>0

(15
IN-DM-2) D _(N-D)M
N(M-1) A (N-2) (M-1)
The equations of motion are now:
A e M- p RS L g K FR_ 2
(N=T1)XN-2) - D—+B =]+ AM(N-1) — = K&
r2 2 R2 R?2 R o °© (16
£, N-3 % h R .k
Ay | B M3 ]y R MOED foa-py Bov g K
2 2 R > R2 R2
(17
o 2
FAM(N-2) LR = - X2
rR 2

. L, N
oD B Lv-ne o B s e A | LoEE LD,
t 2 i ) (18

R R r
- 2
L DIN-1) (M-1) LB = - X2 4
rR 2

Deriving (18) and comparing with (16) and (17) it is possible to verify
that the usual conservation law

0+ (N- )(p+p)—-+["l(q+p)g—= | (19

is still valid in our model.

We must now choose the equation of state for the matter. In particular,
we are interested in the case of pure radiation. Since, as discussed in
chapter V, the definition of an equation of state for radiation on quasi-
Riemannian spaces is not obvious, we shall simply adopt that of ordinary
matter, and assume that the breakdown of higher dimensional Lorentz
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invariance resides only in the gravitational interactions. In particular, we
shall consider the case of pure radiation, which satisfies the equation of
state (5). As in the Riemannian case, one can then obtain the relation (*):

N+M

o (pIRMy M= (20

with L a constant. In order to study the solutions of (16-18), we shall
assume for simplicity a flat physical space (h=0) and suppose that the
universe begins with a big bang with both the internal and external radii
set to zero. The relevant equations can be obtained by substituting (20) in
(16-18) and combining them to obtain:

T F IIQZ I“R 2 N-1_MT Ve
a(N-1) L + bMB‘“”(a"b)(N-l)M InSEPHSMA T - I:r R ] N+M-~1
r R RZ rR 2
(21
IS 12 B 12 o
aN-1 | S+ (=22 e o] 2+ M-1) 2= w(aepMN-1) BB -
" = R RZ rR
__N+M
2 - M-
— | [PIRT] T g K
2 R2

where a = (N+M-2)A and b= (N-1)A+ (M-1)D.

As we shall see, the behaviour of the solutions of the field equations is
qualitatively analogous to the one obtained in the case of Riemannian
geometry, at least for a certain range of values of P/a: the two radii
expand until a time t, when the internal radius starts to shrink, while the

(*) Had one chosen the quasi-Riemannian equation of state ( V.36 ) for
the radiation, one would have obtained:
1

(N=1) (N+2M) M (N-1+zM-z)  N*zZM-1 _
r R ) = constant

p (
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physical space grows hugely. For t—t,, r—e and R-—0, but quantum
effects are supposed to come into play at a time L, , when R reaches the
size of the Planck length, stopping the collapse and stabilizing the
internal space, while the physical one continues to evolve as in the
Robertson-Walker model. However, some differences are present in the
details of the two models. This can be seen by studying the behaviour of
the solutions near the singularities. Let us therefore expand r(t) and R(t)
in powers of t, as in (7) and substitute into the equations of motion (21).
It is easy to see that in this limit the term proportional to B/Rz can be
neglected and the following relations hold:

(N-1) o+ M p = 2 NlI-] (22
N+

__N+M

- N+M+ 1
a (N-1)a(o-1) + bM B(B-1) + (a-b) (N=1)M B(B-a0) = —-‘gll_[AN ‘B”]

__N+M
_ N+M- 1
[a(N-1Da+ bMBIIIN-1) o+ MB-1] + (a+b) <N—1>Ma5=%2 L[a¥15™ ]

| The system admits two solutions for o and B:

(23

_ 2 (N+M=1) [AM-D(M=1)]
2 N+M  AMN - DIN-1)(M-1)

5 - 2 (N+M-1) A
2 N+M AMN - DIN-1)(M-1)

The first one is the same as in the Riemannian case. The second is more
interesting since the two radii have a different behaviour. For example, for
N=3, M=6, one can choose, according to (15), D= 3/5A, which gives a= 9/25’
B= 3/25 and hence r(t) = R(t)3, so that the internal space grows slower
than the physical one. It must be noticed, however, that for 0> B/, >™M, |
either o, or B, changes sign and becomes incompatible with the initial
conditions r(0) = R(0) = 0. We shall then restrict our considerations to:
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M
M-1

O<—i—< (24

To study the behaviour of the solution near the second singularity at
t=t,y, one can expand r and R as in (9) and substitute in (21). In this limit
the rh.s. of (21) can be neglected, and one gets:

(N-1)y+M3 =1
a(N=1)y (y=1) + bM 8(8-1) + (a-b) (N-1)M 8(5-9) = O (25

[a(N=1)y + bM& T [(N=1)y + M&—11+ (a+b) (N-1)My8 = 0

The solution of the system is given by:

L

AM - D(M-1) - \/T\I-t_j—]-[AM(N—l )= D(M=1)(N-2)]
AMN - D(N=1)(M-1)

PY:‘..

(26

A+ \/ﬁ-‘—’— [AM(N=1) = D(M-1)(N-2)]
5 M

AMN = DIN=1)(M=1)

In the range of values given by (24), 8 is always positive andy negative,
corresponding to the physical space expanding to infinity and the internal
one going to zero at t, With the same values of the constants as before,
one has for example y=-0.13 and 6= 0.23, to be compared with the
Riemannian values y=-8=-0.33 .

As discussed in the previous section, in order to obtain a sufficient
amount of inflation for the physical space, one should have for ~1/5 2
value close to 15. Unfortunately, as in the Riemannian case, this can be
achieved only by postulating a large number of extra dimensions, because
the parameters A and D are strongly constrained by the conditions (15).
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It seems then that, in spite of the differences in the geometric
structure, the breaking of the higher dimensional Lorentz invariance does
not introduce a substantial difference in the physical behaviour of the
cosmological solutions of the gravitational field equations. However, any
attempt to obtain a realistic estimate of the physical parameters involved
in this model, needs a more careful numerical evaluation of the solutions
of (21).

VI. 3 The generalization of the Schwarzschild solution

When one tries to extend to quasi-Riemannian geometries the
Schwarzschild solution of general relativity, some difficulties arise. From
the discussion at the beginning of this chapter it is in fact evident that it
is not possible to construct on QNM 3 solution which is spherically
symmetric, where by spherically symmetric we mean a solution with
isometry group O(D-1). One can at most find a solution with isometry
group O(N-1) x O(M+1). On the other hand, for N=4, this is the physically
relevant solution from a Kaluza-Klein point of view, because it describes a
space which is "spherically symmetric” in 4 dimensions, and exhibits
maximal symmetry in the internal space (*). Unfortunately, no solution of
this kind is known for ordinary Riemannian geometry, except in the special
case of 11 dimensions [86] or in the case of a flat internal space [87]. In
the last case a class of solutions is known, of which the simplest one is
the direct product of the N-dimensional Schwarzschild solution with a
M-dimensional Ricci-flat space with metric Gpu(y):

_..‘|’
2_ /. 2m 2 . 2m 2, 2,2 2~
ds™ = (l ——-——rN_]>dt +(1 T ) dro+r dQN_2+ R™d54 dY4 dyb (27

with R constant. We denote by d QKz the metric of the K-sphere, which in
appropriate coordinates can be taken to be:

(*) We do not consider here solutions containing electric or magnetic
monopoles of the kind discussed in [83-84]. "Spherically symmetric"
solutions in D dimension are discussed in [85].
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i
dQ§=E oo (28

In view of a generalization to quasi-Riemannian geometries, we are
nowever interested in a static solution with O(N-1) x O(M+1) isometry
group [88]. The most general ansatz compatible with this symmetry is:

This line element describes a space which is the direct product of a
spherically symmetric N-dimensional space and an internal space
constituted by a sphere whose radius e 2 depends on the distance from the
origin of the physical space.

The nonvanishing components of the Riemann tensor calculated from (29)
are:

(30
Roiojzvr,e_zusij Rli]j:%"'e_zusij
Roaob = € 2H¢'v 8z Riaip =~ e 2H (o +¢'2-¢'n) 8yp
Rk T ‘1""%3& (B 8i1Byi) Rapeg = (& 2002 208,848, o)
r
Riajp = - e‘zH'?i',Su S3h

where a prime denotes a derivative with respect tor and i,j run from 2
to N-1 while a,b from N to N+M-1.
The ensuing Einstein equations are:

e_zu[v"+v’2—v’u’+—-——N_2v’+M¢’v’]=O (31
r
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_e_zu[v/”’_v/z_v/u/_ N;Q }ll+M(¢”+¢,2_¢,u, )]___O (32
_ a2 -2
(N-3) 1€ v & (W oy’ —M¢) =0 (33
r? r
(M_])e—2¢_e~2u[¢u+¢/ (M¢,+V,'—ul)+ N;2 q)/]:O (34

summing the first two equations one obtains:
~N;_2<LLI+V,)+M[¢,’+¢/2"¢’(H’+V,)]=O (35

which can be solved using the simple ansatz

vi+u’=0 (36
from which follows the equation

0" +¢’2=0 (37

It admits a trivial solution ¢ = O, corresponding to the Ricci flat case
discussed above, and a more interesting one given by:

0=1n(r-c)-%d (38

with ¢ and d two integration constants. A solution to the system (31-34)
can be obtained if ¢c=0. In this case, substituting (36) and (38) in (33), and
solving the differential equations, one obtains:

6_2“,: eZV — N_3 + b (39
N+M-3  pN+M-3

with b an integration constant. Finally, comparing (33) with (34) one can
fix the value of d: ‘
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d=ﬂ% (40

By rescaling r and t and defining a new integration constant m out of b,
one can finally write the solution as (*):

d52=~( )dt ( ) dr?
]"N+M 3 rN**l"I 3

2 40?2 M1 2 40
M+N-3 N-2 M+N-3 M

(41

An explicit computation of the Riemann tensor shows that the metric
has only one singularity at r=0. Moreover, it is evident that an event
horizon is present at rP=3= 2m and that the metric has a good behaviour at
spatial infinity. The solution describes an (N-1)-dimensional black hole
with an unusual topology. Unfortunately, however, it is not suitable for a
Kaluza-Klein interpretation, essentially because the size of the internal
space diverges at spatial infinity.

To show this, let us consider for a moment the physical case N=4. As it
is well known [8Q], after dimensional reduction, one is left with an
effective metric 4ds?, obtained by Weyl rescaling and projecting the
original one, and a scalar field @. In our case they are:

M+2
4d52=—rm(1— 2m +rm(l— 2m )dr2+r sz

r["]ﬂ M+ 1 2

(42

q):\/'/z MM+1) Inr

The effective metric so obtained is not acceptable as a 4-dimensional
black hole, because it is not asymptotically flat, due to the factors M,

Moreover, also the scalar field @ diverges at spatial infinity, and is then
unphysical.

(*) This solution has been obtained also in [86] in the 11-dimensional
case.



We turn now to the generalization to quasi-Riemannian theories [88]. We

are interested in a metric of the form (29). The appropriate ansatz for the
ielbein is then:

(43
oo r dx’ 08 = o O(r)_dx? dx@
1+><_K><k L wCy €
4 4
with 0,1 and i = 2,..;,N~1 belonging to the O(1,N-1) part and a = N,... N+M~-1
to the O(M) part of G. '
The nonvanishing components of the anholonomity of the vielbeins (43)
are:
Cooy =~ v/ 72K
e _ ]
Caby = = ¢ e72H 8y Capc = ¥ €72 (XcBap~XpBa¢)
The field equations can now be derived from (111.28):
- 2
Al 2 cpe Mg - Mg Mo | - [2AsHMeD M %—} *
r ‘
+ B mm-1)e-20 - A INZ2)INZS) o2y - g
2 2 2
(45

e {A[- N 2 (v M §) = M o) | - (HM+DIM %2] .
B

2M(M ])e—-Z(j) SMM(e—ML Y= 0



e_““{A[— ﬁg}— (V= +M o) =Mo"~ M (v ~p) - v7'=-v'(v ’—u')] -

rz = _
~[(2 A+HM+D] M 9—}+§M<M—1 je=20 _ A NZHIIN=4) —2u_1y -
2 2 P 2

r

(45

= - ’2
e 2“{-(HM+D)[—¥ ¢'= 9" ¢'(v-p)- ¢ (v-p) - M %] +A[-v v (v -

_N-2

(v /__H/)]} + B (M=1)Y(M-2)e—2¢ _ AW“_M.’\J:Q(G—ZH_] Y=0
2 2 -2 »

As usual, we assume that the conditions (15) hold. In this case, egns.
(45) can be arranged to read:

V,,+V,(V,—HI+M ¢/)+ N;Q V,+®[¢)"+¢,(V,—H,+M¢,)+ N;2 q)/]zo

V//+V/(V/_u/)_ N;2 “«,+(®+M)[¢”+¢,(¢,—I—L,)]+

rOlZ gy v - (-1 ¢y B2 g] =0

(46
N
(v’—u’+M¢’)——-——+ﬁ§-( e"2“—1)+
r r
oLy ¢ (vt K2y 1e e
M-1)e20 — Qe g7+ o' Mo+ viepw )+ -N;—Qq)'] =0
where
o - (D=AMM-1) 0 - ANN=DM-DIN-2)(M-1) 4
AN+M-2) BIN+M-2)
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The Riemannian solution suggests to consider the ansatz:
e=20=qr 2 (48

Substituting in (46) one obtains three independent equations:

YK .8 oo (49
r rz.
oy =w, M#N-3 -
<®+1)[ T2 ]e“2“—7-53i=o (50
VoW MeN-3F 5 _
-2u M=1
sz[ - 3 ]e a5 -0 (51

Substituting (49) in (50) and integrating yields:

o20 - N-3 _ b (52
(1+@)(N+M-3-0)  N1-3-8

and then

Vo K om2Wo Kk

r2e r20 | (

1+@)(N+M-3-8) . N+M-3-8

where b and k are integration constants.
Finally, comparing (50) and (51) one can determine d:

g=N=3 _Q (54
T+ e

After rescaling t and r, the metric can be put in the form

N]— rd0? +

2 k'(_2m) 2 (_2m>“ 2 3
ds'=-—=(1-=—)dt" + (I-=—) dr+
RA RA A(1+@) N-2  AQ M

RZ@
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where
A=N+M-3-0 (355
In order to study the singularities of the solution, it is useful to use the
formalism of de Alwis et al. [38],
One can consider the invariants built up by means of the nonvanishing
components of the connection and of the contorsion, which are

Rotgr =M A(A+1+30) - ©@(0+1) (1-2mr~4) 1 r~2

ROin =[®@-m(A+20) r~A)y 1r2 8”

RH]J’:‘mAF_A”QBU- se
o[ O+eA -A7 -2 B
R1Jk] [———_N—B 1 +2mr ] r (8“(5” Sﬂajk)
_ QA _ -A -2 ~
Rabcd = [%M—I 1 +2mr ] r (Sacsbd Sad Sbc)

Dygp = - (1= 2mr™8) 7% p-i 8

Also in this case a unique singularity is present at r=0, and it is hidden
by an event horizon at r A= 2m. If ® = 0, however, the metric seems to
suffer from some pathologies. For ®> O it diverges at infinity, while for
©® < 0 the spatial infinity is a null surface. Investigations are in progress
in order to understand the physical significance of this behaviour.

In any case, the solution is genuinely higher-dimensional, in the sense
that it is difficult to make sense of its 4-dimensional projection for
reasons analogous to the ones discussed in the Riemannian Timit.

We notice, however, that (27) is also a solution of the gquasi-Riemannian
field equations, and is the suitable one if one looks for a metric which
reduces to the Schwarzschild solution after dimensional reduction,

To conclude we notice that both the Riemannian and guasi-Riemannian
solutions we have discussed above might be a special case of a more
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general class, obtained by generalizing the ansatze (36) and (48), but we
were not able to find any solution of this more general kind.
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VII . SPONTANEOUS COMPACTIFICATION
IN QUAST-RIEMANNIAN THEORIES

In this chapter, we consider the possible applications of quasi-
Riemannian theories to the Kaluza-Klein unification of gravity and gauge
interactions. :

The most interesting feature of gquasi-Riemannian theories in this
context is the possibility of obtaining chiral fermions by dimensional
reduction of the purely gravitational higher-dimensional theory [30]. We
shall discuss this possibility in a simple case. Another interesting
property is the existence of solutions of the field equations which exhibit
spontaneous compactification to the product of a maximally symmetric
4-dimensional spacetime with a compact internal space. We shall
I1ustrate a model of this kind, which unfortunately is only partially
satisfactory, and discuss the problems which arise when one looks for
more realistic solutions.

VIl .1 Compactification on tori and spheres

First of all, we consider the simplest case of compactification on an
M-torus TM 1t is easy to see that if the cosmological constant A is set to
zero, the field equations admit a solution MNXTM, with MN the flat
Minkowski Sbace. The physical situation arises for N=4,

Most of the results necessary to discuss this solution have already been
obtained in the discussion of chapter IV on the stability of the flat space.
The spectrum of masses is extracted from that obtained there by simply
substituting for the values of the square of the "internal” momentum k,?
the eigenvalues of the Laplace operator on the torus, which are given by

(2ﬂai> (1

=1
where a; Is the radius of the kth coordinate and n;are M integers labeling
the representations of the group [U(T)IM which is the isometry group of
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the torus.

From the discussion of chapter |V it is easy to see that if one does not
impose any constraints on the free parameters of the action, some
massless vectors are present besides the ones one would expect as gauge
bosons of the group [U(1 M. These have longitudinal components which give
rise to ghosts. We shall examine in more detail this fact in the next
section, in the simple case of the 5-dimensional theory.

If N>4, one can consider a compactification to M4 x TN*M=4 |n this case
the spectrum becomes a bit more complicated, but no qualitatively new
features appear, and in particular the conditions for stability are
unchanged. | |

A more interesting kind of compactification is that in which the internal
space is a cosel space, since it leads to nonabelian gauge symmetries. It is
then interesting to check if quasi-Riemannian theories admit spontaneous
compactification to M4 G/H.

The simplest case occurs when N=4. In this case the O(1,N-1) indices
refer to the physical spacetime, and the O(M) to the internal space. By
consequence, the field equations factorize. It is easy to see that the
solutions must have vanishing torsion and satisfy the equations:

_
R = -
ARayd ™~ Nev—e MoB

BR (2

- A
accb T NeM—2 Nab

They are very similar to the Riemannian ones. For simplicity let us
consider the case in which the ground state is the product of two
maximally symmetric spaces MNx MM, This is the most symmetric solution
compatible with the structure of QNI The curvature tensor is given by:

h _ K i}
= May85 ~ Nos"py) Rabcd = =5 MacNpg ~ MadMpe (3

R =
S
oy ., 5

where h>0 corresponds to de Sitter space and h<0O to Anti-de Sitter space.
Substituting in (2) one has:

A N1y = B Moy = —A (4
2 2



[T is evident that one obtains a flat N-space only if A =0, but in this
case also the internal space must be flat. As discussed in section I1.5, the
other physically relevant possibility is Anti-deSitter physical space and
compact internal space with negative curvature. This is a solution if A and
B have opposite sign, but this presumably leads to the appearence of ghost
states in the 4-dimensional spectrum. Moreover, if one requires b to be of
the order of the Planck scale and a to be compatible with the observed
value of the cosmological constant, the ratio B/, should be of the order of
107120, Another reason for discarding this kind of compactification is that
it does not give rise to chiral fermions.

We are then led to consider the case N>4. The most symmetric solution
compatible with G is now a direct product of three maximally symmetric
spaces M4 x MN=4 x MM In this case the field equations are:

280 - A sy = Bl g1y = 2 (5
2 . ] N+M-2

where a, b and ¢ are the radii of M4 , MN=4 andg MM respectively. If k>0
(compact internal space), the physical spacetime must be deSitter, and
moreover the sizes of M# and MN™4 are compatible. This situation
extends also to more complicated cases of compactification to M4 x G/H.
We shall discuss in section S some possible solutions of this problem.

VIl .2 The five-dimensional case

In order to illustrate in a simple case the differences between
compactification in ordinary and quaSi—Riemannian Kaluza-Klein theories,
we consider the case of a five dimensional theory with tangent space
group O(1,3), compactified to M4 x st

First of all, we specialize to five dimensions some basic results
obtained in chapter Il and IV for the general case.

The most general invariant action on Q%! is given by



S=——J.e5d52{A[’/4c

c - -
By “ aBy ~ 7 © apy© Bya - aoy © ppy

= 2 C55yCppy ~ CSﬁYCBﬁ] + C ClaB)5 Clop)s (6

* %4 E Csgy Cspy * G Caos Cps * M CssyCssy |

were we have put the cosmological constant A = 0. The action depends on
five parameters only, because M=1 is a degenerate case.

We assume the ground state to be M4 x S], where S is a circle of radius
a. The background vielbein is then:

o
- A ) 0
em*(“_) (7

Expanding around this ground state, one can obtain the bilinear action.
We are mainly interested in the massless sector (35=0), for which it takes
the form:

s > ) . 2,
S, = Jd z{A [ Nap® Napy = 2 Nio)2pdy) (ap ™ Noa® Mg * 2 aodply ()

- hsyaz h,YS + hsaaaaﬁhﬁs + 2 h5552 hW_ 2 hssaaaﬁh(aﬁ) ]
' (8

- C( h,YSa2 hYS + hasaaaﬁhﬁs ) - % E( hsyaz hS’Y“ h5a5aaﬁh55)

- G Nesdadphps ~ H Nssd?hss |

One can then calculate the spectrum as in the higher-dimensional case.
The massless states are the graviton, two vectors coming from a mixing
of the hgs and hgy excitations, and two scalars corresponding to the
longitudinal part of hgy, i.e. hg, and hsg_ . These scalars are ghostly and,
in order to eliminate them one must impose some strong conditions on the
parameters:



A2 -EC=0 G=-C H=0 (9

These conditions render the action invariant under the gauge
transformations:

oh -_A (10

6h oS C €50

50 %50

Under these constraints, the massless spectrum of the theory changes
drastically, and one is left, as in the Riemannian case, with one graviton,
one photon and one scalar. ‘

The massive spectrum is given by a tower of spin 2 particles with

2
EETRC

and integer n, to be compared with the Riemannian case where M2 =
"/ )%

We wish now to investigate what kind of zero-mode ansatz is
appropriate for the (unconstrained) 5-dimensional theory, to better
understand the origin of the doubling of the massless vectors in the
spectrum [88]. It is interesting to note that, contrary to the standard
Kaluza- Klein theory the new massless vectors do not seem to be related
to any local invariance.

In ordinary -Kaluza-Klein theory, the zero-mode ansatz takes the form

o M H
e M(X ) Au(x )
0 o(xH)

It is important to notice, however, that, as pointed out by Cremmer and
Julia long time ago [90], this ansatz is only possible because when the
original O(1,4) invariance of the theory is broken to 0(1,3) by the choice of
the ground state, one can still profit from the original invariance,
choosing a gauge in which the lower left hand corner of the matrix is
vanishing. In our case, on the contrary, this is not possible, because the
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original invariance of the theory is too small (*).
One is then forced to consider the more general ansatz

o (M i
e® () AL

B%(xH) o(xH)

This accounts for the presence of two massless vector fields in the
spectrum of the theory, corresponding to Ay and By = e% B* We also
point out that it is not consistent with the field equations to put BM= 0 and
A = 0. This can be seen from the equations obtained by substituting the
ansatz (12) into the field equations stemm] ing from the action (6). It i
easy to see by comparing the o5 and 5o components of these equatmns
that they require F“\, = 0. This is analogous to the well-known fact that in
ordinary Kaluza-Klein theory the scalar field ¢ cannot be consistently
taken to be constant [54].

In analogy with the Riemannian case, the ansatz (13) is invariant under
the transformations:

XM — xH = xH(xH) (14
X3 5% = x5+ A (xH) (15
As usual, (14) can be identified with the 4-dimensional coordinate
transformations, and (15) with gauge transformations. In this case,
however, the gauge transformations assume a more complicated form:
o Lo = a0 ' o
e LL(><“)—>e u(x“) e LL(><“)+ auk(x“)B (xH)
Au (xH) - Ay (xH) = Ay (xH) + oy (xH) ¢ (xH)

BO (xH) — B & (xH) = B® (xH)

O (xH) = ¢'(xH) = ¢ (xH)

(*¥) This argument can easily be generalized to higher dimensions.



In particular, the fact that the vielbein is affected by gauge .
transformations, renders non-trivial to check the gauge invariance of the
effective action. This can be obtained from (13) by calculating the
anholonomity coefficients:

2 - c Aﬁ(ayBa-'caYSBS)—(BHy)
ofy Topy+ T

_ 98B0~ CapyBy

¢
5 -
oBS - o- A5B;

| A -
< ABBSSY AB Y(b (Bey)

By By 0= AgB,,

+
555 __Bapy T %0
! R

where the hat refers to 5-dimensional quantities, and the determinant

Substituting in (6) one has:

4 ,
- _ 2112 J‘ e4d X _ 2 _ +
S g ¢‘Aa5a{A[(¢ AoBo)“R,~ g8y 1+ C BgoBpg,

F _ S 2
+ G G(m Gﬁﬁ + = (o AaBa) FﬁYFBY+ H an> ay¢
+ higher order terms }
where Fop = VgAg—VpAg and Ggp = VB +VpBgy , With Vi the usual
(torsionless) Riemannian covariant derivative of the 4-dimensional

manifold and R4 the corresponding Ricci scalar.
In order to obtain the physical action, one should now Weyl rescale the
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metric, so that a constant coefficient appears in front of R4 [90]

We do not pursue this in the general case. We rather notice that, when
the conditions (9) are imposed, a new gauge invariance is introduced into
the linearized theory. IT this invariance can be extended to the full action,
it may be exploited to eliminate the field By @nd hence to use the standard
ansatz (7). In this case, after Weyl rescaling, one has

__2maf, 4 1 LEQ
s-- 2 je4d KLAGR,+Lo00,0)+ Lo Fogfig] (20

In the ground state ¢ = a, and one can relate the parameters of the
theory to the observed physical constants:

9 161G
2maA _ | 0o _x — - N A (21
K2 16TIGN S>m1a E 3 E
and then
2
1 _E __¢€ (22
a2 A ]6ﬂGN

This relation suggests the possibility that if E<<A, the compactification
may require a scale for the internal space larger than the Planck one.

VIl .3 Compactification on coset spaces and zero-mode ansatz

We can now generalize the previous discussion to the case of
compactification to coset spaces in higher dimensions. We consider the
case in which N>4,

The most important observation is that not every coset space can be
chosen as internal space [39]. As was discussed in section 1.5, in fact, in
order to have invariance under G transformations, the isotropy group H
must be embedded in Gt in such a way that the matrices Daﬁ(h“) from
the adjoint representation of G can be considered as Gy-transformations
of the internal space. In our case the matrices of Gt are block-diagonal
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and then one must have

~

0P -p. (=0 (23
a o
Infinitesimally, these conditions can be written as

fabC ™ Thac = © (24

where f2g¢ are the structure constants of G.

In another way, one can say that the embedding of H in GT via the usual
formula

~
~ ~

_ ~_ <Of . _<ab

succeeds only if (24) is satisfied.

AN important consequence of this is that the generators Qg and Qx carry
two independent representations of H, since

[Qa,QB]C {Qa} [Qé“,@‘é]c [Q'a"} - (26

We assume here that the gauge invariance introduced in chapter |V at the
linearized level can be extended to the nonlinear theory, and that it is then
possible to write the zero-mode ansatz in the usual form:

A B
e (X) —aD% (y)AM(x)
| ~ (27
A

where a is a constant related to the length scale of the coset space.

~As in the Riemannian case, if the condition (23) is satisfied, the ansatz
is invariant under:



(28

representing 4-dimensional coordinate and G-transformations.
In this case it is easy to calculate the effective action by means of the
anholonomity coefficients:

EA) _ AA 6A~~=CA~~
BC BC BC ~ BC
A ~% D F F M. EL LA
ch~=0 Ch% . =aA . (Da-€~ e~ Da ~= (29
BC BC c( D MeE D ) BF
A A AN XD
C""""_ C v = ~
BC O BC aDDFBC
where
A A A A B . C
Foo=0. A.-0_ A, —fTan AL AJ (30
BC B ' C C B BC B C

Substituting into the action (I11. 15) one obtains [39]:

where du = ey dKy is the G-invariant measure on G/H and R4 1s the usual
Ricci scalar of general relativtity.

The integration can be performed by using the methods of harmomc
expansion on coset spaces [24,49] and exploiting (26) to show that D"OC Dp®
and D"a DAa are covariant G-tensors. The result is

2 l\
= - K AR, + = 2
S e, dx[ + q BY BY (32



where
_ A (N=-4) EM (33

+

dim G dim G

VIl .4 Compactification to M4 x SU(2)xU(1)/U(1)

A simple model exhibiting the main features of the compactification in
quasi-Riemannin theories and in particular showing the possibility of
obtaining chiral fermions after dimensional reduction, was suggested by
Weinberg in his original paper on gquasi-Riemannian geometries [30].
However, he did not discuss the possibility of obtaining it as a solution of
the theory. We want to discuss it in some detail and to show that it is in
fact a solution of the field equations of section IIl. 3 [88].

We consider a 7-dimensional space with tangent group O(1,5) instead of
the usual O(1,6). The internal part of the tangent space group is then
simply G't = 0(2). We assume that the internal space is maximally
symmetric, so that H has an isotropy group 0(2)~U(1) and an isometry
group O(3)x0(2) ~ SU(2)xU(1). The generator of H is taken to be a linear
combination of the generator of the U(1) part of G and of one of the
generators of SU(2), namely:

Q5 = —I==0 (34

14k

where k can be chosen integer by an appropriate normalization of Qg . Here
Qg is the generator of the U(1) factor of G, while Q,, Q, and Qs are the
generators of SU(2). Finally, Q, generates H.

We use the following generators for the coset space:

(35



We identify 1,2 with the 0(1,5) (greek) indices of the internal space,
while 3 is left invariant by O(1,5) transformations (and is then a latin
index). The coefficient p is related to the freedom in the rescaling of the

vielbeins [57].
Inverting (34) and (35) one obtains

Qs = —=— (a--« 23)
J1+k2 H
(36
o] a3 )
Qs = (ka-+ =2
3000 0
J1+k? H
The nonvanishing structure constants of G, defined as usual by
are given in this basis by:
fof = == ea7 fos = —m— &=
oap 5 of apo > &B
1+K I+k
(38
fx~n = _k_]e~ fomy = _ Exr
3o > op ops S o
1+k 1+k
where &,Erun over 1,2.
It is very easy to see that the condition (24) is satisfied, since
535 = 335 = © (39

Moreover, from the canonical embedding (25) of H in G', one easily sees

that G’y is generated by



L3y - Ji1k% Qs = Qs+ k Qj (40

As shown in section 1.3 a vielbein for the coset space can be
constructed, for example by taking

=g O0p¢ 3 e 2 (41

The components of the vielbein L=TdL are then

—

SR

e' =-d6 e =sinB do

(42

eg _ dy+Kkcos® do

uy 1+k2
and the H-connection is given by
e® = ke’ - 1+k2 cotge e? =X QW _C056d0 (43
V 1+k2

From (42) one can then calculate the metric:

ds” = d6” + sin“e do° + — (dy+ k cos6 d¢)? (44

w1+ k9

In order to avoid essential singularities, if k is an integer w must
have period 41 [91] This is because the metric (44) is singularat 8=0
and 6 = 1. It is then necessary to make a coordinate transformation which
renders the metric regular at these points. This can be achieved at 6 = 0 by
defining for 6< 1 a new coordinate y =w+ K¢ andat 6 =1 defining
for 8> 0 a coordinate y"' =y -k ¢.These two transformations must be
compatible in the overlap region, e.g. for 8= 1. But dy' =dy -2k do
and a line integral at fixed y' around the equator changes w' by -4k
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and since k has been taken integer, ' and hence w must have a period 417,
The spaces constructed in this way can be described as nontrivial U(1)
bundles over S2. Some special cases arise for k = 0, which is 52 x S and
k =1 which is 3. The parameter ugives the length scale of the bundle. For
K=1andu= 1, one has a "squashed" 3-sphere.
As discussed in section I1.5, in general one has a certain freedom in the
choice of the spin connection in a coset space:

C
Q)» ——f ~= £ "—_f’é*ée (45

However, in quasi—Riemanman theories, the mixed components of the
connection w%, must vanish and therefore, unless T3RC = TGpE = O, one is
forced to choose the canonical form of the connection, corresponding to
p =1, and then to have nonvanishing torsion (see also appendix B).

In our case fg’&’6= O and therefore we must choose:

~ ~

e” + cotg © e’ (46

The torsion and the curvature can now be calculated from (42) and (46).
Their nonvanishing components are:

N
[SAR;

(47

in accordance with the general formulae ( 11.59, .60 ).

In order to solve the field equations it is convenient to use the Palatini
formalism discussed in chapter [11.

When the equations (44) are substituted in the field equations for the
connection, only one nontrivial relation arises:
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K a-e,
: £+ Q(C]—c2)u =0 (48
Jisln |

which fixes the value of u:
5 e - a

oy (49
Cl CZ

il

Substituting (47) in (111.30) one can obtain the field equations for the
vielbein: ’

aR any. € =0

voaop  Cav

o Ryaop ™ €1 C Tapp Tabv ™ Tpab Tvab ) * 2 € Tapy Tapy

* Vs ey (Tagy Tpay * Tpap Tapy) = % Myy € = O (50

¢ Topm Tapn = C2 Tapm TRon = €1 Tmop Thap = %My & =0

with

\ =a(RdBBé‘+ ROCBBOC) tc TOLBCTOLBC *c, TOLBCTBOLC
| (51
* € Tapy apy * €2 Tapylpay * 2

where for convenience we have omitted the ™ on the coset space indices
and have assumed that the physical spacetime is maximally symmetric.

After some algebra and making use of (49), the field equations can be
written as:



(52

where A and E are defined as usual and a and b are the scale factors of the
4-dimensional space and of the internal one respectively. Moreover we

have defined:

2
C2 - H2 b2 ]+}2<

K

The equations (52) admit a solution for h =1 and:

2A

1 _zA A

]_z
.2

Furthermore, egns. (53) and (54) yield

2 k2 4E

]+k2—A_

H

which, compared with (49) fixes the value of k:

K2 A €, o

_a-e, 2(cy-cy)
1+k2 4E 2(c,~c,) o a-¢€

2

1
19A b2 5 c? 10E -

(53

(54

(55

(56

It seems then that also the topology of the solution is fixed by the field
equations. It is interesting to notice, for example, that for e1 =€e-,=0, K

must vanish, and the internal space must be s2xs !,

Unfortunately, as it is clear from (54), it is not possible to obtain a flat
4-dimensional spacetime. This seems to be a general feature of any model

of this kind. We shall discuss some possible ways out in section 6.
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VII .5 The fermion spectrum on SU(2)xU(1)/U(1)

We pass now to consider the dimensional reduction of fermions in the
model considered in the previous section [30].

Fermions are defined to transform as spinors under the fangent group
SO(1,5). This group admits two inequivalent spinor representations, which
are not correlated by CPT [26]. One can then construct a theory containing
spinors belonging to only one of the two representations, i.e. with definite
six-dimensional chirality. This implies that to a given 4-dimensional
chirality corresponds a specific representation of Gt ~H

For example, for y in 4, the parts of the spinor field with Ys=+1 are in
the representation of G't with "helicity" 'z .

The representations of G are labelled by the SU(2) isospin j and the U(1)
hypercharge q. From (40) it can be deduced that for a given g, the H
guantum number of a spinor of helicity = 4 is + 4 - kg, and then the
harmonic expansion of the Ys = =1 parts will contain once all the

representations (j,q), with j =lsle-kal, [#le-kaql+1,.., with kg integer or
half integer. There 1is then a complete matching between the
representations for ys=-1 and 75‘= *1, except that for yg=+1 thereis

one extra with j =kg-4 for each g with kg positive , while for Y5= 1
there is one extra with j = |kgl-%4 for each g with gk negative. These
appear in 4 dimensions as an infinite tower of massliess fermions. We wish
to show more explicitly this fact [88].

Let the O(1,3) spinor algebra be generated by the 8-dimensional matrices
Iy, which satisfy

[Fa,f‘ﬁ}=2naﬁ (57

with a=0,1,2,3,1,2.
We consider the particular realization of the algebra given by:

Te, = Yy X O FT=YSX61 T~2«=1><62 (58

where v, and oy are the usual Dirac and Pauli matrices.
The generators of O(1,3) are given by % Zop, Where:

Ve Top =~ %4 [Ty, ] (59
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which commute with I’y = 1x o3, which is the O(1,5) equivalent of the Y5
matrix. The fundamental representations of 0(1,5) correspond to the
eigenvalues 1 and -1 of I'y. '

Let us assume that

C7y = o3y = | (60

From (58) and (39) it follows that the group G'y of rotations of the
internal space is generated by

1 —_—_
. Z*T"ZJ > Y5 X Gq (61

ACting on the chiral components of w, y_ and g, corresponding to Y5=-1
and vys =+1 respectively, one has

x \yL=—i kL\yL=

NS}

1
2 1
(62

|

—_— = — = - L

2 ST3V¥R T 1AV A
This shows that y and g belong to different representations of G'T.
Consider now the Dirac operator:

LoV = (1601 Ve T Y501 Vi° Oy Vo) y =

| (63
. 1+ %5 ~5
G, (y, V., +1, V1+1V2)W=01(Yava+———v_——-—v )y
' "o 'S5 1/5 1/5 +
where we have used ogy= vy and we have defined
vV, = +i1V_) (64

1
N — (V_ _
= 2

The spinor lagrangian takes the form
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Tandw‘/; (W, Vov =V, ) (65

As explained in section I11.2, in order to evaluate the mass term it is
useful to introduce the harmonic expansion [23]:

v o) = D, 230 ZDJQ(L )y (66

j2m{A,q) AN

where A labels the representations of G't and by (60) is +4 for VoL
respectively, while DJ,A are the uni itary representations of the group G =
SU(2)xU(1), labeled by the SU(2) isospin J and the U(1) "hypercharge” q. The
index m refers to the representation of the subgroup H of G corresponding
to the representation of Gy labeled by A, according to the embedding (25).
It is then easy to see from (40) that A=m + kq, i.e

m = A—-Kkq (67

Making use of the results of section 1.5 one has:

] 1 iy _i [drmydrm-1)
V. D) rbDJmn[(Q~l_1Qé)Ly] b\/ > DJmi],n (L)
— — T (68
=1_\/<J+xikq)<m+kq+1> o) (L)
b 2 m+£i,n Y

After substitution in (63) the mass term becomes

L 2 22(T y %
% b“/(3+'/‘°')_kq (WLWR WRWL) (69

From this equation one can recover the result given above: a massless
chiral multiplet exists for any j = - + |kqgl . For kg positive the massless
mode is a right-handed multiplet while for kq negative it is left-handed.

An undesiderable feature of this model is that it contains an infinite
number of massless fermions since kq can take any integer or half integer
value. This fact is in disagreement with the observations. However, as we
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shall discuss in the next section, some examples of a quasi-Riemannian
theory containing a finite number of massless fermions can be constructed
[32].

We also mention the fact that in principle one could add to the
lagrangian a term of the type \‘;1'53\4/, which would give rise to a bare mass,
but terms of this kind are ruled out if one considers fermions of definite
O(1,3) chirality, since in this case any term of the kind ¥ y vanishes.

We finally notice the similarity existing between this model and the
6-dimensional Einstein-Maxwell theory of section I1.7. In that case the
appearance of chiral fermions was due to the monopole configuration of
the Maxwell field. In our case the rdle of the Maxwell field is taken by the
extra dimension, and by consequence an infinite number of fermions
arises, instead of the unique multiplet which was obtained in the Maxwell
case for a given monopole charge.

VIT .6 Concluding remarks

The example given in the previous sections can be generalized to higher
dimensions. A 11-dimensional model with tangent group 0(1,9) and
internal space SU(3)xSU)IxUCT)/SU2)xUC1)IxUCT) is now under study. It
presents essentially the same features of the previous one and chira]
fermions can be obtained by the same mechanism.

It is instead very difficult to obtain a compactification with more
general tangent space groups of the kind O(1,N-1)x0O(M) with M>1, because
in this case it seems unlikely to find an ansatz for the torsion which
permits to satisfy all the field equations. In fact, these essentially
require the vanishing of the components of the torsion with all the indices
of the same kind, but not of those with mixed greek and latin indices and
these conditions are compatible with the Maurer-Cartan equations only in
very special cases.

In any case, no compactification with flat 4-dimensional spacetime
seems to be possible in the context of purely gravitational quasi-
Riemannian theories with tangent space O(1,N-1)x0O(M).

It seems then that in order to obtain realistic models of
compactification also in guasi-Riemannian theories one is forced to
introduce additional matter fields.

The most attractive possibility, due to the natural appearance of torsion
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in the theory, is perhaps a mechanism analogous to that proposed in the
Riemannian case by the authors of ref. [60], where a fermionic condensate
provides a source term for the connection equations, which permits more
freedom in the choice of the torsion of the internal space.

Another possibility [40] is to add to the gravitational action terms
quadratic in the curvature, possibly in a suitable generalization of the
Gauss-Bonnet terms [46], or of one of the other ghost-free actions of the
Einstein-Cartan theory [93]. '

Finally, 2 more drastic but probably more interesting possibility is to
study more general tangent spaces, of the kind Gt =0(1,3) x G'1, with Gt
C O(M), as for example Gt = O(1,3) x U(L). In this case additional terms can
arise in the gravitational' action, which can act as sources for
compactification. In fact, it has been shown by de Alwis and others [37]
that, when these more general tangent spaces are considered, it is
possible to obtain a solution in the form of a product of a flat spacetime
with a nonsymmetric coset space, as for example SU(6)/U(3).
Unfortunately, the number of terms permitted in the action grows very
rapidly with the complexity of the tangent group and the theory becomes
almost untractable, even if in principle one can reduce the allowed terms
by requiring stability, absence of anomalies, etc.
~ Another important property of the spaces with tangent group O(1,3)xU(L)
is that they may admit a finite number of chiral fermions. An explicit
example of a 10-dimensional theory with G1 = 0(1,3) x U(3) and internal
space CP3 = SU(4)/U(3) which admits a finite number of chiral fermions
has been given by Witten [92].

To summarize, it seems that quasi-Riemannian theories may provide a
promising field of research in the context of a Kaluza-Klein program of
unification of gauge and gravitational interactions, in particular for what
concerns the problem of the chirality of fermions.

However, many problems are still unsolved, first of all that of the large
freedom in the choice of the tangent group and of the great number of free
parameters which appear in the action. If the first problem can probably be
solved only by comparing the predictions of the theory with the
observation, the second can be faced from a theoretical point of view, by
imposing some natural requirements on the theory, like absence of ghosts
and tachyons, which, as we have seen in the special case of the tangent
group OC1,N=-1)x0(M), can provide strong constraints on the parameters of
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the theory.

Other constraint can be imposed for example by requiring the absence of
anomalies in the guantum theory. This would require a study of the
perturbative expansion of the theory to higher orders, which is still
missing.

Also an extension to the non-linear theory of the gauge invariance we
had to introduce at the linearized level in order to avoid instabilities
deserves further investigations. '
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APPENDIX A

One of the most difficult problems, when dealing with Kaluza-Klein
theories is to choose a notation which is clear and consistent.
Unfortunately there is absolutely no agreement between various authors
about this matter, so that it is always very-annoying to translate from one
notation to another. The situation is also worst in quasi-Riemannian
theories, because of the need of distinguishing between indices belonging
to different subgroups of the tangent space group. |

In this thesis we are mainly concerned with D-dimensional spaces with
tangent group O(1,N-1)x0O(M), where ™M = D-N. These spaces will be denoted
by aNM The conventions adopted (if not differently specified) are the
following: the signature of the flat metric is (-,+, ...,+). Early letters
from the alphabet denote tangent space indices. Because of the structure
of the tangent space they naturally split into two sets: 0,...,N-1 and
N,..,D-1. We put AB,C..=0,.D-1;0aBy.=0,.,N-1 and ab,c=N,.D-1.

Analougous conventions are used for the world indices, which are
~denoted by middle letters from the alphabet: M,N,P... = 0,...,D-1; pyv,.. =
0,.,N-1 and m,n,.. =N, D-1.

When compactification to coset spaces G is considered, indices from
the algebra of G will be denoted by a hat: C They split into H indices
AB,C,. and coset (tangent space) indices ABC.., which run from 1 to K =
D-4 . Finally, the four dimensional indices AB,C,.. are denoted by a dot.

We also usually denote by zM the coordinates of the full space, by XM the
four dimensional ones and by yﬁ those of the internal space.

The Ricci tensor of Riemannian geometry is defined as

/H
n N
A,B,

RaB = RACCB

and the Ricci scalar as

R =RABBA

With these conventions the sphere has negative curvature.



APPENDIX B

In this appendix we prove that in order to obtain an effective
4-dimensional theory containing gauge bosons by dimensional reduction of
a quasi-Riemannian gravitational theory, one must have nonvanishing
torsion [28].

In fact, let us assume that the usual zero-mode ansatz is valid in our
case:

- K B
e . (X) —DE (y) A 4 (x)
A

A crucial observation is that in order to arrange suitably the gauge field
AM, one cannot have a block-diagonal vielbein,

Consider now the holonomy group of the manifold BD, defined as the
subgroup of Gt consisting of all the rotations which a geometric object
can suffer under parallel transport on any closed path through a point. A
theorem by Berger [94] states that in D dimensions with Gy < O(D), the
vielbein is that of a symmetric space unless the holonomy group is one of
the following:

SO(D) ; U(D/2) [D even] ; SU(D/2) [D even] ;
Sp(D/2) x Sp(2) [D=4n] ; Sp(D/2) [D=4n]; (2
Spin (9) [D=18] ; Spin(7) [D=8] ; Go [D=7]

Now, symmetric spaces cannot admit a vielbein of the form (1), nor the
groups (2) can fit into tangent spaces of the kind O(N) x Gy’ with
nontrivial Gt'. Finally, if the space is a direct product, the vielbein takes
a direct product form and cannot provide gauge fields as in (1).

In the case of a O(1,N-1)xO(M) tangent group, a more direct proof can be
obtained by an explicit calculation [311].

The ansatz (1) yields, for nonvanishing torsion:



~

D, . A

~"=]_
@®XBC T 5
D EMF _F
ox8c = A c Py eg e TP ) TAFB (4
SRS ISR N o PSS
©ABE T TABC " A M T CDB (5

But, because of the quasi-Riemannian structure,

Oghc = Papc = 0 (6
One has then from (3):
D, bpfy) = 0 7
and from (4) and (5):
Moa=tCa=0 (8

The Lie algebra of G must then contain two subalgebras & and &' spanned
py:

{Q;\,Q ) and (Q%, Q) (9

o
with

[Qg,Q&]=O (10

Egn. (8) implies the vanishing of Dag(y) and therefore (7) can be written
as

a'n
gy D

B, A o B
v Dz (y) FBYD/—\ (y)=0 (11

_Since in general D P(y) and DAP(y) are different from zero, Faﬁy and
FA ﬁY vanish and the gauge fields of G are absent from the spectrum.
The situation is different if one introduces torsion. In this case the
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connection and the torsion can always be chosen such that
W~ = O ]2
apy (

Moreover, if one chooses the canonical connection for the coset space:

M

m;éa = G“A eﬁ faé[“) (13
the conditions (7) are satisfied provided
’AYI _— 6 ol

f 58~ f &B 0 (14

This was shown in chapter VIl to be a necessary condition for the coset
space to admit a quasi-Riemannian structure.
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