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1.1 Opening remarks

In recent years an increasing number of physicists have been turning
their attention to aspects of high-energy physics involving spin or polari-
sation phenomena. The motivation being the belief that this property, fun-
damental to the present picture of particle interactions, can open up new
windows into many different features of the underlying theory.

While nobody to-day would seriously support the view that spin is
merely an "inessential complication” , its importance is still to some extent
ignored. This thesis then is intended to go some way to providing a solid
footing (within the context of high-energy hadronic physics) for the theory
and phenomenology of spin. This is to be achieved by presenting a broad
discussion of some of the interesting theoretical points, together with a
description of the present experimental situation, and in so doing to de-

monstrate the following two statements:

(i) Spin phenomenology is intimately dependent on the underlying
(field) theoretical description of particle physics and thus
can provide a great deal of information as to the validity of

“the present formulation of the latter.
™~

(i1) Much of spin physics is infact experimentally feasible and ac-
cessible to present day (or very near future) technology, and
in many cases to virtually the same degree as the corresponding

situation for unpolarised physics.

Clearly both the above two points are essential to the relevance

of polarisation phenomena in high-energy physics: the theoretical dependence
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on spin should be non-trivial (i.e. unambiguous) and at the same time the
predictions should be experimentally verifiable.

The important point is that if one considers for example the scat-
tering of an electron (or other lepton) in a particular helicity state off
a proton in a given helicity state then the theory leads to very precise
predictions of the cross-section dependence on the relative po]érisations
of the two interacting particles, in particular that this dependence is
strong. Through the parton picture and factorisation theorem the same
statements are seen to hold true also for hadron-hadron interactions. With
recent developments in experimental techniques highly polarised beams and
targets will soon be available thus allowing access to these large spin
effects.




1.2 A brief survey of the réle of spin in physics

One of the many notable contributions of Dirac was to demonstrate
that the spin degree of freedom emerges in a completely natural way from
the field-theoretical description of particle physics [1] . It is this in-
timate and natural connection of spin to the present-day view of physics
that candidates it as a useful tool with which to ascertain the validity
of the theory.

It is indeed true that the downfall of Regge theory was due essen-
tially to its failure to describe adequately the spin properties of hadrons
[2] . While the phenomenological description of amplitudes in terms of Regge-
pole contributions was quite successful with some differential cross-section
data ( m-nucleon charge exchange for example), corresponding polarisation
data was not explained by this model. First and foremost the lesson to be
learnt here is the necessity of a true theory and that phenomenological
models, however sophisticated, can only ever be successful up to a point,
sooner or later finding themselves unremediably in conflict with the data.

Equally true is the fact that any unexpected results could Tead, at
the very least, to modifications of the present theory and thus in any case
to a deeper\understanding.Such unexpected results do infact already exist:
the mechanisms\;ésponsib1e for generating single-spin asymmetries still
Tack a complete understanding and the large polarisation of hyperons produced
at even very large p_ in unpolarised pp collisions [3] still requires a sa-
tisfactory explanation. Moreover the description of transverse spin, being
intimately related to the bound-state and non-perturbative effects in QCD,
is far from complete [4] .

Coming more to the forefront of the present day research: if the

hope that supersymmetry [5] can resolve the gauge-hierarchy or fine -tuning



problem of grand unification theories is realisedthen,since the basis of
supersymmetry is the "unification" of Bosonic and Fermionic degrees of freedom,
one could reasonably expect that spin-physics should play a significant rdle
in determining the precise form of the supersymmetric theory at work in particle
physics. B

A rather remarkable phenomenon recently proposed by Rubakov [ 6] and Callan
[7 ]1is the possibility that a fermion scattering off a GUT monopole could change
its identity. The point being that in addition to the contribution of the fermion
helicity to the total orbital angular momentum of the fermion-monopole system
there is also a part egh v/r coming from the monopole field. Thus, in the
s- wave,in order to satisfy both the Dirac condition eg = 7 and angular momentum
conservation as the fermion passes the core and ¥ — - ¥ one of two things
happens: either the fermion helicity flips or its charge changes sign. In prin-
ciple both can happen as a GUT monopole is an indefinite state of fermion number
One profound consequence of this is that monopoles could catalyse proton decay
with a strong interaction rate. This effect would be observable if the monopole
flux were sufficiently high and is due to the belief that in this situation heli-
city conservation is as fundamental as charge or baryon number conservation.

Since electro-weak interaction phenomenology will not be dealt with here
it is perhaps worth taking this opportunity to make a few comments. Given the
distinct par;;}Eqig}ating nature of electro-weak theory, spin is ?he}obvious
candidate as a mirror in which to reflect unambiguously this property. In the
the Drell-Yan process one would expect the onset of a large single-spin (proton)
asymmetry in the lepton-pair production cross-section at the Z° threshold,
indeed in proton-antiproton colliders strikingly large (and opposite sign) single-
spin asymmetries should be registered for W and W production [8] . Moreover,
the presence of a second heavier Z° predicted by some theories [9 ], while not
readily detectable from normal cross-section measurements at present energies

would induce a very marked departure from the expected behaviour of the spin




asymmetry. A1ternat1ve1y polarisation of the proton and antiproton beams pro-
vides a practical way of removing the QCD hadronic background.

One also expects parity violating single-spin asymmetries in nucleon-
nucleon interactions. Estimates based on an effective parity-violating Lagran-
gian arising from light-boson exchanges put such asymmetries at around -10_7
in agreement with Tow energy experiment [10] . However at Argonne:for Prab
= 6 Gev/c large positive asymmetries of the order +3x1D~6 have been observed

[11} . Although various mechanisms have been suggested, the most successful
based on Z° and wj3 interactions between the valence quarks [12] , this data is
still lacking a completely satisfactory explanation.

Another topic not touched upon by this thesis is polarised e'e experi-
ments [13,14 ]. Although e+e— colliders have the major drawback of a much lower
evént rate than in proton —(anti)proton colliders, the great advantage they
do have is that both the electronsand positrons are automatically highly pola-
rised (down and up respectively) for free due to synchrotron radiation, ac-

cording to the formula:
?; = ?i_ = 0.92% /(1 + Tf,.,t/’ﬁar,e) ,

where Tpo1 and Tﬁep01 are characteristic times for polarisation and depolarisa-
tion, depending on machine properties. Unfortunately so far it has not been
possible to-rapidly reverse the polarisation in efe rings, however it is
possible exper{ﬁénta11y to determine all the transverse-spin cross-sections.
By inducing a depolarisation resonance (possible at any energy) one can obtain,
besides the one available po]érisation for each electron or positron, zero po-
larisation for either. This would also involve a certain loss of accuracy al-
though in a year's running at PETRA (with approximately 20,000 events) one
would expect a statistical error in the asymmetry measﬁrement for hadron pro-
duction of about 4% [14 ]. The systematic errors being much smaller, and in-
fact also much reduced with respect to normal unpolarised operation.

One use of such experiments might be to measure the ratio R of the
e+e- cross-section for hadron production divided by that for muon-pair pro-

duction. This would be a test of the one-photon exchange model in which R



should be independent of the spin configuration of the annihilating leptons.
Spin asymmetries would also provide a useful method to search for the Z° at
present PETRA energies [15] .Even for s = 30 or 40 GeV there will be sizeable
deviations of 5 or 10% from the standard 100% spin asymmetry in the one photon

exchange model.




1.3 Outline of contents

The following and final section of chapter 1 consists of a list of the
essential notation and conventions common to most of the other chapters, and

in addition it contains a few useful expressions and basic kinematics.

By way of an introduction to spin dependence in hadronic inferactions
chapter 2 discusses deep-inelastic scattering, both in terms of the Wilson
operator expansion and from the more physically intuitive approach of Altarelli
and Parisi. The Tlatter also giving a physical feeling for the spin properties

of partons and their Qz—evo1ution.

In chapter 3 the theory of spin within the framework of perturbative
QCD is discussed. Starting with an examination of the QCD Lagrangian in the
high energy limit, which reveals how helicity can be viewed as a conserved
quantum number in hard (partonic) scattering processes, the hard scattering
partonic cross-sections are calculated and their strong helicity dependence
explicitly displayed. It is then shown how the factorisation theorem can be
extended to include initial and final partoné and hadrons in given helicity
states. Finally via this theorem, which stated simply permits hadronic cross-
sections to be expressed as convolutions of partonic cross-sections and partonic
distributions, using models for the latter the helicity asymmetries for various
processes are est%ﬁhted and shown to be large for suitable kinematic configura-

tions.

Chapter 4 contains a review of the present experimental situation with
respect to spin measurements. The presently available data is discussed together -
with some of the more important technical problems involved in performing polari-

sation experiments at high energies.

Perturbative QCD as applied to hadronic interactions has several
difficulties which 1imit its predictive power: the large radiative corrections

associated with the Drell-Yan process for example, which lead to the well-known



K-factor, are discussed in Chapter 5 where it is shown that the large
corrections to qi-—»r* (coming from real and virtual gluon contributions)

cancel in the ratio one considers when forming the helicity asymmetry. Another
important effect one would like to have control over is the importance of higher
power p. mechanisms which could provide large contributions at intermediate
values of Py In chapter 6 a particular such mechanism is examined and the
helicity dependence is found to be completely different from that of the leading
mechanism thus supporting the idea that helicity asymmetry measurements could
give important clues as to the higher power processes at work when Py is not

particularly large.

A problem which is not yet fully understood and which is intimately
related to non-perturbative effects is the description of the transverse spin
properties of hadrons. Chapter 7 contains a discussion of apparent discrepan-
cies between various approaches and a model is used to perform explicit calcu-

lations in an attempt to indicate the source of the difficulties.

Chapter 8 examines the rdle helicity measurements could play in the
search for evidence of a supersymmetric version of QCD. The essential point
is that the new particles introduced in such a theory (scalar quarks, gauge
fermions etc,)}having different spin properties to those of the usual particles
while still st;6h§ly interacting, can have profound effects on helicity
dependence as one passes the production threshold (which may well lie within

reach of present-day accelerators).

Normally unaccessible phases show up in the spin dependence of particle
interactions; chapter 9 reviews recent progress in evaluating order ai inter-
ference effects in proton-proton scattering. Interestingly it turns out in
this case that the effects, which in principle could be quite large, are sup-
pressed by a coincidental partial cancellation between the colour factors of

unrelated contributions.
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The first of the four appendices contains details of the SU(N) gauge
algebra including a list of common Casimirs (or group invariants) occurring
in calculations and explains how the commutation relations and Bianchi iden-
tities may be exploited in diagrammatic form to simplify the final expression
for interaction amplitudes.

Appendix A2 derives and Tists various identities for external spin
projectors which are useful in evaluating interaction amplitudes and thus
avoiding the large number of terms encountered when using the trick of
Feynman of squaring up to give full cross-sections. There is also a descrip-
tion of a new technique for simplifying computations involving several long
strings of gamma matrices, such as those involved in calculations for ex-
clusive processes.

The third appendix contains a discussion of the dimensional regulari-
sation scheme with some useful formulae including the derivation of a gene-
ral formula for symmetric integration for any number of Toop momentum
vectors occurring in the numerator. In particular the problem of defining
E!“’Q”

y. and in a non-integer number of dimensions is examined.

5
The fourth and final appendix lists the parametrisations usually used
for the parton distribution functions and examines the effects of including
charm, posSTb]ngpin-dependent sea quark distributions and of evolving them
with QZ accordiéa\to the Altarelli-Parisi equations.
The references for the chapters are to be found at the end each chapter
while the references for all the four appendices are grouped together after

appendix A4.

- 11 -



1.4 Notation and conventions

In this, the final section of chapter one, the general notation and a
few basic conventions adopted in this thesis are given.

Apart from the chapter on supersymmetry the QCD Lagrangian will be taken
to be:

a,/(F;,,,"/j)=-£F;,,FW+ “E éll“f; —m’*?’i"lj REGRRY

where the flavour content of the theory has been suppressed. The gluonic field

strength is given by

a a a abe , b ,c
F)w = 9,“/-‘\,, — D,A)‘ + 3? A}A A, (1.4.2)

>

and the covariant derivative by

y . Vs a opu (1.4.3)
D = 48,9 +qT.-A
44 j J =4
The fabc are the structure constants of the colour gauge group and ”Z are the

matrices of the group generators in the fermion representation obeying the
commutation relations [ca,rb]:zifymta. Various useful relations and Casimirs
of the SU(N) groups are listed in appendix Al.

For completeness, and also to avoid confusion over the different conven-
tions on minus signs, the Feynman rules obtained from the above Lagrangian are

listed here below.

k b L 2 .
Gluon propagator ;——-——m——y = -4 9 /(k— "'“5) )
p . .
Quark propagator ) = 4 &3(f+m)/(132—m2+-t6) ,
A

. M e
Ay vertex —-LjY T.ij ’

- 12 -




e, ¥

kol Ab&[
AAA vertex : P = - ﬂf j,qg(?'qr), + 3”(&,(-—1')&
i 4
» + 3;@(’"— P) @] s
a ol d,§ abe cJ& ’
AAAA vertex = __{g [ 3@{3‘35 - 3.453&)

NS N (9 9 = %3 9ur)
ade ycbe
+£ ﬁ (300’3(35 - ?'acfs 7{5)] .

(1.4.4)

Use will be made of two types of gauge: covariant gauges, in which a -
gauge fixing term — aA aAv/g is added to the Lagrangian, and axial gauges
[16] for which the gauge condition is 75.A = 0 with 5’ some arbitrary vector,

th gauge fixing term is then ——n.Aa(azfq.Aa)/g 'qz . For these two cases the gluon

propagator is given by replacing gW in the above expression by the following:

Covariant gauge: g}w— (i-E)kﬂ/zv/kz , a5
Axial gauge: ( 7+k7ﬂ)/k7+“ g)kk /{kvf o

Owing to the factor (k.nfz the Tast term of the axial gauge propagator is
very singular and thus rather undesirable, it may be removed by choosing the
gauge parameter £ =1, this will be assumed throughout this thesis.

QCD being a non-abelian gauge theory also requires the inclusion of ghost
terms to cancel the contribution of unphysical polarisations of the gluon. This
can however be avoided by the use of physical gauges such as the axial gauge
indicated above. Thus whenever necessary to avoid ghost contributions, in par-

ticular for external gauge particles, a physical gauge will be adopted.

- 13 -



For the Dirac-matrix and spinor algebra the conventions adopted will be
those of Bjorken -and Drell [17] with the exception that spinors will be norma-
lised to 2 m . Thus for the spinors u and v , describing states of four-mo-
mentum p” and covariant-spin s” , satisfying the Dirac equation for fermion

and antifermion respectively:
(p—m) u(ps)=o ,
(,;b’ —rm) \/“(P,S) o .

the spin projectors are:
Ups) ilps) = (F+m)({+Y #)/2,
vips) vip,s) = (F-m)(1+ ¥ £)/2. (1.4.7)

This is more convenient for taking directly the limit of zero mass fermions, when

il

(1.4.6)

I

the projectors go over to

wlp W alph) = {+h¥s) g,
viph) vph) = (1-h¥e) 7, (1.4.8)

where ¥ and V" are now eigenstates of helicity, h =+ 1. The Teft- and right-
handed helicity projectors being the usual 3(1 ¢ 75). This normalisation has
the added advantage of giving partonic scattering cross-sections in the most
convenenient form for the factorised version of hadronic cross-section (see
chapter 3).

For external gauge fields the usual convention is that, in the frame
where the momentum is q” =(Q,0,0,Q), the polarisation vector is given by

§

£
operator, 4"71,1)=§f;) E(2) , in a covariant form as:

f(},a) = %[—1’”’ + iy ‘f*)”)/ A ride” ve?ﬂf/i-’?]’“-“-g)

,A
where, in the aforementioned frame, 7 & (1,0,0,-1). This is clearly equi-

”(q,z) = VEYO,'A , i, 0), A=+1. This corresponds to taking the gauge projection

valent to an axial gauge choice and therefore completely avoids the inclusion of
ghost fields. In practical calculation one takes y' to be one of the other

(light-1ike) vectors in the problem.

_]4_



Of particular convenience in calculating matrix elements is the following

: »
expression for §

)A
€ (3hn0) = Hygy o0’y =am™ 2 S gy 000

where » corresponds to that of (1.4.9) and 7'15 some other arbitrary (light-
Tike)vector, usually also conveniently chosen as one of the other vectors in
the problem. This also provides us with an interesting and very useful identity

for the fermionic current, " » in the 1imit of massless particles:

" ! ! A /
Lk)Y ulph) = bdop B (gh; p9) Sur ) ot

where 0, = 2(1+hh'). These expressions are particularly suited for use in
algebraic manipulation programmes such as Schoonship [18] and, with a judicious
choice of the gauge-fixing vector (which may be chosen independently for dif-
ferent external gauge particles), can even simplify hand calculations quite
considerably.

In appendix A2 extensions of (1.4.10) and (1.4.11) are given and also
many other formulae which the author has found useful in the manipulation of
expressions involving Dirac matrices.

The by now most popular (and most generally applicable) method of regula-
ting the divergences encountered in evaluating Toop-momentum integrals in
quantum field theories is the dimensional regularisation scheme of 't Hooft
and Veltman [19] in which the number of spatial dimensions is continued to a
non-integer value so that the overall number of space-time dimensions becomes

=4 -2¢ . The advantages this scheme has over others, apart from manifestly
maintaining gauge and Lorentz invariances, lie inits simplicity of application
and in the fact that it regulates not only the ultra-violet divergences but
also the various inifra-red divergences associated with massless field theories.

The divergences show up as 1/& poles of varying order which are easily

identified and subtracted out, this corresponds to the usual minimal subtraction

- 15 =



(MS) scheme [20] . Together with these poles one typically finds a finite
term &n4w -y, where y. = 0.5772... is the Euler gamma coming from the
extension of D! to non-integer D and the extension of the angular integrals
leads to the {47 . These extra terms may be removed by including them in

the subtraction, e.g. by defining the subtraction term as §'==%'*'{nhﬁt-—7é
this is the widely adopted modified minimal subtraction (MS) scheme [21] . It
is perhaps rather more convenient to eliminate these undesirab]e'terms from

, D D
the start by redefining the continuation of the measure d k/(2m) by

kT = ol Jo 7 — 7 e % /2T, (002

whereI(n)is the usual continuation of (n-1)! to non-integer n . Note that
in the Timit D—4 the two above forms are identical. Appendix A3 contains
some useful formulae for Feynman integrals in D dimensions plus the extension
of the Dirac matrix algebra including a discussion of the treatment of 5 in
a non-integer number of dimensions.

In hadronic physics various kinematic variables are used to parametrise
interactions, in order to avoid confusion an attempt has been made to consisten-
tly use the same symbol for each individual variable. What follows is a Tist
of some of the most important and frequently used symbols and their definition.

The four-momentum of particles will generally be indicated as follows
pf for external fermions, qr for external gauge bosons and K~ for internal
or loop momentum. The covariant spin-vector for fermionswill be denoted by "
(usually readily distinguishable from the Mandelstam invariant s) while the
helicity of fermions will be indicated by h and of gauge bosons by A. Hadronic
variables will usually be indicated by capitals and those of partons by lower
case symbols, while the partonic Mandelstam variables and cross-sections will
be differentiated from their hadronic correspondentsby use of the circumflex
(thus §,d& etc. are the partonic invariants).

The Bjorken scaling variable, x5z =- qz/p.qfor the deep-inelastic scat-

tering of a virtual photon (space-like four-momentum q) off a proton (four-mo-
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mentum p) will generally be denoted without the suffix B, unless necessary to
avoid confusion. However the longitudinal and transverse momentum-fraction
scaling variables for final state trigger particles, jets etc. will be written
as X = 2p, / Vs and Xy = 2py / Vs where p, (p;) is the longitudinal
(transverse) component of the trigger momentum with respect to the beam axis.
Another experimentally useful parametrisation is in the rapidity \)ariable

Yo = 34€n [(E+p,)/(E-p,)], where E s the energy of the trigger. In terms

I/ |/2 2
of X.and x; one has y, = i1fn [( x§+x3 + );)/( X Xy -ﬁ)]

-17 -
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2.1 Operator-product expansion approach

The deep-inelastic scattering of leptons and nucleons in definite spin
states can be described by the Fourier transform of the commutator of electro-
magnetic currents J¥ (2) sandwiched between polarised nucleon states with four-

momentum p and covariant-spin s:

Wﬂv(p,i,s) ='é‘;zja‘; e%z(gsihfé/z)) .T?"E/Z)],P,S> »  (2.1.1)

where g is the épace-like momentum of the virtual photon. The leptonic part of
the process being relatively trivial will not be discussed here.

We may decompose the tensor w"v into its symmetric and antisymmetric
parts: \v&u, = Vﬁ:,,-*-i h&;,] . The symmetric tensor N:; is described
in terms of the structure functions w] s w2 (and wLetcﬁ) which contribute to
the spin-averaged process:

s (jﬂy-fﬂ W( z)+(?,—£i!'}¢)( 1,,) w;g’z‘g?),(z.l.z)

where M» = p.q , Q2 = - q2>0 , 2Mya = Q2 and M is the nucleon mass, 3¢ 1is

then the usual Bjorken scaling variable. Only parity non-violating processes will
be considered here.
The spin-dependent contribution comes from the antisymmetric tensor

w:; which is composed of the structure functions V] and V2 :

}‘4:'="§wer‘],[ V(IQ)-F(HVS-? F)V(*&’)] . (2.1.3)

In the £aling limit and neglecting logarithms of Q standard arguments
show that [1]

¥, = 2ZMW,
G5.=2»V, > }7,

W
i

W,
2 : (2.1.4)
»2 - 3;1 2

RO\

il
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Chapter 2 Deep-inelastic scattering - an introduction to spin dependence

2.1 Operator-product expansion approach

2.2 Intuitive approach



depend only on X, scale-breaking effects being limited to terms of order
In QZ . The script structure functions are slightly modified with respect
to those usually defined, this will allow a more direct relation with the distri-

butions functions of partons inside the nucleon. The relationship with the usual

structure functions is:
f3f1=2'Fi » ’;ngz/x)

(2.1.5)
gi =~251 ) :gz =—2(51+3;) :

The structure function jz , governing the process for transversely po-
larised beam and target, has as yet no interpretation within the parton model
framework. Moreover evaluation of its Qz dependence is not as straightforward
as many authors believe. A detailed analysis of this problem is given in Chapter
7 while in this and other chapters the discussion will be resfricted to the case
of beam and target longitudinally polarised, i.e. in states of definite helicity.
One may then neglect the nucleon mass (this has no bearing on usual target mass
effects which may as is well-known be accounted for by & -scaling [2] ) and ‘then

s, — hp,/M(his the nucleon helicity) and (2.1.3) reduces to

,\
4 ‘LPPr

In the now standard approach one uses the Wilson operator-product ex-

pansion [3] for the product of two electromagnetic currents near the light-cone

to write (schematically):

_J;(Z/z):l;ez/z) = 4}:“: C:(i;)@t M 2a.)

PR o

where n labels the spin of the operator and i the type of operator, for the sake
of simplicity all kinematical details have been suppressed. Near the light-cone
this expansion is dominated by the terms most singular in the limit z — 0,

these come from the operators of lowest twist, ¢ = dimension-spin (spin here
refers to the number of derivatives or equivalently free indices contained in the

operator).
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As in the spin-averaged case the leading operator governing the Q2
behaviour of 31 is of twist two. It is infact simply the axial counterpart

to the usual operator:
s.n

oF =Ty e gy
A

OF, _ ‘(."n-l q;":, x,a//uijﬂz. - gﬂu ,\P, '. (2.1.8)
where symmetrisation over m, ...m, and removal of traces is understood the
indices S and A indicate the operators governing the symmetric and antisymmetric
parts of W, respectively while the suffix F indicates the fermion sector. Inclu-
ding the singlet sector one also has the following twist-two gluonic operators.

sn ) n-1 M | Mz JAnm- Mn
O = Mg g

G

|
a

/

- W, o (2.1.9)
(Dz,ﬂ _ —i" E ez i Pr}—_—‘sx ;Z-}‘z. ..gﬂn-‘ F}"nd
For clarity explicit details will be given for the non-singlet sector
the extension to the singlet operators being fairly straightforward and well
documented in the Titerature.

First one intoduces the electromagnetic current correlation function

q.%
T (p.g.9= ifﬂf; £t <?,S'T(J/:(z/z)J;(—zﬁ))}P,s>} (2.1.10)

related to W,, by

Wy =2 tn T,

MY My
then on substituting (2.1.7) into (2.1.10) one obtains

(2.1.11)

/':“V = [ terms symmetric under g <]
£ (2.1.12)

. WA
+4/t,,,(r”2() L@y

where the Eﬁ’sz,g) are related to the Fourier transforms of the coefficients

A
in the expansion (2.1.7) and the @, are unknown constants defined by
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<Ps 4- ps> a:’[ h ;)'M',_, Pﬂ" (Sﬂ=Lf'u/H)) (2.1.13)

for i = F or G.
Equation (2.1.12) is then converted into moment sum-rules for the

structure function 351

o 1 AC R, |
‘5;(&‘)5!0'1; ﬁ{xﬂz)"j; a, (., («Q,}) (n odd) . (2.1.14)

As is well known the coefficient functions C;A obey the renormalisation

group equation [4]

(v 2+802)Cley L7 0 Cle), e

where p is the mass scale introduced by the renormalisation procedure. The ano-
malous dimensions 7{1:) are obtained from the renormalisation matrix for the
operators in question, in dimensional regularisation they are just the coef-
ficients of the 1/& poles. To compute the TK&vmatrix to lowest order in g it

is necessary to evaluate the graphs of fig. 2.1.1 and extract the logarithmical-
ly divergent pieces. The calculations are somewhat tedious, particularly in

the gluon sector, the rules for the vertex insertions may be found in ref. (5],

where infact full calculations were performed.
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A A + crossed A A + crossed

(a)
{n)
F1g 2.1. 1 - The diagrams to evaluate (a) ¥ (b) X}G,

FF °
Q) ¥, (d) ¥
: N B. For the diagonal elements one must also include the

.terms corresponding to the wave-function renormalisation
of the legs.

Defining the perturbative expansion of the anomalous dimensions by

() (n) z

X(ﬂ) -7 ﬁ%? t+ o(g") , (2.1.16)

one then obtains for the operator 0A [5]:

= ZC R){fl~ ;4/4} , (2.1.17a)

Y
3/:) -2TR) lnct) (2.1.17b)

n+d)

nn+1)

I

T - - 2CR) Kaed) (2.1.17¢)

n m+1) ?

%{: = Z{Cz(n)[ ﬂ(m,) Zi'] R)} (2.1.17d)

Since only the diagonalised form of 3;j has any physical meaning 3;; and );F
are not individually uniquely defined, however their product is, and it is only

this quantity which should be compared between different calculations.
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The solution of the renormalisation group equation (4] (2.1.15) then
gives the leading high-energy behaviour for the moments of the non-singlet
structure function as

(v
) 2y, 0((622) ‘1FF /2(5=
— 2 —~£—-—-—_
5@ - L) ozs@z:)}

with the usual well-known extension to the flavour singlet case, where operator

, ~ (2.1.18)

mixing occurs and diagonalisation of the mixing matrix is necessary.

Of particular significance is the identical high-energy behaviour of the
non-singlet structure functions ??2 andzz. In the Wilson expansion approach
this is seen to arise owing to the similarity of the two gperators. see egn.
(2.1.8), and the fact that the Qfé plays no part in the calculation of the
anomalous dimensions. In the next section, dealing with the intuitive approach
of Alarelli and Parisi [6] , we shall see how this is explained more physically

in terms of helicity conservation.
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2.2 Intuitive approach

The intuitive approach of Altarelli and Parisi [6] based on the parton
model description of deep-inelastic scattering quite naturally includes spin.
Indeed in addition to the more physically appealling picture it provides of
high energy collisions the significance of the results of the preVious section
is made clear. |

In this approach one considers.directly the distribution of partons
in the infinite-momentum frame thus q%d andéﬁy denote the number density of
quarks of flavour i carrying a fraction x of the parent hadron momentum and
having respectively positive and negative helicities as compared with the
parent. Forming the sum and difference we then have the usual spin-averaged

density:

4 ‘ <
160 =49, 0 +4q 00, (2.2.1)

and the helicity correlated density:

A 4 4 4
g0 = 9,00 =9 (0, (2.2.2)
we have in the nafve partonmodel the following relationship to the structure

functions [7]

F,0 = F, 00 =Ze 1(»9 ,
G, 60 = ‘{3 ¢ g'w

where the sum over i runs through quark and antiquark flavours, e, is the charge

(2.2.3)

of the ith quark in units of the proton charge.

Differentiating the equivalent of (2.1.18) for F_ with respect to

2
t={n( Q /Q ) and inverting the moments one arrives at the following integro-dif-

- ferential equations for the non-singlet density:

f%?f%g@) - o (£) Jr JL{ “’ g t) E;SGE/Q) , (2.2.4)
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where P__(z) is defined by

NS :
‘YL-I { n
l dz z }?/s ) =-% Vs P (2.2.5)

and is interpreted as the variation per unit t of the probability of finding
a quark inside another with fraction z of the parent momentum. This can be

calculated as the branching kernel represented diagramatically in Fig. 2.2.1.

> 2P
P Fig. 2.2.1 Branching kernel.

The extension to spinning flavour-singlet densities using kernels re-
presenting the probability of finding quarks and gluons inside quarks and gluons
and carrying fraction z of the parent momentum and having the same or opposite

helicity leads to the seriesiof integro-differential equations:
d + oz(e)f,([,; o : -
i€ 4,00 = 2w ) FLNGY Pa®) + 926,09 Pyy (3)

+4 4 -
+ g-r(ﬂ’t)('zr‘} (ﬁ) +9.(9%) Pa.g (?)] ,  (2.2.6)

etc.,

J
b
parton a with helicity i inside parton b with helicity j.

where g (y,t) are the gluon densities and P; is the probability of finding

Parity conservation in QCD implies the relations:

+t - F
Pa.b @ =P..® , (2.2.7)

thus, forming the sums and differences:

++ +-
'Pﬂ6 = ?B + psb

a 2
++4 o+ -
_ _ (2.2.8)
A ?Ab - a Pab b
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the sums and differences of eqns.(2.2.6) lead to the master equations for the

Q2 - evolution of the various parton densities:

4

4 p i Aq
'JFwa)—?ffi 1 TR LN P

& Nalgy=22 4{A g(:)-f)Agglﬁ)ﬂ"gﬂf@/ﬂﬂ?ﬂ%ﬂ;

with the corresponding equat1ons for the spin-averaged case being obtained by
removal of the A symbol.

These eqaations afford the simplest numerical approach to the Q? -evo-
Tution of parton densities. Data at a given value of Q? = (é (large enough to
be in the region of validity of parturbative QCD) provides the densities as
boundary conditions or input for the numerical integration of the above equations
from which the densities at any other (large) value of Q@ may be obtained. For
more practical details see appendix 4.
1J
ab
and Parisi, these are now listed, beginning with the non-singlet sector. For

The various branching kernels P_- have all been calculated by Altarelli

quarks fragmenting into quarks one has:

~+
P = O

2

++

Pyy @) = F_(2) = AR, @ = C(R)( )+, (2.2.10)

The + regularisation of infra-red singularities & defined as usual by

1+2

fﬂ{i i) ) fo{z (- f(i)) k@), (2.2.11)

where f(z) is any test function sufficiently regular at the end points.

The reason for the identical Q2 -evb]ution of thespin-averaged and
spin-correlated density in the quark sector is now clear; the vertex of Fig.2.2.1,
in the limit of zero-mass quarks (or in the Timit mZ/QZ«—O), is helicity conser-

. -+ . . C o e s
ving and thus qu vanishes. This point is discussed in section 3.1.
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The remaining kernels are, for quarks fragmenting into gluons:

A (,®) 42

o n
Pyy = C,(R) %

b

thus

Ry = QRIS 4R, = /) (e-2) .

(2.2.12)
For gluons fragmenting into quarks:
++ 2 -+ 2
P, =% % , P, =% (-2
thus
_ 4.2 2 _ 4 _
Py =Fle ], 4R, = #(22-1) .

And finally the purely gluonic sector:
++

0~ ) Ue [ 2t el [R5 TRIS-),

% ( X
v+ {-z)
ng Cz (ﬂ) Z 2

thus

I

P, = 2 Cll +-E e )] + [ G- TIR)| 569,
(2.2.14)
AP, = 20, +2ee] +| % o) - BTR)] slt-2) o

Taking moments with respect to z of these kernels one readily obtains the anoma-
lous dimensions given in the previous section.

ATthough intuitive and not totally rigorous this approach finds its
justification in the more complete diagrammatic methods based on ladder diagram
summation [g] or factorisation of mass singularities [9] in planar or light-like
axial gauge. Here the branching kernel is given by two-partic]e-irfeducib]e

ladder rungs as in Fig. 2.2.2.
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Fig. 2.2.2 Examples of two-particle irreducible kernels.

|
évﬁﬁ‘ | Y |
|
|

Dressing the vertices and propagators makes the coupling constant in the evo-

Tution equations run [8,9]
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3.1 Helicity as a conserved quantum number

The Lagrangian of QCD, equation (3.1.1),ontains all the essential quali-
ties of the theory. Let us begin therefore this review of the theoretical basis
. of the spin properties of hadronic physics by examining the status of spin within

the fermionic sector of the QCD Lagrangian:

;ZFW‘ -—--\.‘-fg'\"-m“;‘}‘/’ . (3.1.1)

In the high energy 1imit, where the parton model finds its vindication through
pefturbative QCD, the above Lagrangian permits of a particularly simple descrip-
tion of the hé]icity properties of quarks. Transverse-spin dependence is however
a rather more complex matter which , in any case, since it is essentially a mass
effect, will always be suppressed at high energies (E>>m) with respect to heli-
city dependence by a factor ~m/E where m is a quark (current) mass and E a ty-
pical energy or momentum transfer. A detailed discussion of transverse spin
within the framework of perturbative QCD is given in chapter 7. _

Thus neglecting the mass term of(3.1.1).and applying the helicity projectors
3(1 j:)%) to decompose the quark fields into their left- and right-handed compo-

nents one obtains a natural separation into the left- and right-handed quark

sectors:

f:m i&mma— "/-i :Q/’Y'; + "-I?R ;’ZY "/’R o (3.0.2)

The significance of this is that the two helicity sectors are entirely decoupled
at high energies and thus the following two statements become true to all orders
of perturbation theory:
i) helicity is conserved along quark lines and
i) quark-antiquark annihilation occurs solely from opposite helicity states.
In other words the status of helicity is elevated to that of aconserved quantum

number such as charge, flavour, lepton number, etc. The fact that these statements
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are true to all orders of perturbation theory, which is self-evident from the
Lagrangian(3.1.1), means that, provided one can follow a quark line through a hard
scattering process, the final helicity will be that of the intial quark indepen-
dently of how many gluons (hard or soft) are emitted during the process. Of
course for intermediate states when the quark may be highly virtual this has no
significance. '

Non- perturbative effects such as chiral symmetry breaking, confinement etc.
will have a bearing on the above statements. However the importance of all such
effects will always be suppressed by a factor ~ M/E where M is some hadronic
mass-scale (e.g. the constituent quark mass or some transverse momentum cut-off).

In terms of helicity asymmetries at the level of partonic hard-scattering
cross-sections the implications are simple: one expects spin-spin correlations
of the order of 100%. For processes invé]ving initial or final gluons in de-
finite helicity states there is no clear statement, althoughiin:the next section
we will see from explicit evaluation that the correlations are still very large

and often with a strong kinematical dependence.
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3.2 Basic partonic scattering processes

The driving helicity dependence of hadronic processes in general will
come from that of the hard-scattering subprocesses. In this section a complete
list of asymmetries is given for QCD partonic cross-sections at large momentum
transfers.

In what follows details of individual hard-scattering subprotesses will
be given, together with helicity dependent amplitudes - the cross-sections

and asymmetries being reported in table 3-I.

(a) Quark-quark scattering

For unidentical quark-quark scattering (or equally antiquark-antiquark)

the only contribution is from t-channel exchange diagram of Fig. 3.2.1

It

: > > Fig. 3.2.1. The only contribu-

ML i{" /A k g y
’ Fe " P s tion to unidentical quark scat-
tering.a, B are flavour indices.

NN a " The colour indices 1,j,k, run
from 1 to 3 while a runs over 1
83 ALk Petr 4 to 8.

S
=

T, (9,9, 9,9,) = 2ig 8,805, 1.5“%]7 3-2.1)

For identical quarks there is the additional u-channel diagram of Fig. 3.2.2

h {

ot k
Fig. 3.2.2. Contribution to
a quark-quark scattering from
identical quarks.
B 4

mu(clxq/x—’clﬂu) - 2"? hehy L [ hohs x+8, " ‘EI}"Q TJ- (3.2.2)
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(b) Quark-antiquark scattering

For quark and antiquark of different flavour the only diagram is again a

t-channel exchange, see Fig. 3.2.3.

h > S h
Ry o, i % Pl
a Fig. 3.2.3. Sole contribution to
quark antiquark scattering for
A 2 different flavours.
P:Az -4 ~ <% PJ‘#

- o -y_o: 1 S, ul vty (3.2.3)
mt(?’at. ?ﬁ ?Q 1@) 24’3‘ é;‘tk: g‘hzhlr[ghthzt * J“z“l t ] T L ’rj'g ’
For quark and antiquark of the same flavour there is also the s-channel diagram

of Fig. 3.2.4

o, 4 : Bk
a Fig. 3.2.4. Contribution to quark
antiquark scattering for identical
. flavours.
o 4§ 2

. a __a
tms(md»mé) =24gf Sk{i, gh;'\l[ghl\,%' SME%—]TJ"' T, . (3.2.4)
A1l the above four amplitudes are completely equivalent through crossing. Notice
that the vanishing of (for example) the amplitude Hg for h1 = h3 at u = 0 is
consistent with helicity conservation along quark lines and conservation of to-

tal angular momentum, however such arguments are not necessarily always reliable

as will be seen in the case of quark-gluon scattering.

(c) QCD Compton scattering

For this process all three channels are available and the diagrams are

given in Fig. 3.2.5.
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(s-channel) (t-channel) (u-channel)

Fig. 3.2.5. Diagrams contributing to quark-gluon (QCD Compton) scattering.

With gauge particles as external states the above amplitudes are separately

gauge dependent: however in the full amplitude all gauge dependence disappears.
M33—>q9) =T (F 97 9)

= — . % S(— — u b 2

249" &4 000, €D {[ + o7 —s'l]fm”fu

S 3 a __b }
"[gh,mz:‘a; + ‘gm,] Tgkﬁcki (3.2.5)

Use has been made, in writing the above expression, of the colour gauge-group
algebra (see Appendix Al) in order to write the colour factor of the t-channel
diagram in terms of the other two.

Although the amplitude disappears in the backward direction for h] = - h2,
one still requires p-wave scattering in order to conserve total angular momentum
for h, = h. . Thus care must be taken in applying naive angular-momentum conser-

1 2
vation arguments to these scattering processes.

(d) Quark-antiquark annihilation into gluons

This process is related to quark-gluon scattering via crossing and the

diagrams, essentially the same, are given in Fig. 3.2.6.
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w

4 %
e s
(s-channel) (t-channet) (u-channel)
Fig. 3.2.6. Diagram for the process of gluon production via quark-antiquark

annihilation.

a b}‘-—t-“—- (3.2.6)

(e) Gluon fusion into gquark-antiquark pair

This, the third of the crossing partners, has the same diagrams as for

qg-annihilation and thus the amplitude is identical.

(f) Four-gluon scattering

In this case apart from the usual three channels one also has a contact

term coming from the four-point gluon vertex.

e

\

(s-channel) (t-channel) (u-channel) (contact term)

Fig. 3.2.7. Diagrams contributing to the four-gluon interaction process.
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m(%"ﬁﬂ):-z"ﬂ {[g St (2T 43 (SA.AJ‘S;\,%(% €)+6,5.9, L(%))]

Ada Ay

:qe f [58 5. (S)+ 5 (M,M*(S)“L ﬁ*js:))]f{ C}- (3.2.7)

A A3 AR

Here use has been made of the colour group algebra of the adjoint representation
to write the colour factor of the contact graph in terms of the other three and

then that of the s-channel in terms of the t- and u-channels (see Appendix Al)

Squaring up these amplitudes and considering particular helicity configu-

rations one obtains the various helicity-correlated cross-sections. Table 3-1I

lists the basic subprocesses, their spin-averaged cross-sections and helicity

asymmetries (both reflected [1] and transmitted). The differential cross-section

with respect to t is related to the amplitude by

do _ Iml*
At~ tems* (3.2.8)
TABLE 3 - I
A1l cross-

Table of QCD hard-scattering cross-sections and asymmetries.
sections have a common factor of TC dg/SZ.

fr_fc ess | Reflocted aspumetny Transmitted asymmetry
ab— c.a{ a a:p

1=y i

g+ u?
2 u.z Z _éz 2
de =gt g ]
111 S _3) B -108 +3 -3 2]
(35 -1 &-3) G -1)(£-3)
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Proca,ss
" -
ab—-2d

Reflected asymmetry

/rm'nSTniHiw'(g QSJmmefrg

a

99'—~q. g’

)

49~

-1 “-L
R 2 T
W e ] [ e g ]
[Sp 4 £68 2] | [0 2]
9393 5= |+ %o
q/a”’i} Sz—’ M.z 1
sT 4+ u*
de _32]+t , u fu
) e 'T[w+?][i—%?]
1§33 - 7
we+ t*
do_ Lt ully__ a2t
| st
_ i wW— £*
W+ t*
_ 9. s 2 )
itbt: = (&) (1-»
gj Zj Qsz;t“—)ﬁ& s™ (us-t*) (us-2¢39)
(s2-tu) t (s*+tu)?
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A further set of subprocesses with a similar, simple yet striking, he-
licity dependence is obtained by substituting one{or even two) of the gluons
of the previous processes with a photon{or photons). For completeness listed here

are the processes of photoproduction and prompt-photon production.

(a) Photon-quark scattering

This process is similar to the QCD Compton scattering already discussed,

although now no t-channel is available. The diagrams are given in Fig. 3.2.8.

v a Ve Vesae
a

b 927

ph £ by

Y

(s-channel) (u-channel)

Fig. 3.2.8

(¥ g~g9) =-2igeq 8, 5, 5,05 N L A CRR

where eq is the charge in units of the proton charge of the quark concerned.
The effect of having a photon in the final state in place of the gluon is to

.a
replace grij by eq

(b) Photon-gluon scattering

To the same order one also has photon-gluon interactions via production
of a qq pair, this is related to the above scattering through crossing and the

relevant diagrams are given in Fig. 3.2.10.
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-~ 4 T R :
94 P, h, A
¥ 3 \
12 %3 Pz Az
(t-channel) (u-channel)
Fig. 3.2.9.

m(Yg-Hﬂ) = 2«?.21’2,3 SA,ES,T,[SAA,J%*SA,XE]TS- (3.2.0)

Again the amplitude for the corresponding photon-photon process is obtained by
replacing i, with e
Wiy M &g

The amplitudes for the corresponding processes with the photon in the
final state are of course identical to those given. The full set of cross-sections
and asymmetries are reported in Table 3-I1I below.

Note that since there is always a channel with an asymmetry of =1 the
asymmetries not given here ( Eg — ?q for example) can be obtained from those

given. For example, an(ag — 7q) = a11(3§ —q? ).
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TABLE 3-II

Table of hard-scattering cross-section and asymmetries for processes

involving photons. Single-photon processes have a common factor of ateicxas/s

and the two-photon processes 3/8 = eg st 121 .
Process Re? locted as jmmd?y Tansmitted %émﬁék‘j
e i i
ab —c a a

¥4~ 99 —

S - W
Sz+uz 1
doe_ 2Tt L«
y _ At 3 w Tt
3~
“1 uz_tz
u1+t2
doe _ 2 -
"t"“q[cio"'(*g‘&]
994 —
S - 1
s* +u?
do-_ 16t A
_ ey d v t]
7Yy :
-1 W - t*
W + 2
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3.3 Factorisation in QCD

The kinematical details (including helicity dependence) of the subprocesses
discussed in the previous section are transmitted to the level of the hadronic
process via the factorisation theorem (or more correctly conjecture) of pertur-
bative QCD [3 ]. In the Towest order this simply corresponds to the parton model
picture in which any inclusive hard hadronic process can be described as in

Fig. 3.3.1.

A 7
Fig. 3.3.1. Schematic representation
of factorisation. The small blobs re-
present the fragmentation of hadrons A
and B into quarks a and b respectively,
£ the large blob represents the hard scat-
B > tering process.

This amplitude squared corresponds schematically to the factorised cross-section

AB Q b Aab
g = Jqu c[acb DA(I.J l)a (x,) oo | (3.3.1)
where D;(Xa) is the usual probability of finding a parton of type a inside

hadron A with fraction X of its momentum and Eab is the relevant subprocess
cross-section. A sum over parton types a,b is understood. The extension to semi-
inclusive processes (where one triggers on one or more final state particles)
is achieved by the inclusion of fragmenttion functions, ﬁg(xc) » describing the
fragmentation of a final parton of type c into a hadron C with fraction X of the
parton momentum.

Within the framework of perturbative QCD, factorisation remairs only a
conjecture since a complete proof would require a knowledge of the details of the
hadronic bound state (the quark distributions are non-perturbative in origin).

Some of the difficulties (spectator interactions, non-cancellation of infra-red
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singularities etc.) are discussed in chapter 5, here however these problems will
be ignored.

In analogy to the treatment of deep-inelastic scattering discussed in
chapter 2, one assumes that the effects of renormalisation can be accounted for
in term of anomalous dimensions governing the 02 behaviour (which should be
common to all processes) and a coefficient function which is process dependent).
The 02 dependence is factored off into the various partonic channels leading to
Qz-dependent (and hopefully process independent)distribution and fragmentation
functions, while the coefficient function must be calculated for each process
separately. To leading-logarithmic order the effect of this is simply to replace

a(xa) by Da(xa,Qz) the scale-

a by aS(QZ) the running coupling constant and DA A

breaking distribution functions.

At next-to-leading-logarithmic order one must also introduce a process
dependent coefficient function which is known to provide large corrections ( ~ 100%)
(4] to the Drell-Yan process for example. Such corrections could, in principle,
have a drastic effect on spin asymmetries, however (as shown in chapter 5) for
some processes these large effects actually cancel in an asymmetry and may thus

by neglected. Thus in general the leading-logarithmic approximation will be
adopted in this and other chapters.

To include a spin-dependent description of any process is a straight-
forward matter [1] considering particular helicity channels one may write

schematically:
+4 a, b Attt a. b-t— -
Ao = f[:{x] [D Ddr +D D ds
a-F b._ - a. b_ - (3.3.2)
+ D 7 D, D - i]
A DB.}JG- * Ay TRy aIO" ?
and similarly for d<r+_ etc. Taking therelevant sums and differences, 1in terms
of the helicity transfer densities of chapter 2 and the helicity correlated
cross-section defined above, including also the.Q2 dependence one obtains the

following expressions for the helicity-dependent cross-sections (the cor-

responding spin-averaged expression being obtained by removal of the 4 symbol)
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for the semi-inclusive process AB —CX, i.e. triggering on a final particle C:

£, 2 (i cr)= ) [a/x da, 2 £ §(3+2+4)
}2 absed
a/‘dd“ (3.3.3)

40, OAD s, a)@@@)d ed)

for the reflected (initial-initial) helicity correlated cross-section and (in

a similtar fashion):

o>

£ Jgﬂf(AB >CX)= Z fa/x b—% ?%' S(s+t+1) (3.3.4)

P ab-bcd [~}

A%, @) Dk, @D, @

for the transmitted (initial-final) helicity correlated cross-section. The sub-

Jdr

(ab%A)

process Mandelstam varaibles 5,£,0 are related to those for the hadronic process

by

A " A

rq

S=xx < t = Xa t U= = U . (3.3.5)
a b s Xe g Xe

The scale, QZ, at which the distributions and running coupling constant

should be taken is not determined at this order, its precise value being fixed

by higher order corrections. Among various possible choices are (§ £ ﬁ)]/3 and

2§f0/(§2 + f2 + ﬁz) although many others are possible [5,6] -

If one now defines a quantity A(x) by

Ao = ADeo /Do (3.3.6)

(simply the fractional polarisation of the parton beam with respect to the
hadron beam) one can obtain an approximate expression for the hadronic asym-
metry given by expression (3.3.3) or (3.3.4) divided by the corresponding spin-

averaged cross-section:

AR
g = ‘2{]__‘:_5;8 ~ <)\ (x))()\ (x)><aa(s, u)> (3.3.7)
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where ¢ ) indicates the average value of the quantity with respect to the
parton distributions, and aab is the relevant reflected or transmitted partonic
asymmetry. This of course gives only a very rough guide to %he asymmetry one
might expect, especially in view of the fact that the x dependence of aab usually
implies domination of the hadronic cross-sections by the small x region.

One sees then that the quantities A(x) have a depleting effect on the
overall asymmetry. It is to these, or more precisely the helicity dependent
densities, that, in the next section, we turn our attention, to show in particular

that fortunately 4D~ D and thus 1 ~1.
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3.4 Helicity dependent parton densities

The parton model provides us with a picture of hadronic interactions
consisting essentially of two elements: a hard scattering cross-section
calculable in QCD perturbation theory (listed in sect. 3.2) and non-perturbative
partonic densities whose Qz-evo1ution is calculable and which can fherefore be
extracted from one set of data (i.e. for one process at a given enefgy) and used
as input to make predictions for other processes and energies.

At the present, experimental data on helicity dependent distributions is
very limited (the little in existence is discussed in sect. 4.1) and thus in
order to evaluate the importance of spin effects one needs a reliable model with
which to estimate the partonic spin content of hadrons.

There are numerous models [7,8,9] available for constructing the va-
rious partonic distributions, most of which are able to explain only poorly the
existing data. In this section the discussion will be restricted to the first
three of the above references these being the most popular.

One of the basic ingredients of any model is the Bjorken sum rule [10]

which in parton language is expressed in the form

[a’x[ﬂu(x)~ﬂa!(x)+Aﬁ(x)—AJ(z)]=!gA/jV[ [i—%‘-}—,,.] 5 (3.4.1)

where lgA /g, | is the ratio of the axial-vector to the vector coupling in neutron
B-decay. Since the axial current has no anomalous dimensions (n = 1 moment for

@a in egns. 2.1.16a and 2.1.17) this sum-rule must scale to leading-Togarithmic
order. This sum rule 1is derived from very general theoretical arguments. Experi-

mentally the ratio has the value [11]

Igl/gvl = 12546+ 0.00L3 . (3.4.2)

This is a first indication that the magnitude, at least of leva](x), is comparable

with that of D _(x).
val

A further constraint is provided by the projection of the z-component
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of the total angular momentum: 1

(T,)=7% = Ji[Jx[AVm +AZ(::)]

+Iupx Aﬁ(zx) '+ <Lz> s (3.4.3)

where V and I refer to the sum over valence and sea quarks respectively and (Lz)
is the expectation value of the z-component of orbital angular momentum summed

over all constituents. Generally one assumes that the proton has L = 0.

(a) Conservative SU(6) distributions

In the SU(6) model of the proton [1] all of its spin is carried by the

valence quarks and thus in the SU(6) 1imit one has
1

( 4
| dx Auv(ao =3

i
:
i
Jdse Adw =-5
p) 14
(3.4.4)

4

i
dx A q. (o) = O
) sea

This however is in direct conflict with the Bjorken sum rule (3.4.1) since it

}ﬁA/jv] - %

which disagrees with the experimental value.

predicts

(3.4.5)
To resolve this discrepancy the simplest modification is to permit the

sea to carry some of the proton spin. By examining the perturbation theory dia-

grams which lead to generation of the sea (examples in Fig. 3.4.1.) the authors

of ref.[ 1] developed an ansatz for the estimation of the sea polarisation

(a) 5 (b)

Fig. 3.4.1. (a) Diagram contributing to the gluon content of the sea.
(b) Contribution to quark-antiquark sea.
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The gluon content of the proton comes from bremsstrahlung off valence
quarks,i.e. by diagrams such as Fig. 3.4.1 (a). The helicity of the emitted
gluon is then fixed by angular momentum conservation and will therefore be, in
particular, a function of the momentum fraction it carries off. In turn, a quark
antiquark pair produced by this gluon, through the diagram of Fig. 3.4.1 (b)

for example, will also retain a memory of the helicity of the original valence

quark. Thus for the parametrisation of the sea one adopts the following

Ry é,,(x) =c({—x)n[2+(!—x)z],
b fw = d-[142(1-2]

Matching the normalisation to the antiquark distributions deduced from massive

(3.4.6)

Tepton pair data at x = 0.3 [12] :

- o.b 10
Qe = -0, (3.4.7)

one therefore obtains the following simple parametrisations

9,0 = %g— t-x"[2+ (:{—x)zj »

_ 043 10 . (3.4.8)
7009 = O G-2" [ 14 2(1-2)°] ,
and thus the helicty correlated distribution:
10 .
A760 = 0.13 (1-x) (2-x) . (3.4.9)

The amount of helicity carried by sea quarks and antiquarks is then

Z(Sz% = 2 x3~x 'l‘de A@m = 0068 . (3.4.10)

Using a similar ansatz for the gluon distributions one can use the para-

meterisation

- 49 -



n

o o0 = £ 4" [246-0r]

3+_ By = .%’ (:/—x)”'[f+ Z(f—x)z] , (3.4.11)

The normalisation of these distributions is now fixed by the momentum sum rule

1
J 4 (3.4.12)
A ~ 1.
x x fs(aﬁ) = 2
[
This gives ¢’= 1/6(n"+ 1)(n" + 3)/(2n"+ 4). In their calculation the authors of
ref. [1] took n'= 6 and thus for the gluon densities one obtains

6
900 = “-%l(f—x) [1+ (1—x)2])

(3.4.13)

A gl = 0.66 (1- x)b[Z— x]

Inserting these expressions into the constraint equations (3.4.1) and

(3.4.3), assuming zluv(x)-uv(x) and zddv(x)fv dv(x) one obtains:

A = Ok U lo
Y (3.4.14)

Ad o ~-035 d, (o
0f course there will also be other more comp]fcated non-pertubative
mechanisms for generating the sea, however the dominance of such effects (ex-
citations of the bag for example) should be restricted to the small x fegion
so that the gluon bremsstrahlung model outlined above should give a qualitatively
correct description for large x .
Looking at Fig. 3.4.2 we see that while there is rough agreement with

experiment there is a tendency to understimate the data at large x.

(b) Diquark distributions

Another picture, advocated in ref. [9 ], is given by assuming that, in
certain limits, the proton may be treated as a quark-diquark system. Thus at
large momentum the isospin and helicity of the proton are carried by the fastest

{(or leading) quark. Partial experimental support for this idea comes from the
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result [13].

wen
Ly XN 4 4 (3.4.15)
x-—+1 NQP 4 - o
Y 2 (DC) '
however this hypothesis has still to be tested with respect to spin.
Thus, in the Timiting case of this picture, applying the Bjorken and (JZ>

sum rule constraints we have

Au, oy = 061 w,x)
(3.4.16)

Ad, o =049 0 = dge = O
The predictions for this model (see Fig. 3.4.2) are in slightly better agreement

with the data than the previous model however one really needs more accurate large

x data to discuss seriously the relevance of either model.

(c) Carlitz-Kaur distributions

The third and most popular of the models to be discussed here is that
developed in refs. [9] . Here the idea is to incorporate the valence quark's “Toss
of memory"of the parent polarization at small x, this being due to interactions
with the sea.

Let sin® be the probability that a valence quark's helicity will change
in interactions with the sea. Then if N(x) is the relative density of the sea

one'has
sm O = ‘;L H() N(x)/[i + Heo N(x)] . (3.4.17)

Assuming the sea quarks and antiquarks to be unpolarised and that the gluons have
a (1-x)2'fa11 off, the result is not very sensitive to the power of (1-x), one

arrives at the following expression

Heo) Ny = Ho(:{—x)z/»lx , (3.4.18)

with HO = 0.052 being fixed by the Bjorken sum rule.
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The (JZ> sum rule indicates that 11.6% of the proton's helicity is
carried by gluons. Thus using the same parametrisation for thegluon distributions

as before (see eq. 3.4.9) one obtains the following for the Carlitz-Kaur distri-
butions.

[u,00- % deo] cos(26)
Ao = =% cos(26) doo
Aczfs(x) = 0,

D ()

o (3.4.19)
Ageo = OF3(H-) (2-2) .
where the spin-dilution factor is
-1
cos(26) = [1 + 0.052 (1-1)’/,Jx] - (3.4.20)

Again the predictions of the model are compared with the ep scattering data ([14]
in Fig. 3.4.1.

1.0

Fig. 3.4.2. Comparison of the
SLAC data on polarised ep ex-
periments with the models: (a)

SuU(6), (b) diguark and (c) Carlitz~
Kaur.
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3.5 Asymmetry predictions for semi-inclusive processes

In this, the final section of chapter three, the basic ingredients as
outlined in the previous sections are put togéther to provide predictions
of asymmetries for various semi-inclusive hadronic processes. ,

The model generally adopted for the helicity correlated densities
is that of Carlitz and Kaur, the other models giving similarly shaped asym-
metries of rather smaller magnitude. The fragmentation functions used are
those of Field and Feynman [8] . The Q2 evolution of these distributions is
discussed in appendix A4.

Let us begin with a comparison of the various models for estimating
the spin-dependent parton distributions. A convenient process to choose is
pp(p) — jet + X, thus eliminating the inclusion of the final particle frag-
mentation function (this being simply replaced by a delta-function). In Fig.
3.5.1 the asymmetrynwfi for the above reactions is shown plotted against
X, at 4 = 90°,

T cMm
o%; - 0.4
(i) | (1)
o2+
0.05}

odf (i)
(iii)

o o ! . .

[} o o5 to

Fig. 3.5.1. Asymmetry.ﬁfL for (a) pp — Jjet + X and (b)
pp — Jjet + X as a function of xy for distribution models
(i) CarMtz-Kaur, (ii) Diguark and (iii) Conservative
(taken from [1] ).
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Thus one sees that the predictions of the Carlitz-Kaur model are
generally three or four times larger than the other two models. It is also
intersting to consider the relative contributions of the different partonic
subprocesses to the total hadronic asymmetry. In all cases for pp scattering
at large xT the dominant process is gq — qq while for PP, qq — qq plays
the dominant role and hence the much smaller asymmetry.

In the literature there are many examples of the asymmetry predictions
for various high energy processes obtained via relatively stra1ghtforward
calculations in leading order QCD. Possible corrections to those are d1scussed
in some detail in chapters 5 and 6. Some of the most relevant asymmetries
are now listed.

A simple modification of the predictions for jet production allows
for the detection of a final state particle, for example a pion. In Fig. 3.5.1
(a) and (b) the asymmetry predictions for pp and pp — ®°X respectively are
plotted. The large difference in the curves for pion- and jet-production in
pB is due to the increased importance of the subprocess qa — qq which,
while contributing normally to jet production is considerably suppressed by
the gluon fragmentation function into pions. In Fig. 3.5.1.(c) the asymmetr1es
for «* and n” production are compared. The relative magnitude of Q{LL

q- to that for «* production reflects the degree to which spin information
15 carried by the d quark relative to the u quark in the polarised proton, .
the sign difference is due to the negativity of Ad(x) in the Carlitz-Kaur |

model for the distributions.

0.40+— , 040 T | T |

CARLITZ & KAUR B _
0.35—  DISTRIBUTIONS = ' ™ CARLITZ & KAUR -
I CARLITZ 8 KAUR 0301 DISTRIBUTIONS -
’ DISTRIBUTIONS - i

| Fig. §.5j2 The asymmetry ], for (a) pp-—»nd(gét)+x,
(b) pp — a°(jet)+X and (c) pp—a+X (taken from [1] ).
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NPT

The above asymmetries are essentially only sensitive to the polarisa-
tion information carried by the valence quarks of the proton. In order to
have access to the gluon distributions one may consider hyperon production
in proton-proton collisions [15] . The dominant contribution to this reaction

comes from the subprocess indicated in Fig. 3.5.3.

/\0
/
N Fig. 3.5.3 The glusion fusion

‘subprocess, dominant in A pro-
duction in pp collisions.

M\Q

The background coming from interactions involving constituent strange
quarks could be eliminated by requiring an away-side anti-strange trigger.

Besides insight into the polarisation of the gluon content of the
proton this process could also provide intersting information as to the
transmission of polarisation in the fragmentation process. This is by virtue
of the fact that the polarisation of the deteéted lambda can be measured with
very high precision (to within about 1%). Thus the information obtainable
and the simplicity of the production mechanism (which implies a general transpa-
rency of the results) makes this a very attractive process to study. In Fig.
3.5.4 the transmitted and reflected asymmetries are plotted for the process

pp — A°X. The fragmentation function was taken to be a delta function.
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(a) (b)

Fig.3.5.4. (a) The reflected asymmetry and (b) the transmitted
asymmetry for lambda-prodcution in pp collisions as a function
of X¢ for ®©.,, = 90° {(solid curves) and 60° (dashed
curves) graphs taken from [15] .

A further inteesting process also sensitive to the gluon distributions
is prompt photon production [2] . The partonic level contributions have al-
ready been discussed in section 1 of this chapter. In Fig. 3.5.5 the predicF
tions of the transmitted asymmetry ‘%{L(Ep — 7 X) are plotted as a funcion
of x_ for various X, . While the behaviour near X, =+ 1 is determined

by the valence distributions the behaviour for X~- 1 is a measure of 4g(x)/g(x).

1.0
i
o,
,s Fig. 3.5.5. &,, (pp — ¥ X)
M as a function of x, for X,= 0.1
(solid line) and 0.5 (dashed
line) as given in [2] .
0
-1

Finally, let us consider asymmetries in the lepton-pair production or
the Drell-Yan process [16] . The author of [16] considered the contributions
from real gluon emission and quark-gluon interactions and calculated the asym-

metry at fixed X and xT(thus avoiding the problem of infra-red singularities
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coming from very soft gluons to be discussed in chapter 5), these are repro-
duced below in Fig. 3.5.6. The increase in magnitude ofs/ with X, and
T = QZ/S stems from the fast increase in the corresponding magnitude of

the Compton subprocess asymmetry (dominant at large X, or 7).
T 1 T T 1 T T T

a—

i e + -

Fig. 3.5.6. Predictions for &IL:_(pp — }L#X) plotted against
(a) /T and (b) x. for various x, , as given in [16]
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Chapter 4 From theory to experiment

4.1 Double-spin asymmetries
4.2 Single-spin asymmetries
4.3 Present data on quark helicity distributions in the proton

4.4 Status and future possibilities for polarisation experiments




4.1 Double-spin asymmetries

What exactly does one measure is a double-spin asymmetry experiment?
Consider for the moment only initial state polarisations, i.e. beam and target
polarised (or both beams in a collider). The polarisations may be either Tongi-
tudinal or transverse (with respect to the beam direction). The basic idea is
then to measure the cross-section with the polarisations parallel, d0'++(]ongi-
tudinal) or do'' (transverse), and antiparallel, do ©~ or do'* . From these
cross-section one then forms the following asymmetries:

u94, — ci<ft+-- do—

—

LL det + dot™

54’ 01611 _ GIU_T# (4.1.1)

i 5!d;rT + do

Since these asymmetries are only relevant for strong interaction physics it is
not necessary to consider all spin configuration, i.e. d;r‘+, deo etc, since
parity is conserved and the asymmetries expected here are much larger than those
due to the parity violating effects of weak interactions in most cases.

The second question is then: how do the quantities defined above, as
measured, relate to the corresponding quantities as calculated from the theory?
First of all it is important to notice that since the asymmetry is a ratio of
cross-sections the overall normalisation cancels out and is therefore not a
problem. However one must take into consideration that the beam and target are
never in the ideal spin eigenstates but can only be polarised to some fraction 2.

Thus if one considers the simplified approximation of sect. 3.3:

A~ <A <app<ay (4.1.2)

where a is the hard-scattering asymmetry and li the effective polarisations of
the parton beam with respect to the parent hadron beam, then the following relation
between experimental and theoretical asymmetries clearly takes into account the

polarisation of the beam, 2, and target 2
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% - PP

expt. 8 eory (4.1.3)

In the case where one considers the correlation between the spin of one
of the intial particles and a final state trigger particle the obvious modifi-
caiton of equation (4.1.3) is to remove the polarisation , 2, corresponding to
the unpolarised particle.

As already discussed in the previous chapter the predictions for &/, are
very large, however transverse spin asymmetries are proportional to the hadron
mass (or more generally some hadronic mass scale) and should therefore be sup-
pressed by a factor MAS relative to other effects. In the case of elastic pro-
ton-proton scattering large transverse spin asymmetries have been measured [1]
(see Fig. 4.1.1). Such large effects are not prédicted within the framework of
purely perturbative QCD and a better understanding of non-perturbative approaches

is required to accurately describe these asymmetries [2] .
r T T H v T T T ¥ T ¥ T T ] 0.6 _Wﬁ’-‘pp } +
TE % p+p+p+p . * ANN *

o ;} 900m 7
- 1 \}\ @ This Exper. /%’ ) ] 04 |-
5L S s tinetal ,’f . **
L + Milleret al ,% B |
4l 4 © Willard et al / . 02 +
Ann | \ / b ¢ *

3t ! ; 1 o A
\ # ] |
2r \ / -
L / -0.2 |-
1rF I—l--!—»-—é—_i _
1 ] L S | -0.4 i 5 i i 1 |
2 4 6 8 10 50 70° 90°
(a) P (GeVic) (b)

Fig. 4.1.1. (a) o, at 6., = 90° and different energies,
(b) o and at p; = 11.75 GeV/c.
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4.2 Single-spin. asymmetries

Pure single-spin asymmetries require parity violating processes and thus
are zero for strong interactions (except for very small corrections due to weak
interactions). However if one considers correlations between spin and kinematical
configuration, then owing to interference effects, non-zero asymmetries can be
generated.

For longitudinal polarisations one can define the following integrated

asymmetry : . o
o e [[F10-LT0] (de™- de)
t fdeso [[[d? +[Tde] (doT+ do7) ez

Thus one considers the correlation between initial particle helicity and the hemi-

sphere (forward or backward) of the final trigger particle, jet, ;;y— pair etc.
In the case of a transversely polarised intial particle one defines the

asymmetry with respect to the left and right hemispheres:

4 - Jdoldsiz de
N fal_Q [0(33 Ar (4.2.2)

where S is the polarisation unit-three-vector and n defines the normal to the
reaction plane, the latter defined by the initial and final particles. As in the
previous section, the measured asymmetry corresponds to the above expressions
evaluated from the theory and multiplied by the beam or target polarisation factor
P

One can of course consider the polarisation of an inclusively produced
final particle, the complementary quantity to the asymmetry of eq.(4.2.2). In
this case one defines the following polarisation

P = [40 7S ds
N [0 de (4.2.3)

where now s is the spin three-vector of the emitted particle.

As far as longitudinal single-spin asymmetries are concerned the theoretical
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importance of these is discussed in some detail in chapter 9 . Recent perturbative
calculations [3] have put the value of the asymmetry 7, (pp —+;:M-X) at around

1% (however as discussed later it is the smallness of this result which is of
significance).

For the reasons already discussed one would na‘ively expect single transverse
spin asymmetries to be very small at large energies. The data however shows stri-
kingly large single transverse spin dependences. The first process in which such
large effects were first noticed was in the production of A°hyperons (and later
other hyperons) in proton-proton collisions [4] see Fig. 4.2.1 (a). The polari-
sation is seen to be independent of energy (i.e. there is scaling) and persists
up to large values of p, , indeed it increases more or less linearly with p,
Interestingly 5°, BT polarisations are very similar to that of the A4° while

3% has opposite polarisation of almost equal magnitude and A° are unpolarised.
Qualitatively these results can be understood very roughly in terms of the SU(6)
picture of hadrons and a quark-antiquark pair-production model [5] . Equally sur-
prising are the results of measurements of &4 (pp—x°X) for the scattering of
protons off polarised Be and hydrogen targets [6] see Fig. 4.2.1 (b). The energy
dependence of this effect has yet to be measured but again one notes the marked

increase of the asymmetry with increasing p, .

.5
8.1 — p *Pf—>n°+l
8 24 GeV/c
. #j_i 0< x <0k
# L O T
> !
-~ 0.1 b Q+ ®
I H 5
¢ 14 s -5k
-G.2 * * 5
P o F
<
-0.3 .
e pBQ—— A+X (400)
-0.4 [~ ,pBe— A+X (300) R
spPt— A+X (24)
- l : J_ 1 1 1
1.0 26 1.0 1.5 2.0
P, (GeV/c) p, (GeVv/c)

(a) (b)

Fig. 4.2.1. (a) ﬁﬁ(pp—rATX) as a function of p. at different energies,
(b) i (pp'— a°X) at 24 GeV/c.
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Models based on final state interference effects go some way to explai-
ning the A° data [ 2 ]however more work needs to be done before a complete expla-

nation can be given.
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4.3 Present data on quark helicity -distributions in the proton

The only systematic measurements of double spin asymmetries (i.e. aimed
at extracting the spin-dependent quark distributions) performed to date are those
of the SLAC group [7 ].

This experiment measured the spin-asymmetry in the deep-inelastic scat-

tering of longitudinally polarised electrons off longitudinally polarised protons
in the kinamatic range 0.1< x< 0.7 and 1< Q2-< 9 (GeV/c)Z.

The basic quantity measured & ( ESZ_»ex) is given by

A =A=D(A,+vA,) . (4.3.1)

where D and % are simple known kinematic expressions, A2 is an interference term

( A, being small in the scaling 1imit) and A, the real target of the measurement,

2
is given by

1

A - 0—4/2 - 673/2. (4'3-2)
i 0 4/2 + 673/2

where o

wal Oy ) is the total absorption cross-section when the component of

angular momentum of the virtual photon plus proton in the direction of the photon
momentum is 3(3/2).

In the scaling limit A, =~ - 2xg]/F2 (the sign depends on the particular

1
definition of 9 adopted). Thus in terms of the quark distribution functions (see

egn. 2.2.3) one has

oo el
= 20 o : : (4.3.3)
Aps F, 00 5 el 900 3

This quantity then is essentially a measure of the fractional polarisation of

up quarks in the proton (ei2 = 4/9 vs. 1/9 for down quarks), see egn. 3.3.6.

In Fig. 4.3.1. the data are plotted against 02 for different ranges of
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The values of &£, /D have been divided by yx (which describes well all the x-

dependence of the data), one sees that within the errors scaling holds.

1.0 T T T T T T T T T T

E -—}—%——&+‘“—Ft+"””— "—J% T L =
< 2 .
3 -
i 0.28<X <0.46 7 046 <X<0.70 7
0 ! ) . ) 1 i P S T | i I o) 1 ] ] [
0 5 Q2  (Gewc)? 3 10

Fig. 4.3.1. Plot of (A/D)/Vx for two different regions of x. The dotted line is

a 1east—squares§tréight1ine fit.

The full set of data, best described by A/D = 0.94 yx, has already been
displayed in Fig. 3.4.2. This shows the tendency at large x for the helicity of
the proton to be carried, by the leading quark.

There are two sum rules that may be compared with this data: the Ellis-
Jaffe sum rule [8] for the proton

i { 4
ng”’x"'fa%p\f: . 0.7 |

v

(4.3.4)

il

0.312 + 0.002,

where R is the ratio of longitudinal to transverse photon cross-sections for
the proton. Using the Regge theory prediction of A] oc x]']4 [9 ]for the small

x region and the yx fit for large x gives

Top
ngwlx =033+ 010 , (4.3.5)

which is consistent with the predicted value.

One can also partially test the Bjorken sum rule which in terms of A? and

A? for the proton and neutron respectively is:
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i i

f_e™V o [ dul AFL AMES ] . 1 [9a
Ugi 6.k J,"f' 1+RF — 1+RM[ 3 o

= 04182 + 0.0021 . (4.3.6)

L=~

Under the assumption that A? is small the results are also consistent with the

Bjorken sum rule.

It would clearly be valuable to measure A] for the neutron and also the
other structure function A2 for both the proton and the neutron. Use of a pola-
rised deuteron target as well as a polarised proton target allows for the deter-
mination of the peutron structure functions. To determine A2 the nucleon polari-
sation must be transverse to the momentum and spin directions of the incident
electron and lie in the scattering plane; A proposal has been made for an experi-
ment at SLAC which would be capable of determining AP R A"2 and A? with accuracies
?. This would provide a knowledge

of the structure function 32 on precisely the same experimental footing as‘ﬁ]. A2

about the same as those for the measurement of A

and gz are related as follows:

2 o 25 [H* (1+R) L.00
= N~ TE = N8 At . (4.3.7)
A 2 G + 0/2 —Q——i ?’g o)
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4.4 Status and future possibilites for polarisation experiments

In this, the final section on the experimental status of spin physics
research the present facilities for polarisation experiments are discussed to-
gether with projects for future measurements. A more complete discussion can
be found in ref. [10] where a comparative list is given of the parameters one
might expect for typical densities, beam intensities etc.

One of the essential requisites for these experiments is a highly polarised

beam and/or target. Let us begin by discussing the production of polarised beams.

(a) Polarised beams

Primary polarised proton beams from polarised source have been accelerated
up to 12.75 GeV in the ZGS at Argonne [11] and recently at SATURNE II up to 2.5
GeV. Future plans include the conversion of the AGS at Brookhaven to polarised
operation, similar plans exist at KEK and JINR at DUBNA has reported accelaration
of polarised deuterons up to full energy in the Synchrophasotron.

The main problem is the avoidance of depolarising resonances which occur
about every 520 MeV in the acceleration cycle. At the ZGS and SATURNE II these
were handled quite successfully by techniques of resonance jumping, spin flip and
orbit corrections. However for significantly higher energies the resonances become
too numerous to handle individually. In large machines this difficulty can be
circumvented by the use of one or two Siberian Snakes [12] . These devices consist
of a combination of horizontal and vertical deflecting magnets inserted in a
straight section of the ring. The effect is to cause a precession of the spin
by 180 degrees around either the Tongitudinal or radial axis. This is feasible at
high energies by virtue of the fact that the spin turning angle in traversing a
given magnet and orbit angle is independent of the energy. The spin precession
due to the bending field is also energy independent, thus a particle initially
Tongitudinally polarised at a point 180° from the snake precesses through some
angle a 1in travelling around to the snake which then flips this angle to -a

and therefore on returning to its original position the particle also returns to
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its initial longitudinal polarisation. This method is, of course, particularly

well suited for high energy accelerators (with moderately high injection energies
2 10 GeV) since these large machines typically have enough free space for the

many magnets (about 14 sets occupying about 22 metres) necessary for the snakes.

With present polarised H' sources the AGS at Brookhaven will be able to
accelerate 1010 polarised protons per pulse and planned source improvements will
raise this figure to well over 1011. It should be possible to reach about 22 GeV
before hitting an impenetrable resonance at which point one can reasonably expect
to have maintained 70-80% of the initial 100% polarisation. This would then be
suitable for injection into ISABELLE (the projected 400 GeV proton collider)
where use of a Siberian snake would allow acceleration of polarised protons at
something like a third of the expected unpolarised luminosity i.e. stable atomic
hydrogen could in principle provide a polarised beam at the same intensity as
the unpolarised beam.

For some time now an alternative method for obtaining good quality beams
of polarised protons and also antiprotons from the parity-violating decays of A°
and A° hyperons has been known [13] . It is now planned to construct such a pola-
rised beam at Fermilab in connection with the TEVATRON II fixed target program.

The undérlying principle of this technique is that parity violation in
weak decays of unpolarised lambdas leads to protons which are polarised in a
direction determined by the geometry of the decay, independently of the energy.
When A° particles are produced at sufficiently high energy by primary (unpola-
rised) protons striking a target, the resultant polarised protons are concentrated
in a narrow cone around the incident beam direction. To select these polarised
protons all prompt charged particles are swept away by a magnetic field. They are
then collected in a beam channel which conserves polarisation and are focussed
onto the target. The same method is used to obtain a polarised 5 beam from A°
decay. At Fermilab it is estimated that this technique will provide about 3x107
polarised protons or 106 polarised antiprotons per spill with a polarisation of
about 45% up to energies in an initial phase of 200 GeV (there exists a detailed

project to increase this to 450 GeV).
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(b) Polarised targets

Several new solid polarised target materials are at various stages of

development. Of these irradiated NH, is now replacing the usual alcohol targets

and offering inherant resistance toaradiation damage. One can expect to obtain
polarisations between 70 and 90%.

Another promising new development uses gaseous stable atomic hydrogen,
which becomes virtually 100% proton polarised at high density (‘w]O]7 cm_3),
high field ( ~ 10T) and low temperature ( ~ 300 mK). In this high density state
the polarisation cannot easily be reversed, however at lower density one can
spin select one or other of the two lowest hyperfine states by exciting one of
the EPR Tines in a suitable flat field area. This will allow dynamic proton po-
larisation with straightforward reversal by microwave frequency shift. The spin
flipped atoms are rejected from the magnetic confinement area.

This technique for producing a polarised gas jet target is to be adopted
by the now approved UA6 project for the CERN collider [14] , where the expected
Tuminosity for unpolarised operation with either the proton or antiproton beam
will be about‘2x103] cm-2 sec-] and with the target polarised about 1030 - 103]
with a possibility for improvement. Two big advantages of this set up are the
rapid spin reversal (~v]O3HZ), which will eliminate systematic errors, and the

possibility of having any polarisation desired. This experiment then will be

able to perform the full range of single spin asymmetry measurements p(5)¥§—+A+x
where A is a lepton pair, prompt photon, 0, A° etc.
And, with respect to this last, double-spin correlation measurements, the pola-

risation of the_AP(or A° ) being measurable to within 1% accuracy from its decay
distribution.

By way of a summary table &I reproduces part of the appendix of Ref. [10],
listing some of the parameters and characteristics of polarised beams and targets
as discussed in this chapter. An estimate of the statistical error involved in

the measurement of an asymmetry &/ may be obtained using the following formula:

4 1
gbd’= 522’ J([Q"T) 2 (4.4.1)
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where L is the Tuminosity, ¢ the spin-averaged cross-section per nucleon and T

the running time.

TABLE 41

(a) Typical luminosities (cm—2 sec

Beam |Liq.Hyd. T Pol.Prot.T Pol.Jet T Coll. Beams
UnpoT. primary 10%7 2 x 10°% 2 x 1072 102
Pol.primary | 4 x 10°% 109 10°! 100

30 29
Pol.secondary 4 x 10 8 x 10 —_ -
(b) Magnitudes of polarisation

Polarised Beam or Target Polarisation
Primary proton beam Py ~ 0.7 (0.6 to 0.8)
Secondary proton beam Ps ~ 0.45 (0.4 to 0.5)
NH3 target P, ~ 0.8 (0.7 to 0.9)
Hydrogen gas jet target 2., ~ 1.0

These figures give typical double spin accuracies for a beam intensity of 10

on a 20 cm target running for one month with an interaction cross-section of

10_33 cm2:

§ A (elaske 37) ~ 3« 107

SA (37 —4hX) ~ 2 107

The typical systematic errors for beam and target polarisation measurement are

3 to 5%.

S =71 -

0
sec

(4.4.2)
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5.1 Factorisation and higher order o corrections

As already mentioned in section 3.3 beyond the leading logarithmic order
the factorisation conjecture remains unproven in general. In particular, processes
with two hadrons in the initial state such as the Drell-Yan process for example
receive contributions from interactions involving spectator partons (see Fig. 5.1.1)

which spoil the factorisation proof [1,2,3] .
|

Vo W WanY 'Y

i
[
[

St A4

!

ey 4
¥ A\
! I

Fig. 5.1.1. Examples of interactions involving spectator quarks in the Drell-

Yan process.

Another difficulty arising from the non-Abelian nature of QCD is in the
cancellation of infra-red divergences [4 ]. It seems that this only occurs at
the non-leading twist level (i.e. is suppressed by powers of QZL although a
proof of this to all orders does not exist, so it may not be a problem.

The problem of non-factorising spectator interactions has yet to receive
a general consensus of opinion: while references [1,2] claim to have found fac-
torisation violating initial state contributions at the two-Toop level (although
differing on what this contribution is), the authors of reference [3] present
a method of demonstrating factorisation at measured dimuon QT, which they
maintain is generalisable to higher orders. The essential claim of these last
is that the authors of the first two referecnes failed to take into account
correctly the Glauber region, a part of the Tow-momentum gluon-region.

In the rest of this chapter the more optimistic attitude of reference

[3 Jwill be adopted and factorisation assumed to hold in its strong form, na-
mely that the full hadronic cross-section for any process is imply the convolu-

tion of the relevant parton distributions, extracted from some chosen process
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with a partonic hard-scattering cross-section (which may be considered as a
coefficient function) whose higher order corrections are calculable in perturba-
tive QCD.

There still remains the problem of evaluating the spectator contributions,

this is the subject of the next section.
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5.2 Spectator interactions in the.Drell-Yan process

For some time now the discrepancy between experiment and leading order
calculation of the Drell-Yan cross-section (the famous K-factor almost constant
with energy and having a value ~2) has been known and understood in terms of
large but calculable radiative cross-section to the basic process.

These corrections, of order o  as opposed to the leading-logarithmic
order as4€n02 , come from the infra-red region and as such are sensitive to the
method of regularising the singularities encountered in loop-momenta integrals
in this region. It is then natural to ask whether the standard techniques, i.e.
on mass-shell with dimensional regularisation, necessarily give the correct
answer. Indeed one might expect the more physical method of off-mass-shell regu-
larisation to be most probably correct and certainly these two schemes give dif-
fering answers, for example in the case of photon-quark vertex renormalisation
[5,6]

A more complete treatment, including the contributions of spectator
diagrams [7] has shown that there is no ambiguity; the two methods give identical
answer provided thay are implemented correctly, i.e. spectator contributions cor-
rectly accounted for in the physical off-mass-shell case.

The technique adopted (also in references [2,3]) {s based on the simpli-
fying use of a scalar model [8] for hadrons and quarks in which the hadronic wave

function is replaced by the (effective) interactive term

L, =-2MeXX + he) | (5.2.1)

n

where ¢ 1is a scalar meson and x a scalar quark.
An advantage of choosing a superrenormalisable coupling between the meson
and quarks is that it induces a transverse momentum cut-off characteristic of the

distribution functions of physical mesons, the authors of reference [3] show this

4 behaviour for the distributions instead of the k_2 behaviour

coupling leads to a kT T



that would arise from a dimensionless (for example derivative) coupling.
The K-factor for Drell-Yan takes the form

K= 1+ zo;; Cz(K)[I*' '%Lz"'CTﬁJ ) (5.2.2)

where the value of C for purely active quark contributions varies according to

|

the calculational procedure, although it is independent of the precise values

chosen for the regulating parameters (off-shellness of external parton legs

for example). The following three possibilites were considered:

(a) both incoming parton line on mass-shell, in which case no spectator contribu-
tions are included,

(b) both incoming parton lines off mass-shell, in which case the full set of
spectator interactions are included,

(c) one quark on and one off mass-shell, only spectator interactions in the off-
mass-shell channel are considered.

Note of course that the coefficient function for the deep-inelastic scattering

process (through which the parton distributions are defined beyond leading order)

must also be calculated in-the same manner as the corresponding channel in the

Drell-Yan process.

The results of the calculations performed in reference [ 7 ] are summarised
in Table 5-1I. The conclusion one draws then is that any regularisation procedure
will give the same, and presumably correct, answer provided one takes into account
the fact that off-shell partons are necessarily bouﬁd in hadrons and therefore
attention must be paid to include correctly the contributions of spectator inter-

actions.
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TABLE 5-1 . Contributions to the constant Cin K-factor, equation (5.4.2).

The Tabels A and S (active and spectator) refers to the type of interaction
contributing. The Tabels on- and off-shell refer to the active quarks.

AA AS SS Total
on-on shell 1 - - 1
off-off shell 2 -2 1 1
on-off-shell 3 -2 - 1

It must be remarked that these results, while very encouraging, do not
constitute a complete understading of the problem in that a priori there was no
reason to assume the equivalence between the methods. indeed while in the case of
active-quark/ active-quark interactions the wm®term 1is associated with a large
logarithm, this is not so for interactions involving spectators where there is
no large logarithm.

Thus in the rest of this chapter it will be assumed that on-mass-shell
scheme is a legitimate form of regularisation for such one-loop calculations. On
the contrary in chapter 7 it is shown that for transverse spin such calculations

lead to different coefficients for even the large logarithm.
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5.3 Parton densities, deep-inelastic scattering and Drell-Yan beyond leadihg

order

The corrections considered here are non-leading in the sense that they
are suppressed by one power of {an relative to the leading terms and hence are
negligible in the asymptotic region. At the subasymptotic energies of most present
day experiments they play an important rdle, providing the K-factor already discus-
sed. For the spin-averaged cross-section the first complete analysis was perfor-
med in ref. [9 land many others have also performed these calculations either
in part or completely [5,10] . The helicity dependent cross-section has also
recently been calculated to this order [11]

To leading order as already discussed in sect. 2.2 one unambiguously
identifies the structure functions % and ¢, with the spin-averaged and spin-
dependent quark densities respectively. Beyond the leading order one has a certain
freedom in the definitions, the distributions after all are not physical quantities
in the sense that they are renormalisation scheme dependent. This dependence is
cancelled however by a corresponding dependence in the coefficient functions to
be evaluated later. It is convenient then to require that the form of egs. (2.2.3)

be preserved in higher orders thus one writes
F, ) = L6 gt ,
2 1
G,t) = ;29:41 b, t) (5.3.1)°

where t is given by t = -ﬂan/y? with p an arbitrary mass scale. To this order
it is no longer true that % = % , the difference being proportional to
the Tongitudinal cross-section. This is just the statment that while to leading
logarithmic order longitudinally polarised photons give no contribution they do
contribute to the radiative corrections.

Calculating the leptoproduction structure functions éFk(x,t) and 9. (x,t)

1
in perturbation theory one has, in terms of the "bare" parton distributions

q;(x) and go(x):
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where fq K and qu etc. represent the order L cross-sections to the coefficients
function. Egs. (5.3.1) imply that to first order in o the relationship between

bare and renormalised quark densities in given by:

Acﬂnt) = qi(x,t)Jr ;‘ﬂi -*”—{[tA T, (3)+4¢ (—]A%
[£48, &)+ A4, ( ]Ago(n)} (5.3.3)

with a similar expression for q1(x,t), obtained by removing the A's. Henceforth
only expressions for the helicity correlated quantities will be given where the
corresponding expressions for the spin-averaged quantities may be obtained by
substituting %, for %, and removal of the 4's. The suffix 2 will be dropped
from fq,2 etc., identification 5.3.1 being understood.

Note that the absorption of the f's into the distribution functions only
changes the derivative with respect to t in next order in as(t) since

cl = @)(ah(t)) Cp ~ B OQ?GQ ._11___

It dos(®) h7T d g ' (5.3.4)

The quark and gluon densities therefore continue to satisfy the standard evolution

equations in order as(t) (see eqgs. 2.2.9).

Turning now to Drell-Yan and defining

3 (de*'+ do*7)
4 (d - ds*) | (5.3.5)
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where the T dindices refer to the helicities of the incoming hadrons, one has
to lowest order

4
2 by , G_] _[g]
Q d4s = - %ZIS..@.[%% %EQ;A?;&,)AC;:M S@’fz)’(s.s.a)

d &*

where Q2 is the invariant mass-squared of the lepton pair and S that of the initial
hadronic system, 7 = QZ/S and the sum runs over all quark and antiquark types.
The minus sign with respect to the spin-averaged cross-section expresses the
usual quark-helicity conservation rule.

To the basic qq annihilation process the corrections come from qa—ar*g
and gq(a)—+)fq(a) together with the virtual gluon corrections to the quark wave

function and photon-quark vertex. Schematically one has

A8 < — (14 {24 cer Lot l1-2)+ 610132 2 (000 + A4 5]
[(Ai[j:")‘d )+({4_,2)) o¢-=) Zﬁ(w (2)+A’§°Y)_H ’(5.3.7)

where z = r/x]x2 = Q /§ with § = X1%,

subprocesses. The factor of 2 infront of the kernel for the qq annihilation part

s the invariant mass-squared of the partonic

merely represents the fact that this process has a quark in both channels with
which is associated a large logarithm.

The statement of the factorisation theorem is that the kernel of (5.3.7)
and (5.3.3) are identical:

Py '
AP 0= APyo s ab=9.9  saa

Thus reexpressing (5.3.7) in terms of the scale-dependent densities, restoring

all factors and renormalisation group improving e to as(t) one has

o _%c - - 47 e d [ A o A o[58
%® O 2)2 (A\e(a A(’(y)} [(ﬁrlit)/ﬁ\jét 9+ (J"*Z))
x"%-,-f[ﬂ olr- i)(A% L2 A\fﬁ(v)]] - (5.3.9)
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The next-to-leading logarithmic corrections are governed by the differences

qu DY(z) - Af (z) etc. An important point to note is that these quantities,
being differences are scheme independent.
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5.4 Calculation of the coefficient function to order o in deep-inelastic

scattering

Since one first extracts the parton densities from deep-inelastic scat-
tering data it is natural to start here by evaluating the relevant coefficient
functions to extract the Aqu etc. as defined in the previous section.

To identify the three structure functions in Wy, (see sect. 2.1) it
is convenient to employ the following projections for a target of helicity h, the
relations are given for D dimensions anticipating the use of dimensional regula-

risation (see appendix A3).

-9 W, = (1-€) F (@) - (3-e)(F, @) - T =)

PP o = 5o (%) - ),
y o o ' . 2 (5.4.1)
ihe?T B W, = T(3-20) 6,68,

where T (N-2¢ ) is defined by (see appendix A3)

MN-2¢) = T'(N) A +a,e) (5.4.2)

The ambiguity, 3y as will be demonstrated also appears in the Drell-Yan coefficent
function and infact cancels in the difference (qu’DY - Adfq).

Let us consider first the quark sector, the lowest order graph, Fig.5.4.1
(a), gives =§E = 5?1 = d(1-x), with this defining the normalisation of the parto-
nic cross-section. To the next order one must also calculate the real-gluon emis-
sion graphs, Fig. 5.4.2 and the interference from Fig. 5.4.1 (b,c,d) with the

lowest order diagram.

: (a) : (b) ; (c) ; (d)

Fig. 5.4.1. (a) Lowest order diagram for the process ?q—q,
(b) vertex correction,

(c) and (d) wave-function corrections.
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The real gluon emission graphs describe the reaction

* .
TG +am — 46) + 9,

(5.4.3)
where the symbols in brackets are the momenta carried by the fields

Fig. 5.4.2. Real-gluon emission
corrections to the basic process.

In D dimensions the invariant matrix elements for this reaction
2

lmg*q/_,ﬂl %{ I _,‘m! ‘f'l

(5.4.4)
A, I =4{img. | *Imw,%l 1,
are given by

m. |-

Laat

i1,

by C,R) (- fy-o(F+E + 2€+2.)
A My, [ = 4 GROTE2905 T4- (5~ &+ 222)

+20- E)(gz:: -St)}) (5.4.5)

where the subprocess Mandelstam variables (here without circumflex) are given by

s-——(p—v—ct)z , 1f‘~'(1>-k)l ’ u=(’P~?')2 (5.4.6)

The two-particle phase space (PS) in D dimensions for the production of two on-
shell massless objects may be written

i ’EM[W pl1”

scheme has been anticipated and the necessary alterations made

PS

(5.4.7)
where the MS
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(see eq.1.4.12), y = 3(1+cos& ) with & the partonic subprocess centre-of-mass

-angle between incoming quark and outgoing gluon and all integrations over un-

specified angles have been performed. The variables s,t and u are given in terms

of x and y as

R (4- 1) - -y &y
S= x , t= ~ > M= = (5.4.8)

So we obtain the contributions to F and ¥ as
2ireal 1|real

Tt = 5 (8] {32+ LU0 -9
xmfg +ig)ld v T g)]}

g:lfml =;$';%’ ZL; A -l—x) {Aj [ﬂ G 5)]

feoliz- )& deolta)), .,

where the contribution from the longitudinal cross-section has been included in

the expression for %, (see ref. [9] ). Performing the integral over y one obtains

A 2\€ {+x?
Ime= ii(%) ‘g'i(i—z_el)_{e’g(i )_——H IR %sg({"x)

2T 3

+[(1+xz)(£'\"(:'—-}‘)')+' %‘ i - it:2&x+3+21+-}g(1_x)]},

+[(1+ xz)(&{(i:‘)* _ %'(-Tiﬁ _.-_#»_. I +0+ x+—5(#x3} (5.4.10)
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where use has been made of the following identities to express all divergent

quantities in terms of 1/¢ singularities

é ~i-e 1 { b G-2)
20 ({’ PC) = " g('f -x) + (4_;')*_ - & (—""——'—’)4_

1- ¢

An
+e ,-:i + O(ed

x (4~>c)’é =4+ e + O’ , (5.4.11)
with the usual definition of the + regularisation (see eq. 2.2.11).
We must now include the contribution of the interference terms of
Fig. 5.4.1 (b,c,d). By adopting the Landau gauge this part of the calculation

is reduced to that if the vertex correction, Fig. 5.4.1(b). This is given by

3
A 2r‘(f M- .2 _3 _
F(a;)-f {1+z GRg) Me =[-8 2 81},
after use of the expansion,

Mi+e) Mi-e) =1+ 2T + O(e®) ) (5.4.13)

the virtual gluon contribution to éFé and % . may be written as

1
9; Bickual 'gi | viduat

AT :5 r%% 2e) |

= g(f—x){i + e r” <) ._'_’g_z]}, (5.4.14)

Finally adding the real and virtual contributions we obtain

F, e @) = S(i-x) - & 25 P o (&) Dli=e)s
z—ﬁ3lzi+x) {ﬂ%__ i(411)+ ‘l-l:x 4y

+3+20x— ($+ %) Sl-x)]
G0, @) = F (e, @) — %4 Usx)

(5.4.15)
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Thus extracting the required functions fq and A4 fq we have

Lul->) 3 1 4
#@(X.) = {(41“1—)(“ x)) i- (1,_)‘)_'_ £x 41%

+3+2x — (’%"‘ %‘1) g(""‘)};

" (5.4.16)
At =foo- % (1+x)
where the 1/¢ pole has been subtracted out.
The moments of fq and A'fq defined by
(1’\) n-4 :
fafx x f(x) , | (5.4.17)
are easily derived.
{m L'L - { k 1 n { 1 l { {
f, - 3-[2;?3;3’*2;?" LTt
5S4 .3 .2 9
+2;T+2n (n+1)“"i] /
{n) "
M-8 - 4l est)
9 a 2T \n n+1 (5.4.18)

Notice that while the first moment of fq vanishes, the same is not true of Adfq.
This corresponds to the fact that the Adler sum rule [121(related to the conserva-
tion of valence quark number) is true beyond leading order while the Bjorken

sum rule receives order o corrections.

The result (5.4.18) has also been derived in ref. [ 13 ) using dimensional
regularisation, the results quoted here are in complete agreement. The same authors
repeated the calculation using the Pauli-Villars cut-off technique [14 ], and
owing to the scheme dependence obtained a different answer.

Finally atthis order there is also a contribution from the gluon content

of the hadron via the diagrams of Fig. 5.4.3, from which fb and Afé wil now be
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extracted.

e ==
!{ Fig. 5.4.3. Gluon sector con-
1 tribution to deep-inelastic
/44({4/____<k____ e scattering at order o

While the spin-averaged cross-section for this process can be obtained
from the previous from eq.(5.4.5) by crossing, the spin-dependent part cannot as
the gluon polarisation is now being considered.

The matrix e1ementslare

I, _,%I’L= b, T(R) (fli-e) la-a(% +&)- 2= 5],

" a7 (5.4.19)
Almx“a 1“""0‘7‘1{)(“-) 1—'(3 26)2'[( t m t—% é’t’

The phase space is as before, thus integrating over the angular variable y one

obtains the gluonic contributions:

L Fe @) = -2 2P,
2 4 (50 + (=) b2 + exu_x)],

P f.@)--¢ & AT, 0 (5 )
5 [(Zx—i)gn 12 —ax- i)] (5.4.20)

2
where qu =% x +(1—x)2 and P = }(2x-1). The term a(2x-1) re-
q9 g0

presents the ambiguity in the definition of in D dimensions. The

factor of 3 multiplying the structure functions arises because f_ and Afb give

9
the gluon correction for either a quark or antiquark whereas the gluon splits

into both a quark and an antiquark. The quantities fg5 and ‘dg may now be
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extracted from eqs. (5.4.20)

‘E(DC) %[(124_ ('f—x)?-en j_;_x +‘ G o (‘/-x)]

A 193 CO = ';'[(2»2— 1) b i’% — a(2x- 1)] : (5.4.21)

In moment form one has
f(m _ EN R + { _ nns+l zn:l
3 2 (n+1) (m+ 2) n? nm+1nt2) 5§ |

™ I-n__ _ -1 *!_L] (5.4.22)

>

N+ 1) nh+1) o
This completes the calculation of the coefficient functions for deep-inelastic
scattering.
Before moving on to the Drell-Yan coefficient functions let us make aremark
on the similarity of the behaviour between the non-singlet structure functions
gr:S and €??S . The fact that they have the same anomalous dimensions suggests
an interesting method for isolating the order L corrections [15].

In moment form one can express &, and ¢, to order a  as (18] :

F @) =A, [1 + L@ (ﬁ"‘; 2" mf")] (d,(a,))»’f?zp,

o o oslRs)
6 wF T2 (5.4.22)
with a similar expression for Eygn), where yjn) , yf"), Bo and B] are defined

by
2

LTI AR S G P RS

B (3) =B, -2 (5.4.23)

1b1tz @1 (161-[.2)2

The unknown constants An are related to the matrix of the relevant operator eva-

Tuated between nucleon states.
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Recall that although f(n) is scheme dependent, so too is 7?)

the combination f(n)+ 7( n)
q )1

Thus for the ratio %’](n

and infact

/48 is renormalisation scheme independent [17] .

_(nf

2 (again scheme independent) one has

&/F" = C 1+ 527 17)

2

Taking the logarithm one obtains:

(n) ("
s 4 (4 4 2
R fn[g /9’; ]=Qn“—f;?—3’(n+m)+bﬁds+%+"' - (5.4.25)

The constant a_ can be removed by subtracting for a particular value of 02 the
terms bn as2 and cn/Q2 represent higher order and higher power corrections respec-
tively. Initially one assumes these terms to be small, for Q2 > 10 GeV2 say.

One then compares (5.4.25) with the data to extract a value of 4 .

ARy |

- "' Fig. 5.4.4. Plot of 4R"™ = M (¢?) - R(n)(ch))
x10° .7 )
™ 7 with Qi =10 Gevz..The solid curves correspond

S -y~ to A =100 MeV and the dashed curves to
"% A =200 MeV,

R S o

_________ -(’n=3
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5.5. Calculation of the coefficient function to order . in the Drell-

Yan process

The corresponding calculations must now be performed for the production
of a time-like photon. The lowest order diagram, Fig. 5.5.1 (a), for qa annihila-

tion has the matrix element:

S (1-¢) <
fmﬁ_,,x] = T2 i‘t‘fzgkﬁ (5.5.1)

where h, h' are the helicities of the quark and antiquark respectively and the

phase space & now

Ps. = 2% (-9 , (5.5.2)

with z for the subprocess defined as Qz/s. Thus the subprocess cross-sections

are, to lowest order
jz: (,8) = _ A;Aég‘(z, Q) = g({_ z), (5.5.3.)

where the factor (1- ¢)/2N has been divided out as will be done for all the fol-

D S B e

(a) (b) (c) (d)

Towing.

- *
Fig. 5.5.1. (a) Lowestorder diagram for q@g — 7 ,

(b) vertex renormalisation correction,

(c) and (d) wave function renormalisation corrections to the basic

process.
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The diagrams of Fig. 5.5.2 describe the emission of a real gluon:

4k +7 (P W) — (0 + T 5.0

The matrix element for this process is

T,

hh'

el b (0 0 (i £ 285 2]

The phase-space, in 4-2¢ dimensions for the production of a massive photon
is (in MS)

5.5.5)

1
PS. = ?'E(—é;)eze(#z)fvze(odj [J (4-3)]—6 . (5.5.6)

with y as in sec. 5.4, but now the subprocess invariants are

Qt 2(4- ) _ 1(1:3)
S="£ s t=-& Té[—-ﬂ) ) —{,{r-Q =y g . (5.5.7)

Integrating as usual over y we obtain

oo - digw) - 2t (s) REg{Astn
veal veol (5.5.8)
2 x> z? .
bt o) - 2R
P ;q s ak
Fig. 5.5.2.. Real gluon emission
* corrections to the basic process
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The virtual gluon contributions (corresponding to Fig. 5.5.1(b) in the

Landau gauge) can be obtained from eq.(5.4.12) by substituting Q2 — -Q2 and

expanding the extra factor of (-1)° up to order e2? , this gives:

%ﬁ «;.—bMQ= - d’@g-l 5{/_2){ L+

oy & (Qz) X (Le)[__ _3.g, Zﬂz}.(5.5.9)

T T 4-2¢)

Adding the real and virtual contributions gives

%—7“ =-—§a?r’ S(f z) — ‘g 211: 2)(52,)
el e ]

And thus we can extract the required quantities fq,DY and qu,DY:

b B0~ 20082 - (e - (F-) o]

9,0y 9,0y (5.5.11)

Lastly one must calculate the quark-gluon (QCD Compton) scattering of
Fig. 5.5.3.

. Fig. 5.5.3. Quark-gluon scattering
P k P « contribution to the Drell-Yan pro-
TT——a— cess at order a-
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One obtains the following

My, ) =ttt e a5+ ) - 28 s 2]

1T
—¢ Plz_ s_ -t _ 2&(@* }
Alm 3-*\%[ ol 4 =€ re 26){1 5 ———S—(,:———”f)} (5.5.12)
On integrating over y these give respectively

i%: = P(i)( ) ML(Z—M—! z))\on —%’z+z+%] y
e (5.5.13)

Iy 11z -4)4 (-2 _ 322 -
-dhp- - ;;A@@(%J%IZ@ O S

Here we see the expected term a(2z-1) which will precisely cancel the correspon-
ding term in the deep-inelastic coefficient functions. Extracting the last of

the required quant1t1es,'% DY and ﬁJ,DY’ one has:

4,5y 2

= %[(23 H-z)‘)ev\ﬂ%f ~ 32 Lz %] ,

A%w = %[(22_1)&\6'%%)2_ 32.22*31'% _a(sz] 550

where, as usual, the singularity has been subtracted.
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5.6. Numerical results for the helicity asymmetries in the Drell-Yan

process

From the results given in the previous two sections one can derive

the required differences: in the quark sector one has

2(t,74) = S+ 200 B2 - a1 E)ie]
2008, -at) = 20 ,-0)+ 5 +29) (5.6.1

and for the gluon contributions,

(ﬁa,w-%) (Z +(1- i))(M» %)-'- -5z + 'Z] ’
(AL, -44) = il (22-D)b-2- 3E +32- 1] . (5:6.2]

The important point to notice is that the large corrections from
the delta function are equal in the two cross-sections do Dy and dAchY and
thus in the asymmetry (thevratio of these two) the K-factor precisely cancels.
Below, in Fig. 5.6.1, the moments of the above expressions (5.6.1 and 2) are
plotted against n . As can be seen the remaining difference between the expressions
for the spin-averaged and helicity-correlated cross-sections are truly small,

about 10%.for n = 2 and decreasing rapidly with n.
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sol
o (1-201)
20r (fq(.'gv' 2'5’0)
10} 1.0
08 ( m cm)
0.6 A4S~ 4¢
0.4 __--—Q—D-v-~_g‘ (scale enlarged)
02 -7 4 TET---.
o—< ¢ ; ; e N
o 8 10 12 14
~0.4
('gc.gv"'g@)
AF1g. 5.6.1. Moments of the differences Z(quY - fq) and (FéDY - fé), solid lines
Z( fq,DY - fq) and ( Q}DY - fb), broken Tines. The gluonic terms are shown

on an enlarged scale.

Using the parton distributions of appendix A4 the asymmetry has been

calculated as a function of ¢ for various values of centre-of-mass energy.

10h
A‘: dAGDVdQZ
dawAQZ
i
05
- ¥ i
; B
o] —— 1 X AW S WS I | ' N —— iy 2
001 o1 10" %

Fig. 5.6.2. The asymmetry «/, for the Drell-Yan process. Full calculation
(solid 1ine) and only the &-function Corrections (dashed line).
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From an experimental point-of-view a more useful quantity is the

P 2qz/ Vs.
The authors of ref. [9] have calculated the spin-averaged part of the Tatter;

asymmetry with respect to the cross-section differential in Feynman Xx

they give the form for the quark contribution as

QS _ hmef 4[5, . . )
Aa:il:, TS {Jx;+lr't[H(x1,xz,t)[i+ %O 21+ %ch]

1

{
v ) da [y g ] + g“i’f 2 Hein) 5(2)
) 2 (5.6.3)

1 1
J 4 sz ¥
+ aé"l(;)f,, 7: » % H(’Ci;xut) ‘F("z’xz)
B %,

where ﬁ(x],xz,t) = ZZ: e? qg]] (x],t FZ] (x ,t), the explicit forms of g and
.i

f can be found in the original paper. A similar expression is given for the
gluon contribution. Thus the corrections for the asymmetry will come from the
small differences in g and f between the spin-averaged and -correlated cross-

sections.

So, provided T 1is not too small, to a good approximation one can
calculate the asymmetry using only the first line of (5.6.3) and making the
usual replacement q — Aq etc. for the helicity part. The leading order result

is given in Fig. 5.6.3 for the asymmetry

.,4 - anLzAGEY QAT oY (5.6.4)
LL AdQ* dx, d@* d=, x o o

where
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QRAAe _ 4ma [l [] .
d&‘a(:, ©9S A% +L+'r Ze A t)AC[,(I t)l:i + %‘ﬁ@ﬁb‘%‘)} (5.6.5)

This should provide a good guide to the asymmetry, despite the fact that the
normalisation is increased by a factor of order 2 by the radiative corrections,

that is the additional smearing in (5.6.3) is likely to be negligible.

A G480
d’rf?”é(ﬁixl= x

Fig. 5.6.3. Plot of the leading order asymmetry

= (dzlda'DY/szdx )/(dzc“DY/dQ dx ) -0 against ¢
F
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Chapter 6 Helicity asymmetries in higher power mechanisms
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Hyperon production at large angles in proton-proton collisions

The hard scattering kernel

Numerical results for transmitted asymmetries in A4 -production



6.1 Bethe-Salpeter approach to the hadronic asymptotic wave function

In the subasymptotic region (for which typical momentum transfers or
P, are not much larger than hadronic mass scales) one expects. higher power
mechanisms to play a significant rdle in exclusive and semi-inclusive pro-
cesses.

Due to the pioneering work of Lepage and Brodsky [ 1] many of these
mechanisms are accessible to perturbative QCD. Lepage and Brodsky use light-
cone perturbation theory and the Tight-cone gauge to derive evolution equations
for the hadron distribution aMp1itudes @(xi,Qz) which control the valence
quark distributions in high-momentum-transfer reactions. These may be evaluated
to any required order in as(Qz). These amplitudes are then convoluted with
a hard scattering kernel, which depends on the process under consideration
and can be thought of as lining up the quarks to form the hadron.

The distribution amplitude & is simply related to the hadronic wave

function:
a
P (x; , Q") xf[a?kn]')b(ig,kn) : (6.1.1)

It contains the essential physics of that part of the hadronic wave function

which affects exclusive channels with large momentum transfers. The distribu-
tion amplitude, clearly process independent, is only weakly dependent on Qz,

and this dependence is completely specified by an evolution equation which

in leading order takes the form

? $
Qéa_.az @(xi,az)e 9_4217%9[“ U‘_’]] V(’é{;/ jy) @(3;)&’), (6.1.2)
where V can be computed from a single-gluon-exchange kernel. The general so-

lution of this equation in the case of the proton is

-

. _ | z xl B
¢(ZQ/Q2) = 'xi x2x.'5 g:;o'n (&’%) @i‘(ﬂ(;) . (6.13)
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Asymptotically the first term dominates:

2 Q’ -2/3(3’
CP(X;JOJ—*' Cxixzzs(ﬂn,\—a) . (6.1.4)

The evolution equation is represent schematically in Fig. 6.1.1, where the

terms not exhibited represent higher order o corrections

‘S s 0 —0 -0
}——o - ____ox{_}___g_’. ___.g_o.!. —-—-;—-—-o-)----}
0 —— —0 - )

Fig. 6.1.1 Bound state equation for the baryonic three-quark wave function
at large momenta.

By way of an example consider the electromagnetic form factor of a

» given byi
G, @) =[Jdd] Ple, @ Tyl @) D5, @) , (6o

where the hard scattering amplitude is given by the set of diagrams in
Fig. 6.1.2 (the contribution from the triple gluon coupling is absent as the

colour factor is zero).

Fig. 6.1.2. Diagrams contributing to T, for baryonic form factors.

H
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Note that T,, is defined with its external legs on shell and is therefore

H

both gauge and Lorentz invariant. The expression for GM can thus be viewed

pictorially as in Fig. 6.1.3. The rdle of the hard-scattering kernel of

P

Fig. 6.]1.3. The general structure of the proton's magnetic form factor at
large Q ' ’

redistributing the large momentum q between the quarks in order to realign
them is clear. This also implies the gluons of Fig. 6.1.2 carry large momen-

tum tranfers ~'0(Q2) thus justifying the use of perturbative QCD.
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6.2 Hyperon production at large angles in proton-proton collisions

As already discussed in sect. 4.2 , measurements of single-spin
asymmetries (or more precisely polarisation) of strange baryons produced
in proton-proton collisions have produced startling results. While such
effects are not readily accessible to perturbative QCD, as discussed in
sect. 3.5 assuming the strange quark is produced essentially via a gluon-
fusion mechanism one can obtain estimates of both the reflected and transmitted
asymmetries. Such asymmetries should also be well accessible to experiment,
in particular the UA6 experiment (see sect. 4.4) could, even without
polarised proton beam, measure to a high degree of accuracy the transmitted
asymmetry in Ep —AX.

For not very large values of p; one expects that higher power me-
chanisms will play an important rdéle. While it is often very difficult to
ascertain the power-law behaviour with respect to p; , helicity dependence
tends to be strikingly large and can differ drastically from mechanism to
mechanism and thus provide a valuable method of identifying the particular
process at work.

One possible method for producing a 4 hyperon is by combining a di-
quark from one proton with a strange quark (produced by a gluon from the
other proton) via a hard-scattering kernel similar to that described in
the previous section [2] . This process is represented diagrammatically in

Fig. 6.2.1, the blob is precisely the hard-scattering kernel.

Fig. 6.2.1. A higher power
mechanism for A production in
pp collisions.
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This picture motivates a simple description of the process, namely
a pointlike effective interaction g +dq — A + s, which could be understood

in terms of gauge invariant effect Lagrangian:

/‘V- (6.2.1)
Z =¥ L34 F % !

where @, 1is a spin-zero diquark (in the case of a vector diquark one would

dq

replace @ ¢dq — V dq)’ which according to the leading quark rule of

Blankenbecker, Brodsky and Gunion [3] should be the dominant contribution.

Also recent work on the diquark content of the proton [4] has revealed that
the spin-1 diquark is highly suppressed with respect to the spin-0 diquark.
The derivative can act on any of the fields, however since BFFJLV= 0 (this
is actually a higher dimension term) one only has two effective independent
couplings. Thesecan be conveniently chosen as two different helicity confi-
gurations and thus lead to non-interfering amplitudes. The choice of a spin-
zero diquark means that thed helicity is that of the s-quark, this allows
the helicity dependent and independent cross-sections to be written in a

particularly convenient factorised form:

Fd 7 (6] e B, ][] T

2
(6.2.2)

?

and similarly for do +_, where i indicates the helicity of the gluon relative
to the proton and for T the helicity of the outgoing A (or s-quark) relative
to the incoming gluon. Note that this particular mechanism gives zero reflec-
ted asymmetry since the diquark is not polarised (a vector diquark on the
other hand would lead to a non-vanishing initial-initial asymmetry.

The quantity to be calcuiated then is the hard scattering kernel T

H
for the two helicity configurations, this is the subject of the next section.
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6.3 The hard scattering kernel

A typical diagram to be considered is given in Fig. 6.3.1, in all

there are 64 diagrams as one now has to include triple and even quartic gluon

vertices.
¢ kS
N Fig. 6.3.1. A typical diagram
f[ /{ Y2 Pa ]\ contributing to the hard-scat-

ik’zggfé,,»—" ff i . i tering kernel T .
n\ 4 B

It is convenient to write the amplitude T, in terms of the two helicity

H
amplitudes mentioned and form factors:

/‘:(%+Ac"—4—/\+§) = F+%* +F—_’]\—— , | (6.3.7)

where the amplitudes T are taken to be

+

T -z ipNgYgnk 6.2 |

A

T =72 8G,N Yk 6.2 |

(6.3.2)

P

strange quark, h and i1 being A (or s-quark) and gluon helicities.
The subprocess Mandelstam variables are defined as

. pd’ q, k are the momenta of respectively the 4, diquark, gluon, anti-

g‘”’(?a""i)z > T=lpi-p) , &= (C[,—'FA)Z- . (6.3.3)

The helicities of the incoming diquark are fixed by helicity conservation

with respect to the outgoing quarks, similarly for the outgoing antistrange
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quark. Thus these redundant helicity Tables will be suppressed. Squaring these

amplitudes up one has

,//)\/Ilz o gguk (6.3.4)

/

where the constant of proportionality will be absorbed into the definition of
the Fi. Note that this separation between }i and Fi is quite arbitrary but in
the form given is most convenient.

The structure functions actually decompose into further helicity com-
ponents depending on the relative helicites of the quarks in the final state,
similarly @ﬁ(yi), the baryonic amplitude has different helicity components.

As mentioned above there are 64 diagrams 1in all to be evaluated, these
can be divided up into 13 classes, equivalent through interchanging vertices

along single quark Tines, these are listed below in Figs. 6.3.2, .3 and .4.

J 3

N I

(a) (b) (c)

(d) (e)
Fig. 6.3.2. QED type diagrams contributing to T,. The total number of dia-

grams per type (include exchange of diquark lines) is: (a) 8, (b) 6, (c) 8,
(d) 12, (e) 8.
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(c)

YW

(b)

(e)
Fig. 6.3.3. Diagrams with one triple-gluon vertex contributing to TH' The total
number of diagrams per type is: (a) 2, (b) 4, (c) 4, (d) 4, (e) 4.

XXX

(a)

(d)

Fig. 6.3.4. Diagrams with two gluon vertices or one quartic vertex, with
number of diagrams per type: (a) 2, (b) 1, (c) 1.
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6.4 Numerical results for transmitted asymmetries in A-production

The large number of diagrams involved in this calculation, many of
which contain pinch singularities, renders the exact evaluation of this process
highly complicated. In order to obtain a reasonable estimate of the asymmetry
following ref. [2] a subset of diagrams, namely those of Fig. 6.3.2(a) and (b),
are considered. These t-like exchanges should give dominant contributions,
the diagrams involving triple or quartic gluon couplings are generally suppressed
by colour factors (the diagrams of Figs. 6.3.3(a) and 6.3.4(b) are in fact

zero).

The individual heTiéity amplitudes can be evaluated using the various
jdentities given in appendix A2 and the diagrams considered lead to the

following

W _ 957" oz )
F 7 [[A_‘j] ‘{ <b (3,,‘:)2,33) V (14,96,-31:3:/3!)

—++ —+L
+ ¢ (tp,jz,g,) (z,)xz,ﬁbﬂz,ﬁq)} , (6.4.1)

with
+~+ :
= & o b x> [(2-82)x -(4-y2) ] +
v xrﬁo"'}s(‘{‘ﬂz) + Ay, ‘313:33[‘32111— (‘(-j;)x—xz] (14_>Z) /
V—‘H- 8z Ut 5 [0- g ){-4) (X204 X T2) YeX X ] ( | 2)
= + X - K2 -2 4 2/ 3 2 ,
ZsYeYs -y 2,%e Y9293 (1-42) [‘3,1 x, — H-42) X x,] + (e
+——_
= te{o ,
— e |
V7= - e x 95 + ({~2) > (6.4.2)

ZeY1Y2 (""3‘)[‘0:1’- Ky =~ (""jz) 9‘—_75:]

- 109 -



A Ay A _
where dﬂd‘ 2 3(y],yz,y3) refers to the wave function of the A with the

u,d and s quarks carrying helicity A], 12 and A3 and momentum fraction
y],y2 and y3 respectively, x = x] + x2 is the total diquark momentum fraction

2 2 . - . .
and Xy = %(L(XT + xF)j:xF), xT and xF are defined below. The contributions

of the diagrams of Fig. 6.3.2(a) are the first terms of V‘L—+ and V—++.

Two interesting points emerge from the calculation: firstly one notices
that the graphs of Fig. 6.3.2(a) automatically select the spin-zero component
of the diquark system and secondly the contributions of the diagrams in
Fig. 6.3.2(b) do not have .@ppreciably different asymmetries, in particular the
contribution of the form factor V '~ (corresponding to a helicity asymmetry
of opposite sign) is negligible compared to the others. This strengthens the

belief that the omitted diagrams should not significantly alter the asymmetry.

For the purpose of calculation, following ref [2], only the leading

term in the asymptotic expansion for the proton wave-function (see Egn. 6.1.4)

VY YoYa is considered an& (since on the scale considered it is small)

we neglect the logarithmic scale dependence. To facilitate the somewhat

involved convolutions the diquark distribution may be taken to be a delta-
function in the difference Xy T Xy Checks on the leading terms of (6.4.2)

showed the cross-sections to be almost totally insensitive to the parameterisation
of the diquark distribution with respect to this variable. Thus one has

Xp = %y = 2x. And the two form factors become, on integrating over the y;

& 256 ﬂ:z 2 . __L q 5,12 -
F = oy (B 2 {%—Z(x;-:x')— 2{(x+x")? e'\_;% ?

® _ 9567t 3py 4 { x xx 1.}[6}
F =77 L% (7m +2(>c+=~c‘>‘£"°‘ 1 (643

Examining these two expressions one sees that, for X >0, ]F(+)!2.<< ’F(°)}2 ]

In fact the ratio of the two form factors, for wave-functions that are largest

near y, ~ Yo =Yg is less than 10_4. This again supports the belief that the
diagrams considered dominate the process.
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Thus one sees that the helicity structure is driven by the subprocess

couplings which, including colour factors etc., are

A (|2

,/r’
‘,iié -0

(.

,

(6.4.4)

04(3)%“-5“ ,

s

and the helicity distribution of the gluons.

Hence the transmftted asymmetry for the whole process is of the form

( .
B I?S.{D(i(x)A;’%)[lF“’IZ—IF"’Iz]g + (A<= 8)]

if,,
| A, (Fp+1X) = [PsiDpeo g% [|FT+IFI"]3 + @8]

(6.4.5)

where the parton phase-space integral is given by

-4 i

[?S' =L-J‘x3LJx ?gf ,g(§+"£+,")). ’,» .  (6.4.5)

where § = xxgs, t=xtandu-= X,u, with the hadronic variables t = (pA-pA»)z,

g _
u = (pB - Py )~. One also has the following relationships between the

variables of the process:

= - ¢ _A, W=— 2 S
2R 25
X = 75—4'- , X, = TJEL ) (6.4.7)
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where p/iy and Py are the components of the A momentum parallel and per-

pendicular to the beam axis.

In principle one could examine the deep question of factorisation of
the diquark distribution in QCD, through which this distribution could be
extracted from other processes. However the asymmetry is fairly insensitive to
the detailed form of the diquark distribution. Nofe that in calculating the
overall power behaviour of the cross-section one must take into account that
this distribution is accompanied by a factor M%@;, where M2 is the mass-squared
dimension associated with the matrix element of the corresponding twist-4
operator. Since the wave-function also has the dimension of mass-squared, it is
-10

easy to see that the mechanism considered here scales like E do /d3p ~P; in

accordance with the power-law counting rules of Brodsky et al [6].
In order to make an estimate of the asymmetry the following choice of

distributions was used in [ 2] :

3
x (de(x) x (1-%)

" (6.4.8)
xg(x) e (1-x) .

These will change with p? and although the overall normalisation depends
crucially on these choices, the asymmetry is rather insensitive to the specific
form chosen. One may therefore neglect the scale-breaking behaviour of the
parton distributions. However the asymmetry does depend strongly on the ratio
4g(x)/g(x) which was taken to be x(5x-2)/3 for the leading-quark-gluon-brems-
strahlung model [ 5] and 1/3x(2-x)/[1+(]-x)2] in the SU(6) conservative model,

see sect. 3.4(a).

The asymmetries for this mechanism are shown below in Fig. 6.4.1. In
Fig. 6.4.1(a) the effect of including only the domfnant graphs of Fig. 6.3.2(a).
One sees that the other diagrams are only important for small angles, at 90°

their inclusion is almost negligible over the whole range. Thus one might
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expect that the remaining uncalculated diagrams will become important for small
trigger angles and large X
In Fig. 6.4.1(b) the mechanism is compared with the asymptotically
Teading p;4 mechanism due to the subprocess gg —»ss. It is important to notice
the opposite sign (the scale is inverted) and completely different shape. The

change of sign can be understood from helicity conservation.

Finally in Fig. 6.4.1(c) the different inputs for 4 g(x) are compared.
It is clear that this particular mechanism depends critically on the extent to
which hard gluons carry the parent proton helicity, which confirms the conclu-
sion of [5], namely that the transmitted helicity in pp—A+ X is a sensitive

way of studying the question.

1.'D [} i . ‘ ._?_5_ — 1:0 0 ‘ . ‘ o.ﬁ/ionsarvatlve

(@)

Fig. 6.4.1. (a) Asymmetry using all graphs calculated (solid curve) and only
the leading t-like diagrams (dashed curve), (b) comparison with
the leading p}4 mechanism (dashed curve with scale inverted),
(c) comparison between the gluon bremsstrahlung and SU(6) con-

servative (dashed curve) models.

To end this section let us make a few remarks on normalisation.
Characteristically, when one produces a hadron directly the price to pay is a

higher power of as/pi. With current expectations of A x~100-200 MeV, at

- 113 -




first sight, one might expect such mechanisms to be unimportant in any region.
A similarsituation holds for direct meson production which is further suppressed
by a factor QE/Pi. However there are a number of ways this could be substantially

compensated without affecting unduly the helicity asymmetry:

(i) The large number of diagrams involved, 64, typical of higher
power mechanisms could considerably increase the overall normalisation. For

proton-proton elastic scattering there are over 3,000 diagrams.

(ii) The A seen experimentally can be the decay product of directly
produced A* or 3* resonances. Typically the two-body decays B* > Aax
will be strongly favoured [6]. This will slightly soften the 4 spectrum,

but again increase the inclusive A cross-section. For Targer x_ the helicity

T
will be transmitted to the 4 and consequently the basic asymmetry predictions

should remain unaltered.

(iii) Finally one could imagine that QCD radiative corrections might
have a considerable effect on the process. The analysis of chapter 5 suggests

that while increasing the cross-section they may not affect the asymmetry.

In conclusion then while one must admit that higher power corrections
give at the moment only a qualitative descriptiomof normalisation, the asymmetry
predictions can be expected to be quantitatively correct and thus provide a

very valuable signature to the understanding of the production process.
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Chapter 7 On the problem of transverse-spin asymmetries in QCD perturbation

theory

7.1 Introduction to transverse spin

7.2 The standard OPE approach

7.3 Some difficulties and criticisms of the standard approach
7.4 Spectator interaction effects

7.5 General comments and conclusions



7.1 Introduction to transverse spin

The description of transverse spin within the framework of perturbative
QCD has been considered by various authors [1,2,3,4,5] , apart from the experi-
mental interest (see sect. 4.3) this aspect of the spin properties of hadrons
is also an important testing ground for many of the fundamental theoretical
ideas underlying our understanding of high-energy hadronic physics.

It has been long known that transverse spin is governed by a twist-
three operator in the Wilson light-cone expansion [1] . Thus access to the re-
levant structure function %% (see sect. 2.1) will dlow a test of the applicabili-
ty of standard techniques and ideas to higher-twist effects, in particular the
extension of the factorisation theorem to the inclusion of the latter [6] .
Another interestingpoint is the appearance of a further twist-three operator
proportional to the quark mass [2] . This new operator mixes with the original
twist-three operator [3] giving rise to a contribution proportional to m/M
where m is the quark mass and M some hadronic mass scale (and therefore non-
perturbative) such as the transverse momentum cut-off for example. Transverse
spin has also been discussed in the context of the cut-vertex method [4] , this
permits the derivation of evolution eqations valid also for the light-like vertices
of massive lepton-pair production or e+e_ annihilation. The cut-vertex analysis
lTeads to an interesting interpretation of the quark-mass effect in the parton
model. This effect comes from considering the usual set of ladder diagrams with
all vertical quark lines effectively massless except for one, from which pre-
cisely the mass term is taken.

There also exist results which throw some doubt on the validity of the
above purely perturbative approaches [5] . Discrepancies essentially due to
a lack of gauge invariance lead to the consideration of the réle of spectator
interactions along the lines of the model discussed in sect. 5.2. The results
of this work (to be discussed shortly ) essentially throw into doubt the gauge
invariance of the operator renormalisation andthe neglection of spectator con-

tributions (i.e. bound-state effects).
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7.2 The standard OPE approach

As discussed in sect. 2.1 spin effects in deep-inelastic scattering
are governed by the antisymmetric part of the Fourier transform of the commu-
tator of two electromagnetic currents sandwiched between nucleon states of

and 4, this is expanded

definite spin, in terms of the structure functionsf?] 5

as

A f -
W =-¢€ oAt laso €+ [g"'_j_,é ‘]fg
» AT 2pa %;rP ‘ 2l e (7.2.1)

Recall the redefinition of §] and 52 with respect to the usual structure functions

g] and 92 3

(7.2.2)

:9?1:"234' J §1=—Z(jl+jz)

These definitions separate out the transverse and parallel components of s
as can be seen by defining s” = s;. + s} with q.s? =0. Sinces, o p”

this means we can write

o ﬁ o~ o o -S L
S = FaP , sr=s"-F30 . (7.2.3)

Thus the form factor 92 is explicitly responsible for the dependence on the
transverse-spin degree-of-freedom of hadrons.
The Fourier transform of the time-ordered product of currents can be

written as

4G. 2 A -
[a% SV T30 TE) ____%M"z(@)a},‘ %-C“O -

nodd

[Mr A(?J ez(a,)% 1)“(: O A (7.2.0)
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where the coefficient CA » and CA 3 of the twist-tgo and -three
operators respectively are functions of o and Q.

One then assumes that the matrix elements of the operators
between nucleon states exist and thus one has, for states of momentum

p¥ and spin s’

O, ... ey -
<P,$, O, Igs> =a, & (s P P’“"") y

(7.2.5)

A, oo e
<j>,s‘ O i ,ﬁ5>= b,% (Srpm- sﬁpr) pﬂ'... ,a’um

where & denotes symmetrisation over the indices ogpg... Boo1-
Using these definitions one then obtains the standard moment sum

rules for.? and g, (n odd only):

f de % G @) = a, C; (@)

(7.2.6)

L) [ @) =0 C @) +b, @)

Notice in particular that the anomalous dimension matrix is not diagonalised
by this choice of 51 and gz, this would require the redefinition of the structure

functionigz by

G (@ = gzn(Q’) - g:(ﬁ?') , (7.2.7)

which, inverting the moments, gives [7]:

fgz (x,@) = G, xa) - f Z, (j ) . (7.2.8)

The leading non-singlet operators contributing to @

. p are twist-two (as already

mentioned in sect. 2.1) and are

M- My KE oy s A o
OA,z =—Lﬂ1f AVX;XJ éEﬂ YV ) (7.2.9)
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The leading, twist-three, operators contributing to Gk 3 are

%04!"7'4-\-2.

O, = . fl{}}yg Y) L A (7.2.10)

where & denotes symmetrisation on the indices O pyees B o followed by anti-
symmetrisation on A¢ . Throughout this chapter only the non-singlet sector will
be considered, although of course a complete analysis would also necessarily
include the more complicated flavour-singlet sector.

The reduction in spin of the operator through antisymmetrisation of

two indices allows a further operator (still twist-three) to enter, namely
A, - a2 } PR
VA S A 0 i Tk SR
where the correct dimensions are maintained by explicit inclusion of a factor
m (the quark mass) which is the only dimensional object available at this level.
As mentioned above the contribution of this operator is clearly propor-
tional to m/M, and thus in particular disappears smoothly in the chiral limit.
This operator however plays no rdle in the analysis of this chapter (but see
later comments), although its presence underlines an important point in respect
of transverse spin: the proton carries transverse spin by virtue of its own mass,
independently ofthe quark masses (these two though must be intimately related
through chiral symmetry breaking). In any case the two operators give quite
distinct contributions and therefore in the context of perturbative QCD (if valid
in this case), it is legitimate to consider the zero gquark-mass limit (i.e. to
simply neglect this contribution).
The standard calculation of the operator renormalisation (see sect. 2.2)

gives the following anomalous dimensions [1,3 ]:

?f:‘; =q 2001 1- 325 +§“7b7§} )
X:‘; _ gzz Cz(K){1 _-’% +-;’:{%—Zz/5}) (7.2.12)
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for which one derives the high-energy behaviour of the two structure functions.
Use of the cut-vertex technique provides the same results [4] and the approach
of Altarelli and Parisi allows a parton model interpretation in terms of a spin-

projector:

7(,;;; =a@Go g + boym+ C(X)K:r‘("‘d("){r[f’:#] 2 (7.2.13)

where a(x) etc. are distribution functions.
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7.3 Some difficulties .and criticisms of the standard approach

A rigorous derivation of the evolution equations for parton distributions
requires the summation of ladder diagrams via the method of ref. [ 8] , mass
factorisation techniques [9] or the use of collinear Ward identities [10] .

The first two of the above proofs of factorisation depend on the
special properties of planar [8] or Tight-1ike [9] gauges to remove all but ladder
diagrams, in the Teading logarithmic approximation, from which one can then obtain
a Bethe-Salpeter equation for the parton densities. The axial type gauges have
also been applied to the operator renormalisation with the same effect of removing
non-ladder (non-factorising) diagrams (Fig.7.3.1 (b)).As is well-known the 1/9.k
denomjngtor in the gluon propagator in these gauges leads to an infra -red singu-
larity in the diagram of Fig. 7.3.1 (a) which is can&elled by a similar singularity
inthe wave function renormalisation which contributes through Fig. 7.3.1.(c) [11] .

This is a particular example of the Bloch-Nordsieck cancellation of infra-red

TAAL BA-A

(a) | (b) (c)

singularities.

Fig. 7.3.1. 'Diagrams contribution to the operator renormalisation.
(a) Factorising ladder diagrams, (b) non-factorising diagrams, (c) the wave-function
renormalisation contribution.

In attempting to repeat the above calculations for the twist-three ope-
rator governing transverse spin two problems arise. The first, and less important,

the non-factorising diagrams remain, The second , and far more disconcerting,
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the infra-red singularity of the ladder diagram, although of course it remains in
the wave-function renormalisation coefficient. Thus the anomalous dimensions are
singular.

The third method [10] uses the covariant Feynman gauge and application
of the so-called collinear Ward. identities to the non-factorising diagramsto put
them into the same form as the ladder diagrams. It is instructive to see how this
works. Consider. the diagrams contributing to wym(see Fig. 7.3.2) where the gluon

connected to the blob does not connect to the external leg.

Fig. 7.3.2. Diagrams contributing to W!Lv in a covariant gauge.

With an external projector g (or % g) acting on the gluon-quark vertex

in Fig. 7.3.2(b) gives

?XM/K "’/?ZkM ~F ZK}(?'-%Z P (7.3.1)

where K = p-k and the leading logarithmic approximation has been applied to write
k ~ ap in the numerator. Via the collinear Ward identities one then shows
(invoking Block-Nordsieck cancellation) that K* contracted into the blob reduces
Fig. 7.3.2(b) to the factorising form of Fig. 7.3.2 (a). It is clear that on
external projector 7y g cannot produce the same simpliification.

To try and uncover the origin of these discrepancies let us examine
more closely the application of the Wilson expansion and the calculation of the
corresponding anoma]oqs dimensions. The accepted approach is to calculate the

operator renormalisation sandwiched between hypothetical quark states. However

- 122 -



for free quarks (therefore on mass-shell) the operator @A,B vanishes identical-
ly , for zero quark mass. This is simply the statement that massless fermions

on shell only have two spin states: positive or negative helicity and cannot
carry transverse spin. Giving the quarks a mass does not resolve this problem
as now we only have the contribution corresponding to the massive operator and
its mixing with the first. Thus one is forced to consider off-shell quarks (as

indeed is implicit in all the calculation for transverse spin in the literature)

and not surprisingly the problem of gauge invariance arise.

To understand this physically it is instructive to consider what a
complete calculation would involve. Consider the time-ordered product of two
currents inserted into a hadron, see Fig. 7.3.3(a). The full order o corrections

would involve those diagrams in Fig. 7.3.3.(b).

R
P
(a) (b)

Fig. 7.3.3. Diagrams contributing to T.» :(a) Lowest order (b) Order a

corrections.

ATl but the Tast diagram are familiar. The general belief is that the gluon
entering the blob does not enter in the leading logarithmic approximation.
Indeed as discussed in sec. 5.2 it has been shown that this diagram (as far as
twist-two is concerned) gives no large logarithm and even the next-to-leading
Togarithmic contribution is identical to that obtained by standard on-shell
methods when summed over all diagrams. In the case of transverse spin where one

is dealing precisely with an off-shell (or bound-state) effect it might be
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expected that details of the bound state via spectator interactions should be

important and lead to a Green's function dependent behaviour.

Before going on in the néxt section to a calculation of the spectator
contributions, a comment on a possible further operator which could change the
picture somewhat although probably not to the extent required. The symmetry
conventionally imposed on the indices of the operator dﬁigfﬁ"'“ha excludes

a possible contribution, namely:

”n-1 /) - o , . wea
VSIS Y gan

While this, in part, contains the usual operator it also contains a piece
proportional to [@'1, 2°] ~ 1'gF}'U_. The new piece could be isolated by

defining an operator proportional to the coupling constant:
MW’ Ay M . . .
oS VA D '...zﬂ"jFAra‘Bﬂ“,,,éb'ﬂ”'\f’; (7.3.3.)

where £ = 1, ..., n-2 to include the different operators generated by the
different possible positions of the F*?. The fact that this operator is pro-
portional to g means that its coefficient function in the Wilson expansion is

undetermined to leading order.

“"he importance of this new operator has been considered in refs. 12,13 .
The authors of the Tatter also recognise the problem of considering on-shell
external particles for calculating the renormalisation constants and instead
use the transition from a quark state to a quark plus gluon state. However they
do not give any calculational details and it is not clear how they decided on
the correct combination of the new order g operator with the original twist-
three operator. Moreover the result they obtain, they only calculate for
their operator are in complete disagreement with the results obtained in 5 using

the effective Lagrangian model to be presented in the following section.
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The fact that the coefficient function is not easily distinguishable
may unfortunately be a simple reflection of the lack of factorisation of the
high and low energy regions for transverse spin, in other words the anomalous

dimensions and coefficients functions are somehow tangled up.
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7.4 Spectator interaction effects

In order to take into account in some measure the fact that quarks
are off mass-shell due to their being bound in a hadron, a calculation was

performed in ref [5] using a simple model for the proton.

The simplest model which incorporates transverse spin is a spin-%
proton with an effective pointlike interaction with a spin-%-quark and scalar

diquark according to the effective Lagrangian:

¢L

"{em = A ("Y’ CE‘;'\YF + Ac) + kinetic terms | (7.4.1)

The quark and diquark are both contained in the usual representation of the
colour gauge group algebra. The new Feynman rules are given in Fig. 7.4.1.
There is also a "segu]]“ vertex for the diquark, however to order a it only
enters in a tadpole contribution to the diquark self-energy which in dimensional

regularisation gives zero contribution [14]. The quark and diquark

propagator
P - -1
proton propagator —_— I (45—-f1) )
diquark propagator 4 — — E i @ 5-;3 k-z ’
4 ¢
R a
\} N4
pl i a 2
a A . _4 )
“ ey e _(K : —4}74" <‘F+P)
? \\"’

Fig. 7.4.1. Feynman rules for the effective Lagrangian (7.4.1).

are considered in the massless limit, as the object of the calculation is only
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the behaviour of the operator O This Lagrangian is explicitly gauge

A,3°
invariant thus the calculations may be performed in any gauge , the most con-

venient being the Feynman gauge.

The spin projector for the external hadron Tines is now the usual

P = %%f +M) (1 + ]% #), where M is the effective elementary hadronic mass.

The piece J + M projects out the spin-averaged part of Wpp and f 753 relates

to the massive operator 0! The remaining piece M§ may be decomposed as

A3’
above into M  and MST. For comparison the calculation will be performed for

those two pieces in parallel.

The basic diagram (zeroth order in as) is the simple box diagram

shown in Fig. 7.4.2. This diagram:

L }1;%,

R A Yk

k-p

Fig. 7.4.2. The basic diagram for deep-inelastic scattering inthe simple model.

Teads to the following integral (for one quark flavour).

_3 79 te[P K K+ 9) K]
Ze) [ [kl (k?)*(k+9)* (k- p)* ’

(7.4.2)

where p is the external hadron momentum and q that of the virtual photon, the
lToop-momentum integral [dk] is defined as in appendix A.3 for the MS scheme.
The integral in (7.4.2) is ultra-violet convergent by power counting and thus
the number of dimensions may be set equal to four. However, as written, it is
infra-red singular. This divergence could be controlled in a straightforward

manner by the introduction of masses for the various particles. To leading
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lTogarithmic order it is sufficient and more convenient to introduce an

infra-red cut-off which for simplicity may be chosen as Ik2

Inspection of the integral reveals that the region contributing the
large logarithm (here 4n QZ/MZ) is just M2 < k2 < Q?, Thus the simplest

procedure is to expand the denominators in the following way:

~2 - 2 © + 2 g _ M2 n
(Ru;) (/z—p)2= -Q kZMZ“ (Z%E“’) Z;a (—%ﬁ“) _ (7.4.3)

The small terms k2/Q2 and Mz/k2 ki1l the large logarithm, thus with D = 4 one
obtains for the spin-dependent part,M§, of P:

" %_] L Lt £V ] g(%w)”( 27‘3’)“

Hz Nn=o

Now the large logarithm comes from f[dk] k—4 therefore one need only take
the part zeroth order in k2 from the rest of the integrand. Moreover any term

proportional to M2 may be discarded as it implies a higher-power contribution.

Application of the symmetric integration formula (A3.7) with D = 4
shows that the vectors contracted with k” become contracted among themselves.
Thus in particular, power counting reveals that the term in kZ/Q2 in (7.4.4)

#”

would Tead to MZ/Q2 and is therefore to be discarded. is now reduced

to o

Iﬂy (4ﬂy~& ;:(mﬂyzmﬂ- {h[Y'ff X Y Y ](niﬂ)
+fr[{¢( Yg;-m{,)f 9%,55)]( b ) mm"j‘}.

taking traces and substituting x = Q /2p.q one finally obtains:

(7_.4_.5)
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(Lmt)t-ﬁ« f“’ 4, Z(Ji) iiJ {Sr”(" %)(%—;-)F‘_} (7.4.6)

Adding the crossed diagram (for which p«— v and q—-q, x—-x) and

decomposing S one readily obtains, to zeroth order in o for the moments of

the structure functions:

(’l.) e’z)‘z 2 _4
gi =3(lf-ﬂj14\}%"y\n+4) _ Y\=",3,5,...
(7.4.7)
n e_l z 2 j
9, "3(47-5)1{’\'/:61)‘2' n+d >on=13 5

In keeping with general parton model principles diagrams which involve
direct photon-hadron or photon-diquark couplings since these in some sense
correspond to even higher twist contributions. Here they are only artifacts of
the model which could be distorted by considering alternatively a zero-charge
hadron (a neutron for example) or diquark (in an integral charge gquark model).
In any case the inclusion of such terms although altering some details does not

have any bearing on the main conclusions.

To order o the two-loop diagrams of Fig. 7.4.3 are to be evaluated.
In order to illustrate certain points it is useful to perform the calculation
by stages. Considering for the moment only active-active quark contributions,
the diagrams in Fig. 7.4.3(a) and (b) may be evaluated by computing first the
top Toop which corresponds to the usual calculation with off-shell legs. Then

the effect of including the bottom loop can be seen separately.
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+ self energy contributions

Fig. 7.4.3. Diagrams contributing in order o to Ea and‘ﬁz,

The ladder graph of Fig. 7.4.3 is ultra-violet convergent thus using
the technique outlined above a straightforward calculation in the Feynman

gauge yields

Y n
£ (RO i€ 828 (k) k2 (B - 1)),

Rl

for the top loop, where w = Zk.q/Q2 and the coupling constant a colour factor

for the basic diagram are not included.

The diagram of Fig. 7.4.3 (b) is a little more complicated as it is
ultra-violet divergent so that one must also include the region lkzi > 02.
Nevertheless it is still relatively straightforward, by expanding denominators

according to the region, to obtain (including mirror partner):
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;A
&C (47()’[&}%‘[{ ry 1,W vy 5 4o Yﬂ}ﬁ'w 27 ,(7.4.9)

n=! j-

for the region M2 < kz < Q2 and
9 Ve
z
‘;‘77 z(R') (LTOR [ € @\ Q] k‘if a(/d_ E' W (7.4.10)

odd

for the ultra-violet region. These results are in complete agreement with those
of ref. [3]. Including the fermion self-energy graphs and taking note of the
combinatorics in eq. (7.2.6) one obtains the anomalous diﬂensions (7.2.12).

However the corresponding coefficient of w'" for §% is 1 - 4—232/3 .

In order to facilitate the comparison with the full calculation the
top-loop contributions to the coefficients of w" in y& and g} are listed below

(note that they are zero for n even). Ladder contributions of Fig. 7.4.3(a):

& . S
1 . nn+1)
-2
9, @ -5 (7.4.11)

Vertex contributions of Fig. 7.4.3(b) plus mirror diagram:

g, - Ik

(7.4.12)

where the ultra violet contributions have been omitted, they are in any case

not n-dependent.
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To complete the computation of these diagrams one must now include
the bottom loop. The procedure is as before and, although more tedious, the
calculations are still fairly straightforward; one now requires large loga-
rithms from both loops. For clarity of presentation below are listed the

coefficients of (1/x)" for §a and gé with the factors — ] and —— ;

(n+1) n+l
corresponding to the lowest order graph (see 7.4.7), factored out. Again the
n-independent ultra-violet contribution is omitted and will be included later.

Full Tadder contribution of Fig. 7.4.3(a):

ﬁ -2
4 . 'Y\('Y\-F") )
« (7.4.13)
4 o E -1
2 . n+1 .
Full vertex contribution of Fig. 7.4.3(b), plus mirror:
A
. &
fgi : %;‘; J )
' n
2 . no o). '

je2
‘Already a definite mutation of the factors for 92 is evident, while, as was
expected, the factors for ﬁl remain unchanged.

Finally the spectator contributions are to be evaluated, by way of
example the computation is outlined below for the graph of Fig. 7.4.3(d). The

integral to be evaluated is:

' 14 ( +4-2p)
<[ 6T kPt e ] e

Firstly note that there is an ultra-violet divergence, which in this

case is rather easy to extract as it comes purely from the £, in (k+{- 2p), .

Therefore this part of the integral reduces to
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-Lf[ a'k][aw] br[}(gi % X}A@eqer) Xv’ﬁ] k* (k+q()z(k{f’)7u’ k)‘(l-f’)z - (7.4.16)

The 4-integral is then trivial and gives

_4 4[-(!:-1’)2]-6
wm)y € m? . (7.4.17)

Expanding in powers of € , subtracting the poleand keeping only the logarithm

one has
o bl
70" AN p2 : (7.4.18)

The k-integral is finite and setting D = 4 one obtains the same integral as

(7.4.4) with an additonal factor of '{n,kzl,

The remaining part of (7.4.15) is ultra-violet finite. Consider first

the £-integral (in four dimensions):

X
f 4 CURE-p’

To obtain a large 1égarithm one need only consider the region M2 4 |12l ' Ikzl

(7.4.19)

and so expanding the denominators accordingly one has

( ) = R I E-zl 2 (2-"-'k - (7.4.20)
7”1"‘{4 = (I/.TC)" kl nz ?Hzo kz wm+2 .

. 2,,2 . . . 2,2 . . 1 s
Again the M/ 4" is to be ignored as too is the term L /k  since this will give

p2 on symmetric integration. For certain other graphs this latter term is

removed by considering the effect of extra powers of 1/k2 on the k-integral.
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Power counting and symmetric integration then give for the {-integral

41 & e\
o & &"er’L /’F(Zjo (%) 74':!_2' (7.4.21)

J

thus for the k-integral one is left with

f %’ﬂ o L T 99 g YD () )" (Z,eg)" . 0.422)

There are two points worth mentioning here: firstly from the sum in (7.4.21)
one notes already the appearance of the fypica] 2. 1/j term and secondly the
presence of the y in (7.4.22) implies that only the transverse-spin structure
function receives a contribution since s, ~ p and thus the contribution to

&1 is suppressed by MZ/QZ.

The k-integral may now be evaluated by expanding the denominators and
restricting, as usual, to the region M2=s Ikzlé sz Note also that the term
& from (K + g) produces either higher power corrections or does not contribute
to the structure functions ?] and g&, Symmetric integration then gives for the

hadronic vertex contribution of Fig. 7.4.3(d).

3?‘1 : zevro

| {914
«35 2 : !%;' %é; I

Similarly for the remaining top-quark-spectator contribution of Fig. 7.4.3(c)

(7.4.23)

one obtains

gi < ZQFO ,
& g 9ln- 1)
9, . B JZ;T - 5 (7.4.24)
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The total ultra-violet contribution (including self-energies) is

3?1 : 1 ’
¢ . A

Thus the complete answer is:

2 N
cgi " i_ﬂ(ﬂﬂ) +§iif
#-1
2 onl 5 4
g; : 1—n(ﬂ+4)+ “;‘j

For convenience the above results are 1istedin:tab]e 7-1. Thus for $1 the

(7.4.25)

(7.4.26)

usual result is recovered while for fz the result is considerably modified.

In particular the dominant piece, going as l-n(n) for large n has now a co-

efficient 4 in place of the original 2.
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Diagram §¢ 5
U.V. I.R. Uu.Vv. I1.R.
Fig. 7.4.3(a) 0 _ 2 -2 2(n-1)
n(n+1) 0 n{n+1) n
n n
2 x Fig.7.4.3. 0 Z 4/3 0 (-1 Z 2/j
{b) j=2 nose
n
Fig.7.4.3(c) 0 0 0 (=3 1/3..§§3ip
Jj=2
n
2 x Fig.7.4.3 -1 0 -1 (n+1) 2 1/j
(d) noyTe
Self Energies ) 0 2 s}
n ' n
2 . 2 (n - 1) .
Total n(n+1) + z : 43 n{n+l) * n ZMJ
j=2 j=2

Table 7-1:

the contributions of the different order as diagrams to the

coefficient (l)n in 371 and j;é calculated in the Feynman

gauge.

X



7.5 General comments and conclusions

A few comments are in order before proceeding to any conclusions.
Earlier attention was focused on the Wilson expansion approach. If one applies
the model to the calculation of the operator renormalisation, although rather
more tedious (due to the fact that all integrals are ultra-violet divergent),
it is not difficult to show that while the spectator contributions are zero

for O the same is not true for (@ This is yet a further indication

A,2 A3’
of the apparent failure of the operator approach to take into account spectator

interactions when bound states are involved.

The calculations in the axial gauge are much more complicated (there
appear to be two structures which propagate through the ladder graphs as
opposed to simply y or 75F in the twist-two case), however a cursory examina-
tion seems to suggest that while spectator interactions remain, gluons
coupling to the top quark-rung still give zero contribution. Thus some kind
of iterative structure, albeit very complex, might survive to produce a
Bethe-Salpeter evolution equation. However it remains to be seen whether this
would be Green's function independent and thus Tead to universally defined

parton distributions.

The inevitable conclusion to which one is drawn is that, at least in
the case when the leading operators are the twist-three operators governing
transverse-spin effects, the standard Wilson approach is not applicable. The
operator-product expansion might be salvaged in this case by use of another
technique of calculating the anomalous dimensions. This consists in finding
another operator (well understood) to which the operator in question couples,
then one can perform the calculations for the vacuum expectation value of the
product, using the well-known property that the renormalisation constants

factor out.
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The question is raised by this analysis of what, if anything,
disfinguishes the case of transverse spin from the use of the Wilson expansion
in general for Green's functions involving non-perturbative bound states; a
question which it is clear reguires a deeper examination. These remarks may
also have a direct bearing on the existence of a generalfsed factorisation
theorem for higher-twist as conjectured by Politzer [6]. In particular, in the
light of these results it is difficult to see how the mass-singularity approach
(see E17is et al ref. [6]) could deal with problems of a non-perturbative

origin.
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Chapter 8 Helicity asymmetries as a test of supersymmetric QCD

interactions

8.1 A brief review of supersymmetry theory
8.2 General phenomenological implications of supersymmetry

8.3 Helicity asymmetries in supersymmetric particle production



8.1 A brief review of supersymmetry

Recently with the realisation [1] that supersymmetry may solve the "fine
tuning" problem [2] of grand unified theories, there has been increasing interest
in the phenomenoligical implications of such an extension to the present theo-
retical framework. Since the superpartners of the known particles should in
general necessarily have masses below 1 TeV they may be accessible to future
and even present experiments. In this section the basic relevant theoretical

considerations involved in supersymmetric theories are discussed.

Supersymmetry is a symmetry between Bosonic and Fermionic degrees of
freedom related through a supersymmetry transformation. The Lagrangian for a

supersymmetric Yang-Mills gauge theory can be expressed as

’Zﬁsm = %3““5“ (A,2,D)+ Z (Y, # A F) Z iy (8.1.1)

where the pure gauge-sector particles: A(spin-1),A (spin-%) and D (auxiliary
field) are in the adjoint representation of the gauge group and those of the
matter sector ¥ (spin-3), # (spin-0) and F (auxiliary field) are in the regular

representation. The invariance Of‘SZusy under the supersymmetry transformations:

a — a

A ~ €Y.\,
o .

SA° ~ € (G, F* 4 %)
Qa - a

§D ~ E(FN)",

g‘li ~ 6(55"7’); ’

)

§p. ~ € 9. ,
§F, ~ éo‘ﬁq,;, (8.1.2)
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has the important implication that quadratic and logarithmic divergences
associated with loop corrections to the masses in the theory cancel between
fermionic and bosonic loop contributions. The point is that self energy dia-
grams like that of Fig. 8.1.1(a) have a partner with a fermion loop, Fig. 8.1.1(b)
which gives a minus sign and the supersymmetry invariance guarantees the right

couplings for the two diagrams to cancel.

H H
///-‘\\
H H H ( \: H
N 7
\\—//
H H
(» ' (b)

Fig. 8.1.1: (a) typical self energy with logarithmic divergence cancelled by

the partner graph (b).

If unbroken supersymmetry implies a set of superpartners to the known
particles with identical masses, then since these are not observed such a theory
must be broken. However even in the broken theory it" is in general very diffi-
cult to give a mass to the colour octet of spin-2 gluinos owing to the presence
of a continuous R-invariance [3]. This problem can be avoided by considering
a spontaneously broken supergravity theory, R-invariance is then necessarily
broken by the mass of the Majorana spin-3/2 gravitino [4], so that the gluino

(and also the photino) can acquire a mass.

Thus if one considers the gauge group SU(3)co] & SU(2) & U(1) with a
supersymmetric Higgs sector which induces the breakdown of electroweak at a

scale m (the gravitino mass) and induces a splitting of WE and z° gauge

3/2
bosons and the W* and Z° gauginos at the same scale, various radiative effects

can give masses to the gluino and photino.
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In this way, in going through the various stages of symmetry breaking,
the masses acquired by the different particles all get related to one mass-
scale, in a large class of theories [4,5] this latter is indeed the gravitino
mass. Thus typically one obtains mass relations for the w* and Z° bosons of

the form

~ (£
M2 g (“7() My, (8.1.3)
where A is a Yukawa coupling. If one assumes that e and A are comparable in
magnitude then the gravitino mass cannot be much larger than the W* and z°

masses.

The spin-zero partners to the leptons and quarks, namely sleptons )

3/2
mixing) proportional to their respective fermion counterpart masses. Thus

and squarks (G), acquire tree-level masses of order m with splitting (due to

slepton and squark masses are generally thought to 1ie somewhat above those of

the weak bosons.

In the gauge fermion sector the photino (¥) and gluino (), massless
at the tree-level, become massive through radiative corrections. These masses

are proportional to their relative gauge couplings:

My ~ £ M3, ~ a few GeV

21t
ds '
W‘ﬁ ~ 5 Ma, ~ a few GeV (8.1.4)

In other theories [6] with different schemes of supersymmetry‘breaking |
one can arrive at very large masses (of order or greater than mw) for the gauge
fermions. Therefore an urgent problem is to derive experimental limits on these
masses in order to select the correct form of supersymmetric theory and breaking

scheme.
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The above mass-parameters represent the only unfixed quantities of
the theory relevant to strong interaction phenomenology at present energies,
the coupTings being analogous to those of the standard theory. All effects‘of
gravitation are limited to mass terms, recently it has been shown that in a
class of SU(3) & SU(2) & U(1) Tocally supersymmetric models no sizeable gravi-
tational radiative effects exist at the one-loop level [7], although one-loop
diagrams exist involving virtual gravitino exchange use of the harmonic gauge
X%MY; = 0 reduces the contribution to just two diagrams whosequadratically

divergent parts precisely cancel.

Thus the phenomenological consequences of a supersymmetric version of
QCD can be ascertained by the inclusion in the usual calculation of hard
scattering kernels the contributions from supersymmetric particle production
in the usual way. The necessary Feynman rules can be derived from the standard
supersymmetric Lagrangian with the inclusion of the relevant mass terms for
the squarks and gluinos. For N = 1 supersymmetry (Majorana gluinos) the

Lo = Zuwo + ENF N
+(#5)(27.) + (55.) (2%)
e 92 X(30- 30) Gy + e
+ (quactebe squark kon) + (mass tonms) (5.1.5)

Here the covariant derivative acting on the gluino fie]d,‘Aa, takes the usual

form for gauge fields, namely

a ab . pabe o
OCZ&L':‘g %"ﬂ‘)ﬁb/\%, (8.1.6)
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and acting on the squark fields, A and'qp, is the same as that for quarks.
The colour octet indices a, b run over 1 to 8 and the triplet i,j over 1 to 3,

flavour indices have been suppressed.

The scalar and pseudoscalar combinations, qS and qp, of the more usual
s and t scalar partners to the left- and right-handed quarks respectively, are

given in terms of the latter by

'q\:s = J%(S+t))
q/? = j—;—-(s - t). (8.1.7)

Note that this representation diagonalises the scalar mass-matrix [4].

The coupling constant g, structure constants fabc and regular

representation matrices 't?j are as for standard QCD.

The Feynman rules derived from the above Lagrangian then give the usual
form of massive spin-zero and spin-} propagators for the squarks and gluinos

respectively, namely

-1
squark P . , < 8. (p% n4i,)
propagator 3 > - | Y (P * ’
gluino  , > b i - — i
propagator k- ™3

Several new vertices appear, the triple vertices of interest here are

the following:
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33 .
vertex .

. o k! /4
115
\Io_rt‘Lz,(1 cri) “ee 2000

M » k\‘
Ay}
//li’rs’i;

1

The hermitean conjugate of the last
identical with the exception that the minus

dropped.

(8.1.9)

"“Q’QPC?S s

two (i.e. for the antiparticles) is

sign for the pseudoscalar case is

There are also new four-point vertices present, of which only the gluon-

gluon-squark-squark vertex is required in this chapter:

)
.
~

349
verex (%s or 7»9) “k

(8.1.10)
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‘Note that for N = 1 supersymmetry the gluinos are Majorana particles;
in calculations this is accounted for by using Dirac spinors and multiplying
the gluino production cross-sections by a factor 2. In the N = 2 case gluinos

are Dirac particles.
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8.2 General phenomenological implications of supersymmetry

Assuming the previously discussed supersymmetric partner particle masses
lie within the experimentally accessible range how would the presence of such
particles manifest itself? For the purpose of this discussion let us for the
moment restrict the considerations to proton-(anti)proton collisions, the situ-

+ -
ation being analogous for ep and e e scattering.

Above the, as yet unknown, threshold for supersymmetric particle
production one expects to produce gluinos and squarks with strong interaction
cross-sections which would then give rise to hadronic jets. However the decay
of the supersymmetry partners is governed by the multiplicative conservation of
an R-parity [ 8 lwhich is given by

F-38-L

R = (-1) (8.2.1)

where F, B and L are fermion, baryon and lTepton number respectively. Thus the
gluino and squarks have odd R-parity and can therefore only decay into states
containing at least one R-odd particle. In the "D-type" models discussed in

the previous section in which the gluino is considerably lighter than the squarks
the most likely decay modes for the gluino are §— g + G (G a Goldstino) or the

three-body decay § — qq +¥ via
' 4
¥
(AN v
~
¥
Fig. 8.2.1. Three-body decay mode of the gluino: §-a»q§-+%,

with a Tifetime cT ~ 1 cm. The squarks also decay rapdily to q + G.
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Both the photino and Goldstino are essentially non-interacting and
therefore would escape detection in a normal experiment. Thus the signature
for a supersymmetry event is an imbalance in transverse momentum and missing
momentum out of the plane. To make use of this it is convenient to define the

quantity [91]:

- =
gl i S (8.2.2)
&l

il

e

where Py is the sum of transverse momenta in one hemisphere and pT' that of the

opposite hemisphere. For a normal QCD event x_ = 1. but is different for missing

E
energy events. Using various cuts on x_. and the total transverse momenta the

authors of ref. [9] showed in a Monte—Cgrlo simulation that a reasonable signal
could be obtained from about 106 events. The only background after the missing
P cuts (which reduce the signal to some 103 events) comes from heavy quark pro-
duction. Above threshold the cross-section & (gg— Gg) ~ 10 o (gg— QQ) owing
essentially to colour factors, taking into account the 10% leptonic branching
ratio for Q—>4£» X one see that this background is very small and maybe still

further reduced by applying a lepton veto.

The present Timits on the gluino mass are set by beam dump experiments,
the lower bound being around 2 GeV [10]. The absence of new thresholds at PETRA

provides a lower limit for the squark masses of about 17 GeV [11].

Recently the enhancement of the one-jet cross-section in pB reactions
has been considered as a signal [12]. There are two important reasons to
expect the jet cross-section to be larger owing to the existence of gluinos and

squarks:

i) new production channels open,

ii) the running coupling constant increases.

The authors of [12] considered the effect of gluinos with mass 2 GeV

and squarks of 17 GeV mass at collider energies ( #s = 540 GeV). They found
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that the effect is always small if one neglects squarks but that their
inclusion leads to a very large enhancement, of order 2 for pr = 80 GeV at & = 90°

and is an increasing function of the transverse momentum Py

As a final comment on the present limits on gauge fermion masses it is
interesting to note that the cosmological constraints on the photino mass [13],
suggest this to be about 2 GeV which coincides with the typical predictions of

the D-type models, see egn. (8.1.2).
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8.3 Helicity asymmetries in supersymmetric particle production

If one recalls that the important feature of supersymmetric theories
is that all fermions get bosonic partners and vice-versa a further signal
suggests itself, namely the helicity asymmetry. At high energies the dominant
subprocess contributing to pp — jet+X at sufficiently small Pr is gluon pro-
duction from gluon fusion, as we have already seen in chapter 3 the helicity
asymmetry (initial-initial) for this process is very large and positive. The
corresponding dominant supersymmetric process is gluino production, again from
gluon fusion. Since the gluinos are fermions with similar couplings to quarks
(barring colour factors) the analysis of chapter 3 now tells us that the asym-

metry is precisely -1 for this partonic subprocess.

Following the analysis presented in ref. 14 where the various new
partonic cross-sections were evaluated as functions of the gluino and squark
masses, the full expressions are given below the asymmetries being plotted
against égcm in Fig. 8.3.1 for various values of R = 4m2/s = mz/Egeam' It is

convenient to use slightly modified t and u variables:

/
t' = ’2P1-k1 s
(8.3.1a)

]

uw' — 20, -k,

with pi(ki) the incoming (outgoing) momenta (thus s + t' + n' = 0) for the

first three processes below and, for the fourth:

i

t’ '-Z'Pyki + A,

(8.3.1b)

w = —Zpi-k, + A,

with A = M2 - m2, where M and m are the squark and gluino masses respectively.
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(8.3.2)
dAc _ _ rows qj-—f./‘i' t'_f__u,__' 1__ 2m's|
it sz L sTlur T t'u
(i1) gq—-gq
de - e 1) (w'+20)  #(t-24) 8 A
At s* 2 E’ 7 3 Y

afege §2h o )y )]

dds __ mts EANCY +2A Ht 28), 8 H _ Zew’
dt S qut

(ii1) gg —qq

, # 4 1 _ M%hs 18M*
s T 8H(t'2+u'* M‘t'u')+ s +4-] ’

aPAaA—:_nxf_{_[_ 9w 180 L _ &M ]

(8.3.4)
g2 S t'u!
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I~

(iv) g 95919 (a,B refer to flavour I,J to scalar or pseudoscalar

B
combinations)
d s 7TfaL t' 2 A4 m's
dt - {[1 t' u'][ g (M' + SELT)} T ng SIT] J
dAs_ 2 4 2 Iw ' 3.
AAt(_ - 7{[1 ""9&7][% + g«p(’&”%enﬂ 1839
_ 2n’s
Zetaluy s (&4 5(501)]]
where €__ =1 for I = Jand -1 for I # J. The spin-averaged cross-sections

1J
are in complete agreement with those given in refs. [10] (erratum) and [12].
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M..-0  —= 1 ‘ ' ' A {gg-gg
c
dd —dd
2 2 A A B {uu - uu
IMIZ, = BOIMIS —-2e | i
c {ud -ud
ag - ag
2 2 B gl |
IMI2, = 27IMI7 . B
I e Y
C 2 2 o}
L M, M
}. -
-»5 f— -
9g—qq
2g—~ g
{ ples-2a
9q~ 8§
aq ~ a3
, b i
M.~ 0 ——’-1'0 n/p %
A

Fig. 8.3.2. Partonic helicity asymmetries in the limit of zero
gluino and squark masses for the processes gg - gg,
99 — g4, g9 — gg and qq - §q compared with the cor-
responding asymmetries for the standard QCD processes

99 99, 99 -~ 99, g9~ qq and qg —-qq.
In the Timit m2/s - 0 all asymmetries are -1 which is to be constrasted

with the large positive asymmetries which vary with ©., of the corregponding

standard QCD processes, see Fig. 8.3.2 above and Table 8 - I following.
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Fig. 8.3.1. Helicity asymmetries of hard parton cross-sections for the
production of supersymmetric particles (R = 4m2/s):

(a) gg~33, (b) gg—Tq(M = m), (c) gg—3a(M = m),

d)Zquequ< =m).
I,J
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Table 8-T

2 .
ab + ab(ab) aG/at [ _’E‘g_] atl
52
~n g (¢ '
gg + g8 %— (1-——‘2‘7} [’E*%J -1
S .
I ] [ﬁf [1 i s.t.z.f _2® - s tu
h tu 52 ( 52 - tu)
v 1 u b ¢ .
84 > 8q 21t°95s -1
ga + gq (1 + EEJ (ii - E-EJ (s° = u°)
s2 tz ou (s2 + u2)
e 1 Otu
gg *+ qq {h - ——-) -1
N 2
- 1 t t
gg + Qg 5&*5] (1_9—%J -1
S
9,9 > 49 § [_j;;* 533(3 +3 IJ]] -1 ]
(s"=u") (s‘—t‘ _2 5*)
> _)i S2+u2 5 {52+t2 - 2 -Sf‘]] [ £* g“# 7% Atu
Y 7 LWigy [Tt aB{ 2 ~ 3tu [gs‘+ )y og o (e 2;=)
t* =a u= 3tu

Partonic cross-sections and asymmetries for supersymmetric processes compared
with usual QCD processes. Indices o,B refer to quark flavours and I,J refer

to scalar or pseudoscalar squarks with E&J =1 (I=2J)or -1 (IfJ).
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One might worry that for not particularly small R (i.e. close above
threshold) the small 69cm region of positive asymmetry could wash out the effect
at the hadronic level when convoluted with parton distributions. In Fig. 8.3.3
the pp(ﬁ) cross-section asymmetry corresponding to the subprocess gg — gg
(dominant at these energies) is plotted again as a function of m/Ebeam' One
sees that even very close above the production threshold one still has a negative

asymmetry for large enough x The reason is essentially that the partonic x

integrals are cut off below zbout m/Ebeam' However there is still a change of
sign in the asymmetry as one approaches the threshold (from above), thus apart
from the change in sign one expects on going from normal events to those with

missing energy there is also an energy dependence of the sign in purely super-

symmetric QCD events.

@ )
10[ 10
i 8, 90 84~ 30
Ill Qs- 1il Q5
AL A,
0 0 . - \ Xr—
. 05
AR=03
~os} -05} R=01
] /R-0-001
-10! J/R=0 - 001 -10t

Fig. 8.3.3. Helicity asymmetry for pp —9ggX for different values of4R = m/Ebeam

plotted against x_ for (a) @& _ = 90° and (b) ©_ = 30°.
cm cm

T

- 156 -

10



In conclusion then one sees that, if missing energy events are found
in pp(ﬁ) collisions involving high transverse-momentum jets, a helicity
asymmetry measurement would provide a good check as to whether or not these
events were due to the production of new heavy spin-3} degrees of freedom,

namely gluinos.
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Chapter 9 Single-spin asymmetries in QCD

9.1 Introduction to single-spin asymmetries in QCD

9.2 The calculation of single-spin asymmetries in the Drell-Yan process



9.1 Introduction to single-spin asymmetries

A brief discussion has already been given in chapter 4 of some of the
surprising and still unexplained single-spin phenomena which occur in high
energy particle interactions. In this chapter the theoretical predictions for

single-spin asymmetries in the Drell-Yan process are reviewed [1] .

First of all let us recall that although strong interactions are parity
conserving (barring weak interference effects) one can in principle produce
asymmetries using only one polarisation by considering the correlation between
the kinematical configuration of say the final particles and the spin of an

initial particle.

In the Teading order however the Drell-yan process admits of no single-
spin dependence since no imaginary (absorptive) phase is associated with the
parton probability distributions. This leading order prediction then provides
a useful null test of QCD which is not dependent on the parton distributions

themselves.

It is well-known however, that loops (and indeed only loops) can
generate an imaginary part, thus looking at higher order effects one can hope
to discover some single-spin dependence. It turns out that one has to go to
order ai, the reason being that apart from one factor of o coming from the
loop one also requires QT of the lepton pair to be non-zero for kinematical

reasons; this implies emission of a real gluon for example which gives another

factor of as.

The situation envisaged here is precisely that of the planned experi-
ments at CERN and FNAL (see chapter 4) so it is important to have clear QCD pre-

dictions for such effects.

One is considering then the spin dependence of the differential cross-

section:
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-y + -
-—4{’-{9——-—- (AB — ppm X) (9.1.1)
d'a 40
where Q)‘ is the Tepton pair 4-momentum and @ their angles in a given frame,

A and B are two suitable hadrons (pa or pﬁ for example). Describing the proc-

cess in terms of the usual leptonic and hadronic tensors

.o M v
fﬂ(lpx— 64 <?A)SA ,Pg’ 3-(0) :r(x)l Par Sa ,'P;;) y

(9.1.2)

2 V
& W

Jod 2 v éQf‘éQv ﬁ{uﬁf}
L7 =28 (g7 - - &)

where k is the difference between the lepton momenta k] and k2. One obtains

de o 4 (ci_ kb
ARIQ  20m)t @ (5 k, )W;,- ’ (9.1.3)

in the Tepton pair rest-frame. In order to define the angles & and ¢ in

this frame it is convenient to construct the following basis [2].

2 -7'an -7an

4

X/“

il
NN
5
S}
ta N
&Y
|
o)
QN
™
)
+
)
-—“
aN]
)

- ARZR), 010

y/" Vadad

The differential cross-section for QT # 0 may be written in the form [2]
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A*Q 40 ~ 2@t Q% {Z("‘/a,o"'y-SA_];,

[

+ 5[(4-3e0) Wy, + V.5, T, )]

Cd

+ s 20 ws?(l«/u-r Y. ST s) (9.1.5)

+ _JZ[SI.:@CD.S 2? (\'\/2'2 + ySA 7;,2)]
+ Sl;‘\ ZQSIM? (XSA T;:r__i + Z SAT;: -1)
+ 5" 20sinl¥( X. SAT;:-!. +Z.5, T:, )

where the polarisation of hadron B has been averaged over. It is clear from

the above that to define the angle @ one must keep QT # 0. QCD power counting
then tells us that

l,,/ 7, L - Q%
2,2 » ‘2,2, ’rg,-z ) TZ,—z = s P
(9.1.6)
~ T G
W.Q,f 7 /r.?‘,'l ’ ’_”2’—1 J 7—2’_1 =< 4\’§ 5

when compared with wOO' Moreover transverse spin effects, as discussed in

chapter 7 are suppressed by a further power of d§  so that T2 1 and T; 1
should be small. Thus the term most likely to provide a Targe effect at the
Towest non-trivial order (i.e. at order a§ for qa annihilation) is the helicity

L
term T2,-1'
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9.2 The calculation of single-spin asymmetries in the Drell-Yan process

To calculate T;,_] one requires the imaginary part of the interference
between Born graphs, Fig. 9.2.1(a) and higher order graphs, e.g. Figs. 9.2.1(b)-
(d), the authors of [1 ] claim that these are indeed the only graphs with an
imaginary part contributing. Typically then one has to evaluate integrals of

the form

(9.2.1)

4 _4_[» (4, 8%, 20, 2710
m Co-0 @Ol

using dimensional regularisation D = 4-2¢ . At the partonic subprocess level
the resulting expression, which is the coefficient of 6((p+r-Q)2), may be

cast into the form

28T, 2o ul SR m- L c.()

(9.2.2)

K(A (e{ ) +Bbhm+ Ch(1+ % )+D\4\ 4z) +£]

As a first check on the calculation the coefficient A of the infra-red singu-
Tarity should be zero since an imaginary divergence would not be factorisable
into the parton distributions in the usual manner, rendering QCD unapplicable.

This the authors of [ 1] find and they give the other coefficients as

_ . =24Q
é% B (: T CQT;JC111-62$ g

p- ElG-a). 264
s Q-F!/&/Qz-«- QT
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E = -Al8(13@'+902) -728(Q*+ +@*as* +3 6F)
~a'(e*-15c e, - 72 @) ]

2 @ (2-0%) @ @i ar] T,

(9.2.3)

with 4 = Q.p - Q.r, £n(Q.r/Q.p) being twice the rapidity of the pair in the
subprocess c.m. system. A close examination of the expression for T; -1 shows
that it does indeed vanish like QT/{§ consistent with eqn. (9.1.6).

One can now define an integrated asymmetry &IL for the physical process

by

A - [ deoo [ [[Ae- [4e] de/d*ad0

[ desO[ [Ta@ + ["dp] do/ 4" A0 (9.2.4)

+ . . . AN .
where do indicates a positive helicity proton A, since &{L is linear in the

proton helicity de”  and %(dﬁi -dﬁ:) are entirely equivalent. From expression

(9.1.5) it is straightforward to show that

A (9.2.5)
oo 2ESaTLL
~ 3T W, o
And defining al_, the subprocess asymmetry, in the obvious way modifying (9.2.4),
one obtains a similar expression for a’L in terms of T; 1

In Fig. 9.2.1 the subprocess asymmetry is plotted as a function of the
lepton-pair transverse momentum QT for Q2 = 25 Gevz, s = 200 and 400 Gevz, and
the photon rapidity y > 0. The asymmetry is rather small owing essentially to

~the colour factor (CAR)-NC/Z) = - 1/6 for SU(3). Infact (Q&)-NC/Z)/(NC/Z) = -1/9,
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that is a suppression of roughly one order of magnitude owing to a coincidental

partial cancellation of colour factors.

Summarising the result of the complete order czi calculation in the

1imit s — oo with Qz/s, QTZ/S, y held fixed one obtains the estimate

~ 0(:<('§1))( Ge) 9 () R(u) 0
),041_, —’ CR- %N,,l 40(5 <;w 2o ~ 50, 7,(9.2.6)

where the brackets indicate partonic variable convolutions. Numerically

5 parton distributions and Aqéx) = 0.94£/x ,
see section 4.3, the authors obtain &/L = ~2.2 dg% (1.8 dg%) at @~ = 25 GeV ,QT=4
(3) GeV and y = 1 for JUp experiments at #s = 27 GeV.

integrating this result using the NA

ey

05 1
@ T | Fig. 9.2.1. The asymmetry at the sub-
03 . process level, as defined,in eq. (9.2.4),2
i = ] in units of (2¢®)-N ) 2 (Q7) for $=200 GeV
ou b i (full curve) and s=400 geV? (dashed curve).
o 1 2 3 4
Qy (GeV)

In conclusion then the null result for &/ in the naive Drell-Yan model
is not altered substantially at O(oti) in QCD owing to a fortuitous cancellation
of colour factors for the qq annihilation process. The competing QCD Compton
process would have a colour factor 2Nc in place of that of eq. (9.2.6) which
might compensate the valence suppression of this channel, however it is unlikely

to alter the asymmetry by more than a few ¢xs%.

- 165 -



References to chapter 9

B. Pire and J.P. Ralston

J.C. Collins and D.A. Soper, Phys. Rev. D16, 2219 (1977).
J.P. Ralston and D.A. Soper, Nucl. Phys. B152, 109 (1979).

- 166 -




APPENDIX Al

Colour gauge group algebra

The algebra of the colour gauge group, SU(3)_,, is defined by the
structure constants fabc of the group which fix the commutation relations of

its representations.
[ a fI ] abe c (A1.1)
L, T ij—’L'F [ij : '

For the fermion (regular) representationrof the group the matrices T are Jjust
the usual Gell-Mann 3x3 matrices (a = 1,...,8). However for generality the
following formulae are given for the group SU(N), whence the fermion repre-
sentation consists of (N2 - 1) NxN matrices. The element of the group will

be represented by the indices a,b,...,e running over 1, ..., (N2 - 1), while
the suffices i, j, ..., n running over 1, ..., N will indicate the matrix ele-
ment in the representation. Thus we have for summation over repeated indices

(always assumed):

5 =N-1 (A1.2)
;. = N . (A1.3)
The fermion representation matrices thenobey the following relation:
a a 4 _'i_ ‘

The following equations define the Casimirs or invariants of the group

representation:
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aQ a.
‘fi-} Ty = C,(R) &, (A1.5)

a b ab
Ty T = T(R)S ) (A1.6)
For SU(N) these two Casimirs are given by:

CR)= (N*~1)/2N |,
TR) =%

3 (for each fermion type) . (A1.8)

(A1.7)

The following set of traces are useful in evaluating various matrix elements

involving particles in the fermion representation:

T.R) = LT T - F(n>=1) |

(A1.9)

T.(R) = tr;TQ TQTLT"] =(Nz—ﬂz/‘+/\/ , (A1.70)

TR) = Lt rt] - =INS)/AN L wan
T,.(R)

ft

trl:”[’q”fb] tr[”fq’fb] =-1;;(N2~1) O (A1.12)

The totally antisymmetric structure constants fabc also satisfy the

commutation relations: define a matrix representation (Fa)bc by

(F-Q)bc - 4 fani:c

, (A1.13)

and one can rewrite the Bianchi identities in the following form,

LN T A o

. (A1.14)
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Now one has the Casimir CZ(A) = N defined by

a b ab
tr[F F ] = C,(A)§ (A1.15)
and the following set of traces:

T,(A) = tr[Foee] - N(N*-1) (A1.16)

b4

I

T.(A) = ’Cr[Fa F° F_be] N*(N-1) (A1.17)

U’[FQ Fb’Fan] = 3N (N~ 1) (A1.18)

A
=)
I

7.0 = twlF P s [P Pl = N vet) .

The commutation relations (A1.1) may be expressed in diagrammatic

form as

Y

i I S o

I _ W

This allows the colour factor multiplying, for example, the s-channel amplitude
shown here to be exressed in terms of those for the t- and u-channels. This in

“turn permits the full amplitude to be expressed in a very compact form.

Similarly one can decompose the s-channel colour factor for four-gluon

scattering into its t- and u-channel components according to:
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Finally the colour factor for the four-gluon vertex is automatically given in

terms of those for the s-, t- and u-channels according to

each term on the right-hand side here has however, its own separate kinematical

factor.

A more complete set of identities may be found in appendix B of ref[1].
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APPENIDX A2

Dirac spinor and spin projector identities

In this appendix a Tist is given of useful formulae and identities
applicable to calculations of hard scattering cross-sections where masses
may be neglected. It is convenient to begin with the spin projector for
external (mass]éss) gauge particles as this will be adopted for identities

involving spinors.

For the following discussion it will be useful to consider a particular
reference frame, the final results being written in Lorentz covariant form will
however be independent of the frame chosen. Consider a gauge particle (photon
or gluon) with four-momentum q'u(q2 = 0) then we adopt the frame in which the

components of q are given by:

/M
9" =< (1,0,0,1) . (A2.1)
M
The spin projector E(q,\) for the state with helicity A obeys the following
conditions:
2
T = O, (A2.2)
CL.E = O, (A2.3)

In order to fix the gauge one further condition is required and this is

usually chosen to be:
Y].E = O, (A2.4)

where the Tight-like vector is
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M
N = (1,0,0,1) . (A2.5)
The spin projector must then necessarily be of the form:

-g}* —L(o

= 7% A,4i,0), (A2.6)

where the factor JE- is for normalisation purposes One can then construct

in a straightforward manner a covariant form for g by making use of one other

M
arbitrary light-like vector 7, and we have egn. (1.4.10)[2]:
g .

A | 4 ;M :
(17?‘5’7”7l) B E[’7"7 7 717 ’7/‘ 17 77#
O gep oy ' gq.p) - ven

As defined E/Aautomatica11y satisfies certain symmetry conditions

(parity and charge conjugation):
*
M / M ,
g (%)}517777 ) = g ( )--2 })7;')7)

= E’u(m A ;1]77') ] (A2.8)

Contracting this expression with x;. and applying the well-known Chisholm
identity [3]:

My e

X/MXVX}C _ g/‘vxm—g,uﬂ: XV—+ ZVKX/“"'AE Zébé , (A2.9)

one obtains
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B = tlyygteny) + gopyli-ay)]

(A2.10)

, N
g g T

For a spin-%-particle moving in the z-direction the Dirac spinors may

be written in the form:

JE+m X AE-m o3 X
/L( = E_m G__'X O'flJ vV = 'Jm x P (AZ_.-”)

)

where E and m are the energy and mass and X is a two component spinor: (;) for
positive helicity and (?) for negative. By considering the spinors for parti-
cles moving in the negative Z-direction, then one finds that the current

ﬁ] YVuuz, with u](qz) moving in the positive (negative) Z-directions, is pro-
portional to the expression on the right-hand side of equation (A2.6). Squaring
up the current and this expression it is a straightforward matter to extract

the normalisation factor and one obtains:
_ " L M
u ( 2 /11) 'X M (Pif At) = 2 PiPz- E (Pi)ﬁﬁﬁ)’?) 54,4,_ (A2.12)

In using this identity care is needed to use the same vector v in different
amplitudes contributing to the same process (for example as in sections 3.2(a)
and (b)), since although the cross-section is naturally independent of n the
individual amplitudes are not. For larger (odd) numbers of matrices one uses

the Chisholm identity (A2.8) to reduce the product to one matrix, with a possible
X% which may be removed by using 'X%u(p], h]) = h]u(p], h]). The corresponding

identities for currents involving antispinors are easily obtained for (A2.12)
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by noting that one can always choose a basis in which v(p,h) = u(p, -h) etc.

Since in the chapter on supersymmetry it is necessary to consider
scalar couplings which give rise to strings with an even number of matrices it

will be useful to have similar simple identities for u u; and u, s*”u.. The

2 2 1
first of these is obtained immediately since the only scalar quantity available

is P1-Ps and squaring the expression gives the following identity:

Q(Pz,h)u(i,ﬂu) = dn, . p 8414: ] (A2.13)

Notice now helicity is flipped rather than conserved. The second of the even
matrix expressions also has to be a spin-flip amplitude and thus multiplying

by (A2.13) and using the standard trace trick one readily obtains:

MVEH

” i 4 A2, r v Yo
I/L(ﬂ,h)()” M(beli): 1op BP—P P —uﬁie ﬁerjé;,E(Az-”’)

where the definition of ¥ s, as usual:

o = % }:Y/7 Xv:l

: (A2.15)

To conclude this appendix on simplifying techniques for Dirac spinor
algebra, it should be pointed out that while these identities simplify quite
considerably the evaluation of amplitudes involving one or two fermion lines
with few matrices (and indeed the evaluation of the m terms of the amplitude as
opposed to the m2 of the full cross-section), once the number of fermion lines
and exchanges increases to five or six (as in the Born approximation for
exclusive meson-nucleon or nucleon-nucleon scattering ref. [4]) then the large

numbers of terms generated by repeated use of the Chisholm identity and the
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and the large numbers of Feynman diagrams (104 - 105) renders such calculations

effectively impossible.

Recently however, a new and more powerful technique has been developed
[5] to permit calculations to be performed for such processes as those men-
tioned above. The method is based on a reduced 2 x 2 representation in which

spinors are written in two component form:

Vo= (ﬁ) , (A2.16)

g

taking advantage of the Weyl representation of the Dirac matrices in terms of the

2 X 2 Pauli matrices:

(5 (22 vz

/A
Defining ¥+ and &, by

r (o X% o Z,
Y o= <Xf o) am d /p’-:(?_ o) , (A2.18)

a string of the form:

—

SN fon (42X
%3/,;5“7( A ¢ (——’%———)ﬁe , (A2.19)
becomes:
1-
i

4

M M2 S
VR Y AL YT 2.20)

4+

for an odd number of gamma-matrices and for an even number:

t M M2 "
"7{:@: Xt %;Yt B - ¥, '74‘,1 _ (A2.21)
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The reduction of such a string to one or two matrices is accomplished by use

of the very simple Fierz identity:

(X‘u)q( Xﬁ)ki =X 84'5 gﬂ s

(X/“i )i}( Yfl)u =2 (ng Skt — St {,k) ’ (A2.22)

where in the second expression summation over the two components = is under-

stood.

Any two component spinor u; can be written as a linear combination of

[s.> =(?> and s,V =(é> , (A2.23)

and similarly # can be written as a linear combination of Iso> <‘So' etc.
Thus after reduction via the Fiertz identity the resulting strings are readily

evaluated in terms of overlaps.

This technique was - used by the authors of ref [5] to evaluate some
35,640 diagrams contributing to exclusive nucleon-nucleon scattering (i.e. six

fermion lines exchanging five gluons) in less than one hour on a VAX.
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APPENDIX A3

Dimensional regularisation and D dimensional integrals

The method of dimensional regularisation [6] has been described in
many texts [7] , thus here only a brief motivation for and explanation of its
use will be given followed by a Tist of useful formulae for typical D-dimensional

integrals encountered in evaluating Feynman diagrams containing loops.

A typical loop integral to be performed after simplification by various
tricks such as Feynman parameterisation of numerators, shifting of Tloop
momenta, symmetric integration etc., is of the form {when Wick rotated into

Euclidean space):

(/AZ)Z-% M _ _(/MZ)Z—D/Z P (%) Plr )
(R*+M2) ° (4TC)% &) (M3)57 7 (A3.1)

where M2 is in general a function of particle masses and external momenta, the
term (}JZ)Z_D/2 with ) of dimension [mass]] ensures the coupling constant
remains dimensionless and de = de/(ZTt)D. Now the function [ (n+1) = n!
has poles for n a negative integer thus for r 2> s - D/2 and D = 4 the above
integral is (ultra-violet) singular. However setting D = 4 - 2e renders the
expression finite and performing a Laurent expansion in € permits the

isolation of the singularity in the form of a 1/€ pole.

Notice also that for s > r + D/2 the vanishing of M2 will also induce
a singularity. In general M2 contains Feynman parameters over which an inte-
gration must be performed and the singularity (of the infra-red type) appears
again as a gamma function pole. Thus the dimensional regularisation scheme
also removes the I.Rsingularities, but care must be taken in renormalisation
not to confuse the two; only U.V. singularities contribute to the renormalisa-
tion constant whereas the various I.R. singularity cancellation theorems

guarantee the disappearance of these under certain conditions.
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By way of an example let us consider the following integral (again in

Euclidean space):

k—sz)
Now the expansion of [(e) near € =0 is given by

Me) = 'éf f_j(i +e)

{ (A3.3)
= & — ¥+ Of)
where )(E, coming from the expansion of | (1+€), is the Euler gamma
X; = 0.5772 ... Thus one obtains, on expanding the term (47Cp2/M2)
I =1 |4 +«€ BE =Y + I 2+ O (A3.4)
(LI-TC)Z E H2 .

The origin of the <£n4m- B/E is now clear and the modification of the measure

(1.4.12) leads to the following in pace of (A3.1):

[d(k] (kz)r = 1 </btz)e F(T’-&’D/Z) F(S—T'—-’D/z) (HZ)T’*Z—S (A3.5)

(k1) ATT)* \M% T(2) M(s) M3- 22)

€
where the (yz) has been absorbed into the definition of [dk] . This is

now valid for the MS scheme [8] up to one loop (in higher Toops more complicated

constant terms arise).

The expression (A3.5) has also been extended to the case where the
axial gauge is adopted and one has numerators of the type 7).k 91 . oOne

simplified form is then (in Minkowski space):
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th y sta D+1/2 (FV1 P( ne D
: = = [— 4 7[' AL s+ 44 -Ds) (A3,
s G T Mo

6)

More complicated integrals are given in [9] in terms of hypergeometric

functions.

In general, before arriving at the form of the integral given above,
. ' ¢
the integrand contains a number of factors k  with indices uncontracted

e

oL
these are reduced to products of g and (kz)r by use of the symmetric

integration formula:

.

(v

I

lolwk £(®) [l N S (A3.7)

A : Apk. 'ﬁ(kz) (kz)f (Z ﬁ}“)‘z 3/“3/% L. j/‘zr-_; ,Mz,.)
' 33(1)+2)---(T)4—21'*2)

I

b

where the sum is over all distinct permutation of the indices }JPuZ"'jizr'

o A H Moy~
For an odd product of k (i.e. k ]k 2 R 4 2r ]) the integral is clearly zero.

In four dimensions the denominator D(D+2) ... (D+2r-2) reduces to (r+1)!2r.

The identity (A3.6) is straightforward to derive: denote

§

My o Par P Me M3z M Mot Mz
- E (A3.8)
G(r) ?2(‘1\15 3 ﬁ c T j )

Then the following identity is trivial by inspection,

P2 - - Mar Mo e - Por
j/"i/”z C(r) = (®+2T_2) C(T—4) . (R3.9)
Now Pufla o phoe

Im _ oQDk -C(kz) kz Kﬂ‘s ka— . .kﬂzr

3)‘1}4;

(A3.10)

—
—

S M

(r-4) -
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Clearly I(r) is proportional to (k") G(r) by symmetry.
Therefore writing
My Mar D r o, M- Mae
4 2
Lo - N d k{3 (k) Co, , (A3.11)

contracting with 944 o> applying (A3.8) and (A3.9) gives

Ne.y = Nee) (D+2r-2) , (A3.12)

hence (A3.6).

In chapter 7 use is made of the following expression for angle
independent integrands, in particular for finite (although this is not necessary)

integrals:
/2

fo(Dk. = —r‘%’; (kw—za(/@z. | (A3.13)

The above is in the MS scheme with the modification to MS as already described.

The expansions for the Euler gamma and beta functions around integer

values are as follows:

Mm+e) = P(ﬂ)[1+€(8ﬂ“YE)+ O(ez)] , (A3.14)

Blm+e, nie) = Bfm,n) [I + e (S + S, - SWHY\)'{-O(EZ)] , (A3.15)

n-1

where S = EE 1/5 and B(n,m) = "(n)[(m)/[(n+m). The Euler beta
=1

function occurs frequently from the Feynman parameter integrals since

i
,(,, xm—i (4—>¢)ﬂ dx = Bm ) . | (A3.16)
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For two denominators the Feynman integral is [10]

~(m+n)

1
b - B(mm)_zfoa/x xm—j(/—x)n-i[;zm6(/~-;z)] , (A3.17)

which generalises to

™

G (3 a.x,] 5" (A3.18)

ﬁa—”i _ F“(Z‘;n) iﬁ(O/x; x.~ﬂ£—1) g(i—:ixi)
i=4 4

A much discussed prqb]em in dimensional regularisation is the treatment
of X'S (or equivalently €,.,¢s ) in a non-integer number of dimensions[11, 12].
This problem is intimately connected with the axial vector anomalies of which
the Adler-Bell-Jackiw anomaly is a particular case. Thus, as pointed out in
reference [12] the choice of which Ward identities clash (dictated by physical

circumstances) is essentially equivalent to a choice of definition of )(5.

In the literature there are essentially two different prescriptions for

dealing with the Xg in D (non-integer) dimensions. The first due to 't Hooft

and Veitman [ 6] is given by

Y. =4 YonYz ¥’ (A3.19)

2

with the following properties

v, = 1
{ Z; 5 Xdﬁ} = O LoMo= 0,4, 2 3

[Yg;xﬂ] = 0 :m=k,. .. D1

Other methods/%quiva]ent to this can be found in reference [11] . This prescrip-

(A3.20)

tion although well defined requires the inclusion of extra counter terms to
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cancel the spurious anomalies introduced into Ward identities which are

really free of essential anomalies.
A second prescription [12] consists in a mathematically i11-defined

Y

5 whose properties alone are are fixed according to

Y, -1

{X()Xﬂ} =0 . u=0,4,...,0-1 (A3.21)

It is clear that this prescription will automatically satisfy the relevant

Ward identities for loops with an even number of )(5 matrices. The canonical
Ward identities are derived by formal manipulations which of course assume

the na‘ive Dirac algebra including { X},BUA}= 0. For loops with odd numbers
of Xg matrices, precisely the case of the ABJ anomaly, this prescription leads

to a polynomial ambiguity, that of the ABJ anomaly.

To see how this arises consider the trace Tr ( ¥, X”,)”f'X’.X"B;.B/x.)

using the prescription of (A3.21), one obtains

(G T Y =4 DT (43.22)

unless one anticommutes one of the ¥, past the other Y -matrices after

which one obtains

(LYY YT Y )= ki) T e

The two results only agree for D = 4. Following [12] one can accept this

ambiguity and define ?he trace to be

o

7&r( LYY Y, YY) = i [D+2b0-D) ¢ (n3.2a)

7

where b is an arbitrary parameter to be fixed in any particular case by

appealing to the relevant anomaly.
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In chapter 5 where the constant terms (in part resulting from 1/€
pole multiplying an 0(€) term) are important this method is adopted in evalua-
tion of traces involving 2{5. There the problem also involves the use of
Ef*ves_ to project out the required Lorentz structures. One could of course
avoid this problem entirely by use of the Chisholm identity (A2.9) in reverse
to eliminate the presence of the external € -tensor. However the resulting
expressions would be more complex to deal withand the final answer would be
identical. Thus in the spirit of (and consistenf with) [12] et us define
the following contraction of € -tensors:

LT, e = 21 (4+ae)<§‘: S;——— 5; (g:) ’ (A3.25)

M

where,as before, .arepresents the ambiguity.

It is particularly convenient to adopt the method of dimensional
reduction whereby traces are computed in 4 dimensions with external indices
uncontracted. The latter are the contracted (after suitable rearrangement
into standard tensor forms) with D-dimensional spin projectors. This is in
some sense the converse of the procedure described above but is entirely equi-
valent. The point is that the same ambiguity a€& occurs for both the deep¥
inelastic and Drell-Yan processes and (as is shown explicity in Chapter 5) can-

cels from the final expression.

A note of warning however in connection with the expression resulting
from the traces: the ambiguity manifests itself in the case of the - &-tensor
though the identity

yveo— A MVeA or MV Ae prc Ao v Ao pk
€/‘(’ﬂ = € ﬂ + € 3 +E)A 6 4 € (j’(A3.26)

which when contracted with g, in D dimensions leads to a discrepancy of

0(e). Using a programme such as Schoonschip it is straightforward via this
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jdentity to ensure all resulting expressions take the desired tensor form

before contraction of the external indices.
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APPENDIX A4

Parton distribution parameterisation and Qz-evolution

For the purposes of discussion the following starting parton distribu-
tions for the proton [14] taken from the data for Qg = 1.8 GeV

2
used. For the valence quarks

[15] have been

xb(v(QC)+ IJ\((X) = B(";-S 14‘7) x71 ({“x)‘yz )
1) 2
| (A.4.1)
x d,e) = - xvx(f— "
ES(yg, {4-7L)

The appearance of the beta function is necessary to satisfy the sum rule for
the valence content of the proton:

u,e0) = 2
< d,00)

Fits with the data given

(A.4.2)

n
—-

v, = OF

) VA 2.6

(A.4.3)
1, = ©. g5 7. 3.35

The momentum fraction carried by the valence quarks is then

(xu,> +¢xeol,) = Obhgg

(A.4.4)
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For the sea and gluon distributions the following have been used:

1 -
A Sy = O. 1 #6# (1 - 2) . su(3) sama«v"ﬂc)
(A4.5)
x c(¢) = O

X %(z) 2.412 C/—x)f

where (x) is the charmed sea contribution. Writing the total sea contribution

as X(x) = 6 s(x) + 2 c{x) one has the following for the momentum fraction of

the proton attributed to the sea and gluon content.

(xZ ) ~ 0.1 i

(Ad.6)
<x ?> ¥ O. 402
Except in the comparisons for different models a slightly modified

version of the Carlitz-Kaur distributions has been used in which the sea is

permitted to carry some helicity. Thus for the valence distributions:

Auw, () = (u,e0 - %"'ﬂ’") cos(28) (A4.7)

4'
Ad, &) = -5 dye0 cos(26) ,
with the depletion factor:

-{
cos (28 = D + 0.052 (/—x)Z/JPC] . (A4.8)

Using the simple parameterisation based on a bremsstrahlung picture

described in section 3.4(a) the following estimates for the non-valence spin

content of the proton.
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3
AsGey = 0.0758 (- 2)(2-2),

A c(x) o ,

B

i

A A = 0.267(1- )(2-%). (A4.9)

The normalisation is fixed by the ¢ J > sum rule (3.4.3), with < LZ) = 0.

The above distributions are all valid for Q = 1.8 GeV2 for other
values of Q they must be evolved according to the A]tare111 Parisi master
equations (2.2.9). As already remarked in section 2.2 it is a fairly straight-
forward matter to integrate these numerically. In ref 14 the spin-averaged
distributions were parameterised by writing 7] = 17] + ‘yi s etc. in equations
A4.1 (and similarly for the sea and gluon densities), wheré s = {11[.£n(Q2AA2) -
_€I1(Q§//\2)] . The q; being obtained by fitting the moments (known precisely
for all Q2 via eqn. (2.1.18) and its singlet extension) for various s. This
gives a parameterisation good to within 2% for a large range of x and for values
of s up to about 1.4. However even for A = 0.3 this falls short of the collider

energies (ECm = 540 GeV) and in any case no such parameterisation has been per-

formed for the corresponding spin-dependent distributions.

In order to integrate eqns. (2.2.9) it is convenient to rewrite them in

terms of s by noting that

At = km do, ()
(A4.10)
= Lo w (v d
i1 T

The + regularisation of the singular kernels is best handled by integration by

parts which gives
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1

La({-5) r»’m + %%{M] (A4.11)

2€
-3

f1y de

J (- 1),

The Altarelli-Parisi equations in the non-singlet sector can thus be written as

val :
A 1,3 - 3 { [297 0]+ £ 22 (1- )[Mf?%»sﬂ

3
(A4.12) !

K\*—-\‘-k

+ 82, [ 97 )] }

with an identical equation for xZ&q:a1(x,§) and where Zp is defined by

{
Zr[g(ac)] = Ld’j (/é_‘;gi . : (A4.13)

The equations for the other densities can be found in ref. [13], with the
substitutions 6/27 — 2/B, , 6/27 is the value for three quark flavours while
for four it becomes 6/25.

Using the above method and a numerical technique similar to that described
in [13] the distribution were evolved up to s = 1.5, For A = 0.2(0.5) GeV and
QE = 1.8. GeV2 this corresponds to Q = 103(42)'GeV. The distributions are
shown in Figs. A4.1 and .2 (note the differing scales). Since the shapes change

very little one sees that the effects of 02 evolution on asymmetries will in

general be only slight. Moreover from Fig. A4.2 one sees that inclusion of
spin-dependent sea distributions is of very marginal importance; in

general, processes are not particularly sensitive to these.
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0.2

0.5

4.0

4,0
Fig. AA.1 - Spin-averaged parton distributions for (a) up-quark, (b) down
.quark, (c) non-charmes and charmed (chain-dashed curve) sea, (d) gluons, for
Qg = 1.8 GeV2 (solid curves) and s ='1.5 (dashed curves).
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0.8 o3

o.o0f al

Fig. A4.2 + Helicity-dependent parton distribution for (a) up-quark,
(b) down-quark, (c) non-charmed and charmed (chain-dashed curve)sea, (d)

'g1uons for Qg = 1.8 GeV2 (solid curvgs) and s = 1.5 (dashed curves).

- 190 -



References to Appendices Al - 4

R. Cutler and D. Sivers, Phys. Rev. D17, 196 (1978).

P. De Causmaecker, R. Gastmans, W. Troost and T.T. Wu, Nucl. Phys.
B206, 53 (1982); Phys. Lett. 105B, 215 (1981).

J.S.R. Chisholm, Nuovo Cimento 30, 426 (1963); Comp. Phys. Comm. 4, 205
(1972).

See for example S. Brodsky and G.R. Farrar, Phys. Rev. D11, 1309 (1975).
G.P. Lepage and S. Brodsky, ref. [1] chapter 6.
A. Mueller, Phys. Rep. 73, 237 (1981).

G. R. Farrar and F. Neri, Rutgers preprint RU+83-20 (1983).

G. 't Hooft and T. Veltman, Nucl. Phys.

See for example ref. []4] chapter 7.

See ref. [ 21] chapter 1.

W. Konetschny, Vienna preprint (Nov 1982).

See for example 't Hooft and Veltman ref [19] chapter 1.

D. Akyeampong and R. Delborgo, Nuova Cimento 19A, 219 (1974).

M. Chanowitz, M. Furman and I. Hinchliffe, Nucl. Phys. B159, 225 (1979).
See appendix of ref. [ 1] chapter 3.

A.J. Buras and K.J.F. Gaemers, Nucl. Phys. B132, 249 (1978).
J.F. Owens and E. Reya, Phys. Rev. D17, 3003 (1978).

E.M. Riordan et al., SLAC-PUB-1634 (1975).
R.E. Taylor, Proc. 1975 Int. Symp. on lepton and photon interactions
at high energies, Stanford (ed. W.T. Kirk).

H. Anderson et al., Measurement of the proton structure function, Conf.
Proc. Tbilisi (1976).

- 191 -



