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v and large relative displacements of the two crystal halves
INTRODUCTION In the present work , this simple approach is examined for ionic

crystals in the families of the alkali halides and alkaline-earth fluorides

The present work is concerned with a study of two particular : and oxides . A rather drastically different physical model is clearly involved
problems in the theory of ionic systems : the surface energy of ionic for these materials as opposed to metals since (1) optic as well as acoustic
crystals and the states of extra electrons in molten alkali halides . phonons enter the problem and (2) the van der Waals interactions arise from
The basic knowledge on ionic systems , for the crystalline and liquid closed electron shells . A similar universal relation , as that found for
phases ,whigh is relevant to these problems is summarized in Chapter I . metals , is obtained for ionic crystals [65] in which the surface energy

is given in terms of the elastic constants , the electronic dielectric constant,
Surface energies of ionic crystals are known experimentaliy the optical band gap and the interplanar spacing .

for relatively few ionic materials [54,55,56] . The difficulties of

experimental determinations [54] involve a number of uncertainties in Solutions of alkali metals and molten alkali halides show a number
the measured values . Theoretical estimations of the surface energy of of physical properties which are in general characterized by a continuous
ionic crystals , involving full lattice calculations [2,55] through the variation with concentration . The determination of the phase diagrams for
use of semiempirical models for the interionic potentials [1] , have on these systems [74] shows that the liquid metal (M) and the molten salt (MX)
the whole failed to clarify this important problem . are miscible in all proportionsabove a certain critical temperature
In this context , relations between surface and bulk properties Measurements of the electrical conductance in K-K halide and Na-Na halide
of materials are useful in surface physics and acquire deeper content melts [74] give evidence for the presence of electronic transport super-
when they are seen to apply to classes of materials even with different imposed on ionic conduction . Near the salt-rich side of the phase diagram ,
types of cohesive forces . In this spirit a 'universal" model has been broad absorption bands have been found in optical studies of metal-molten
proposed for the surface energy of solids [63] , that has been succesfully salt solutions [82—90] . Measuremenis have been made of the electron spin
tested against experiment for a number of metals ranging from the alkali resonance [QQ , magnetic susceptibility [91-93,108] , metal partial
metals to transition metals such as niobium and tantalum . The same approach vapor pressure [94] and freezing point depression [?5] . The magnetic
has been used [73] to relate the surface tension of electron-hole drops ' - susceptibility studies [92,93,108] indicate that the molar electron suscep-
inbsemiCOnductors to their bulk properties . In this "universal model" [é%} tibility of M-MX solutions is paramagnetic and rapidly decreasing with increa-
the surface energy is regarded as the work done in reversibly cleaving the sing metal concentration .
_crystal along a crystallographic plane , and a scaling hypothesis is intro- These solutions have recently received increasing experimental

duced to construct the cleavage force from its limiting values for small attention . At low metal concentration , in particular , attention has focused
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on the properties of excess electrons in fhe molten salt and on their
evolution with increasing concentration towards the nonmetal-to-metal
transition . It has been known for a long time from the optical absorption
studies [85,87,10Q] that the excess electrons at high dilution become
1ocaiized ip traps inside the liquid structure . Localization is believed

to involve solvation of the electron by alkali ions in the molten salt ,

the nearest analogue in the crystal being [104] the formation of F centers
by trapping of electrons into anion vacancies in additively coloured or
;rradiated alkali halide crystals [22,24] . In order to avoid discussing
molten salt structure in terms of point defects , one may visualize instead
favourable fluctuations of the Madelung potential and cooperative rearrenge-
ments of the mobile ions as leading to electron trapping in the liquid .

The recent experimeAtal work on optical absorption in liquid CsCl  at
various concentrations of excess electrons in a high dilution range [10é] ,
’hasbprovided further support to this picture and added considerable detail
to it . Relevant evidence for electron localization due to the surrounding
positive ions has also been obtained in NMR studies on Cs-CsI [115,116)
and Cs-CsCl [115} solutions . It is found that the solvated electrons ,

at low metal concentration ( less than 5% excess metal ), are localized
for times on the order of the ionic diffusion times (~10'* sec ) . The
further addition of metal leads , however , to rapid delocalization . In this
respect , interesting obéervations indicative of aggregation phenomena
between solvated electrons , have also been reported {109,110,112] with
increasing concentration . Fufther relevant evidence has been provided by
ESR and magnetic susceptibility studies [120,12%] .

‘ The solvation process at high dilution has been treated theore-

tically in a model , hereafter referred to as I , schematizing an excess

electron as bound to a bubble inside a liquid of charged hard spheres [}22] .

VII

This model , though crude , allows a selfconsistent determination of the
electronic ground state and of the surrounding liquid structure , self-
consistency being of crucial importance in allowing the electron to dig

its own trap in a favourable local arrangement of alkali and halogen ions.

A bound state was found in molten KCL. by treating the electron-ion
interactions in a polarizable-point-ion approximation . Contact with optical
absorption data could then be established by treating the transition to

the 2p excited state as a Franck-Condon process and by allowing for liquid-
state fluctuations in the ground state .

The present work is concerned with the high dilution limit of
excess electrons in a molten sélt . The main aim of this study is to confront
the same basic model T with the newly available experimental results . A
critique of model I is presented which suggests an empirical modification
aimed at weakening the role of Coulombic interactions and loosening the
local structure [126] . Results for various properties of electronic states
in the equilibrium potential well are reported , contact with experimental
data being made for ground state properties . The main test of the model is
still the calculation of optical absorption by the solvated electron , and
is extended to (a) systems other than KCl and (b) transitions to higher
excited states . Ionic relaxation in the excited states and lifetime of the
bound state are also discussed . A calculation of the perturbation of the
fundamental absorption of the molten salt induced by the solvated electron
is performed in connection with a near-ultraviolet ébsorption band observed
in electrolytically injected samples [10%} . Finally , some concluding

remarks are given at the end of Chapter III .



CHAPTER I

TONIC SYSTEMS IN THE CRYSTALLINE AND LIQUID PHASES

CHAPTER 1

Tonic systems in the crystalline and liquid phases

The aim of this chapter is to give an introductory survey of
solid and liquid ionic systems, introducing a series of facts that
will be needed in later chapters.

Section 1 is dedicated to the description of the Born model
of ionic materials, in order to establish the different interactions
between the ions in the system. The importance of the repulsive and
van der Waals interaction in- connection with the surface energy problem,
to be treated in Chapter II, is stressed. To this end, Section 2 points
out the role of the elastic constants in this problem. Section 3 is
dedicated to defects in ionic crystals, in particular to the F - center
problem, and constitutes an introduction to the subject treated in
Chapter III.

Section 4 introduces the main feature of the ionic systems
at the melting point, regarding the structural and electronic properties
of the liquid phase. These concepts and the study of the liquid structure
in Section 5 constitute the basic tools in building up the theory of
Chapter III.



I.1 Born model of ionic materials and cohesion of ionic crystals

A real ionic crystal can be well described by the Born model
of ionic materials [1,2] - Apart from the calculation of the cohesive
energy, for which the model was initially proposed, a variety of physical
properties of ionic crystals have been studied within this theory.

The fundamental assumption of Born's model is that the crystals
under consideration are built up of positive and negative ions. These
ions are considered to bear net charges determined by chemical valence
And are regarded as essentially spherical and non overlapping. These
theoretical considerations are consistent with the results of X-ray
diffraction measurements for the electronic charge distribution in ionic
crystals [3] - A plot of the electron density and a map showing lines
of constant density around the ions of a NaCl erystal are shown in
Fig. (I.1-1). A numerical integration of the electronic density around
each ion in Fig. (I.1-1) gives a total electronic charge of ¢e around
the sodium and -07¢ around the chlorine. Notice also, from Fig.
(I.1-1), that a minimum in the electron density occurs at a distance of

147 R from the N: and 164 R from the (L ion. These
distances are taken as the crystal radii of the ions. This assignment
is only approximate because, in fact, the ions are not spheres in the
solid but are sbmewhat distorted according to cubic symmetry .

- On the other hand, this determination of the crystal radii is
less justified in cases of a not negligible overlap between the ions,
e.g. in [LF.

The assumption of spkrical ions implies that the interactions
between them are given by central forces operating'betwéeh pairs of

ions.
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FIGURE I.1-1: Electron density in the (100) plane of a NaCl crystal as determined
by x-ray scattering experiments. The numbers represent the electron density per cubic

angstrom. From ref, [3]

The sum over all the ions, taken to be at rest in their average positions

in the crystal, of these pairwise interactions gives rise to the so called



lattice energy. The main contribution to the lattice energy comes from
the electrostatic interactions of these point-charge like jons, which
give rise to a net binding (Madelung energy). The Coulomb force, in
fact, induces the charge alternation shown in Fig. (I.1-1). Preventing

the collapse of the crystal structure under the Coulomb attraction,

there are short-range repulsive forces which oppose the interpenetration-

of the ions. These repulsive interactions decrease the binding energy
by an amount of typicallyv about 10%. The other binding contribution
to the lattice energy comes from the van der Waals interactions which
are of the order of a few percent of the total lattice energy. In Table
(I.1-1) are given the values of the lattice energy for some alkali
halides, together with the partial contributions to it due to the

Coulomb, repulsive and van der Waals interactions.

LiF Ne.(l Csl
Coulomb -12.49 -8.92 -6.36
Repulsive 1.99 1.17 0.61
van der Waals -0.03 -0.05 -0.17
Total lattice energy -10.53 -7.80 -5.92
Experimental -10.70 -8.08 -6.33

Table I.1-1: Lattice energy values for some alkall halides. The partial contributions

to the lattice enerqy due to the Coulomb, repulsive and van der Waals interactions are

displayed. All values are in ev. From ref. [2] .

(a) Born theory of the lattice energy

The evaluation of the Madelung energy (i.e. the total electro=
static potential energy per molecule in the crystal) cannot be done
in an elementary way due to the slow decay of the Coulomb interaction.
To evaluate the lattice sums, very accurate and rapidly convergent
methods have been developed [4 ,5] . The Madelung energy is commonly

written as
2.
Eq = — (%€) —%— ) (1.1-1)

where z is the largest common factor of the ionic valences ( z = 1

for the alkali halides), R is a characteristic length of the crystal
structure (e.g. the nearest neighbor distance) and oAg is the
Madelung constant referred to the length R . The values of the Madelung

constant for some ionic crystal structures are given in Table (1.1-2).

NaCl CsCl Zincblende Cafy Cq,?
Ao 3.49513 2.03536 3.78293 11.63657 10.25946
olg 1.75756 1.76267 1.63805 5.03878 4,44248
Table I.1-2: Madelung constants for some ionic crystal structures. The constants



g and o are referred to the nearest neighbor distance R, and to the

lattice parameter "a. From ref. [2] L

The shm“tv range repulsive forces have a quantum mechanical origin
“and no simple expi"e;ssi;)n for them, és'for the Coulomb interaction, follows
from theofetical considerati ons. The Born model makes ’recour'se to certain
simple répresentations of “the repulsive interaction, which involve the
use of two unknown parameters to be fitted to crystal data. A simple

representation for this interaction is. given by the- following form,

E - A . (I.1-2)

»_KEP ; Rn

At the simplest level of approximation the lattice energy EL
is given by the sum of Eq. (I.1-1) and Eq. (I.1-2). The determination
of the ‘par'ameter-s A and n in the latter is done by noticing
that d E./ dR ‘ ReRo = 0O (at zero
pressure, where R, is the equilibrium lattice spacing), and by
using the value of the isothermal compressibility K given by

K_l = WNp dzEL/d(\Yl IK':'RO where  afg

is the volume per molecule. The final expression for E (R)
L

reads as follows,

’ -
2,
ELR) = (2] _eé‘ﬁ. |- L (.;;s__) (1.1-3)

Here,

In, Ro K—lv_ (1.1-4)
(zey og

We can immediately conclude from Eq. (I.1-3) that the repulsive inter=
actions contribute to EL(Ro) only ©{ ‘/\’\\
compared with the Coulomb interactions. The calculated values of

M (~3%3=10) for some ionic crystals shown in Table (I.1-3)
are consistent with the values of the repulsive terms g1ver1 in Table

(1.1-1).

e N& @l I

Table 1.1-3: Born repulsive exponent n for some alkali halides. Data from

ref. [2] with M given by Eq. (1.1-4).

A second important conclusion refers to the compressibility. Because



the second derivative - . dl EL / d(\rl ‘ is involved
in the determinét'ion of the compressibility, it follows thaf the main
contr'ibutioﬁ to it comes from the repulsive term, which is now
0 ( "i (m+4) ) compared with the Coulomb part. It can also
be shown (see section (I.2)) that the elastic constants

( CM‘ ,Ciz and Cyy ) are essentially determined by the
repulsive interéctions (note also that K_‘ R Cy +2Cny ).
The elastic constants are in turn important in the problem of the

surface energy of ionic crystals as we shall see in Chapter II.

“(b) Born-Mayer exponential terms and ionic radii

The expression for the repulsive term given in Eq. (I.1-2)
can be refined by describing the repulsive interactions through the

Born-Mayer exponential form as follows,

’ -R
= B e /s . : (1.1-5)

Here B and f are the strength and hardness parameters, respecti=
vely. Eq. (I.1-5) is suggested by quantum-mechanical overlap arguments

and ailows for important considerations regarding the ionic radii in

thé;_;c»r‘y;stal. The approximate constancy displayed by the d»if'f'm"cx}c.esg
1n near‘.ést—;lcighbor' distance in the various halides of the two
corresponding alkalis, shown in Table (1.1-4), suggesté that one can:
associate a crystal radius 1;0 ecach ion in the solid. From Table (I.1- '
4) we can interpret the observed differences in nearest-neighbor

. . . *
distance as differcnces between the crystal radii of K¥ and Ng

ie., R(K*)=R(Ng) ~ 022 R .

F cl 8r I
Na
0.357 0.327 0.309 0.296
K
Table I.1-4: Differences in nearest-neighbor distance in the various halides of the

two alkalis, Na and K . Data from ref. [2] . All values are in A .

A systematic determination of the crystal radii can be performed
using the Born-Mayer exponeﬂtial form written explicitly in terms of the
ionic radii (basic radii), which are constant within the whole family of
salts, to be fitted by a least-squares procedure [_6] . For nearest-

neighbor interactions only, Eq. (I.1-5) can be rewritten as follows,

Erep = Mb exP[_( L. -RY/8], (1.1-6)
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where M  is the number of first neighbors and Ts are the

basic radii. The nearest neighbor distance R, can now be written

as follows: Ro = Thato + A where A

is found to vary slightly from crystal to crystal. The crystal radii
R')_' are defined such that - Ro = ﬁ+ + R,

by splitting A in equal parts between the two ions. The values

for the crystal radii obtained in this way are given in Table (I.1-
5).
In the surface energy problem, on the other hand, the repulsive

interaction plays a relatively more important role than it does in
thé determination of the lattice energy. Surface energy calculations

[_7_] based on Eq. (I.1-6) show, in fact,that the electrostatic
term is only about (30-40) % larger (in absolute value) than the repul=
sive term. In this coﬁtext ; the inclusion of the van der Waals inter=
action is essential in accounting for the surface energy of an ionic

crystal.

Li Na . : K Rb Cs

cl 1.67 0.90 1.62  1.20 1.63  1.51 1.64  1.65 | 1.67 1.80

Br 1.83  0.93 1.77  1.22 1.78  1.52 1.79  1.66 | 1.81 1.81

Table I.1-5: Crystal radii for alkali and halogen ions in the NaCl - type alkali

11

halides. Data from ref. [6:1 . All values are in l{ - For each alkali halide the
number to the right gives the radius of the halogen ion and the number to the left gives

the radius of the alkali ion.

(e) van der Waals interaction

The van der Waals interaction is responsible for the cohesion in
the liquid and solid phases of rare gases. This attractive interaction
between closed-shell atoms has its origin in the correlations of the
electronic motions in different atoms. The van der Waals forces are
present also between ions with rare gas electron configuration, e.g.
the alkali and halogen ions. A classical explanation of this interaction
is possible, by noting that the instantaneous dipole moment }LL of
a closed-shell atom induces on a similar atom at a distance r
a dipole moment OL}L Vaz: (o is the atomic
polarizability), and reciprocally a field of the order of o }A—/ ré
is produced on the first atom. The resulting value for the interaction
energy is thus proportional to - o ILZ / ré (
is the mean square dipole moment of the first atom). Higher moments
of the charge distribution of the atoms yield the dipole-quadrupole
term {( e~ 4 / ré
term ( ~ 4/ rio ), ete.

), the quadrupole-quadrupole

A quantum-mechanical calculation of the van der Waals interaction
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is usually performed by perturbation theory. In the second order of
perturbation theory, the dipole-dipole interaction energy of two atoms

(or ions), can be written as follows,

25
o
R

i (R) (1.1-7)

where Cis are the van der Waals coefficients for the dipole-dipole
interaction energy between the atoms i and j. An approxi=

mate formula for Qij [8] reads

: E: E:
Gy = 2 dioly B ) (1.1-8)

2 E;+E3

where ' o; are the electronic polarizabilities of tﬁe atoms and

E L are average excitation energies of the atoms.

' Valﬁes of the dipole-dipole coefficient c';') for dlfferent
ions in some ionic crystals are displayed in Table (I.1-6).

The contribution of the van der Waals interaction to the lattice
energy can be ‘calculated from Eq. (I.1-7) by performing the corresponding
lattice sums. The resulting expression can be written as va = -C / gb.
Analogous terms follow from the higher order interactions. while the value

E aw is only about a few percent of the total lattice energy,
the corresponding contribution to the surface energy increases to about

a 40% of the total value. In Table (I.1-7) are given the calculated values

13

of the specific energy of the (100) face for ‘some alkali halide crystals.
The table clearly shows that the repulsive and van der Waals contributions

to the surface energy are relatively more important than the corresponding

~contributions to the 1att1c:e energy; this is because the surface energ

represents the energy necessary to divide a crystal into neutral parts,
while the lattice energy is the energy required to divide it into

oppositely charged ions.

salt Cos ¢ Cam

LiF 0.073 1 14.5 8.

NaCl 1.68 116 14.2

KC1 24.3 124.5 48

KBr 24.3 206 60

K1 24.3 403 82

Mg0 0.7 30 2.9

CaFy 44,23 9.51 18.06

Ban 188.6 9.51 40.12
Table I.1-6: van der Waals dipole-dipole coefficients for some jonic crystals. ALl
values are in 10’60 Qfg ® cm" . Data for the alkali halides

are from [9] . Data for Mg0  from [10] . Data for the fluorite-type from [_11] .

In Chapter II we shall develop a simple model for the surface
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energy of an ionic .crystal in which the van der Waals interaction

between ions is taken as in Eq. (I.1-7).

So far we have described how to calculate the lattice energy

within the Born model. Then, the. cohesive energy of an ionic crystal,

at T 0°K

the zero point vibration energy.

» can be calculated by adding

LiF Mol Kee
Coulomb 921.1 335.5 2h1.4
Repulsive -687.4 -200.2 -137.6
van der Waals 128.8 78.3 67.2
“.Total ) 363 214 171.
Experiment 340 276-300 252 - 110
Table I.1-7: Specific energy of the (100) face of some alkaii halide crystals. All

values are in erg/cml . Data from ref. [_ZJ .

15

I.2 Lattice vibrations in ionic crystals

The interaction energy between the ions in a crystal is described
in a simple way by the Born model. In a preliminary qualitative analysis

we can write the potential ﬁj between the ions as follows,

/@/H_ = ﬂ__, ,—. %7; (I.2-1)

and

A
R

N (1.2-2)

e,
Psmg v

where M  is the number of nearest neighbors and A  is given in

Eq. (I.1-2). A schematic picture of the potential /Eﬁ;, is shown in

Fig. (I.2-1).
In the crystal, the.ions oscillate around the equilibrium diétance
Ro , and for sufficiently small depaftur-es AR from their
equilibrium positions, an effective potential 'Lkgg £, é&;lz

is found to be appropriate in the description of the lattice vibrations.
This constituteé the harmonic approximation which we shall follow in this
section.

The lattice vibrations are characterized by their dispersion

curves, a typical example being shown in Fig. (I.2-2) for KBr.
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Fig. I.2-1: Schematic representation of the potential energy of two oppositely charged
“ions. Fig., I.2-2: Phonon dispersion curves of KBr  determined experimentally by inelastic

neutron scattering CIZJ , and their fit by a rigid-ion model and a polarizable-ion

model.
Superposed to the experimental points in the figure, the calculated curves
within the rigid-ion model (Born model) and the shell-model (including
electronic polarizabilities of the ions) are also shown. Considering the the longitudinal modes are generally too high, particularly for the optic

simplicity of the Born model, the agreement is surprisingly good although branches. A major effect of the Coulomb forces is the splitting between
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\71.0(0') and QTO (o) » which satisfy the Lyddane-Sachs-
2
Teller relation: Vo (o) / \721-0 0 = &/ €
where €o 4 € are the static and high frequency dielectric constants »
3
respectively. From Fig. (I.2-2) we find: Vieto) / \fm ) = 2.04
while from ref. [17_] we obtain &/ € = 2.08 in
good agreement.
( a) The Hamiltonian of the crystal and the dynamical matrix

The equation of motion of the ions in the crystal can be derived
from the corresponding Hamilton function. Within the harmonic approximation,
the potential energy of the crystal is written as a quadratic form in the
ionic displacements from the equilibrium positions (plus a constant term
which is just the static potential energy of the crystal ; i.e. the lattice

energy). The Hamiltonian % can be written as follows 5

] QQ‘ 1. »
%=L Z ;L Z fed) + 4 %ngp Vd{b[ii‘)}l,((&i))k(b(e,y), (T.2-2)

where Q " denotes the .lt-" unit cell and J denotes the J*—l' ion with=
in the unit cell. In Eq. (I.2-2), the first term represents the total kinetic
energy of the crystal, where m g is the mass of the jt—"‘ ion in

the e unit cell, and le(.Q):)) ) }LK(Q,S) are the velocity

19

and the displacement of the ion along the direction ol . The
)
coefficients Vu {b( g'g'\) in Eq. (I.2-2) are the ionic fores constants

which can be derived from the expression of the potential between the
ions (e.g. from Eq. I.2-1). If we call \Y the total potential

energy of the crystal, the quantities Va(y are defined by,

2
V (9”&; ): IV _ . (1.2-3)

o]

From this definition immediately follows that: "ﬁ'( H 3:) V/M( ) o
For the particular case of radial interactions, the force constants

Voc(b can be obtained from the potential }25 (R') between
ions as follows [16_]

Vo[ 1) < ~F®) RRy - £y 6(R)

where R is the distance between the ions at the equilibrium positions
'R (e,i) and R (-?),‘\) , respectively; F(R)‘§(¢"1¢)
ad  GRY <A@ 5 Bz IBUR P e ®
The equatlon of motion of the ions in the crystal can be obtained
directly from Eq. (T.2-2); there, assuming a plane wave solution of
frequency @)  and wavevector '(i, for the ionic displacements, the

resulting system of the equation is found:
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2 [Dipl F) -y 0 Gy bep [ Agp =0y o

N

where Da( P (.q') is the dynamical matrix and ;J is the
+4h
=

amplitude of the ion in the reference unit cell for the

corresponding phonom mode. The expression of the dynamical matrix is
q 0 Q} -k q' [ﬁ(euﬂ - ﬁ (O)J)]
Dd(b( 3“\ = % Vap() y) ¢ . (1.2-5)

The ‘Do{(b is a 35%3%% matrix, where S is the number of
jons in the unit cell. Finally, the phonom dispersion relations are

obtained by solving the determinantal equation
] ) , 2
[Docp k i m; W 5,5\ &;\(5] =0. (1.2-6)

Here, the 3% roots give the 39S frequencies We, ( Q) ("\= 1,2,... '55)
of which there are the acoustic modes (one longitudinal (L) and two

transverse (T) modes if ?1. is along high-symmetry directions).
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(b) The acoustic modes and the elastic constants

For the case of the acoustic modes in the long wavelength limit,
the ions in a unit cell move in phase. These low frequency vibrations
correspond to sound waves, and satisfy a linear relation given by W=« ct
where o is the corresponding sound velocity. The sound velocity
is determined by the elastic constants ; these are commonly indicated by
Cy 5, G2 and Cyy for a cubic crystal.

In particular, for the (100) direction (\Tt:Cp\/s and (\Y.":: Cyyl§ where
S’ is the density of the crystal. Values of the elastic constants

for some ionic crystals are given in Table (1.2-1).

Salt Cu Cra Coy
LiF 11.2 4.5 6.32
NaCl 4,85 1.25 1.27
KCl 4,05 0.66 0.63
K8r 3.46 0.56 0.52
KI 2.75 0.45 0.37
Mg0 29.2 9.1 15.4
Ca0 20.0 6.1 7.65
Caf, 16.49 k.46 3.38
Ban 8.9 4.0 2.53
Table I.2-1: Elastic constants For some ionic crystals. All values are in JO"

dynes/cm" . Data for the alkali halides and Mg0 from [13] . Data for Cal

from [14] . For the fluorites from [15]
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‘The Cauchy relation for an ideal cubic crystal require that
Clz = Cyy . This last condition is only moderately satisfied
for the alkali halidesyl(Tavble (I.2-1)), but it is not fulfilled by
the other crystals like the oxides and fluorites.
As mentioned in the previous section, the elastic constants
are determined mainly by the repulsive interaction between ions. This
can be understood if we notice that for cubic crystals the elastic constants
4 C‘*{b SN (according to the general nomenclature)

are given in terms of the force constants by the following expression:

'

(:«at(;,"ﬂ‘,\ --L 22 \/P(Hy) R )RA(Q?’:)} (1.2-7)

200 é-\‘ Q 3
where O  is the volume per unit cell, (J 3‘ is the
“6\ component of the vector leadlng from ion ( g) to ion
. {
( %n ) and \/d P ( g?;, ) is the corresponding

force constant. The calculated values of the elastic constants G, Cyy and
‘ Cuq for some alkali halides within the Born model (with only
Coulombic and exponential repulsive terms) are displayed in Table (I.2-2).
The calculated values shown in Table (I.2-2) are correct within
about 10% for Cu  and 20% for Cig yénd‘ Cyy , with respect
to ﬁher experimental values given in Table (I.2-1). The Born model
obviously predicts that the Cauchy relation C.g_ - qu holds,

- this being clearly only approximately true.
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Lu Cip= Cyy
LiF 10.38 6.29
NaCl 4.68 1.27
KC1 3.61 0.82
KBr 3.10 0.68
KI 2.49 0.51

Table 1.2—2_: Calculated elastfc constants with the Born model. ALl values are m 10

dynes/cn? . Data from ref. [13] and [ZJ

The partial contributions to CM in Table (I.2-2) of the

Coulomb and repulsive forces are given in Table ( I.2-3).

Cy LiF NaCl - KCl KBr KI

e -17.94 ~4.66 -3.00 -2.49 -1.89

WK 28.32 4 9.3k 6.61 5.51 4.38
Table I1.2-3: Partial contributions from the Coulomb interaction wE and the
repulsive interaction l\)g to the elastic constant C“ in some alkali halides.

All values are in 10“ dynes/cm" . Data from [13] and [2}
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Finally, in the cleavage force theory for the surface energy of an
ionic crystal, developed in Chapter II, we will show that the elastic

constants play an important role.
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1.3 Defects in ionic crystals

The presence of defects in jonic crystals is manifested strikingly
by several physical propertics of these materials. The large ionic
conductivities observed at high temperature in crystals with the fluorite
structure is a typical example [18] . On the other hand, the customary
harmonic treatmert of lattice vibrations developed in the preceding
section, does not account for the presence of defects. However, information
regarding phonom-phonom interactions together with properties associated
with the equilibrium defect assembly, can be obtained from inelastic
neutron scattering experiments.

In ionic crystals two kind of defects are particularly important,
i.e. Schottlsy and Frenkel defects. A third kind of defect, known as a
color center, will be briefly considered here and more extensively studied

in Chapter III for the molten salt case.

(a) Schottky and Frenkel defects

These two types of defects are illustrated in Fig. (I.3-1): a
pair of vacancies of cation and anion is called a Schéttky 'défect, while
an interstitial ion and the corresponding vacancy .is known as a Frenkel
defect. Again here we find another example of the effects of the Coulomb
forces; they prevent the presence of those defects which do not keep the

overall electrical neutrality of the bulk crystal.
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Fiéur‘g I1.3-1: Schottky defect (a) and Frenkel defect (b) in an ionic crystal ,

These defects have a different Gibbs free energy of
formation. In NaCl, for instance, the Schottky defect has the smallest
free energy of formation and is therefore the dominant defect in thermal
equilibrium conditions. Some valués of Schottky defect energies,

. in the alkali halide crystals are given in Table (I.3-1).

B X Na K Rb
F 2.68 - 2.64 -
c1 2.12 2.02-2.12 2.22-2.30 2.0
Br 1.80 1.68-1.74 1.99-2.53 -
1 1.34 - 1.56-1.60 -

Table I.3-1: Schottky defect '- energies in the alkali halide crystals. All values

are in ev. Data from [19] .

+ =+ —
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In the fluorite structure in particular in Caf, , the lowest formation
free energy corresponds to the anipn Frenkél defect. In this structure,
in fact, very large ionic conductivities are found in the high temperature
solid phase to be associated with a large dynamic concentration of defects
in the anion sublattice. ‘

The equilibrium number of Schottky defects in an alkali halide can
be approximated by: Ng =CN EXP(—ﬁ/ZKBT )

where N is the number of ions (positive or negative) per cubic

centimeter, ¥ is a number which depends on the salt (for

No.CE c= 27 [20] ), B s the
Schottky defect energy and T is the abéolute temperature. Close
to the melting point this equation gives for NaCl N2 10'® C\'ﬁb, i.e.,
about one vacancy per 10“ ions. At room temperature Ny 10° cm -,
The diffusion coefficient :DN- of the vacancies may be evaluated
from the measured mobilities }-l/ ‘with use of the

Einstein-Nerst relation,

-
Dy = (—éﬁ:) P (1.3-1)

which is usually found to be different from the diffusion coefficient
:D-b determined in a tracer diffusion experiment. The ratio
:Dt'/ 'DN' is known as the Haven ratio Hr‘ . In silver

Y]

compounds Hr = 05 , while in molten alkali halides

Hr ? 1 . For small concentration of lattice defects

( m/N 4 1D -k , sy ) , the motion of defects (and
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the corresponding ionic motion which lead to charge transport) are

not correlated, and one can write for DN. the expression,
2
Dy = s V¢ S (1.3-2)

wheref d(\)' and \7(\7 are the defect jump distance and frequency,
respectively. A similar expression for D{-, can be written as
fo;lows ) 3.‘,' = %! 94\; 371, %.\, [2‘3 ) where 'F-b

is the correlation factor which takes account of the non-random nature
of the tracer jumps. The quantity 9‘“- in Eq. (I.3-2) can be
regarded, on the other hand, as the inverse of an ionic self-diffusion
time b= A/ Q«y . In the case of NaCl
containing CaCl o [22], it is found that themobility of the positive-

ion vacancies may be expressed in the form,

5 ~€/lpT
N 02210 o om® (1.3-3)
}Lm T ——
Vott -sec

where 'e+ ~ (078 % oo2) o in the range
from  823°%K to  953°K. If we roughly estimate  dg ~ ng'f
we can calculate Yor in Eq. (I.3-2) using Eq. (I.3-1) and Eq.
(I.3-3); the result at T=- 953 °K (the melting

i

temperature for NaCl is Tm = 1074°K) is: 9,,4 2 110" sec ,

therefore, the associated cation self-diffusion time results: G 0 mm_“
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The ionic diffusion times in pure molten salts are of the

order of 40"7' sec. near the freezing point.

b) Color centers in ionic crystals containing excess metal

When an alkali halide crystal is heated in the vapor of its

metallic constituent, an excess of metal is incorporated in the crystal.

‘The new system shows absorption bands in the visible and ultraviolet,

which were absent in the original (pure) crystal. Figure (I.3-2) shows

an absorption spectrum of a typical (pure) alkali halide crystal.

o

- m

1 L 1
10 1 o1 0.0
PHOTON ENERGY {eV}

Figure 1.3-2: Absorption spectrum of a typical alkali halide crystal.
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The spectrum in the high frequency region is due to clectronic It corresponds to the transition from the ground state to the
excitations in the crystals, the lower of which correspond to the first first excited state (15— 2p). The F-ghgorption encrey EF satisfios
ex.citon peak and first interband transition to the conduction band the simple relation (Mollow law):

( E°¢ ). The spectrum in the far infrared corresponds to optical phonoms.

The alkali halide crystals containing excess metal , on the

ther hand, show new absorpti bands as can be seen in Fig. (I.3- ~-2
o and, show new rption s as can een in ‘g (1.3-3) EF—' NTVV\R , (I.3-4)
for KBr at 10% The trapped electron in an anion vacancy, added

where R is the nearest neighbor distance. For KB , R = 3.298 &

1.8 72 I B By e sy e e S S S and from Eq. (1.3-4), . EF ~ 19 e . The number of
BRRFIS KBr : — F centers per cm3 N Yig , on the other hand, can be calculated
i~ . T = 10°K 1
La— : 3.95 X 10" F centers, em? - with the Smakula's equation [24]:
o d = 0.115 em -
12 : |
= | £ ]
£ 10 i _
E osl ) N Ne = —1 me o e 4 )me F’ (1.3-5)
& ot i Amoerh o (g2 ,
0.6 {— ]
- - 0.153 eV
0.4 b~ ]
02 B L, K I where Yig is the crystal refractive index ) 'FF is the oscillator
g — 6 * -
R nr L L L B str‘eng?th, )lmq\x is the maximum aBisorption coefficient and
03 00 55 30 45 40 35 30 25 20 13 1o r is the full width at half maximum of the F-band. Eq. (I.3-5)
Photon energy (V)
e is valid for a Lorenzian-shape band [25] .

Thl abisorption of alkali metal from the vapor by the alkali

Figure 1.3-3: Absorption bands presented in  KBr  containing excess potassium. The halide crystal can be described by a diffusion phenomenon. For a given

temperature and a given number of metal atoms (in the vapour phase)

per cmb ) (Y\N- » a certain saturation number density, T B

#ew bands are designated by the F, K, L, p bands. Data from [_23]

through the excess metal in the crystal, is responsible for the F- band. of F-centers is obtained. In Fig. (I.3-4) the ratio /gt splotte d

versus the reciprocal absolute temperature.
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Figure I.a-l‘»: The ratio “F/“N’ in equilibrium for  KBr, KCl [26]-
ne , W are the numbers / ca®  of F centers in the crystal and alkali

atoms in the vapor phase, respectively.

~B/ksT

According to the law of mass action, we have: Ne/ Ny ~ €
where ﬂ is the energy required to take an atom from the
vapor and incorporate it as an F center in the crystal. From Fig.
(I.3-4) we obtain: z( K" Kﬁr):. -0.25 v and

ﬁ(K"K@J:—OJO W .

From the fact that ﬁ is negative we conclude that energy
is released by taking an atom from the vapor into the crystal. The
incorporation of a metal atom by the crystal may be pictured as follows:
first, the atom is absorbed at the crystal surface; then, the atom may
split- iﬁto a positive ion and an electron, and a negative ion from the

crystal may jump into a position near the absorbed ion. The electron
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and the anion vacancy produced may diffusc into the crystal; at the end

the electron will become trapped at an anion vacahcy [26_] .

(c) Absorption bands in alkali halides containing F centers

Figure (I.3-3) shows a number of bands other than the F - band.
We can briefly discuss the origin:
i) K ~ band: there is general agreement that the K - bahd is
associated with the higher energy transitions of the F center, i.e.,
{6—=np (n = 3,4,5...) [_27:] .

ii) L - bands: it is believed that L - bands arise from transitiqns

to states that are degencrate with conduction states [_28] .

iii) Q - band: this band lie‘é in the low-energy side of the fundamental
absorption edge of the pure alkali halide. It is thoqght to involve the
excitation of a halogen ion near the F center [29] . This band can
be regarded also as due to the perturbation of the free exciton .in
the pure crystal by the presence of the F center , giving rise to a
bound exciton. An estimation of the position of the 'Ib - band respect
to the absorption edge can be performed using the charge transfer model
[303 . The model for the (b - band in which an electron from a
halogen ion is transferred into .the nearby F - center, giving rise to
an F - center (two electrons bounded in the cavity), allows an estimation
of the oscillator strength for this process [31:] .

A somewhat different picture from that shown in Fig. (I.3-3) is
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Figure I.3-5: Absorption spectrum in KBr after illumination in the F - band.

The F - centers are converted to F' centers and the of - band appear. 123] .

obtained if the crystal is illuminated with F - light, Fig. (I.3-5).
The result of the treatment is the conversion of F- centers to F?
centers. That is, some of the F - center electrons are liberated

by the photons and are successively captured by other F - centers. This

process produces anion vacancies (left behind by the excited electrons).

These vacancies are then responsible for the of band shown in Fig.
(I.3~5): this band corresponds to the perturbation of the free exciton
by the presence of a negative ion vacancy. Similar calculations of the

(b - band treatment have been applied to the ® - band [_30 ,31]
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I.4 Melting of ionic crystals

(a) Structural aspects

From a phenomenological point of view, attempts have been made
in order to correlate the melting temperature with the interionic
pair potentials in the alkali halides. To be more precise, we can'take
the simple interionic potentials given by Eq. (I .2-1), which are
consistent with the Born repulsive term in Eq. (I.1-2).

These potentials are:

B (R) 2 A T e

(I.4-1)
2
_ e
g, R = DR =
+r R
Here, a = A/M , where A is defined in Eq.
(I.1-2) and M is the coordination number in the structure

(we suppose the nearest-neighbor ions dominate in the repulsive term;
note that N e 10 ).

A scale of lengths ( and energies) can be introduced
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by defining:

_ b g\ R | Tull) | AT | AVAL | A5
' 2 R 3 . ’ - -4
A=lare) ={5) R e bo® om deg) (%) leat deg')
LiF 2.014 1121 2.25 29.4 5.77
LiCl 2.570 887 2.27 26.2 5.39
LiBr 2.751 823 2.27 24.3 5.13
where R, is the equilibrium lattice spacing and O‘K is the LiT 3.000 718 2.21 - a.72
corresponding Madelung constant. The corresponding scale of energies NaF 2.317 1265 2.2 27.4 6.2
simply is ei/A . NaCl 2.820 1074 3.02 25.0 6.23
.. . i NaBr 2.989 1023 3.4 2.4 6.12
The extent to which a rule of corresponding states can be develo d * :
ponding pe Nal 3.237 o33 3.01 18.6 6.04
is indicated by calculations for melts of inert gas ions [323 . Within '
KF 2.6
the context of ionic crystals, this kind of treatement leads to an 74 | 129 3.02 17.2 5.97
o KCL 3.147 1045 3.28 17.3 6.08
equation of state that takes the corresponding-states form L33J s KBr 3.298 1013 3.34 16.6 6.06
KI 3.533 958 3.39 . 15.9 6.02
, RoF 285 |1048 | 2.% - 5.76
2 3 RbC1 3.291 988 3.26
. & .Y_( N AKDT e) . (1.4-3) : . 14.3 5.70
'P 5 3 / _ RoBr 3.445 | o953 3.27 135 | 577
RbI 3.671 913 3.3 - 5.73
] CsF 3.004 955 2.88 - 5.32
Here, ? is the pressure and -F- is a 'universal' function of CsClL 3.571 918 3.18 10.0 5.27
CsBi 3.720
the variables indicated in parenthesis. If this approach is correct, s %8 3.29 .8 6.20
CsI 3.956 894 3.42 28.5 6.27
the value of AKDT/ 62. at the melting
point should be the same for all the alkali halides. As Table (I.4-
1) shows, one obtains a good correlation between the melting temperature Table I.4-1: Lattice spacing and melting parameters in the alkali halides. Data from [33] .

of these systems, which can be expressed simply as

This relation is not valid for the lithium salts where the neglect of

To v (220 /2)K .
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short-range repulsions between the relatively large anions is less
Jjustified.

On the other hand, the small but systematic variation of the
quantity /\Tm with the negative ion suggests that the ratio
of the ionic radii should be considered as a new relevant parameter
in a more refined equation of state. The ionic radii ratio, in fact,
kis found to correlate with the melting temperature [34] as shown
in Fig. (I.4-1). '

4
iz Lit
Ry \\\
3k 4
2k 4
AqBr
® gAglt
.
gk agf 4 B
T S S WA T R S|
26 28 30 32 24 36 /T
Figure I.4-1: Ratio of the ionic radii versus the square root of the melting temperature

in the alkali halides. Rz is the radio of the larger ion and ‘R‘ the radius of the

smaller. A, - ﬁ Rt "(.7."&) Rl . Data from [_34] .

The last two columns of Table (I.4-1) report the values of the
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fractional volume change AV / A 500id and of the éntr'opy change
AS on melting of the alkali halides. The volume change is related
to the coordination numbers in the liquid and in the solid through the

relation [_3 5]

3
L
H =M e ( Ro ) (1.4-5)
oy R? ;

where ML,S are the coordination numbers in the liquid (L)
and in the solid (S) (see next section) V;,’_‘is’;“f,aa:e“thej?:co‘irgsponding
molar volumes, R:, is the position of the peak in~ %4-_(,1"} )
(i.e., the unlike ions radial distribution function; see next section)
and R: is the nearest-neighbor distance in the crystal.
Neutron diffraction data for molten NaCl [36] gi\/e for the 'close-
contact' coordination number in the liquid, M\_ o L{
the decrease from MS =k to HL-.-Q " reflects the iarge increase

of the molar volume on melting ( 25% for NaCl, see Table (I.4-1).
It is worth noticing that, despite the appreciable decrease in
the coordination number at n1el€1‘ng, the cohesive energy of the ionic
liquid (which is mainly due to the Madelung term) is not considerably
different from that of the solid. It is found for NaCl at 1073 K°
an internal energy of 4. 103 J / gl , to be
compared with the value of 76“ . \()“b 3_/ ol for the solid
at  298°K. THis relatively small reduction in the cohesive energy is

a consequence of the good charge ordering existing in the liquid near
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fr(se:;ing. Th1$1$ shown in Fig. (’If47%f), which clearly demonstrates

the’ existenco.’of a well defined first;ﬁeigiubor shell of anions (cations)
around a cation (anion). Thc presence of a second shell of lilxm’ ions

is also evident. This alternation of charge is the most remarkable

feature of the short-range order in the ionic liquid. ;,

¥ T T T T T T T T L} ¥ T T T L )
4—
z s
o 2F
of

- :

1 i 1 1 L [ 1 ': 1 1 1 L 1 1 1 ]

Q0 5 el 10 . 15
r(d)
Flguré I.4-2: Pair distribution functions in molten RbCl from neutron diffraction

experiments. Data from [37] . ‘
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Finally, of the total entropy change found at ‘melting (seec
Table I.4-1), AS ~ 6 b /OK , roughly one third
arises from random distribution of 'defects' in the liquid [38] and
the rest from changes in the vibrational entropy . L '

- The possible extension of the r‘igid—ién ‘model (Born model)
for the alkali halides described in Section I, to both the solid and
the liquid pha's:cé near ‘the melting temperatures, has been studied by
Monte Carlo simulations [39] . It is found that the exponéntial form
for the repulsive interaction is superior to the power-law form. The
results for the total internal energy are in good agreement with
experimental data. For NaCl at freezing a value of " lOb al‘moe

is found for the cohesive energy.

(b) Electronic_aspects

The absorption bands observed in the alkali halides containing
F centers (an example of which is given in Fig. (I.3-3) for KBr )
are also found in the molten phase but shifted to lower energies. The
theoretical aspects of the latter case will be discussed in Chapter III.
Here, we want to discuss about the shift of the absorption
edge (first exciton line) of the pure crystal on melting. The optical
absorption spectra in the ultraviolet have been obtained for the

alkali halides 40] . Figure (I.4-3) shows the corresponding spectra



42
WAVELENGTH IN A
WAVELENGTH 1N
noo! 200 1300 lméo 1500 _1600_1700 :aoox_eco 100 1200 306 heds! ;599“ 1600 _I700 1800 1900
15 7 15 - -
z i = {g}KCI
2 2 - .
) 8 )
Ol g!. 4
g ...... 3 !
= <] ;
5 8 \
o \
e 1 . /
Qg 5 3 -
<) 90 L) Ny 5
ENERGY IN ELECTRON VOLTS 1o EN%QROGY IN E?.%CTRON ﬂ\%LTS ®
Figure I.4-3: Optical absorption spectra in the ultraviolet for NaCl and KCl

at 80° K. The dashed curves are roon temperature data. From ref. 40 .

for NaCl and _KC1. Experiments on some alkali halides have also
been performed in the liquid phase near freezing [41] . The spectra are
found to be well described by the empirical Urbach rule:

}L(E) = }Lo Q,XP‘ G‘(E-fo)/VgT] > where lipEs and a are
fitting parameters. In Table (I.4-2) are given the values of these
parameters for some alkali halides. From Table (I.4-2) it is clear

that an abrupt shift of the first exciton line of 1.1 - 1.8 ev
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Eo (Coyst) | G(ceyst) | Eglmeld) | d(mett)
K1 5.890 0.830 4.71 0.65
kBr 6.841 0.774 5.51 0.53
Kel 7.834 0.745 6.22 0.63
NaCl 8.025 0.741 6.25 0.59
RbC1 7.510 - 6.05 0.51
Table I.4-2: First exciton absorption peak energies Eo in the crystal and liquid

phases. All values are in ev. Data from ref. [41] . G- is a fitting parameter appearing

in the Urbach rule.

occurs on melting. It is then suggested that the loss in long range

order on melting is primarily responsible for the reduction in the

energy, AEs y of the first exciton peak,

through the change in electrostatic energy of the system. An approximate
equation for A E ° can be written in terms of the difference
of Madelung energies, E ad in the solid and in the

liquid, as follows,
AE_O ~ 9 E.mad(Cqshﬁ)—E.:nM(m'e{’)-E:mgm(’ﬁ), (1.4-6)

where the sign 4 (=) refers to the cation (anion). In Table (1.4-3)
are reported the calculated values of the electrostatic energies for

the melt from the optical data and are compared with some theorctical



44 45

caleulations. Experimental (second column) and theoretical results 1.5 Structure of molten alkali halides

(last three columns) compare very favourably for all the salts

investigated as shown in Table (1.4-3). In the study of the optical properties of metal-molten salt
solutions, to be presented in Chapter IIT, the knowledge of the liquid
structure results essential. In fact, it will be found that the short-

range ionic order present in the liquid (near the freezing point),

is responsible for the localization of the extra electron in a F -
From H"S%‘“s ?Q”u"% D xon like center in the molten salt. Evidence for this short-range order
AE o 0 yﬁm@ Na.\sf,\' ?Gt!)l\'tmf, S nd was reported in Fig. (1.4-2) for RbCl. The way in which this
Data | Potential angstec
@) @ . information is extracted from the diffraction experiments ( x-ray
KBr 1.33 6.95 7.06 7.01 neutrons) is reviewed immediately below.
KI 1.18 6.52 - - 6.67
KCL 1.61 7.15 7.44 7.33 -
NaClL 1.78 8.02 8.30 8.34 -
RbC1 1.46 6.91 7.08 7.04 6.97
Nal - - - - 7.23 (a) Liquid structure factors and radial distribution functions
Table I.4-3: Electrostatic energies for some alkali halides at In a typical ( x-ray or neutron) diffraction experiment, the
freezing.. All values are in ev. Data from ref. [bl] . {a) from ref. measured quantity is the scattered intensity I(Q) through an angle
[_3 9] . ) - 20 of the incident radiation of wave length A .

For a monatomic liquid ( like argon, say), it can be written as follows,

We can coriclude that Eq. (I.4-6) can be used to obtain a rather

. 2 s

accurate value for the shift of the first exciton peak in the alkali I(e) =N -r- (K} S(K) ) (1.5-1)
halides on melting. This result will be used in connection with the

> band in the molten phase in Chapter III.
where K=Um smp / A , N is the number
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of atoms in the liquid sample, 'F(K) is the atomic scattering factor
and S(K) is the liquid structure factor. The Fourier transform
of 5(K) is essentially the pair radial distribution function .

%(T) s already found in the preceding section ( see Fig. (1.
4-2)):

3
5(K) = 4 + n S L9w-41 € 4 | (1.5-2)

s

where Yl is t;he number density of atoms. On the other hand, %(r)
is defined such that Ly 9 1 dr equals the
number of atoms in a spherical shell at a distance  from a’'given
atom. .

For a two-component liquid ,'j such as RbCl , there are three
pair distribution functions, %Rb-Rb 3 %Ce?(?, omd oﬁRb—CQ 2
The experimental values for these functions are plotted in Fig. (I.4-
2). The corresponding partial structure factors, .5%_[25 y 5&_(&

5%-(1 are shown in Fig. (I.5-1).

As is clearly shown in Fig. (I.4-2), there is an evident
alternation of charge (ions surrounded by opposite charged ions) in
an ionic liquid, giving rise to a net short-range order. This feature
is appropriately expressed in K space by a linear combination
6f the alvone partial structure factors, denoted by 5 aa (K)

and defined as

Sag (K) = i [ 9K+ (K)-2 5, (K], (.53
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Figure I.5-1: Partial structure facters in molten RbCl at  1023° . The full

lines are MSA  results. The circles neutron diffraction data [37]' .

for a  1:1 system like RBCL . The plot of  Ogg (K} for RbCl
is shown in Fig: (I.5-2). SQQ(K} expresses the correlations
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statistical mechanics, the following relation between the static

dielectric constant E(K\ of the ionic system and SQQ(K)

is found:
4
%
w
* L m e
1e(K) =1 — SaalK)- (1.5-4)

K* Kol

The coordination numbers mentioncd in the preceding section
PSS epuiigu—
can be obtained from the experiments through the functions %__(,r)

The required information to this respect is contained in the

i 1

2 . 37 4 X a _,) 5 main peak of % - (V) . The determination of the coordination
S T . S e e e T numbers is, however, not unambiguous because this peak is not sharply
defined on its large T — side. These are two kinds of coordination
Figure 1.5-2: Charge-charge structure Factor for molten RbCl  constructed from numbers which can be extracted from re %+_(Y) by integration:
neutron diffraction data on partial structure factors. Data from [37_._\, . i) the 'close contact' coordination number, obtained by assuming the
function r: QAs- ) to be symmetric around the maximum
of the peak and thus using only the data on its short - side;
between charge density fluctuations in the ionic liquid; this is made and ii) the 'near neighbor' coordination number, obtained by integrating
evident when one notices that the corresponding radial distribution the full % - 49 up to the first minimum of | atd %*_ )
function is given by ;‘i L %'H' ) + 9_.(r) -2 9s- (D J N ] These numbers for molten NaCl are 4o = o0
vwhich measures the probability of finding a charge of the same sign and 3.2 & ol ‘_36] .

at a distance ¢ from a given charge.
Another important point to mention here is the relation of
5&0_. (.K) to the static-screening properties of an ionic liquid.
" Tt can be shown [33] that for a fluid of rigid ions obeying classical

(b) Theoretical aspects: the mean spherical approximation (MSA)
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The starting point in the calculation of the pair distribution
functions are the Ornstein - Zernike equations, which can be considered
as the defining equations of the direct correlation functions C{j r)

For a two-component system, such as a molten salt, those equations %NN (v) = % Y_ % " ((‘) + %FU’)J (1.5-7)
can be written [42] as follows: )

and
hy ) = G + ZK, Nk J I Gy ) huj(r‘)) (I.5-5)
‘ Lhx=12,
' %GQ(“;) = ji [. %++('r) - %,\_ C"):l . (1.5-8)
where his <) = %15 Yy~ ¢ , and My are
the partial number densities of the components. The function C{S (%9
is taken to go, at large r , to the bare pair potential ¢L) LT)) The corresponding partial structure factor 59_& (,K) to
the function C}S e ) was already introduced in
the preceding paragraph. Here, the Ornstein - Zernike equations split
in'm CCS ) =~ /Qsl) 49 / KE,T y (1.5-6) in the following two integral equations:
> w@
provided that the system is far from the critical point. For a system hN("bz: C’NN Y + Q,nj &i\ CNNU,‘:",‘;‘Q hNN ((“3) (1.5-9)

of positive and negative ions, as in a molten salt, the potential ¢L3
is given by: QS(; )y = % Z; et/ € v. k _
An approximate solution for this problem is given by the MSA. and
Essentially, the MSA is a Debye - Hfickel theory with hard-spheres
boundary conditions. A
The approximations involved in the MSA are easily visualized "‘G}g - ng ) + an Sdg\ CQQ(.\.E‘.‘:“) hQQ(.‘-‘) , (I.5-10)
if we consider a system of equisized ions, of diameters 0'+= [

( = @ , say ) and valences Zy=-Z_ . We then define,
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while the MSA conditions become:

Cun =0 for  TYC,

(1.5-11)

Qun = for  v<a,
and
Caa = -2 /€T kT for rr6
(I.5-12)

QQQ =0 “W <0,

Equation ( I. 5 - 9 - 11 ) coincide with the Percus - Yevick equations
for a fluid of neutral hard spheres of density n and diameter
q , whose solution [43] is:

O (MY = Ag + A(T/6) + A ey, (1:513)

where the constants At are written in terms of the packing fraction

7[1:1% n 63 [43] . The solution of Eqs. ( I. 5 -

10 - 12 ) is given by [_44:] ,
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2 2
CGQ(\') ______X___ {lb + DB ('/0’} N (1.5-14)
Il'l
where X= KO ( Ko is the Debye - Huckel value
of the inverse screening length) and = - [|4 X = ( l-\—lx) 'h]/x .

The compariscn of the MSA results for the functions hNﬁ )
and hag ()

shown in Fig. (I.5-3). Values at contact are overestimated by approximately

with the Monte Carlo simulations is

10% . At distances T~ AU Qg the MSA fails to
predict the structure present in hNN . The situation is somewhat
worse for \'\QG. Uf) , for which the MSA predicts oscillations
that are both weaker and out of the phase relative to the Monte Carlo data.
This situation is sensibly improved by using the self-consistent Ornstein-
Zernike approximation ( SCOZA ) [45] .
Finally it should be noted that within the MSA for equized
ions a simple analytic expression for the SQQ (,K) function
£46_] is obtained:

-\
5eaX) = U(d)ll [(KG)" + 81"— 442 (29*- K*G?) Co5 KT + %cf KE smka] ,

(1.5-15)

where %: i(,"b)x.
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o6l

P i

p*=0.6690 B%:35476 |

SCOZA
- MSA
A MC

()

0.6

[eX:3 8

0.2}~

hplr}

_0_2._

..0.4..

T

p*¥=0.6690 [RB*:354757
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Figure I.5-3: Monte Carlo (O,L)

hpts) = hae (7))
and of the SCOZA ( - ) for

Data from [_M] .

results for

8% = o /um = .43

hgnz Wy €

are compared with the predictions of the

v)

and p¥o /24 2 35476,
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‘Analytic solutions for the pair correlation function have been
also obtained it‘/vitvhin the MSA [47 , 48_] . These results will be
used to build up the theory of Chapter IIT.

On the other hand, the use of the MSA  allows a systematic
determination of the ionic radii in the molten alkali halides [_49] .

In Fig. I.5-4) are plotted the ionic radii for these molten salts versus
temperature.

Finally, the MSA results for the genersl case 0]_ # 0.

have been also obtained [50_] .

151 Cs
—
RAA) -

—
; . , Tec073)
7 8 3 10

Figure I.5-4: Tonic radii in molten alkali halides as function of temperature. Data

from [491
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CHAPTER _IT

SURFACE ENERGY OF IONIC CRYSTALS

57

CHAPTER II

Surface cnergy of ionic crystals

In this chapter we examine a simple model for the surface energy
of ionic crystals [ﬁSJ . To this end, much of the content of scctions
1 and 2 of Chapter I will be needed here, i.e.: the description of the
Born model of ionic crystals including the discussion of the van der '
Waals interaction of closed shell ions and its relative importance
in the surface energy problem, and the introductory survey to the

role of elastic constants in the lattice vibrations of ionic crystals.

Section 1 of this chapter is dedicated to a general introduction
of surface thermodynamic concepts, like the specific surface free encrgy
F5 and specific surface enthalpy H5 of an ionic crystal. In this
section we also describe some of the experimental techniques to measure
surface thermodynamic functions and discuss some of the practical problems
in their determination. Finally, we report the presently available data

for ionic crystals.

Section 2 examines the theory of the cleavage force in ionic
crystals within the spirit of a universal model for the surface energy
of solids originally applied to metals [ﬁi] . A rather drastically different
physical model is clearly involved for ionic materials as opposed to
metals since : (a) optic as well as acoustic phonous enter the problem,

ard (b) the van der Waals interactions arise from closed electron shells .
g
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In Section 3 we derive an expression for the surface energy
of ionic crystals from the two limiting behaviours of the cleavage
force in Section 2, by assuming, (as in [63_] ), a universal scaled
form for this force. There results a simple expression which relates
the surface energy to some bulk properties of an ionic crystal, these
being the elastic constants, the electronic dielectric constant, the
optical band gap and the interplanar spacing. These bulk properties
are known for many materials and this relation should thus be useful

for rough estimates of the surface energy of ionic crystals.
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IT.1. Thermodynamic definitions and experimental data

We start a brief outline of surface thermodynamics, in order to
introduce the physical quantities which are measured experimentally.
It should be noted that the surface free energy and surface tension,
are in principle different quantities for a solid [51_] , the former
being the work spent in £§rming a unit area of surface, while the latter

involves the work spent in stretching the surface [5?:] .

(a) Surface thermodynamics: Surface energy and surface tension

of an ionic crystal

By surface we mean an inhomogencous boundary region between
a solid and vacuum. The vapour pressure being small for the systems
of present interest at low temperature. One can associate with the
surface such thermodynamic functions as energy and free energy, which
are extensive properties of the surface (in the thermodynamic sens_c)
provided that the crystal is sufficicntly large. In a finite crystal
the surface energy can be decomposed into the face , edge, and corner
energies. To give an example of variation with particle size, let us
consider 1 gr. of NaCl, of density f-_—_ 2.9, %r/cc_ and with
assumed surface energy per unit area E® = 200 er95 /Cm® and

edge energy per unit length K 2D« lO_b Q,\'%s/ o . The
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original cube is now considered to be succesively divided into smaller portion C of the semi-infinite crystal to have a volume \'} and
cubes, and the number of such cubes, their area and surface energies, an area C& in the surface. Let N be the total number of
and edge and edge enugies are summarized in Table (II.1-1). molecules contained in this portion of the crystal. The specific#* surface

energy ES is defined by the relation:

L oY & AFE &HX
9ide Tl atea  Totol edge Sucfas woesgy  Edgg enerqy

P o/g wn/g o5 /g evplQ PR
o 5
E =NE + \’.A E , (I1.1-1)
(1374 2% LEY 1080 28 10°
0.l 28 530 g4 « 10° 11« 107
E ;
0.01 280 85<10" %5 s 10" [Xv4 where is the total energy of the portion and E is
0.001 28,00 56510° 84 x 10° A1 the bulk molecular value of the energy, .The second term in Eq. (II.1-1)
wt (4 23.10° 55x10° 84 « l(]>° o« 0 represents the excess value of the energy due to the presence of the
(0.2 eal
) ° . surface. Similar equations to Eq. (IT.1-1) can be written for the total
W0k 28«0 55,10 84 « 10 1 ox 0
(20 cat) (04 cel) entropy S  and the total Helmholtz free energy F  of the system G
From this fact follows the definition of the specific surface free
Table II.1-1: Variation of surface emergy per unit mass with particle size. Data from energy F:s to be:

[sa] .
F5=E.S" TS‘J . (I1.1-2)

It may. be noted from the table that for small particles ( L~ r,)

the surface energy becomes significant (~o (.c&\ while only for

very small par:tic.;tes ( L ~ 100 R\ the edge energy becomes An equivalent definition of Fs is obtained from the knowledge
important {~oH m@\ . of F itself,i.e.
From a theoretical point of view one can avoid the size effects
by considering a semi-infinite ionic crystal. In order to appropriately QF
define all the surface quantities, let us consider a finite cylindrical ) _'Fs = ——— ° (I1.1-3)

*Hereafter specific means 'per unit area’
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An analogous expression:to Eq. (IT.1-3) is obtained from the
Gibbs free energy [54] .
Besides the surface free energy, the specific surface cuthalpy,
P{g , presents also an experimental interest. The total enthalpy
may also be written as a sum of 'bulk' and 'surface' contributions,

therefore we find,
5 5 5
H=E + pV (I1.1-4)

where \/5 is defined by the relation:

V= NV + cAV°. (II.1-5)

In Eq. (II.1-4) ? is the pressure applied on the system.

One last remark about the surface properties defined above
must be done, i.e. these quantities represent net variations in the
properties of bulk matter as a consequence of the presence of the surface
and are not the characteristics of some two-dimensional phase or film

[ss] -

Let us consider finally the problem of surface work. The work

done on a system is equal to the increase in the Helmholtz free energy
of the (closed) system for a reversible isothermal infinitesimal change.

Then, for independent deviations in both volume and area we can
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write,

= 3F )\ v _OF > dd  ar.1-6)
Cﬂ:)\_— Y, >T@L + Y N II.1 |

where we can identify the second term as the work done on the system
for an increase d(l& in the surface areca, to be written as

follows,

dU\T5=LF‘" +CA-—6—E{,~)

d . (II.1-7)
0d T.V] CA' .

Now, there are two different ways of increasing the surface area of
a solid: (i) by reversibly "cutting" the crystal (cleavage) producing
an area ddb of new surface, or (ii) by "stretching" the existing
surface and therefore altering its state of strain. In the First process
the number of surface atoms is increased while in the second it remains
unchanged.

The specific surface free energy for (i) is indépendent of

C& and hence,

duf5 = Fs dCA/ . ‘ (I1.1-8)
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In method (ii) for an isotropic solid subjccted to a homogencous
change in strain (without creating shear strains), the differentials

can be written as
5
dw” = T ddd (11.1-9)

where 'v is the surface tension. Comparing Eq. (II.1-7) and Eq.
(II.1-9) one finds,

)

¥ = P+ dd oF° . (I1.1-10)
ok M1y

This equation illustrates the way ‘\6\ relates to .Fs . It is
noted that for a liquid Fs. is indipendent of 5.5 , so that

P= F°.

b) Experimental techniques

The experimental determination of the surface thermodynamic

" functions is subject to a number of uncertainities. Besides the crystal
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cleavage method, we will also describe to some extent the calorimetric

and solubulity techniques-
b. 1) The cleavage method

Measurement. of the isothermal work nceded to increasc the surface
by unit area is the most direct method of determining the surface frec
energy. This measurement is performed by some form of cleavage. Tn
practice, it is frequently important, and difficult, to correct for
dissipative effects which occur simultaneously with the increase in
area. For example, in the case of impact cleavage by a falling blade,
it is necessary to consider, in addition to the rebound of the weight,
energy losses in the form of heat, sound and plastic deformation of
the crystal. Since neglect of such éffects leads to high values, it
is usually assumed that the lowest observed result provides the best
estimate of the surface free energy [563 .

‘ A slow cleavage technique which avoids some of the dissipative
effects mentioned above has been used {57] .

In this techiique, a crystal in the shape of a bar with rectangular
cross section (thickness 2t, width w) is partially cleaved from one end
to form a crack at depth t extending a distance L along its length
(see Fig. II.1-1). The critical force F needed to reinitiate
the fracture is then measured oﬁ a tensile-testing machine. The surface

free energy is calculated from the formula [54] ’

'F5 - 6F*\* /Y (L)"-‘ta (I1.1-11)
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TO TENSILE
{ TESTING MACHINE

\34
CRYSTAL
SAMPLE u
13
Figure II.1-1: Propagation of wedge~induced crack in a cleavage experiment. The force

T required to extend the crack is measured on a tensile-testing machine. From ref.

[54] .

where Y is the Young's modulus in the direction of crack propagation.

In deriving Eq. (II.1-11) isotropic elasticity is used. Tt has been
noted, however, that Eq. (II.1-11) is reliable only if L is large
with respect to 't [58] . A reconsideration of the mechanics of
the problem, taking into account the effects of shearing forces and

end conditions, leads to:
L
v F;’P = A/Fs +c(t/L) y (I1.1-12)

5 S !
where FQ_PP is the apparent value of F as determined from
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Eq. (II.1-11) and C is a‘constant factor for the crystal studied.
A plot against ('b/ LYL is then made, and the value of 'I:Eb is

obtained by extrapolation at (’t / L)‘L =0 .
b. 2) Calorimetric techniques

The determination of surface thermodynamic functions from
calorixﬁetric measurements requires a study of the properties of a bulk
system as a function of the extent of its surface. Since the values
of the surface functions are obtained as differences between nearly
equal quantities, their accurate evaluation demands the use of precise
experimental techrigues. ‘

Calorimetric techrigues are applied in the determination of
the surface enthalpy HE’ and the surface enthcp&y 5‘5 [5 5] .

When a finely divided solid sample is dissolved in a suitable solvent,

" the normal heat of solution (i.e., A H } is decreased by the extra

enthalpy associated with the surface. If the particles are identical,
the effect (per gram) will vary inversely with the particle size (see
the Table (II.1-1)), and will become detectable for particles having

a size of about 4 }1. , as we have shown above {see discussion .

of Table (II.1-1) in section (II.1-a)). Thus, it has been suggested

[59] that some of the scatter to be found in the heat of solution data
reported in the literature may be attributed to an unsuspected dependence

on particle size.

b. 3) Solubility techniques
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The solubility of a solid in a liquid depends upon its particle size. The
relation governing the dependence was formulated originally for spherical
particles [60] .

The surface free energy of an ionic crystal, 'F'(: , can be

obtained [61] through the equation,

o - -

FS = F:_ . 19”0 w5 O+ RT So Fd%f, © (IT1.1-13)

: 5
where FSL is the surface free energy for the interface between
the solid and a saturated solution, TUI" is the surface tension
of the solution and 0 is the contact angle of the solution

with the solid. The last term in Eq. (II.1-13) represents the difference

between the free energies of the clean solid surface and of the solid

covered by adsorbed solvent vapor in equilibrium at the saturated pressure
1’7 , calculated by integrating the adsorption isotherm in which

P is the number of moles of adsorbed vapor per unit area.

c) Experimental values of surface thermodynamic functions

The experimental values of surface thermodynamic functions

are summarized in Table (II.1-2). The present available data are very
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scanty, as can be seen-from Table (II.1-2).

LiF NaCl KCl1 MgO Ca0 CaFs; BaF,
Property Method* {100} {100} {100} {100} {100} {111y any
A* (ergs/cm?) )
Slow cleavage® 340 1200 450 280
Slow cleavage* 1105 :
Slow cleavage® 1150 + 80
Solubility 227
H' (ergs/em?)
Heat of solution 276 £ 5
Heat of solution 252 %2
Heat of solution 1090
Heat of solution : 1310 £ 200
S* (ergs/cm? deg)
Heat capacity 0.28
Heat capacity 0.084
HT)— H0) (ergs/cm?)
Heat capacity 50
Heat capacity 5
Table II.1-2: Experimental values of surface thermodynamic functions. All results are

for 298°K unless otherwise indicated. (b) in liquid N,_US"K) , (€) in air.

Data from ref. [551 .

A brief discussion of the surface thermodynamic function values

given in Table (II.1-2) is necessary to understand the (rather sensible)
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scatter of the data.

For what concerns the slow cleavagck experiments, ﬁone of them
were carried out in vacuo. It seems likely that the free energies obtained
in these experiments refer to the interface with liquid Nl [57_-_,
and to the surface covered with adsofbc:d air LSSJ , and that the values
for clean surfaces should be somewhat larger. This effeet is, however,
not easy to evaluate. V ‘

The results obtained from measurements on powders of NaCl,
MgO, and Ca0 are tentatively associated with the (100) face. Electron
micrographs support this identification but in the case of KCl many
spherical particles were observed. It is also necessary to use powders
with different specific surface areas in order to establish a true
surface effect. This was done for NaCl and KCl in the determination
of Hg and for NaCl in the solubility experiment. However, for
both Mg0 and Ca0, the enthalpy results were derived using only one
fine powder.

In discussing the results in Table (II.1-2) the difference
between HS and Eﬁ , as in Eq. (II.1-4), is neglected. Since
the surface entropy- 55 is usually positive, the surface enthalpy
at room temperature should exceed the surface free energy Fs

Thus for NaCl and KCl these quantities are consistent with
the expected result.

The two cleavage values of Fb for Mg0 agree well but are
larger than HS - This may be due to the uncertainty regarding the

area of the powder used in the calorimetric work [.62] .
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II.2 Theory of the cleavage force

The specific surface free‘energy Fs (or surface ener’éy q )
can be regarded as the work done to form unit area of new surface
by reversibly cleaving the crystal, as discussed in the px;éceding".
section. This reversible work can be calculated from thel.cnowledge
of the cleavage force. A theory of the cleavage force for an ioﬁic
crystal is examined in this section within the spirit of a universal
model for the surface energy of solids originally applied to metals [63] .
T he cleavage force is evaluated at small and large separations
of the two crystal halves from phonom dispersion curves and from van
der Waals interactions, respectively. In a later section it is shown

how this two limiting behaviours can be connected by a scaling hypothesis.

a) Cleavage force at small distances

We consider for definiteness the cleavage of a crystal with
the NaCl structure along a (100) plane. Recalling the introductory
discussion of the lattice vibrations in ionic crystals (section '¥.2) nme
expects the cleavage force, for a small relative displacement %€, from
equilibrium of the two crystal halves, to be lineax; in & . We
are going to evaluate the coefficient of proportionality ( a force

constant per unit area ) A which determines the cleavage force F
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for small displacements Z of the two crystal halves,
F=Az (2 «3) (11.2-1)

where d is the equilibrium distance between nei ghbouring planes
in the bulk. It is now shown how A relates to the dynamical
matrix of the ionic crystal as introduced in section (1.2).

We can write down the equationsof motion of the planes, for
the longitidinal vibfations along the (100) direction, from the equations
of motion of the ions in the crystal as shown in Appendix A.

Denoting by an index ¢ the successive lattice planes of
this family, we apply to the planes Q=0 and €=1 weak external
forces along the (100) direction of magnitude ~F  and #F per
unit area, respectively (see Fig. (II.2-1)).

The equation of motion of the plane { , built up of alternating
positive and negative ions having masses My and Wi, respectively,
under the action of an external force per unit area Fl can be written

as

My it = -%, &\/M(Q,v) Ag(40) + Vi (G0 p(e2) |+ L T

(I1.2-2)

My ikg (1) ==, [V, (€,€) Ay (R40) + Vu(i,c);u,l(uc‘)],» A%
‘ 1y
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Here M4|L(Q,) arc the displacements from equilibrium of the two
subplanes (4, € ) and ( 2<.Q ) in the plane { having
masses Mq and M,“ per unit arca respectively, and V;,j (Q,Q')
is the effective force constant per unit area between the subplanes
(i,Q and (3,).

For this particular casc, the(specifi Yoy rnical mabyix for
longitudinal modes along the (100) direction (see Appendix  A) can

also be written as follows,

Dty = 3 Vigl© otk
L

(1I1.2-3)

Introducing the Fourier transforms for J-Ls(l,) and Fl y

Aqed
0= 7‘% witq) €1

(11.2-4)
q’i,qeot

Foa 2R

we can rewrite Eq. (II.2-2) for static displacements as follows,
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Dy () () + Dy (1) Ma(7)

1

(I1.2-8)

{
N e

D;,,(‘l)'m(“l) £ Dyp (4) Mpq) = _J;q

The solution of Eq. (II.2-5) is straightforward and we obtain:

‘F —.Dr_qu) - :D:z. (q )

mtg) = L
2T D@, 0~k (4)

(II.2-6)

'Du(q) - Dz‘(q}
21 p@n - ph @)

According to Fig. (II.2-1), the relative displacement Z  of the cleavage
position of the two kinds of ions (subplanes) in the two surface planes

is therefore given by
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Z= 4 (M0 g )~ 4 (A to) + M0

= L) ) (20

while the intraplanar relative displacement 5 of the two kinds

of ions (subplanes) in each surface plane is given by
§= M-, . (I1.2-8)

Using Eq. (II.2—4)‘an‘d Eq. (II.2-6) in Eq. (II.2-7) we obtain,

1 _ 94
- > r 7,04 Dpal4) 2?1@) 01 (11.2-9)
q Du(ﬂ) b)_l(ﬂ) - D\?_(ﬂ)

In our particular case: -FL: ‘:( &Qd - SQ,O) , and imposing

periodic boundary after N planes we find,

~iad
.FQ = —S— (Q, 1 ’4) . (IT.2-10)
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Figure .II.Z—I:

;‘_ [0+ M, 0)]

Reversible cleavage of an ionic crystal with the NaCl structure.

(a) Uncleaved crystal. {b) The crystal during cleavage with a spacing of Z4d  between

the two surface planes.
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Using Eq. (II.2-10) in Eq. (II.2-9) the latter can be rewritten as

. (IT.2-11)

follows:
ut’
Z=F & Sin (
_M:' 27 T3y Dip(@) D (9)

where the integration extends over the first Brillouin zone  for the

[100] direction.
A similar expression is obtained for 8

which reads as follows,

Iy
8 T ‘é_ d‘} s_‘hl(ﬂ_d_; Dz,_(.Q) —Dll (q)
m M 27 D) Dpyd) = D3 ()

in Eq.(II.2-8)

(11.2-12)

We have obtained in Eq. (II.2-11) a formal expression for

the coefficient A in Eq. (II.2-1) which reads,

/4
-l d .2 94 Du(@) "’1)2.7_(.‘”"2 D ()
A-= ST .
m ¥ ( 2 ) Du(4) Daa(@)- D3 (9)
W/

(11.2-13)

Unfortunately the dynamical matrix DL) (‘1) can not be

expressed in a closed form in terms of the phonom dispersion relations

(see Appendix  A) as for the case of a crystal with one atom per unit
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cell [@3] , therefore one has to resort to some approximations in order

to determine ])QB(Q) from the measured phonom spectrum.

a. 1) The dynamical matrix for a model with nearest-neighbor planes

interactions only

‘ An important simplification in the determination of the dynamical
matrix TDQS(ﬂ) arises from the electrical neutrality of the (100)
planes. As shown in Appendix B , the Coulomb contrfbution to the
force constants between a plane and its successive neighbors is easily
calculated by the Madelung method, with the result that this contribution
to the force constant between second neighbor planes is already 1%
of that for first neighbor planes. We have therefore adopted a model
for the phonom dispersion relations which includes only the force
constants between subplanes in two nearest-neighbor planes.

The resulting expression for ]Dis(q) within this méde]
(Appendix C) are:

Dy() = ‘?\1.(2‘+{b) + l‘Fu (1= s o!d)
D22() = 'Fn_ (244) + 2422 (1-w»9d) (II.2-14)

D (d) = Dgy () == J(q’lz.(lwsﬂd) +/)
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Here ¥44 , 411 and %VL arc the éffective force constants between
subplanes in two nearest-neighbor plancs per unit arca, and (%4uz
is an effective intraplanar force constant between subplanes in a given
planc per unit area. ‘

We can now determine the force constant A using Eq. (I1.2-13)
and Eq. (II.2-14). The resulting expression for A is the following
(Appendix D):

A — 2(%«1*"('17_""'&13 (II.2-15)
b + (=) {a/(a-0

where
@ = fp (24p)
b= 1{_{'{1"({1‘*“(’17)]
C=b + 5 (f—fa)
fu v £ tfo
In a similar way the coefficient of proportionality B defined-
through

§=0BTF (II.2-16)
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can be calculated using Eq. (II1.2-12) and Eq. (II.2-14), to give
(Appendix D):

B = ._‘Fl%:_xf_'_!_(\f b/(b-a) ~ 1) (I1.2-17)

where now

@ = - i)
b= 'ﬁz(l*‘{ﬂ< § rhy v 2 \1)'

The force constants in Eq. (II.2-14) have been determined
by fitting the resulting expressions for the dispersion curves to the
measured curves for acoustic and optic longitudinal phonoms in the
[100) direction [64] .by a least-squares procedure. Figure (II.2-2)
compares the fitted and measured phonom curves for NaCl and CaO.

The calculated phonom curves are in general within 5% of
the experimental values. The values of the force constants and the
comparison between the fitted and experimental phonom curves are
shown in Appendix E.

This simple fit to experimental data has the implicit advantage

‘of introducing empirically an account of effects due to electronic
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Figure 1I.2-2: Experimental phonom dispersion curves for longitudinal modes along

the (100) direction in NaCl and Ca0. The measured values are represented by open
dots and were taken from [_54] . The fitted dispersion relation are given by the continuous

lines. The frequencies are given in 40'3 rad/sec and the wave vectors in units of 1\'/& .

polarization of the ions. The values for S/E and A . .. obtained



with this model through Eq. (II.2-17), Eq. (II.2-16), and Eq. (II.2-15)

are reported in the first and second columns of Table (II.2-1).

a. 2) A one-phonom branch approximation to A

A further simplification of the problem can be achieved if
we study the relative role of the two phonom branches in the determination
of A .

By inspection of Table (II.2-1) one notices that the value
of 8/2 is quite small in all the cases considered, indicating that
the intraplanar displacement and thus the difference between :Du(‘ﬂ
and ])27_(.'1) play only a minor role in the initial value of the cleavage
force. From this fact we are able to show after few considerations
(see Appendix F), that the two-phonom branches problem can be approximately
transformed into an effective one-phonom branch problem with a dispersion

relation given by
2 £ ‘o'ml( 4 qd\ 8
w (q) = i ) (11.2-18)

where the frequency N can be determined by fitting the measured
acoustic branch near the zone center. The corresponding expression

for A using Eq. (IT.2-18) (Appendix F) is

%
M, (I1.2-19)
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where M is the mass per unit area in the (100) plane. The measured
acoustic branch conforms rather closely to Eq. (I1.2-18) for those
crystals in Table (II.2-1) in which the two phonom branches do not
cross. When crossing and splitting of the two branches occur, the value
of A 1is largely determined by contributions from the low frequency
branch near the zone center and from the high frequency branch near
the zone boundary.

The values of A given by Eq. (II.2-19) are reported in Table (II.2-
1) for comparison. These values are substantially the same as those
given by Eq. (II.2-15).

In the same approximation we have been able to include in

Table (II.2-1) also two ionic crystals with the fluorite structure for
which the surface'fr'ee energy for cleavage along the [11 IJ direction
is known exper‘imentally. The effective one-phonom branch has been fitted
to the measured longitudinal acoustic branch along the [111] direction

{641 . The details of this calculation are summarized in Appendix G.

a. 3) The elastic constants in the determination of A

The final simplification in the determination of A is carried
out if we recall the discussion about acoustic modes and elastic constants
in section ¢(I.2-b).

If we determine XL in Eq. (II.2-18) by the long wave Limit

of w(cﬂ , we obtain:

5 = __ziﬁri_ (IT.2-20)



84 85 '

where 'y . is the speed of longitudinal sound waves for propagation
S Pa|
perpendicular to the cleavage plane.
Using this value of .0), in Eq. (II:2-19) and-the fact

that N can be determined from thé values of the elastic constants
d)z A (109 dayn /emd ) (section (I.2-b)) the final expression for A is obtained:
Eq.(II.2-15) | Eq.(II.2-19) { Eq.(II.2-21)
LiF (100) 0.14 5.96 5.80 5.6
A= L 11.2-21
Nacl (100) | 0.13 1.91 1.97 1.73 = ( )
KC1l (100) 0.03 1.47 1.41 1.26
KBr (100) 0.11 1.16 1.42 1.05 where %L is a suitable elastic constant, given by C“ for. the
. i >
KI (100) 0.14 0.90 0.90 0.76 (100)  plane and by 3 (Cu+ 2C + 4 Cuy) for the
(111) plane.
. 13.7 13.3 13.6
Mgo (100) 0.07 ) The corresponding values of A obtained with the values for
Ca0 (100) 0.12 7.46 6.31 8.0 the elastic constants given in Table (II.2-1) are reported in the fourth
Can (111) _ _ 4.54 4.12 column of Table (II.2-1).
Ban (111) - - 2.62 2.52
b) Cleavage force at large separations of the crystal halves
Table II.2-1: Properties of the cleavage force at small separations in some ionic

The importance of van der Waals interactions in the calculation
erystals. of the surface energy of an ionic crystal was pointed out in section
(I.1-c). These interactions between the ions are in fact responsible

for the attractive force between the two crystal halves at large separation
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Z. In particular we consider the dipole-dipole induced force {:‘5 between

the ions of types L and j } derived from Eq. (T.1-7),

Co. = C v Uc yc _ o (IT.2-25)
i = i -t - : .
.Y. (R = —° ¢y : (I1.2-22) m + e
e L') — E—————— ) . B .
Q) R 7 .
4

for fluorite type systems (Appendix H). Eq. (II.2-23) thus defines the
‘where Cts is a van der Waals coefficient for the dipole-dipcle coofficiont C in the oxprossion of the cleavage force per unit
. . N . N is lated
interaction. The cleavage force for large values of Z is then calculate area for large relative separations of the two crystal halves,
by performing the corresponding lattice sums of those terms given in
Eq. (IT1.2-22). These discrete lattice summations are in practice replaced

i 3

by integrations as discussed in Appendix H. The cleavage force is .I: = (: / Z

then written as follows,

where . (II.2-26)

™
Cm (I1.2-23) =5 v G

F

1t
S
3

. N . c
where M is the number of molecules per unit volume and m Values of - G for several ionic crystals are reported in

is an intermolecular van der Waals coefficient given by Table (II.2-2). The van der Waals coefficients between ions where

taken from Table (I.1-6). Other contributions to the force between

the crystal halves, such as that due to a surface dipole layer, fall

Com = Gy ¥ G+ 2C (II.2-24)

off more rapidly with increasing separation (see Appendix J ).
In an attempt to find a simple empirical formula for G we
can now resort to the approximate expression for the van der Waals

- for NaCl-type systems, and by coefficients Cy given by Eq. (I.1-8),
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Gy = 2 aidy Ee B (1.1-8)

Ei. ¥ E-.')

where 0{@

3

are the electronic polarizabilities of the ions and
are average excitation energies. Taking these energies as
roughly proportional to the optical band gap E_% , T.e. - Ei'z(bﬁ%
we find from Eq. (II.2-26),

2
G = —3%"— P E% (o ) (I1.2-27)

where Olm is the molecular polarizability and [b :ié an empirical

parameter. Use of the Clausius-Mossotti relation then yields

2
G = A e (M—}) (I1.2-28)
20T (b % € +2 ’

where Ew is the high frequency dielectric constant of the crystal.
This relation is tested in Fig. (II.2-3) by plotting the values of

C ‘ given by Eq. (II.2-26), and displayed in the first row of
Table (II.2-2), against the quantity E‘k oo -1 )1 . The

fo t2

89

relation between » c and E% as stated in Eq. (II.2-28) is seen
to be approximately verified with a rcasonable value (b:!.’b for

the ratio - Ei/Eg. The corresponding values of C: are reported

in the second row of Table (II.2-2), while the full data on the Eg
values and other useful quantities for some ionic crystals is summarized

in Appendix K.

I Lides
2
B
's otige
“or st
st
.
3
) () ' (K 2 g . 28
e
2
. o %"‘ .
Figure 11.2-3: van der Waals coefficient C versus E3(-—-————) for alkali
) €ot2
halides, Mg0, Caf, , and BaFL . The straight line corresponds to ﬂ):!.‘b in

Eq. (I1.2-28). From ref. [653‘. Values of ECD are from ref. [15, 66, 67, 58]

and the values of Eg from ref. [_59, 70, 71, 72J .



90

C 10 Merg) | LiF | necl | ko Ker | Ki hgo | ca0 | caF BaF

Eq. (II.2-26) 3.81 4.37 4.00 4.00 4.76 6.70 ~ 12.9345.85/6.85

Eq. (I1.2-28) 3.96 4.69 3.88 4.10 4.38 6.54 6.79 4.58 4.72

Table 11.2-2: Properties of the cleavage force at large separations of the two

crystal halves in some ionic crystalsy
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II.3 Surface energy from the cleavage force.

The surface energy can be regarded as the work done in
reversibly cleaving the crystal along a crystallographic plane.

We have seen in the ﬁreceding section that for small and large
separations 2 of the two crystal halves, the cleavage force behaves,

respectively, as

Az (2«34)
F@) =

(1I1.3-1)

c/z> (2 »d)

where the coefficients A and c differ from material to material
and can be expressed in terms of bulk properties (elastic constants,
intraplanar spacing, electronic delectric constants and optical band

gap) .

a) The scaled form of the cleavage force

We interpolate between the two limiting forms in Eq. (II.3-1)
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for the cleavage force by assuming, as in ref. [63] , that it has the

scaled form,

F@a=F {(zr2) , (11.3-2)

where F) and 2o contain all the dependence on the specific material,
while 'F()() .is a universal function for ionic crystals having the

limiting behaviours,

X (x«i)

{:(ﬂ =

32 ( X »,) ‘ (11.3-3)

The comparison of Eq. (I1.3-2) with Eq. (II.3-1) gives
the scaling parameters ¥, and Z, in terms of A and C

% = (C/A\m’

R= (RO —
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The surface energy & is given in terms of :F(Z) by,

m ‘ .
=1 S Fz) dz, (I1.3-5)
A ,

where the factor 1/2 accounts for the fact that two surfaces arve

" created during the cleavage process. Use of Eq. (II.3-2) in Eq. (1II.

3-5) gives:
' V2
g = o ( AQ\ (II.3-6)

where & should be a universal empirical parameter for ionic crystals

[65) given by
@
A= 4 & foor dx . (11.3-7)
0

The relation between @  and the quantity (AC,YIz in ~
Eq. (II.3-6) is tested in Fig. (II.3-1) by plotting the available
experimental values of the surface energies of ionic crystals (reported
in Table (II.1-2) against the quantity ' (AC)"" as determined
from the values of A and (  given by Eq. (II.2-21) and Eq.
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Figure II.3-1: Experimental surface energies versus (AC) . The straight

line has slope of = 0.35 . From ref. [65_] .

(II.2-28), reported in Table (II.2-1) and Table (II.2-2), respectively.
The values for g and (AC)‘{Q' thus obtained are shown in
" Table (iI.3~1).

Although the available data are unfortunately quite scanty,

" the relation in Eq. (II.3-6) appears to be approximately satisfied,
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a (AG)
LiF 340 1490
HaCl 227 - 276 | 00
KCl 110 - 252 700
Mgo 1200-1150-1090 2980
" Ca0 1310 2330

Cafy 450 1370
Baf, 280 1090

Table II.3-1: Experimental values of the surface energy and the cleavage force parameters

( (P‘C.le }. ALl values are in d\jn/c,mo".

with a value of ¢ roughly equal to 0.35. The surface energy for an
ionic crystal can be written, using Eq. (II.2-21), Eq. (II.2-28) and
Eq. (II.3-6) with o] = 0.35 and p = 1.3, in the following way:

_.7:7__.{50(7' (g—‘i\ E°A'£ ) (11.3-8)

307

where £ is the effective elastic constant for the longitudinal mode of
propagation of elastic waves along the direction of reversible cleavage
(see discussion to Eq. (II.2-21) and, e.g. ref. [_67] ), & is the interpla=
nar spacing of the corresponding crystallographic planes, E% is the

optical band gap and é‘D the high' frejuenay- dielectric



196 97

constant of the ionic crystal. The numerical factor in Eq. (II.3-8) Tt is easily checked form the available values of the clastic constants

is  ~ 0.0654. (see Table (I.2-1)) that it predicts @ (100) £ @ (1O} - for
An important quantity in this simple description of the cleavage ' NaCl-type crystals, in accord with experiment.. In Table (IT1.3-3) are

force clearly is the scaling length 2’0 , which is believed [63 ,731 compared the present results of qUieo) and T (u0) for NaCl

to roughly represent the separation at which F(23) passes through according to Eq. (II.3-8) with another theorctical calculation [7] .

its maximum in changing over from its initial linear increase into
its final Z,-b decay. The values of this length, which are reported

in Table (II.3-2), are seen to be a remarkably constant fraction of

the intraplanar spacing d , with a possible indication of a slight ] experiment (a) (b)
dependence on the cleavage plane in different structures. < (100) 227,-276 315 189
0’(110) - 352 445
LiF NaCl KC1 KBr KI Mg0 Cal CaF BaF Table 11.3-3: Calculated surface energies for NaCl according to: (a) present work,
. 2
Zo/d 0.25 0.25 0.24 1 0.24 | 0.25] 0.22 | 0.22 | 0.18 | 0.18 Eq. (11.3-8); (b) From ref. [_7] . All values in ergsfcm .
Table I1.3-2: Values of the scaling length Zo/d for some ionic crystals.

The values of £ (100)= Cy and 'C('"D}:!i. (C“{Cuwcuq) were used

in Eq. (II.3-8) to determine the surface face energies ¢ (100)
and G (110), respectively. These simple results in terms of elastic
constants are not applicable, on the other hand, to charged planes

such as the (111) plane in NaCl-type crystals, where the optic phonoms

b) Variation of the surface energy with the crystallographic plane should be much more relevant in determining the initial value of the

cleavage force.

The dependence of the surface energy on the crystallographic
plane enters the present approach through the value of A , i.e.,

through the elastic constants and the interplanar spacing ( Eq. (II.3-8)).
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CHAPTER III

STATES OF EXTRA ELECTRONS IN MOLTEN SALTS
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CHAPTER III

States of extra electrons in molten salts

In this chapter , properties of solvated electrons at high dilution
in molten alkali halides are studied theoretically [126] . For this purpose,
much of the material contained in section 3 ;» 4 and 5 of Chapter I will be
needed here . Special emphasis will be given to well known defect in ionic
crystals such as the F center , discussed in section (I.3) . The discussion
of the structural changes on melting of ionic crystals in section (I.4) and
the theory of the structure of molten alkali halides in section (I.5) , con-
stitute basic ingredients of the theory developed in this chapter .

Section (III.1) is an overview of the experimental situation
regarding solutions of alkali metal ( M ) in molten alkali halides ( MX ).
Thermodynamic properties, electrical conductivity experiments and optical
studies of MN-MX systems are recorded in this section .

Section (III.2) presents recent experimental studies on M-MX
systems . Optical absorption data show new bands both in the infrared and
near ultraviolet regions of the spectra . NMR experiments have added new
useful information rega;ding the states of the extra electrons in the
solution at high metd dilution . Concentration dependence studies are
available for some metal-molten salt solutions

Section (III.3) presents the theoretical model for the ground
state of the solvated electron [126] . A critique of the point-like ion

model previously applied to the solvated electron in molten KCl [12%]

"is given in this section .
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Section (III.4) reports the results for various properties of I1I.1 Metal-molten salt solutions in the salt rich-region of concentration

electronic states in the equilibrium potential well , contact with experi-

mental data being made for ground state properties .
(a) Phase diagrams of metal-molten salt solutions.

The main test of the present model is the calculation of the

optical absorption by the solvated electron in section (III.5) . Systems

Alkali metals dissolve in molten alkali halides to give true solutions
other than KCl1 and transition to higher excited states are studied . .

over the whole concentration range above a certain temperature ( either a conso-
Ionic relaxation in the excited states and lifetime of the bound

lute critical temperature or the melting temperature of the molten salt ) Eﬂg .
state are discussed in section (III.6) . An estimation of the electronic

The phase diagrams for these systems can indeed be classified into two types
‘mobility is given .

according to whether the critical point lies above or below the melting tempera-
Section (III.7) is devoted to the calculation of the modifications

induced by a solvated electron in the fundamental absorption of the molten

salt .

Finally , some concluding remarks are given in section (III.8). N ~
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Figure I1I.1-1 : Phase diagrams for (a) K - K halide and (b) Cs - Cs halide - systens .
Data from [74] .
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ture of the pure salt. In the first case a miscibility gap appears up to

the consolute temperature; examples being the Li, Na and K halide systems

[ 75~8d]: (Fig.(IITI.1~1(a))}). In the second case no miscibility gap is

‘fpresent; as in Cs-Cs halide systems (Fig.(III.1-1(b))). The Rb-Rb halide

sysﬁems show an intermediate behavior [74]
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Figure ITI.1-2 :&YExcess Gibbs energies of liquid Cs-CsCl mixtures at 918 °K. (b) Excess

entropies of liquid Cs~CsCl mixtures at 918 %K. From 96

. (In(a): (e

) from [&d}

and (o) fron [95] ). (c) Enthalpies of Cs-CsCl mixtives at 925 %K. [97] .

Excess thermodynamic quantities have been determined recently

in Cs-Cs halide systems

[96,97] » €.2., the enthalpies, excess Gibbs
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energics and excess entropies of mixing (Fig.(II1.1-2)). Measurements
have also been made of metal partial vapor pressure [QAJ .

A remarkable point here is that the excess thefmodynamic
quantities of these systems exhibit rather large positive and unsymmetrical
values. The only exception is the metal excess entropy near the metal-rich
region of concentration ( %;u 0.8 in Cs-CsCl, Fig.(I1I.1-2(b))) which
takes negative values, indicating a kind of local ordering of the cesium
ions around the chlorine ions. The total excess éntropy of mixiné is,

however, positive for the whole range of concentration.

A detailed analysis of the phase diagrams, for the salt-rich .
region of concentration [104} , shows that the orders of magnitude of
the partial enthalpies and entropies are consistent with an F-center-like
electron model [104] . The calculations of the excess chemical potential
based on this model show, in fact, that the valence electrons from the
alkali metal atoms in the solution may be considered to be a negativé ion
species much like the halide ions themselves. The formation of such a
solution may be considered in two steps first, the conversion ofrthe
metal to a hipothetical ionic lattice of positive ions and F-centers, and
second, the random mixing with the metal halide. The energy change in
the second step would be expected to be small, consequently the. observed
energy of mixing can be related to the excess energy of the hypothetical
alkali electronide. These,conciusions are consistent with the small excess
enthalpies of mixing of molten alkali halides having a common cation and
different anions, observed in calorimetric studies ,[1051 . On the basis
of the F-center model for the valence electron, in the infinite dilution
limit of metal concentration, a value for the excess enthalpy AH;,‘ 3% KJ’N\oe.l
is estimated for Cs in CsCl [104] ; this is in remarkably close agreement

[o7] .

E L e
with the experimental value AH@:?}&AZ RJ ol i



104

(b) Electrical properties of metal-molten salt solutions.

The metal-molten salt solutions above their critic4a1 points
exhibit a continuous variation in the electrical conductivity with
concentration. A nonmetal- to-metal transition is another interesting
feature of these systems. Measurements of the electrical conductance
of alkali metal-molten salt solutions [81] have been performed as a
function of temperature and composition. The magnitude of the specific
c'onductance rapidly exceeds that of fhe pure molten salts implying that
some kind of electronic motion is superimposed on ionic conduction [78,81] .

"An electronic equivalent conductance, A, m  can be defined from the
values of the equivalent conductances of the solution, J\_”e , and the

pure salt, J\.m“ , as follows [81]
A= “’A‘soen‘ (1- NM)—A-S“,‘] , (II1.1-1)

where NN is the equivalent fraction of metal. ‘A'ﬂ represents the
change of the conductance caused by addition of one equivalent of metal
to an amount of salt contained in the solution of given composition which
is between two electrode plates one centimeter apart. Values of 'A'M
according to Eq.(III.1-1) are plotted in Fig.(III1.1-3) . Two different
behaviors are displayed by these systems, with a initial drop in 'A‘M
for Nm 4 systems followed, however, by a subsequent rise of ..A." with

increasing metal concentration. A relevant point here is that 'A‘M

) ' 105
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Figure ITI.1-3 : Apparent equivalent conductance of alkali metal dissolved in alkali halides.
From ref. [74) .

takes finite values at high dilution of metal in both systems, indicating
that electrons are in a state in which they can contribute to the current .
in the solution. The fact that 'LH increases with temperature suggests
thermally activated hopping process for the observed electronic conductivity
near the salt-rich region of concentration. The values of ‘A'M are found

to vary continuously within the whole range of concentration.
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The observed electrical conductivity in solutions of alkali
metal in its molten salt (Fig.(III.1-3)) has been examined against a
free-electron model for the valence electrons of the added metal [93]
at low metal concentration. The mean free paths that had to be assumed .
to fit the experimental data [78,81] are, however, considerably less
than the de Broglie wavelength. Moreover, the temperature dependence
of the conductivity has the wrong sign [93] .

An alternative approach takes the less implausible point of
view that electrons are localized on cations [10;} , and that electronic
conduction proceeds by a thermally activated hopping process in a random
walk'of the electron between atom and metal ions. The starting point

is the Einstein-Nerst equation (see Eq.(I.3-1)) and Eq.(I.3-2)),

w0
fhe 18 Oy £ _ | RV e ) PRY, (r11.1-2)
b HUgT 6K T
where Z&qg is the free-energy barrier associated with a composition

fluctuation that leads to electron transfer, and P(R) is a probability

density function for finding a cation at an internuclear distance R

from the metal atom. This probability function is then expressed in

terms of.the metal-cation pair correlation function [10i1 . By assuming

Agr,:, HKg Tb ( where Tb is the boiling point of the pure salt ),
“for PR) a delta function centred at R=5>8 and VR~ 5 KO‘S sec’t,

it is found that tl.e_ ~ 008 U\M"/(Vo% sec) ; which is in order-of-magni-
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tude agreement with the limiting mobilities measured [7&] at infinite
dilution of metal in molten salt : f‘.e % 0.05,0.06 and @A Cn-;"/(vdésed)
for K-KCl, K-KBr and Na-NaCl, respectively. It is important to note

that this hopping theory assumes that the ground state of the system is

an atom in local equilibrium with anions and cations, but other possible
electron traps are conceivable, such as the F-center (see section (I.3-b))
to which the essential concept of thermally activated electron transfer
would apply .

A rather different model for the electronic states in solutions
of metal in molten salt has been proposed which puts emphasis on the disorder
of the potentials in the system [1021 . The observed electronic conducti-
vity in metal-molten salt mixtures (see Fig.(III1-3)) is then viewed as
consistent with Anderson localization [103] . A consequence of this model
is that fluctuations in potential associated with irregularity in the
positions of the ion cores lead to localization. The essential feature
of this multisite state model is based on the concept that the density
of electronic states changes with increasing disorder in the system, as
illustrated in Fig.(III.1-4). The energy EC (or mobility edge) divides
the regious of localized and extended states and its value depends on the
amount of disorder. The electronic conductivity, { , is then characterized
by a mobility edge in these systems; this fact being consistent with the
experimental results (Fig.(III.1-3)). This model is characterized by the
following general hypotheses : (1) in the melt there is a low energy tail
of localized states in the density of states ; (2) in the low metal concen-

tration region only patr of the low energy region is occupied.
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Figre III.1-4 : Chenge in the density of states with increasing disorder (schematic).

There is actually no obvious contradiction between the F-center
model for the very dilute region and the multisite model for the more
concentration region. Indeed, the F-center bound states may well be the
lowest electronic states in the Anderson tail below the conduction band
of the solution, and these, of course, are the only occupied states at

high metal dilution [122] .

(c) Opticai properties of metal-molten salt solutions in the

salt-rich region of concentration.

At very low metal concentration broad optical absorption bands
have been found in spectrophotometric studies of metal-molten salt solutions

[82—90] . The results of measurements on the Na-NaCl sysfem are shown in
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Fig.(III.1-5) .
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Figure IIT.1-5 : Absorption spectra in Na systems. (A) Na vapor ; (B) Na vepor + F—center in
NaCl at 550 °C ; (C) spectrun B corrected for Ne-vapor absorption ; (D) dilute solution of
Na metal in liquid NeCl at 809 °C . Data from [85] .

The broad band (D) centred at Ipoo o' (Lol o) corresponds to the
dilute solution of Na metal in liquid NaCl at 809 °C . 1In Fig.(III.1-5)
are also plotted for comparison the spectra corresponding to Na vapor and
F-center in solid NaCl systems.

The F-band in alkali halide crystals shows a redshift with
temperature. The temperature dependence of the F-band is illustrated
in Fig.(III.1-6) which summarizes data on K-KBr system as an example .
Extrapolation of the shift of the F-center band maximum with temperature
leads to the value 418 ov at melting, wich is about 0.5 e

larger than the measured value 27T e in the liquid. This result
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Figure III.1-6 : Temperature variation of F-—center absorption in KBr. The curve at 750°C
is for a solution of K in KBr. Data from ref. [82] .

is , however, consistent with the structural changes that the crystal
undergoes on melting as discussed in section (I.4) . Correlation of
absorption band widths and total heat content of crystalline alkali halide
[106] containing F-centers and alkali metal-alkali halide melts have
been discussed in the literature [100] .

Measurements have been made of the electron spin resonance
[91] and magnetic susceptibility [91—93} of metal-molten salt solutions.
Magnetic susceptibility studies in K-KBr [92] , Na-NaCl [93] and Cs-CsCl
[108] , indicate that the molar electron susceptibility of these systems
is paramagnetic and decreasing rapidly with inéreasing metal concentration.
Estimations of the electron paramagnetic susceptibility for a‘localized
state in the high dilution limit [107] are consistent with the experimental

results _[93]
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IIi.Z ~Recent data on optical absorption and magnetic properties.

of dilute metal-molten salt solutions

(a) Optical absorption data.

Accurate spectroscopic studies have have been made recently
on solutions of electrons in molten CsCl prepared 'by‘electrolysis or )
by direct addition of metal [109] . A typical spectrum before baseline

correction is shown in Fig.(III.2-1) . The observed structure in the
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Figare III.2-1 : Absorption spectrum of electron-CsCl melt without baseline correction.
The dashed line corresponds to the absorption spectrum of pure CsCl melt (baseline) .
Data from ref. [100) .
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spectrum is best’ obtained with the steady state electrolysis method of
electron injection which allows good resolution in the ultraviolet. On
the contrary, the UV band (..4,3.5 QV\ has not been observed in
solutions prepared by direct metal addition, because the tr‘ansmittancév
is greatly reduced in the visible and UV due to the diffusion of excess
ceéium into the walls of the experimental quartz cell. Boths methods,
however,;f\give the same r"esulfc regarding the band in the infrared [10@ .
’fhe steep rise at shorter wavelength is seen to be the long wavelength
tail of the fundamental absorption band (see section (I.4-b)) of pure
molten CsCl. The long wavelength edge of this band shifts to lower -
energies with increasing temperature as is observed in the solid state,
but neither the position of the band maximum nor the band shap;e are
reported in this experiment [109] . More recent optical studies in
Na-NaBr [liO] show that the fundamental absorption shift on melting
is consistent with tHe structural changes of the system (see section

(I.4-b)).

(a.l1) Mollwo-Ivey law in metal-molten salt solutions.

The energies of the band maxima ( IR bands ) observed in
solutions of alkali metal in their molten halides plotted versus (R‘:\- R_‘-l
where Rt are the ionic crystal radii, in Fig.(III1.2-2), show
remarkably accord with a Mollwo-Ivey law for the F-center band maximum
in the crystal case (cf. Eq.(I.3-4)) . This simple correlation appears
to provide strong support for the view that the electron has an F-center-

like local environment in the molten salt . An approximate relation
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Figre III.2-2 : Absorption bend meximm (Infrared bands) versus (Ry+R.) for
alkali-alkali halide melts . (o) ref. [84] ; (o) ref. [82] ; @) rer. [83] : and
@) ref. [109] . Ry are crystal ionic redii.

can be written for the energies of the band maxima, Whay, , in terms of

-2
(R, + R as follows,

-2
Wy () . (R + RY (R). (111.2-1)
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In the crystal case the proportionality factor turns out to be ~ 2. evhxz

(see Section (I.3-(b))).

(a.2) The K-band.

Thevnear infrared absorption band in CsCl is asymmetric, with
a tail on its high energy side . On the low energy side, this band is
well fi#ted by a gaussian and a progressive deviation from this shape

becomes apparent for energies above about 135 or (Fié.(III.z—B)) .
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Figure III.2-3 : Resolution of the normalized infrered spectrum at 69546 °C  at
low concentration into two bands . Data from [108] .
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Similar deviations are found for the F-center in alkali halide crystals.
In: the solid case, this deviation has been attributed to higher optical
transitions {153 np = B4, ) of the F-center (see Fig.(I.3-4)).
The same kind of analysis has been applied to metal-ammonia spectra [11ﬂ.
A suggestive conclusion is attempted from Fig.(III.2-3) , in

which the full measured band is resolved into two gaussian curves centred
at  lLOex and 1.55 e respectively . The band centred at 4.%5¢eg
(Fig.(III.2-3)) may then be interpreted as the corresponding XK band
for the Cs-CsCl melt [109] . The optical data for Cs-CsCl melt

are summarized in Table (III.2-1) .

Temperature F-like band K-like band Area ratio
[+
(°¢) Omlor)  awn) | e aweny | (K/F)
6955 6 1.03£0.13 0.77%.01 15582 o.63%t.2 0.121
78118 1.00%.015 0.79% .01 1.58%.02  0.70%.02 0.162
831410 ’

Table III.2-1 : Optical data for the F-like band and K-like band in dilute electron-CsCl
solutions . From ref. [109] .

An estimation of the extinction coefficient of the solvated
electron through a detailed analysis of Ba-doped samples of Cs-Cl was
performed [}OQ} on the assumption that each barium atom furnished two
electrons to the solution . From Beer's law, a lower limit of 0.338

for the oscillator strength was obtained .
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(a.3) Temperature dependence and band width.

In Fig.(III.2-4(a)) are plotted the values of Wy, versus
temperature. It is apparent that W, decreases with increasing tempe-
rature (redshift) and with increasing size of the cations (compare

line 1,4 and 6 or 2,5 and 7 ) and less pronouncedly with increasing
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Figmwe III.2-4 : (a) Terrperaﬁ:r\e dependence of the position of the F-band in excess
alkali metal-molten salt solutions; (b) Relative band width at half maximm of the
F-bands in the crystal (4 ) and in the liquid (©) . Data from ref. [8’7] .

size of the anions (compare line 1,2 and 3 or 4 and 5 or 6 and 7 of

Fig.(III.2-4(a))). In Fig.(III.2-4(b)) are displayed the relative half
width at half maximum of the F-bands, Aw /u)-m , in molten and

solid alkali—alkali halide systems. The ratio Au)/u)m shows a

remarkable approximate constancy both in the crystal and in the liquid

case, with a value three to four times larger in the latter; this being

consistent with the larger fluctuations of the ionic positions in the

liquid.
(a.4) Concentration dependence of the absorption spectra.

The NM-M transition.

The variation of the electron-CsCl spectra with electron
concentration shows a number of particular features [lOQJ . As shown

in Fig.(III.2-5), the IR band shape remains unchanged at low concentration
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Figure IIT.2-5 : Absorption spectra of electron-CsCl solutions prepared by electrolysis
at 695 °C with IR band normalized to unity, at different concentration. Data from [1093 .
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(peak absorbances below L1.5 ), at 695 °C . The same is found at 781°C
"and 831 °C when the peak absorbange does not exceed 0.60 . At low
concentration the F-band maximum shows a red§hift with temperature and

a blueshift -at higher concentrations (aﬂsorbances L y ).

A recent optical study of the dependence of the absorption
spectra on concentration gives an indication of the nonmetal-metal transition
in Kx—KCI’_X solutions [ilq] . A band is observed at &.QSQN- for
X20.02 , which is interpreted as an indication for the formatién of
small metal clusters. A strong enhancement of the refractive index is
observed up to X=z06.08 . The dielectric susceptibility calculated from
the latter follows a critical scaling law with a critical exponent which
is comparable to that in highly doped semiconductors near the NM-M
transition [112,11%] . A possible analogy between the latter systems
and the M-MX solutions at low metal concentration, proposed in a different

context [}14] , is consistent with the above analysis.

(a.5) The UV band .

As shown in Fig.(ITI.2-5) the intensity of the UV band.
varies with electron concentration, and is found that its intensity grbws
with that of the F-band. This fact rules out the possibility that it is
due to impurities other than solvated electrons. It appears on the low
energy side of the CsCl fundamental absorption band, with its maximum
centred at 35%% e . This band is ascribed to the perturbation of
the fundamental band of the halide ion by the proximity of an F-center.

This attribution of the near UV band is made by analogy with a similar
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band that is present in the spectrum of the alkali halidc crystals that
contain F-centers, and is termed the (b =band  (seo section (1.3-¢)).

In crystalline alkali halides the ratio of the intensity @f the  f--band
to the F-center band is very close to unily. For the solvated electron
in CsCt melt the intensitly ratio is also near to unity at low electron
concentration, but veries with rising concentratiqh indicating a possible
dependence with the changiné structure of .the electron cénter &;th

cdnrpntration [}O?] .

(b) Magnetic properties of metal-molten salt solutions.

(b.1) Nuclear magnetic resonance experiments.

Nuclear magnetic resonance - ( NMR ) ~studies have been‘performea
in Cs-Csl [}lé} and Cs-CsCl [Jlé} solulions . These experiments
exploit the high sensitivity of NMR tco facis! magnetic fields produced
at the nuclei by the spin paramagnetisnm of excess electrons in the metal-
molten salt solutions. If the excess eleclrors are not spin-paired, the
hyperfine interaction [1rﬂ leads to a timc-averaged local field which
is proportional to the paramagnetic spin susceptibility. Dynamic effects,
due to the relative motions of electrons and nuclei, lead to a time-dependent
hyperfine interaction. The nuclear spin-lattice relaxation time 1}
provides an estimate for the electron-nuclei correlation time A

A strong peak in the relaxation rate associated with Csub in
Cs-CsCl and Cs-CsI solutions is found near 5%  excess Cs [él@] .

197 . )
The smaller peak observed for I indicates that the paramagnetism is
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. : X . =12
most closely associated with the Cs+ ions. The peak in the Cs rate is localized for times on the order of the ionic diffusion times ( ~ 107 sec, ),

striking evidence for electronic localization on or near the Cs+ ions. but the addition of excess metal drastically increases the jump rate and
Values of & near the salt-rich region of concentration leads to rapid delocalization.
( Fig.(III.2-6) ) can be estimated within an F-center model for the Further evidence for the F-center model of localized electronic

states in metal-molten salt solutions at low metal concentration, is obtained

2
o from the values of the average hyperfine coupling or, equivalently, <N’(Rn“ }
k3
The experimental results for cs'®? [116:] , normalized to the value N’((‘Ql
whl g atom for the 69 state of atomic Cs [118] , are the following :
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Figare II1.2-6 : Experimental values of the hyperfine field correlation times (©) for
in liquid Cs-CsT solutions at 640 °C. Data from [115] .

localized electronic states [115] . . On the other hand, by assuming a
diffusive transport process for the solvated electrons ( see section
(IIT.1-b) ), with jump time B and a root mean square jump distance
<Qz'7|”':‘. 19, ﬁ [116] , the observed electronic mobility in Cs-CsCl
solutions [116] can be reproduced accurately for low metal concentration.

This result shows that the hyperfine correlation time measured in the expe-

riments [115,116] can indeed be interpreted as a jump time for the localized

electrons, at low metal concentration. In this regime the electrons are

The average coupling per localized electron is thus much smaller than the
atomic value, indicating that the excess metal does not enter the salt as
a neutral atom. The above results are not consistent, for instance, with
a multi-site localized states due to structural disorder {_102] , in which
one should expect (N’(@?\)'.\__" \l”((’:o)\la,tom [116] , in contradiction
to experiment. The results reported in Eq.(III.2-2) are found [_116_] to

correlate with the values of \‘IQF determined from ENDOR experiments

{119] in the alkali halide crystals containing F-centers.
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(b.2) Magnetic susceptibility and electron spin resonance studies.

Electron spin resonance ( ESR ) experiments have been performed
in a number of metal-molten salt solutions [120,123:] . The molar magnetic
susceptibility, X'm('M) , of dissolved alkali metal in an alkali halide

melt, is plotted in Fig.(III.2-7(a)) versus metal-concentration in the
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Figwe IIT.2-7 : (a) Molar megnetic susceptibility, )(,m(M) , of dissolved alkali
metal in some M-MX solutions vs. mole fraction of alkali metal, Xp . From ref. [120] .
(b) Ratio of rumber density of F-centers and nurber density of dissolved metal vs. metal
mole fraction in K, - KCl_  at 80 °C . From ref. [110] .
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salt-rich region of concentration. The value for Xm(M) according to the F-center
model for a solvated electron in a molten salt [122] , agrees remarkably
well with the experimental data.

The initial drop in XM(M) with increasing metal concentration
is-an indication that spin-paired localized states play an important role.
This fact is consistent with the observed decrease in the number of F-centers
with concentration ( Fig.(III.2-7(b)) ), as determined from the absorption
constants [_11(?] and from the Smakula equation ( cf. Eq.(I.3-5) ).

Finally the magnitude of the g-factor shift, A% ,observed
in metal-molten salt solutions at low metal concentration [12(8 is comparable
with that found for the F-center shift in the alkali halide crystals [123] .
Estimates of A% have been performed for the crystal case considering
the ground state wave function of the F-center to be an admixture of &

and § functions [124] ( see also [125] ).
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I11.3 Theory of the ground state of the solvated electron.

(a) The ground state potential.

The model for the solvated electron in a molten alkali halide
has been proposed previously ( model I ) by taking the structure of the
ionic liquid into account [122] . It is considered here, as in model I,

a hafd bubble of diameter d in a liquid of charged hard spheres of
diameters T-= _%(G'_‘_.;. q’_) s G;_ and (_ being ionic diameters
determined from the compressibility of the pure molten salt [122_-] .

Let P“‘_3 ) be the probability of finding the electron within a distance

T from the centre of the bubble, i.e.

c
2

P ") = ’(a_n_j ds & I “ks(-é)l ) (I11.3-1)

5

0

where ‘Pb(S) is the ground-state wave function. A charge -eﬁs(R)
is then attributed to the bubble, with Rz |i'( T+ T) being the
distance of closest approach of the ions to the centre of the bubble.
A distribution of values of K , around a value Ro to be determined
by miriimizing the free energy ( see paragraph (b) of this section ), is
envisaged to account for liquid-state spherosymmetric fluctuations with
probability determined by the corresponding increase of free energy.

The potential V(r) felt by the electron, for given R

and P‘S(g) , according to model I , was evaluated by adopting a
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polarizable-point—-ion approximation for the electron-ion interactions and
the mean spherical approximation (MSA ) [50] ( see section (I.5) ) for
the structure of a charged-hard-spheres liquid . The potential is estimated
by a semicontinuum Hartree-Fock method, in analogy with previous work on

the F-center in the crystal [131] . The point-ion potential, VP‘- (r),

is flat within the sphere of radius R , Vri(\’) = V{n }for 4R ,
and is made of two terms : VM = VCOUC + VI’W , where VCDUQ

is the Coulomb contribution and Vfo?. the core-polarization term . The
potential for T)»R , Voyt , is taken in the form of a screened Coulomb
potential . Fig.(III.3-1) shows a typical plot of \/?'\. (r) , taken from

E223 for the KCl1 case .

Vir)ev)

1
-

-4

1 2 ] 5 6§ 1 8 9 10 riA)

Figare III.3-1 : Potential well for a solvated elevtron in KCl according to the
pointion model . R=z=3.,9 R and BR1=l . Data from [_122] .
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The Coulomb contribution to the potential Vu, can be written

as follows

@
2 N
Neape =-¢ P‘,}‘UJ de ure g (3+ér)~3-éﬂ N (II1.3-2)
R N

Where %*ér) and 3—6“3 are the pair distribution functions between

the center of the bubble with unit charge and the two ionic species, and

y is the number density of the pure molten salt . The core-polarization

term, VPOQ

expression,

o
V = ('1 - .L ) el ...(__l.:j‘.sﬂl___.cir (ITI.3-3)
poe & R r2

where Eea is the high-frequency dielectric constant of the solvent .
The MSA [50] yields an analytic expression for the quantity
given in Eq.(III.3-2) , which in the present case ( infinite dilution

limit ) reads ( Appendix L )

’ 2e [ ,
\Icoue == WES(PJ:— o?‘S(R) , (I11.3-4)

, vanishes if RY= ' and is taken to have the Hartree-Fock
Bgt=1
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where F is a parameter of the solvent determined by Eq.(III.3-14)

below . The expression for \,FOE in Eq.(J11.3-3) can be rewritten

in the following way

L
Voo (1= ) € [ (-0 - Ry, ], conen
where
z
2 (9]

PR = 4w r w‘ﬁ( i dr . (1I1.3-6)
Mg -

R
The potential for F7R , Nout , is written in terms of

the pair correlation functions 5*6 as

2 - q (s} 4
Vo = g0 |42 [0 2] i

« (II1.3-7)

The MSA gives again an analytic expression for Voub LABJ which can

be shown ( Appendix L ) to read

for (M) T ¢ (R) {M T, with MY ,
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where ¢(n T)  is an oscillating function given by Eq.(L.9) of Appendix L.
In summary, the potential \Qi(r) , according to model I, can

be written as follows :

©

Vop@ (1 - L)@ J .._4:_%_@__& <Ry (rraom
V ) = R
pL
_& (RJ -a (¥ 1 roR). (IT1.3-9b)
£IRA] & oo -9 If- 2| (

Selfconsistency is achiéved through the dependence of V() on gs(r),
this latter function being itself to be determined by solving the Schriedinger
equation with given \hr) . A factor as(q) has been made explicit
in the potential Vbi(r) in Eq.(III.3-9b) , showing that the calculation
will selfconsistently allow the disappearance of the long-range Coulomb
attraction of the electron to the bubble as the electron becomes delocalized.
The results of model I [12%] show that this approach over-
estimates somewhat the peak frequency of the {5 '??.P absorption band
in KCl and underestimates greatly the band width, the latter arising in
the theory from the fluctuations in the cavity radius . This suggests an
overestimate of the depth of the potential well in Eq.(III.3-9a) and of the
local rigidity of the system [12@] . Likely causes for this are the
neglect of non-Coulombic interactions between the electron and the ionic
cores and the schematization of the electronic bubble through a hard-sphere
boundary condition on ionic fluctuations, these deficiencies concerning
'mainly the first-neighbor shell of alkali ions.

In order to remedy these defects in a still viable self-consistent
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calculation, a constant repulsive potential inside the cavity is empirically

added to Egq.(III.3-9a) . One thus write V(r) {}2?] as

(I11.3-10)

V(\") = \’p( (.\") + V\'e‘; ,Q(R‘r) )

where 8(9\‘\") is the Heaviside step function and Vre‘p is a
parameter to be determined from experimental data on the solvated electron.
One can see from the foregoing discussion a strong dependence of this
parameter on the positive ion .

As will be discussed more fully in section (III.5) below, it
is estimated from the optical absorption data a value Vft? N 07 er
for KCl , rising to V(ep ~ 4l er for CsCl through a dependence on
the alkali ion roughly of the type erv £, Cﬁi . At the present time
there is not an independent test of these magnitudes, although they do

not seem unreasonable in the light of all the following calculations .

(b) The free energy.
An analytic expression for the Helmholtz free energy of an

n-~component mixture of charged hard spheres is yielded by the MSA .

It consists of a hard-sphere contribution and a Coulomb contribution:

?(V,T) - -Fhs -\.ng . (III1.3-11)
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The expression for Fhe is obtained by integrating the virial pressure

for a neutral-hard-sphere fluid,

388 5 2%, A
E,,:,'F,-_d ¥ %VKQT[._Z_E " %_Ei_+ _stf Qﬁa-go?_ln A], (I11.3-12)
3 3

-
with %“= % év g.,g 0; and A:i-—'&b . and for .FCOMQ by

integrafing the excess internal energy 4[501 y

,= Vi T._rﬁ _ \IE?’( FZEL.;E_(L‘P‘;). (II1.3-13)
S :

Feove < (+Fa 2

Here the charges, partial densities and diameters of the component svecies
are Z,le} R S’a and @y  respectively; ' is to be determined by
solving the algebraic equation
2. 2
2 ' Z, -4 P E/n V
[f we”- Z P 2 T20 T e ,  (11T.3-14)
KeT < 1+ Moy

H

and the quantities ..n.. and ’P\q have simple expression in terms of the
quantities defined above [50] ,in particular ’Ph-;O for equi-sized
ions . In the»pr‘esent case, components 4§ and 2 of the fluid represent

the alkali and halogen ions, and component 2% represents electronic bubbles
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with diameter 0'5: §  and valence ZZ’) = - PO(,R) .
The relevant (" -dependent term in the free energy, to first
order in ?3 ,is the chemical potential }LE’. of the electronic bubble

which can be written [_1223 as
ke Cont p0¢
rle'(‘&) = t’ve + (‘Le 4+ r&e 4 E‘o (R) . (III.3-15)

Core polarization effects are accounted for through the term }ieme and the
internal degrees of freedom of the electronic b\ljbble through EQ(.R) .

The latter is the energy of the electronic ground state relative to the bottom
of the potential well binding the electron, determined by the solution of

the solution of the Schrddinger equation as described in the preceding
paragraph . The expressions for }.l:? and }J:M’. are obtained by
differentation of Eq.(III.3-12) and Eq.(III.3-13) in the limit ?3-—)0 ;

one thus obtains for equi-sized ions of diameter 6: )

ko T
fre” = pig - KoT W 4 KQT[“Y%]T
# KT [ursT 3 a2 (F11.3-16)
& [
2, o
+ KJ[% €(1- %)srfi(g) ¢t qyb_%mﬂm

and

(I11.3-17)
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where the quantities T‘ and A now refer to the pure salvent . In
: w2
particular, P= o (Yi+20'=1)  witn Xtz W § T and
A=4-Tg ke .
2 Pog
The core polarization term Pe can be estimated by considering

the polarization work involved in replacing a halogen ion by the electronic

bubble in an adiabatic process [_122] . A continuous dielectric calculation
yields
oo
vol i 1J [ Ly dr
- l4-AL\e A= 2R Petr) £ (111.3-18)
fk (3 k &n\ Q 2 "% " )

which represents the polarization work involved in bringing P‘s (R)
adiabatically from zero to its actual value in the polarization potential
of the medium .

The equilibrium value of R , denoted by Ro , will be

determined by minimizing }LQ(R) in Eq.(III.3-15) .
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I11I.4 Equilibrium ground states and energy levels.

The radial Schrdedinger equation with a potential V(,r') given
by EqQ.(III.3-10) was solved selfconsistently for several values‘ of R
and for four molten alkali halides ( NaCl, KCl, KBr and CsCl ) . Table
(II1.4~1) presents the imput parameters of the calculation for the four
molten salts and the values of Ro which correspond to the minimum of the

free energy ( cf. Eq.(III.3-15) ) in these systems .

N,C€ Kee Kb, G

T [°K] 1081 1049 1013 o73
§ (08 | 1.0 1.23 1.07 0.98
&0 2.34 2.19 2.34 2.62
g, (®) 2.04 2.79 2.80 3.32
a. (R) 3.04 3.05 3.31 3.10
T (R") 1.05 0.94 0.89 0.85
Vreplew) | 0.3 0.70 0.70 1.10
Ro (R) 3.10 3.18 3.2 3.23
o) |le) -4.60 -3.98 -4.02 -3.64

0

Table IIT.4-1 : Input parameters and equilibrium values of cavity radius and well depth.
Values of § from [132) ; € from [68] ; @, q. from [122] .
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The last row of Table(III.4-1) reports the equilibrium values of the depth
of the potential well V(0= Vp(® +Vep . The full result of the calculations
for all the chosen values of R and for the four molten salts are reported
ip Appendix M . It contains the corresponding values of )J.Q(R) ( cf.
Eq.(III.3-15) ) , the selfconsistent quantities entering the potential \/“)

( see Eq.(III.3-9) ) and the energy levels for the ground state and the
first two excited states ( 2p and 3p states )

In Fig.(II1.4-1) are plotted the radial probability distributions

R s
e
(&Y
Viry [ew]

2. 1

“H. 1

Figare IIT.4-1 : Radial probability distributions for the ground state \K 4 and the \{/1 ¢
and  Yyp excited states in KCL : V(o) = -3.98 e and  Ry=31p R
The corresponding energy levels ( ev ) are also indicated .

for the ground state ( 1s ) and for the 2p and 3p excited states obtained

for KCl1 . All these states were calculated in the ground state selfconsis-
tent potential well ( cf. Eq.(III.3-10) )
Table (II11.4-2) presents results for the ground state in the

equilibrium potential well and for the 2p and 3p excited states in the

same potential well . These properties are the probabilities
N, e Kee KB GCe

Pis (Ro) 0.79 0.75 0.78 0.74 -
Pap (Ro) 0.47 0.39 0.45 0.36
Pap (%) 0.024 0.03 0.025 0.027
B (Ro) (&4) 2.65 2.24 -2.33 -1.96
Eaplld (&) 0.5 -0.79 -0.87 -0.59
EaplRd) (@) -0.25 -0.24 -0.24 -0.18
(47, ‘j" @Y | 2.8 2.78 2.78 2.85
(e R) | 3.8 4.3 413 4.75
(U‘),e)‘b R) | 14.4 15.1 15.0 17.1
| Yo (8 | 22 2.2 1.9 2.1
| YO (5°82)] 8.0 4.4 4.3 5.3

Table III.4-2 : Properties of electronic states in equilibrium well . From ref. [126] .
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of finding the electron within the cavity radius in the various states, the
energy levels E“Q(Ko) and the mean square distances (rl) of the electron
from the center of the cavity . For the ground state are also given the

values of qusuﬂlz at the peak of the first neighbor ( cation ) and

of the second neighbor ( anion ) distributions

It is apparent from Table (III.4-2) that the 1s state is rather
strongly localized inside the well; whereas the 2p state is appreciably
spread out and the 3p state is almost completely delocalized ( see Fig.
(III.4-1) ) . In this sense, the inclusion of a repulsive term of the pre-
sently assumed magnitude is not changing the qualitative conclusions obtained
with the model I [122] , but is only affecting the quantitative details .

On the other hand, it is found in the present calculations that if “5(2)

were to decrease to a value of order 0.6 , the bound state would tend to
dissolve in the course of the subsequent steps to selfconsistency . To be
more precise, by starting with any input value for Rslﬁ) ( RSWJ~\_,Say)

the new obtained values of Rs(a) are always smaller than the previous

one and finally reach the value Eszo This is found to happen, for
values of VWP somewhat larger than 1 ev , under relatively large fluc-
tuations of R away from the equilibrium value Ro . The conclusion here
is that large spherosymmetric fluctuations may lead to delocalization of the
solvated electron . A more likely cause for finite lifetime of the bound
state will be discussed in section (III.6) .

The calculated properties of the ground state in Table (III.4-2)
can be brought into contact with experimental data . First of all, one can
evaluate from the value of (Vihs the diamagnetic contribution to the
excess maghetic susceptibility 76 of dilute metal-molten salt solutions .
if one assumes that the paramagnetic contribution to )C is given by the

classical Curie expression, one thus has ( see for instance [6?] ) that
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Qg & 2 (I11.4-1)

where % is the electronic %—-factor ( 9 =2.0023 ), h the Bohr
magnetism and No the Avogadro's number . It turns out that the dia-
magnetic contribution to )L is only of the order of 10-20 % . The total
excess susceptibility given by Eq.(III.4-1) is estimated to be X ™ 250 laé

emu/mol at 1100 °C for all the systems considered here as is apparent

from Table (IIT.4-3) . This value is consistent with the available
) No Kee Kbe G
Curie term 273. 273. 273. 273.
Diamagnetic -19. -22. -22. ~23.
X(T) 254. 251. 251. 250.

Table I1I1.4-3 : Excess magnetic susceptibility of dilute metal-molten salt .
solutions according to Eq.(II1.4-1) . % wm [107® emu/ moe].

experimental evidence [120,12%] ( see Fig.(III.2-7) ) .
Contact can also be made with NMR experiments [115,116] on
molten CsCl , which through measurements of hyperfine shifts have yielded

values for the electron density on a cesium nucleus and on a chlorine nucleus

in this system at small concentration of added metal ( see section (III.2-b.1)).

One needs for this purpose to know the detailed nature of the true wave

function of the solvated electron inside the ionic cores . In work on the
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crystal it was shown [131] that this function can be constructed by ortho-
gonalizing the smooth wave function W‘b(,‘:) to the core orbitals . This
involves, in practice, the multiplication of (\hs({-)\l and t\{)lst‘)\l
by factors determined by the atomic number of the species [133] . These
factors are estimated in Appendix N using new theoretical calculations
regarding the crystal F-center and are compared with those of ref. [133].
Assuming the same factors for the solvated electron in the liquid, it is
found for the contact electron densities values of order 3, Rkb for the
cesium nucleus and  O.04 g-> for the chlorine nucleus in CSCl . These
values are to be compared with those reported in Eq.(III.2-2) [116] .
A careful analysis of the experimental data, performed in Appendix N ,
shows that the above theoretical eétimations of \W‘s(.-\') P' and [‘hg(ﬁ){z
are of the same magnitude as those extracted from the NMR evidence [116].
Finally, with regard to the results for excited states in Table
(II11.4-2) , their evaluation in the undeformed potential appropriate to the
1s state is clearly aimed at a tratment of optical transitions as Franck-
Condon process . This is the subject of the next section . The effect of
allowing for a relaxation of core polarization in the 2p state was estimated
using model I [122_] to be small, of order 0.1 ev in E’“P (Rg) . This
effect is probably larger in the 3p state but hard to estimate with any

reliability .
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111.5 Optical absorption by the solvated electron.

The energy of a Franck-Condon transition between the 1s and the

2p state, for a given value of the cavity radius 128 , is given by
= Eyp(RY~Ep (R (111.5-1)
Wy ppp (RY= Bap(RY~ B (R
with a similar expression for the 1ls-—} 3p transition . These energies

for R=Ro can be obtained from Table (III.4-2) and for other values
of R from results of Appendix M .

It is then assumed that the liquid-state fluctuations determine
a distribution of values for R around its equilibrium value RO , with

probability P(R) given by the free energy increase [122]

1I1.5-2)
Pr) = 5(; Expd - [ e~ fl.e(‘zo)]/ KBTB ) (

where ?Q is a normalization factor and ]Ae(@) is given by Eq.(III.3«15).
These fluctuations broaden the transition into a band, with finite width and
shifted peak frequency . The transition probability ( by unit volume V and
unit length I ) at energy & by electrons in bubbles with diameter

between ® and R+dR is L134,122]
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LU * ~w) 4R (III.5-3)
4V, (0= AL 8 PR Sl -0

() . . .
where ‘55_,,7_?\ is the electric dipole matrix element defined as

fls—azp = ég \\’lsﬁ,\") r \‘JIPU) . (II1.5-4)

Inversion of Eq.(III.5-1) %o obtain a function R{w) and integration

of Eq.(TII.5-3) over R together yield the absorption intensity 134

LIT!?.Q}' w Jru)
IWw=—— — 15 ?(R(W)\) } l__
> e v Z( - (I11.5-5)
4t & o
[ (w
e L ()
Using the definition of the oséillator strength -{'-‘5 w) [134]
‘—?2?
o N
{- W) = AT w lg\s_nr\ 'w; (111.5-6)
1599 3 #
Eq.(III.5-5) can be rewritten as
2 AR(w) )
T = M -F‘s_) W) P(R(wY) |———| L. (111.5-7)
ame V L
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The value of the oscillator strength for the 1s-s 2p transition is obtained

[_LBA] by integrating Eq.(III.5-7) over the whole range of energies W ,

(111.5-8)
. meV S dw T =

420) .
{:‘“”1? T am he? S*M P(Ru)) dw |

1
L

o
Using the definition of Tw) ana Eq.(III.5-6) together in Eq.(III.5-8)

one obtains

\Yi 0
'F%—ezp = W T dw y (II1.5-9)

where R\s:B-GW and Qg is the Bohr radius . A similar treatment is
given for the 1s-—p 3p transition .

The calculated bands for molten CsCl are plotted in Fig.(III.5-1).
As become apparent from the figure, the absorption bands have a somewhat
asymmetric gaussian-like shape with a high-frequency tail . These results
should be compared with the measured spectrum Llog:l reported in Fig.(III.2-3).
There, the 15’?2Pbanﬂ is found to be centerd at o {wr ( A\Q'—'—QUW)
while the K-band is estimated to be at (Wem = 155 (AW = 0.6 &),

The calculated values of the peak frequencies wfm , the full
widths AW at:half maximum, the square dipole matrix elements |£\“ Uzo)\"
and the oscillator strengths for the two bands are reported in Table(III.5-1)
for the four molten alkali halides considered here . The oscillator strengths
were evaluated by using Eq.(III.5-9) . The ratio between -F“"""F/‘F(S”l(?

gives directly the ratio between the areas under the corresponding bands .
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4529 x5,

U ¥

2 I L . 2.0
Swie]

Figre IIL.5-1

3.0

Optical absorption bands in molten CsCl at T=973 °K . The maximum of Iu(\g"}

occurs at  (Wey =ty &7  for the 1s—p 2p transition end at Wwm= V60 g for the
1s—> 3p transition . The widths at half meximum are  AWl=0bb e and 07R o8,
respectively .
N, @ Kw K B¢ Cq CP
1527 45537 1552P 1930 1522p 16+3P 15=2P w3
W, (@) | 1.62 2.39 1.37 1.95 1.35 2.00 1.31 1.60
A WY | 0.47 0.44 0.52  0.58 0.54  0.62 0.66  0.78
.
Ir(eo) (&’) 6.55 0.05 7.46 0.11 7.60 0.06 7.71 0.16
{- 0.94 0.011 0.94 0.019 0.94 0.011 0.92 0.026

Table III.5-1

Optical absorption by the solvated electron .
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A value of 0.0% for the latter ratio is obtained for molten CsCl .

The experimental value LIDQ] determined by integrating the spectra in
Fig.(III.Z—By) is found to be 0.12 The calculated ratio of theareas

( see Fig.(III.S—l) )

of the two bands is extremely sensitive to the details

of the ground state and excited states of the solvated electron

As discﬁssed in section (III.2-a.2) a lower bound for the oscillator

to be 0.338 for the 1ls-—3p2p transition . The

strength is found [109]
corresponding value for the crystalline F centers lies between 0.7 and
0.8 . The calculated value of 0.9 for this quantity in ”TablAe (111.5-1)

suggesfs therefore that the degree of localization of the 2p state is still

somewhat overestimated in the present calculations The assumption of

Franck-Condon transitions may also be not quite correct in the liquid .
The choice of the parameter \"\'e.? ( cf. Eq.(III.3-10) ) was

performed by reduiring that the calculated (Way for the 1s-—32p transition

in KCl should fall in the range i3 {4 &r , in accord with the available
experimental data on this system [84,87] It was found then \'fv.f =~ 0] e

A dependence

for KCl as reported in Table (III.4-1) Veep G'i was

then found to yield a reasonable variation of Wy from salt to salt ,

(II11.5-10)

: (Y+
( G.-\) = 0.1 @3 (W) )
KF

Neep

where the cation diameters are given in Table (1711.4-1) [122] .  The qualita-

tive behavior of the experimental data is an appreciable dependence of the

absorption peak frequency on the alkali ion for a given halogen ion and

insensitivity to the halogen ion for a given alkali ion . Specific measured

values reported in the literature for the absorption peak frequency are 1.61 ev
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in NaCl [85] , and 1.33 ev , 1.19 ev and 1.07 ev in KCl , KBr , and
CsCl , respectively [84] - The calculated band widths are also in reasonable
agreement with the data .

A Mollwo-Ivey law can be tested within the present results by
plotting the calculated values for Wy, ( Table (III.5-1) ) against ( O +G. )-
as in Fig.(III.5-2) . This result is to be compared with the plot reported
in Fig.(III.2-2) . The present results are consistent with a Mollwo-Ivey

law for dilute metal-molten salt solutions .

®
L.60 o v No P
Wy, Lev]
1.5
1.ho ]
Agee

Csle K,
.50 10

0.025 0.030 0.035

(0 + @) [R-2)

Figwre III.5-2 : A Mollwo-Ivey law for the pesk frequencies in molten CsCl , KBr , KC1
and NaCl .
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1I1.6 Relaxation of excited states and lifetime of the bound state.

It was already remarked ( see section (III.4) ) , that the bound
state disappears during tfle approach to selfconsistency if the probability
of finding the electron inside the well becomes of order 0.6 . It may be
therefore expected, from the values of ?1?(%) and PSP(RO) in Table
(III.4-2) , that the excited states will be unstable against ionic relaxation.
This point has been checked by a selfconsistent calculation of the 2p state

in a potential V() given by

[v.e]

21 4= Ppte) TR
-4, ?z‘,(‘u) ¥ \/f‘_\a + (‘ -é;) e m\"- de ( )
3

Vo) = (I11.6-1)
{
2 9 [9,0-9 @]= wm,
€0 £-31
The calculation converges to sz'(tl) =0 , irrespectively of the value of
er‘) and independently of the input value for Y2P (R) . The calcula-

tions were performed for a wide range of values of R ( up to B Ro(ls) )
using different numerical techniques in order to allow the selfconsistent
sequence of the ?'-\-qu values to change slowly from one step to the sub-
sequent one .

An immediate consequence of an instability of the excited states
against ionic relaxation is that the excited electron can rapidly end in a

conduction state . This situation is qualitatively different from that of
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the excited F center in the crystal at low temperatures, as established
though combined measurements of luminescence and photoconductivity [1351.
The foregoing result seems also relevant in discussing the life-
time of the bound ground state . Symmetry-distorting fluctuations associated
with local diffusive motions of the ions will induce a mixing of a 2p-like
component into the ground state and open a channel for the dissolution of
the bound state . This argument suggests a lifetime on the time scale of
ionic diffusive motions, i.e. of the order of ‘0-42 sec. Lifetimes of this
magnitude have been estimated ( see section (III.2~b.1) ) t}lé] from
measured nuclear relaxation rates and shown to be consistent with transport
meaSu;ements of electron mobility in these dilute solutions ( see section
(III.1-b) ) . 1In fact, the present results are consistent with a thermally
aétivated hopping process for the electronic conduction in M-MX solutions
[lOi} . The electronic mobility F} can be estimated here by using Eq.

(I.3-1) and Eq.(I.3-2) ,

d
e L e 4 (II1.6-2)
P ook o

where: d is an averaged jump distance and ¢ is the lifetime of the
trapped electron ( or averaged jump time ) . A value for d  is estimated
in Cs-CsCl solutions {116] to be of ~ 20 R , then if one takes
Tl s, at T =973 °K the electronic mobility {,& ( Eq.(I11.6-2)
above ) results t-‘-e ~ 008 oo /\I. sec , which gives the correct
»0rder of magnitude for this quantity determined experimentally [78] in the

limit of high metal dilution .
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II1.7 Perturbation of the fundamental absorption of the molten salt

by the solvated electron .

A new absorption band in the ultraviolet has been reported for
molten CsCl { ef. Fig.(III.2-1) ) [lOé] . This band is found to have
an intensity nearly equal to that of the infrared band ( F band ) over the
high~dilution range of electron concentration studied ( see Fig.(III.2-5) ).
It was then suggested that the UV band may be the liquid-state analogue
of the so-called ﬁ) band in alkali halide crystals ( see section (I.3-¢)),
commonly ascribed to the perturbation of the exciton absorption by the
proximity of an F center [?%] . A useful reference quantity in this
problem is the position of the unperturbed exciton in the pure system
The relative separation betweeen the free and bound excitons in these systems
can be estimated theoretically using a change transfer model, already applied
succesfully to the crystal case [30] . No detailed study of the fundamental
absorption in pure molten- CsCl , such as that carried out for NaBr [110,11%],
seems to be available in the literature . The position of the unperturbed
exciton peak is not therfore knoxn here, but from the experimental data on
the UV band ( Fig.(III.2-1) ) it appears that the peak of this band in
electron-injected CsCl may be at least 1 ev below the exciton peak energy.
This should be contrasted with the observed @ band in the crystal, which is
only about 0.3 ev below the intrinsic exciton .

In an attempt to account for this observation, it is considered
here an adaptation of the charge transfer model [QO] to molten salts . In
this simple model of the exciton the differnce LY between the frequencies

of the free ( unperturbed ) exciton and of the ﬂp band is viewed as an
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electron transfer from a halogen ion to a neighboring alkali ion . It is
considered for this purpose a process in which a positive ion and a first-
neighbor negative ion are extracted from the crystal and reinserted as atoms
after electron transfer, this process being carried out from the neighborhood
of a negative ion in the crystal ( free exciton ) and of an F center (fb
band ) . This leads to an approximate expression for AD as the sum

of three contributions,

had = h( free wxadon) = hv (b band)

(I11.7-1)
= AEC - W) + AE‘POL

where AEC and AE'POL are the differences in Coulombic and polari-
zation energy between the ionic extraction process in the two configurations,
and W(.ﬁ--) is the overlap repulsive energy of a positive and a negative
ion at first-neighbor separation Teme . Taking \1-%3-583 in molten
CsCl [136_] and evaluating AE(. from the 1s wave function determined
in section (III.4) ( see Appendix P ) , it is estimated AE‘._-.-.H).I(; o
and W) =0.07 y corresponding to a AV of about
+0.4 ev in molten CsCl from these terms . As is the case for the crystal
[30] , one must therefore look to OEpg — as the main origin of the
perturbation of the fundamental absorption due to the solvated electron .

" Following the same approach as for the crystal [30] one can

»

estimate  AEpg,  in the liquid by a Mott-Littleton approximation [137]

AEM’ =9 ( He- N-) 31/(2‘1-) (III1.7-2)
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where MF is given by

20l Il
Mp = —=2 1 (4'- —‘-\) (I11.7-3)
dy + do b €
in terms of the ionic polarizabilities D(;‘_ and o and of the solvated-
electron polarizability 0(‘: , and ﬂ- is given by a similar expression

with O(F replaced by ol_ . The quantity g is a liquid-averaged

geometrical factor involving a three-body distribution function which describes
a cation and two neighboring anions which are second neighbors of each other .
Replacing the liquid average by a triplet of ions at the most probable distan-
ces in the liquid ( =336 and T.2386R  in molten csc1 [136] ),

one can estimate ( Appendix P ) ,
y
Qo 4- ( n-/ "'._) v (/) =07, (1II.7-4)

which is somewhat larger than the value [30] %‘: 0.543 in a NaCl-type
crystal . The polarizability o(‘: of the solvated electron is estimated

from the one-level formula

3
de = Y ap 1“ (I11.7-5)
¢ e e—

W

where C(b is the Bohr radius, .F is the oscillator strength of the
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1s —»2p transition and W,, is the corresponding peak frequency in

Rydbergs . With the valuesof f. and Wy, in Table (III.5-1) and

the ionic polarizabilities [66] , it is estimated AEp, ~ 1.5ev .
The conclusion which emerges from this calculation is therfore

that the perturbation of a solvated electron on the fundamental absorption

in a molten salt may amount to as much as 1 ev or more . This large shift

arises essentially from the large value of the polarizability of the solvated

electron in the liquid, mainly associated to the lowering of its own absor-

ption frequency relative to the crystal at low temperatures .
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III.8 Concluding remarks .

It can be seen in the foregoing that the results of a self-
consistent treatment of the solvation process of an excess electron in
molten alkali halides are broadly consistent with the available experimen-
tal evidence . It would , of course , be too much to aslk for detailed
quantitative agreement between theory and experiment , but the overall
agreement seems reasonable .

It should be remarked that the absorption peak frequencies
calculated in Table (III.5-1) for the 1ls--$ 2p transition satisfy
approximately the relation (g, ol (G‘o +G‘+)—7‘ . Thus the present
results are consistent with a Mollwo-Ivey relation which was found to
be valid in previous calculations on molten KC1 [122] )

One may be tempted , in conclusion , to speculate on theé. aggrega-
tion phenomena that have been reported experimentally with increasing )
concentration of excess electrons , the most revealing observations being
those of spin pairing and spin delocalization in magnetic susceptibility
and ESR measurements [120,12i] and the related dielectric anomalies
[}16] ; Molecular dynamics studies [128] have shown that there is an
attractive long range interaction between two solvated electrons , with
the result that a kind of M center , the known defect in alkali halide
crystals containing F-centers [12&] , can be formed . One may perhaps
view the aggregate of two solvated electrons in the molten salt , at the
simplest level of approximation , as a stretched alkali molecule surrounded
by an ionic dipole layer in a continuum . A molecular viewpoint was found

useful in early work [}22] on the M center in the crystal . The melting
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. transition may be a much smaller disturbance on the spectra of such aggregates
of F centers than it is for the F center itself [126) . With increasing
aggregate size , one may hope to make contact with the evidence [12§] on
interfaces between liquid-metal electrodes and molten salts .

Finally , the present detailed approach to the states of a single
solvated electron should clearly be replaced by a cluster-type approach in
dealing with aggregates . This kind of treatment has been succesfully applied
in the crystal case [lSd] . It has the advantage that the wave function of
the F-electron can be calculated taking into account the core electrons of
the alkali ions forming the cluster , and a direct contact with ENDOR
measurements [llq] may be made . In the liquid case , however , a rather
difficult problem is involved , the a priori unknown position and number of

cations entering the shell that surrounds the trapped electrons

APPENDICES
B

A-1

Appendix  A:

Longitudinal phonom modes along the [106] direction in an ionic

crystal with the NaCl stucture

The equations of motion of the ions in a crystal containing

ions per unit cell can be derived from Eq. (I.2-2)

m; g = - Z 2. (\I;(,J”}\) Mp (£9) PRELI (A.1)

Ly P
where L = (Q‘, Q1,23) labels the unit cells, J refers to
the 5ﬁ1 ion of mass mj within the unit cell and
Nap k%g) is the ionic force constant between ions (lg) and
(w,jq . For longitudinal modes along the 100 direction we can
avoid the explicit reference to the indices o, p understanding
that all the ionic displacements F(%)) are along this particular

direction. We can write Eq. (A.1) for the case of an ionic crystal

having the NaCl structure ( S=2 ) as follows,

M0 = =T T (4,0) Me) + W (48) (2 ]
L‘

(A.2)
) G0 =~ P (g (1,0) a2 + 0 (4,0) 1510)]
s

- 153 -



where 2= (Q-MQLQ':)) and Q:LJL“QQ)Q_&*{) . If we
sum over (SZ-;‘QQ,‘) in both sides of Eq. (A-2) and we take into
account that ionic displacements Mj(L) of like ions are independent

of their positions in a plane (of index %4 ) for longitudinal modes

along the [100] direction, we obtain:

Mo B = =2 [V (020808 + Vi (0,0 2 (e ]

(A.3)
Mg. hﬁl(gﬂ) = ”Z L\JZ“.QAHQ‘[I\ M|(Q.g'¥€0 + \!I)_ (Q,“Q\') 'u-'z(:g""‘ﬂ\)-l
9

]

where
-1 k %, 0,8
IRV Zq Vi oy, 00,05)
74 >
;.0
M: g . St
and ; is the mass per unit area of the subplane of )
type-ions, i.e. M= M\ + Mq is the mass per unit area of a
(100) plane of total area cd, and Vq (_Q‘, Q,;) is the effective
force constant per unit area between subplanes ( A Q”) and U) 2,")
- 154 -~

A-3

For this particular case, the dynamical matrix D‘*fb (3 defined

in Eq. (I.2-5), can be written as follows,

NN
q(@ CA’Z Z D) ::J;_ 3) 4 *

2.0, D00

(A.4)
\]
- N ke
=27, Vslt) e ,
g
where d is the interplanar spacing of the (100) planes. Assuming
a plane wave solution for the subplane displacements MJ we obtain

the two phonom dispersion relations by solving the determinantal equation:

D“(q)"ﬂ| UJL mn_(ﬁ)
=0 (A.5)
D,,(9) Dya(9) - M W™

The solutions of (A.5) can easily found to be:
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A-4

A-5
where -}'I— = T:—. + 7:‘1. and 'l(=‘“) is the appropriate sign
7 = of :DW. . In order to completely determine :D,;j (4) we have
w’Z._ i Dl N :D,_;(%])t 4 (.%L_... 'Du.! +14 Dﬂ.ﬂ) (A.6) to recourse to a model for the determination of  C{4) and V{ ‘
72\ M My 2 M Ha M, HQ_ .
where wi are the so called optic (+) and acoustic (-) phonom
modes. From (A.6) one can see that it is not possible to express
:Di,“) W') in terms of w.i: along. If we define:
C @) = Daa(9) - Du(9) » e
we can write D{j in the following way:
22
Dy (4) = po (WE +W2) — A Cle)
W (Cn .)L’ + H'J.
) (A.8)
Dor(@) = o (W +02) + C(a)
pri) }*’( Yy M,
and
D)= [(uﬂwﬂl— Ay ooy o - AN Clg) (W + W2
()= p W —}-‘;+_ o ) (W + WS
A 2 ffa
g ]
“\“2.
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Appendix B

A lattice sum method and the Coulomb contribution to the force

constants between (100) planes in an ionic crystal with the

NaCl structure

The potential ﬁ( w8 created by a (neutral) plane of
alternating positive and negative point charges on a lattice point
outside of the plane situated a distance j’ perpendicular to it

can be written as follows,

-l -m 16, | +awi KT
SZf(F? =< Z Fioh i (B.1)
A,k

»

where T is the component of the position vector of the field
point in the plane we are calculating ﬂ ( an ) B !’Sk is the

reciprocal lattice vector of the direct plane: lattice and Az

is the area of the unit cell of the lattice. The sum in (B.1) extends

4 ] o
over all the Kp %  different from zero.

For a (100) plane with the NaCl structure the primitive

vectors are shown in the figure:

(-1,1) (B.2)

B¢2‘

The reciprocal lattice.vectors are given by:

bu=L (L) 5 By=2 (00) - .

A
©
A general reciprocal lattice vector EL\ can be written,
=L (h.h h =0t k2 (B.4)
ﬁh~&(h 2) 3 N 1

Using the previous result we can evaluate the force constants
-Y- per unit area between planes separated a distance f due

to the Coulomb interaction: by definition

Ly = e | I
dg2 e :
eq_mhb_

which can be written using (B.1) as follows:

- -zny\Kthka o
§9y = “” Z K¢ o

Putting =0 and taking b:h as in (B.4), the
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following expression is obtained: A di C
aAppendix L

o]
2,2 The dynamical matrix for the (100) dircction with ncarest-
2 2 - kt+h y:
Z, h+h, ¢ 2 5

T
S'(g) __Ame
T 45 h (8.7) neighbor plancs interaction only
ha=!
The equabion of motion of the (100) planes with ncarest-neighbor
The evaluation of £ ives:
-F“,) or g:d: y,d' 3d gives: planes interactions only, are written from the expression (A.3) in
$ed = 21’¢® 207, 1074 this particular casc as follows:
a6
- 'l.ﬂ" e} 'o‘u
§(24) =2 2. (B.8)
$d) :i%‘_@i_ 2. 16°
5 ..
Moo= [ - 160)] &+ [0 - meo)] § s L) - w01 §, +
The force constantg between second-neighbor planes are already 1%
of that for first-neighbor planes. + L"h(“) ‘M‘(O)] “'\1 + L, 0 Ay (oY /Ml:u_‘

(c.1)

My ii(o1= L}llm - Mp0)] fy + [ MO0 - M) hr v L) - iy 0] &+

+ L i) = Mat0)] fo * La,0) - ()] Py

Assuming a plane wave solution for M‘J of the form:

- 161 -
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~i t-ql
MS(Q): My Q,L(m CLi)
5

we obtain:

MIU‘P—MM = Du(ﬂ,} Mg + Dlz_(cl() Mg

Mg Wty = P2009) it + Dp(q) ay

where:

Dl\('%y = Ez (24p) +2 ‘FH (4~ W)‘{.d)

P () = fo ip) + 24, (-0gd)

P (g) = D4y = - 'Ez (2u9d +p).
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(c.2)

(€.3)

(C.4)

TFhe two phonom branches

Wy

C-3

are given as in

- 163 -

(A.6)



Appendix D

Calculation of the force constant between nearest-neighbor

planes for cleavage at small separations of the two crystal

halves, within the force constant model of Appendix C

a) A:
The expression of the coefficient A for the cleavage force

at small separations Z of the crystal halves is:

» /4
! : D) ~205 (§)
AN - —A—S d ‘.ﬂmz( qa) D,(4) +2,,(9 2 (0.1)
2“~nl<s% % Du(4) D2a() = D’ (4)

An analytical result is obtained using the expression of ij(Q)
given by (C.4). We then find:

Dy+D,, 2Dy = 4 [_.'Y'QKZ-‘«{Q + (fur ‘&72.'7'4\1) 5‘“1(‘7.1";)]

(D.2)

D »21;])\;.‘ =4 {.q ( %‘{‘zf %?i> s"?‘(lz‘lé) + 'fn. (244) (fatfus Qtf\z)l S";L(Ji"l“)

The integral part can be written
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where

b)

-1

T

= L A lg
2’(%\\*‘%1_7_"‘&\1) v 0

l
dx o~ b sl X

0-C X

(p.3)

:z<4.,+;a+sen> L& i-8)e/ o]

a=f, (2+p)

b=2[ fa-(§+)]

C= b+ 2

(-t
"'n"’ 'gn + ‘Yo.
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D-3

The expression for the coefficient of the cleavage force in

determining the intraplanar spaecing S is:

/4
_d it (Lad
B—g—{(géoy S\ﬂ (.‘2.‘1 )
-T(IA

}gz(q') - -‘D\\(q\) '
S Dn(g) Do (1) - Dl;(ﬁ)

(p.5)
Using the results in Appendix C:

D, (1)~ Dy (@) = 4 (Fn-1fy) s‘mz(-z'-@d) : (D.6)

The integral in (D.5) is now written as:

i{>3 a
S’ (X)

gy 2 | dx
(S;u g") w SO .b— o St (%)

‘f'n- g’n b - -
—h ( \’ / (b-a) i)

o
i

(D.7)

n

where
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D-4

o= L(( '?\z - ¥\| 'Y"zl\

b—:. “\7_(’;-*(5) ({:u + 4+ 9—%2\
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Appendix E

Fitting of the phonom curves with the model of Appendix C

The model of nearest-neighbor planes interaction studied in Appendix
C for the phonom curves W+  can be summarized in the following

equations:

2 P , D Du Dy \¥ by
() :i(.l Paa) £ L[| Bv_ D U da (E.1)
t AL v M‘L\) 2 ( M, ﬁ'z_) * e

where

%) = fplaep) & 2§ (4- w0 q9)

B

Drat) = o (24f) + 2 £, (1-cm9qd)

D\z(ﬂ): - '&2( 190’)‘1,6 + (5).

By fitting the experimental phonom dispersion relations with (E.1)
we can determine by a least-square procedure the following values of

the force constants:
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dRY  Mw M f fu fo phe
Lif 2.01 3.88 1.45 -1.66 1.34 3.35 10
NaCl 2.82 2.39 3.69 -0.31 0.114 1.08 1.4
KC1 3.14 4.65 1.61 -0.057 -0.125 0.825 0.88
KBr 3.30 2.98 6.09 -0.00% -0.155 0.67 0.61
K1 3.54 2.61 8.43 -0.125 -0.015 0.525 0.38
Mgl 2.105 4,56 3.00 -5.67 -8.52 0.325 32.4
Cal 2.405 5.75 2.30 -2.15 -0.1% 5.0 8.6

Force constants (10H dynes/cmﬁ ) and masses (10-8 gr/cn® ) for some ionic crystals

in the nearest-neighbor planes interactions model (E.1)

Phonon dispecsion elations : [100] dicection, LA & LO.

(u(a,)n‘ LE
40, °
8.} i
6| ¢
4.
2.
0 " i Y
2 M b 8 4.
9 (w/d)

Exfgﬁmgy{tae valves (0) 1 W L")‘B \'«d/ﬁecﬂ 3 continvovs Une - Eﬁ(.E‘)
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Appendix F

The effective one-phonom acoustic branch in the determination

V;WI' of A (Eq. II.2-13)

a) Generalities:
2. E '-| b ’, B 4 The force constant A for the cleavage force at small separations
av-(“/a) - : can be written using (A.8) and Eq. (II.2-13) as follows:
T4
-t . 22 L)
ol & si{1qd) 2B _TwRuR)s( L-1) SO-n(-v Tz -0
Rt g 5 2E T (1) 00

where use has been made of the relation:

D) Dy () - Dy (4) = MMy W, @) wz_(q) , (F.2)

and

=4 ‘Iz
Tl w2 = () [(w’;m})ﬂ %wﬁw} +('i“_‘-{1.3(1(1)(w34u)})— ) ] .

e
(F.3)
T o
2.
0
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Defining M= M\ t Mz

written as follows:

L

A lo-

where

i _L—i(w:—ﬁ—

)

b) Approximations:

F-2

and A= H ¥, , (F.1) can be

. ¢(4)
[ o sn(an)] e So 2 St FJ i
0 ;

1

L (K‘\!:m}~ A(WEsw2) w;)lf@(a)ﬂ. (F.5)
e

The first great simplification of the problem, summarized in

) 1
(F.4) - (F.5), can be achieved by noticing empirically that F[b’l,w_)% {,

This value for

1

is obtained whenever the second term

- 172 -

F-3

under parenthesis in (F.5) vanishes, i.e.
1
Cq) = (04 + W) ) + & W w2 = 0. (F.6)

2
The solutions of (F.6) are : Cy= A Wx . (F.7)
This relation can in fact be tested using the simple model developed
in Appendix C and the values of the force constants reported in

Appendix E . Within this model it turns out that

) = D)~ Du@) = U fna-f) b (51d) - (F.8)

This relation can be compared with an effective acoustic branch of

the type
wieq) = 0F st (Lqd) -

(F.9)

Using (F.7) with (F.8), (F.9) we obtain

U = Ul ha-ful omt(4gd) = Ax 0P swt(4qd) , P10
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so that

(F.11)

The meaning of (F.7) is the following: whenever the two branches
2.
Wy do not cross (see figure (a)) we have weq) = W _m)

if the branches do cross, opening a gap at ‘1

n

9 , (see figure
(b)) the effective branch is gi ~y W
] is given b; W 4
, Y Q) ¥ + ‘f‘of .7 9. -

w+ w, ] )_Q_
D . =R N e w,
1
Wew_ ( =
- [
|
I
X
0 =N -
@ 9="/s 0 o % 1=7/4

We now need to test (F.11) to see wether this hypothesis is correct.

In the following table are reported the values of [421- ‘;"l taken
- 2

from Appendix E and those of W (4) calculated by fitting b\)zﬁ)

=174 -

F-5

T
in (F.9) to the experimental acoustic branch w_(q) near the

zone center.

2

el 4% M =
LiF 3.0 2.7 5.33 43.56
NaCl 0.42 . 0.42 6.09 12.96
kel 0.068 0.068  6.26 9.00
KBr 0.15 0.31 9.07 6.25
K1 0.11 0.32 11.03 3.24
Hg0 2.8 2.5 7.56 70.56
ca0 2.0 2.7 8.05 31.36

Nearest neighbor planes interaction parameters and one-phonom branch model. Force constartts

19 . N e ) .
are in 10 dynes/cm?‘ ; masses in 10 gr‘/cm.2 cand 0. in 10 rad/sec.

Accbfding to tﬁé table the "relation (F .1A1) seems to be approximately

: -
satisfied. We are now allowed to write A in (F.4) as follows:

T
] . ol
K- %So dq sin (%‘lé)[(l#t)é*(‘*'l”* v 28 U ] (F.12)

2
" W2 owep Wi w2

From the expression of -DQ(F\) in (E.1) one finds that:
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F-6

SRR RLR

"L = (F.13)

o 190%

Due to (F.13) it is now possible to write the following approximate

expression using (F.9):

n) L oa 2
(4-n) et (1) o = o (F.14)

where W(ﬁ) is the effective one-phonom branch. Now, neglecting the
small contribution of the C{4) term in (F.12) , the final expression

for A_\ is

™/
A—\=—21- ij ét‘ ’;w;‘(.LA 2
! d "
=4 A 4
M 0% w SO Ai
or equivalently
A = -L!l— M -Q.z . (F.15)
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Appendix G

Fluorite structure: Longitudinal phonom modes along the (111)

direction

a) Generalities:

Tha fluorite structurc has a face-centred-cubic translational
group. The primjtive translation vectors of the Fcc as shown in
Pig. (6.1) are 3=0(%48) , b= a(§.8) and
<= %(i 3 ¢ (G.1).

N

Figure G.1: Primitive basic vectors of the -!c:. lattice.
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G-2
The reciprocal lattice vectors are written in general: take the extreme values: 'i = X é 9\_(_”1) i.e.
Il A rs .
Q“\‘L Q) = % [( h- '?L-W.) X-\»( Mh-ﬂ\g 4 ("‘rﬁ h+ Q) E;l . (G.2) "I (zone boundary) = & X¢ui) or ‘ 1(%.&:.)‘ =3 . (G6)
~ oo ~ Y ~ £y
The distance d between crystallographic (h k 1) planes is given by: Then, it results from (G.4) and (G.6) that: ‘i ‘I%bd = Wa
The values for the density 5’ can be obtained from g: “a"_‘é %-
a
where M is the molecular weight and New = 6.022 lO23 .
A(L\&Q’) = 27 / 1 ,q (k k Q) l ' (G.3) The mass per unit area Mr OS( LS (111) plane is obtained from:
M M
b) The (111) planes: Mr = A —— = 4 04 = gd ' (G.7)

Nov  A¢ U“) \EXNCY Noy
The distance between (111) planes is given by (G.3) as: :

In the following table are summarized some useful quantities for CaFl

d(l\l = 27 = 2. (G.4) and BaF,
EXUDH IR
The area per molecule Ar (for CaF, or BaF, ) on a (111) plane is N 3
given by the shaded area in Fig. (G.1) as follows: s (8) H(%r/m\) S(%l‘lw?) Hcﬁ‘o 5‘./“‘2)
CafF, 5.46 78.08 3.18 10.03

t 5t Baf, 5.20 175.36 4.83 17.49
A, =laxe] o | an an o 40.3_"]\_-&33—@}“; EZE, (G.5)

e 0 Q2 i 1 ! i

Pzrameters for Caf, and Baf, . The mass per unit area Mr corresponds

The wave vectors (in the first Brillouin zone) along the [111} direction to the (111) planes. Data fronm [1 5] :
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G-4

c) The effective one-phonon braneh for A in the fluorites

from which we can write:
According to the model presented in Appendix F, we can write

the constant of proportionality A in the expression of the cleavage

force at small distances as:

0= L 4

3 s Fo (G.10)
= 4 =
A - y M" a0 (c.8) where Cu\ = '!"b( Cu s 202 + ‘{qu) . Using (G.10) in (G.8)
and the fact that Hf: 94 we obtain the A values reported

) in the third column of the table, where A= Cy /d . (G.11).
By fitting the acoustic phonom curve with a dispersion relation of

The values of the elastic constants are reported in Table (I.2-1).
.o 2 2 2 () .
the kind: WT = - sm (i‘}d) » in CaF, and BaF,

we obtain the following values for £}, and A

H

ey (iOﬂfed/Sﬂ}l A (‘6933n ford) A=Cuyjs

CaF, 4.25 4.54 4.12

BafF, 2.45 2.62 2.52

Effective one-phonon curve parameters in CaFa_ and Baf, .

The value of .fl. can be determined from the velocity of sound for

elastic waves along the (111) direction:

w"(q,-»&: C:‘f' o2 é-‘ fdl—"?‘ y (G.9)
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Appendix H

The cleavage force at large separations of the crystal halves.

The dipole-dipole van der Waals interaction

At large separations Z of the two crystal halves, cleaved
along a (h k 1 ) plane, the attractive interaction between them
is due to the van der Waals forces: 'gu = bty / ‘7{37 s
where Cij are the ionic van der Waals coefficients for the dipole-
dipole interaction. If &  and b are the primitive vectors

on the crystallographic planes ((100) planes for NaCl-type crystals
and (111) planes for fluorite- type crystals), the total force per

unit area on a molecule on the surface of the left-half crystal due to

the surface plane in the right-half crystal, separated a distance Z

is given by

Ay 6 Cm (H.1)

Ae 2,0, [#+(ga4+ Ez\gjz 1‘”7'

where Ar is the area per molecule on the plane and Cw is the

molecular van der Waals coefficient which reads as follows:

Cog + Cm & 2 Cyo : NaCle bype

(H.2)

o)
3
n

Car #UC + UGl Fworite- bype

- 182 -

H-2

Summing over all the (h k 1) planes in the right-half crystal and v
over all the molecules along the line ({h k 1] direction) which ends
up on the first molecule at the surface of the left-half crystal,

we find the cleavage force F to be given by:

6C S 7% .
Foblw J 2 2 }'_(2”“3*@3)”2‘9,&9)]
A( q’“ Q& Qz(‘

where O is the interplanar spacing between the (h k 1) planes.

Going to the continuous approximation we have:

w

ow w
o 6 Com d 4! A ~Ta
s L ry L 3 L " LGepayysee]

or

b 0

—\::’———Cm S(DA 5 ) 2 ‘—5
A st 0 Il o 1 g(%*’?*’}) =

5 P

and finally

(H.4)
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H-3 A J-1

Taking into account that the number of molecules per unit volume Appendix  J
Appendix J:
3
m= /pd = U/ a (for both type of crystals),

we can rewrite (H. as follows:
(H.4) s The dipole layer contribution to the cleavage force at large

separations of the two crystal halves

-2:3 (H.5) The Coulomb potential created at a ( large ) distance & from a

dipole layer can be calculated using known expressions for the Coulomb

potential due to planar distributions of charges [5] , i.e.
where Co, is given by (H.2).

Vst SRR AR
5(§‘1)=—-§;2+%§ K™ € e ) 0.1)

where E is the component of the position vector of the field point ,
d is the lattice spacing and A are the reciprocal lattice vectors
of the plane . It is clear that the force constant associated with (J.1)

has an exponential dependence on X%

~1K1
f(éifo?e Qo.\ser) ~ € 2 ) (J.2)

which gives a negligible contribution to the cleavage force at large values

of 4 compared with the van .der Waals term ~~ 2-3 .
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Appendix K :

LiF
Licl.
LiBr
LiI

NaF
NaCl
NaBr
Nal

KF
KCl
KBr
KI

RbF
RbC1
RbBr
RbI

CsF
CsCl
CSBr
CsI

[Ch)
CarF,

Yedy
BaF;

Collection of data for some ionic crystals

(@)

1.96
2.78
3.17
3.80

1.74
2.34
2.59
2.93

1.85
2.19
2.34
2.62

1.96
2.19
2.34
2.59

2.16
2.62
2.42
2.62

~ 2.04
~ 2.16

9.01
10.95
13.25
16.85

5.05
5.90
6.28
7.28

5.46
4.84
4.90
5.10

6.48
4.92
4.86
4,91

7.20
6.67
6.59

~6.7
~7.2

0.887
2.976
4.120
6.145

1.148
3.237
4.381
6.406

1.991
4.080
5.224
7.249

2.537
4.626
5.770
7.795

3.601
5.690
6.834
8.859

2.816
4.216

(a) From [134] , (b) [67] , (o) [ed]
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«©)
E%(W)

~12.

~10.
8.5
5.9

10.5
8.6
7.7
5.8

10.9
8.5
7.8
6.2

10.4
8.2
7.7
6.1

10.0
8.0
7.0-8.0
6.3

12.2
10.59

(d) [71] .

@)

E,(ev)

12.9
8.67
7.23
5.94

10.66
7.96
6.71
5.61

9.88
7.79
6.71
5.88

9.54
7.54
6.64
5.73

9.27
7.85
6.83
5.30

11.18
10.00

Appendix L :

The ground state potential within the WMSA

(a) VCOUE, for 4R
The Coulomb contribution to \@g(v) for 4R is given by
( cf. Eq.(III.3-2) )

o
\/coue, I ?lsuu jglm s (‘3_“(.\') -~ 3_6(.")) dr . _ (L.1)

Using the known relations between %'LC and 3++ given by the MSA

150] , one can rewrite (L.1) as

Q;I

2 Ay RE
Py § de © g%u) .
3

=z ~-gWE (L.2)
440¢Q

Voo

e

The latter integration can be carried out by using a representation of the

pair correlation functions sg* for equi-sized ions [48] given by
the MSA ,
. 2 o
Yeout PR o L L ® 3 . 2¢ re (L.3)
4% 1w K2 T 4+FG
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g et
Ke T s

2
with KO = , one thus obtains

2
= - _2etl Pe(R)

v,
vt AtrT

where F is given , in this particular case , by

mn =_‘_~(,[4 2T -\)
T +2TK, .

(b) VW’o for THR
The potential outside the cavity of radius R

Coulomb expression ( cf, Eq.(III.3-7) )

AL —% S PlSLPQS ds [ 9,5~ 3_605)] EI-_;I i

After the integration over angles one gets

@©
. -
Y, i) o lme gpm...‘.ﬂ‘!._g e 9 (5 Lirgy
ove & 0 aarg O

where

Us  foc TLS
I.(.\',S):S'z/r for s .

The relation between %10 and S‘H'

~ 188 -~

(L.4)

(L.5)

has the screened

(L.6)

(L.7)

within the MSA ]'_50] has been

used in deriving (L.7) . Using explicitly the function 1I(r,s) , (L.7)

can be rewritten as follows

¢ @W
t s
L6 _ e w Ylkcta e ldssa (D], (L.8)
T e frs e AR 2 o

The integrations in (L.8) can be performed exactly by using the repre-
sentation of %‘H’ given by the MSA [48] . The final expression for

VOUE (r).  then reads

o, Jo Ty 2y Bond) |, for a9Teeryemd 0
Wy @w [}
~(end) n .
-\ .
where g(‘“e\, =41 % Z X Ld‘-‘-.i wx;&(ﬁ%‘gsmx]
i=t

with Y= f'(l'-vﬁ') swhile the quantities oy ; and B, .  are
given by [481

i = -2 N /5..“ tdg,= -2

Pagt b duin = fayyin /Gm)] (1.10)

14\4%1)

i (5'“) i~ dM.’L = /Sﬂ-l,ir' / (i-1)

Pom = dh—n”‘“/("‘“) ) KAmm= ‘/5‘“‘5‘“" /(M—') -
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' 2
; ] is shown a similar fit for the square dipole matrix elements l[.s_,n,l
Appendix M : E g .
__gg___x__ . ’ ( Eq.(III.5-4) ) . These fits , plus the corresponding one for the function
R“D\ ,were used in Eq.(III.5-5) for the de_terminalt:ion of the absorption

Calculated val for the solvated elect del in section (JIII.3 : . CF
= = =22 S cotron mege = ( ) intensity bands Ib(.u-)‘) . This analytic representation for I°(w)

allows a systematic calculation of the band parameters Ro, {Lg(%\ y Wem

The calculated values for the solvated electron model in section .‘ and AW . eliminating the random-scattering of the numerical calcula-
(I11.3) are summarized in Tables (M.1-M.4) for molten NaCl , KCL , Kbr ' tions . In Fig.(M.1l) are also indi&a‘ced the correspondingenergies for the
and CsCl systems . In Fig.(M.1) are plotted the resulting values of 1s—3» 2p transition , showing that the whole range of such values needed
( Eq.(III.3-15) ) for CsCl . In the same figure is also plotted the least- for a complete determination of Io(bO) ( see Fig.(II1.5-1) ) is scanned
squarfe parabola which fits the numerical values of “L‘(n - In Fig.(M.Z) by the numeriéal (.and consequently by the least-square fit ) results .

o )

2

LA

Luu

28 30 Ro 3§ 4o

T - Figure M.2 : Dipole matrix elements for the 1s—32p tremnsition in CGsCl at T= g73% .
The points are the calculated values of ‘E\s-ny\" . The continuous line corresponds to

Figre M.1 : Chemical potential of the bubble for CsCl at T = 973 °%K . The points are the least-square parabola .

the calculated values of }lq'(,l\ . The contimuous parsbola corresponds to a least-square fit. .
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L5
R MelR) irss—np‘ lr(s —»vll AR AEuﬂp
2.32 1.34 3.92 0.086 2.64 2.26 R 0] lf.s,,,fl‘ lr‘-s—nel: AE g ap | DEgasp
2.42 1.22 4.2a | o.c84 2.47 | 3.09 526 | 1.5 | 4.5 | o.0me | 2. 205
2.52 1.12 4.57 | o0.081 2.31 2.95 e T T s AT R
2.62 1.03 a.90 | 0.077 | 2.18 | 2.82 P P e R T
2.72 | 0.966 | 5.za 0.073 | 2.0 | 2.71 P Tos 1 5 “Ton Thr | aae
2.82 | o0.018 5.58 | 0.069 | 1.94 2.61 7o | 1o Tom oo T2 | 2
2.92 | o0.855 | 5.93 | o0.0s8 | 1.85 | 2.s6 PP e 5 T o0 T | 2.
3.02 | o.842 6.28 | 0.054 1.75 | 2.47 PYPY SN e sor | oo T o 15
3.12 0.844 6.54 0.051 1.67 2.39 3.16 1.13 7.37 0.105 1.47 2,04
3.22 | 0.860 | 7.00 | 0.0a7 | 1.58 | 2.3:1 s2s 1 15 | oo 1 o0 T3 Toe
3.32 | 0.8%0 | 7.38 | 0.044 | 1.51 2.24 5o 1 15 | 595 1 008 T2 | 10
3.42 | 0.93a | 7.74 | o0.041 1.44 2.18 s | 18 1 578 o0 T T 190
a.s2 | o.e92 | 8.11 | 0.038 | 1.38 | 2.12 Py T | 525 | oums T T
(o) 3.66 1.28 | 9.73 | oanm 1.13 1.65
@)
R | Pu® | Bol®) ] P (R) [ Bepl®) | Bpl®) | Tl S22 | PR, [ <Y1 VO) | By | E3p | Esp
2.2 | 0745 | .00 | 035 | 0185 | ooz | oo | a0 | 13.0 | 6. | 67 | e | e | —om
2.2 | 078 | 0.084 | 0.3%2 | 0177 | 0.022 | 0.083 | 4.5 | 13.3 | 26, | 6.4 | 5.3 | el | -z 5
2.82 | 0755 | 0.080 | 0.373 | 0.169 | 0.02 | 0.032 | 48 | 135 | 26. | 6.0 | -3.19 | ~.8m | -2 R P (R Y,'}ﬂ) plpm) ?'11’(1) PW(R) P'M’(R) (r")ﬁ <T%F <r1>3" Yo | B Ez? Ea?
2.62 | 0760 | 0.075 | C.3% | 0161 | 0.023 | 0.0 | 513 | 13.8 | 207. | 5.8 | =5.06 | —.em | -.2: 2.46 | 074 | 0088 | 0.3%2 | 0.178 | 0.023 | 0.085 | 4.82 | 13.5 | 196. ; -6.03 | 3.2 | -.8%5 | -.250
272 | oms | oon | oms | oam | oo | o | sm [ ia | e T am o T o T =0 2.5 | 0.735 | 0.081 | 0.354 | 0171 | 0.024 | 0,083 | 520 | 14.4 | 200, | 5.3 | -3.01 | 8B | ~.20
282 | 0.7 | 0.067 | 0.7 | 0146 | 0.023 | 0.00 | 577 | 14.3 | 2. | 515 | 2.8 | —ou1 | -.o2 28 | 0.7% | 0.8l | 0.357 | O.164 | 0.025 | 0.2 | 5.59 | 15.3 | 7. | -5.28 | -2.84 | 847 | .28
2.0 | o7 | ooe2 | 0.445 | 01% | 0.028 | 0.8 | 6.08 | 142 | 6. | 48 | 2.0 | - | -.oa7 27 | 078 | 0.077 | 0.30 | 0.1%8 | 0.06 ) 0.00 | 5.98 | 16.2 | 2. | 4.6 | 270 | ~80 | ~.2%
e | o o8 o Tom o Tom [ sa T us T o == T T —a 286 | 0.740 | 0.074 | 0.365 | 0.152 | 0.027 | 0.0 | 6.3 | 17.0 | 216. | .68 | 2.5 | 615 | —.2m
312 | 6790 [0.0% | 047 | 0124 | o.cea | 0.om | 6.77 | 145 | @B, | 4.5 | 2.6 | om0 | -.om0 2% | 072 | 0.07 | 0.570 | 0.146 | 0.8 | 0.0 | 6.80 | 17.8 | 20. | 4.43 | -2.45 | .88 | -.213
322 | o | oom | oesd | oms | o | oom | sai | 33 | o | we |2 | o =m0 3.06 | 0.781 | 0.067 | 0.30 | 0.139 | 0.029 | 0.058 | 7.18 | 17.9 | 219. | .25 | -2.38 | ~.&5 | —.oa7
52 | omm | oom | o | o | oo | oom | vm | e | o | w2 | 2w | —e | —om 3.16 | 0.7 | 0.06¢ | 0.3% | 0134 | 0.0 | 0.0% | 7.62 | 188 | 220. | 404 | 228 [ —ew0 | -5
3% | oem | oo | omw | oae | omm oo | 7e | w1 T m | 2o 125 o T = 3.26 | 0.75 | 0.082 | 0,399 | 0.120 | 0.08 | 0.075 | 8.06 | 19.6 | 28. | -3.65 | -2.19 | —.79 | -.2m4
3.52 | ceo7 | 009 | 0519 | 0103 | 0.025 | 0.077 | B0 | 165 | a5, | .95 | 2.3 | -0 | o 3.3 | 076 | 0.060 | 0.404 ] 0125 | 0.0 | 0.074 | 8.8 | 0.4 | 22 | 8.7 | 20 | 7B | -.2R2
3.46 | 0.788 | 0.057 | 0.409 | 0.121 | 0.083 | 0.073 | 8.8 | 2.2 | 2%. | -3.51 | -2.08 | —.777 | —oaL
(b) 3.5 | 0.789 | 0.056 | 0.413 | 0.117 | 0,084 | 0.072 | 9.47 | 22.1 | 2a0. | -3.% | -1.95 | .76 | ~.29
3.66 | 0.761 | 0.0 | 0.417 | 0.114 | 0.084 | 0.072 | 9.96 | 2.0 | 245, | 3.2 | 1.8 | -7 | -.2®
Table M.1 :  Optical absorption data for NaCl . (a) Chemical potential of the bubble JetR) [es] (b)
dipole matrix elements ||'“I1 [R*] and trensition energies O, [l  at different cavity radii R [R1.
(b) parameters for the growd state and 2p and 3p excited states: P SR QTR <y, (A2, ’ Teble M.2 : Optical sbsorption data for KCL. ( same as in Teble (M.1) ).

potential well depth Vo) and eigenenergies B [ex] -
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M-5
R Pe@ | g q2pl] Mg 5 3pP* | BB anp |BEg3P
2.53 1.28 a.64 0.044 2.36 3.15
2.63 1.21 a.99 | o.048 2.19 2.95
2.73 1.14 5.36 0.052 2.04 2.77
2.83 1.09 5.73 0.056 1.91 2.62
2.93 1.06 6.12 0.059 1.79 2.48
3.03 1.03 6.51 0.061 1.68 2.35
3.13 1.01 6.92 0.063 1.59 2.24
3.23 1.00 7.34 0.065 1.50 2.14
3.33 0.979 | 7.75 0.060 1.43 | 2.07
3.43 0.992 | 8.19 0.061 1.35 1.98
3.53 1.02 8.64 0.062 1.29 1.90
3.63 1.05 .10 0.063 1.22 1.82
3.73 1.09 9.58 0.064 1.16 1.75
()
R | Rele) | Prfed | B | Ty o | Bpi) Ry )| 73 [4F2 14| Vo) | Big | Bap | Esp
253 | 0761 | 0.7 | 0.9 | 0163 | 018 | 0085 | 477 | 113 | 190, | -6.19 | -3.40 | -1.04 | -.209
2.3 | o2 | 0.07a | 0.4z | 0157 | o.ou9 | 0.084 | 5.3 | 121 | 186, | -5.78 | 319 | -1.00 | 246
573 1 074 | 0.07 | 0.43 | 0.151 | 0.020 | 0.0 | 5.50 | 12.8 | 201, | .2 | .01 | -9m0 | -.2m4
2.52 | 0.75 | 0.008 | 0.4 | 0.145 | o.ce1 | o.0m | 5.88 | 13.7 | 206, | -5 | 288 | -oM | -2a2
2.03 | 0.77 | 0.0 | 0.4 | 0.10 | 0.c22 | 0.00 | 6.27 | 145 | 2u. | 482 | 272 |82 | -.240
3.0 | 0769 | 0.063 | 0,434 | 0.1% | 0.003 | 0.0% | 6.67 | 153 | a15. | 457 | 259 | -o2 | -.28
3.13 | 0.771 | 0.061 | 0.439 | 0.130 | 0.cea | 0.0%8 | 7.08 | 161 | 20. | 4.3 | -2.48 | -.885 | ~.2%
3.23 | 0.773 | 0.08 | 0.aa3 | 0.125 | 0.025 | 0.077 | 7.0 | 168 | 224, | 13 | 237 | -&m0 | -.25
3.3 | 0.779 | 0.0 | 0.40 | 0.119 | 0.025 | 0.0 | 7.00 | 17.2 | 8. | 3.6 | 231 | -880 | 237
3.3 | 0.7 | 0.053 | 0.964 | 0.115 | 0. | oo | 8z | 180 |29 | -3 | 222 [ -84 | -2
3.53 | 0783 | 0.5t | 0. | o1 | o.e7 | 0.7 | 8m | 188 | 2m. | 362 | 214 | -0 | -.23
3.63 | 0.784 ] 0.013 | 0.a72 | 0.107 | 0.08 | 0.0%3 | 9.2a | 196 | 28, | 846 | -2.06 | -.835 | -2
3.73 | 0.7 | 0.08 | 0.a% | 0,104 | 0.8 0.0 | 9.7 | 0.4 |22 | a2 | |2 |20
(b)
Table M.3 : Optical shsorption data for KER. ( seme as in Teble (M.1) ).
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_ RO lr\H*vl‘ “xs-nv‘l AE\ga2p [BEgarp
2.61 1.62 ) 4.92 0.061 2.19 2.81
2.71 1.57 5.32 0.076 2.02 2.58
2.81 1.53 5.73 0.091 1.86 2.38
2.91 1.9 €.16° | 0.109 1.72 2.21
3.01 1.43 6.61 0.110 1.61 2.10
3.11 1.42 7.08 0.129 1.50 1.95
3.21 1.41 7.58 0.151 1.40 1.81
3.31 1.42 8.10 0.176 1.30 1.69
3.41 1.44 8.60 0.206 1.21 1.57
3.51 1.46 9.25 k‘O_.244 1.12 1.46
__:‘ ).50 9.78!;__ _(;.295 1.04 1.35
‘ H ;,. 710".6—“ 0.368 0.958 1.23
‘3.81 1.68 T ;;; 0.394 0.899 1.17
(@)
R| B | %8 [ 0,00 | 00| B | %, (0] 43,1472 148y | Vo) | Eiy | Eap | Esp
2.61 0.755 0.077 0.394 0.162 0.017 0.078 5.12 13.2 232. -5.63 ~3.01 -.819 -.188
2.71 0.722 0.07 0.385 0.157 0.019 0.076 5.55 14.7 243, ~5.20 -2.78 -.782 -.193
2.81 0.750 0.073 0.378 0.182 0.021 0.074 6.01 16.3 4. -4.82 -2.57 -.712 -.189
2.91 0.747 0.071 0.268 0.148 0.023 0.072 6.45 17.9 265, —4.48 -2.3 -~.669 -.184
3.00 | 0.751 | 0.089 | 0.358 | 0.142 | 0.;23 { 0.072 | 6.92 | 18.6 | 28. | 4.23 | -2.28 | -.666 | -.184
3.11 0.748 0.065 0.369 0.138 0.025 0.070 7.44 2.4 n. -3.95 -2.13 -0 -.180
3.21 | 0.745 | 0.065 | 0.380 | 0.135 | 0.027 | 0.088 | 7.8 | 2.3 | 1. | -3.69 | -1.99 | -.504 | 175
3.3L 0.741 0.054 0.351 0.1 0.028 0.057 8.57 24.4 4. ~3.45 ~1.88 -.561 ~in
3.41 | 0.737 | 0.063 | 0.9 | 0.129 | 0.0 | 0.065 | 819 | 26.8 | 317. | -3.23 | ~1.74 | -.58 | -.165
351 | 0731 | 0.062 | 0.%6 | 0.127 | 0.0 | 0.083 | 9.87 | 2.5 | aw. | 3.2 | .62 | -.4%6 | ~.161
3.61 | 0.72a | 0.062 | 0.310 | 0.124 | 0.0:3 | o.062 | 10.6 | 3.9 | 30. | -2.81 | -1.50 | -2 | -5
a7 | o.7ma | 0.0s2 | 0288 | 0122 | 0.065 | 0.060 | 115 | 374 | F20 | 260 | -1.38 | -.44 ) -147
381 | 0.713 | 0.060 | 0.287 | 0.119 | 0.0 | 0.089 | 122 | 3.5 | 3@ | 246 | <3 | -.413 | ~14S
(b)
Teble M.4 : Optical sbsorption data for CsCl ( same as in Teble (M.1) ).
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Appendix N :

NMR _experiments in molten salt

(a) The or‘thogg'nalized ‘,wave f‘unction of "thé F-center electron.

Within a point-like ion model for the 'F-center one calculates a smooth

electronic wave ﬁinctién WF “'( often called the envelope wave function ).

In hyperfine strﬁcfcui‘e‘ calculzations , however , a detailed nature of the
F-electron wave fuﬁctién at the nucleus of the ions is required . It was
shown [131] that thié functjion ’may:be constructed by orthogonalizing the
envelope function to the ion core orbitals . The problem is then one of
calculating overlap integrals . The orthogonalization of \PF to the core
electrons , \}{ , of the )t—“ ion by the Schmidt orthogonalization pro-
cedure , wher'e only the first nonvanlshlng term is. kept in an expans:Lon of

\Vp about the tﬁ : vi:o\h’,’ glves -2
e

‘which can be rewritten as

¢;t)\-\N(\~Z‘PW“)‘P‘s)\ A(\Lm\ b

The quantity Al is an.'amplification! factor which accounts,for the

larger electric charge the F-electron sees at the nucleus of the surrounding
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3*5 ion . It turns but; that Pq roughly depends only on the charge Z
of the k}-\ ion . Valﬁes of A) ; éan bé éstimated f’fom the experimental
values for ¢F(Q and from the po:mt like calculatlons of \k: 0) .
This has been done for‘ a few alkah hallde crystals [133] , where was

found that .
Aay= uo 2'°
A;Gﬁ 54 fq ;Q,' B (N.3)

for the first two shel*is of surrounding ions.. These caléulations were
repeated here for some alkali halide crystals . The results are plotted

in Fig.(N.1) . The present estimations of A*(Z) are compared with those
of Eq.(N.3) in Table (N.1) .

z A (Fig.(N.1)) A ( Eq.(N.3))

f S Fe L) A (R (1.3)
s B S
Li | B 21.
Nat' fiooo e 1agy e | 146

PEC e
w7 | 1073, 7900,
es® 1400 o |- i 16320

Table N.1 : Comparison between A* asglven from Fig.(N.1) and by Eq.(N.3) .
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Figure N.1 : Amplification factor A,‘, for some alkali halides.

@ is the lattice constant. (o) from [138] , (o) [139], (&) [14q, (m) [14].
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‘ 2
(b) Experimental values of ¢F in a molten salt.

2
Values of ¢F for molten Cs-CsCl have been obtained in NMR

experiments [116] . It was found for the average hyperfine coupling

L \¢F(.OQ \1> a value

2
<\¢t((”)\z>exvgo.26 WSUM\‘HWH' (N.4)

2
The value for ¢ ((’b) in the atom can be obtained from the hyperfine

splitting AV measurements [118] ,

; 2 >
A o2 22 fon me 2 & Ploragg, ws
) I Mp 4
where I and w are the nuclear spin and nuclear magnetic moment,

respectively . For Cs55 one has : AY = 9197.6 106 sec—‘ , I =7/2 and

w = 2.57 (nuclear magneton units) . The resulting value for ¢Z(C5)
2 -
is : }?) (&Y~ 971 R 3 . To determine the average value of \¢F(,(A) \2.
in molten Cs-CsCl , the number Y)g of positive ions surrounding the

solvated electrons is required . If one takes “F ~ l{—:—S , then

-3
B \’)w o 9%’ qu(ml;mx 156 R (n.6)

. -
Analogously , a value for <l¢|:(&3| >¢"?’;’, 0.023 R > [_116] is obtained.
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N8
. Theoretical estimations for these quantities can be obtained from values

of \P:(*.) in Table (ITI.4-2) "and >Ny from ' Eq.(N.3) . These values

are in:order-of-magnitude-~agreement with the Vexperimerftal results .

- 200 -~

P-1

Appendix P :

The charge transfer model for the s  exciton in molten salts (csCe)
,. o

(a) Electrostatic and repulsive ‘energy contributions.

A model for the exciton in a molten salt dan be schematically repre-—

sented as a charge transfer show in the figure:.

o~
® @ @ © .
. e v'
o 3 e’
@ i ®

@2

() {reém é;ﬁc;\fon 7 (%) {5 waiton

The electrostatic energies required to extract ions (1) and (2) in the

process (a) and (b) are

@ & et

B9, 2 _
T
S Tao

¢ (P.1)

(o) 2 67.

E,. = € - ’{'( -Ptg(‘—zs” )

: TS [E5

where 'F(_Po(-ﬂ) = Po(") + T -R.o (r) is ob’taine’d by calculating
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N’is‘""‘l '
-,-f-_-i;-‘-&x the potential at position §

due to the electronic
charge distribution

| §om)* ' ibuti
1o, . The electrostatic contribution to AY
in Eq.(III.7-1) is therefore

)
AEC = E;b)- E:a v+ 0164 wr

) (P.2)

where

My =T.=338R L[13] , p.(6) %P o Ro =323 R)-1pand
?"\s( %) = ¥ (Ro)= 0.0 B were used in Eq.(P.1)

The repulsive contribution to A\) can be estimated from the

corresponding expressions given by the Born model [21 to be

(e -T.)
\U*_ (_\'2.,)’,.'3 b e * e /f::0.0G? o, (P.3)

where [, =15¢ K , L= |‘N8\ [49] , Y:.BSR and b=-1“ME2] .

(b) The geometric factor % in molten salts.

According to the charge transfer model [30] , the geometric factor
is written as

41 2 Covel
fe T, 0) = +4 - > .
LA PR (Fa/ To)* *
where ol is the angle between

A
( T‘..,,Fz,_’ ) . In the liquid , ¢4 ,as

- 202 -

well as the distances r.-,, a3 , are determined by a three body correla-

tion function . If one assumes the most probable distances between the three

ions , with the condition that . and r’l‘b being nearest neighbor

distances , the following expression for ?) is obtained ,

g =1~ (W/r) s(no/r )t 5.5)

In this particular case , it turns out that %’;’,0.7 , where \"__-:3,85& [136],
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