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Chapter 1

Introduction

1.1 Overview
1.1.1 Free boundary CMC hypersurfaces

Letting 2 be a bounded domain in a Riemannian manifold M, we call
Y C M a free boundary Constant Mean Curvature (CMC for short) hyper-
surface if it has a non empty boundary with 0% C 0¢2 and which intersects
0f) at a constant angle v € (0,7). Such hypersurfaces, called also sta-
tionary capillary hypersurfaces, are critical points of an energy functional
under volume constraint. The energy functional is defined as follows. The
surface X separates () into two parts and consider among these two parts,
the one inside which the angle 7 is measured, and call 2’ the part of its
boundary that lies on 0€2. The energy functional is then

Y= E(X) = Area(X N Q) — cos v Area(Q).

From the physical point of view, when two fluids (at least one a liquid)
are adjacent, the free surface of their interface is called a capillary surface.
The most interesting questions, then, in stationary capillary problems is
the regularity, location and the shape of the surface. In this thesis, we study
stationary capillary problems, in which neither fluid is flowing. The study
of capillary surfaces is very classical (see R. Finn’s book [34] “Equilibrium
Capillary Surfaces” for some historical comments) but is still far from set-
tled. The quantity cos(y) £ is interpreted as the wetting energy and  the
contact angle while cos(7y) is the relative adhesion coefficient between the
fluid bounded by ¥ and €. We have been interested in a configuration in
the absence of gravity. A more general setting including the gravitational
energy and works on capillary surfaces can be found also in the book by
R. Finn.

The geometric problem (referred also as the partitioning problem in the
literature when v = %) we study here and derived from the Euler-Lagrange
associated to the above functional reads as follows: for a given real number
H and an angle v € (0, 7), find a hypersurface ¥ (with prescribed topology)



2 1. Introduction

satisfying the following conditions:

,

Hy,
GMP)Y!  ax < oo,

H inX,

| (Vs Nog) = cosy on 9%,

where Hy is the mean curvature of ¥ and Ny (resp. Nyq) is the outer unit
normal of ¥ (resp. 012).

The above problem and the boundary-less case have been studied by sev-
eral authors. For reasons of exposition, in this section we shall cite those
whose their work are closer to what is done here. The isoperimetric problem
(see the survey of A. Ros [76]) which consists of minimizing the energy func-
tional £ allows to distinguish some special stationary surfaces like, spheres
(in R™*1); hemispheres (in the half space R”™), half-spheres, cylinders and
unduloids, (in slabs R™ x [0, 1]); hyperplanes through the origin or spher-
ical caps (in a Ball), etc ... On the other hand there are various CMC
surfaces satisfying (GM P) which are not necessarily minimizers and not
even embedded. Some well know examples are Wente’s torus, [92], and also
the Delauney surfaces [22]. One can also see the work of Kapouleas [51],
Mahmoudi-Pacard-Mazzeo [56, 64], Jeleli [49], Struwe [86, 88, 90], Griiter-
Jost [41, 50], etc... Few information on the solutions of the isoperimetric
problem are available even though some progress has been done when we
are in curved spaces. So, one is led to build CMC surfaces with as a ref-
erence model the euclidean space. In the early 90’s, motivated by possible
applications in general relativity, R. Ye proved the existence of constant
mean curvature spheres in Riemannian manifolds concentrating at non-
degenerate critical points of the scalar curvature of M. This is (some
how) extended recently by Pacard and Xu [73] to possibly degenerate crit-
ical points of the scalar curvature by incorporating a variational argument.
A new phenomenon was then discovered and analyzed in the pioneering
work of Malchiodi and Montenegro [59], namely the existence of solutions
to singularly perturbed partial differential equations concentrating along
minimal submanifolds. The approach of Malchiodi and Montenegro was
also used from a geometric context; to construct (Delauney-type) CMC
hypersurfaces condensing along minimal submanifolds by F. Mahmoudi,
R. Mazzeo, F. Pacard [56] in the boundary less case.

In this thesis, we build various solutions to the above problem with
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non-trivial topology by studying (GM P) in a geometric and PDE point of

vView.

The Free boundary Plateau Problem for H-surfaces

Here we consider surfaces realized as a mapping u over a given domain.
Along with its advantages, the definition of a surface as a mapping has cer-
tain drawbacks: there is an a priory restriction on the topological complex-
ity and the natural topology lacks compactness properties due to invariance
under non-compact class of diffeomorphisms. As a concrete problem, we

have the well known non-linear Partial Differential Equations (which is

related to (GMP) with v = §) called the Free Boundary Plateau Prob-
lem (FBPP) for H-surfaces over the unit disc B of R% Namely, if we
suppose that ¥ C R? is parametrized in isothermal coordinates by a map
u € C%(B;R3)NCY(B;R?) over the unit disc B, then (GM P) becomes the

FBPP for H-surfaces:

Au = 2Hu, N u, in B,
(1.1)
ug|?> = |uy|*=0=w,-u, inB,
0B) C 0192,
u(0B) (1.2)
g—Z(U) L Tu(g)aﬂ Yo € 0B.

The main features in studying this problem are the functional setting
and the invariance by (non-compact) group of conformal transformations of
the unit disc. The above system and its parabolic counterpart have been
the subject of several works, see for instance the paper [13] by Biirger-
Kuwert and also [88] by M.Struwe. The latter generalizes the existence
result in [90] and in some sense extends Hildebrandt’s work [47] for the
Plateau problem for H-surfaces, namely (3.1) with the following boundary
condition instead of (1.2)

upp : OB — I' is a parametrization of a given Jordan curve I' C R3.
(1.3)
For H =0 (1.1), (1.3) constitute the classical Plateau problem for minimal
surfaces solved by J.Douglas [25] and T.Rado [74]. Generalizations for
H # 0 were obtained in [47], where the existence of a stable solution was
proved. For "small” H, Brezis-Coron [12], K.Steffen [83] and M.Struwe
[87], found the existence of unstable solutions as well. These results were



4 1. Introduction

extended in [86] where the following result was established: for H # 0,
there is always an unstable solution of (1.1),(1.3) provided there is a stable
solution.

By analogy, since in the free boundary problem stable solutions (trivial
solutions) always exist for any H, one could expect unstable solutions to
exist for any H # 0. Furthermore it is not hard to see that the closer a
CMC surface is (say, in the Hausdorff metric) to a point, the larger its mean
curvature must be. In other words, the mean curvatures of the elements
of a condensing family of CMC hypersurfaces must tend to infinity.

Motivated by these facts, we study here the above system for H arbitrar-
ily large. Indeed taking into advantage the variational characterization of
this problem, we were able to reduce the problem to finding critical points
of some function Fg defined on 0€). Therefore the Lusternik-Schnierelman
theory allows then to obtain existence of solutions for any large H. Further-
more for H large, I'y admits an asymptotic expansion involving the mean
curvature of 0€). Applying topological degree argument, stable solutions
of the mean curvature of 92 give rise to the existence of H-surfaces.

The H-surfaces uy found here are embeddings and yield CMC surfaces
solving (GMP). Moreover they are similar to hemispheres and concentrat-
ing to a point as H becomes large. A natural question is therefore, what
about higher dimensional concentrations?

Concentration on minimal submanifolds

We study here also the existence of cylindrical type hypersurfaces in 2 C
R™*1 If K is a k-dimensional smooth submanifold of 0f2, we consider the
“half”-geodesic tube contained in €2 around K of radius 1:

S(K):={qeQ: dgK)=¢c},
with

g, K) =\ dist™ (G, K2 + g — P
where ¢ is the projection of ¢ on 92 and
dist”(g, K) = inf {length(y) : ~ € C([0,1]) is a geodesic in dQ; 7(0) € K; (-

By the smoothness of 0N and K, the tube is a smooth, (possibly) immersed,
hypersurface provided e is sufficiently small. This tube by construction
satisfies almost (GM P),
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( HSE(K) = ms—k -|— 0(1) in SE(K),
X 0S.(K) C 012,
L <NSE(K)a NaQ> = 0 on 8SE(K),

Hence one naturally expect to be plausible, under some rather mild as-
sumptions on K, that it might be possible to perturb this tube to satisfy the
system (GM P). We were able to achieve this only for some special values
of € and provided K is a non-degenerate minimal submanifold. According
to our argument, if one were to compare this result with the concentra-
tion at points p, then the assumption on p being critical point for the
mean curvature is now replaced by the fact that K has to be a minimal
submanifold.

Even thought the main ingredients in treating this question is contained
in the one dimensional concentrations, here some new bifurcation phenom-
ena appear which prevent to carry out a construction for any small values
of . This is related to some resonance phenomena peculiar to concentra-
tion on positive dimensional sets and it appears in the study of several
classes of (geometric) non-linear PDEs.

Minimal disc-type surfaces

This thesis also aims to find capillary minimal surfaces inside some tubular
neighborhood €2, of a given curve I' in M. First of all we will need to define
the special domains 2, we are working with. We consider the parametric
curve [a,b] > s — (k(s), ¢(s)) € R? and the surface of revolution in R™*1

m > 2 using the standard parametrization

S(s,2) = (r(s), ¢(s) ©(2))

where z — O(z) € S™ 1 ¢(s) #0 Vs € [a,b]. Assuming that the rotating
curve is parametrized by arc length namely

(¢(s))” + (K'(s)" =1,

clearly the disc Z;; centered at (k(s), 0) (on the axis of rotation) with
radius ¢(s) parametrized by

B 50— (5(s), 6(5) 7).
solves (GM P) with H = 0 and -y = arccos ¢/(s).
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To extend these definitions of surface of revolution in a Riemannian
setting, we let I be an embedded curve parametrized by a map v : [0,1] —
M. We consider a local parallel orthonormal frame Ei,---, F,, of NI’
along I'. This determines a coordinate system by

[0,1] x R™ 3 (20,y) = F(x0,y) = exp, ) (V' E;) € M.

For a small parameter p > 0, consider the Riemannian surface of revolution
¢? around I' in M parametrized by

(5,2) — f(pS(s,2)) = F(p#(s), po(s)O(2)) = XDy (s (p #(5)0' (2) £),

where z — ©(z) € S™ 1, and call its interior {2, := int ¢ which is nothing
but a tubular neighborhood for I' if p is small enough. Here we are assuming
always that ¢(s) # 0 and that (¢'(s))? + (+'(s))? = 1. For any s € [a, b], if
we consider the following set

Dy, = F(pk(s), po(s) BT")

then is clear that

Hp,, = O(p) in D ,,
X 0D; , C o8,
Noq,) = ¢'(s) +O(p) on dD;,.

\ (Np,,,
Our aim is to perturb D , to a capillary minimal submanifold, &; ,, of
1, centered on I' with contact angle arccos ¢'(s) along 0%, , C €7, as it
happens in R™ 1. We have shown that this is the case when ¢(sg)¢”(s0) > 0
and p small. Moreover, we have obtained that smaller open sets O, C €1,
can be foliated locally by such minimal disc Z; ,, in a neighborhood of sy.
Furthermore when we consider the case where 2, is a geodesic tube (¢ =1
and k =Id), in this situation (recall that in this case the angle of contact is
%) it is the geometry of the manifold to determine the position of the discs.
More precisely, due to invariance by translations along the axis of rotation,
we reduced our problem of finding minimal surfaces to a finite-dimensional
one where the main term is determined by the Riemann tensor along I'.
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1.1.2 Perimeter minimizing sets

For any measurable subset £ of M, we let P,(E,)) be the De Girogi
perimeter (see the book of E. Giusti [36]) of E relative to €2, defined as

Py(E,Q) :=sup {/ divyYdv, : (YY) < 1},
E

where Y is a smooth vector-field on M with compact support in {2. Notice
that if a set £ is smooth then the Gauss-Green formula yields P,(E, 2) =
Area(0E N Q).

We have been interested by the isoperimetric profile of a domain ) in

a Riemannian manifold, namely the mapping
v Ig(v) = Ecgnggng(E’ Q).

Much of the information concerning the partitioning problem (problem
(GMP) with v = 7) is contained in the functional Io. Explicit lower
bounds for the profile I are very important in applications and are called
geometric isoperimetric inequalities for instance see [18] and [19]. If
is bounded, the direct methods of the calculus of variation imply that
minimizers always exist for any v, their boundaries are smooth and have
constant mean curvatures up to a closed set of singularities with high
Hausdorff co-dimension 7. Moreover when 9% N 9€ # () then X will meet
orthogonally 02 on 90X N0S2. Actually up to now the complete description
of minimizers has been achieved only in some special cases, one can see for
example the survey of A.Ros [76] and the examples cited above.

Perimeter minimizing sets in M enclosing small volumes have been stud-
ied by F. Morgan and D.L. Johnson [69]. They proved that if v is small
enough, minimizers of Ix(v) are “smooth® and look asymptotically like
spheres. Namely up to scaling, they converges smoothly to spheres (with-
out singularities). Recently, Narduli [72], in his thesis weakened the min-
imizing property. Moreover he showed that minimizers are located near
strict-maxima of the scalar curvature of M.

In 1982, Bérard-Meyer, motivated by the study of nodal domains for
Dirichlet eigenvalues, have shown that, in the infinitesimal level, the isoperi-
metric profile of a compact Riemannian manifold M™*! approaches that of
R™1 Namely they established that Iy (v) ~ Igm+1(v) as v — 0. This was
adapted by Bayle and Rosales [8] for the relative profile Io(v) ~ Ign+1(v)
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as v — 0. The former result has been refined by Druet [27] who gave the
first coefficient in the Taylor expansion of Iy

Tm(v) ~ (1 — O max S(p) vt 4 O (vmil)> Tgm+1(v),

where «,, is a constant depending only on m and S is the scalar curvature
of M. Some applications of this result to the expansion of the Faber-Krahn
and Cheeger isoperimetric profile have been recently derived by Druet [26]
and the author [32]. We have to mention also that Bayle and Rosales
showed, under local convexity assumption of 0€2, that Io(v) < Igm (v) for
small v.

In this thesis we also study regularity and location of minimizers for
Io(v) with small volumes v. It turns out that the solutions to the isoperi-
metric problem are smooth up to the (free) boundary and they are located
near the strict maxima of the mean curvature of 9€2. Our regularity result
allows us to derive a Taylor expansion of the relative profile I given by

Io(v) ~ <1 — B max Hao(p) vt + O (vil)> Igms (v),

pe

where (3,, is a constant depending only on m and Hyq is the mean curva-
ture of 0€2. From this we derive, as corollaries, some local isoperimetric
inequalities involving only the mean curvatures of the obstacle 92 weaken-
ing the convexity of the afore mentioned result to domains 2 with positive
boundary mean curvature.



Chapter 2

Preliminary and Notations

In this manuscript, manifolds (M™"!, g) are assumed to be orientable and
complete with metric g and dimension m + 1 and connection V. If there
is no confusion, we will use the notation g(-, -) = (-, ).

Referring to the books of Do Carmo [23] [24], we first, rquickly, recall
the definition of the mean curvature for hypersurfaces.

Let ¥ be an orientable smooth hypersurfaces of M. For a point p € X,
we let Ny a unit vector in T,M L. For X in T, M, we define the linear
mapping hy(X) := VxNy. The second fundamental form of ¥ at p is
given by I1,(X) := (hn(X),X) for all X € T,X. The operator operator
hy, is symmetric from 7,3 — T,% hence there exists an orthonormal basis
{Ey;...; E,} of real eigenvectors ky,--- , k,,. Notice that Ny is uniquely
determined if we require that both {Ey;...; E,,} is a basis in the orien-
tation of 1,3, and {E1;...; Ey,; Ny} is a basis in the orientation of 7,M.
The symmetric function of kq, - - - , k,,, are invariants under immersions rep-

resenting 3 and are called principal directions. The (normalized) mean
curvature at p of ¥ is given by Hx(p) = =51 (hs(E;), E;). Clearly,

— m
the sign of Hy, depends on the choice of the orientation. In this thesis,
we will specify, during the computations of mean curvatures of various

hypersurfaces, the orientations chosen and also if they are normalized.

2.1 First and second variation of area for capillary hypersurfaces

Letting €2 be a bounded domain in an (m+1)-Riemannian manifold M, we
call XX € M a free boundary Constant Mean Curvature (CMC for short)
hypersurface if it has a non empty boundary with 0% C 0f) and which
intersects 0f) at a constant angle v € (0,7). Such hypersurfaces, called
also stationary capillary hypersurfaces, are critical points of an energy
functional under volume constraint. The energy functional is defined as
follows. The surface X separates {2 into two parts, and consider among
these two parts, the one inside which the angle v is measured, and call €/
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the part of its boundary that lies on 9€2. The energy functional is then
Y= E(X) := Area(X N Q) — cos v Area(Y).

Since Y C (2separates {2 into two parts, we will call A the boundary of one
of these parts in 9€). We now recall the first and second variation of the
energy &.

2.1.1 First variation of area

Let F} be a variation of ¥ with variation vector field

OF;
C(p) =5,
A variation is called admissible if both Fi(int¥) C Q2 and F;(9%) C 0f2.

Let Ny be a unit outer normal vector along >; Hy its mean curvature

(p)j=o  for every p € 3.

and v (respectively ©) be the unit exterior normal vector along 0% in X
(respectively in A).

An admissible variation induces hypersurfaces ¥; and A;. Let A(t) (re-
spectively T'(t)) be the volume of ¥; (respectively A;) and V(¢) the signed
volume bounded by ¥ and ¥;. For a given angle v € (0,7), we consider
the total energy

E(t) :== A(t) — cos() T(t). (2.1)

It is well known (see for example [78]) that

E'0) = —/EmHZ(C,NEMA + ng@,U — cos(y) v)ds (2.2)

and
V) = [ (¢ Nojaa (23

A variation is called volume-preserving if V(t) = 0 for every t. X is called
capillary hypersurface if X is stationary for the total energy (£'(0) = 0) for
any volume-preserving admissible variation. Consequently if 3. is capillary,
it has a constant mean curvature and intersects 0¢2 with the angle v in the
sense that the angle between the normals of v and ¥ is v or equivalently
the angle between Ny and Nyq is 7y, where Nyq is the unit outer normal
field along Of).

Physically, in the tree-phase system the quantity cos(v) 7'(0) is interpreted
as the wetting energy and ~y the contact angle while cos(v) is the relative
adhesion coefficient between the fluid bounded by ¥ and A and the walls
0€). Here we are interested in a configuration in the absence of gravity.
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2.1.2 The Jacobi operator of X

We denote by Ily, and Il the second fundamental forms of ¥ and 0f2
respectively. Assume that X is a capillary hypersurface. Recall that the
Jacobi operator (the linearized mean curvature operator about ) is given
by the second variation of the total energy functional £. For any volume-
preserving admissible variation, we have (see [78] Appendix for the proof)

0
E"0) = _/2 (wAsw + |IIs|°w® + Ricy(Ny, Ny)w?) dA—I—jgz (w—w—q w?)ds,

ov
(2.4)
where Ric, is the Ricci curvature of M,
1
w = ((, Ng) and q= sin(7) IToo (D) + cot(y) IIx(v).

Here Ay is Laplace-Beltrami on X while Ric, is the Ricci tensor of M.
Since for any smooth w with fz wdA = 0 there exits an admissible, volume-
preserving variation with variation vector field w Ny, as a normal part (Bar-
bosa Do Carmo [7]), we have now the Jacobi operator of ¥ that we define
by duality as
(Ly Ny w,w') = / {VwVuw' — (|Hs|? + Ricy(Ns, Nx)) ww'} dA+7{ quuw'ds.
) )y
2.1.1. EXAMPLE. In Q = R”™ with 9Q = R™ x {0} = R"xR¥x {0}. We
refer to Section 2.3 below for notations. Let S™(vy) be the n-dimensional
spherical cap centered on 0S) and making an angle v with it. The Jacobi
operator of the Capillary cylindrical cup C., := S"(v) x R* around K := RF
is the following

(Lo, w, ) = — / (Agw + Agn(pyw + nw) o' dA—I—j{ <8 — cot(y)w)
Sn(y)x K DS () x K n(v)

2.1.1. REMARK. Let us observe that any smooth transverse vector field Ny,

along X induces an admissible volume preserving vartation. The linearized
mean curvature operators Ly ny, and Ly g - are linked by

L 5 @ = Ly ny ((Ng, Ng) @) +m NY (Hy) @,

where Ng 15 the orthogonal projection of Ny on TY. This shows that L5 f
15 self-adjoint with respect to the inner product

/aa/ (Ny,, Ny) dA.
%
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2.2 The free boundary Plateau problem

In particular for regular surfaces in (M™ g) = (R?,-), we consider X
parametrized by a mapping u : U — X over an open smooth domain
U C R%. The expression of the metric on ¥ is given by

Edxdr + 2F dxedy + G dydy,

where
E=|u? =u ty, F=u, u, E=]ul*=u,-u,.

Note that, denoting by A the exterior product in R3, one has u, A u, # 0
on U, and hence

Uz N\ Uy

Ny, (2.5)

ue Ay
defines a unit normal vector at u(zx,y).
At any point p = u(z,y), the differential dNy| : T,X — T,3 defines a
p

symmetric operator. Setting
€=Uy Ny, [=uyy- Nxs, g=uy Ns,
the expression of second fundamental form in the basis {u,, u,} is
edrdx + 2f dxdy + g dydy.
In terms of the first and second fundamental form, the mean curvature is

given by
el —2fF + gG

EG — F?

In problems concerning mean curvatures for parametric surfaces, it is

2Hy = (2.6)

convenient to use conformal parametrizations, since this leads to an equa-
tion for the mean curvature that can be handled with powerful tools in
functional analysis.

2.2.1. DEFINITION. Let Y be a 2-dimensional reqular surface in R3 and let
u U — X be parametrization. Then u is said to be conformal if and only
if for every z € U, the linear map du(z) : R? — T2 preserves angles,
that is there exists A\(z) > 0 such that

(du(2)[v], du(2)[w]) = M2){(u,w)  for every u,w € R~ (2.7)
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Note also that the conformality condition (2.7) can be equivalently written

as:
up? — |yl =0 =, -u, inl. (2.8)
This is equivalent to £ = G and F' = 0 so that
Au . Nz
2Hy, = : 2.9
5T Tl 29

On the other hand, differentiating (2.8) with respect to x and y, we can
deduce that Aw is orthogonal to both w, and u,. Hence, recalling the
expression (2.5), we infer that Au and Ny are parallel. Moreover by (2.8),
uz A uy| = |ug|* = |uy|?, and then, from (2.9) it follows that

Au = 2Hs (u) uy A uy.

If moreover we assume that that u(0U) C 02 and intersecting it perpen-
dicularly (in the sense that the outer unit normal of u(0U) in u(U) and
the outer unit normal of u(0U) in 02 makes an angle equal 7, see (2.1.1)),
then the tangential derivative of 2(c), in the direction (o) € T, u(0U),
along u(0U) and the normal of u(0U) in OS2 form a basis in 0f) and are
orthogonal because %(c) € Ty, u(OU). Since u is conformal, we deduce
that %(0), which is also tangent to ¥ is orthogonal to %(0). Hence, we

finally obtain the free boundary Plateau problem for H-surfaces.

Au = 2Hy (u)u, A uy, inl, (2.10)
ug? = |uy? =0 = uy - u, in U,
oUu) C o1,
u(oU) (2.11)
8 (g) L Tyir)002 Vo € oU.

2.3 The stereographic projection

We will denote by p : R” — S™ the inverse of the stereographic projection
from the south pole. p = (p]L ..., p" p"T! ) is a conformal parametriza-
tion of S™ and for any z = (z!,...,2") € R",

p(Z) - (Zv 1) /L(Z) — Ena

B 22! 22" 1—|2)?
AN o e B
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with conformal factor given by

pu(z) =
We often use the projection of p on R" and denote it by

P(2) := (2,0) u(2). (2.13)

We collect in the following lemma some properties of the function p which

2

— . 2.12
1+ |22 (2.12)

will be useful later on, we omit here the proof which can be obtained rather
easily just using simple computations

2.3.1. LEMMA. For everyt,j,l=1,...,n, there hold

(pi,pj) =165 pit'=—up;  pi=-pP+ukE;
(pii,p1) = u*p' — 21 p' b1

and 82810 — respectively.

Here p; and p;j stand f07“ =
Recall that the Laplace operator on S" (embedded in R™™!) can be ex-
pressed in terms of the Euclidean one by the formula
Agn = % (Agn — p?(n —2)p*oy) .
Moreover, it is easy to verify that
Agnp +np = 0.

It is clear that for any 0 < r < 1 the restriction of p on B;' parametrizes

a spherical cap S"(r), where B’ is the ball centered at 0 with radius r.
_ 1-cos(y)
= Treos(y)"
spherical cap S" () which intersects the horizontal plane R" 4 cos(7y) Fy 41

Given v € (0,7), if we let r? the image by p of B is the

and makes an angle v with it. In particular we denote (henceforth define)

O(y) :=p

T
—cos(7) Eny1; 0 :=0(3)
Bl 2

SY = = {z= 2" eR™ ¢zl =1and 2" >0} .

For any 0 < r < 1, denote by 7, the unit outer normal vector of 0B, the
normal field (not unitary) of 9S™(r) in S"(r) expressed as follows

- P
= 1|p] (PnHW - n+1)

OBr

Ip
or,

aBn
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2 1—cos()
" 1+4cos(y)”?

Now when r the unit normal in S"(v) of 95" () is given and

denoted by

~ : : . 7T
n(y) = cot(v) O(y)—sin(y) En11, in particular 7 := 77(5) = —Fy
(2 14)

|8B

while the unit normal of 9S™(y) in the plane R™ 4 cos(7y) Fy.1 is ‘ @

9(7)
6(7)]

Observe that the angle between the two normals and n(7) is v along

dS™(v), namely since |©(v)| = sin(y) on dB”,

S
() ) = cos(s)  om 057 (3).
©(7)]
Consider the eigenvalue problem, u : S™(v) — R,
Agnpyu +nu = 0 S™(y);
ou

) = cot(y)u  9S™(7).

It is well known that the only solutions to the interior equation are the
degree one homogeneous polynomials on S, spanned by the n + 1 com-
ponents of p. By (2. 14) the boundary condition is satisfied only by ©%(y),
1=1,---,n. For v = Z, consider the eigenvalue problem

Agnu = Au ST,

ou

Letting
0:)\0<>\1§>\2§---—>OO

be the eigenvalues, up to a reflection, it is well known that A\, = (n+k—1)
and the eigenspaces corresponding to \o = 0 and A\; = n are

span {1} and span{©' ... ©"} (2.15)

respectively. We denote by Iy and II; the L? projections onto these spaces
respectively and we define

=Id—1II, -, and  IIy := Iy +IL

We collect some useful properties of the map © in the following lemma
in R? . The proof is just simple computations.
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2.3.1. LEMMA. If we denote by n = (x,y) (resp. t = (—y,x)) the outer
unit normal (resp. tangent ) vector of the unit disc B of R? then from the
notation above, © satisfies

1. A® =20, \AO, = —2,%0;

2.0(0) = (0,0), P(o) =—e3, L(0) = (t,0) = (—y,z,0) Vo =
(z,y) € 0B;

3IVOP =10, =0,* = 10, A 9| = p*;

0,N0=0, 06,N0=-0,

[,0-[f: AO,+O,Af]=—[,VO-Vf ¥V fecHB,R;
[,|VOP]? = 4x.

99”47\9@

2.4 Notations

e Unless otherwise stated, €2 is an open bounded domain of M™*! with
boundary 9Q. If M™ = R™1 we some times denote by S = 02
also S. = %S and ). = %Q for e > 0.

efFor1 <p<oo, k€N, and a € (0,1) let LP(B,R"), H*?(B,R"),
C"*(B,R") denote the usual Lebesgue- Sobolev-Hélder spaces with
norms || - {[p, || - l&ps || - l|2.0- In particular we will write || - |2 = || - ||.

e For every u = (ul,...,u"),v = (v!,...,v") € H*’(B,R"), we define

u-v:Zuivi, Vu - Vu =y - vy + Uy - vy.

Also we will write |ul*> = u-u and |Vul|* = u, - uy + uy - uy.

e Let U be smooth domain of R? and k& > 1 an integer. Since OU is of
class C'*°, covering OU by coordinate charts, one can define the Sobolev
spaces H*?(OU,R") (see [1]; paragraph 7.51) as well as the fractional
Sobolev spaces, for any (s € R), k <s<k+1and 1 <p < oo, by

H*(0U,R") = {u e mhoou Y« U= gy 8L{,R”)} ,

‘O’ _O_/‘er%

endowed with the natural norm.
Now if 1 < p < oo, u € H*?(U,R"™) then the trace of u, ug, belongs
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to H" »? (OU,R™). As a consequence of the trace theorem there exists
a constant C7 > 0 depending only on ¢/ such that

[woull 10 < Chllullip,

and conversely if v € Hk_%’p(ﬁl/{,R”), there exists u € HMP(U,R™)
such that uy; = v on U and
lulley < Collvll it

for some Cy > 0 depending only on U (see [1]; paragraph 7.56). For
brevity in the sequel we will simply write u(o) instead of wugy(o) for
a.e. o € OU if u € H*"(U,R").






Chapter 3
Free boundary Plateau problem for large H-surfaces

Let Q be a bounded open set of R? with smooth boundary 0. This
chapter is devoted to the proof of existence of H—surfaces supported by
0f) for very large H € R. Here, by an H-surface parametrized by v and
supported by 99, we mean a map u € C?(B;R3) N C*(B;R?) of the unit
disc

B:={(z,y) eR*: 2* +¢* < 1}

into R? satisfying the following conditions:

Au = 2Hu, N uy, in B,
(3.1)
ug|?> = |uy|*=0=w,-u, inB,
0B) C 019},
u(0B) (3.2)
g—Z(U) L TU(U)GQ VYo € 0B.

The main result in this chapter is the following:

3.0.1. THEOREM. Suppose Q2 C R3, is a smooth domain. Suppose Q € OS)
18 a local strict maximum or minimum, or a non-degenerate critical point
of the mean curvature of 0S). Then there exists a family u. of %—surface

supported by OS2 such that u® is an embedding from B into Q). Moreover

%ug , suttably translated, converges smoohtly to a hemisphere of radius 1.

Our next result concerns multiplicity of solutions depending on the topol-
ogy of 02, with no assumptions on the mean curvature of the boundary
of (2. Given any smooth function F defined on 02, we denote by Aga(F)
the number of critical points of F' . Recall that cat(0f2), the Lusternik-
Schnierelman category of 0f2, is defined to be the minimal value of Agqo(F)

as F' € C*(0N) varies. We refer to [5].

3.0.2. THEOREM. Under the assumption of Theorem 4.0.1, there exists at
least cat(0N)) geometrically distinct %—surfaces supported by Of).

3.0.3. REMARK. 1. It is worth noticing that, comparing our result with
the one of M.Struwe [88], no assumptions on §) are made. Further-
more our result is “complementary” to Struwe’s one in the sense that



20 3. Free boundary Plateau problem for large H -surfaces

his admissible mean curvatures are bounded while ours are arbitrarily
large.

2. We believe that it should be possible to extend the result to higher-
dimensional H — systems (in this direction see [28]).

Since we look for solutions with a given asymptotic profile, it is con-

venient to scale the problem by a factor %: letting S, = %89 = %S , We

consider the equivalent problem

(Au:qu/\uy in B,
‘u$,2_|uy‘2zozuxuy n B,
(3.3)
'U/(aB) C SEv
| 54(0) L Ty Se Vo € 9B.

At first glance, as € — 0, in the limit we get a plane as a supporting surface,
so one is led to consider the limit problem

)
Au = 2u, A uy in B,
lug|* = |uy|*=0=wu,-u, inB,

u(0B) C R? x {0},

| 92(0) L R? x {0} Vo € 0B.

The latter problem admits a solution ©, the inverse of the stereographic
projection (from the south pole) restricted on B (see (2.3)), and a family
of solutions of the form © o g + p, where p € R? x {0} and ¢ is any confor-
mal diffeomorphism of the unit disc. It turns out that this set of solutions
defines a manifold Z of critical points of the Euler functional I, associated
to (3.4). It is clear that Z = G x R?, where G is the group of Mobius
transformations of dimension 3 (see (3.11)).

Thanks to some results already known in the literature (see [17], [63], [48]),
we are able to prove that Z is a non-degenerate manifold; that is the tan-
gent space T,Z of Z at any z € Z coincides with the kernel of d?Iy(z).
Hence by the Fredholm theorem we can solve (3.3) if we are suitably per-
pendicular to TeZ in a suitable sense, see Lemma 3.1.4. This is the key
step for a finite dimensional reduction of our problem (see [3], [[4] Section
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2.4], [15], [17], [33], [63], [48], [16], [93] for related methods).

As in [88], we take advantage of the variational structure of (3.3). While
in [88] it was necessary to impose a topological condition on € (in order to
define an extension operator on a subclass of Sobolev functions, see Section
3.2) we can localize the variational formulation using the smallness of &,
see Lemma 3.2.2.

Because of the free boundary condition in (3.3), a natural set to study the
problem are maps of B into R? of class H'? such that OB is sent into S.
(which we call admissible functions). The subset of admissible functions
with H?? regularity is a Hilbert manifold, dense in the above set. Looking
for solutions close to O, reasoning as for the flat case, we impose suitable
constraints on the tangent plane of the Hilbert manifold, in order to guar-
antee a (partial) invertibility of the linearized equation as remarked before.
Once we have this, we fully solve the equation with a finite-dimensional
reduction.

To begin the procedure, we construct approximate solutions, which are
nothing but suitable perturbations of hemispheres which intersect 02 al-
most orthogonally. The reduction is done transforming the problem into
finding critical points of a functional F. defined on S., see Proposition
3.2.11. For € small, F. admits the asymptotic expansions in (3.62), where
we see the role played by the mean curvature of 0f).

A similar technique was used by R.Ye [93] to find constant mean curva-
ture surfaces in manifolds, and the approximate solutions were perturba-
tions of geodesic spheres. These surfaces concentrate near non-degenerate
critical points of the scalar curvature, see the Remark 3.3.3 for related
comments.

One of the main features of performing the Lyapunov-Schmidt reduction
for our problem is the action of the Mobius group, which generates some
ertra dimensions in the kernel of the linearized equation. To deal with this
problem, we use the invariance of the functional under this action, and
show that the gradient of the functional has basically no component in
the subspace Tr4G of ToZ. Another issue is the regularity of admissible
functions: while the variational approach settles naturally in H? (where
we have coercivity, Fredholm properties, etc...), it is from other points of
view convenient to work in H?*? since we have stronger embeddings and
the functionals involved are more regular. To handle this, we crucially use
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the smallness of ¢, the smoothness of 02 and elliptic regularity estimates,
see Lemma 3.2.9.

3.1 Preliminary results

Through this chapter we will identify R? by R? x {0} as a subspace of R3.
As anticipted in the previous section, we shall consider the unperturbed

problem: )
Au = 2u, Ay in B,
ug)? = |uy|* =0=wu,-u, inB,
w(dB) C R, &)
\%(a) 1 R? Vo € 0B.

We define the Hilbert subspace H of H'?(B;R?) as
H={uec H?(B;R?) : u(o) € R? for a.e. 0 € 9B} = H**(B,R?)x H,*(B,R).

For every u € H N H**(B,R3), we define the functional:

Io(u) = %/B|Vu\2—|—2V(u), (3.6)

where the volume term V is defined for every u € H*?(B,R?) by

1
V(u) = —/ u-(ug A uy). (3.7)
3 /B
[t turns out that (3.5) is the Euler-Lagrange equation of the functional I,

namely

3.1.1. LEMMA.
u € HNH**(B,R*) solves problem (3.5) iff (dly(u),v) =0 Yo & H.

PROOF. We have, integrating by parts

1
(dV (u),v) = / (ux/\uy)-v+§ / (@Au)-v, Vu € H**(B;R%), Yv € H"*(B;R*
B 0B

ot
(3.8)
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where t(z,y) = (—y,z) is the tangent vector at (z,y) € 9B to B and %
is the tangential derivative of u. When v € H N H**(B,R?) and v € H,
one has (% Au)v = 0 a.e. on OB since %(0),u(c),v(c) € R, for a.e.

o € OB, so it turns out that for every u € H N H*?*(B,R?)

(dly(u),v) = /VU'VU—f‘Q/(Ux/\Uy)'U YveH
B B

ou
= L[—Au—l—qu/\uy]-v—k/aBa—n-v.

Since H}(B,R?) C H, it follows that a critical point u € HNH**(B, R3) of

Iy satisfies the first equation of (3.5) and then %%(c) L R? for a.e. o € OB
that

w0 ou ou

%(g) 1 E(J) for a.e. o € 0B. (3.9)

Now, setting

q)(.fl,‘,y) - (

we see that ® is holomorphic and by (3.9) is real on dB. Therefore by

2

@
on

? ou du
)21%-5 for every n = (x,y), t = (—y,z) € B

the Cauchy-Riemann equations ® is constant in B but since ®(0,0) = 0,
u is conformal. Boundary regularity and strong orthogonality follow from
standard elliptic theory, we refer to [35]. m

Now for every u, w € H N H*?(B,R?) and v € H by similar argument, we
have

3d*V (u)w,v) = /Bw-(vx A Uy + Uy A vy) +/

v-(Wy A Uy + uy A wy) + / u-(vy A w
B

B
= 3/( A wy + Wy A Uy) —|—/ (_u/\ —|——w/\ )
Uy A\ Wy + Wy A Uy)-V ot w S A )

= 3/(um/\wy+wx/\uy)-v
B
and thus by density for every v € H N H*?(B,R?) there hold

(d*Io(u)w,v) = / Vw-Vv + 2/ v-(wy A Uy + Uy A wy) Vw,v € H;
B B
(3.10)
(d*Io(u)v,v) = / [Vol? + 4/ w- (Vg A vy) Vv € H.
B B

Note that equation (3.5) is invariant under the action of the group of
Mobius transformation of the unit disc and by translation in the direction
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of vectors in the plane. Following [12], up to a reflection with respect to the
plane, Iy has a manifold of critical points generated by the inverse of the
stereographic projection © from the south pole restricted on B. Namely if

we set
2 X —a
= LX) = e
¢ {99’() “1-ax’

where in complex notations, X = (z,y) = x + iy, then the manifold of

0el-mm), a=(a,a9) € B}, (3.11)

critical points is
Z={00g+p, geG, peR*}.
We prove that the manifold Z is non-degenerate, namely that 7,7

Ker dQIO(z) for all z € Z where TZZ denotes the tangent space of
at z. We first characterize explicitly ToZ.

Nl

3.1.2. LEMMA. In the above notations we have
ToZ = span {@ Nes; (e1-0©)0; (ey-O)O; eq; 62}.

PROOF. By easy computations one finds

90 o gg (0,0)
A — A O
00 16=0 “ ’
190 © gy (a,,0)
z a1, — .00 —
9 8&1 14120 (61 ) €1,
190 o go,(0,a,)
2 Oas |az=0 = (2 0)0 e
9©+p)  _ 19
aﬁl |p7.:0 7 ’

The lemma then follows immediately. m

We fix the following notations

El = e3 N\ @, E2 = (61 : @)@, E3 = (62 . @)@

(3.12)
Go = span {E1; Ey; Es}.
The above result can be restated in the following way
C1 0 ai
ToZ = o |+ 0 | ANO+ as | -© 1|06, ci,a;,b3 €R, 1=1,2
0 bs 0

We are now ready to prove the non-degeneracy condition which plays here
a key role, we shall state the following
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3.1.3. LEMMA. The following equality holds
ToZ = Ker d*Iy(©).

PROOF. It is enough to show that ToZ D Ker d*Iy(©) since the reverse
inclusion always holds true. Let us first emphasize that, in view of (3.10),
by partial integration w € kerd?Iy(©) if and only if it satisfies the following
equation

Aw =2(w, NOy + 0, ANwy) in B,

w(0B) C R?, (3.14)

(5) LR? Vo €0B.
Equivalently after inverse of the stereographic projection on the sphere 52,
the first equation in (3.14) becomes

2
Agow = ¢(w¢ A Oy + @¢ N wg) in S_%_, (3.15)

sin
where 0 < 0 < 27, 0 < ¢ < 5 are the spherical coordinates on the half
sphere S_% and A, is the Laplacian with respect to the standard metric on
s2.

We shall extend © and w to the whole sphere S?. We may write ©(¢, 0) =
(sin ¢ cos 0, sin ¢sin 0, cos ¢) = (x1, T2, 73), ¢ € [0, ) and define:

O(z1, 9, 23) = (v1,20,23) f0< <

S

@({Ela CUQ,.T?,) = (.CUl,.fCQ, _'CC?)((TF o ¢)79)) if g S ¢ S .

© is nothing but the inverse of the stereographic projection. Similarly we
also extend w(xy, x9, 23) = (wh(w1, T2, 23), w? (21, T2, 13), W (21, 79, 23)) ON

S? by

W = (wl(xl,xg,:1:3),w2(:1:1,a:2,x3),w3(x1,xg,azg)) if0<op< g,
TIJ — (w1<$17x27 _$3)7w2($1,$2, —.CE3), —wg(l'l,.flfg, _'CU3)) lf g S QS S ™
Clearly w € HY*(S?) and satisfies
9 3
Ay = m(@(b A1lp + Wy AOg) on SZ. (3.16)

Now by a result in [17] Lemma 9.2 or [63] Proposition 3.1

W=c+bAO+ (a-0)6, for some a, b, c € R>.
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Now since w = w on S_2H returning on the plane, we infer that

C1 b1 aq
w=|c |+]| b | NO+ a | -©106, onbB.
C3 b3 as

The fact that w € H, implies that c3 = b1 = by = 0, as well as the orthog-
onality condition in (3.14) implies that a3 = 0. From this we see that w is
of the form as in (3.13). =

As mentioned before, equation (3.1)-(3.2) is invariant under the non-compact
group of conformal transformations of the unit disc and therefore it is im-
possible for the Palais-Smale condition to be satisfied. A convenient way to
factor out the symmetry group could be to impose a three-point-condition
on admissible functions, for instance see [89]. In our case the boundary
data are allowed to vary freely on 0f2, so we shall normalize the admissi-
ble functions by imposing integral constraints, restricting ourselves to the
following Hilbert space

H, = {u c H"*(B;R?) - /VU-VEZ- =0, i= 1,2,3}.
B
Now let Z = ZNH, = {@ +p, pE€E Rz} and also letting

(ToZ)*: = {1} eH : (v,e)12= / ' =0, i= 1,2} ; We = (TeZ)*MH,,
B
(3.17)
we see that H is decomposed as

H=ToZ ®(ToZ) =ToZ ®We @ Go. (3.18)

Since every v € (ToZ)* C ‘H satisfies v3 € Hy*(B,R) by Poincaré inequal-
ity, the space Wg endowed with the norm ||Vwv|| is Hilbert and moreover
if we impose orthogonality to ©, d2Iy(©) becomes coercive on Wg, namely
the following result holds true (the proof is similar to the one in [4§],
Lemma 5.5).

3.1.4. LEMMA. There exists a constant C' > 0 such that
(d*Iy(O)v,v) > C||Vol? Yo e Weo  with / Vu-VO =0,
B
(d*IH(©)0,0) = —ir.
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3.2 The abstract method

We start with some preliminaries. Let us consider the (signed) distance
function defined by

5 dist(X, S) if X € Q,
d(X) := . -
—dist(X,S) if X e R®\ Q.
For some small ry > 0 depending on S = 912, it is well known (for instance
see [35] 14.6 Appendix) that d is as smooth as S where
¥, = {X eR® : |d(X)| < zro}.

If ¢ € S, then up to a rotation (depending on ¢), we may assume that 77,5
coincides with R? and e3 with the inner unit normal at g. Moreover letting
B,,(q) = roB + q, we can assume that SN B, (¢) — ¢ is the graph of some
smooth function ? satisfying ¢%(0,0) = 0 and dy?(0,0) = 0, with Taylor
expansion

1
(X)) = 5 (hyX, X) + O(IXP) VX = (x,y) with | X]| < rg.

Here h, (the second fundamental form of S at ¢) is the Hessian matrix of
¢? at (0,0). Similarly, one also has (see [35] 14.6 in the Appendix)

d(X) =e3X 4 = <i3 X. X)+0(X]®) VX eB,,

- —hy 0
e (0 oo

The mean curvature of 99 at g is given by Hyo(q) = 3trhy.

where

Let ¢*1(X) = —apq(sX), so S. N Bu(p) — p is the graph of =7, with
p= —q and d°(X) = 1d(€)N(). Then we have

P(X) = S(h X, X) +2O(XP) VX = (x,y) with |X| < =, (3.20)

and moreover

(X)) =esX + = (h X, X)+0(IXP) VX € Bu. (3.21)

The inner normal of S. = 18 at the point p+ (X, ¢*(X)) has the following

expansions:

NA(X) = (=V¢(X),1) = (—eh, X, 1) + 0| X]?). (3.22)
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3.2.1 Functional setting
Admissible functions. The class on which we will study problem (3.3) is
M(S.) = {ue H*(B,R?) : u(dB) C 5. a.e.}.
For u € M(S.), we will also define the Hilbert subspace of H?(B,R3),
M, (S:) = {ve H?*(B,R%) : v(o) € Ty,)S- ae. 0 € OB} .
Note that the subclass of M(S;) defined by
Ms(S.) = M(S.) N H**(B,R?)

is dense in M(S:) and it is a Hilbert manifold (while M(S;) is not) with
tangent space at u € My(S;) given by

T, Ms(S.) = {v e H**(B,R’) : v(0) € Ty,)S: Vo € 9B} = M,(S:)NH**(B,R?)

which is also dense in M., by [80].

Since we are dealing with free boundary surfaces, in order to have a func-
tional whose Euler-Lagrange equations are (3.3), following [88] one can
correct the term V' (u) by subtracting the volume of some surface @ con-
tained in S; and depending on u. First of all we define

M(S.) ={ae M(S.) : a(B)C S-ae } and My(S.) = M(S)NH*?(B,R?)

with

T Ms(S.) = {@ € H22(B,R%) : #(X) € TyxyMa(S.) VX € B} |

Recall that an extension of u € M(S.) is a map @ € M(S.) such that
u = 4 on OB and an extension operator is a map 7. : D(n.) C M(S.) —

M(S.) with open domain D(1.) such that 7.(u) is an extension of u for all
u € D(n.) and smooth restriction 7. : D(n.) N My(S.) — My(S.).

3.2.1. LEMMA. Let i € HY*(B,R3) be an harmonic map. There holds

1
sup dist(u(X),u(0B)) < —||Vall.
XeB m

PrRoOOF. It will be enough to prove

1
ey - < _ -
ess UlenafB 1u(0) —u(o)| < —ﬁHqu (3.23)



3.2. The abstract method 29

because for every X € B, there exists a conformal diffeomorphism (in G,
see (3.11)) g : B — B such that g(X) = 0 and g(0B) = 0B, therefore
we may replace @ with % o ¢! thanks to the conformal invariance of the
Laplace equation.

By the mean value property of harmonic functions we have
i(0) =5 [ alo)a
u(0) = — u(o)do,
21 OB
by Holder inequality and again by the mean value property
1

ess inf |@(0) —a(d’)| < \a(O) u(o’)|do’
o'€dB
< (o")|dodo’
OB aB
< 2(// |O’—0’|d0’d0’> (// TR
dB JoB oBJop |0 — 0|

Since

/ / lo — ¢'|*dodo’ = 87* and / / o Gl dodo’ < 27 / Val|?,
0B JoB OB |U - U| B

we get the result. =

We define

M(S:) = {ue M(S) = | Vull < TVt

and also

My(S.) = M(S.) N H**(B, S.).

We now state the following result which is in some sense a localized version
of Lemma 2.1 in [88].

3.2.2. LEMMA. For everye > 0, there exists an extension operator n. with
domain D(n.) = M(S.).

PROOF. Let u € M(S.) and % denote its harmonic extension of u,

uw=wu ondB.

{Au:O in B,
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By standard elliptic regularity, « is as smooth as u and depends smoothly
on u in the H?-topology (in fact it is linear in u). Let X € B then

dist(u(X), S.) < |u(X) — a(o”)| + dist(u(o’), S:) for a.e. o' € OB.

The second term of the right hand side is zero since u(0B) C S, hence
from the above lemma and the fact that ||Vu|| < HVUH we get

dist(u(X),S:) < f < <
(). 50) < ess nf, (1) — )| < <= |V
Consequently, by the regularity of S., we can project (pomtw1se) uon S,
to obtain a unique extension u defined by the following implicit equation:

for every X € B,
W(X) = a(X) — v (a(X))d (a(X)), (3.24)

where v°(p) is the inner unit normal of S. at a point p € S.. Moreover
the mapping u — u — u defines an extension operator 7. with domain

D(”E) - M(Se) u

We notice that, in fact, 7. is defined on M(S.) + Hy*(B,R?) and
Ne(u+ ) = () Vo € Hy (B, RY).
Since n.(u(o)) = u(o) for all o € OB, one has that

(dn.(u(0)),5(0)) = 0(0) Yo € OB, Vo € TiMy(S.).

Moreover since v = n-.(u) = 4 on 0B, %t‘ = % a.e. on 0B and so by

integration by parts, for every u € Ms(S.) we have

1 _
(dVon.(u),v) = —/ (%/\u)'vds, Vo € T,My(S:) = HS’2(B,R3)HH2’2(B,R3)+
OB

3
(3.25)
Now we define for every u € Ms(S.),

/|Vu|2—|—2 u) — V on(u)]. (3.26)

3.2.3. REMARK. For u smooth, it is clear that the term [V (u) —V on.(u)]
represents the volume of the set bounded by the image u and 0S.. As
already explained in the introduction, M.Struwe in [88] needed to impose
some conditions on €2 to define the extension n. In our case instead, since
we look for solutions with bounded energy as € — 0, no restriction on €2 s
needed.
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Note that by (3.25) and (3.8), the differential of I, at a point u € Ms(S.)
is independent of 7)., namely we have by density

(dI.(u),v) = / Vu-Vu + 2/(% Auy)v Vv e M,(S:)
B B
and

(d*I.(v)w,v) :/Vw-Vv%—Q/(wx/\uquux/\wy)-v Vo, w € M, (S:).
B B

Hence I is smoothly defined on My (S.) moreover (see [88] Lemma 2.2) it
easily follows the

3.2.4. LEMMA. Let u € My(S.), then

(dI.(u),v) =0, Yve& T,Ms(S.) iff u solves problem (3.3).

3.2.2 Construction of approximate solutions
We start by proving the following technical lemma.

3.2.5. LEMMA. Let T = (1;;) be a 2 x 2 symmetric matriz, and consider
the following problem

p

Lw = —L(3(TX, X)es), in B,
{ w(0B) C R?, (3.27)
| (X)) = (TX,0) X € 0B,

where L 1s the operator
Lu=—Au—+2[u; NOy+ 0O, Auy).
Then (3.27) admits a solution wy € H N C*®(B,R3) which satisfies
Jwrlls2 < €T, (3.28)
where C' s a fixed positive constant.
PROOF. Problem (3.27) can be reformulated as
d*1y(0)[w] = gr, (3.29)

where gr € ‘H is defined by duality as

(gr,v) = /B(tr T63—2[(TlX)eg/\@y—i—(TgX)@x/\eg])-v—/aB(TX, 0)v YvéeH,
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where T;, © = 1,2, denote the rows of the matrix 7. Observing that the
operator d*I(©) is of the form ”Identity+compact”. Thanks to Fredholm
theorem and Lemma 3.1.3 problem (3.29) is solvable if and only if gr is
orthogonal to the vectors e;, and Ej for ¢ = 1,2, j = 1,2,3. We have, by
symmetry of T,

—2[(T1X)es A Oy + (TbX)O, Neg] = p° (z(1+2* — )T+ y(1+ 32> — y*)Tho +
+ u? (y(l + 4% — 362)T22 + x(1+ 3y — 962)T12 +

Since F; = xzp® and Fy = yuO, by oddness, we have that (hr,e;) =
(hr,E;) = 0 for i,j = 1,2. Now writing £y = u(y, —z,0), and since
(E1,e3) =0, by oddness and symmetry of 7', we get

(hr, E1) = T12/

,LL2 (xQ—y2+y4—:E4) _T12/ M($2_y2)-
B

OB
hence by antisymmetry of the integrands, we infer that (gr, £1) = 0. Now

the estimate (3.28) follows by standard elliptic regularity. m

We will denote by w, = (w;,wg,wg’) the solution waq of (3.27) for every

q € 09 and w; = (w;,wg), where h,, defined in Section 3.2, is the second
fundamental form of S = 002 at q. As we will see later in Lemma 3.2.7
below, the role of w, is to make the approximate solutions more accurate.
From now on it will be understood that O,(X) (resp. O,(c)) denotes a
smooth function depending on X € B (resp. o € dB) and maybe on ¢,
uniformly bounded together with its derivatives in ¢ as ¢ — 0 for every
X € B (resp. 0 € 0B) and q € S.

We define our approximate solutions to be
(X)) = O(X) +p+ew(X) + 71X + ew)(X))es for every X € B
with ¢ = ep, and let
WX) = ewy(X) + (X + e (X))ey 0
= ewy(X) + 5(heX, X)es + 20,4(X),

so that 27 = © + W9, Then if ¢ is small, by construction of w,, 2? has
the following properties

5P e MQ(S&‘),
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0z°P
o (o) = (ehgo, —1) +e0,(0)es

= —N.(0+ew,(0)) +€0,(0)es + 20y (0) on OB,
(3.31)
where N(o + ew(0)) is the normal of S. at the point 2*P(0) = p + (0 +
ewy(0), 70 + ewy(o))) having the expansion given by (3.22). Moreover

since
2P =0 4 p+ec0y(X), (3.32)
by (3.30), we have that
025
5p. = e+ 20,(X)  i=1,2, (3.33)

where 222§ = 1, 2 are derivatives in the directions (1,0, p59) = 0,(X, ¢*4(X))
pi
and (0,1, ;) = 9,(X, p™(X)) respectively.

Recalling the expressions of E;, see (3.12) and of Mobius group G, we

set
Ei’q _ Bze’p;%&(o,o)wzo = FE awg’qggﬁ(o’o)w:w
qu _ azavpgiol,(al,o)mlzo_}_Qel — 2E2+Nm+z?(al=o)|a1:0’ (334)
Byt = g | 49e, = 2F;+ Zgbem

and we define
G.eo = span {E7Y; B3 B3},

Now having the approximate solutions 27, we define the sub-manifold of
MQ(S&;) by
Z.={z" : pe S.} (3.35)

with tangent space at z°"

0z5P
T.enZ. = span { - , 1= 1,2} .
Opi

We let

N 0z°P ,
(TZE,pZE) =<V E ./\/lze,p(SE) : <’U, . >1’2 =0 1= 1, 2

50 that M»(S.) = Toew Z. @ (Teew Z.) ", where (-, -), , is the scalar product
in H'2(B,R%).
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3.2.6. REMARK. Let v € M.»(S:). Since for every o € OB, T.ep(y)Se is
spanned by the vectors (1,0, 934 (0 + ewy(0))) and (0,1, 9y (0 + cwy(0)))
so for a.e. 0 € OB we have
3 | , 2 ;
v (0) = v (0)py (0 + ewy (o)) +v (o) (o + ew) (o))

and hence by the trace theorem

lv < Ce([lv iz + [v*l12) < Cellvllrz. (3.36)

3
HH%=2(3B)

Secondly we observe that there exists C' > 0 depending only on ) such that
for every e < 1

/ w|? < c/ Vo, Vo e (TosZ)- (3.37)
B B

In fact on the one hand letting v € (T.erZ.)" we have by (3.33), | [z 0] <
el|v||l12 and by Poincaré inequality we have
) i=1.2.

B

10| 22(08) < €llv]l1.2,

il < ¢ (HWII ;

On the other hand by (3.36)

so using the following inequality (see [85], Theorem A.9),
[ < C (V)] + 10 220 »

we obtain
o]l < C[Vol| +el[v]l2.

3.2.3 The finite-dimensional reduction

We define
W,ep = {v € (Tzs,pZ€)l : / Vv-VEf’q =0 7= 1,2,3} , (3.38)
B

so that by (3.37) we may assume that the following decompositions hold

Mze,p(sg) — Tzs,ng EB (TZE,pZE)J_ — Tze,ng @ Wzs,p EB GZE,;D. (339)
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On the other hand by the regularity of the approximate solutions, we have
T.-»Z. and G.-» are subspaces of T.-» Ms(S.), so we may also assume the
following splitting:

ToewMo(S2) = ToewZe @ Woew N ToewMo(S2) @ Glrew. (3.40)

As explained in the first section, we want to reduce the problem of finding
critical points of I. on Ms(S.) to a finite dimensional one. A sub-manifold
Z. of My (S.) is said to be a natural constraint for I. if

(Al 7. (u),0) =0 Vo € T,Z. = (dI.(u),¢) =0 V¢ € T,Mj(S-).

Our aim is to perturb the sub-manifold of approximate solutions Z. to
a natural constraint. This will be done by finding solutions of the form
u = exp,(w) with z € Z. and w € W, N T, My(S.) such that =.dI.(u) €
T.7.®G.. Here (z,w) + exp,(w) denote the exponential map of My (S.),
=, : H*?(B,R?) — T,My(S.) is the orthogonal projection onto T, Ms(S:)
and u +— dI.(u) € T, M5(8S.) is the gradient vector-field of I.. If we denote
by P, : T.M3(S.) — W. N T.Ms(S.) the restriction of the orthogonal
projection M, — W,, our problem becomes equivalent to the system

{PzEzdlg(epo(w)) =0,

P.w =w.

By a Taylor expansion this is equivalent to solve the following fixed point
problem
w=—L,"{P.dl.(z) + P.E.N.(w)},

where L, = P.d?I.(z) and N, is quadratic in w. We will solve it in a small
ball of W, NT.M(S.) to get w(e, z). To verify that Z. = {exp.(w(e, 2)) :
z € Z.} is a natural constraint for I., we will use the argument of [[4]
section 8.4] and [16].

The remaining of this section is devoted to carry out this program. We
need first to show that ||dI.(2%P)]| is small, and that d*I.(z%?) is uniformly
invertible on W.<» N T.e0 M3 (S.). From now on, we will assume that p = 0
corresponds to the origin by replacing S. with S. — p.

3.2.7. LEMMA. There exists constant Cy; > 0 such that for every € > 0,

{dI.(z5P), v)| < C1e?||v||10 Vo € Men(S;).
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PROOF. First of all, thanks to (3.31) and (3.36), for every v € M_e»(S-:)
one has

0z5P
; wds = [ N.(o 420! (0)) - v(o)ds + [[v]120(?).
oB On OB

Moreover since N (o + ew,(0)) is normal to T.-p(4)Se, it follows that

6Z€ap
OB 8n

By Lemma 3.2.5, one has that L(w?+3(h,X, X)) = 0 and then by (3.30)

wds| < Ce?||v]|12. (3.41)

(LU 0)| < Ce?||v]|.2. (3.42)

If v € M,=»(S:) then by integration by parts,
(dI(27),0) = / V250V 4 2 / (257 A 25P)-v
B B

- — /B (A@ — 20, A @y) ) — /B (A\Ijs,q _ 2\112,"1 A \I/;’q) v
E,p

_|_

wds +2 [ (ULTA U0,
[ s /Bu ).

Now we use I. in Lemma 2.3.1 and the Holder inequality to have

e.p
/ 02 vds
OB 87@

hence from (3.41) and (3.42) the lemma follows. m

[(dI:(277), )] < (LY, 0)] + o,

+ 2|V

3.2.8. PROPOSITION. There exists a constant Cy > 0 such that for all
e > 0 small,

PL(ZP v, v) > Os|| Vol Yo € W,ew with | Vo-V2P =

( : :
B

(PI(2°P)25P 2°P) = —47 + O(e).

PROOF. Since d*I.(z7) ~ d*Iy(©), we may rely on Lemma 3.1.4.
By (3.32) and (3.33) and recalling that Wo = (TeZ)* N'H,, (see (3.17)), it
is enough to consider those v € M ,-»(S-) N 'H,, satisfying

/qﬂ'zo,z‘:m with /W-V@:o.
B

B
For such v, we define

(3.43)
7> =0v®  onOB.

{Av3 —0 inB,
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By (3.36),
1712 = O(e)lIVo]l. (3.44)
Let o3 = v3—v® € H}(B;R). We then have v = 9+ where ¥ = (v!, v, 93)
and v = (0,0,9%); [|[Vv|]* = ||V0||? + || V?]|? and © € We. Clearly
(d*In(©)v,v) = (d*Io(©)v, 0) + 2(d*IH(©)v, v) + (d*I,(O)v, v).

Since

1 1
(d?1,(© / Vo-Vo+— / (@x/\@y—l—@x/\@y)—‘rg/ @-(@x/\@ﬁ@x/\@yﬂg/ O-
B B
by (3.44) we have
(d*1h(©)0,7) = O(e)||Vv|*.
It is easy to verify that
(d*1o(©)v,7) = || VT,

so we get

(d*Io(©)v,v) = (d*1H(©)v,0) + O(e)||v]i 2 + IVT. (3.45)
Let us estimate (d?I(©)v,v). We define v = © + ¢, where

[z Vi?-ve?
0,0, %) .
o= (00 g

Clearly ¢ € H}(B,R?) and ¢ = O(¢)||Vv||es, moreover v € We and satis-

fies [, Vu- VO = 0. Furthermore ||[Vu||* = ||Vo]]* + ||[V¢|]* + O(e) | Vo||?
hence by Lemma 3.1.4

(d*Iy(©)v, v) = C||Vul|* = C[|[Vol* + O(e) Vvl .

Now we have
(d*1(©)8, 7) = (d"Io(©)y, v) — 2{d*Io(O)y, ¢) + (d"In(©) ¢, ¢)
and by Holder inequality
(@Lh(©)v, ¢) = OE)|Vull[Vull,  (1o(©)d, ¢) = [ Vo|* = O(c)[| V][,
thus
(d*1y(©)v,0) > C||Vo|*> + O(e) | Vvl|>. (3.46)
Therefore by (3.45) and (3.46), we conclude that
(@ 1)(©)v,v) = Col[ Vo[> + O(e)[Vu[* Vv € Wee, / VoV = 0.
B

This ends the proof. =

We will also need the following result.



38 3. Free boundary Plateau problem for large H -surfaces

3.2.9. LEMMA. Let f € L*(B,R?), and u = (u',u? u?) € M =»(S.) satisfy
/Vu-Vv = / fv Yo € M=»(S:). (3.47)
B B

Then u € H*?*(B,R3) and there exists a constant C' > 0 such that for every

ek 1,
[ull22 < CIf]]-

PrROOF. Without loss of generality, we may assume that zP(z,y) =
(z,y, ¢79(z,y)) for every (z,y) € dB. Notice that Hy*(B,R?) C M.-»(S.)
so u satisfies Au = f a.e. in B and thus u € H> 2(B R3).

loc

Let ¢ € H'?(B,R), then considering the test function v = (1,0, p59)y €
M =»(S:) and using the fact that

Vu-Vo = Vu' - Vi +¢21(Vu’ - Vi) + (Vi - Vi )y
= Vu' - V¢ + V(e5%?) - Vi =’V ? - Vo + (Vu® - Vi)

we have
/V + =)V — / WV Vi = /f¢
B
where f = f1 4+ f3p2¢ — Vu? - Vi, By the Gauss-Green formula

/ wVpsl . Vi = / div(u*Vei )y — [ (Ve - n)uipds.
B B

0B

Setting w = u' + ¢3%® € HY*(B,R), g = f + div(u*V¢5?) € L*(B,R)
and ¢ = (Voo? - n)u € H22(OB,R) then w satisfies

/ Vw-Vip = — Pds + / g, v € HY*(B,R).
B OB B
It follows that w is a weak solution of the problem

Aw=—g in B;
g—;‘; = —¢ ondB,

hence the following properties hold
u' + o € H**(B,R); (3.48)
lu' + 5%’ 22 < CUFN + 195 caa 1w’ 2)- (3.49)

By a similar argument testing on v = (0,1, ¢} )1, we have

w’ + 5%’ € H**(B,R); (3.50)
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1u? + 051 [la,2 < CUIFI+ 197 e 1w 1.2). (3.51)
Since u € M »(S:),
w} (o) = u' (o) (0) + u’ (o), (o) for ae. o € IB. (3.52)

We multiply equation (3.48) by ¢3¢ and (3.50) by ¢;“, and take the sum
to have

W1+ |Ve™|?) € H>2(0B,R)
thus thanks to (3.48) and (3.50), u € H22(8B,R?) and hence u € H*%(B,R?).
Now let us estimate the H??-norm of u3. We write u = @+ where 4 = u’es
and % is the harmonic extension of ©? as in the proof of Proposition 3.2.8.

We have by (3.52) and the trace theorem that
1@]22 < Cllu?|lz 5 < Cellullz.

If we consider the test functions in the form v = veg = (0,0, 1) € M=»(S:)
for every ¢ € HS’Q(B ,R), it follows that

[@*]l2,2 < CIf]]-

The two previous inequalities give

[ ll22 < CUIFII+ Cellulla,z).
Hence using (3.49) and (3.51) we obtain
lullz2 < CUIfII + Cellullzp),

so we have the result. m
We let P(= P.,) : M,»(S:) — W,e» be the projection onto W,-». By
(3.40) the restriction of P on the tangent space T,-» M5 (S.) satisfies:

P TZE,PMQ(Ss) — 2EP N Tzem./\;lg(sg).

Via duality, we will be considering d?I.(2°?) : Toeo Mo(S:) — Thew Ma(S.)
and we define

L€7p =Po d2lg(287p) . Wzs,p N Tzs,pMQ(Sg) — e [ Tzs-,p./\;lg(sg).

From Proposition 3.2.8 and Lemma 3.2.9, we deduce the
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3.2.10. COROLLARY. For for every e < 1, and every p € S., the operator
L., is invertible on W,e» N T.-oM5(S.) and there exists a constant Cy > 0
such that

HL;;UHQQ < C_'QH”UHLQ Yo € W.er N Tzs,p/\;lz(sg), p € Sg-

PROOF. Since [, vz&p.vfig—;” = O(e), one has
|V25P — VPzP|| = O(¢) (3.53)
and from Proposition 3.2.8,
L.,z = —4nP2*P 4+ O(e).

Now following [4]-(section 8.4) and according to Remark 3.2.6-(3.37), set-
ting

Vi=RPz*P; V= {v € M.e(S / Vo VP = O}

thanks to (3.53), we may assume that V; L V5. We decompose W, =
V1 @ V4 then in matrix form with respect to V; and Vs, L., can be written
as

—4nld+ O(e) O(e)
O(e) By 7

where B., satisfies, by Proposition 3.2.8, || Bz,vll12 > Cal[v||7, for every
v € Vo N Toew Ms(S.). Hence there exists Cy > 0 such that for ¢ < 1
HLs_,zlval,? < C~12||UH172 Yv € W,er N Tz&PMQ(Sg). (354)

We set u = L;;)U so that Pd*I.(2°?)[u] = Puv, or equivalently d? I (25P)[u] —
V € Ten Z-BG er by (3.40). Then, there exist o, @ = 1,2 and 3;, j = 1,2, 3
such that for any ¢ € T,-» My (S.),

0z°P 0z°P ’
27 e
érisma- o Yoo [ (V5 me ) orowe
We first estimate a; and ;. By equation (3.33) and (3.34), we may write

0z°P
Ip;
EX" = Ej+e0)(X)  j=1,2,3

= e +e0L(X) i=1,2,
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therefore for every ¢ € Theo Ms(S.)

2 3 ) \
, . . . _ T . G (2 e,p _
;aZ/BeZ ¢+;5J/BVEJ V¢+s;a2/30q ¢+s;ﬁ,/30q¢ (21 (257)u, )

thus by the mutual orthogonality of e;, Ej for i = 1,2, 5 = 1,2, 3 it follows
by (3.54) that

Z |az|+02 8] —<C (Z |ovi| + Z 18] > < C(fJullig+lv]l2) < Cllv]l1z.

Finally observe that u satisfies the following;:

2

0P
i (v e - ) womc2 ffnsirsonu o o
B i1 Di =1 B B

i:

for all ¢ € T,-oM5(S.). By density of T.eoMs(S.) in M.-»(S.), Lemma
3.2.9 and (3.54) we get

[ull22 < Collulliz + vflh2) < Collv]lre.

This concludes the proof. m

We consider the projection = (= =) : H**(B,R3) — T,»M3(S.) which
is well defined since T.-» M5 (S.) is a closed subspace of H*?(B,R3) by the
compact embedding of C(B,R?) into H*?(B,RR?). This projection varies
differentially in p by the regularity of My(S.), see also [90].

With an abuse of notation, we denote u +— dI.(u) € T, M5(S.) the gradient
vector-field of I..

The following proposition shows that, by Lemma 3.2.7 and Corollary 3.2.10,
the manifold of approximate solution Z. can be perturbed to a natural con-
straint Z. for I..

3.2.11. PROPOSITION. Let I. be the functional defined in (3.26) and W.e.
in (3.38). Then for ¢ > 0 small and p € S., there exists a unique w =
w(e,p) € Waew NToewMa(Se) such that Z. ,dI(exp,er(w)) € ToenZ-® G e,
The function S: > p — w(e,p) is of class Ct. Moreover, the function
F.(p) = I.(exp,-»(w(e,p))) is of class C! in p and satisfies

Fsl(p) =0 = <d[5(eszg,p (U)(E,p))), ¢> =0 qu S Texpze,p(w(s,p))MQ(Sa)-

PROOF.
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Our aim is to solve the problem:

(3.55)

PEdlg(eXpZap(w)> — 0,
Pw =w.

We make the Taylor expansion for the mapping w +— exp,c,(w) — dI(exp,-»(w))
form T.e» Mo(S:) into Toyy, ., (w)M2(S:) in terms of w:

dI(exp,e,(w)) = dI.(2°7) + d*I.(2°?)[w] + N p(w)

with % — 0 as |w||22 — 0 uniformly in ¢ and p. Observe that with

this expansion, (3.55) is equivalent to find w € W.c» N T,e0 Ms(S.) such
that
—Pd*I.(2°")[w] = PdI.(2°?) + PEN.,(w)

because dI.(2°?) and d*I.(2°P)[w] belong to T,-» My (S.) and thus we are
led to the following fixed point problem

w = —L., {PdI.(z*") + PEN (w)}.

We define the map T.,(w) = —L., ' {PdI.(*?) + PEN(w)}. By
Corollary 3.2.10, T;, is defined from W,e» 0T’ Zs,p./\;lg(Sg) into itself. We
are going to find a fixed point of 7., in the ball on T,e» My (S.) defined as

Br = {w EW.er N Tzs’p/\;lg(sz;) : HwHQ’Q < €2R}

where R > 0 will be determined later. Let w € Bg. Thanks to Corollary
3.2.10 and Lemma 3.2.7 one has that

T2 p(w)]]22 < Co{e*Cy + C=*R?*}

and thus, if we choose R sufficiently large and e small respectively, 1% ,(w) €
Bp. Now since NV (w) is quadratic, if € is small enough, the map 7., is a
contraction in Bp, yielding the existence.

Following [6] Proposition 4.3, we can deduce the C! regularity of p +—
w(e, p) and hence of F. with

dw(e, p)
dp

= 0(?). (3.56)

2,2

To prove the last assertion, we set Z. = {exp.co(w(e, p)) : p €S- =100},
With an abuse of notation, we write z = 257, w = w(e,p) and let u =
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exp,(w). Call G, the subspace of T, Mjy(S.) spanned by the following

vectors

EU — au © 907(()’0)
! 00 jo=0’
du o go (a1,0)
Eu — s\U1, 2 )
2 —8 day - + 2Zeq, (3 57)
” U S go,(0,az)
F = —1= 26€5.

By the smallness of w, it is not difficult to see that EY = £+ O(e) with
q = ep and the E;"’s are defined in (3.34). Moreover we may assume that
T, Ms(S.) splits, as in (3.40), in the following way:

T Ms(S.) = T Z. W, N TyMs(S.) @ G,

because the result of Remark 3.2.6-(3.37) holds true also for u (in the place
of z°P) by the smallness of w and (3.56).

We claim that Z. is a natural constraint for I.. In fact, suppose that p
is a critical point of F. thus u = exp,.,(w(e, p)) is a critical point of |
meaning that dI.(u) is perpendicular to T,Z. on the one hand. On the
other hand, since also o(¢) = w € W, ~ W, solves (3.55), we may assume
that dI.(u) is perpendicular to W, N T, M»(S.) hence it remains only to
check if

0 # dl.(u) € Gy.

Following ([16] section 2), let us show that the latter case cannot happen.
Indeed, suppose there exist Bk such that

(dI(w),0) = Y B /B VE;-Vé, (3.58)

for every ¢ € T, Ms(S.).
We use the invariance of I. with the group, that is I.(u o g) = I.(u) for
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every g € G. We have, thanks to (3.57) and (3.58),

du o 96,(0,0)

d
0 = ggl(we g0l = (dLw), —77= )

do

I
]

Be / VE} VE}
B

>
I

1
3
= (51k —|—O(8))Bk
k=1
This shows that 3, = 0 if ¢ is sufficiently small. Applying the same ar-
gument using the curves a; — o (q,,0) and a2 — go (0,a,), We can see that
B = 0 for every k € {2,3}. In conclusion we have

(dI.(u),¢) =0 Vo € TuMy(S.) = TuZ. ® W, N Ty My(S.) @ Gy

which end the proof. =

3.2.4 Embedded solutions to the partitioning problem

Let us show that the image of solutions of our problem which are given
by Proposition 3.2.11 are embedded if € is small enough. We do this by
showing that, up to translations, the solutions are C! closed to a hemi-
sphere. Let ¢ — p. € S, = %89 be a curve of critical points of F. such
that ep. — g € S. In view of our construction there hold

Jewp.cse (w(e,p))— (6 = 7 1g) o < Cllewpier (w(e,p))—(6 = 7 1g) 22 — 0 a
(3.59)

by the Sobolev embedding.

Letting u® = (uj, us, u§) = exp.e» (w(e,p:)) then by construction we can

write u© = © + f° with || f]j22 — 0 as ¢ — 0. Because of the embedding

of H'*(B,R?) into L"(B,R?) for 1 < h < oo we have ||V f¢||ppgrs) — 0

when ¢ tends to zero for 1 < h < oco. This shows that by Holder inequality,

[uzAuy =02 AO, [ rprs) = || LA +ONAf+ oAyl rsy — 0 as € — 0.
(3.60)
Observing that from Lemma 2.3.1, u® satisfies

A(u® —0) =2 (uj Au;; — O, A O,) in B,
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we deduce from (3.60) that
|u® — (© + 5_1(])”01’5(B,R3) < (v —(©+ 8_1q)Hleo,?(B7R3) —0ase—0

for h > 2 by regularity theory and Sobolev embedding. We conclude that
u®(B) is embedded (in particular has no interior branch points).

We now show that u°(B) is a solution to the partitioning problem. In
the orientation chosen in Section 3.2 by assuming that ¢ = (0,0,0) is
the origin and the tangent plane, Spannediby (1,0,95%) and (0,1, ¢7),
corresponds to R? x {0}, we have that u°(B) is contained in a ball of R3
centered at the origin (with radius 2 for example) by (3.59). Moreover it
is evident that the boundary conditions is equivalent to u§ = ¢=9(uj, uj)
on 9B while (G, (1,0,95%(ug, u3))) = (G, (0,1, ¢4 (ui, u3))) = 0 on 9B.
This together with Lemma 2.3.1-2, imply that u® — O satisfies:

2

A —0) =2 (uj Au;, =0, AO,) =: ¢° in B,
uj — ©° = ™ (uf, uj) on 9B,
) (us — ©! du
N0 porus, ) 2 on 9B,
o(u§ — ©? cor e o 0Uug
\% = —y " (ug, 1&2)8—713 on 0B.

Therefore by elliptic regularity theory and (3.60), we get
[u5 — &%l < Cllg®lln + Ce ([[uillzn + 1u5ll2n) -

On the other hand we have, thanks to Sobolev embeddings and (3.59), for
1 =1,2 and h > 2 there hold

lu; = O'llz < Cllg?lln + Ce ([lu5 — O%[la + [10%]2)

It follows from the previous inequalities and again from Sobolev embed-
dings that for A > 2 we have

[u* = (©+e'q)lcropry) < Cllu” — (O 4¢7"q)||2n — 0 as e — 0. (3.61)

Finally we show that eu®(B) is contained in Q when ¢ is small enough.
Since u(0B) C S. = 20, it follows that d°(u®(c)) = 0 for every o € 9B,
where d° is the distance function defined in Section 3.2. Observe that by
(3.61) we have

F((X)) = 0°+0(e) = u(X)~1420,.(X) ¥X e B;  lim LT

t—07+

= 14
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where p1 (see Lemma 2.3.1) satisfies 1 < p < 2in B and [|O,_ [|¢z) < C
for any e positive small by (3.61). This shows that if £ is small enough
d®(u(X)) > 0 for every X € B. We conclude that eu® = ¢ exp.c,. (w(e, p:))
is an embedding of B into €2 if € is sufficiently small without neither interior
nor boundary branch points by (3.61).

3.3 Proof of Theorem 4.0.1 and Theorem 3.0.2

In view of Proposition 3.2.11, we can obtain existence of solutions to (3.3)
by finding critical points of the functional F.(p). The following lemmas are
devoted to the expansions of F. with respect to p and ¢.

For i € {1,...,4}, the mapping G; : 92 — R is a smooth function,
maybe depending on ¢ and uniformly bounded together with its derivative
as € — 0.

3.3.1. LEMMA. For ¢ small one has

. T
Von.(z7P) =V (zP) = —EEHQQ(q) + 52G1(q)

with g = ep.

Proor. We first need to provide the expansion of the extension z°? of
25P. For simplicity, we assume that p is the origin of R and we write
z = 2P also Z (resp. z) will mean the extension of 25 (resp. the harmonic

extension) of z&7P.
We recall form (3.24) that

2(X) = 2(X) = v (2(X))d" (2(X)),

and the expansion of the interior normal v#, given by (3.22), at the point
Z(X) € S.:
VF(2(X)) = e3 — e(h, 7 (X), 1) + £0,(X),

where Z' stands for the first two components of z : z/ = (z!, 2%). Moreover
& (2(X)) = e 2(X) + 5 (h,3(X), 2(X)) + €20,(X).

Using (3.19), the fact that the harmonic extension of © is (X, 0) and that
J)g’ = 0, we have

Z2(X) = (X,0) + @(X, ewy(X))es + €04 (X),



3.8. Proof of Theorem 4.0.1 and Theorem 3.0.2 47

where ¢*(X, ew, (X)) denotes the harmonic extension of the composition
of mappings X — (X, aw;(X)) — (X, ew,(X)). It follows that

d°(2(X)) = ¢7U(X) = 5 (hyX, X) + €°0,(X).

€
2
Hence we obtain

E7(X) = (X +e@)(X), 5 (h, X, X)) +£0,(X),

and thus
(57 NEP)EP = —e(X + el (hX) + S (hX, X) +€°04(X)
_ —§<th,X> +20,(X).
We conclude that
B € g2 e
vEr) = -- / hX, X) + = [ 0(X) = ~ZZ Hya(q) + £Gi(0).
6 /5 3 /5 12

3.3.2. LEMMA. For ¢ small, the following expansions holds

2T o
I.(2°F) = 3 gSHGQ(C]) + 82@4(@1)7

where q = ep.
Proor. We recall that 25 = © + U9 and

1 2
L(:) = 5 / ZRE / PP A 25P) — 2V (37).
B B

Let us expand term by term the right hand side of the above equality

1 1 1
—/ VPP = —/ \V@\2+—/ |v\116’q|2+/w9.v\1/57%
2 B 2 B 2 B B

/ PPN P = / 2P (O, N Oy + O, AT L TN O, + / 2P (TSN TS
B B B

= / 0:(0,A0,) + / ©- (0, AU+ TN O,) + / Uel(,
B B B

+ /B W (O, AW+ U1 A ©,) + /B I N 0
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Using 1. and 5. of Lemma 2.3.1 and an integration by parts, we have

1 1 1 06
ED . ( SED A e,p - _ @ 2 @ . lIle,q = @ . lIls,q - i
/Bz (227 A 2,7 2/B|V| /BV \Y% Q/BV \Y% +2 s On

Wy
+2/ O (WA W) — / O - (T A 8—)ds +/ 2P (
B OB ot B

Hence adding up, we conclude that

1

1
L(25F) = 5 /B VO — 3 /a ; =lds — 2V (2°P) + 2Ga(q),

where

1 2 owed
o) = 5 [ (Vw2 [ e =2 [ ooyt [ v

Now by property 6. of Lemma 2.3.1 and the following computations

/ p=lds = E/ <th,X>ds+€2/ (heX, wé>d3+€3/ Oy(0)ds = meHpo(q)+eC

we obtain

2
L) = 5 = GeHpn(q) =2V 0 n(=77) + £2Galg) + £°Cs(0).

Therefore the conclusion follows from Lemma 3.3.1. =

PROOF OF THEOREM 4.0.1 AND THEOREM 3.0.2

First of all we have
Fe(p) = I(exp.co(w(e, p))) = L1:(27") + (dI(27"), w(e, p)) + N(w(e, p)).
Using Lemma 3.2.7 and the fact that ||w(e, p)||2.2 < Re? we infer that
F.(p) = I.(z7F) + O(%).

Hence Lemma 3.3.2 yields

F.(p) = 2% — %6[{39(6]?) +&%G(ep) + O(eh). (3.62)

It follows that if @)y is a strict local maximum or minimum of Hyg, F. will

have critical points p. for which ep. — @)y as € — 0. Furthermore we have
by (3.56) that

2m 0w
| F. — = + EgHaQ o pellors,y = O(2), (3.63)
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where p.(p) = ep. If Qo is a non-degenerate critical point of Hyq then the
implicit function theorem yields also a curve ¢ — p. of critical point of F;
with ep. — Q.

The proof of Theorem 3.0.2 follows immediately by Proposition 3.2.11 and
the fact that F. is C! so it has at least cat(9f2) critical points. We refer to
[5]. =

3.3.3. REMARK. As mentioned in Section earlier, we can compare our re-
sult to the one of [93]. The expansions of the mean curvature of a geodesic
sphere of radius € contains only terms of order €* and higher, see [93], equa-
tion (1.4). If we perform our construction in a manifold, by (3.62) it is ev-
wdent that the boundary mean curvature would determine the main terms in
the Lyapunov-Schmaidt reduction. Other geometric quantities, with respect
to the scalar curvature as the second fundamental form of the boundary
could be relevant for the location of solutions only when the mean curva-
ture is constant, see § 7.5.






Chapter 4

Free boundary CMC hypersurfaces condensing along
a sub-manifold

We let © ¢ R™! and K a k-dimensional smooth submanifold of 9. We
let n := m — k be the dimension of the normal bundle of K in 0¢2. We
define Q. ;== 'Q and K. .= ' K.

Recall that our aim is to find solutions of (GM P). Consider the “half”-
geodesic tube contained in (). around K. of radius 1

S(K.):={q€Q: d(qg,K.)=1},

with

d(q, K:) = \/|distmf((j, K2+ |g — )2

where ¢ is the projection of ¢ on 9€2. and
dist”*(q, K.) = inf {length(y) : ~ € C'([0,1]) is a geodesic in 9Q; (0) € K; ~

By the smoothness of 92 and K, the tube is a smooth, possibly immersed,
hypersurface provided ¢ is sufficiently small. This tube by construction
meets 0f). perpendicularly. Furthermore the mean curvature of this tube
satisfies (see also § 4.2)

mH(S.(K.)) =n+ O(e) (4.1)
as € tends to zero and hence it is plausible under some rather mild assump-
tions on K that we might be able to perturb this tube to satisfy (GM P)
with mean curvature . It turns out that this is not known to be possible
for every (small) ¢ > 0 but we prove the following theorem :

4.0.1. THEOREM. Let Q) be a smooth bounded domain of R™, m > 2.
Suppose that K is a non-degenerate minimal submanifold of 0€2. Then,
there exist a sequence of intervals I; = (5 e, withe; < &f andlim;_, & =
0 such that, for all ¢ € I := U;I; the “half” geodesic tube € S.(K.) may
be perturbed to a hypersurface €S- satisfying (GM P) with mean curvature

—n ~—1
HESE :Es

and contact angle 5. Namely there exists a family of embed-
ded constant mean curvature hypersurfaces in Q with boundary on 02 and

intersecting it perpendicularly.
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4.0.1. REMARK. e We emphasize that our argument provides also a sta-
tionary area separating of R™\ Q when considering the lower hemi-
sphere parameterized by the stereographic projection from the north
pole over the unit ball, see Section 4.2.

e Notice that the surfaces we obtained might have interesting topology.

In fact as far as € tends to zero, our solutions concentrate along K
hence inherit its topological structure. Furthermore we cite that some
existence result of various minimal immersions were obtained in [55]
and [81].
We believe that the minimality condition on K should also be neces-
sary to obtain a result in spirit of Theorem 4.0.1, see the last paragraph
of [64]. The non-degeneracy condition might fail in some interesting
situations, for example when a symmetry is present. In this case how-
ever, one can take advantage of it working in a subclass of invariant
functions: this might also guarantee existence for all small €, see [64]
Section 5.

o The hypersurface S. is a small perturbation of S.(K.) in the sense that
it is the normal graph (for some function whose L™ norm is bounded
by a constant times €) over a small translate of K. in 09 (by some
translation whose L™ norm is bounded by a constant), we refer to
Section 4.3 for the precise formulation of the construction of S..

o This result also remains true for the existence of capillary hypersur-
faces in ) namely those with stationary area which intersect 0S) in
a constant angle v € (0,7) along there boundaries. For more precise

comments see Remark 4.5.1.

To prove the latter theorem, following [56], [64] and [93], we parameter-
ize all surfaces nearby S.(K.) having boundaries in 9€). by two parametric
functions @ : K — R" and w : S x e 'K — R. Here

Sti={z=(z",-- 2" eR"™ : |z[=1and 2" >0}.

This yields a perturbed tube S.(w,®). A standard computations show
that the mean curvature H(w,®) of S.(w,®P) is constant, with the right
boundary conditions, is equivalent to solve a system of nonlinear partial
differential equations where the principal part is the Jacobi operator about
a hypersurface close to S.(K.). The solvability is based on the invertibility
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of this linear operator depending on € (small parameter). As we will see
later, it turns out that this is possible only for some values of ¢ tending
to zero. Omnce we have the invertibility our problem becomes readily a
fixed point problem that we can solve provided our approximate solution
is accurate enough. Our method here is similar in spirit to the one in [56].
It goes back to Malchiodi-Montenegro in [59] (see also [57], [58] and [60],
for related issues).

To begin the procedure, we construct first an approximate solution in the
following way: let (y', %2 ... ,9y%) € R* (vesp. (z!,2%...,2") € B}) be the
local coordinate variables on K. (resp. on S7). Letting ® : K — R" and
w: B x K. — R, consider

So : (y.2) =y xe ' ®(ey) + (1+w(y, 2) O(2).
The surfaces nearby S.(K.) are parameterized (locally) by

G(:%Z) . (y,Z) - So(y,Z) - FE(SO(y?Z))

where F© : R¥ x R""! — () is defined in (4.10) is “an almost isometry”
which parameterize a neighborhood of K. in €2., By is the unit ball centered
at the origin and © = (O©',...,0",0""!) is the stereographic projection
from the south pole. Call the image of this map S-(w, ®), so in particular

S:(0,0) = S.(K.).

Notice that since ©"*1

= 0, it follows that all these surfaces close to
83?
S:(K.) parameterized in this way have boundaries on 0f2..

One of the main features of this work is to we compute the mean curva-
ture of S.(w, ®), in § 4.2 which can be done following [56] but in contrast
with that paper, we have to gather some new linear and quadratic terms
involving ® which will be relevant for the solvability. The linearized mean
curvature operator about S.(K.) splits into some linear operators on w and
®, given by

—Low—e(JP,0) 4 eLlw + e THP) + &% L(w, D), (4.2)

where J is the Jacobi operator about K in the supporting surface OS2, see
§ 4.1.2;

L. =¢e? Ag+Agn+n; T = —(3n4+1) O" 1 A(0)4 (s, ©)+ 0" (D) 420"
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and L', L(w,®) are second order differential operators, see § 4.1.3, here
h (resp. TI') is the second fundamental form of 9 (resp. K) and h :
I' = hgl'yp, where summation over repeated indices is understood. The
quadratic part of the mean curvature is given by

g(swa +(B,,0))2 — e(®y, Vguwy) — 262V2w : ()

1

2 R, )0, 6) - S(R(®, B, E) + Q(w) + = Q(u48)

6
where © = (@1, .., 0 0). Finally the boundary condition reads

(N, VE) = (=1 +w) g_w +0(%) + e L(w, ®) + e Q(w,®) on IS x K,
Ui

where 17 = —F),4; is the normal vector field of S” in S”.

As we will explain later, the Jacobi operator about S.(K.) (very closed
to the operator (4.2)) has inverse norm which blows-up at rate - for some
R > 0 and then one do not hope to apply a fixed point argument at this
state.

However, we can adjust the tube S.(K.) as accurate as possible, to a
tube S.(w"), ®") satisfying (4.4) below. For that, letting > 1 be an
integer and setting

r r—1
=3 el and 60— 3 el
d=1 d=1

we have solved

A

mHW", M) = n+0@E™) in S.(0"),d0),

i ) (4.4)
(N, V) = OE*?) on  9S.(w", dM).

This leads to an iterative scheme see § 4.3. The term of order O(e) ap-
pearing in the expansion of the mean curvature (§ 4.2) depends linearly on
the tangential curvature of K which is in the kernel of Ag» +n (spanned
by ©" with ¢ = 1,...,n) and normal curvature K which is perpendicular
to this kernel. Consequently by Fredholm theorem, we can kill these terms
by w® provided K is minimal.
Now to annihilate the higher order terms with suitable couples (w(d), @(d_l)),

d > 2, if we project on the kernel of Agr + n, there appears only J (the

(d-1)

Jacobi operator about K) acting on & because when we project, the
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term J'®~Y disappear by oddness. Moreover neither the nonlinear terms
appearing in the expansion of H(w,®) nor the perpendicularity condition
will influence the iteration as well. Therefore the non-degeneracy of K is
sufficient for this procedure at each step of the iterative scheme. In this
way for any integer r > 1 we will be able to have (4.4) yielding good
approximate solutions. We notice that it is more convenient to use the
operator Agn +n + (3, @) to accomplish this task because it is invertible
in L?(S? x K). Unfortunately one cannot use it for the full solvability of
the problem because w may not gain regularity. We refer to Section 4.3
for more details.

The final step (see § 4.4) is more delicate and consists of the invertibil-
ity of the Jacobi operator about S.(w(), ®()) which we call L.,. Let us
mention that at this level all terms in the expansion depend on r except
the model operator —L.w — ¢ (J®,0). At first glance one sees that the
operator L., is not so close to the model one in the usual Sobolev norms
because of the competition between the operators (J®,©) and £!. This
is due to fact that if one consider a tube of radius € in a manifold M
with boundary sitting on M, the mean curvature expansion makes ap-
pear terms of order € depending on the second fundamental form of OM.
On the contrary, dealing with manifolds without boundary, as in [56], it
turns out that in this case the first error terms are of order € and thus
also in the expansion of the mean curvature of there perturbed tube, there
cannot appear terms like L, see [56] Proposition 4.1. Having bigger error
terms than those in [56], we need more accurate approximate solutions and
different spaces for the spectral analysis. Since our operator L., acts on
the couple (w,®) almost separately, to tackle this it is natural to adjust
the norms used for w and ®. For any v € L*(S" x K) we decompose it
as v = "% w + (®,0) where &', i = 1,...,n are the components of the
projection of v onto the Kernel of Agn +n for some s € (0,1/2). With this
decomposition, in a suitable weighted Hilbert subspace of LQ(Sfﬁ x K) we
can see L., as a perturbation of the model one, see Proposition 4.4.1.

As mentioned above the existence of families of constant mean curvature
surfaces holds only for a suitable sequence of intervals with length decreas-
ing to zero and not the whole ¢ is related to a resonance phenomenon
peculiar to concentration on positive dimensional sets and it appears in
the study of several class of (geometric) non-linear PDE’s. Concentration
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along sets of dimension £ = 1,...,n — 1 has been proved here, and anal-
ogous spectral properties hold true. By the Weyl’s asymptotic formula,
if solutions concentrate along a set of dimension d the average distance
between those close to zero is of order €?. The resonance phenomenon was
taken care of using a theorem by T. Kato, see [52], page 445, which allows
to differentiate eigenvalues with respect to €. In the aforementioned papers
it was shown that, when varying the parameter ¢, the spectral gaps near
zero almost do not shrink, and invertibility can be obtained for a large fam-
ily of epsilon’s. The case of one dimensional limit sets can be handled using
a more direct method based on a Lyapunov-Schmidt reduction, indeed in
this case the distance between two consecutive small eigenvalues, candi-
dates to be resonant, is sufficiently large and working away from resonant
modes one can perform a contraction mapping argument quite easily. Here
instead the average distance between two consecutive eigenvalues becomes
denser and denser, to overcome this problem one needs to apply Kato’s
Theorem constructing first good approximate eigenfunctions, we refer to
Section 4.4. And finally following [56], one can estimate the size of the
spectral gaps, which determine the size of the norm of the inverse of L. ..
For suitable values of € the norm of the inverse of L., is of order O(x)
with a fixed R > 0 independent of r. Now as far as r can be chosen arbi-
trary large, our fixed point problem can be merely solved. This program
is carried out in the last section.

4.1 Geometric backgroung

Let K be a k-dimensional submanifold of (0€2,g9) (1 < k < m — 1) and
set n = m — k. We choose along K a local orthonormal frame field
((E)a=1.ks (Fi)iz1.... n) which is oriented and call Nygq the interior normal
field along 0€) and Nag’K = FE,+1. At points of K, R™*! splits naturally
as TO2 ® RE, .1 with T2 =TK @& NK, where TK is the tangent space
to K and NK := NK% represents the normal bundle in 02, which are
spanned respectively by (E,), and (E});.
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4.1.1 Fermi coordinates on 0f) near K

Denote by V the connection induced by the metric § and by V+ the cor-
responding normal connection on the normal bundle. Given q € K, we use
some geodesic coordinates 7 centered at ¢ defined by

f:y— expé((_aEa). (4.5)
This yields the coordinate vector fields X, := f.(9;.). We also assume that
at ¢ the normal vectors (E;);, i = 1,...,n, are transported parallely (with

respect to V+) through geodesics from ¢, so in particular

g (?EGEJ' ,Ei) =0 atq, i,7=1,. ,a=1,... k. (4.6)
In a neighborhood of ¢, we choose Fermi coordinates (7,() on 02 defined
by

F: (y,0) — expfg, Z ('E @) = (F)a (¢")i) - (47)
Hence we have the coordmate vector fields
X, = F.(0x) and X, = F.(0p).

By our choice of coordinates, on K the metric g, 4 : = (X,, X ) splits in
the following way

9(q) = 9u(q) dy* @ dy’ + G;(q) d¢' @ d¢7; ge K. (4.8
We denote by I'’(+) the 1-forms defined on the normal bundle of K by
Uo(Ei) = (Vi By Ei). (4.9)

The submanifold K is said to be minimal if the trace I'}(-) = 0.

When we consider the metric coefficients in a neighborhood of K, we ob-
tain a deviation from formula (4.8), which is expressed by the next lemma,

see Proposition 2.1 in [56] for the proof. Denote by r the distance function
from K.

4.1.1. LEMMA. In the above coordinates (y,(C), for any a = 1,...;k and
any 1,j = 1,...,n, we have

9:;(0,¢) =6+ 3 (R(Ei, E)Ey, Ej) ¢° ¢' + O(r?);
gaj(ov C) - O(rz);
9an(0,¢) = 0ap — 2TL(E;) (' + [(R(Es, EJ)Ey, Er) + T5(E) TUE)] ¢°¢H+ O (7).
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Here R;s; are computed at the point q of K parameterized by (0,0).

The boundary of the scaled domain 0f). := %QQ is parameterized, in a
neighborhood of e71¢g € K, := e 'K by

_ 1. .
F*(y,2) :== =F(ey, ex) with 2’ := (2',--- | 2").
€
Hence we have the induced coordinate vector fields
X; = F2(0,) and X, := F(O).

By construction, X, -1, = E, and Ve(e7lq) = E,;1. From Lemma 4.1.1
it is evident that the metric g on (0€)., g) has the expansion given by the

4.1.2. LEMMA. In a neighborhood of K. the following estimates hold

gij(0,2) =0d;; + 3 (R(E;, E5)Ey, Ej) a® ot + O(e*r3);

92j(0,2) = O(er?);

9ab(0,2) =0 — 2T%(E;) o' + ¢ [(R(Es, Eo) By, Er) + TS(E,) LU E))] 22! + O(e2r?)

We can now parameterize tubular neighborhood of K. in €.,

1.
Fe(y, o' 2™ = ZF(ey,ex’) + 2"V (y, '), (4.10)
£

where V*(y,2') := Nao(LF(ey,ex’)). We denote by h the second funda-
mental form of 0f2 so that:

<dV€(p) [Xa]7 Xﬂ> =€ hoz,ﬂ(Q) (4'11)
when q = F*(p).

4.1.2 The Jacobi operator about K
The linearized mean curvature operator about K is given by
Ji=A—R+ B, (4.12)
with the normal Laplacian A~ is defined as
A=V E -V

V+ denoting the connection on the normal bundle of K in 092 while B is
a symmetric operator defined by

GB(X),Y)=T%X)T¢Y) foral X,Y € NK,
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[ is defined in (4.9) and R+ : N,K — N,K is given by
R' = (R(E,, ) Ea)" .

and (-)* denotes the orthogonal projection on NK. Finally, we recall that
the Ricci tensor is defined by

Ric(X,Y) = —G(R(X,E,)Y,E,)  forall X,Y € T,00.

Finally, we recall that submanifold K is said to be non-degenerate if the
Jacobi operator J is invertible, or equivalently if the equation J® = 0 has
only the trivial solution among the sections in N K.

4.1.3 Notations for error terms

In the following, expressions of the form L(w,®) denote linear operators,
in the functions w and ®’ as well as their derivatives with respect to the
vector fields € X, and X; up to second order, the coefficients of which are
smooth functions on S" () x K bounded by a constant independent of € in
the C* topology (where derivatives are taken using the vector fields X; and
X;). Also L(w, ®) are restrictions of expressions like L(w, ®) on 9S" () x K
with L(w, ®) contains only one derivative of w or ® with respect to the
vector fields ¢ X, and Xj;.

Similarly, expressions of the form Q(w,®) denote nonlinear operators,
in the functions w and ®’ as well as their derivatives with respect to the
vector fields € X, and X still up to second order, whose coefficients of the
Taylor expansion are smooth functions on S" () x K which are bounded by
a constant independent of € in C* topology (where derivatives are taken
using the vector fields X, and X;). Moreover, ) vanishes quadratically
in the pair (w, ®) at 0 (that is, its Taylor expansion does not involve any
constant nor any linear term). Also Q(w, ®) are restrictions of expressions
like Q(w, @) on 05" (y) x K with Q(w, ®) contains only one derivative of
w or ® with respect to the vector fields ¢ X, and X;.

Finally, terms denoted O(g?) are smooth functions on S"(~y) x K. which
are bounded by a constant times ¢ in C* topology (where derivatives are
taken using the vector fields X, and X;). Also expressions like O(¢?) are
restrictions of O(e?) on 95"(7y) x K.
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4.2 Geometry of tubes

We derive expansions as ¢ tends to 0 for the metric, second fundamental
form and mean curvature of S.(K.) and their perturbations.

Perturbed tubes

We now describe a suitable class of deformations of the geodesic tubes (in
the metric induced by £ on R™*1) S_(K.), depending on a section ® of
NK. := 57 x K. and a scalar function w on the spherical normal bundle
(SNK:)+ in 0S2..

We recall that (y!, 9% ... ,y%) € R¥ (resp. (21,22 ...,2") € B}) are the
local coordinate variables on K. (resp. on S%). Letting ® : K — R” and
w: B x K. — R, consider

So (Y, 2) =y x e ' D(ey) + (1+w(y, 2) O(2).
The nearby surfaces of S.(K.) is parameterized (locally) by
Gy, 2) = (y,2) — Soly, 2) — F*(So(y, 2))

namely
1 ~ 1
Gly2) 1= 1 (. 20(en) + (14wl DB, (14 u(p )07 (2) ).

Since O™t =0, it follows

n
0B

€ 0. for any .

59BN
0B7

G(y,2)

The image of this map will be called S-(w, ®). In particular

S:(0,0) = S(K.).

It will be understood that for any fixed point p = F¢(y,0) € K., ®(cy) €
NK. C T,09. and O(z) € S C NK. ®@RE,; are in the tangent space at
p of R™*! endowed with the metric induced by F°. For more convenience
we introduce the following notations

Notation: On K. we will consider

d = E; ®, 1= 0y D E; D, = 0y & E
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0 =0/ E;+0"" B, =0+0"E,,;  ©;:=0,0 ;400" E,; = 0,40
For simplicity, we will write
wj 1= 0,W; Wy = Oy Wi = 0, O,w;  Wep = Oya Opw;  Wej := Oya Ow;

It is easy to see that the tangent space to S.(w, ®) is spanned by the vector
fields

Zy = Gi(0p) = Xg+w, T+ ¥, + (1 +w)O" 1D, Ve, a=1,...,k
Z; = G(0) = (1+w)Yj+w; T+ (1+w)0""D;Ve, j=1,...,n,
(4.13)
U= 97 X U, = 0y & X
T =6 X; + 0"y, T, := 0,0 X; +0,0"V*

DV (y, (1 +w(y, 2))0 + e '®(ey)) = ¢ (haa + (0, 0" + (I)é)hla) Xaj
DiVe(y, (1 +w(y,2)0 + e '¥(ey)) = & (w;0' + (1 +w)O}) hio X,
(4.14)

The first fundamental form

In this subsection we expand the coefficients of the first fundamental form
of S.(w, ®). Using the expansions in Lemma 4.1.2; one can easily get

(X0, Xp) = Oy —2eT2(O) —2T% (@) + O(e?) + ¢ L(w, D) + Q(w, P)

(X;, X;) = 0;j+£((R(©,E;) ®,E;) + (R(D, E;) ©, Ej)) + X{(R(®, E) @, E))
+ O(2) 42 L(w, ®) + & Q(w, D)

(X;, X,) = O} + e L(w,®) + Q(w, D).

(4.15)
These together with the fact that R(©,©) = 0 imply
| . -
(T,7;) = % (R(2,6)6,6,)+5 (R(D,6) 2,6,)+0(")+£* L(w, &)+ Qw, D)
(4.16)

Using similar arguments, and the fact that (T, T) =1 on K. yields

(T,T) =1+ % (R(®,0)®,0) + O(?) + > L(w, ®) + Q(w, ®)  (4.17)
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Moreover

(Y;,Y;) = (0,,0,)+
n % (R(®,0,)®,0;) + O(e?) + & L(w, ®) + Q(w, ®).

Now, by (4.14) we have that

(D;VE,T) = e(14+w)(h(O), ©;)+ew;(h(O), 0)+O(e?)+&* L(w, ®)+eQ(w, P)
(4.19)
and

(D;Ve,T;) = 5(1+w)<h((:)i), (:)j>+€wj(h(é), (:)i>+(9(52)+€2 L(w, ®)+eQ(w, D)

(4.20)
We are now in position to expand the coefficients of the first fundamental
form of S.(w,®). We have

4.2.1. PROPOSITION. For any a,b € {1,--- k} andi,j € {1,--- ,n}, we
have that

(Z4, Z) = 0up+260" gy — 2T (©) —2T%(8)4+0O(e2) +¢ L(w, D)+ Q(w, D)
(4.21)

(Z.,Z;) = 20" 1(0,)" + (Dy, 0;) + O(?) + eL(w, ®) + Q(w,(@)22)

(Z:,Z;) = (0,0,
+ 207! ((h( i),é>w]‘ + <h(éj);é>wi>
5
+ % (R(®,0,)®,0;) + O(e?) + &* L(w, ®) + £Q(w, D).

The normal vector field

In this subsection we expand the unit normal to S.(w, ®). Define the vector

field
N:=-Y+d 7+ 52,
it is the outer normal field along S:(w, ®) if we can determine o’/ and 3 so

that N is orthogonal to all of the Z, and Z;. This leads to a linear system
for o/ and 3%



4.2. Geometry of tubes 63

We have the following expansions
(Y, Z,) = wy + (®5,0) + 0" (W(©))* 4 &% L(w, ®) + £ Q(w, ®); (4.24)

(T, 7)) = w;+e(1+2w)0" ™ {h(0),0,) + 2:0" w,;(h(6),O)
+ % <R((I)a é) (:)7 éj> ; <R((I) 9) o, (:)J> + 0(82) + e L(w’ (I)) e Q((A’ga)

These follow from (4.15) together with the fact that (1, Z,) = 0 and
<T, Z]> =0 on Ke-

Using Proposition 4.2.1, and some algebraic calculations, one can obtain

B° = w, + (D, 0) + 0" (O) + O(?) + ¢ L(w, ®) + Q(w, ®). (4.26)

and
0l (0;,0,) = w;+c0"h(O),6;) + 0" (h(O), O)w
- zg@”+1(< (61), ©)w; + h(6:) " w, + h(6;) (P, @>)
b LelR(©,6)6,8) - 6" h(B) (8,8, (427

— 2ww7 — wa<<I>a, éz> - <(I)a> é><q)aa (:)Z> + <R(CI), 6) (I)7 @Z>

+ O + 2 L(w, @) 4+ £Q(w, ).

1
3

Using these and the fact that (6;,0;) = u?d;;, a straightforward compu-
tations imply

\T|— n 1 A\ O A\ ¢ A\ ¢ a
N7 = 1200 (L (1(), 60w+ 6) v+ h(O)(2..6) ) +
1 1 ~ ~
+ 3 (wz + Ew? + 2w (P, ©) + (P, @>2> + O(e%) + €2 L(w, ®) + eQ(w, ®).
The unit normal to the perturbed geodesic tube is then given simply by

N = i N| We summarize this in the following lemma

4.2.2. PROPOSITION. The normal vector field N to S-(w,®) is given by

N = W where

N:i=-Y+d Z;+3°Z, (4.28)
and where the coefficients o’ and 3¢ are given by formulas (7.9) and (4.26).

Using the fact that ©"*! = 0 we can easily deduce

n
OBl
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4.2.1. LEMMA. The perpendicularity condition is given by

(N, V) = (=1 +w)w;z! +O(e*) +&* L(w, ®) +e Q(w,®) on I(SNK),,

PROOF. Since ©""| =0 it follows that (V°, =T + 3°Z.) = 0 on OB}
oBT
on the other hand using the fact that R(E;, E;) = 0 with 22| = 0 (see
oBM
§2.3) we get 1

(& Z;,V°) = (=14w) w;0""+0(e*)+¢* L(w, ®)+e Q(w,®)  on I(SNK),.

The lemma now follows since @}”1 = —p0 = —p229 and p =1 =
OB?

The second fundamental form

In this subsection we expand the coefficients of the second fundamental
form. Recall that V is the Levi-Civita connection on 02 and h its second
fundamental form, the derivation for vector fields on 9f) yields

0 ~ _
o Xy, (1Hw(y, 2))O+e ' 0(ey)) = e(w,O'+(14w)6)) (Vx, X = huaV7)

o - _ _
a_ana(y’ (I4w(y, 2))0+e ' ®(cy)) = £dup (Vx,Xa — hoaV)+¢ (0,0 + L) (Vx, X,

4.2.3. PROPOSITION. The following expansions hold

(N, =—2Z,) = —el'YO) + 0" hyy — ey — € (Baq, ©) — £ (R(®, E,) E,, O)

oye
4 eTYO) YD) — 260w, h(©)" + %wl (rg(él) - haa@gmég)
+ O(*) + &2 L(w, @) + eQ(w, );
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0

N, —
(N5

Z;)

= (1 +w) —wj; — 0" (h(O), O)w;; — 2:07(W(O), O)w;

=(1+ 2u) (671(1(6,), 6,) — 20771 (h(6),0;) — 0" (1(©), 6))

%w (2@”+1<h(®k), Oy) + 20 (1(Oy), 6:) + O L (h(6)), @Z>)
2 ANA A € AN A Q n A\ ¢ n
2 (R(©,0,)0,6,) — = (R(®,0)6,0,) + 2w, (@j“h(@]) + o

1 1 ~ ~
5”2102 + §Mz‘<q)07 @>|2 - éwl%‘ + QUJ? + <q)67 ®jj>w0 + <(I)07 6><q)07 @jj>

(1 +2w)a*(0,;,01) + O(e%) + &% L(w, ®) + eQ(w, ®);

—T(0) + 0" hyy — way + O(?) + eL(w, ®) + Q(w, D)) a # b;
eI R(0)" + 20" h(0;)" — wa; + O(e?) + eL(w, ®) + Q(w, D);

—wi; — 0] (h(D),6;) — 0] (h(D),0:) + 0" (h(6)),6;)

8@n+1<h(é), ézy> + Oék<@ij, ®k> + 0(82) + EL(UJ, (I)) + Q(w, (I)), 1 ?é .

PROOF. The proof is similar in spirit to the one of Proposition 3.3 in [56].

So we will be sketchy here referring to the aforementioned paper for more
details. We have that

e (Vx,Xo — haaV°) + wao ¥ + 20" w,D,V° + @ X, + ©"'D,D,V*

+ (0% + e L(w, ®) + £Q(w, ®)) X, + (O(%) + £°L(w, @) + eQ(w, ®)) V*

and for a £ b

= £ (vaXa — habVE) + wep Y

+ ((')(62) + eL(w, ®) + Q(w, CI))) X, + ((’)(52) + &2 L(w, ®) + eQ(w, (I))) Ve,
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0z
+ (14 w) (20! DV + 0" D, D,V) + (1 + 2w)0L05 (Vx, X; — hyV?)
+ (0 +’L(w, ®) + eQ(w, ®)) Xo + (O(e?) + &°L(w, ) + cQ(w, ) V'

and for 7 #£ j

0

2% = wi Y+ w;Yj +w; T + 077 DV 4+ 01 DV + (14 w)Yy; + 0,05 (V

+ ©""'D;D;V* + (0O(e%) + eL(w, @) + Q(w, @) X, + (O(e%) + e*L(w, D) 4

Finally

0 0

— — S (G € n+1 €
a_yaZj = a—ZjZa = 8@]- (VXS hasV ) ‘f‘wa]T ‘f‘wa @ * D V

+ (0 +L(w, ®) + eQ(w, P)) X, + (O(e ) + e’ L(w, ®) + £Q

Recalling the expansions, see Lemma 2.1 in [56].
Vx, Xj = (0(e) + L(w, @) + Q(w, @) X, (431
Vi, X; = —TU(E) X, + (0(e) + L(w, ) + Q(w, ®)) X, '

We will also need the following expansion which follows from the result of
Lemma 2.2 in [56] (with obvious modifications).

Vx, Xy = TL(E) X; - (R0 + @, E,) Ej, By) X,
- %( (Bo, By) (0 4 @), E;) —T¢(0© + ) TYE;) — T4 © + @) T4 (E}|
+ (0(e) + L(w, ®) + Q(w, ®)) X, + (O(e?) + ¢ L(w, ®) + Q(w, ®)) X;.

These imply in particular

(Y, Vx,X,) = OTUE) (9 +2e0"hy;) — e(R(6, E,)0, E,) — (R(6, E,)®, E,)
— eTYO)IYO) —TE(O)TYD) + O(e?) + eL(w, ) + Q(w, ®).

On the other hand we have that
DD,V = ewyoh(0)* Xo+(0(e?) + 2 L(w, ) + £Q(w, ®)) X5+ (0(e?) + 2 L(w, )
which implies

(DaDVE, Y)Y = cwaa(h(©),0) + O(?) + 2 L(w, ®) 4+ eQ(w, P). (4.33)
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Using these together with (4.26), (7.9) and Lemma 4.1.2, the first estimate
follows at once. For the other estimates one can proceed similarly.m

The mean curvature of perturbed tubes

Collecting the estimates of the last subsection we obtain the expansion of
the mean curvature of the hypersurface S.(w, ®). In the coordinate system
defined in the previous sections, we get

mH(w,®) = n—el%0)+e0" ! hy, + O [(n +3)(h(6),6) — hjj} +0(£?)

— (Agw+ Agiw + nw) —5(<AK(I>+R(<I> E,)E, 0)—

L5(2)I2()

— £0"{n(O),0) Agnw — 2(n + 3) O (A(O), Venw) + 260" V,w

— € ((h(é), ©) + hj; + haa) (Vsnw, Eyyr) — (14 3n)e@"1h(0)* w
— 260" R (Vgnw,)* + e T4V gaw) — 2V w : T'(0) + 260" hyqtwaq

— (B3n4 1)e O A(O) Dy, O) + £ O h(D,)* + 20"+ ] T(D)

+ nw —|—2 nlenw| —|—2U}A5nw (wa < >)
b Vo) 2 T(0) £ 220, 60 ) —
+ O(e?) + 2 L(w,®) + £ Q(w, D).

1
3

Here we have used the formulas in Lemma 2.3.1, the fact that
1

and the notation A : B = Ay B, for two linear operators A and B. Here
summation over repeated indices is understood.

Let us emphasize the use of the variables y; = ¢y, on K. With an abuse
of notation, we call w the function w(y) = w(y) = w(e~'y) defined on K
so that ew; = w, and e?wzg = Wq,. We first define the following operators
appearing in the above expansion

(R(®,E)P, E

LYw): = —(hO),0) Agnw — 2(n + 3) O" (), Vsnw) + 20" Vi, w : h

— ({1(6).6) + hj; + ) (Vsow, Bua)

— £(143n)0" L (W(O), Viw) + 0" h(Vgnw,)® — 2e2V2w : T(0) + 2:20
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T = —(3n+ 1) 0" A(0)U(D,, 0) + O IA(D;)" + 20" T(D),
(4.35)
and the quadratic term

2 — -
Ol(w,®): = nw’+ =7 Vsnw|” + 2w Agnw — g(swa + (D4, 0))? — (dg, Vgaw

2
2
— 2e°Viw : T(®) + nt

(R(®,8)D, ©) — %(R(CD,EZ-)CI), E). (43

Next, we define
L. =e*Axg + Agn +n, Ly:=Agn+n
and the Jacobi operator about K in (02, g), see § 4.1.2
J=A"-R'+B.

Recall that (see § 2.3) the outer unit normal to the boundary of 95" in S”
is n = _ETH-ln

ow
on

Using these definitions, we obtain the following result :

= —(Vsr w, Enia).

4.2.4. PROPOSITION. Assume that K is a minimal submanifold, then the
mean curvature of S.(w, ®) can be expanded as

mH(w,®) = n+e0 by, +cOnt [(n +3)(h(©),0) — hjj] +O(2)

— Low—e(JP,O)+eLlw+eTH D)+ QY (w, D)

+ &2 L(w,®) + ¢ Q(w, D) in S.(w, ®),
where L' is defined in (4.34), T is given in (4.35), while Q' is a quadratic

term defined in (4.36). Moreover, the orthogonality condition is equivalent
to the following boundary condition on the function w:

) =2 O O+ 2w 8) Q0 B)  on 95,0,
(4.37)

PROOF. The expression of the mean curvature can be obtained rather eas-
ily taking into account the above definitions (with obvious modifications)
and the minimality of K which implies

)
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With these notations finding w and ® such that the equation m H =n
and (N, V¢) = 0 hold is equivalent to solve

e

Low+e(3D,0) = O™ hy, + 0! [(n +3)(h(©),0) — hy;| + O®)
) + e TYP) + eLlw + QY w, D) + &2 L(w, D) + £ Q(w, D)
ow _ Ow A 2 7 A
\ o wan—l—(’)(s)—i—s L(w, ®) 4+ e Q(w, )
(4.38)

4.3 Adjusting the tube S.(K.)

In this section we annihilate the error terms (O(e)) appearing in (4.38)
at any given order. The non-degeneracy of the submanifold K will play a
crucial role in such a construction. We denote by II; the L? projection on
the subspace spanned by the ©°, i =1,--- ,n and set (SNK), := 5% x K.
We set

r r—1
W) = Z ghqp(@) and P = Z el
d=1 d=1

Construction of wM: We first want to kill the term O(e). This is equiv-
alent to have

mHWw", &) =n+0E2)  in S (™), d0),
(N,V°) = O(£?) on 85 (w™, d).

This gives the following equation in w®

EO’U)(D — @ntl haa 4+ @n+1 {(n + 3)<h(é), é> — hjj} in (SNK)+;
ow)
on

= 0 ond(SNK),.

By the result from § 2.3 (with v = §) and Fredholm alternative theorem,
the solvability of the above system is possible provided

mn
+

(00 b+ [(043)((8).6) ~ hy | ) ©'dO =0 forall i =1,
S

3 7
in S’

on 0
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which is the case by oddness, here df denotes the volume element on S.
Notice that the variable 7 is being considered as a parameter so that w(®
is as smooth as the right hand side in this variable.

Constructing w® : We turn now to the term of order £2. We have

mH@", 00) =n+O@E3)  in S.(w"), d0),
(N, V) = O(e?) on 95 (W™, &),
Since the terms involving ® in Q' (cw), e®W) are of the form 3L(dW)
and Q(®), d™), we are led to a system in w® and & given by

Low? = (oM, 6)+0(1) + Lw® + THOD) + Q(dM), &) in (SNK),
ow?
an
Note that II; 7' = 0 and II; Q(®M, M) = 0 so the above problem is
solvable if and only if

J

where df and df are the volume elements on S% and 957 respectively. This

= O(1) ond(SNK),.

((9(1) + ,clw“)) o d9+7§ O(1)0idd =0 foralli=1-

(3o, 6) e’ do+ /
oS

¥ St
gives an equation on ®) which can be solved using the non degeneracy of
the submanifold K because in this case J is invertible. Once this is done,
we obtain readily w®.

Constructing w”): We want to construct an approximate solution as ac-
curate as possible, and to do so we will use an iterative scheme. Suppose
the couple (w1, ®=2) is already determined. To find (w™), ® =), it
suffices to check that when we project on the Kernel of L, the operator
involving ®"~Y should be only the invertible Jacobi operator J. This is
the case since the only term that can bring ®—Y at this iteration step is

! (w, ®) which gives only terms of the form £2® and Q(®(), &) more-
over II; J1 [(®0—1) = 11, Q("), (")) = 0.

The index r appearing in the linear and quadratic terms means that
they depend on the iteration step while the operator J! keep its same
properties because it is influenced only by the even quadratic terms in
Q") + ®, &) 4+ P) appearing in Q (") + w, ) + D).
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By induction, in the same argument, for every r € N, we can find
(w@, ®@D) d=1,--- r smooth such that

r r—1
B0 =3 @ = 0() ad B0 =3 18 = 0()  (439)
d=1 d=1

and that
mH@", 0") = n+OE*)  in S.(",dM), (N, V) = O("?)

4.3.1. REMARK. Notice that as in [57] we omitted the terms involving
derivatives with respect to y of the function w (by considering Ly instead
of L), this is due to the fact that since w is slow dependent on y,, when
differentiating with respect to y; we pick up an € at each differentiation,
this gives us smaller terms. However, when applying elliptic reqularity the-
orems we might loose two derivatives at each iteration. This indeed is not
a problem since one needs just a finite number of iterations. We refer the
reader to [57], where a more explanation is given.

We are left to find w and ® such that

mHW" +w, & +®) = n in  S.(w") +w, & + P), (4.40)
) 4.40
(N,V?) =0 on 0S. (0" 4w, d" 4 P).

We define the linearized mean curvature operator about S.(w", ®")
1 -
L., (w,®) = - (Low+eLi(w)) + (I, 0) + T (P) + eL,(w, D).

The index r appearing in the constant, linear and quadratic terms means
that they depend on the iteration step but keep there properties.
We Notice that L., is not precisely the usual Jacobi operator because we
are parameterizing this hypersurface as a graph over S.(w", <i>’”) using the
vector field =7 rather than the unit normal N.

Using Remark 2.1.1 (with v = §), suppose that ¥ = S.(w", ") and

N = —7. From (4.39) and Proposition 4.2.2 we have
(N,~Y) =1+ 0()

Furthermore, from Proposition 4.2.1 and (4.39), the volume forms of the
tubes S.(@", ®") and (SNK), are related by

dvolg (4r 3y = (14 O(€)) dvolsnr). -

on

0S;
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We define ¢, , > 0 by
(N, =T) dvolg (4 3r) = 0cr dvOl(sNK)., - (4.41)

Multiplying by d.,, the system (4.40) will change the terms L}, L,,
L, the constant and quadratic terms will keep there properties and there
will be a new linear operator £!(w) on the boundary. We keep the same
notations for these terms and call L., the new selfadjoint operator o, L. ,
with respect to the standard L?(SNK) -inner product.

Now since L,(w, ®) and LL(w) involves only terms of the form w, d.:w,
we may extend L,.(w,®), L}(w) and O,(¢"™) in (SNK), and this will
just add some terms in L,(w, ®), L} (w) and O,(e") respectively which will
maintain there properties.

Without loss of generality we may replace the solvability of (4.40) with
the following equation.

L., (w,®) = 1Q.(w,®)+ O,(c") in (SNK),,
ow
on

We will try to invert the linear operator on the left hand side and this

4.42
= %QT(w,(I)) on O(SNK). 442

will lead us to study the spectrum of the operator by selfadjointness.

4.4 Spectral analysis

Function space: Fix 3 > s > 0. For any v € L*(SNK), := L*(S" x K),
set

(®,0) =11 v, e =Tl v,

so that
v=c"%w+(d,06). (4.43)

It will be understood that ®° for i = 1,--- ,n are the components of II; v
on NK. Conversely if couple a (w,®) € Il L*(SNK), x L*(K,NK) is
given, we associate to it a function v as in (4.43).

Later we will often decompose
w = wy + wy (4.44)

where wy is a function on K and w; has zero mean value with respect to
the angular integrals.
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The volume element of (SNK); = S7 x K will be denoted by df dy.
As it will be apparent later, we will consider the following weighted Hilbert
subspaces of L*(SNK)

L? = {U — el B4 (9,0) € LA(SNK), 5—28/ \w|2d9dgj+/ || dyj <
(SNK) K

with corresponding norm

2y 1= 5_25/ ]w!zdédgj—F/ || dj.
) (SNK), K

Jv

We also define

H! = {v cL? . ¢ / (& [ Vrw]? + [Vsnw]® + [w]?) d dij + / (|V®|* +
(SNK), K
with corresponding norm
ol == [ (& VawP Vgl o) do g [ (V0P 0F)dg
: (SNK), K

Let |S"| denote the volume of S. Notice that

/ (@i)?cw:m foralli=1---n.
S n—l—l

mn
+

We define o,, := 153]

n+1"

With these definitions in mind we redefine L., by duality as follows

/ v, v dzdy =
(SNK)+

— g% / 2w’ Agw dé dy + £ / (VonwVgrw' —nww')dd dy
(SNK), (SNK),

+ o / (3P, ') dij + / (TH®) + LY (w) + eL,(w, ®)) (7w + (', 0)) db
K (SNK),
We associate to L., its quadratic bi-linear form
Cer(v,0) := / vL., v dfdy,
(SNEK)+

and the associated quadratic form Q. ,(v) := C.,(v,v).
As mentioned in the first section, following [57], we want to find the values
of € for which the operator L. , is invertible. By selfadjointness this leads to
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find the values of € for which the eigenvalues of the form Q. , are bounded
away from zero. Such techniques requires first that our form should be very
close to a model one that we can characterize its spectrum (just the small
eigenvalues). Secondly, to understand the behavior of small eigenvalues
seeing as “set” valued functions in €. We will estimate the Morse index of
Q., and prove the monotonicity of its small eigenvalues. The former can
be done using Weyl’s asymptotic formula and the latter can be obtained
by applying a result by Kato. We shall do this in the remaining of this
section.

We define the model form, by duality, as

Co(v,v) = —& % / e*w' Agwdf dy + e ** / (VsnwVgrw' —nwuw')a
(SNK)4 (SNK)4

+ 0n / (3, @) dy
K
and the associated quadratic form Qy(v) := Cy(v,v).

4.4.1. PROPOSITION. There exists a constant ¢ > 0 (independent of r)
such that
Cer(v,0") = Cov,0)] < ce”|u]

H} UI‘ HL- (4.45)

PROOF. First of all we notice that in £!(w) their may appear expres-
sions of the forms w, edypow, £ OpeOpw, 0w, 0,0 yw. Nevertheless after
integrating by parts and using Holder inequality

V 120 L1 (w) b d@‘ < ecflollm ||V
(SNK)+

Hl
and by definition of the H! norm
[ @etwad] < el uln |19l
(SNK)+

< ce”f|f

H! U/| H:-

Furthermore I1; 7(®) = 0. Now it is clear that even if J(®) + L,.(w, ®)
involves terms of the form w, edypw, € Opedpw, d.w, 0.;0 yw and also o7
Oy @’ and Jydp @7, in any case after integration by parts and using Holder
inequality we get

HL-

/ (e TH®) + Le(w, @) (7w’ + (¥, 0)) df dy| < cl[v]|m: ||
(SNEK),
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The result follows at once. m

The Morse index of Q. ,: Define the two quadratic forms
Q*(v) == Qo(v) £y vl
From (4.45), if v > 0 is sufficiently large and ¢ small enough, then
Q <Q.,<Q,
so that the index of Q. , is bounded by those of Ot and Q.

Given any function w defined on (SNK),, we set

Dy (w) := (1:&753)/52|VKw|2dy_—(n$’yss)/|w|2dy_,
K K
DEw) = () [ @ Vsl Vsl gy <) [ dody
(SNK) (SNK) 4

and finally,

D*(®) = —(11758)/K<3<I>,<I>>dg.

With these definitions in mind, we have
QF(v) = (n+ 1o, e * D5 (wy) + % DF (wy) + 0, DF(®),

if we decompose v = ' w + (®, 0) and further decompose w = wy + w;
as usual. Following Section 6.3 in [56] it is easy to see that if (1 +~y&®) > 0
then the index of D* is the index of K. Moreover the index of Di is equal
to zero if 2(n+ 1) (1 —ye®) — (n + v¢€*) > 0 because

I[Iw; =0 and / wypdé =0
St
hence
/ \V51w1|2d9 Z 2(n—|—1) / \w1\2d9
sn sn
This shows that the asymptotic behavior of the index of Q., should be
determined by DOi. It is the case since its index is given by

i = (LE£9e")A <(nFre’)},
where )\; are the eigenvalues of —e2Ag counted with multiplicities. Now
using Weyl’s formula one obtain its index,
k
n n\ 2
Ind D ~ cx (?) .
Collecting these estimates, one obtains the following
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4.4.1. LEMMA. The Morse index of Q. , is asymptotic to ce * when € tends
to zero, where ¢ depends only on m and K.

Approximate eigenfunctions: In order to apply Kato’s theorem [52]
we need to characterize the eigenfunctions (eigenspaces) corresponding to
small eigenvalues. We prove

4.4.2. LEMMA. Let o be an eigenvalue of L., and v = "% w + (®,0)
a corresponding eigenfunction and e~ wy = fSi vdf is the decomposition
from (4.44). There exist constants c,co > 0 such that if |o| < ¢y, then

2

lv = &' w3y < ce” vl

for all € > 0 small enough.
PROOF. For any v' = el™% ' + (®',©), we have

Co(v,0) = o / (4w + (B, O)(F, O)) db dj
(VK.

= 0/ e ww' db dy + o o, / (@, ) dy.
(SNK), K

In addition, (4.45) gives

|/ e 2@ VrwVgw + VauwVeaw — (n+oe® ¥ ww')di dy
(SNK),

+ on / (3P, d') — J(@,@’})dy| < ce® o]l m V| H-
K
(4.46)

Step 1 : Let ' =0 and w' = w; to get
‘/ e 5 |Vgw|* + |V51w1]2 — (n— ¥ |wi|?) db dy| <ce’ v m [E—
(SNEK)

However, since

H1w1:O and / w1d9=0,
S

mn
+

we have
Vspwi[Pde > 2(n+1) [ |wi]*db,
Sn

mn
St +

hence

—2s 1 —4s - s
\ [ e TR 5 Vs o+ (1= ol ) ) d9 dg| < e ol
(SNK),
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This implies that
le' ™ w7 < ce®ollz,

for all € € (0, 1), provided |o| < 1/2.

Step 2: Now let w' = 0 and ¢ = &* (resp. &’ = &) in (4.46), where
®T (resp. ®7) is the L? projection of ® over the space of eigenfunctions of
J associated to positive (resp. negative) eigenvalues. This yields

(@%,0)]

H! HL.

g

[ o5 -0 <<I>,<I>i>>dg\ < ce'|lol
K

Since J is invertible, there exists ¢; > 0 such that

o (@, 6) 3 < ‘ / <3q>,<1>i>dy\.

Hence

(1 = lo]) (2%, 0)]
This conclude the proof with ¢y := min{1/2,¢;/2}. =

in < ce’||v]l

4.4.1. REMARK. Ifwv is an eigenspace corresponding to an eigenvalue given
by the above lemma, then it satisfies

‘/ e |Vgw|?* + |V51w|2 — (n+ o) |w|?) df dy
(SNEK),
+o [ (@0.9)- a<<1>,<b>>dg' < ce® ol
K
and
|/ e (e |[Vgw|* + |Vsnw|* — n|wl|?) db dgj‘ <ce'|v|F.  (4.47)
(SNK) )

Notice that Vgrw = Vgnwy if w is decomposed as w = wo + wy one has

[ Tl = ) do] < o ol
(SNK), 8
so that

5—28/ 2| Vxw*di dy < ce® ||v||5: + na—28/ lw|? df dy.
(SNK) ) (SNK)

In particular we have

]| g < cl|v|| 2.
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Variation of small eigenvalues with respect to £: To understand the
behavior of small eigenvalues of the symmetric quadratic form Q. ,, we
need to apply a result by Kato, see [52]. Considering the eigenvalues o (¢)
as differentiable multivalued function in €, the result states that

0.0 € {/ v (0L, ) vdfdy : L.,v =0, vz = 1} .
(SNK)
(4.48)
An good estimate of a bound for the set on the right of (4.48) allows one to
estimate the spectral gaps of the linearized operator when the parameter
e is small, see [56] § 6.3.
This is indeed given in the following lemma.

4.4.3. LEMMA. There exist constants cy,c > 0 such that, if o is an eigen-
value of L., with |o| < ¢1, then

£0.0 >2n —ce’,
provided € 1s small enough.

PROOF. We have just to provide bounds for the set on the right of (4.48)
using the above remark.

Assume that L.,v = o v, but rather than normalizing the function v
by |lv]|z> = 1, assume instead that [[v||;2 = 1. In order to compute J.L.,,
recall that

w=¢e "I and that (3®,0) =11, v,

SO we can write

1
61_25

L.,v = —e*Ax (Ilfv) + 5 Lo (T3 v) + Ty v + L (T v)
+ T (3 v) + e Ly(e 2 IR, 37T 0).

Since IT; and IT; are independent of &, we have
OL.,v = —2se AR (I v) + (=2 + 28)e 7212 Lo (T v) + (=1 + 2s)e 2> L1 (1
+ Lp(e V2000, 37 v),

where the operator L, varies from line to line but satisfies the usual as-
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sumptions. This now gives

‘ / v(0Le,)vdddy — 217 / 2|V gw|* df dy
(SNEK)4 (SNEK)+

2—-2
+ ug_%/ (52’va‘2+|vSiw|2—']’LhU‘2) do
e (SNK),

1 —2s
€

< cllfy +] [y, (@O ) oy
+

C
S 0] %1

Consequently if v is an eigenfunction of L., with corresponding eigenvalue
lo| < ¢g, where ¢ is given in the previous lemma, by the inequality (4.47),
see the above remark, we have

‘/ v (0L, ) v do dy — 25125/ 2|V gw!|* db dy‘ < li_ [v]7.
(SNEK)+ (SNK); €

(4.49)
Again from the above remark, one gets

5_1_28/ 2| Vrw*didy < ce 1 ||v||F+ne % / lw|? db di.
(SNK)+ ) (SNK)+

If we normalize v by [[v||z2 = 1 then inserting this into (4.49) we get

2
‘/ v (0:Le,)vdddy — —n
(SNK), &

&
<

< o5 (4.50)

for all eigenfunction v such that L. ,v = o v which is normalized by |[v||z2 =
1.

Now since ||v||z2 < ||v][z2, we conclude that

Lev=0cwv Lev=0cwv
o]l 2=1 ol 2=1

inf / v(0.L)vdddy > inf / v (0:IL.) v db dy,
(SNK)+ (SNK)+

and (4.50) implies that

2 c

(950' Z gn— 81—8.

This completes the proof of the result. =
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4.5 Proof of Theorem 4.0.1

Using Lemma 4.4.1 and Lemma 4.4.3, reasoning as for the proof of Lemma
6.3 in [56] we can find a sequence of open interval I;, i € N such that the
smallest eigenvalue of L., is bounded away from zero for any ¢ € U;I;.
More precisely we have

4.5.1. LEMMA. Fiz any q > 2. Then there exists a sequence of disjoint

nonempty open intervals I; = (7, &), e

.€ ), €5 — 0 and a constant ¢, > 0 such

that when ¢ € 11 := U;1;, the operator L., is invertible and
(Lgﬂa)_l : L? —_— Lg’

has norm bounded by c, gk—a+l

U;1; satisfies

, uniformly in € € I. Furthermore, 19 :=

|H'((0,e) N 19) —g| < ce, e\, 0.

For p € N and 0 < a < 1, we denote by C»* the usual Holder spaces on
the closure of (SNK),.

4.5.2. LEMMA. Let f € C%* and v satisfy
L.,v=Ff.

Then there exit a constant ¢ > 0 (independent of ¢ but may depend on r)
and R > 0 depending only on q, o, s and k such that

[vlleza < ce™ | flicoa
for any € € 1.

ProOOF. Fix g > 2. Observe that by definition of the weighted norm of
L% from Lemma 4.5.1 we have

lollze < cqe™ 1 £l e

By standard elliptic regularity theory, there exists ¢ > 0 (may be depending
on 7) such that the following Holder estimate holds

_k
e vllze < ¥ [ fllena +ce™? vl

From these last two inequalities, we can choose R > % +q+a+1l+s. =
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We end the proof of the main theorem by finding a fixed point for the
mapping
1o r(v) == _(Ls,r)_l {O:(€") + Neyr(v)

where

/ Nep(v)v'dody = / et Q (e I v, Iy v) o' df dy
(SNK)4 (SNK),

+ e Qe I v, I v) V' dO d.
I(SNK),

Since by definition, @, and @, are (at least) quadratic we have

N (0)leoe = €77 O(|v]|cze) [|0]|Z20
) C
NG (01) = Neyp(02)]|eoa = €272 O(J|ur||c2e, [|vallc2e) |Jv1 — va|c2e.

Now we fix r > 2 R+ 2 —2s. By Lemma 4.5.2 and the above inequalities,
for every € € 19, T. ,(v) maps the ball

fvec® + ullee < Ce™70

into itself moreover it is a contraction. Therefore it has a unique fixed
point v = =2 w + (®, ©) in the ball yielding

m H(" 4w, & 4+ ) = n in  S.(") +w,d" + D) C Q.,
(N, V?) =0 on 9S.(0") 4w, &+ D) C IN..
If ¢ € I is sufficiently small then rescaling back, the tube & S.(w™) +

w, ®" + ®), is an embedded hypersurface of Q (because the C*-norm of
") 4+ w tends to zero as € — 0) with constant mean curvature equal to

n

Es_l and intersecting the boundary of ) perpendicularly along its bound-
ary.

4.5.1. REMARK. FExistence of stationary Capillary hypersurfaces.

Letting v € (0,7) be an angle, recall from § 4.1.1 that (y*,v* ... ,y*) € R¥

(resp. (24, 2%...,2") € Bf(v)) are the local coordinate variables on K.
(resp. on S"(7)), where r(7y) := 114;(;2?% (see § 2.8) and
0() i=p|  —cos(y) Eues

B
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parameterizes the spherical cap S™(y) which intersects the horizontal plane
R™ with angle ~.

As in the case where v = 5, we can use the same class of deformations

letting ® : K — NK. and w: B} X K. — R, consider
Sy 1 (y,2) =y xe ' ®(ey) + (1+w(y,2))O(7).

The surfaces nearby a geodesic tube around K. which make an angle almost
equal to v with 0. can be parameterized (locally) by

Gy, 2) : (y,2) — Sy(y, 2) — F7(5,(y, 2)),

namely
1 e 1
G0 2) = (3 20(e0) + (14 (s )0, (1 + 03,20 1()).

Notice that @”“(fy)) =0, so

G, (y, z)‘ € 08 for any vy

OB} )

The image of this map will be called SY(w, P).

Observe that the hypersurfaces close to SY(0,0) are parameterized using
the vector field —Y(y) = ©/(y) X; + ©""(y)V*® rather than the normal
= :=p’ X; 4+ p""V? because it is more reasonable if we want the boundary
of S2(w, ®) to be on I, without imposing simultaneously a Neumann and
Dirichlet boundary condition on w. Suppose Z;(7y), Za(7y) span the tangent
space of SY(w, ®) as in § 7.2.1, we can obtain the normal fields N(v) by
finding o/ () and B*(v) so that

N(y) = —E+ (1) Z;(7) + 8°(7) Za(7).

As we did in Section 4.2, the mean curvature at every point of S2(w, P)
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can be obtained:
mH(w,®) = n—¢ < La(P) +P"™ hag + P [3(R(D), P) — hyj] + 10" (7)(h(P),
= (#8x(©0)p0) + Bsr (O0).pYw) + 0 (O ) )
— e((ane + RO B B, ) - T TE(H))
— 5((3n + 1) 0" (y)h(p) Py, P) + P TR(Py)* + 2p" LR F(fb))
— H(ewg + (Pa, p))? — (P4, eVgnwy) — 252V%{w (D)
+ eL(w)+ & L(w,®) + Q(w) + £ Q(w, P).

Moreover (recall that V° is the interior normal of 0€). ) using the fact that

0" (~) _— 0, the equation { — V°, N) = cos(v) is equivalent to
r(7)

O(),p)(1 — w)w = O0(?) + & L(w, ®) + QY(w, ®) + £ Q(w, P) on 95" (7y) >

which 1s again equivalent to

o(e(),pjw) _ 9{O(7).p)
() ()

+eQ(w, D) on 0S"(y) x K

+ O(e%) + & L(w, ®) + Q' (w, ®) + Q(w)

= w cot(y) + O(?) + &% L(w, ®) + Q*(w, ®)

+Q(w) + £ Q(w, P) on 05" (v) x K,

where

Ql(wa ®) := cot(y) <5wa<®a7f)> + (®a, P){(Pa, P) — é (R(®,p) (I)7f)>> -
Using the results from § 2.3 and from § 4.3, one can adjust the tube to
Sg(w(”), CiD(T)) accurately. Moreover with the decomposition of the functions
v=¢el"Bw+(®, p) € L*(S"(v)x K) as in (4.43) we conclude that the spec-
tral analysis of the linearized mean curvature operator over SJ (UAJ(T), <i>(’"))
carried out as we obtain in Section /4.4 in the new weighted Hilbert sub-
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spaces of L*(S™(v) x K)
Lg,7 = {U =% w4 (®,p) € L*(S"(y) x K)

/ ©(1), p)wl? db() dy + / |<1>|2c@<oo}
()< K K

{U €L, : e* /S . K<@(7),p>(82|VKw\2+ Vnwl® + [w]?) do () dy

+/(|VK<I>|2+]<I>|2)dy< oo}.
K

Under the usual assumptions on K, if € € I is sufficiently small then
rescaling back, we can find a couple (w,®) so that the tube ¢ SY (") +
w,@" + @), is an embedded hypersurface of Q with constant mean cur-
vature %8_1 and intersecting 0S) with and angle ~v. This yields a set of
stationary Capillary hypersurfaces in Q with constant “contact angle” ~y

and condensing to the submanifold K .



Chapter 5
Capillary minimal surfaces in Riemannian manifolds

This Chapter deals with minimal surfaces sloving (GM P) in Riemannian
manifolds. Minimal surfaces are surfaces with mean curvature vanishing
everywhere. These include, but are not limited to, surfaces of minimal area
subject to various constraints.

In this chapter we are interested in minimal surfaces which intersect a given
hypersurface with a constant angle. We prove existence results of capil-
lary surfaces with prescribed topology in Riemannian manifolds. Roughly
speaking, we first show the existence of a class of capilary (minimal) disc-
type surfaces embedded in a Riemannian surface of revolution (see below).
In particular, shrinking enough the thickness of the surface of revolution,
this class constitutes a foliation. Secondly we have existence of minimal
disc-type surfaces embedded in a geodesic tube of a curve which intersect
perpendicularly the boundary of the tube.

Before stating the main results, we need to define what we mean by Rie-
mannian surface of revolution.

A surface of revolution, is a surface created by rotating a parametric
curve [a,b] 2 s — (k(s), ¢(s)) € R? lying on some plane around a straight
line (the axis of rotation) in the same plane.

The resulting surface 6! therefore always has azimuthal symmetry. Ex-
amples of surfaces of revolution include cylinder (excluding the ends), hy-
perboloid, paraboloid, sphere, torus, etc.

In more generality one can obtain surfaces of revolution in R™* m > 2
using the standard parametrization

S(s,z) = (k(s), &(s) O(2)),
where 2z — O(z) € S™ 1 ¢(s) A0 Vs € [a,b].

Assuming that the rotating curve is parameterized by arc length namely

(¢(5))* + (K'())* = 1,
clearly the disc Zs; centered at (k(s), 0) (on the axis of rotation) with
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radius ¢(s) parameterized by
BY' 3 x— (k(s), ¢(s) x),

has zero mean curvature and intersects the above surface of revolution with
a constant angle equal to arccos ¢'(s), where B{" stands for the unit ball
of R™ centered at the origin, namely % is a capillary surface.
Motivated by capillarity problems, for questions of stability, see [34], it
is not restrictive to assume that the angle of contact is in (0, 7), namely
¢'(s) € (—1,1) or equivalently

K'(s) # 0. (5.1)

We shall extend these definitions of surface of revolution in a Rieman-
nian setting.

Let (M™1 g) be Riemannian manifold, and I an embedded curve pa-
rameterized by a map v : [0, 1] — M. Asin Section 4.1, we consider a local
parallel orthogonal frame FEi,--- , E,, of NI' along I'. This determines a
coordinate system by

[0,1] x R™ 3 (20,¢) — (0,¢) := exp, (4, (¢'E;) € M.

For a small parameter p > 0, consider the Riemannian surface of revolution
¢’ around I' in M parameterized by

(5,2) — F(pS(s,2)) = F(pr(s), pd(5)O(2)) = exPyyyu(s) (0 8(5)0'(2) Ei),
where z — ©(z) € S™ 1, and call its interior §2, := int € which is nothing
but a tubular neighborhood for I' if p is small enough. Here we are assuming
always that ¢(s) # 0 and that (¢/(s))* + (+'(s))* = 1.

For any s € [a,b], we consider the following set

Ds,p = F(pH(S) ) p¢(8) Bin)a

it is clear that 0D, , C €” and we have that the mean curvature Hp_, of
Dy ,, see § 5.3.1, satisfies

while the angle between the unit outer normals (see also § 5.3.2) can be
expanded as

(Np,,, Ngv) = @' (s) + O(p) on 0D; ,. (5.3)
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Our aim is to perturb Dy, to a capillary minimal submanifold, %, ,, of
), centered on I' with contact angle arccos ¢'(s) along 0%, , C €7, as it
happens in R™*,

5.0.1. THEOREM. Suppose we are in the situation described above. Let
[d,b] C [a,b] be such that ¢(s)¢"(s) > 0 for every s € [a/,V]. Then there
exists pg > 0 such that for any s € [a', V'] and p € (0,pg), there ewists
an embedded minimal disc 9D, , C Q,, intersecting € by an angle equal
to ¢'(s) along its boundary. Moreover % , is a normal graph over the set
Dy, for which the norm (in the C**-topology) of this function defining the
graph tends to zero uniformly as p tends to zero.

Furthermore there exists a tubular neighborhood O, of v([a',V]) foliated by
such minimal discs for which each leaf intersects 0O, transversally along
its boundary.

5.0.2. REMARK. e When we parameterize in particular €7 with k(s) =
s, and if we require the capillary discs to be perpendicular to €*, we ob-
tain the conditions ¢’ = 0 and ¢" # 0. This means that non-degenerate
extrema of the width ¢ determine the location of such surfaces.

o An example is the hyperboloid, ¢(s) = cosh s and k(s) = sinh s. Here
one may see M as a Lorentzian manifold modeled on the Minkowski
space RY". Letting ¢ € M and Ey a unit time-like vector of T, M and
Y(wo) = exp,(zoEy) so one can see Dy, as a space-like minimal disc
in the geodesic sphere of radius p.

An interesting particular case which is not covered by Theorem 5.0.1 is
when ¢ = 1 and x =Id, namely when we deal with geodesic tubes. In
this situation (recall that in this case the angle of contact is %) it is the
geometry of the manifold to determine the position of the discs. More
precisely, we have that €7 is the geodesic tube of radius p > 0 around I,

¢’ ={qeM : disty(q,T) = p},
and its interior is nothing but
Q,={geM : dist,(q,I) < p}.

In this case due to invariance by translations along the axis of rotation,
we reduced our problem of finding minimal surfaces to a finite-dimensional
one. Namely we have obtained the following
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5.0.3. THEOREM. There exists a smooth function v, : [a,b] — R such
that, for p small, if sy is a critical point of 1, the set Dy, , can be smoothly
perturbed to an embedded minimal hyper-surface Y, , C 1, intersecting €
perpendicularly along its boundary. Furthermore, for any integer k, there
exists a constant ¢y (independant on p) such that

n

by — Z (Ry(Ej, E)Ej, E)|levag) < crp?,
iJ

where R, is the Riemann tensor of M at p=~(ps).

Some remarks are due: let I' 3 p — W(p) = > " (R, (L}, ;) Ej, E;) any
strict maxima or minima of ¥ imply the existence of minimal surfaces. In

particular suppose at some point py = v(p s¢) interior to I', there hold

d¥(po)[¥(pso)] =0  and |d* (po)[7(p s0), ¥(ps0)]| > e,

for some constant ¢ independent on p. By the implicit function theorem,
there exits a curve (0, pg) 2 p — s, with s, — s¢ such that s, is a critical
point of v,. Hence for every p € (0, pp), there exits an embedded minimal
disc s, ,, centered at y(ps,), contained in €2, that intersects 02, perpen-
dicularly along its boundary.

5.0.4. REMARK. e We have that

U(p) = 3 (Ry(Ej, B)E), i) = S(p) +2 Rie,(3(p ), 7(p 5)),
where .
S(p) = Z <RP(EOHEB)EOH Eﬂ>
a,3=0

is the scalar curvature of M at p = v(ps), Ey = Y(ps) and Ric, is
the Ricci tensor of M at p. From Theorem 5.0.3, we have that if
s +— Ricy(Y(ps),¥(ps)) is constant along I' then stable critical points
the scalar curvature yields existence of minimal discs.

o Recall that if (M{™, 1) and (M52, g2) are two manifolds, the Rie-
mann tensor R of the (Riemannian) Cartesian product M™ M2 .=
(M1 X Ma, g1 @ g2) decomposes as R = R' @ R? since the connection
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V is given by Vx, . x,(Y1+Ys) = V}(lY1 +V§(2Y2 for any X1, Y1 (resp.
X, Y3) vector fields of My (resp. My), where V' is the connection of
M;. Clearly for any ps € Mo, the set (My)(p2) := {(p1,p2) € M

p1 € M1} is a submanifold of M, diffeomorphic to M;.

In particular if mi =1, R' = 0, by Theorem 5.0.3 we obtain that sta-

ble critical points of the mapping S o yield existence of minimal
1)\P2
discs inside (small) geodesic tubes around the curve (My)(ps2), where

as before S is the scalar curvature of M.

o As a simple byproduct of our analysis, we find that if I' is a closed
curve, we have at least 2 (equal to the Lusternik-Schnierelman category
of I', see [5] ) solutions (without any assumptions on the curvature of

M).

o We believe that this result might be generalized to higher codimensions
namely if N°, 1 < ¢ < m, is an (-dimensional submanifold of M™*!
and considering the following surface of revolution with axis of rotation
RE

S(s,2) = (K'(s), ...,k (s),0(s) ©(2)),

where z — O(z) € S™ ¢, one could obtain (m — £ + 1)-dimensional

mianimal disc-type submanifolds of M centered on N*.

Let us describe the proof of the theorems above. We first recall, see [78],
that Capillary hypersurfaces with constant contact angle arccos ¢'(s) are
stationary for the energy functional

E(D) = Area(D N Q) — ¢'(s) Area (L), (5.4)

among (orientable smooth) surfaces D C €, with 9D C 9€, and ), C 99,
is the part (on one side of D) for which the angle is measured. Moreover
the Euler-Lagrange equations is nothing but

HD = 0 in D,

(5.5)
(Np, Nag,) = ¢'(s)  ondD.

Here Hp is the mean curvature of D while Np and Nyq, are outer unit
normals of D and 0f2, respectively. Since we look for stationary surfaces

with a given profile for this energy functional, clearly by (5.2)-(5.3) a man-
ifold of approximate solutions is given by Z, :={D,, : s¢€ [a,b]}.
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For any given hyper-surface D; , € Z,, we parametrize (locally) a neighbor-
hood of D; , (in the manifold in M) by a mapping F** : R x B{* — M for
which F*(t,0BT") C 09, for every t, while the direction F}(0;) is nearly
normal to D;,, and moreover D, , = F*(0, B"), see (5.9). This allows
to parametrize any set Z nearby D , satisfying 09 C 052, by a function
w : B — R such that Z(w) = F*(w, B{"). We call H(s, p,w) the mean
curvature of Z(w) and B(s, p,w) the angle between the normals Nyg
and Neg» of 0Z(w) and OS2, respectively.

One of the main features in this work in the (technical) Sections 5.3.1,
§ 5.3.2 is to calculate H(s, p,w) as a nonlinear elliptic partial differen-
tial operator, depending on p and s acting on w coupled with the mixed
boundary operator which we denote by B(s, p,w). In these calculations it
is important to gather various different types of error terms, some of which
depend linearly and some nonlinearly on w, and some of which are inho-
mogeneous terms vanishing to some order in p. It turns out to be helpful
to rescale the local coordinates y by £(s) = p¢(s) which is the radius of
the discs. The final expression, Proposition 5.3.5, for the mean curvature

of Z(w) then is

M5, p.w) = ~Lya(w) + O) +pQw)  in Hw),

where L, ; is the linearized mean curvature operator about 2(0) = D; ,:
L,s(w) =—Aw+ pLs(w) in Z(w);
also the angle between the normals satisfies (see Proposition 5.3.6)
oL (B(s, pow) = 6/(5)) = By(w) + O(1) + pQluw),

where

Ba(u) = (462 50+ 00'w) +pLw)  on 0(w)

Here L, (resp. L) is a second order (resp. first order) differential operator
and Q(w), Q(w) are quadratic in w, see also the end of Section 5.1 for

more precise definitions.

It turns out that the problem of finding w such that Z(w) solves (5.5)

namely
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H(s,p,w) = 0  in Z(w),

B(s.pw) = ¢(s)  on d9(w),
can be transformed to a fixed point problem for which the solvability is
based on the invertibility of L, on a suitable space of functions w such
that B, s(w) = 0. If ¢¢” > 0, the operator L, s (resp. —L, ;) is invertible
by means of usual Sobolev inequalities. Hence after suitable adjustment of
the disc Z(w), we readily prove the first theorem. This program is carried
out in § 5.4.1. Now in the situation where ¢ = 1 and x =Id, it is clear
that the linearized mean curvature L, , about any D € Z, may have small
(possibly zero) eigenvalues on the space of functions for which B, (w) =
% + p Ls(w) = 0. This is related to the invariance by translations along
the axis of rotation in the "flat” case. Hence L, may not be invertible
on such space. However restricting again ourselves on space of function
orthogonal to the constant function 1, we can perturb Z, to a manifold
Z, (constituted by sets having constant and small mean curvatures, see
§ 5.4.3) which turns out to be a natural constraint for £ namely critical

point of £| is also stationary for £. For that we use an argument from
zZ

Kapouleas in [51] which was successfully employed in [73]. We will follow
the argument of the latter, we refer to § 5.4.3.

It is worth noticing that this method is also closely related to variational-
perturbative methods introduced by Ambrosetti and Badiale in [3] and
subsequently used with success to get existence and multiplicity results
for a wide class of variational problems in some perturbative setting we
refer to the book by Ambrosetti Malchiodi [4] for more details and related
applications.

5.1 Preliminaries and notations

We consider (¢, k) : [a,b] — R? smooth with x'(s), ¢(s) # 0 for every
s € |a, b] moreover we assume that s is the arc length of the rotating curve

s+ (p(s), k(s)) precisely
(¢/(s))° + (5(s))* =1 Vs € [a0].

We also assume that x( is the arc length of 7, and we will let Ey, := +/.
We choose a parallel (local) orthonormal frame FEy,--- | E,, of NT" along I
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This determines a coordinate system by defining

F(Qfo, C) = eXp’y(CEo) (CZEZ) for C - (Clv T 7Cm)

which therefore defines coordinates vector fields :

Yo := F.(0y,), Y; = F.(0,).

We will adopt the convention that the indices 7, j, k,--- € {1,...,m} while
a,3,---€{0,...,m} with Y, = Yy when o = 0.
By construction, V Xi}/()‘r € TT so that we can define

(VYo Yo)| = —T8(E).

There also holds

Vy,Yi(¢) = O(I¢]), Y5 (5.6)
If ¢ = F(xz0,() € M near the point p = F(x(,0) € I, we can expand the
metric gag(q) = (Ya,Ys) in ¢, more accurately than in Lemma 5.1.1 by
looking at M here as Q. ( See for instance [56], Proposition 2.1 for the

proof).

5.1.1. LEMMA. In the above coordinates (xo, (), for anyi,j =1,....m, we
have

gi(@) = b + 5 (Rp(Y, E)Y, Ej) + 5 (Vy Rp(Y, E))Y, Ej) + Oy([¢]);
90i(0) = 3 (Ry(Y, E0)Y, Ej) + Op(¢[*);
goo(q) =1 —200(Y) + (R,(Y, Ey)Y, Eo) + Oy(|¢P),

where Y = C'E;.

Notation for error terms: Any expression of the form L(w) (resp. L(w))
denotes a linear combination of the function w together with its derivatives
with respect to the vector fields Y; up to order 2 (resp. order 1). The
coefficients of L or L might depend on p and s but, for all k € N, there
exists a constant ¢ > 0 independent of p € (0,1) and s € [a, b] such that

L) llera@m < ¢ llwllerza @

ILs(@)llena@m < cllwlleriamm)-

Similarly, any expression of the form Q(w) (resp Q(w)) denotes a nonlinear
operator in the function w together with its derivatives with respect to the
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vector fields Y; up to order 2 (resp. 1). The coefficients of the Taylor
expansion of Q“(w) in powers of w and its partial derivatives might depend
on p and s and, given k£ € N, there exists a constant ¢ > 0 independent of
p € (0,1) and s € [a, b] such that

Q)= Qwn)lleso ) < € (Iwllerzagap + lwnllersaagam ) lor=ws o),

provided ||w;|lge+20@m < 1,0 =1,2. Also

Q)= Qn)llesa ) < € (Illersaqap + lunlleragap) ) lor=ws o),

provided [|wi|grs2a(gm < 1. We also agree that any term denoted by O(r)
( with » € R may depend on s) is a smooth function on B}" that might
depend on s but satisfies

O(rd)

HWucw(B;n) <c

for a constant ¢ independent of s.

5.2 On the surface of revolution around T

We start by fixing the following notations which will be useful later.
Notations:

Through the following of this chapter,
e(s) = po(s) and e1(s) = pr(s) for every s € [a,b].

In terms of cylindrical coordinates, letting ©(z) : R™~! — S™~1 the sur-
face of revolution € around I' can be parameterized by

C9(5,2) = F(e(5),2(5)0(2)) = exD 0y (<(5)6(2) ).
The tangent plane is spanned by the vector fields
Z5 = Cldy) = SYo+e T,
ZjC = CL(D.,) = ey, Jg=1--,m,

where
T =0,
We recall also from [56]
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5.2.1. LEMMA. Let q = CP(s,z) € €7, there hold

(1, T), = 1,
(T,Yp), = 0,
(r,1;), = 0.

5.2.2. LEMMA. In the notations above, the first fundamental form of €*

has the following expansions
¢ e g 712170 2| 112 5
(25, Z5) = 2 2e|e1|"To(©) + e7[e1[(R(O, Ey)O, Ey) + O(e”),

<ZIC,Z](;> - 82<617@k>+0(54)7
(Z5, Zy) = O(Y).

PROOF. Recalling that

62
¢

we obtain, using also the Lemmas 5.2.1, 5.1.1, that

1+ e =

(Z5,Z5) = |e1]? (1 — 2eTy(0) + e*(R(©, Ey)O, Ey) + O(e%)) + |7

52

- 5 2¢|21 P TH(0O) + 2|1 |*(R(O, Ey)O, Ey) + O(e°)

The other expansions are easy consequences of the Lemmas 5.2.1 5.1.1. =

5.2.1 The unit normal field to the surface of revolution

Call
M :=¢eX,—&|T

and set

N.(s,2) = M + ayZ§ + . Z;.

Note that this vector filed is normal (not necessary unitary) to the surface
whenever we can determined ay so that (N, Z¢) = (N,, Z5) = 0 for all
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k = 1,...,m. This therefore leads to solving a linear system. Observe
that

(M,Z5) = e/ (Yo, Vo) — 4 (T, )
= cie’ (1 —2eIH(0) + £(R(0, E)0, Ey) — 1+ O(e%))
hence
(M, Z§) = —2£|eT)(O) + £1€'e*(R(O, Ey)O, Ey) + O(£°).
Also we have
(M, Z5) = e'(Xy,Y)) — €1e(X,Y,) = O(eh).
If we use Lemma 5.2.2, we have
ao(Zg, Zo) = —arlZy, Z5) — (M, Zg)

= 0 O(e?) + 256/ TH(0) — %1€/ (R(0, Ey)O, Epy) + O(£”)

SO
ap = 5'5/1¢2 (2eT9(0) — [€}|2(R(©, Ey)O, E >)+4¢2|5'1'3 TOOTY(O)+O(3) +a,O(c*
0— 52 g 0 51 ; 0 3 O 52 1S 0 0 g Oék IS }
(5.7)
Since

a2y, Z1) + aolZy, Z1) = —(M, Z;)
and using (5.7)
ap(Z8, Z8) 4+ 0, 0(9) 4+ O(°) = O(eh)

we get

073 (62<@l, @k> -+ 0(64)> = O(€4>,

therefore

oy, = O(e%).
Recalling that € = p ¢ while e; = px we define &g by the relation
ag = d'ag + O(e?).
Namely

ag = 219I(0) — 'e16(R(O, E0)O, Ey) + 4¢11'eT(0)I((O).
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Now let us compute the norm of this normal vector field. Since

Ne(s,2) := M + aZy + o 2,
we have by construction
(No, Noy = (M, MY+a2(Z&, ZE) +arou(Z5, ZE)+200 (M, Z§)+200.( M, Z)+2a.00( Z, -
Notice that

ao({Zy, Z5) = —(M, Zg) — (2, Zg)
= —(M, Z§) + O(°)
and
alZ5, Zg) = —ao(M, Z§) + O(<°),

hence
(Ney, No) = (M, M) + (M, Z§) + O(£°).

Now observe that

(M, M) = |€'[*{Xo, Xo) + |1 [*(T, T)
2
= S I (22T8(0) + (R, F0)e, Ea) + O()
and

2
ag(M, Z5) = —2e€'e'THO)ap+0O (et ag = —4%\5’|2\5’1lzfg(@)Fg(@)JrO(a‘r’).

So we have

2 ~ ~ 112 4
SN, N = 1+ 5867 (—2:T(0) + 2(R(O, Ey)O, Ey)) — 4% |¢/2Ie; PT(0)T§(0
Finally we conclude that

B ‘5/|2

2

NS = 1+ EEgrg(0) + (31211012 + 2|D 21 Pot ) THOITE(O) — - (R(O,

and, setting

£ S 1ElY arogyro !
192 ¢"To(O)0(0) — 5 (R(O, E0)O, Eq),

g2 g2

H.(0,0):= <3

we can simply write
-~ 1

%u\u—l =1+ |¢/2¢? [grg(@) + HC(@,G)} +O(e?).

We collect all these in the following
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5.2.3. PROPOSITION. There exists an interior (non unit) normal vector
field of €7 which has the following expansions

Nego(s,2) = =) + 'Yy + (¢'ag + O3 Z5 + an Z§,

where
Go = 2616T(0) — £'21¢(R(O, £n)©, En) + 421 K'el(O)T5(O);
o, = O(e%).
Moreover
0 ‘Ncgp T 1+ |¢')? (eT5(©) + £2H(0,0)) + O(e?),
where

H(6,0) = (16 + 26') TYOTY(6) — S{R(O, )6, Eo) + O(&?).

5.3 Discs centered on I' with boundary on %7

For 0 > 0, By" will denote the ball of R™ with radius ¢ centered at the
origin. For any s, we consider the disc 2°¢ of radius ¢ centered at y(g(s))
given by

D" = Fl(ei(s), e(s) BY"),
parameterized by
B" > 1+ D*(z) = F(ey, e ).
Notations
E(s,t) == e(s +e(s)t) E1(s,t) :==e1(s + (s)t);

g (s,t) := Oe(s +e(s)t) = e(s)e'(s +e(s)t)  &1(s,t) := Oer(s + (s)t) = e(s)e (s +

Notice that
g(s,t) = (€4’ t+30(t?))e, g (s,t) = (e)+elt+30(t?))e. (5.8)

A parametrization of the neighborhood of the disc (in M) centered at
p = (e1(s)) € I' with radius € ( p small) can be defined by

Fi(t,x) == F(&1(s,t), &(s,t) x) Ve € BY", |t| < 1. (5.9)
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Note that by construction,
Fé(t, 0By") C €7, Vit < 1
and more precisely, for every [t| < 1
Fo(t,x) =Cl(s+et,e(s+¢et)x) Vo € OB = ™1,

We consider the following vector fields induced by F*

eTy = Fi0) = & Yot)+& X(1),

ET; == F.(9,) = &Yj(b).
Here X = 2'F;.
5.3.1. LEMMA. At g = F*(t,x),we have
(Yi(t), Y;(t)), —5” + S (Ry(X, E) X, E)) + 5 (VxRy(X, E)X, Ej) + Op(e') + £%C
(Yo(1), Y;(1), =% (Rp(X, E0)X, Ej) + Oy(%) + 30,(t) + 'O, (12);
(Yo(t), Yo(t)), =1—2T((X) 4+ 222Ug(X)t + &* (Ry(X, Eo) X, Eo) + Oy(€*) +£°0,
where p = y(e1(s)) € ' and

Uy (X) = €Ty — € To(X).

ProOOF. There holds

d

=M. Y(0),| = 2(Ver Yo, )]

— 25(Vi Yo, Yo)| 25 (%o, Vo)

= 2e(eql — €TO(X)) + Op(e?).

In this formula we have used (5.8), hence the last expansion follows. On
the other hand one has

d

SN0 Yit),| = (Ve Yo, Yi)

+ <)/b7 VET()}/;> =0

= &(VyY0,Y5)

+ 28" (VxY, Y;)

+ &1(Y0, Vv, Y2) T 2¢

Since by construction (Vg Ey, E;)+(Ey, Vg, E;) = 0 and also (Vx Ey, E;)+
<E0, VXEZ> =0 on F, we infer that

d 3
S0, Yi(0), |, = 0y,

t=0
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In the same way, the first expansions follows similarly. m

Using the above lemma, and (5.8) we get

5.3.2. LEMMA. The following expansions hold
(T, Ty) =06+ 5 (Rp(X, E)X, Bj) + 5 (VxRy(X, E) X, Bj) + Oy(e*) +£%0(1) + ¢
(To, T;) = ez’ + Op(e) +*O,(t) + 50, (t?);
(To, To) = 5+ |1 (—2eTH(X) + 282U (X)t) + Oy(e°) + 20, (1) + €50, (1),

where p = y(e1(s)) € T.

Observe that all disc-type surfaces nearby %, , with boundary contained

in € can be parameterized by
G*(z) := F*(w(x), x), (5.10)

for some smooth function w : Bf* — R. We will call 2°°¢)(w) = G*(B").

5.3.1 Mean curvature of Perturbed disc Z(w)

It is not difficult to see that the tangent plane of 2(w) = 2% (w) is
spanned by the vector fields

Zj = Gi(04i) = cwuTy+E(s,w) T}

From Lemma 5.3.2, it is clear that at the point ¢ = G*(z) = F*(w(x), x)
there hold
(T0. T)), =0+ 5 (Ry(X,E)X,Ej) + 5 (VxRy(X, E}) X, Ej) + O(eh) + 2 L(w) +
(T, 1)), =¢e'v/+0() +e'L(w) +£Q(w);

(To, To), = ¢_ + [} [* (—2eTH(X) + 22205 (X)w) + Op(e°) + e°L(w) + £°Q(w).
(5.11)
Observing that £(s,w) = £ 4+ e¢’ w + £3Q(w) and using (5.11), we get the
first fundamental form h;; = (Z;, Z,),

e 2hi; = (142 w) 6y + &' (wpr! +wpz') + % (R,(X, E)X, E;) + % (VxR,(X, E

+ Ot + 3 L(w) + £2Q(w).
(5.12)
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The normal vector field

Consider the vector field
N@ =Yy + arpZ;.

Observe that it is normal (not necessary unitary) to the disc whenever
we can find a, such that (Ng, Z;) = 0 for any k = 1,...,m. Namely ay,
satisfies

P9 (w) ag hi, = — (Yo, Zs). (5.13)

Since
(Yo, Zi) = 81w, (Yo, Yo) + Ew,i (Yo, X) + £(Y0, V)

then from (5.12) and (5.8), we get the formula
2ay, = echwi (Yo, Yo) 4+ (Yo, Vi) + O(e)) + ' L(w) + 2Q(w).  (5.14)
And also since &€ = ¢ + &2 L(w), & = &1 + e2L(w), we get

etay = —55'1(1—25F8(X))ka—%83 (R(X, E)) X, E)+O(eM+e' L(w)+2Q(w)

and thus
5’1 0 2e 2 2
ar = == (1= 2eTo(X)Jwys = o (R(X, Eg) X, i) +O(e%) +€* L(w) +eQ(w).

Moreover using also (5.13) we have

(Ng, No) = (Yo, Yo) — agag hyy
= (¥,Y5) — ax(O(%) + 2 L(w) + ' Q(w))
= (Yo, Y0) — (O(e) + L(w) + £Q(w)) (O(®) + £°L(w) + £°Q(w))
= (Yo, Yo) + O(") + &2 L(w) + £2Q(w).
Hence
(¥ K| = (%0, Y0) [+ O() + £L(w) + Q) (5.15)
Therefore
(¥, N ‘_1 14+ eTU(X) + O() + E2L(w) + £2Q(w).  (5.16)
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We then conclude that the unit normal has the following expansions:
Ng = (1+elY(X) + O(?) + 2L(w) + 2Q(w)) Yo

+ (—§(1 + elY(X))w,r — 5 (R(X, Eo) X, Ey) + O(e?) + e2L(w) + eQ(w)) L

(5.17)
Sometimes we will simply need to write Ny in the more compact form

Ng =Yy + (O(%) + eL(w) + £°Q(w)) , Ya.

The Second Fundamental Form

Observe that in the scaled variables ( = ez, since the functions O(g?),
L(w) and Q(w) are depending on = whereas the vector fields Y, depend
on ( = ex, we have for any integers 1 < m and d > 1

Ei(0@Eh) = 0™, Ei(e"L(w)) = e ' L(w), Ei(e"Q(w)) = e 'Q(w).
Having this in mind, we state the following
5.3.3. LEMMA. There holds

(Ty, V7, Ng) = O(e®) + eL(w) + £2Q(w).

ProOOF. Using (5.17) and recall that Ty = &)Yy + €' X + eL(w),Ya, we
have

(To, VzNg)| = (T, V(1 + el (X))Yo) + O(”)
— T (T, Yo) + £(1 + eT9(X))(Th, Vi, Yo) + O
— e TY(E) (Y, Yo) + et (1 + D0(X)) (Y5, Vi Yp) + O(E)
= e\ TH(E;) — ee\TH(E;) + O(e?).

Hence we get the result. =

Let us now estimate the second fundamental form of Z(w).

5.3.4. LEMMA. The following expansion holds.

(V2.Zj,Ng) = e(1—elQ(E)2") wp + & (VyiY;, Yo) + O(eh)

— & (wuTH(E) + walH(E))) + e L(w) + £°Q(w).
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PRrRoOOF. We have
(V2,Zj,Ng) = e(V 7, (wyTy), N) + (Vz(Tj), Ng).

We first estimate (Vz (w,i1y), Ng).
Observe that

0
5t WarTo, No) = (Vz,(wTo), No) + (wiTo, Vz,No),
which implies that
0
(Vz,(wyTy), Ng) = @(wxa‘To, Ng) — w.i(To, Vz,Ng).

The formula (5.13) shows that
~ ~ 12
(Yo, Nop) = (Yo, Yo) + @ Zi, Yo) = (Yo, Yo) — anan{Z, Z1) = | N |

and then
(Yo, No) = | Ng)|.

From the fact that (Yy, X) = 0 when w = 0 and that
(Z), X) = ex® + O(*) + 2L(w) + £°Q(w)

we obtain ap(Zy, X) = O(e?) + eL(w) + 2Q(w), from which the following
hold

(eTy, Ng)y = &1{Yy,Ng) + (X, Ng)

— g’l

N@’ + &% + eL(w) + £2Q(w))
= ec(1 —elN(X)) + O + 2 L(w) + *Q(w).

From this, we deduce that

0
@@UﬂTg, Ng) = €} (1 — 5F8(X)) Wiy —6511F8(Ei)w$j +53L(w)+52Q(w).

We conclude using also Lemma 5.3.3 that

(Vz(wiTy), Ng) = (1 — eT(X)) wyiw—eei TH(Ey)wyi+e’ L(w)+£°Q(w).
(5.18)
It remains the term (V2 (£T}), Ng) = cw,i(V1,(ET;), Ng)+E(V 1, (ET;), Ng).
Since
g(s,w) = e(s) + eL(w) + £3Q(w), (5.19)
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we can write
(V1,(eT}),Ng) = (V5.Tj, N) + (V5,((e°L +£°Q)T), No).
Recalling that Vy,Y; = (O(g) +eL+e?Q).Y, also (T;, Ng) = e +eL+%Q

thus

(V5(ET)), Ng) = e(Vy Y}, Yo)|  +O() + ' L(w) + £°Q(w).

w=0

Moreover (5.8) and (5.19) yield

(Vr,(€T;), Ng) = el (VyY;, Ng) + ee'(VxYj, Ng) = —cee Ty + O(e?).

w=0

This implies that
(V1,(eT}), Ng) = —eceiTh + O(e?) + e’ L(w) + £*Q(w).
Finally, collecting these and using (5.19) it turns out that
(V7,(ET)), Ng) = ee(Vy.Y;, Yo)|  +0O(e")—eee|TY(Ej)wyi+e* L(w)+e*Q(w).

w=0
(5.20)
The result follows from (5.18) and (5.20). =

We need also to expand more precisely (Vy,Y}, Yp) . By construction
it vanish on I' and o

Yi(VyY;, Yo) = (Vi VY, Yo) + (VY Vi Yo).

Furthermore by (5.6) and since (see for instance [38] Lemma 9.20)

1
VEVEY] — —g (R(El, EZ)EJ + R(El, E])EZ) 5

v(x0)

it follows that
€
(V¥;, Yo) = —((R(X, B Ej, Eo) + (R(X, Ej)E:, Ey)) + O(=%).

We conclude that from Lemma 5.3.4 that the Second fundamental form
I;; = (VzZ;, N7) of the perturbed disc 2°°*)(w) centered at the point
v(e(s)) with radius e(s) is given by

; = egf (1 —elY(E)al) wpw — 5 (R(X, E)E;j, Eo) + (R(X, E))E;, Ep))

+ O(e?) — &%) (wuTY(E;) + wulH(E))) + e*L(w) + £2Q(w).
(5.21)
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We recall that if £, is an orthogonal basis of 7},M, then
Ric,(X,Y) = —(R,(X, E,)Y, E,) VXY € T,M.
Finally we obtain
; h7 = 2 (1—el(X)) Aw — ERic, (X, Ey)
+ O(e?) — 26/ T)(Vw) + e2L(w) + eQ(w),

where X = 2'E}.

5.3.5. PROPOSITION. In the above notation, the mean curvature H(s, p, w)
of Ds,(w) has the following expansions

2

%H(S, p,w) = Aw — %% Ric,(X, Ey) + O(p*) + pL(w) + pQ(w).

In particular if T is a geodesic, T = 0 then

2
%H(s, p,w) = Aw — 2{% Ric,(X, Ey) + O(p®) + p*L(w) + pQ(w).

5.3.2 Angle between the normals

By construction, at ¢ = G*(x) we have F*(w(x),z) = C°(s + ew(x),e(s +
ew(x))), for every x € dB]". Recall from § 5.2.1 and 5.3.1 that

Nigo(s,2) = —€1(8)X 4 €' (s)Yy + aoZE + apZ,
where oy = ¢'ag + O(e?) and oy = O(&?) also
Ny =Yy + ar.Z.
One easily verifies that
(N, p N (s +2w)), = =X ¥0), + 000, Yo, + ZUZ5, W), + ML Vo),

a (8]
— Kap(X, 2, + dan(Zy, Yo), + ;’“ozowg, Zi), + famzk,

We have to expand

K (s+ew) = K'(s)+er" (s)w+e?Qw) ¢/ (s+ew) = ¢'(s)4+ed” (s)w+eQ(w).
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We will also need the following result which uses just the expansions of the
metric Lemma 5.3.1

(Z6, Zr) = O() +e’Lw) +£°Q(w),
(Zf,Zy) = O(?) +e’L(w) + °Q(w), (5.22)
(X,Z), = (e+eew)a” +L(w) +°Q(w).
We use the fact that ax(Z;, Zr) = — (Yo, Zi) to have
P~ (Ng, Ne=(s + ew)), = (¢ + cwd”) (Yo, Yo), + (5 + & " w)an(Yo, Yo), + %%ﬁ, Yo

— (W + k" w)ar(X, Z), — darar(Z, Z1), + %ng, 7, +

+ & L(w) + £2Q(w).
Now from (5.22) we get
—Sara(Zs, Zl)q+%ak(Z§, Zk>q—|—%al(2k, 70, = O() +£° L(w) +£°Q(w)
and also since

(Zk, Yo), = O(*) + 2 L(w) + *Q(w),

one has
p  (Ng, Ng=(s + cw)), = (¢' +ewe”) (Y0, Yp), + (v + ewr”)an (Yo, Yo),

— (& +er"w)ar(X, Zy), + O() + €’ L(w) + £°Q(w).
From (5.22) and recalling the formula for aj in (5.14) we get

WX 2, = Yol ~ (14 )3, X), + O + L) + Q)
_ —53%(%, Yo, + O() + S L(w) + £2Q(w)

and then we deduce that

o )
0 (No, New(s + ew)), = ¢ (1+Kag) (Yo, Vo), + (ewd” + ve)) o

o (Yo, Yo), + 2e2K"

+ O} + 2 L(w) + £2Q(w).
Using (5.15), we have that

~ 0
p ' (Ng, Ng=(s + ew)), = ¢ (1+r'ag) [Yo|, + (ewe” + /i’s’l)a—ls |Yol, + 2¢°K"K'wl (2

+ 0% + & L(w) + £2Q(w).
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Since oy = ¢/ (s + cw)agy + O(e3), one has
ay = (¢/(s) + ¢"(s)e(s)w)ao + *Q(w)ap
so that
ag = ¢'(s)ag — 29" (s)ehewl)(X) + 2 L(w) + £2Q(w).
Moreover notice that

IY(X) = IY(X) 4+ 2L(w) + £Q(w)

and also
¢/ (5 4 cw)|? = (¢ + 2w’ + 2Q(w),

we have that

p \NMS + sw>\_1 = 1+ (¢'+2e¢ " w+e"w)eg T (X)+]¢' (s) e Ho (X, X )+O(e%) +£° L(

from which we deduce that

p[Nar(s +2w)| T IWil, = 1= (6PETH0X) 42 (3= (&) + (0)'+ 2066 THXO)

L 220k x BX B ¢! "4 ey IO
5 (X, E0) X, Ey) + ew (—e' + 2e¢¢” 4+ '¢") T (

+ O + 2 L(w) + £2Q(w).
Consequently we may expand the angle as

8 -1
(Ng, Ng:(s + cw)), = p¢' (1+ r'ag) Yo, ‘N(gp(s + sw)‘ + 262K K wl)(X)
q

, , Ow

+ (1 - (&)%lp(X)) <5w¢” + K 818_77)
+ 0¥ + 2 L(w) + £2Q(w).
Hence we get
(No, Nig-(s + 2w)), = ¢/(s) (1+ ()2T9(X) ) + (1 = (#)%eTH(X)) <5w¢" + K]
+ @22 (3 2()" = ()2 + ()" + 2(9)% ) THOTY(X)
+ #qﬁ’sQ(Rp(X, Ey) X, Ey) + sgb’w( — &' + 2ek"K + 2ep¢”
+ 222U(X)w + O(e3) + 3 L(w) + £2Q(w).
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We define
B(s, p,w) := (Ng(w), Ng=(s + ew)),.

Now we conclude this section by collecting all these in the following

5.3.6. PROPOSITION. In the above notations,

Bls.pw) = o/(9) (14 (7p0rh00) 4+ (07 5 + 60w )
+ O0(p?) + p’L(w) + p*Q(w),
while if ¢'(s) = 0, one has
B(s.pyw) = o5+ O() + P Llw) + Q)

In particular if I' is a geodesic, we get precisely

B(s,p,w) = ¢'(s) (1 + #pZsz(Rp(X, Fy) X, E()}) +p ((/{’)

+ O0(p®) + p’L(w) + p*Q(w).

5 Ow

i)

5.4 Existence of capillary minimal submanifolds

5.4.1 Case where ¢(s)¢"(s0) >0

We may assume that ¢(s)¢”(s) > 0 for all s € I, (9) := [sg — 9, 59 + 6] for
some 0 > 0 small.
We define the following operator L, by

¢¢//
(Lsw,v) = VuVvdr + —= 7{ wo do.
Bm (k) OB

It is clear from the inequality (see [85], Theorem A.9)

/ w?dx < C(m) (/ |Vw\2dx—|—7{ w2d0>, Yw € H', (5.23)
Bp By OB

that the operator Ly is coercive if p is small. We call w;” the unique
solution to the equation

(Lswy,v) = —¢ I'H(X)vdo.

OBy
Namely w]” solves the problem
—Aw; = 0 in BY",
a 2
Wy 9O, = —¢TY(X) on OB,

W)
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By elliptic regularity theory, there exist a constant ¢ > 0 (independent
of p and s) such that

Jwi s S ¢ Vs € L, (6).

Moreover we have that for all £ > 0
OFw*
| Os*

for some constant c¢; which does not depend on s nor on p small.

l|cze < g Vs € I, (9),

Clearly by construction
H(s, p,wy”) = O(p) in s, (wi”),
B(s,p,wi”) = ¢'(s)+ O(p?) on 0% ,(wi”).

We define the space

« @ m a S,
Coo = {w cC* (B %B(s,p, wy” +v) UZO[w] = 0}
— ow o _
— 2,a/om . —
- {w eCcY(B") an + (H,)2w + pLs(w) O} :

We consider the linearized mean curvature operator about 2°°(w;"”) (see
Proposition 5.3.5), L, s(w) : C>*(B7") — C%*(B}") defined by

o s
Lyalw) ==~ T H(s, p.wi? +0)| fu] = ~Aw -t pLaw)

We define also ®(s, p,z), Qs ,(w) € C**(BJ") by duality as

((I)(S,p, x),w/) = _E - H(Sapv wf,ﬁ)w/ dx+p_1 ngm (B(Svpa wi’p) o ¢/(S))wl ds

and for every w € C*¢

(Qs p(w),w') == (w)w' dz +7{ Q(w)w' ds, Vu' e L2

Bn oB

Clearly the solvability of the system

H(s, p,w” +w) = 0 in Ds p(w” + w),

(5.24)
B(s,p,w)” +w) = ¢(s) on 0%, (w” + w)
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is equivalent to the fixed point problem

1
w=—(Luf,,) o toouw}  62)
Furthermore one has
1Qs,p(w)llcon = O([wlleza) lwllgea;
Qs p(w1) — Qs p(wa)lcre = O([[wi|le2e, [[walleze) w1 — wallc2e,

also by construction, there exist a constant ¢ > 0 (independent of p and
s) such that
H(I)(S,p, ‘)Hco,a <cp Vs € 150(5)

By (5.23) the operator L, 5 is coercive on Cfﬁ if p is small enough and also
by elliptic regularity theory, L, s is an isomorphism from C2% into CUe (B
therefore we can solve the fixed point problem (5.25) in a ball of Cf:g‘ with
radius C'p for some C' > 0 which does not depend neither on p small nor s.
And thus for p small and s € I,,(9) there exists a function w™” € C;¢, with
|w?||c2e < Cp such that

H(s, p,w” +w) = 0 in I ,(w)” + wsr),

B(s, p,wy’ +w™) = ¢'(s)  on 0, (wy" +w™).

Namely Z; ,(w]” + w*?) is a capillary submanifold of Q, with constant
contact angle arccos ¢'(s) if p is small enough by C*% bound up to the
boundary of w** = w;”+w*”. Furthermore it follows from the construction
that, for all £ > 0

A
ds"

for some constant ¢; which does not depend on s nor on p small.

||Cz,a < cpp Vs € [50(5), (526)

5.4.2 Foliation by minimal discs

Call W% = w;” + w*". From (5.9), Lemma 5.3.1 and (5.26) the mapping

I,,(0) x B{" 3 (s, x) LN F3 (0% (x), ) = F(&,(s,0°"(x)), &(s, 0™ (1)) x)

has Jacobian determinant which expands as

o2 (1= 22()?) 6% + O4(p))
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and hence since (¢)* € (0,1) (see (5.1) ), ¥, is a local homeomorphism if

p is small enough. In particular it is a homeomorphism of a neighborhood

of (sp,0) which implies that there exist 0 < ¢’ < ¢ and ¢ > 0 such that
U,(s, By) N, (s, B') =0 Vs # s €I,(0),

for every p sufficiently small.

In this way the family of discs Zs p,(@0*"), s € I, (6") with radius po ¢(s)
centered at y(p k(s)) constitutes a foliation of a neighborhood of v(p k(s¢))
for which each leaf Z; ,,(1*”) is a minimal disc intersecting €*?¢ trans-
versely along its boundary (the angle of contact may not be equal to

arccos ¢'(s)).

5.4.3 ¢ =1 and k =Id, ¥” is the geodesic tube around I"

In this situation,

¢’ ={qeM : dist,q ) =p}
and its interior is

Q,={geM : dist,(¢,I') < p}.

By [78], it is well known that (smooth) minimal surfaces D C Q, with
0D C %" are stationary for the area functional relative to ¢* which is

D — Area(D N(,) under variations ¥; : D — M such that 0W,(D) C €7
moreover the Euler-Lagrange equations are given by

HD =0 in D,
(5.27)
(Np,Ngo) = 0 on 0D.
A finite-dimensional reduction
For every s € [a,b] and X = 2'E;, we let w” be the solution of the

following problem:

—Aw; = —2Ric,(X,Ey)  in By,
8w1 m
8—77 =0 on (9Bl s

where p = v(pk(s)).
By elliptic regularity theory, there exist a constant ¢ > 0 (independent of
p and s) such that

W] p2e < ¢ Vs € [a,b]. (5.28)
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Asin § 5.4.1, we let

(67 « m a S,
Cz”p = {w cC**(By") %B(s,p, pw” + v) U:O[w] = 0}
o B ow -
= {w€C2’ (Bl ) : 8_77+pL(w) :0}

As explained in the first section, the linearized mean curvature operator
about 2°*(pwy”) restricted on C2¢ defined by

9 5
LP,S(w) = _%H(Sa P; pw17p + U)‘ —O[w] =-Aw+ pLS(w)
may have small (possibly zero) eigenvalues hence it may not be invertible
on Ci’g‘. However instead of solving (5.27), we will prove that there exists

a constant A, , € R and a function w** € C2¢ such that
H(s, p,w™”) = s, in I ,(wr),

(5.29)
B(s,p,w®”) = 0 on 0% ,(w*").

To achieve this we let P be the L? projection on the space of functions

w € L? which are orthogonal to the constant function 1, i) gmnwdr = 0.
1

Now if p is small enough, the Poincare inequality implies together with

elliptic regularity theory that the operator P ol , is an isomorphism from
PCZ¢ into PC**(BY"). Here letting

(©(s,p,z),w') === | H(s,p,pwi”)w'dz+ ¢  B(s, p, pwi”)w'ds
By OB

one has
||(I)(S,,O, ')HCO’Q < Cp2 Vs € [a,b].

Consequently for p small, our fixed point problem

~1
w = (P oL, C““) {Po®(s,p,x) + pP o Qs ,p(w)}

5,p

admits a unique solution w®” &€ PCS%’[?‘, in a ball of radius cp? of PC?:;;‘.

More precisely

/ w*? dr =0 and [w*? | e2e ) < cp? Vs € [a,b].  (5.30)
By

Furthermore it follows from the construction that, for all £ > 0
2
Os*

lezamm < cup® Vs € [a, b,
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for some constant ¢, which does not depend on s nor on p small. We then
conclude that P o H(s, p, pw]” + w*’) = 0 hence the existence of a real
number A, ~ p? such that (5.29) is satisfied.

We have to mention that by (5.30), provided p is small, the correspond-
ing disc s, 1= P ,(0"") with @** = pw]” 4+ w*” is embedded into Q.

This defines a one dimensional manifold of sets satisfying (5.29):
2, ={%,CQ,, 0%,,C 02, : sé€]la,bl}.

5.4.1. REMARK. We notice that, in section 5.4.1, the same argument as
above implies that whenever ¢"(sg) = 0, there will be a capillary disc cen-
tered at v(p so) with constant and small mean curvature.

Variational argument:
We will show that in fact problem (5.27) can be reduced to a finite
dimensional one. We now define the reduced functional ¢, : [a,b] — R by

©,(s) = Area(Z; )
for any 7, , € Z,. We have to show the following

5.4.2. LEMMA. There exists py small such that for any p € (0, po) if s is
a critical point of ¢, then A, , = 0.

PrROOF. Let A € R and let ¢ = y(p(s+ At)). Then provided ¢ is small, it
is clear that the hyper-surface &, , can be written as a normal graph over
Py, P = 7(ps) by a smooth function g, ,; . This defines the variation

vector field
o 6gp,p7t,)\
S = ot im0 77
Letting Z be the parallel transport of AEj along geodesics issued from

p="(ps). Then, we can easily get the estimates:

1€ = Z|| < cpl|Al.
Assume that s is a critical point of ¢, then from the first variation of area
see § 2.1.1,

d,y(p(s + At)) ‘
dt t=0
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where N 8@91’; € TY, , stands for the normal of 0%; , in Z; ,. Therefore by

construction one has

0=, / (¢, Ny, ) ds. (5.31)
7

5,p

Notice that
(¢, Ng,,) —(Z,Y0) =((— Z,Ng,,) +(Z,Ng,, — ),
so using the fact that Ny, =Yy + O(p), see § 5.3.1, we have
(¢, Na,,) = Al < cpll.
Inserting this into (5.31), we get
—A s pArea(Zs ) < cp |As,| | M| Area(Zs )

but since Area(%;,,) = Area(pB]")+ Os(p**™™) by (5.12); (5.28) and (5.30),
it follows that
My < 0 ol 1A

Therefore taking A = —\; ,, we see that |)\57p\2 < cp |)\s,p|2 and this implies
that )\s,p:0- u

We shall end the proof of the Theorem 5.0.3 by giving the expansion of
¢,. From (5.30) the first fundamental form h;; of a disc Z; , expands as

2 3
P hiy = 8y + 5 (R,(X. B)X, By) + = (Vi R,(X. E)X, E)) + O(p")

where p = y(ps) € T.
From the formula

Vdet(I +A) =1+ %tr(A) +O(|A]%),

we obtain the volume form:

2 3
o /det(h) = 1— % (R,(X, E)X,E;) + f—2 (VyRy(X, E)X, E) +O,(p")

and since by oddness fBI" (VxR,(X, E;)X, Ej)dx =0 we deduce that

2 m
m P
©,(s) = Area(%; ,) = Area(Bp ) (1 ~om Uz_:l (Ry(E;, E)E;, E;) + Os(p4)> .
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Thus setting

we get the result.



Chapter 6
Perimeter minimizing sets enclosing small volumes

Let M be a complete Riemannian manifold and €2 a smooth bounded
domain of M. We recall that the De Girogi perimeter is defined as

P,(E,Q) :=sup {/ divyYdv, : (YY) < 1}>
E

where Y is a smooth vectorfield on M with compact support in €2. Here
we are counting only the part of E inside ). Notice that if a set F is
smooth then the Gauss-Green formula yields P, (E,€2) = Area(0F N ().
The relative isoperimetric profile of €2 is the mapping

v Ig(v) == Edr)n|g|1 :UPQ(E’ Q).

By combination of the results of Almgren [2], Griiter [39], Gonzalez, Mas-
sari, Tamanini [37] we obtain the following fundamental existence and reg-
ularity theorem (see also Morgan [67]).

6.0.3. PROPOSITION. Let §) be a smooth bounded domain in a Riemannian
manifold (M™ g). For any v € (0,|Q,) there is an open set E C Q
which minimizes the perimeter Py(-,Q2) for any volume v . The boundary
Y= 0E NQ can be written as a disjoint union 31 U X, where X is the
reqular part of ¥ and X is the set of singularities. Precisely, we have

1. X1 is a smooth, embedded hypersurface with constant mean curvature.

2. If p € X1 NS, then X1 is a smooth, embedded hypersurface with
boundary contained in in a neighborhood of p; in this neighborhood, >4
has constant mean curvature and meets OS2 orthogonally.

3. X 1s a closed set of Hausdorff dimension less than or equal to m — 7.

4. At every point q € Xy, there is a tangent minimal cone C' C T, M dif-
ferent from a hyperplane. The square sum of the principal curvatures
of X1 tends to oo when we approach q from .

It is clear then that the most important questions is to undertand the
topology and geometric properties of minimizers. This has been achieved
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only in some special cases, one can see for example [13], [75], [21], [77], [53],
[84], etc...In particular perimeter minimizing sets in M trapping small
volumes have been studied by F. Morgan and D.L. Johnson. The authors
prove that if v is small enouh, minimizers of Iy ¢(v) are “smooth* spheres.
Namely up to scaling, they converge smoothly to spheres (no presence
of singularities). Recently, Narduli, in his Phd thesis has weakened the
minimizing property. Moreover he shwod that minimizers are located near
strict-maxima of the scalar curvature of M.

In 1982, Bérard-Meyer, motivated by the study of nodal domains for
Dirichlet eigenvalues, have shown that, in the infenitesimal level, the isoperi-
metric profile of a compact Reimannian manifold M™*! approaches that
of R™"1. Namely they establish that Iy (v) ~ Igm+1(v) as v — 0. This was
adapted by Bayle and Rosales for the relative profile Io(v) ~ RT-H(U) as
v — 0. The former result has been refined by Druet (2002) who gave the
first coefficient in the Taylor expansion of I,

Ipm(v) ~ (1 ~ O MAX S(p) vt 4 O (Umil)> Tgm+1(v),

where a;, is a constant depeding only on m and S is the scalar curvature of
M. Our main goal in this chapter is the location of minimal area separating
hyper-surfaces of €2 enclosing a small volume.

6.0.4. THEOREM. Isoperimetric regions with small volume in () are hemi-
spheres centred near stricly global maxima of the mean curvature of 0€).

To prove the above theorem, we first show a regularity result which gen-
eralizes Theorem 2.2 in [69] see Lemma 6.1.2. We notice that the proof of
Theorem 2.2 in [69] highlights that the diameter of an isoperimetric region
E, tends to zero as the volume v tends to zero. Moreover as pointed out
by Bayle and Rosales [8], this set must touch the boundary 02 if v is small
enough (FE, is not compactly contained in €2). From this one sees that E, is
contained in a geodesic sphere centered at some point p € 02 for v small.
Hence using results in [69] Theorem 2.2, one has that the hyper-surface
Yo = OE, N Q can be written, after suitable scaling, as a graph over a
round hemisphere and the function which defines the graph tends to zero.
This also shows that 0%, C 0f). But, according to our argument we need
a convergence up to the free boundary. We achieve this, following [40], by
proving a monotonicity result for the area of X, in a tubular neighborhood
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of 0. This allow us to get a bound for the area of 0%, and hence, by
compactness, to have a weak convergence up to the free boundary and
smoothly by [41].

The second step is to reduce the isoperimetric problem to a finite di-

mensional variational one, see Lemma 6.1.7 by adopting a variant of the
method in [72]. To this end, by means of the implicit function theorem
we construct, for any fixed v sufficiently small, a manifold of sets having a
volume v that we call €, which is diffeomorphic to 0f2, see Lemma 6.1.6.
A set E € €, is a pseudo-half-ball (see Definition 6.1.5) which is uniquely
determined by its center of mass p € 92 while its boundary, OF = X, v,
is a normal graph over a geodesic sphere centered at p with w?" (defining
the graph) tends to zero as v — 0.
Finally we show that an isoperimetric region with small volume v must
belong to €, so looking for the minimum of the perimeter among sets in {2
with volume v is equivalent to take the minimum among sets in €,. Taking
advantage of the role of the mean curvature in the expansion of the area of
normal graphs centered at the free boundary 02 Appendix A, the theorem
then follows.

From the reduction of the isoperimetric problem to a finite dimensional
one, Lemma 6.1.7, we can determine the first coefficient of the asymptotic
expansions of the profile of {2 near zero.

Letting v = |rBY*!| in Lemma 6.1.7-6.1.8. We have obtained that

: m  |B™| mt2
Io(v) = min {IR’rﬂ(v) T2 Haa(p)v + O, (v> } :
+

where Hpq(p) is the mean curvature of 02 at p and O,(p) is a smooth
function in p and p tending to zero uniformly with respect to p as p tends
to zero. Hence we have the corollary

6.0.5. COROLLARY. There holds

Io(v) ~ (1 — Dm max Haa(p) v + O (v2+1>> IRT+1('U),

pe
. m |B777.|
where fm = Grmro P
+

Let us also mention that in [21], the authors have shown that an isoperi-
metric region outside a convex domain, in euclidean space, has no less
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perimeter than the area of a hemisphere provided it encloses the volume of
half ball. Futhermore in [8]-Proposition 5.1, the authors show, under con-
vexity assumption of {2 in a Riemannian manifold, that Io(v) < Igm+(v)
for small v. Here, from Corollary 6.0.5, we can weaken the convexity by
strictly H-convex domain (a domain with non-negative mean curvature)
under small volume constarints.

6.0.6. COROLLARY. If ) is a strictly H-convex smooth bounded domain of
R™*1 then provided v small enough

]Rerl\Q (U) > IRT+1 (U)

As a final result, we have the following geometric comparion which is also
a direct consequence of Corollary 6.0.5.

6.0.7. COROLLARY. Suppose €2 is a bounded smooth domain in a Rieman-
nian manifold (M™ g) let also Qo be a bounded smooth domain in any
other Riemannian manifold (/\/lgl“,go) with mean curvatures satisfying
max,econ Hoa(p) < max,eon, Hoa,- Then if v is small enough,

Io(v) > Ig,(v).

6.1 Proof Theorem 6.0.4 and expansions of the isoperimetric
profile I

P.Berard and D.Meyer ([9], Appendix C) have shown by a localization
argument that the isoperimetric profile of a compact Riemannian manifold
asymptotically approaches that of R™*! while, V.Bayle and C.Rosales ([8],
proposition 2.1) proved that the relative isoperimetric profile of a domain
Q) of a Riemannian manifold behaves like the profile of the half space RTH.
Precisely setting

10)=h(PBE) =i P
’ g= "By

and
L(r) = Igpr (|rBYHY) = P(rB™ L RYTY,

they proved that
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6.1.1. PROPOSITION. For any € > 0, there exists ro(e) > 0 such that
(1—e)l (r) <I(r)<(1+e)l(r), whenever r < ry.

Notice that from this upper bound, an isoperimetric region with small
volume must touch the boundary (perpendicularly) because otherwise it
would contradict the lower bound in [9] Appendix C. Moreover this upper
bound will help after suitable scaling together with the Heintze-Karcher
inequality to obtain a uniform bound for the mean curvature of the mini-
mizing hyper-surface trapping a small volume, see[69] § 2 .

We start by proving the following regularity result which was obtained in
[69] and under weaker assumptions in [70] for compact Riemannian mani-
folds.

6.1.2. LEMMA. There exits rg > 0 such that if r € (0,ry) any set E C )
satisfying Py(E, Q) = I(r), there exist p € 02 and wP" : ST" — R such that

OENQ = FP(r(1 + w" SM))

with [|wP" ||z s +[|wP |l oragm) — 0 as T — 0 and F? is a local parametriza-
tion of a neiborhood, in M, of p € 02 defined in (7.1).

PrROOF. We let E; C Q such that P,(E;,Q) = I(rj), r; — 0 as j — +o00.
Call Q; = - Q and Ej = ;- Ej so that |Ej|,, = [BY'™| and Py (E]},Q;) =
L P(E, ) < L)

j Following [69] § 2 with the help of Proposition 6.1.1, we may assume
that there exists a constant R > 0 such that

diam,, (E) < R
and since JE intersects 0€2;, then

sup dist,, (e, 0Q;) < diam,, (E}) < R.
eE@Ej
We can let p; € 09; and U; C RT*! be such that Ej = F;(U;), where
Fj « BPt — Q; is defined by Fj(-) :== LF?(r;(-)) and 7; — oo as
J — Q.

For j fixed and sufficiently large, let h; := (F}).(g;) be the metric in-
duced by F; on R7*", one has that U; minimizes the perimeter Py, (-, v, B7")
in (B, h;) among sets enclosing its volume |U;|,, = |B7*!| and also
intersects perpendicularly OR”*! = R™ x {0}.
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Now since h; is converging to the euclidean metric, we get diam(U;) < ¢
for every large j. And so we have Phj(Uj,]RTl) < ¢ which implies that
P(U;, R7™) < ¢. Hence by compactness there exist U C R7*! such that

1
D1y, \ D1y. Furthermore by the trace theorem, 1Uj‘ L 1y )
Rm™x {0} Rmx{0}
Now to see that U is a minimizer, we let V' C R™*! such that |V| = |B"!|

and define ¢; — 1 such that ¢;|V|,, = |B{"™'| (this is possible since also h;
converges to the euclidean metric) but then we have

P, (U, R < e Py, (V,RYH
and this implies together with the semi-continuity of the perimeter that
P(U,RT) < P(V,RTH.

We conclude that U is a minimizer in R7*! among sets that enclose the
volume |B"*!| namely U = B7". Finally, again by [69] § 2, we have a
smooth convergence because mean curvatures are bounded. Hence we may
assume that there exists w7 € C**(S™T) such that

Y= 0U; NRT = (14 wPi'i) S (6.1)

with [|wP7"7||¢2a(sm) tending to zero as j — oo.

We now estimate the free boundary, H™(9%;), by slicing with hyper-
planes R™ x {0} 4+ hNgq with h € R. For terminology, we refer the reader
to [68]. In the following, with an abuse of notation, we will call ¥; the
integer ( H™(Z;) + H™(0%;) < oo if j is sufficiently large) rectifiable
current associated to the set ¥;. We define y;(h) by

1(h) = H™ (S, 1 {d < hY) = P(U,,{d; < h}) for 0 < h < %

where R™"*! 5 2+ d(z) = 2™ (is the distance function from OR7™ =
R™ x {0}). For h > 0 we consider the slice

(X;,d, hy) == (08;) {d > h} — 0(X;.{d > h}).
Clearly we deduce that
<Ej, d, 0_|_> - 8Zj
From [68], § 4.11, (3) we get

Hm_1(<2j7 d, 0+>) < sz(d) hgl\lglf :uj(h)
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and from Lip(d) =1 it follows that

(h)
m—1 , < limi &
H™((2,,d,04)) < hlgl\lélf -

Since p;(h) is increasing the same argument yields for Z! a.e. h > 0
M (S50, ) < gL (h).
Observe that by (6.1) and Lemma 7.3.2
s (h) = PU Ad < h}) = H((1+ «») ST 1 {d < h)

IA

h(1+00r) H" (8, d, hy))
< h(1+0(r))) u;(h).
Hence we get

i (h) < 2h5(h),

which is equivalent to

(# + 2uj(h))/ >0

for every Z* a.e. % > h > 0. From this and the fact that j; is increasing
we conclude that

H™U9%,) < H™(S{d < h)) (% +9)

for every h € (0, 3).

From this together with Lemma 7.3.2 we have
H™H(0%;) < cH™(X;) <& for any large j.

Consequently, 3J; is an integral current and moreover by compactness ([68],
5.5) 0%; converges weakly to OSY'. Since mean curvatures of ¥; are
bounded (see also [69] (2.4)), C* convergence up to the free boundary fol-
lows by Gruter-Jost [41]. Hence finally we can assume that w?i™ € CH(S%)
if 5 is sufficiently large with

OB, N T, = %ij (r(1 4+ W) 5T,

and [|w?" ||cza(sm) + [[wP " | gragm — 0 as 7 — 0. m
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6.1.3. REMARK. Observe that when applying the first compaccity result
namely D1y, = D1y we also have (by Rellich theorem) that 1y, L 1y.
Since U = BT by [70], OU; NRT can be written as a normal graph
over ST by a smooth function wP"i for which ||wP"1{|c2.a(gm) — 0 asr — 0.
We also notice that CH® reqularity and estimates of wPi"i can be obtained
by a boot-strap argument using Proposition 7.2.2 as in [69], [70].

The following lemma shows the smoothness of the center of mass c(r, p,w) €
O of the hyper-surface ¥,,, = FP(r(1 + w)ST)) as a function in r, p
and w. The proof can be obtained, with slight modifications, from [72]
Lemma 1.3-1.4.

6.1.4. LEMMA. There exists a smooth map ¢ : R x 9Q x C>*(ST) — 09
such that

/ (F9)~'(2) dvols,, , = 0.

EP,T’,UJ o

Moreover there exists a smooth vector field X, , ., on T,0€) such that
c(r,p,w) = exp, " (r Xpo)

with

Jop (1 4+ w0 /Jdw]? + (1 +w)? do
o (T4 @) /dw]?+ (1 +w)2do”

p,0,w

where dw 1s the differential of w.

According to Proposition 7.2.2, with H(p,r,w) being the mean curvature
Of Ep’nw, we deﬁne T(p’ ’r’ .) : CQ,Q(@) N 6079(@)

J

for every o’ € H*.

T(p,r,w)w' do = /

m
S

r H (p> T, u’)“’/ do <N862 rw? N?Epyr’w >C"/d3’
jasy " P
(6.2)

m
+

We recall that E,, , is the set bounded by the hyper-surface ¥, , ., and
oS

6.1.5. DEFINITION. A set E,,,, is called a pseudo-half-ball if

IToT(p,r,w) =0,
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which is equivalent to
I, " o T(p,r,w) = Const € R,

where T (p,r,w) is defined in (6.2).

Observe that letting = € 7,02 be such that II; w = (=, 0), by Lemma
6.1.4, we get
|S¥
m+ 1

On the other hand from the expansion of the volume of the sets £,

c(r,p,w) =p+ rZ 4+ 1 {Ly(w) + Or) + Qp(w) }* E,. (6.3)

Lemma 7.3.3, we define

C(p,rw) = 1" Byl — [BYT

- J.

®(p,0,0) =0,

wdo + O(r) + / (O(T) Wt @p(w)) do.

i St

It turns out that

0®(p,0,0)
Ow

Now for any hyper-surface ¥, , ,,, we can associate to it the smooth mapping

[u] = HO u.

00 x (0,1) x C**(S7) — T,00 x IC*™*(ST) x R

by

1
U(p,r,w) = (nﬁg——% Xprw, HoT(p,r,w), —m ®(p,r, w)> .
+

6.1.6. LEMMA. There exist 1o > 0 and ¢y > 0 such that for any p € OS2
and r € (0,79), there exists a unique smooth wP" € C>*(ST") with

[P 2.0y < coro

such that U(p,r,wP") = (0,0,0), namely

c(r,p, ") = p; I, -oT(p,r,w") € R and | Ep oy wopr g = ’rBTH’ :

for every r € (0,r9).

PROOF.  We make the following identification: CH(S™) = T,00 x
[IC*2(S™) x R and that for any u € C**(S7), we decompose it as u =

(2,0) + Tu+uy = (Z,0) + w.
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It is easy to see that ¥(p,0,0) = (0,0,0) while

v
{g—w(p, 0,0)[u],u’) = o VsnwVgnw' —mww' do + /ST
Since 2% (p, 0,0) is an isomorphism from C>*(S7') in to C®*(ST), the lemma
then follows by the implicit function theorem. =m

By choosing ry small enough in Lemma 6.1.6, we may assume that the
hyper-surfaces X, ..r.- are embedded into €2 for any r € (0, ro) since [|w"" || ¢1.0(gm) —
0 as rp — 0. For simplicity, we will call E,, := E,, » the sets bounded
by X, v and OS2

Remark that the above lemma yields, for any fixed r € (0, ), a manifold
defined by

of pseudo-half-ball diffeomorphic to 02 having volume ‘T’BT—H
¢ = {Eprwrr CQ 2 V(p,m,w"") =(0,0,0), [[w’||20m) < coro,  p € 00}
We can now prove the following result

6.1.7. LEMMA. If r<1, then

I(r) = jnf Py(E,Q) = mf Py(E), 1),

where E,,, p € 0S), denote the elements of €,.

PrOOF. We have to check that a solution to the isoperimetric problem
with volume |7“BT+1| belongs to &, if r is small enough.

Let E be a solution to the isoperimetric problem with |E| g = ‘TBT“‘,
then if r<1, Lemma 6.1.2 implies that 0ENQ = F9(r(1 + u?")ST) for
some ¢ € 0f) and Huq””HCg,a(@) —0asr—0.

Letting p € 09 be the center of mass of OF then by (6.3), dist,(p,q) <
c (7“2 +r Huq’THcZa(&;)) so if r<1, we can find v(p, r) with [[v(p, r)|c2agm) —

0 as r — 0 such that OENQ = ip,m( Clearly since p is the cen-

pr)-
ter of mass, it follows that X, ,;, = 0. From the mean curvature
expansions, we get I o T'(p,r,v(p,r)) = 0 because the mean curvature

of OF is constant and OF intersect 02 perpendicularly. Consequently
U(p,r,v(p,7r)) = (0,0,0). We conclude that if r is small enough then
EFed . n
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6.1.8. LEMMA. For any E,, € €., we have
m  |B"
m+ 2| BT

Py (Epyr, Q) =P (rB™ T RTH) -

where O,(p) is smooth and tends to zero as p — 0 uniformly in p.

PrROOF. Let E,, € €, differentiating the expression ®(p,r,w?”") = 0
with respect to r, we can deduce that

r
TP’ — / WP do = — <S (Ez); EZ>/ @m+1d0‘ + O (7’2 .
" s m+2" sy o

This together with Lemma 7.3.2 we get

P (B ) = PB™TLRIY) v [

sm
+ 0,
2r
_ m+1 mppm-+l ] ] m+1 .
— BRI + (S (B). B [ 6" do /ST@,(

+

+ 0,(r?).
Recall that Hapo(p) = —1(S,(E:), E;). Moreover since

/ (S,(0),0)0™ds = (S,(FE;), E;) / 00/ dy
S

m m
+ St

and observing that
/ 0'0’'0"™ ds =0 if i £ 7,
sm

we deduce that

Py(Epr, Q) = P(rB™ L R™Y) — ¢, Hog(p) |[rB™| + O, (\TB_TH

m—+2
m4+1 )

with
m 2
en = o | | —— — (01)?) e"Fd
’BT+1’ S_T (m+2 ( ) ) ?
~m_ |B"
- om+2|BrH

We have used the fact that
A m—1 ) A m—1
/ omHdy = 2T gy / (O)20m 1y = 21" )
s m s m(m + 2)
(6.4)

m m
+ +

Hao(p) [rBL*+0, ([rBy 7).

((sp@i), B — (S,(6), é)) 0" o + mr
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The proof of Theorem 6.0.4 is finalized by the following

6.1.9. LEMMA. Let r; be a sequence tending to 0 and E, C € satisfy
Bty = [re BT and P,(Ey, Q) = I(ry). Let pp € OS2 be the center of
mass of 0L}, converging to a point p € 0S). Then

Hpo(p) = max Haa(q).
qeo)

PROOF.
If k is large enough, Ej, = £, ,, € €,, and also by Lemma 6.1.7 we have
that

P9<Epk,7'k7 Q) =1I(r) = ;2(19% Pg(Eq,rka Q)

where E, ., p € 0€1, denote the elements of ¢,,. Now by Lemma 6.1.8, we
have

—Haa(pr) + O(pr, k) = ;2(19% (—=Haalq) +O(q, 7))

with |O(pr, )| — 0 and sup,cgn |O(q, 7%)| — 0 when k tends to infinity.
The lemma then follows taking & to infinity. =



Chapter 7

Appendix

7.1 Preliminaries and notations

Throughout this chapter, 2 is a smooth domain of an (m + 1)-Riemannian
(M, g). We denote by Nyq the unit interior normal vector field along 0f2.
We consider ((E;);=1
along 0. Recalling from the first chapter, the mean curvature of 9€) at

ms Noa) be an (oriented) orthonormal frame of M

.....

p is given by the trace of h(= hyq) the second fundamental form of 0f.
Namely Hoo(p) = —=(hy(E;), E;). We first introduce geodesic normal
coordinates in a neighborhood (in 92) of a point p € 92 with coordinates
o= (2}, 2™) € R™ We set

(@) = eap (5 E).
This choice of coordinates induces coordinate vector-fields on 9€2:
Yi(2') = fu(Dy) fori=1,...,m.
Now consider a local parametrization of a neighborhood of p in M by
FP(x) = exp}\ﬁ@,)(a:mﬂl\fag), = (2, 2" e R (7.1)
This yields the coordinate vector fields in M,
Xi(x) = FP(Ou) i=1,...,m;
Xms1(z) = FZ(Opmn).

7.1.1. LEMMA. Near the point FP(2',0) = fP(z')

m+1)2
Moreover near p = FP(0) we have
1

(Vi Y5) = b5 + < By(By, BBy, Ej)atal + OJof).

Where R, (resp. R)') is the Riemannian tensor of 99 (resp. M).
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PROOF. By construction we have

=0 for any integer k > 1.

k
va+1Xm+1 .1?/

By definition, Vy (@)

m+1Xi
Nyq. We also have that

= Vx, Xpmq1

= h(}/;) and Xm+1

x’) x

f@)
Finally, the proof of the last expansions follows from Lemma 4.1.1. =

From the above lemma, we have the following proposition which gives the
expansions of the metric g,3 := (X, Xp) in a neighborhood, of p € 92 in
M, with o, 3 € {1,...,m,m+ 1}.
7.1.2. PROPOSITION. In a neighborhood of p,

1

gij = 6+ 2(h(Y;),Y;)a™ " + g(Rp(Ek,Ei)Ez,Eﬁxkﬂfl

+r? ((Ry (Noo, Ei)Noa, Ej) + (h(Yi), h(Y7))) (z™1)? 4+ O(|=);
Jim+1 = O(|37|3)5
Im+1m+1 = 1.

Where R, (resp. R)') is the Riemann tensor of 9 (resp. M) at p.

Observe that all hypersurfaces nearby a geodesic sphere centered at
p € 0f) with radius r can be parametrized by a mapping G : B"™ — M
defined by

G(z) = FP <7~(1 +w)B(2),r(1 + w)@m+1(z)> , (7.2)
for some p € 92 and w : ST — R. Notice that by construction, since
O™t =0 on ST,

0% C OS2
Given p € 02 and w : ST" — R, throught this chapter, the expression ¥, .,

will denote the hyper-surface F?(r(1 + w)SY") while E,, ., will denote the
set bounded by ¥, , ., and 0f2.

Notation: Any expression of the form L,(w) (resp. L,(w)) denotes
a linear combination of the function w together with its derivatives with
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respect to the vector fields ©; up to order 2 (resp. order 1). The coefficients
of L, or Ep might depend on r and p but, for all £ € N, there exists a
constant ¢ > 0 independent of r € (0,1) and p € 02 such that

[ Lp(@)llgregmy < €llwllenso sy,

\|Lp(w)||c'w(s*1p) <c HWHCHM(W)-
Similarly, given a € N, any expression of the form Q%(w) (resp. Q%(w))
denotes a nonlinear operator in the function w together with its derivatives
with respect to the vector fields ©; up to order 2 (resp. 1). The coefficients
of the Taylor expansion of Q;(w) in powers of w and its partial derivatives

might depend on r and p and, given k£ € N, there exists a constant ¢ > 0
independent of r € (0,1) and p € M such that Q;(0) = 0 and

a—1
1@ (w1) = Qp(w2) [l gra(sm) < ¢ (lech»a(m + ‘|W2Hck+2»a(51p)) w1 —wallgrrz.a ().

provided [lwil|grrzaigm < 1. Also

_ _ a—1
HQZ(M)—QZ(MHE&%@) <c (lechm(szg) + HW2HCk+La(S¢)) ||W1—W2||Ck+17a(sfr)>

provided ||wi|grsz0(gr) < 1. We also agree that any term denoted by O, (r?)
is a smooth function on S7* that might depend on p but satisfies

N ——

for a constant ¢ independent of p.
The tangent space of X, is spanned by the vector-fields

Z; = G(04) = r(14+w)Y;+rw; T, j=1,...,m. (7.3)

It is not difficult to see that at the point G(z), one has by Proposition 7.1.2
that

(X0, Xj) =6 +  2r(1+w)(h(T), Ty 4 20 R (6 6,)0,6,)
+ 2 ((RY(Noo. 6:) Noa, ;) + (h(T), h(T,)) ) (67*1)2
Or®) + r*L(w) + r3Q(w);

(7.4)
(Xis Xn1) = OF°) +7°L(w) +1°Q(w); (7.5)
(Xoni1, Xpmp1) = 1. (7.6)

Letting gisz”’"“ = (Z;, Z;), from the above, we get the first fundamental
form of X, ..
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7.1.3. PROPOSITION.

(1+ w)_Qr_Qgé”’w = 1>+ (ij(h(f), T,) + 2wilh(T), T;) + 2(1 + w)(h(T;), TZ')) a
+ WiW;j + —<Rp(é, éz)é, (:)j>7“2 + <h(T]), h(Ti)>T2(@m+l)2
+ (0™TY2(RM(Npq, ©;)Naq, ©:)1% + O(r®) + r*L(w) + rQ*(w)

7.2 Mean curvature expansion of ¥,

This section is devoted to give the expansion of the mean curvature H (p, r, w)
of a hyper-surface ¥, , . in terms of r and w. The proof is similar to the
one in Chapter 4 so we will give a sketch here for the reader’s convenience.
Let z — G(z) parametrizes ¥, as defined in (7.2).
Notation: With an abuse of notations, at the point p, we let
0 := 0 B;+0" ! Nyq = 6+0" Ny, 0, := 0.0’ E;+0..0" ! Nyq,
while at the point G(z), we define the vector fields
T =60 X,40""X,, 1 = T+0"" X, 1, T = 0,0 X;+0,0" X, 41

We also set
wj 1= 0w wij 1= 0, 0,w.

From the above notations, it is clear that the tangent space of X, , is
spanned by the vector fields

Zi = G04) = r(1+w)Y;+rw; T, j=1,...,m. (7.7)

Letting g;; := (Zi, Z;) be the first fundamental form of ¥, (= ), using
Proposition 7.1.3 one has

(1 +w)*2r*2g§j = 12427 (S(@j), 0,)0™ 1 + O(r?) +rL(w) + Qw). (7.8)

7.2.1 The normal vector field
In this subsection we expand the unit normal to %, ,,. The vector field

]\72 = —r Y + o’ Zj.
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is the outer normal field (not necessarily unitary) along ¥,,, if we can
determine o so that its tangential components (N, Z;) vanish. This leads
to a linear system for o .

We have the following expansion
(T,2Z)) = 1w; +2r*0"H5(0),0;) + O(r*) +1° L(w) +r°Q(w).
which follows from (7.4)-(7.6).

Using (7.8), and some algebraic calculations, one obtains
o (Z;, 7)) = r(Y,Z) (7.9)
= 12 (wi +200™1(S(8), 6:) + O(r?) + 7 L{w) + Q)
hence straightforward computations imply that
o (0;,04) = w; + 2ro™1(5(0),0;) + O} + r L(w) + Qw).
Now we have, using also (7.9) that
(N5, Ns) = r2(Y,YT) —2ra®(Z, ) + ooy (Zy, Z1)
= r2(14+2r0™"1(5(0),0) + O(?) + rL(w) + Qw)) — ayar(Zy, Z;)
= r2(1+2r@™"(S5(0),0) + O(r?) + rL(w) + Q(w)).
From this we deduce that
A (1 — rO™(S(0),0) + O(r?) + r L(w) + Q(@) .

Therefore the unit normal can be expanded as

(1 r0m(S(6).6) ) Yoy Zik (O0) + 7 L(w) + Q(w),, X

Ny = 22 _
| Ns|

7.2.2 The second fundamental form

In this subsection we expand the coefficients of the second fundamental
form.

Noticing that by definition, V7 Z; ~
ing expansions:

DZ;

—+, we can readily get the follow-

T_leiZj = wz-jT + WjTZ‘ + wiT]‘ + (1 + w)TU + T@?@?VXQXB

+ (0(%) +rL(w) + Q) , Xa,
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so using (7.4)-(7.6), we get
rUNg, V2 Z) = —(1+w) (1_7~@m+1<5(é) é>) (Y, T) — wij + ¥ (L5, Th)
+ 1 (07HS(6)),6,) — 61'71(5(6),6;) — ©171(S(6),67))
+ OF?) + 1 Lw) + Qw).
Observing that
(Ti;,T) = (6;5,0) +2r0™(S(0),0;;) + O(r?) +r L(w) + Q(w)
and also
(Tij, Te) = (045,0k) +O(r) +r L(w) + Qw),
we obtain with a little work the

7.2.1. PROPOSITION. The second fundamental form of the ¥, ., has the
following expansion

_1<N2, inZj> = — (1 +w — T@m+1<5(é), é>> <@ij7 @)

+ O(?) + 7 L(w) + Qw).

Let H(p,r,w) be the mean curvature of the hyper-surface %,,,, con-
tracting with the metric, (7.8), and using also Lemma 2.3.1, we have the

7.2.2. PROPOSITION. In the above notations there hold

rH(p,rw) = m — (Agnw + mw) + ro™! ((m +3)(5(0),8) — (S(E)), EZ->>

+ O(") +7L(w) + QW) in Spu;
e ow
<N82prw N@Eprw> = - 8_77+T L( >+Q( ) on azp,r,w;
where n = —Naq is the outer unit normal to dS™ and N§ stands for the

normal of B in A.
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PROOF.
We first determine NN, gg . Let s — O(s) € S™ ! = 9B™ a parametriza-
tion of the unit sphere. Notlng that ©(0(s)) =

s G(s) = f(r(1 +w)O(s)) = F'(r(1 + w)O(s),0)

parametrizes 0%, , ., C 0f) and hence its tangent space is spanned by

O(s), the mapping

Zi=r(1+w) YT+ rdswT i=1,...,m—1,

where
T =6’ Y;, Y, := 0,6’ Y;.
Hence setting

N =Y+ 5527, (7.10)

p,Tw

we need only to find 3%, k = 1,...,m so that it is orthogonal to Z;. But,
this can be found in [73] Lemma 2.1 and one has

BN Zy, Z;) = rogw, (7.11)

while r2(Z,, Z;) = (0, 0;) (1 + O(r?) + r*L(w) + Q(w)) and also ‘Nggpw
1+ QW)

: S . :
We now determine N;y™ . To this aim, we denote by v the unit outer
p,r,w

normal to the unit disc B and similarly as we have expanded N ggpm, we
let

k5
Z
aBm + fy k

Nazz = G. (31,)

= —r(1+w)Nsg + r@VwT‘aB + %7

= —r (14 w)Ngq + ro,wY + 7,

we have use the fact that Gyé’aB =0 and 0,0™*! o —1. Noting that

(Naq, Z;)=0 and (Y, Z;) = r wj, then ]\752E € T%,,, is normal to 0%, ,, if

7k<Zk, Zj> = 7“2wj(9,,w.

Moreover we can deduce that ‘]%EE’ =711+ Qw)).

Collecting these with the fact that (N3, N9¢) = 0 when w = 0, we have

that 5
(Nj ) = =22 47 L) + Q@) on 0%,
Ui
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because J,w = g—‘; which holds true since = 1. =

7.3 Area and volume expansion of geodesic hemispheres

In this section, we give expansions of the area and enclosed volume of
hyper-surfaces 0E,, ,, = X 0.
Using Proposition 7.1.3 we can deduce the expansion of the volume form.

7.3.1. LEMMA. The volume form expands as
ry/det gErre = ™ 4+ @M M2 ((T), Ty 4+ mwp™

+ O 2 (30m 4 w(h(T), T) + 20i(T, 1))

O (T AT ) + a2 (T, T — 202 (h(T)
+ LR, (0,6)6,0) + L (O™ R (Non, 6)Non, 6
+ Hn;_z (%2 + m(m 1)u2w2) + O@r®) + r*L(w) + rQ*(w) + Q*(w)
Observe that
BODID| = (), B HT(O, Bi), B+ O +r L) +Q(w),

(7.12)
where T'(Y;, Yy) = Vy.Vy, Noq. In fact we have

Yi(h(Y2), Vi) = (T(Y;, Y2), Vi) + (Vy, Noa, VY1),

By the parallel transport of the vector-fields Y; with respect to the con-
nection V% of 99, we have

VEY| =0.
P
Since
VyYi = VY] — (h(Y;), Y1) No.
it follows that

(Vy, Noa, Vy.Y)) , = 0.

Therefore by odness, we readly deduce the following
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7.3.2. LEMMA. The area of the hyper-surface ¥,, . has the following ex-
PANSLON,

rTMAE ) = P(Bm+1,RT+1)+T/

m
ST

((h(EY;), E) — (h(©), é>) 0" ds +m X

+ 3r(m+1) /m ((h(Ei), E;) — (h(©), é>) 0" wdo + 2r /Sm O™ (h|

7?2 ~

+ 5 g (((h(Ei),h(Ei»—(h(é),h(@)))+<<h(Ez)aEi>—<h(@)aé>

- 5 [ (0®) 807 - 200, £+ ) P ao
- %2 . (Ric)!(6,0) + (R (Nog, ©)Nan, ) ) (€7!)?do
4+ %/ST ([Vsnw|® + m(m — 1)w?) do + O,(r®) + /T (rL(w) + rQ*(w!

Use Proposition 7.1.2 and (7.12) to have the volume form of BM(p, p) in
M for p small,

B 2
pim V det gij = 1+ p@erl (<h(Ez)7 E’L> + p<T(67 EZ)7 EZ>) + p_<R]/9\/l(N8Q7 Ei)Naﬂn E

2
’ ~ ~ 2
+ %<Rp(@7 E;)O, E;) + p2(@m+1)2<R£/l(NaQ, E;)Noq, E;) + %(@m+1)2<
02 1\2 2 p2 1\2 9
+ g O h(E), BT = T (O [(R(E), By +O(P).

Integration over the set p < r(1 4+ w) gives the expansion of the volume
bounded by %, and 0.
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7.3.3. LEMMA. The following expansion holds

—m— 1 m m
r 1|E(p7r7w)’9 - m——HP(B +17R++1)+

2 1 1

(h(E;), E;) /sr ®m+1da+/5

m
+

b (S0 BYE + JhE), B - {A(E). B)F )

m-+3 \8

r r

2 2
. ~ ~ . M
+ —m/s RZCP(@,@)CZJ——RZCP (Nag,NaQ)/

2(m+3)

m
+

+ r(h(E;), E;) @m+1wd0+%/ w2da—|—0p(7"3)

Sm Sm
+ /
S

where @a(w) 1s a polynomial in w, at least of order a, with smooth coef-

(062w + 0()Q*(w) + Q*(w)) do,

m
+

ficients depending on p, © and maybe on r but uniformly bounded by a
constant depending only on 2.

7.4 CMC hemispheres in Riemannian manifolds

Let E be an open smooth subset of Q and ¥ := dF N 2. Assume that
the boundary of 9% is nonempty and is contained in 0€2. From the first
variation of area, see for instance [77], F is a critical point for the perimeter
functional under variations that keep the volume invariant if and only if

mHy = const. in X and (N, Ngg)Q =0 in 0%,

where for B C A, the expression N j§1 denotes the unit outer normal of B
in A while Hy, is the mean curvature of X.

We have seen in Section 6.1 that solutions E, to the isoperimetric prob-
lem trapping a volume |7“BT+1| have mean curvatures Hpgp blowing up
and in fact Hypg, ~ 7. Moreover their boundaries are normal graph over
a hemisphere centered at some point in 9€2. Also in Chapter 3, we prove
the existence of %—surfaces u. concentrating at critical points of the mean
curvature of 9€2 while the image of these maps solve GM P. The result
of this section, in geometric point of view, is a generalization of the afore

mentioned result. Our aim in this section is to prove the

(

J

m

+
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7.4.1. PROPOSITION. There ezistrg > 0 and a smooth function f : (0,7y)X
000 — R such that for every r € (0,rq), if p is a critical point of f(r,-)
then (GM P) admits a solution X, , which is a normal graph over FP(rS7").
Furthermore

| f(r,-) = Haqllcron) < cr,

for some positive constant c.

Let us describe the proof of this. We have to recall that we look for
stationary sets with a given profile for the total energy functional

m
E(E) =Py(E, Q) + 7‘E|g~

We have that the set Z, := {FP(r B"*Y), p € 0Q} is a manifold of
approximate solutions for &,. Namely

e (P @) B =00,
ow w=0

see Lemma 7.3.2 and Lemma 7.3.3. Moreover the linearized mean curvature
operator together with the orthogonality conditions (see Proposition 7.2.2)
may has small (possibly zero) eigenvalues, so we cannot invert it to apply
fixed point argument to solve the problem. However we will perturb Z,
to a manifold Z, of critical point for & modulo m ”Lagrange-multipliers”.
This is related to the invariance by translations when 92 = R" is "flat”.
In this case we have an m dimensional kernel for the Jacobi operator about
S which is —Agm +m. (In contrast with the the Free Boundary Plateau
Problem, the invariance by the Mobius group is not taken into account

here because it essentially give the same geometric object.)
The second step is to show that in fact Z, is a natural constraint for &

namely critical point of £| _ is also stationary for £. For that we use an

argument from Kapouleas in [51] which were successfully employed by [73]
to obtain constant mean curvature spheres in Riemannian manifolds. We
will closely follow the argument of the latter.

It is worth noticing that this method is also closely related to variational-
perturbative methods introduced by Ambrosetti and Badiale in [3] which
we also adapt in Chapeter 3 for the Free Boundary Plateau Problem
(FBPP). In contrast with the the FBPP, when working with the geometric
object FP(r B instead of paramterisation, the invariance by Mdbius
group, rotation are not taken into account here because they essentially
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give the same object. This is exactly what we had in mind in order to
carry out the proof of Proposition 3.2.11.

7.5 Existence of CMC hemispheres

We first recall the mean curvature expansion in Proposition 7.2.2,

rH(p,rw) = m — (Agnw + mw) + rom ! ((m +3)(h(©),0) — (h(E)), Ei>)

+ O +rLw) + QW) in 3,0
0 _ _
(N No, ) = = 5+ L(w) + Q) on 9%,
p,T,w p,T,w 77
where 1 = —Npq is the outer unit normal to dS7'. Define

(Lo(u),u) := / (VspuVgnu' —muu') do,

sy
since the Kernel of this operator is Ay, see (2.15), by the Fredholm theorem
there exists a unique w? € C**(S™") such that

Lo = O ((m+3)(h(6).6) — (h(E).E)) i Sy
O
a

because of the evenness of the right hand side. Moreover w? satisfies

m Pdo = /
gm S

= 0 on OSY

o+l ((m +3)(h(©),8) — (h(E)), Ei>) do.  (7.13)

m
+

Fixed point argument:

7.5.1. LEMMA. for every p € 0X) and r small, there exit a unique wWP" and
a vector field =,, on T,08) such that

rH(p,r,rd? + @) = m in SV
(7.14)

(N3, N5 = (5,,,0) on S™1L.

PROOF.
We recall that II; is the L? projection on A;, the space spanned by ©°,
i=1---m. For any v € L*(S"), we decompose it as

U:®+(E,@>:w1+wo+<5,@>,
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where Iljw = wy = f s wdo and & = I v. Recalling the definition of T’
in (6.2), we define £, : C>%(ST") — C%*(ST) by
I (r,p,roP + w)

L), 0)), ) ;g

(Lp,v,0") = ( (Z,0)(Z',0)ds, W' e L’

Namely

(ﬁpﬂ"v’ UI) - /
S

(ng@ng@'—m@cD’)da—jI{ <E,(:)>(E',@>ds+7“/ v'L(dJ)dJJrrj{
s

m m—1 m ’
+ S +

Since fST Vwi|?do > 2(m +1) fSl” wi|? do, it is easy to see that
1
o L,, > §+0r(1);
HO oﬁp,r < _m+0r(1)7
ST
11 E r - T 1 )
) +1 +or(l)

where 0,(1) is a function in r (maybe depending on p) which tends to zero
(uniformly in p) as » — 0. From this, we deduce that L£,, is uniformly
invertible and there exists a constant independent on p and r such that

1L, ]2 < C for any p € 0Q, r<L.

Now the system (7.14) is equivalent to the fixed point equation

U= (ﬁp,r)il {Op(rz) + Qp(d))} ’

where Q*(w) is the quadratic part of the mapping T defined in (6.2). By
elliptic regularity theory, in a small ball of radius cr? in HlLCZO‘(@) x 1,01
the above equation has a unique solution (@w"",=,,) such that (7.14) is
satisfied.

We notice that since also the implicit function theorem applies, one has
the smoothness of p — w”" and p — =, € T,0€). Moreover differentiating
the mean curvature equation in p, using standard elliptic regularity theory,
we can deduce that

l " lleaaxeron) + 1B lleron) < er®

for some constant ¢ > 0 independent of 7.
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Variational argument:

By Lemma 7.5.1, fixing r > small, for any p € 02, we have a unique
hyper-surface X, , 1= X, »» which is embedded if r is small because the
Cl® bound (up to the boundary) of wP” := ri? + WP" tends to zero as
r — 0. This now yields for fixed » > 0 a manifold Z, of sets EP" C Q,
p € 0€1, bounded by X, , and 02 which is homeomorphic to 9€2. We have
to show that Zr is a natural constraint for £. For that we define the reduced
functional ¢, : 92 — R by

m
or(p) = E(BP7) = P(BP,0) = | B, (715

for any EP" € Z,. We have to prove the following

7.5.2. LEMMA. Let @, given by (7.15). Suppose that p is a critical point
of ¢, then =,, = 0.

PROOF. Let p be a critical point of ¢,.. Then for any vector field = on
1,000 ,
de,(p)[E] = 0.

92(¢=), then for ¢ sufficiently small the surface ¥, is a graph

If ¢ := exp,
over X, , for some smooth function w,,, = with variation vector field ¢, , =
in 7, M satistying

a o
Cprz = awpﬂﬁ,tt ONGE on 9%, , C 04,

where N gg is the normal of 0%, , in Of).
It is easy to see that for any parallel transport (in 0€2) Z along geodesics
issued from p of = we have the estimate

[z —Z| < er|E]] on 9%,,.
Now the first variation of area and volume yield
0 = dp.(p)[=]

m
0 = /E (HEW- - ?) <Cp,7‘,E7N822>dU +j{ <Cpﬂ"757 N822>d5-

9%,

By construction,

HZ - m n Ep,r and <N5'EE7 Ngg> = <EP7T7 é> on azpﬂ’

p,r
r
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thus
748 (G N3 Ol =0

We have
(Gorz NOSY = —(Z,X) + (Gprz — Z,NGS) + (Z,Ngg + 1) on 0%,

The expansions of the metric together with the normal N5 (see (7.10) and
(7.11)) show that

N 4+T=0(r) while T=0(1+0()).
Therefore we have the estimates
[{Gparzs NO2) + (2,0)] < er||Z].

This implies, also by Holder inequality, that

7{ (Ep,r,(:)><E,é>ds < C?“HEH% <Ep,r,(:)>ds
0%, 0%,

< el (74 ds> (f e >ds> .
821,,, 82p,r

Using the expansion of the metric of small perturbed geodesic sphere (see
[73] Lemma 2.1) we find that

[

1
2

§ (200)(26)ds < arf=]r (f S >ds>,
5D %,

1 ~
L Area(S™ Y22 < m 7{ (2, 6)[2ds.
2 05,
jé (2,0, 0)(Z,0)ds < cr <j{ (2, é>|2d8) (j{ (Zpr, O)] ds)
0%, o Oy,
And, finally setting = = =, ., we obtain

$NEOPds <o d I(E O ds
0Xpr 0%y r

Consequently it must be =,, = 0 for r small. m

while

Hence we have

N=
N[—=
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Using Lemmas 7.3.2 and 7.3.3, we get

Py (By, Q) = P (BRI 4 / ((h(E). B) — (1(6).6)) O™ do +m

+

+ O,(r?);
1 r

—1-m E . _ Bm+1 Rm—H Ez EZ / m+1 / )
r By, —m+173( R )+m+2<h( ), Ei) T@ do + dea
This now give (recalling (6.4))
rer(p) = T E(EM)

1 2 ~. :

P E A o e MED B - (1(0),0) ) ©
1 m |B™|
- = Bm+1 Rm+1 . H 2

We end the proof of Proposition 7.4.1 by setting

) i= T (1 elp) P (B RETY) ) = Honlp)+O,(0),

7.6 Area and Volume expansion of CMC hemispheres

Using (7.13), we also get precise expansions of the area of the of constant
mean curvature hypersurfaces as well as the volume of the domain they
enclose.

7.6.1. COROLLARY. For any EP" € Z,, there hold
rm 'Pg(Ep’T, Q) _ P(Bm+1, Rm—i—l) —m ‘Bm| THaQ(p) 4+ Op(T2);

fm T m m+1
VIEPT], = BT - 5 |B"| 7 Hoalp ) + O, (1%).



Chapter 8

Concluding remarks and open problems

The study of (GM P) is clearly interesting in itself because it involves differ-
ent fields of mathematics like spectral theory, partial differential equations,
differential geometry, calculus of variations, asymptotic analysis,... Our in-
terest and involvement in the study of the afore mentioned problem, allows
us to give a (little) contribution in the “study CMC hypersurfaces” based
on perturbative methods and critical point theory and also to be able to
set some open questions related to what we have done in this thesis. We
first notice how our the results of Chapters 3,4,6 are parallel to those of
the singularly perturbed problem:

ou
8_77 =

where u : {2 — R and satisfies « > 0 in €2 and 7 is the unit outer normal to

E2Au—u+u’=0 inQcR", 0 on 09, (8.1)

0f). This problem arises in several contexts, as the nonlinear Schrédinger
equation or the modeling reaction-diffusion systems. Solutions with mul-
tiple concentration at stable critical points of the mean curvature of 0f2,
as € tends to zero have been proved to exist in [46]. Moreover in [71],
Ni-Takagi proved that least-energy solutions u,., € small, has only one local
maximum point p. with Hpq(p.) — maxyepn Haoq(p) as € — 0. Moreover
Mahmoudi-Malchiodi [57] provided a sequence of solutions u., , €, — 0 as
m — 00, which concentrate along non-degenerate minimal submanifolds

of ). If now we consider
2Au—ut+u’ =0 in M, u > 0in M, (8.2)

with (M, g) a compact Riemannian manifold with metric g, it turns out
that the role of the mean curvature in (8.1) is now played by the scalar
curvature of g. This is obtained by Micheletti-Pistoia [62] and Byeon-
Park [14]. These results parallel the one of Ye [93], Pacard-Xu[73] and
Nardulli [72] in the study of (GM P).

e According to our knowledge in the literature, the counterpart of the
result in [56] (solutions of (8.2) which concentrate along minimal sub-
manifolds of M) has not yet been treated.
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8. Concluding remarks and open problems

e Recently, under generic assumptions with n = 1, Wei-Yang established

the existence of a sequence of solutions which concentrate along a curve
which intersect transversely (2 and meet 02 perpendicularly. One
can investigating the counterpart of the latter result to the problem
(GMP).

On the other hand, one can attache an infinite CMC cylinder outside
a bounded domain {2 and intersecting 02 perpendicularly.

If " = 0, namely when ¢(s) = cs + d, S parametrizes the cone, we
were not able to conclude. However we notice that the proof of The-
orem 5.0.3 highlights that near a point v(psg) for which ¢"(sy) = 0,
there will be capillary surfaces with constant and small mean curva-
tures, see Remark 5.4.1.

Recalling the notation of Chapter 5, an interesting question is also to
perturb the set

€XDs () (P B(5)S™ )

to a closed minimal submanifold of 7. One can see also the work by
S.Secchi [82].

Another problem can be set as follows. Let U be a smooth bounded do-
main of M, and ' — Ol be a smooth curve. We let § = (3, ..., y™)
and Ngy be a unit interior normal field along /. Choosing an ori-
ented orthogonal frame (Ej ..., E,_1) along I' in OU, one obtains a
coordinate system by letting, for any y = (7,y™) = (y!,...,y™ 1, y™),

F(xo,5,y™) : —eXPeXp N i)W Now).-

Now consider the set

F(pk(s), po(s)BL),
where B = {z = (2!,...,2™ L,2™) e R™ . |z| =1, 2™ > 0}.
One may be tempted to perturb the set above into capillary minimal
surfaces that meet the ”"half”-surface of revolution

F(pr(s), pp(s)Sy)

by an angle equal to arccos ¢'. In this case, as we believe, a result
like Theorem 5.0.1 would carry over. On the other hand one would
need maybe to impose some conditions on the principal curvature of
OU along I in order to obtain a variant of Theorem 5.0.3.
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e In Chapter 6, we showed that perimeter minimizing sets enclosing
small volumes are centered near strict maxima of the mean curvature
of the supporting surface, in particular are critical points of the mean
curvature. It should be then interesting to ask the following question.
Let X g7, a family of CMC solving (GM P) and concentrating to a point
p € 022 as H — 00, does this force p to be a critical point of the mean
curvature of 02?7 Results supporting the affirmative of this question
can be found in [64].
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