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Chapter 1

Introduction

1.1 Overview

1.1.1 Free boundary CMC hypersurfaces

Letting Ω be a bounded domain in a Riemannian manifold M, we call

Σ ⊂M a free boundary Constant Mean Curvature (CMC for short) hyper-

surface if it has a non empty boundary with ∂Σ ⊂ ∂Ω and which intersects

∂Ω at a constant angle γ ∈ (0, π). Such hypersurfaces, called also sta-

tionary capillary hypersurfaces, are critical points of an energy functional

under volume constraint. The energy functional is defined as follows. The

surface Σ separates Ω into two parts and consider among these two parts,

the one inside which the angle γ is measured, and call Ω′ the part of its

boundary that lies on ∂Ω. The energy functional is then

Σ 7→ E(Σ) := Area(Σ ∩ Ω)− cos γ Area(Ω′).

From the physical point of view, when two fluids (at least one a liquid)

are adjacent, the free surface of their interface is called a capillary surface.

The most interesting questions, then, in stationary capillary problems is

the regularity, location and the shape of the surface. In this thesis, we study

stationary capillary problems, in which neither fluid is flowing. The study

of capillary surfaces is very classical (see R. Finn’s book [34]“Equilibrium

Capillary Surfaces” for some historical comments) but is still far from set-

tled. The quantity cos(γ) Ω′ is interpreted as the wetting energy and γ the

contact angle while cos(γ) is the relative adhesion coefficient between the

fluid bounded by Σ and Ω′. We have been interested in a configuration in

the absence of gravity. A more general setting including the gravitational

energy and works on capillary surfaces can be found also in the book by

R. Finn.

The geometric problem (referred also as the partitioning problem in the

literature when γ = π
2 ) we study here and derived from the Euler-Lagrange

associated to the above functional reads as follows: for a given real number

H and an angle γ ∈ (0, π), find a hypersurface Σ (with prescribed topology)
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satisfying the following conditions:

(GMP )


HΣ ≡ H in Σ,

∂Σ ⊂ ∂Ω,

〈NΣ, N∂Ω〉 = cos γ on ∂Σ,

where HΣ is the mean curvature of Σ and NΣ (resp. N∂Ω) is the outer unit

normal of Σ (resp. ∂Ω).

The above problem and the boundary-less case have been studied by sev-

eral authors. For reasons of exposition, in this section we shall cite those

whose their work are closer to what is done here. The isoperimetric problem

(see the survey of A. Ros [76]) which consists of minimizing the energy func-

tional E allows to distinguish some special stationary surfaces like, spheres

(in Rm+1); hemispheres (in the half space Rm+1
+ ), half-spheres, cylinders and

unduloids, (in slabs Rm × [0, 1]); hyperplanes through the origin or spher-

ical caps (in a Ball), etc . . . On the other hand there are various CMC

surfaces satisfying (GMP ) which are not necessarily minimizers and not

even embedded. Some well know examples are Wente’s torus, [92], and also

the Delauney surfaces [22]. One can also see the work of Kapouleas [51],

Mahmoudi-Pacard-Mazzeo [56, 64], Jeleli [49], Struwe [86, 88, 90], Grüter-

Jost [41, 50], etc... Few information on the solutions of the isoperimetric

problem are available even though some progress has been done when we

are in curved spaces. So, one is led to build CMC surfaces with as a ref-

erence model the euclidean space. In the early 90’s, motivated by possible

applications in general relativity, R. Ye proved the existence of constant

mean curvature spheres in Riemannian manifolds concentrating at non-

degenerate critical points of the scalar curvature of M. This is (some

how) extended recently by Pacard and Xu [73] to possibly degenerate crit-

ical points of the scalar curvature by incorporating a variational argument.

A new phenomenon was then discovered and analyzed in the pioneering

work of Malchiodi and Montenegro [59], namely the existence of solutions

to singularly perturbed partial differential equations concentrating along

minimal submanifolds. The approach of Malchiodi and Montenegro was

also used from a geometric context; to construct (Delauney-type) CMC

hypersurfaces condensing along minimal submanifolds by F. Mahmoudi,

R. Mazzeo, F. Pacard [56] in the boundary less case.

In this thesis, we build various solutions to the above problem with
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non-trivial topology by studying (GMP ) in a geometric and PDE point of

view.

The Free boundary Plateau Problem for H-surfaces

Here we consider surfaces realized as a mapping u over a given domain.

Along with its advantages, the definition of a surface as a mapping has cer-

tain drawbacks: there is an a priory restriction on the topological complex-

ity and the natural topology lacks compactness properties due to invariance

under non-compact class of diffeomorphisms. As a concrete problem, we

have the well known non-linear Partial Differential Equations (which is

related to (GMP ) with γ = π
2 ) called the Free Boundary Plateau Prob-

lem (FBPP) for H-surfaces over the unit disc B of R2. Namely, if we

suppose that Σ ⊂ R3 is parametrized in isothermal coordinates by a map

u ∈ C2(B; R3)∩C1(B̄; R3) over the unit disc B, then (GMP ) becomes the

FBPP for H-surfaces:{
∆u = 2Hux ∧ uy in B,

|ux|2 − |uy|2 = 0 = ux · uy in B,
(1.1)

{
u(∂B) ⊂ ∂Ω,

∂u
∂n(σ) ⊥ Tu(σ)∂Ω ∀σ ∈ ∂B.

(1.2)

The main features in studying this problem are the functional setting

and the invariance by (non-compact) group of conformal transformations of

the unit disc. The above system and its parabolic counterpart have been

the subject of several works, see for instance the paper [13] by Bürger-

Kuwert and also [88] by M.Struwe. The latter generalizes the existence

result in [90] and in some sense extends Hildebrandt’s work [47] for the

Plateau problem for H-surfaces, namely (3.1) with the following boundary

condition instead of (1.2)

u|∂B : ∂B → Γ is a parametrization of a given Jordan curve Γ ⊂ R3.

(1.3)

For H = 0 (1.1), (1.3) constitute the classical Plateau problem for minimal

surfaces solved by J.Douglas [25] and T.Radò [74]. Generalizations for

H 6= 0 were obtained in [47], where the existence of a stable solution was

proved. For ”small” H, Brezis-Coron [12], K.Steffen [83] and M.Struwe

[87], found the existence of unstable solutions as well. These results were
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extended in [86] where the following result was established: for H 6= 0,

there is always an unstable solution of (1.1),(1.3) provided there is a stable

solution.

By analogy, since in the free boundary problem stable solutions (trivial

solutions) always exist for any H, one could expect unstable solutions to

exist for any H 6= 0. Furthermore it is not hard to see that the closer a

CMC surface is (say, in the Hausdorff metric) to a point, the larger its mean

curvature must be. In other words, the mean curvatures of the elements

of a condensing family of CMC hypersurfaces must tend to infinity.

Motivated by these facts, we study here the above system forH arbitrar-

ily large. Indeed taking into advantage the variational characterization of

this problem, we were able to reduce the problem to finding critical points

of some function FH defined on ∂Ω. Therefore the Lusternik-Schnierelman

theory allows then to obtain existence of solutions for any largeH. Further-

more for H large, FH admits an asymptotic expansion involving the mean

curvature of ∂Ω. Applying topological degree argument, stable solutions

of the mean curvature of ∂Ω give rise to the existence of H-surfaces.

The H-surfaces uH found here are embeddings and yield CMC surfaces

solving (GMP). Moreover they are similar to hemispheres and concentrat-

ing to a point as H becomes large. A natural question is therefore, what

about higher dimensional concentrations?

Concentration on minimal submanifolds

We study here also the existence of cylindrical type hypersurfaces in Ω ⊂
Rm+1. If K is a k-dimensional smooth submanifold of ∂Ω, we consider the

“half”-geodesic tube contained in Ω around K of radius 1:

Sε(K) := {q ∈ Ω̄ : d(q,K) = ε},

with

d(q,K) :=

√
|dist∂Ω(q̃, K)|2 + |q − q̃|2

where q̃ is the projection of q on ∂Ω and

dist∂Ω(q̃, K) = inf
{
length(γ) : γ ∈ C1([0, 1]) is a geodesic in ∂Ω; γ(0) ∈ K; γ(1) = q̃

}
.

By the smoothness of ∂Ω andK, the tube is a smooth, (possibly) immersed,

hypersurface provided ε is sufficiently small. This tube by construction

satisfies almost (GMP ),
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HSε(K) = m−k

ε + O(1) in Sε(K),

∂Sε(K) ⊂ ∂Ω,

〈NSε(K), N∂Ω〉 = 0 on ∂Sε(K),

Hence one naturally expect to be plausible, under some rather mild as-

sumptions onK, that it might be possible to perturb this tube to satisfy the

system (GMP ). We were able to achieve this only for some special values

of ε and provided K is a non-degenerate minimal submanifold. According

to our argument, if one were to compare this result with the concentra-

tion at points p, then the assumption on p being critical point for the

mean curvature is now replaced by the fact that K has to be a minimal

submanifold.

Even thought the main ingredients in treating this question is contained

in the one dimensional concentrations, here some new bifurcation phenom-

ena appear which prevent to carry out a construction for any small values

of ε. This is related to some resonance phenomena peculiar to concentra-

tion on positive dimensional sets and it appears in the study of several

classes of (geometric) non-linear PDEs.

Minimal disc-type surfaces

This thesis also aims to find capillary minimal surfaces inside some tubular

neighborhood Ωρ of a given curve Γ inM. First of all we will need to define

the special domains Ωρ we are working with. We consider the parametric

curve [a, b] 3 s→ (κ(s) , φ(s)) ∈ R2 and the surface of revolution in Rm+1,

m ≥ 2 using the standard parametrization

S(s, z) = (κ(s) , φ(s) Θ(z)) ,

where z 7→ Θ(z) ∈ Sm−1, φ(s) 6= 0 ∀s ∈ [a, b]. Assuming that the rotating

curve is parametrized by arc length namely

(φ′(s))2 + (κ′(s))2 = 1,

clearly the disc Ds,1 centered at (κ(s) , 0) (on the axis of rotation) with

radius φ(s) parametrized by

Bm
1 3 x 7→ (κ(s) , φ(s)x) ,

solves (GMP ) with H = 0 and γ = arccos φ′(s).
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To extend these definitions of surface of revolution in a Riemannian

setting, we let Γ be an embedded curve parametrized by a map γ : [0, 1] →
M. We consider a local parallel orthonormal frame E1, · · · , Em of NΓ

along Γ. This determines a coordinate system by

[0, 1]× Rm 3 (x0, y) 7→ F (x0, y) := expγ(x0)(y
iEi) ∈ M.

For a small parameter ρ > 0, consider the Riemannian surface of revolution

C ρ around Γ in M parametrized by

(s, z) −→ f(ρ S(s, z)) = F (ρ κ(s) , ρ φ(s)Θ(z)) = expγ(ρ κ(s))(ρ φ(s)Θi(z)Ei),

where z 7→ Θ(z) ∈ Sm−1, and call its interior Ωρ := int C ρ which is nothing

but a tubular neighborhood for Γ if ρ is small enough. Here we are assuming

always that φ(s) 6= 0 and that (φ′(s))2 + (κ′(s))2 = 1. For any s ∈ [a, b], if

we consider the following set

Ds,ρ := F (ρ κ(s) , ρ φ(s)Bm
1 )

then is clear that


HDs,ρ

= O(ρ) in Ds,ρ,

∂Ds,ρ ⊂ ∂Ωρ,

〈NDs,ρ
, N∂Ωρ

〉 = φ′(s) +O(ρ) on ∂Ds,ρ.

Our aim is to perturb Ds,ρ to a capillary minimal submanifold, Ds,ρ, of

Ωρ centered on Γ with contact angle arccos φ′(s) along ∂Ds,ρ ⊂ C ρ, as it

happens in Rm+1. We have shown that this is the case when φ(s0)φ
′′(s0) > 0

and ρ small. Moreover, we have obtained that smaller open sets Oρ ⊂ Ωρ

can be foliated locally by such minimal disc Ds,ρ, in a neighborhood of s0.

Furthermore when we consider the case where Ωρ is a geodesic tube (φ ≡ 1

and κ =Id), in this situation (recall that in this case the angle of contact is
π
2 ) it is the geometry of the manifold to determine the position of the discs.

More precisely, due to invariance by translations along the axis of rotation,

we reduced our problem of finding minimal surfaces to a finite-dimensional

one where the main term is determined by the Riemann tensor along Γ.
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1.1.2 Perimeter minimizing sets

For any measurable subset E of M, we let Pg(E,Ω) be the De Girogi

perimeter (see the book of E. Giusti [36]) of E relative to Ω, defined as

Pg(E,Ω) := sup

{∫
E

divgY dvg : 〈Y, Y 〉 ≤ 1

}
,

where Y is a smooth vector-field on M with compact support in Ω. Notice

that if a set E is smooth then the Gauss-Green formula yields Pg(E,Ω) =

Area(∂E ∩ Ω).

We have been interested by the isoperimetric profile of a domain Ω in

a Riemannian manifold, namely the mapping

v 7→ IΩ(v) := min
E⊂Ω,|E|g=v

Pg(E,Ω).

Much of the information concerning the partitioning problem (problem

(GMP) with γ = π
2 ) is contained in the functional IΩ. Explicit lower

bounds for the profile IΩ are very important in applications and are called

geometric isoperimetric inequalities for instance see [18] and [19]. If Ω

is bounded, the direct methods of the calculus of variation imply that

minimizers always exist for any v, their boundaries are smooth and have

constant mean curvatures up to a closed set of singularities with high

Hausdorff co-dimension 7. Moreover when ∂Σ ∩ ∂Ω 6= ∅ then Σ will meet

orthogonally ∂Ω on ∂Σ∩∂Ω. Actually up to now the complete description

of minimizers has been achieved only in some special cases, one can see for

example the survey of A.Ros [76] and the examples cited above.

Perimeter minimizing sets inM enclosing small volumes have been stud-

ied by F. Morgan and D.L. Johnson [69]. They proved that if v is small

enough, minimizers of IM(v) are “smooth“ and look asymptotically like

spheres. Namely up to scaling, they converges smoothly to spheres (with-

out singularities). Recently, Narduli [72], in his thesis weakened the min-

imizing property. Moreover he showed that minimizers are located near

strict-maxima of the scalar curvature of M.

In 1982, Bérard-Meyer, motivated by the study of nodal domains for

Dirichlet eigenvalues, have shown that, in the infinitesimal level, the isoperi-

metric profile of a compact Riemannian manifoldMm+1 approaches that of

Rm+1. Namely they established that IM(v) ∼ IRm+1(v) as v → 0. This was

adapted by Bayle and Rosales [8] for the relative profile IΩ(v) ∼ IRm+1
+

(v)
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as v → 0. The former result has been refined by Druet [27] who gave the

first coefficient in the Taylor expansion of IM

IM(v) ∼
(

1− αm max
p∈∂M

S(p) v
2

m+1 +O
(
v

4
m+1

))
IRm+1(v),

where αm is a constant depending only on m and S is the scalar curvature

ofM. Some applications of this result to the expansion of the Faber-Krahn

and Cheeger isoperimetric profile have been recently derived by Druet [26]

and the author [32]. We have to mention also that Bayle and Rosales

showed, under local convexity assumption of ∂Ω, that IΩ(v) < IRm+1
+

(v) for

small v.

In this thesis we also study regularity and location of minimizers for

IΩ(v) with small volumes v. It turns out that the solutions to the isoperi-

metric problem are smooth up to the (free) boundary and they are located

near the strict maxima of the mean curvature of ∂Ω. Our regularity result

allows us to derive a Taylor expansion of the relative profile IΩ given by

IΩ(v) ∼
(

1− βm max
p∈∂Ω

H∂Ω(p) v
1

m+1 +O
(
v

2
m+1

))
IRm+1

+
(v),

where βm is a constant depending only on m and H∂Ω is the mean curva-

ture of ∂Ω. From this we derive, as corollaries, some local isoperimetric

inequalities involving only the mean curvatures of the obstacle ∂Ω weaken-

ing the convexity of the afore mentioned result to domains Ω with positive

boundary mean curvature.



Chapter 2

Preliminary and Notations

In this manuscript, manifolds (Mm+1, g) are assumed to be orientable and

complete with metric g and dimension m + 1 and connection ∇. If there

is no confusion, we will use the notation g(· , ·) = 〈· , ·〉.
Referring to the books of Do Carmo [23] [24], we first, rquickly, recall

the definition of the mean curvature for hypersurfaces.

Let Σ be an orientable smooth hypersurfaces of M. For a point p ∈ Σ,

we let NΣ a unit vector in TpM
⊥. For X in TpM, we define the linear

mapping hΣ(X) := ∇XNΣ. The second fundamental form of Σ at p is

given by Πp(X) := 〈hΣ(X), X〉 for all X ∈ TpΣ. The operator operator

hΣ is symmetric from TpΣ → TpΣ hence there exists an orthonormal basis

{E1; . . . ;Em} of real eigenvectors k1, · · · , km. Notice that NΣ is uniquely

determined if we require that both {E1; . . . ;Em} is a basis in the orien-

tation of TpΣ, and {E1; . . . ;Em;NΣ} is a basis in the orientation of TpM .

The symmetric function of k1, · · · , km are invariants under immersions rep-

resenting Σ and are called principal directions. The (normalized) mean

curvature at p of Σ is given by HΣ(p) := 1
m

∑m
i=1 〈hΣ(Ei), Ei〉. Clearly,

the sign of HΣ depends on the choice of the orientation. In this thesis,

we will specify, during the computations of mean curvatures of various

hypersurfaces, the orientations chosen and also if they are normalized.

2.1 First and second variation of area for capillary hypersurfaces

Letting Ω be a bounded domain in an (m+1)-Riemannian manifold M, we

call Σ ⊂ M a free boundary Constant Mean Curvature (CMC for short)

hypersurface if it has a non empty boundary with ∂Σ ⊂ ∂Ω and which

intersects ∂Ω at a constant angle γ ∈ (0, π). Such hypersurfaces, called

also stationary capillary hypersurfaces, are critical points of an energy

functional under volume constraint. The energy functional is defined as

follows. The surface Σ separates Ω into two parts, and consider among

these two parts, the one inside which the angle γ is measured, and call Ω′
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the part of its boundary that lies on ∂Ω. The energy functional is then

Σ 7→ E(Σ) := Area(Σ ∩ Ω)− cos γ Area(Ω′).

Since Σ ⊂ Ωseparates Ω into two parts, we will call Λ the boundary of one

of these parts in ∂Ω. We now recall the first and second variation of the

energy E .

2.1.1 First variation of area

Let Ft be a variation of Σ with variation vector field

ζ(p) =
∂Ft

∂t
(p)|t=0 for every p ∈ Σ.

A variation is called admissible if both Ft(intΣ) ⊂ Ω and Ft(∂Σ) ⊂ ∂Ω.

Let NΣ be a unit outer normal vector along Σ; HΣ its mean curvature

and υ (respectively ῡ) be the unit exterior normal vector along ∂Σ in Σ

(respectively in Λ).

An admissible variation induces hypersurfaces Σt and Λt. Let A(t) (re-

spectively T (t)) be the volume of Σt (respectively Λt) and V (t) the signed

volume bounded by Σ and Σt. For a given angle γ ∈ (0, π), we consider

the total energy

E(t) := A(t)− cos(γ)T (t). (2.1)

It is well known (see for example [78]) that

E ′(0) = −
∫

Σ
mHΣ〈ζ,NΣ〉dA+

∮
∂Σ
〈ζ, υ − cos(γ) ῡ〉ds (2.2)

and

V ′(0) =

∫
Σ
〈ζ,NΣ〉dA. (2.3)

A variation is called volume-preserving if V (t) = 0 for every t. Σ is called

capillary hypersurface if Σ is stationary for the total energy (E ′(0) = 0) for

any volume-preserving admissible variation. Consequently if Σ is capillary,

it has a constant mean curvature and intersects ∂Ω with the angle γ in the

sense that the angle between the normals of υ and ῡ is γ or equivalently

the angle between NΣ and N∂Ω is γ, where N∂Ω is the unit outer normal

field along ∂Ω.

Physically, in the tree-phase system the quantity cos(γ)T (0) is interpreted

as the wetting energy and γ the contact angle while cos(γ) is the relative

adhesion coefficient between the fluid bounded by Σ and Λ and the walls

∂Ω. Here we are interested in a configuration in the absence of gravity.
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2.1.2 The Jacobi operator of Σ

We denote by ΠΣ and Π∂Ω the second fundamental forms of Σ and ∂Ω

respectively. Assume that Σ is a capillary hypersurface. Recall that the

Jacobi operator (the linearized mean curvature operator about Σ) is given

by the second variation of the total energy functional E . For any volume-

preserving admissible variation, we have (see [78] Appendix for the proof)

E ′′(0) = −
∫

Σ

(
ω∆Σω + |ΠΣ|2ω2 +Ricg(NΣ, NΣ)ω2) dA+

∮
∂Σ

(
ω
∂ω

∂υ
−q ω2)ds,

(2.4)

where Ricg is the Ricci curvature of M,

ω = 〈ζ, NΣ〉 and q =
1

sin(γ)
Π∂Ω(ῡ) + cot(γ)ΠΣ(υ).

Here ∆Σ is Laplace-Beltrami on Σ while Ricg is the Ricci tensor of M.

Since for any smooth ω with
∫

Σ ωdA = 0 there exits an admissible, volume-

preserving variation with variation vector field ωNΣ as a normal part (Bar-

bosa Do Carmo [7]), we have now the Jacobi operator of Σ that we define

by duality as

〈LΣ,NΣ
ω, ω′〉 :=

∫
Σ

{
∇ω∇ω′ −

(
|ΠΣ|2 +Ricg(NΣ, NΣ)

)
ω ω′

}
dA+

∮
∂Σ
q ω ω′ds.

2.1.1. Example. In Ω = Rm+1
+ , with ∂Ω = Rm×{0} = Rn×Rk×{0}. We

refer to Section 2.3 below for notations. Let Sn(γ) be the n-dimensional

spherical cap centered on ∂Ω and making an angle γ with it. The Jacobi

operator of the Capillary cylindrical cup Cγ := Sn(γ)×Rk around K := Rk

is the following

〈LCγ
ω, ω′〉 = −

∫
Sn(γ)×K

(
∆Kω + ∆Sn(γ)ω + nω

)
ω′ dA+

∮
∂Sn(γ)×K

(
∂ω

∂η(γ)
− cot(γ)ω

)
ω′ ds.

2.1.1. Remark. Let us observe that any smooth transverse vector field N̂Σ

along Σ induces an admissible volume preserving variation. The linearized

mean curvature operators LΣ,NΣ
and LΣ,N̂Σ

are linked by

LΣ,N̂Σ
ω̂ = LΣ,NΣ

(〈NΣ, N̂Σ〉 ω̂) +mN̂T
Σ (HΣ) ω̂,

where N̂T
Σ is the orthogonal projection of N̂Σ on TΣ. This shows that LΣ,N̂Σ

is self-adjoint with respect to the inner product∫
Σ
ω̂ ω̂′ 〈NΣ, N̂Σ〉 dA.
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2.2 The free boundary Plateau problem

In particular for regular surfaces in (Mm+1, g) = (R3, ·), we consider Σ

parametrized by a mapping u : U → Σ over an open smooth domain

U ⊂ R2. The expression of the metric on Σ is given by

E dxdx+ 2F dxdy +Gdydy,

where

E = |ux|2 = ux · ux, F = ux · uy, E = |uy|2 = uy · uy.

Note that, denoting by ∧ the exterior product in R3, one has ux ∧ uy 6= 0

on U , and hence

NΣ =
ux ∧ uy

|ux ∧ uy|
(2.5)

defines a unit normal vector at u(x, y).

At any point p = u(x, y), the differential dNΣ

∣∣∣
p

: TpΣ → TpΣ defines a

symmetric operator. Setting

e = uxx ·NΣ, f = uxy ·NΣ, g = uyy ·NΣ,

the expression of second fundamental form in the basis {ux, uy} is

e dxdx+ 2f dxdy + g dydy.

In terms of the first and second fundamental form, the mean curvature is

given by

2HΣ =
eE − 2fF + gG

EG− F 2 . (2.6)

In problems concerning mean curvatures for parametric surfaces, it is

convenient to use conformal parametrizations, since this leads to an equa-

tion for the mean curvature that can be handled with powerful tools in

functional analysis.

2.2.1. Definition. Let Σ be a 2-dimensional regular surface in R3 and let

u : U → Σ be parametrization. Then u is said to be conformal if and only

if for every z ∈ U , the linear map du(z) : R2 → Tu(z)Σ preserves angles,

that is there exists λ(z) > 0 such that

〈du(z)[v], du(z)[w]〉 = λ(z)〈u,w〉 for every u,w ∈ R2. (2.7)
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Note also that the conformality condition (2.7) can be equivalently written

as:

|ux|2 − |uy|2 = 0 = ux · uy in U . (2.8)

This is equivalent to E = G and F = 0 so that

2HΣ =
∆u ·NΣ

|ux|2
. (2.9)

On the other hand, differentiating (2.8) with respect to x and y, we can

deduce that ∆u is orthogonal to both ux and uy. Hence, recalling the

expression (2.5), we infer that ∆u and NΣ are parallel. Moreover by (2.8),

|ux ∧ uy| = |ux|2 = |uy|2, and then, from (2.9) it follows that

∆u = 2HΣ(u)ux ∧ uy.

If moreover we assume that that u(∂U) ⊂ ∂Ω and intersecting it perpen-

dicularly (in the sense that the outer unit normal of u(∂U) in u(U) and

the outer unit normal of u(∂U) in ∂Ω makes an angle equal π
2 , see (2.1.1)),

then the tangential derivative of ∂u
∂t (σ), in the direction t(σ) ∈ Tu(σ)u(∂U),

along u(∂U) and the normal of u(∂U) in ∂Ω form a basis in ∂Ω and are

orthogonal because ∂u
∂t (σ) ∈ Tu(σ)u(∂U). Since u is conformal, we deduce

that ∂u
∂n(σ), which is also tangent to Σ is orthogonal to ∂u

∂t (σ). Hence, we

finally obtain the free boundary Plateau problem for H-surfaces.{
∆u = 2HΣ(u)ux ∧ uy in U ,
|ux|2 − |uy|2 = 0 = ux · uy in U ,

(2.10)

{
u(∂U) ⊂ ∂Ω,

∂u
∂n(σ) ⊥ Tu(σ)∂Ω ∀σ ∈ ∂U .

(2.11)

2.3 The stereographic projection

We will denote by p : Rn → Sn the inverse of the stereographic projection

from the south pole. p =
(
p1 , . . . , pn, pn+1

)
is a conformal parametriza-

tion of Sn and for any z = (z1, . . . , zn) ∈ Rn,

p(z) = (z, 1)µ(z)− En+1

=

(
2 z1

1 + |z|2
, . . . ,

2 zn

1 + |z|2
,

1− |z|2

1 + |z|2

)
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with conformal factor given by

µ(z) :=
2

1 + |z|2
. (2.12)

We often use the projection of p on Rn and denote it by

p̃(z) := (z, 0)µ(z). (2.13)

We collect in the following lemma some properties of the function p which

will be useful later on, we omit here the proof which can be obtained rather

easily just using simple computations

2.3.1. Lemma. For every i, j, l = 1, . . . , n, there hold

〈pi,pj〉 = µ2 δij; pn+1
i = −µpi; p̃i = −pi p̃ + µEi;

〈pii,pl〉 = µ2 pl − 2µ2 pi δil.

Here pi and pij stand for ∂p
∂zi and ∂2p

∂zi∂zj respectively.

Recall that the Laplace operator on Sn (embedded in Rn+1) can be ex-

pressed in terms of the Euclidean one by the formula

∆Sn =
1

µ2

(
∆Rn − µ2(n− 2)pk∂k

)
.

Moreover, it is easy to verify that

∆Snp + np = 0.

It is clear that for any 0 < r ≤ 1 the restriction of p on Bn
r parametrizes

a spherical cap Sn(r), where Bn
r is the ball centered at 0 with radius r.

Given γ ∈ (0, π), if we let r2 = 1−cos(γ)
1+cos(γ) , the image by p of Bn

r is the

spherical cap Sn(γ) which intersects the horizontal plane Rn + cos(γ)En+1

and makes an angle γ with it. In particular we denote (henceforth define)

Θ(γ) := p
∣∣∣
Bn

r(γ)

− cos(γ)En+1; Θ := Θ(
π

2
)

Sn
+ := Sn(

π

2
) =

{
x = (x1, . . . , xn+1) ∈ Rn+1 : |x| = 1 and xn+1 > 0

}
.

For any 0 < r ≤ 1, denote by τr the unit outer normal vector of ∂Bn
r , the

normal field (not unitary) of ∂Sn(r) in Sn(r) expressed as follows

∂p

∂τr

∣∣∣∣∣
∂Bn

r

= µ |p̃|
(
pn+1 p̃

|p̃|2
− En+1

) ∣∣∣∣∣
∂Bn

r

.
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Now when r2 = 1−cos(γ)
1+cos(γ) , the unit normal in Sn(γ) of ∂Sn(γ) is given and

denoted by

η(γ) = cot(γ) Θ̃(γ)−sin(γ)En+1, in particular η := η(
π

2
) = −En+1

(2.14)

while the unit normal of ∂Sn(γ) in the plane Rn + cos(γ)En+1 is Θ̃(γ)
|Θ̃(γ)||∂Bn

r
.

Observe that the angle between the two normals Θ̃(γ)
|Θ̃(γ)| and η(γ) is γ along

∂Sn(γ), namely since |Θ̃(γ)| = sin(γ) on ∂Bn
r ,

〈 Θ̃(γ)

|Θ̃(γ)|
, η(γ)〉 = cos(γ) on ∂Sn(γ).

Consider the eigenvalue problem, u : Sn(γ) → R,
∆Sn(γ)u+ nu = 0 Sn(γ);

∂u

∂η(γ)
= cot(γ)u ∂Sn(γ).

It is well known that the only solutions to the interior equation are the

degree one homogeneous polynomials on Sn
+, spanned by the n + 1 com-

ponents of p. By (2.14) the boundary condition is satisfied only by Θi(γ),

i = 1, · · · , n. For γ = π
2 , consider the eigenvalue problem

∆Sn
+
u = λu Sn

+,

∂u

∂η
= 0 ∂Sn

+.

Letting

0 = λ0 < λ1 ≤ λ2 ≤ · · · → ∞

be the eigenvalues, up to a reflection, it is well known that λk = (n+k−1)

and the eigenspaces corresponding to λ0 = 0 and λ1 = n are

span {1} and span {Θ1, · · · ,Θn} (2.15)

respectively. We denote by Π0 and Π1 the L2 projections onto these spaces

respectively and we define

Π := Id− Π1 − Π0 and Π⊥
1 := Π0 + Π.

We collect some useful properties of the map Θ in the following lemma

in R2 . The proof is just simple computations.
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2.3.1. Lemma. If we denote by n = (x, y) (resp. t = (−y, x)) the outer

unit normal (resp. tangent ) vector of the unit disc B of R2 then from the

notation above, Θ satisfies

1. ∆Θ = 2Θx ∧Θy = −2µ2Θ;

2. Θ(σ) = (σ, 0), ∂Θ
∂n (σ) = −e3,

∂Θ
∂t (σ) = (t, 0) = (−y, x, 0) ∀σ =

(x, y) ∈ ∂B;

3. 1
2|∇Θ|2 = |Θx|2 = |Θy|2 = |Θx ∧Θy| = µ2;

4. Θx ∧Θ = Θy, Θy ∧Θ = −Θx;

5.
∫

B Θ · [fx ∧Θy + Θx ∧ fy] = −
∫

B ∇Θ · ∇f ∀ f ∈ H1,2(B,R3);

6.
∫

B |∇Θ|2 = 4π.

2.4 Notations

• Unless otherwise stated, Ω is an open bounded domain of Mm+1 with

boundary ∂Ω. If Mm+1 = Rm+1, we some times denote by S = ∂Ω

also Sε = 1
εS and Ωε = 1

εΩ for ε > 0.

• For 1 ≤ p ≤ ∞, k ∈ N, and α ∈ (0, 1) let Lp(B,Rn), Hk,p(B,Rn),

Ck,α(B,Rn) denote the usual Lebesgue- Sobolev-Hölder spaces with

norms ‖ · ‖p, ‖ · ‖k,p, ‖ · ‖2,α. In particular we will write ‖ · ‖2 = ‖ · ‖.

• For every u = (u1, . . . , un), v = (v1, . . . , vn) ∈ Hk,p(B,Rn), we define

u · v =
n∑

i=1

uivi, ∇u · ∇v = ux · vx + uy · vy.

Also we will write |u|2 = u · u and |∇u|2 = ux · ux + uy · uy.

• Let U be smooth domain of R2 and k ≥ 1 an integer. Since ∂U is of

class C∞, covering ∂U by coordinate charts, one can define the Sobolev

spaces Hk,p(∂U ,Rn) (see [1]; paragraph 7.51) as well as the fractional

Sobolev spaces, for any (s ∈ R), k < s < k + 1 and 1 ≤ p <∞, by

Hs,p(∂U ,Rn) =

{
u ∈ Hk,p(∂U ,Rn) :

|u(σ)− u(σ′)|
|σ − σ′|s+

1
p

∈ Hk,p(∂U × ∂U ,Rn)

}
,

endowed with the natural norm.

Now if 1 < p < ∞, u ∈ Hk,p(U ,Rn) then the trace of u, u∂U belongs
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to Hk− 1
p ,p(∂U ,Rn). As a consequence of the trace theorem there exists

a constant C1 > 0 depending only on U such that

‖u∂U‖Hk− 1
p ,p ≤ C1‖u‖k,p,

and conversely if v ∈ Hk− 1
p ,p(∂U ,Rn), there exists u ∈ Hk,p(U ,Rn)

such that uU = v on U and

‖u‖k,p ≤ C2‖v‖Hk− 1
p ,p

for some C2 > 0 depending only on U (see [1]; paragraph 7.56). For

brevity in the sequel we will simply write u(σ) instead of u∂U(σ) for

a.e. σ ∈ ∂U if u ∈ Hk,p(U ,Rn).





Chapter 3

Free boundary Plateau problem for large H-surfaces

Let Ω be a bounded open set of R3 with smooth boundary ∂Ω. This

chapter is devoted to the proof of existence of H−surfaces supported by

∂Ω for very large H ∈ R. Here, by an H-surface parametrized by u and

supported by ∂Ω, we mean a map u ∈ C2(B; R3) ∩ C1(B̄; R3) of the unit

disc

B := {(x, y) ∈ R2 : x2 + y2 < 1}
into R3 satisfying the following conditions:{

∆u = 2Hux ∧ uy in B,

|ux|2 − |uy|2 = 0 = ux · uy in B,
(3.1)

{
u(∂B) ⊂ ∂Ω,

∂u
∂n(σ) ⊥ Tu(σ)∂Ω ∀σ ∈ ∂B.

(3.2)

The main result in this chapter is the following:

3.0.1. Theorem. Suppose Ω ⊂ R3, is a smooth domain. Suppose Q0 ∈ ∂Ω

is a local strict maximum or minimum, or a non-degenerate critical point

of the mean curvature of ∂Ω. Then there exists a family uε of 1
ε-surface

supported by ∂Ω such that uε is an embedding from B into Ω. Moreover
1
εu

ε, suitably translated, converges smoohtly to a hemisphere of radius 1.

Our next result concerns multiplicity of solutions depending on the topol-

ogy of ∂Ω, with no assumptions on the mean curvature of the boundary

of Ω. Given any smooth function F defined on ∂Ω, we denote by λ∂Ω(F )

the number of critical points of F . Recall that cat(∂Ω), the Lusternik-

Schnierelman category of ∂Ω, is defined to be the minimal value of λ∂Ω(F )

as F ∈ C∞(∂Ω) varies. We refer to [5].

3.0.2. Theorem. Under the assumption of Theorem 4.0.1, there exists at

least cat(∂Ω) geometrically distinct 1
ε-surfaces supported by ∂Ω.

3.0.3. Remark. 1. It is worth noticing that, comparing our result with

the one of M.Struwe [88], no assumptions on Ω are made. Further-

more our result is ”complementary” to Struwe’s one in the sense that
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his admissible mean curvatures are bounded while ours are arbitrarily

large.

2. We believe that it should be possible to extend the result to higher-

dimensional H − systems (in this direction see [28]).

Since we look for solutions with a given asymptotic profile, it is con-

venient to scale the problem by a factor 1
ε : letting Sε = 1

ε∂Ω = 1
εS, we

consider the equivalent problem

∆u = 2ux ∧ uy in B,

|ux|2 − |uy|2 = 0 = ux · uy in B,

u(∂B) ⊂ Sε,

∂u
∂n(σ) ⊥ Tu(σ)Sε ∀σ ∈ ∂B.

(3.3)

At first glance, as ε→ 0, in the limit we get a plane as a supporting surface,

so one is led to consider the limit problem

∆u = 2ux ∧ uy in B,

|ux|2 − |uy|2 = 0 = ux · uy in B,

u(∂B) ⊂ R2 × {0},

∂u
∂n(σ) ⊥ R2 × {0} ∀σ ∈ ∂B.

(3.4)

The latter problem admits a solution Θ, the inverse of the stereographic

projection (from the south pole) restricted on B (see (2.3)), and a family

of solutions of the form Θ ◦ g+ p, where p ∈ R2×{0} and g is any confor-

mal diffeomorphism of the unit disc. It turns out that this set of solutions

defines a manifold Z̃ of critical points of the Euler functional I0 associated

to (3.4). It is clear that Z̃ = G × R2, where G is the group of Möbius

transformations of dimension 3 (see (3.11)).

Thanks to some results already known in the literature (see [17], [63], [48]),

we are able to prove that Z̃ is a non-degenerate manifold; that is the tan-

gent space TzZ̃ of Z̃ at any z ∈ Z̃ coincides with the kernel of d2I0(z).

Hence by the Fredholm theorem we can solve (3.3) if we are suitably per-

pendicular to TΘZ̃ in a suitable sense, see Lemma 3.1.4. This is the key

step for a finite dimensional reduction of our problem (see [3], [[4] Section
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2.4], [15], [17], [33], [63], [48], [16], [93] for related methods).

As in [88], we take advantage of the variational structure of (3.3). While

in [88] it was necessary to impose a topological condition on Ω (in order to

define an extension operator on a subclass of Sobolev functions, see Section

3.2) we can localize the variational formulation using the smallness of ε,

see Lemma 3.2.2.

Because of the free boundary condition in (3.3), a natural set to study the

problem are maps of B into R3 of class H1,2 such that ∂B is sent into Sε

(which we call admissible functions). The subset of admissible functions

with H2,2 regularity is a Hilbert manifold, dense in the above set. Looking

for solutions close to Θ, reasoning as for the flat case, we impose suitable

constraints on the tangent plane of the Hilbert manifold, in order to guar-

antee a (partial) invertibility of the linearized equation as remarked before.

Once we have this, we fully solve the equation with a finite-dimensional

reduction.

To begin the procedure, we construct approximate solutions, which are

nothing but suitable perturbations of hemispheres which intersect ∂Ω al-

most orthogonally. The reduction is done transforming the problem into

finding critical points of a functional Fε defined on Sε, see Proposition

3.2.11. For ε small, Fε admits the asymptotic expansions in (3.62), where

we see the role played by the mean curvature of ∂Ω.

A similar technique was used by R.Ye [93] to find constant mean curva-

ture surfaces in manifolds, and the approximate solutions were perturba-

tions of geodesic spheres. These surfaces concentrate near non-degenerate

critical points of the scalar curvature, see the Remark 3.3.3 for related

comments.

One of the main features of performing the Lyapunov-Schmidt reduction

for our problem is the action of the Möbius group, which generates some

extra dimensions in the kernel of the linearized equation. To deal with this

problem, we use the invariance of the functional under this action, and

show that the gradient of the functional has basically no component in

the subspace TIdG of TΘZ̃. Another issue is the regularity of admissible

functions: while the variational approach settles naturally in H1,2 (where

we have coercivity, Fredholm properties, etc...), it is from other points of

view convenient to work in H2,2 since we have stronger embeddings and

the functionals involved are more regular. To handle this, we crucially use
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the smallness of ε, the smoothness of ∂Ω and elliptic regularity estimates,

see Lemma 3.2.9.

3.1 Preliminary results

Through this chapter we will identify R2 by R2× {0} as a subspace of R3.

As anticipted in the previous section, we shall consider the unperturbed

problem: 

∆u = 2ux ∧ uy in B,

|ux|2 − |uy|2 = 0 = ux · uy in B,

u(∂B) ⊂ R2,

∂u
∂n(σ) ⊥ R2 ∀σ ∈ ∂B.

(3.5)

We define the Hilbert subspace H of H1,2(B; R3) as

H = {u ∈ H1,2(B; R3) : u(σ) ∈ R2 for a.e. σ ∈ ∂B} = H1,2(B,R2)×H1,2
0 (B,R).

For every u ∈ H ∩H2,2(B,R3), we define the functional:

I0(u) =
1

2

∫
B

|∇u|2 + 2V (u), (3.6)

where the volume term V is defined for every u ∈ H2,2(B,R3) by

V (u) =
1

3

∫
B

u·(ux ∧ uy). (3.7)

It turns out that (3.5) is the Euler-Lagrange equation of the functional I0,

namely

3.1.1. Lemma.

u ∈ H ∩H2,2(B,R3) solves problem (3.5) iff 〈dI0(u), v〉 = 0 ∀v ∈ H.

Proof. We have, integrating by parts

〈dV (u), v〉 =

∫
B

(ux∧uy)·v+
1

3

∫
∂B

(
∂u

∂t
∧u)·v, ∀u ∈ H2,2(B; R3), ∀v ∈ H1,2(B; R3),

(3.8)
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where t(x, y) = (−y, x) is the tangent vector at (x, y) ∈ ∂B to ∂B and ∂u
∂t

is the tangential derivative of u. When u ∈ H ∩ H2,2(B,R3) and v ∈ H,

one has (∂u
∂t ∧ u)·v = 0 a.e. on ∂B since ∂u

∂t (σ), u(σ), v(σ) ∈ R2, for a.e.

σ ∈ ∂B, so it turns out that for every u ∈ H ∩H2,2(B,R3)

〈dI0(u), v〉 =

∫
B

∇u·∇v + 2

∫
B

(ux ∧ uy)·v ∀v ∈ H

=

∫
B

[−∆u+ 2ux ∧ uy]·v +

∫
∂B

∂u

∂n
· v.

Since H1
0(B,R3) ⊂ H, it follows that a critical point u ∈ H∩H2,2(B,R3) of

I0 satisfies the first equation of (3.5) and then ∂u
∂n(σ) ⊥ R2 for a.e. σ ∈ ∂B

so that
∂u

∂n
(σ) ⊥ ∂u

∂t
(σ) for a.e. σ ∈ ∂B. (3.9)

Now, setting

Φ(x, y) =

(∣∣∣∣∂u∂n
∣∣∣∣2 − ∣∣∣∣∂u∂t

∣∣∣∣2
)
−2i

∂u

∂n
·∂u
∂t

for every n = (x, y), t = (−y, x) ∈ B

we see that Φ is holomorphic and by (3.9) is real on ∂B. Therefore by

the Cauchy-Riemann equations Φ is constant in B̄ but since Φ(0, 0) = 0,

u is conformal. Boundary regularity and strong orthogonality follow from

standard elliptic theory, we refer to [35].

Now for every u,w ∈ H ∩H2,2(B,R3) and v ∈ H by similar argument, we

have

3〈d2V (u)w, v〉 =

∫
B

w·(vx ∧ uy + ux ∧ vy) +

∫
B

v·(wx ∧ uy + ux ∧ wy) +

∫
B

u·(vx ∧ wy + wx ∧ vy)

= 3

∫
B

(ux ∧ wy + wx ∧ uy)·v +

∫
∂B

(
∂u

∂t
∧ w +

∂w

∂t
∧ u)·v

= 3

∫
B

(ux ∧ wy + wx ∧ uy)·v

and thus by density for every u ∈ H ∩H2,2(B,R3) there hold

〈d2I0(u)w, v〉 =

∫
B

∇w·∇v + 2

∫
B

v·(wx ∧ uy + ux ∧ wy) ∀w, v ∈ H;

(3.10)

〈d2I0(u)v, v〉 =

∫
B

|∇v|2 + 4

∫
B

u·(vx ∧ vy) ∀v ∈ H.

Note that equation (3.5) is invariant under the action of the group of

Möbius transformation of the unit disc and by translation in the direction
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of vectors in the plane. Following [12], up to a reflection with respect to the

plane, I0 has a manifold of critical points generated by the inverse of the

stereographic projection Θ from the south pole restricted on B. Namely if

we set

G =

{
gθ,a(X) = eiθ X − a

1− āX
, θ ∈ [−π, π), a = (a1, a2) ∈ B

}
, (3.11)

where in complex notations, X = (x, y) = x + iy, then the manifold of

critical points is

Z̃ =
{
Θ ◦ g + p̃, g ∈ G, p̃ ∈ R2} .

We prove that the manifold Z̃ is non-degenerate, namely that TzZ̃ =

Ker d2I0(z) for all z ∈ Z̃ where TzZ̃ denotes the tangent space of Z̃

at z. We first characterize explicitly TΘZ̃.

3.1.2. Lemma. In the above notations we have

TΘZ̃ = span
{

Θ ∧ e3; (e1 ·Θ)Θ; (e2 ·Θ)Θ; e1; e2

}
.

Proof. By easy computations one finds

∂Θ ◦ gθ,(0,0)

∂θ |θ=0
= e3 ∧Θ,

1

2

∂Θ ◦ g0,(a1,0)

∂a1 |a1=0
= (e1 ·Θ)Θ− e1,

1

2

∂Θ ◦ g0,(0,a2)

∂a2 |a2=0
= (e2 ·Θ)Θ− e2,

∂(Θ + p̃)

∂p̃i |pi=0
= ei, i = 1, 2.

The lemma then follows immediately.

We fix the following notations

E1 = e3 ∧Θ, E2 = (e1 ·Θ)Θ, E3 = (e2 ·Θ)Θ

GΘ = span {E1; E2; E3} .
(3.12)

The above result can be restated in the following way

TΘZ̃ =


 c1
c2
0

+

 0

0

b3

 ∧Θ +


 a1

a2

0

 ·Θ

Θ, ci, ai, b3 ∈ R, i = 1, 2

 .

(3.13)

We are now ready to prove the non-degeneracy condition which plays here

a key role, we shall state the following
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3.1.3. Lemma. The following equality holds

TΘZ̃ = Ker d2I0(Θ).

Proof. It is enough to show that TΘZ̃ ⊇ Ker d2I0(Θ) since the reverse

inclusion always holds true. Let us first emphasize that, in view of (3.10),

by partial integration w ∈ kerd2I0(Θ) if and only if it satisfies the following

equation 
∆w = 2(wx ∧Θy + Θx ∧ wy) in B,

w(∂B) ⊂ R2,

∂w
∂n (σ) ⊥ R2 ∀σ ∈ ∂B.

(3.14)

Equivalently after inverse of the stereographic projection on the sphere S2
+,

the first equation in (3.14) becomes

∆g0
w =

2

sinφ
(wφ ∧Θθ + Θφ ∧ wθ) in S2

+, (3.15)

where 0 ≤ θ ≤ 2π, 0 ≤ φ ≤ π
2 are the spherical coordinates on the half

sphere S2
+ and ∆g0

is the Laplacian with respect to the standard metric on

S2
+.

We shall extend Θ and w to the whole sphere S2. We may write Θ(φ, θ) =

(sinφ cos θ, sinφ sin θ, cosφ) = (x1, x2, x3), φ ∈ [0, π
2 ) and define:

Θ̃(x1, x2, x3) = (x1, x2, x3) if 0 ≤ φ ≤ π

2
,

Θ̃(x1, x2, x3) = (x1, x2,−x3((π − φ), θ)) if
π

2
≤ φ ≤ π.

Θ̃ is nothing but the inverse of the stereographic projection. Similarly we

also extend w(x1, x2, x3) = (w1(x1, x2, x3), w
2(x1, x2, x3), w

3(x1, x2, x3)) on

S2 by

w̃ = (w1(x1, x2, x3), w
2(x1, x2, x3), w

3(x1, x2, x3)) if 0 ≤ φ ≤ π

2
,

w̃ = (w1(x1, x2,−x3), w
2(x1, x2,−x3),−w3(x1, x2,−x3)) if

π

2
≤ φ ≤ π.

Clearly w̃ ∈ H1,2(S2) and satisfies

∆g0
w̃ =

2

sinφ
(Θ̃φ ∧ w̃θ + w̃φ ∧ Θ̃θ) on S2. (3.16)

Now by a result in [17] Lemma 9.2 or [63] Proposition 3.1

w̃ = c+ b ∧ Θ̃ + (a · Θ̃)Θ̃, for some a, b, c ∈ R3.
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Now since w̃ = w on S2
+, returning on the plane, we infer that

w =

 c1
c2
c3

+

 b1
b2
b3

 ∧Θ +


 a1

a2

a3

 ·Θ

Θ, on B.

The fact that w ∈ H, implies that c3 = b1 = b2 = 0, as well as the orthog-

onality condition in (3.14) implies that a3 = 0. From this we see that w is

of the form as in (3.13).

As mentioned before, equation (3.1)-(3.2) is invariant under the non-compact

group of conformal transformations of the unit disc and therefore it is im-

possible for the Palais-Smale condition to be satisfied. A convenient way to

factor out the symmetry group could be to impose a three-point-condition

on admissible functions, for instance see [89]. In our case the boundary

data are allowed to vary freely on ∂Ω, so we shall normalize the admissi-

ble functions by imposing integral constraints, restricting ourselves to the

following Hilbert space

Hn =

{
u ∈ H1,2(B; R3) :

∫
B

∇u·∇Ei = 0, i = 1, 2, 3

}
.

Now let Z = Z̃ ∩Hn =
{
Θ + p̃, p̃ ∈ R2

}
and also letting

(TΘZ)⊥ =

{
v ∈ H : 〈v, ei〉1,2 =

∫
B

vi = 0, i = 1, 2

}
; WΘ = (TΘZ)⊥∩Hn,

(3.17)

we see that H is decomposed as

H = TΘZ ⊕ (TΘZ)⊥ = TΘZ ⊕WΘ ⊕GΘ. (3.18)

Since every v ∈ (TΘZ)⊥ ⊂ H satisfies v3 ∈ H1,2
0 (B,R) by Poincaré inequal-

ity, the space WΘ endowed with the norm ‖∇v‖ is Hilbert and moreover

if we impose orthogonality to Θ, d2I0(Θ) becomes coercive on WΘ, namely

the following result holds true (the proof is similar to the one in [48],

Lemma 5.5).

3.1.4. Lemma. There exists a constant C > 0 such that

〈d2I0(Θ)v, v〉 ≥ C‖∇v‖2 ∀v ∈ WΘ with

∫
B

∇v·∇Θ = 0,

〈d2I0(Θ)Θ,Θ〉 = −4π.
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3.2 The abstract method

We start with some preliminaries. Let us consider the (signed) distance

function defined by

d(X̃) :=

{
dist(X̃, S) if X̃ ∈ Ω,

−dist(X̃, S) if X̃ ∈ R3 \ Ω.

For some small r0 > 0 depending on S = ∂Ω, it is well known (for instance

see [35] 14.6 Appendix) that d is as smooth as S where

Σr0
:=
{
X̃ ∈ R3 : |d(X̃)| < 2r0

}
.

If q ∈ S, then up to a rotation (depending on q), we may assume that TqS

coincides with R2 and e3 with the inner unit normal at q. Moreover letting

Br0
(q) = r0B + q, we can assume that S ∩Br0

(q)− q is the graph of some

smooth function ϕq satisfying ϕq(0, 0) = 0 and dϕq(0, 0) = 0, with Taylor

expansion

ϕq(X) =
1

2
〈hqX,X〉+O(|X|3) ∀X = (x, y) with |X| < r0.

Here hq (the second fundamental form of S at q) is the Hessian matrix of

ϕq at (0, 0). Similarly, one also has (see [35] 14.6 in the Appendix)

d(X̃) = e3·X̃ +
1

2
〈h̃qX̃, X̃〉+O(|X̃|3) ∀X̃ ∈ Br0

,

where

h̃q =

(
−hq 0

0 0

)
. (3.19)

The mean curvature of ∂Ω at q is given by H∂Ω(q) = 1
2trhq.

Let ϕε,q(X) = 1
εϕ

q(εX), so Sε ∩ B r0
ε
(p) − p is the graph of ϕε,q, with

p = 1
εq and dε(X̃) = 1

εd(εX̃). Then we have

ϕε,q(X) =
ε

2
〈hqX,X〉+ ε2O(|X|3) ∀X = (x, y) with |X| < r0

ε
, (3.20)

and moreover

dε(X̃) = e3·X̃ +
ε

2
〈h̃qX̃, X̃〉+ ε2O(|X̃|3) ∀X̃ ∈ B r0

ε
. (3.21)

The inner normal of Sε = 1
εS at the point p+(X,ϕε,q(X)) has the following

expansions:

Nε(X) = (−∇ϕε,q(X), 1) = (−εhqX, 1) + ε2O(|X|2). (3.22)
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3.2.1 Functional setting

Admissible functions. The class on which we will study problem (3.3) is

M(Sε) =
{
u ∈ H1,2(B,R3) : u(∂B) ⊂ Sε a.e.

}
.

For u ∈M(Sε), we will also define the Hilbert subspace of H1,2(B,R3),

Mu(Sε) =
{
v ∈ H1,2(B,R3) : v(σ) ∈ Tu(σ)Sε a.e. σ ∈ ∂B

}
.

Note that the subclass of M(Sε) defined by

M2(Sε) = M(Sε) ∩H2,2(B,R3)

is dense in M(Sε) and it is a Hilbert manifold (while M(Sε) is not) with

tangent space at u ∈M2(Sε) given by

TuM2(Sε) =
{
v ∈ H2,2(B,R3) : v(σ) ∈ Tu(σ)Sε ∀σ ∈ ∂B

}
= Mu(Sε)∩H2,2(B,R3),

which is also dense in Mu by [80].

Since we are dealing with free boundary surfaces, in order to have a func-

tional whose Euler-Lagrange equations are (3.3), following [88] one can

correct the term V (u) by subtracting the volume of some surface ũ con-

tained in Sε and depending on u. First of all we define

M̃(Sε) = {ũ ∈M(Sε) : ũ(B) ⊂ Sε a.e. } and M̃2(Sε) = M̃(Sε)∩H2,2(B,R3)

with

TũM̃2(Sε) =
{
ṽ ∈ H2,2(B,R3) : ṽ(X) ∈ Tũ(X)M̃2(Sε) ∀X ∈ B̄

}
.

Recall that an extension of u ∈ M(Sε) is a map ũ ∈ M̃(Sε) such that

u = ũ on ∂B and an extension operator is a map ηε : D(ηε) ⊂ M(Sε) →
M̃(Sε) with open domain D(ηε) such that ηε(u) is an extension of u for all

u ∈ D(ηε) and smooth restriction ηε : D(ηε) ∩M2(Sε) → M̃2(Sε).

3.2.1. Lemma. Let ū ∈ H1,2(B,R3) be an harmonic map. There holds

sup
X∈B

dist (ū(X), ū(∂B)) ≤ 1√
π
‖∇ū‖.

Proof. It will be enough to prove

ess inf
σ∈∂B

|ū(0)− ū(σ)| ≤ 1√
π
‖∇ū‖ (3.23)



3.2. The abstract method 29

because for every X ∈ B, there exists a conformal diffeomorphism (in G,

see (3.11)) g : B → B such that g(X) = 0 and g(∂B) = ∂B, therefore

we may replace ū with ū ◦ g−1 thanks to the conformal invariance of the

Laplace equation.

By the mean value property of harmonic functions we have

ū(0) =
1

2π

∫
∂B

ū(σ)dσ,

by Hölder inequality and again by the mean value property

ess inf
σ′∈∂B

|ū(0)− ū(σ′)| ≤ 1

2π

∫
∂B

|ū(0)− ū(σ′)|dσ′

≤ 1

(2π)2

∫
∂B

∫
∂B

|ū(σ)− ū(σ′)|dσdσ′

≤ 1

(2π)2

(∫
∂B

∫
∂B

|σ − σ′|2dσdσ′
) 1

2
(∫

∂B

∫
∂B

|ū(σ)− ū(σ′)|2

|σ − σ′|2
dσdσ′

) 1
2

.

Since∫
∂B

∫
∂B

|σ − σ′|2dσdσ′ = 8π2 and

∫
∂B

∫
∂B

|ū(σ)− ū(σ′)|2

|σ − σ′|2
dσdσ′ ≤ 2π

∫
B

|∇ū|2,

we get the result.

We define

M̄(Sε) =
{
u ∈M(Sε) : ‖∇u‖ < r0

ε

√
π
}
,

and also

M̄2(Sε) = M̄(Sε) ∩H2,2(B, Sε).

We now state the following result which is in some sense a localized version

of Lemma 2.1 in [88].

3.2.2. Lemma. For every ε > 0, there exists an extension operator ηε with

domain D(ηε) = M̄(Sε).

Proof. Let u ∈ M̄(Sε) and ū denote its harmonic extension of u,{
∆ū = 0 in B,

ū = u on ∂B.
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By standard elliptic regularity, ū is as smooth as u and depends smoothly

on u in the H1,2-topology (in fact it is linear in u). Let X ∈ B then

dist(ū(X), Sε) ≤ |ū(X)− ū(σ′)|+ dist(ū(σ′), Sε) for a.e. σ′ ∈ ∂B.

The second term of the right hand side is zero since ū(∂B) ⊂ Sε, hence

from the above lemma and the fact that ‖∇ū‖ ≤ ‖∇u‖ we get

dist(ū(X), Sε) ≤ ess inf
σ∈∂B

|ū(X)− ū(σ)| ≤ 1√
π
‖∇u‖ ≤ r0

ε
.

Consequently, by the regularity of Sε, we can project (pointwise) ū on Sε

to obtain a unique extension ũ defined by the following implicit equation:

for every X ∈ B,

ũ(X) = ū(X)− νε(ũ(X))dε(ū(X)), (3.24)

where νε(p) is the inner unit normal of Sε at a point p ∈ Sε. Moreover

the mapping u → ū → ũ defines an extension operator ηε with domain

D(ηε) = M̄(Sε).

We notice that, in fact, ηε is defined on M̄(Sε) +H1,2
0 (B,R3) and

ηε(u+ ϕ) = ηε(u) ∀ϕ ∈ H1,2
0 (B,R3).

Since ηε(u(σ)) = u(σ) for all σ ∈ ∂B, one has that

〈dηε(u(σ)), ṽ(σ)〉 = ṽ(σ) ∀σ ∈ ∂B, ∀ṽ ∈ TũM̃2(Sε).

Moreover since u = ηε(u) = ũ on ∂B, ∂u
∂t = ∂ũ

∂t a.e. on ∂B and so by

integration by parts, for every u ∈ M̄2(Sε) we have

〈dV ◦ηε(u), v〉 =
1

3

∫
∂B

(
∂u

∂t
∧u)·vds, ∀v ∈ TuM̄2(Sε) = H1,2

0 (B,R3)∩H2,2(B,R3)+TũM̃2(Sε).

(3.25)

Now we define for every u ∈ M̄2(Sε),

Iε(u) =
1

2

∫
B

|∇u|2 + 2[V (u)− V ◦ ηε(u)]. (3.26)

3.2.3. Remark. For u smooth, it is clear that the term [V (u)−V ◦ ηε(u)]

represents the volume of the set bounded by the image u and ∂Sε. As

already explained in the introduction, M.Struwe in [88] needed to impose

some conditions on Ω to define the extension η. In our case instead, since

we look for solutions with bounded energy as ε→ 0, no restriction on Ω is

needed.
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Note that by (3.25) and (3.8), the differential of Iε at a point u ∈ M̄2(Sε)

is independent of ηε, namely we have by density

〈dIε(u), v〉 =

∫
B

∇u·∇v + 2

∫
B

(ux ∧ uy)·v ∀v ∈Mu(Sε)

and

〈d2Iε(u)w, v〉 =

∫
B

∇w·∇v+2

∫
B

(wx∧uy +ux∧wy)·v ∀v, w ∈Mu(Sε).

Hence Iε is smoothly defined on M̄2(Sε) moreover (see [88] Lemma 2.2) it

easily follows the

3.2.4. Lemma. Let u ∈ M̄2(Sε), then

〈dIε(u), v〉 = 0, ∀v ∈ TuM̄2(Sε) iff u solves problem (3.3).

3.2.2 Construction of approximate solutions

We start by proving the following technical lemma.

3.2.5. Lemma. Let T = (Tij) be a 2 × 2 symmetric matrix, and consider

the following problem
Lω = −L(1

2〈TX,X〉e3), in B,

ω(∂B) ⊂ R2,

∂ω
∂n(X) = (TX, 0) X ∈ ∂B,

(3.27)

where L is the operator

Lu = −∆u+ 2[ux ∧Θy + Θx ∧ uy].

Then (3.27) admits a solution ωT ∈ H ∩ C∞(B̄,R3) which satisfies

‖ωT‖2,2 ≤ C|T |∞, (3.28)

where C is a fixed positive constant.

Proof. Problem (3.27) can be reformulated as

d2I0(Θ)[ω] = gT , (3.29)

where gT ∈ H is defined by duality as

〈gT , v〉 =

∫
B

(tr Te3−2[(T1X)e3∧Θy+(T2X)Θx∧e3])·v−
∫

∂B

(TX, 0)·v ∀v ∈ H,
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where Ti, i = 1, 2, denote the rows of the matrix T . Observing that the

operator d2I0(Θ) is of the form ”Identity+compact”. Thanks to Fredholm

theorem and Lemma 3.1.3 problem (3.29) is solvable if and only if gT is

orthogonal to the vectors ei, and Ej for i = 1, 2, j = 1, 2, 3. We have, by

symmetry of T ,

−2[(T1X)e3 ∧Θy + (T2X)Θx ∧ e3] = µ2 (x(1 + x2 − y2)T11 + y(1 + 3x2 − y2)T12 + 2xy2T22
)
e1

+ µ2 (y(1 + y2 − x2)T22 + x(1 + 3y2 − x2)T12 + 2yx2T11
)
e2.

Since E1 = xµΘ and E2 = yµΘ, by oddness, we have that 〈hT , ei〉 =

〈hT , Ej〉 = 0 for i, j = 1, 2. Now writing E1 = µ(y,−x, 0), and since

〈E1, e3〉 = 0, by oddness and symmetry of T , we get

〈hT , E1〉 = T12

∫
B

µ2 (x2 − y2 + y4 − x4)− T12

∫
∂B

µ(x2 − y2).

hence by antisymmetry of the integrands, we infer that 〈gT , E1〉 = 0. Now

the estimate (3.28) follows by standard elliptic regularity.

We will denote by ωq = (ω1
q , ω

2
q , ω

3
q) the solution ωAq of (3.27) for every

q ∈ ∂Ω and ω′q = (ω1
q , ω

2
q), where hq, defined in Section 3.2, is the second

fundamental form of S = ∂Ω at q. As we will see later in Lemma 3.2.7

below, the role of ωq is to make the approximate solutions more accurate.

From now on it will be understood that Oq(X) (resp. Oq(σ)) denotes a

smooth function depending on X ∈ B (resp. σ ∈ ∂B) and maybe on ε,

uniformly bounded together with its derivatives in q as ε → 0 for every

X ∈ B (resp. σ ∈ ∂B) and q ∈ S.

We define our approximate solutions to be

zε,p(X) = Θ(X) + p+ εωq(X) + ϕε,q(X + εω′q(X))e3 for every X ∈ B

with q = εp, and let

Ψε,q(X) = εωq(X) + ϕε,q(X + εω′q(X))e3

= εωq(X) + ε
2〈hqX,X〉e3 + ε2Oq(X),

(3.30)

so that zε,p = Θ + Ψε,q. Then if ε is small, by construction of ωq, z
ε,p has

the following properties

zε,p ∈ M̄2(Sε),
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∂zε,p

∂n
(σ) = (εhqσ,−1) + εOq(σ)e3

= −Nε(σ + εω′q(σ)) + εOq(σ)e3 + ε2Oq(σ) on ∂B,
(3.31)

where Nε(σ + εω′q(σ)) is the normal of Sε at the point zε,p(σ) = p + (σ +

εω′q(σ), ϕε,q(σ + εω′q(σ))) having the expansion given by (3.22). Moreover

since

zε,p = Θ + p+ εOq(X), (3.32)

by (3.30), we have that

∂zε,p

∂pi
= ei + ε2Oq(X) i = 1, 2, (3.33)

where ∂zε,p

∂pi
, i = 1, 2 are derivatives in the directions (1, 0, ϕε,q

x ) = ∂x(X,ϕ
ε,q(X))

and (0, 1, ϕε,q
y ) = ∂y(X,ϕ

ε,q(X)) respectively.

Recalling the expressions of Ei, see (3.12) and of Möbius group G, we

set

Eε,q
1 =

∂zε,p◦gθ,(0,0)

∂θ |θ=0 = E1 +
∂Ψε,q◦gθ,(0,0)

∂θ |θ=0,

Eε,q
2 =

∂zε,p◦g0,(a1,0)

∂a1 |a1=0
+ 2e1 = 2E2 +

∂Ψε,q◦g0,(a1,0)

∂a1 |a1=0
,

Eε,q
3 =

∂zε,p◦g0,(0,a2)

∂a2 |a2=0
+ 2e2 = 2E3 +

∂Ψε,q◦g0,(0,a2)

∂a2 |a2=0

(3.34)

and we define

Gzε,p = span {Eε,q
1 ; Eε,q

2 ; Eε,q
3 } .

Now having the approximate solutions zε,p, we define the sub-manifold of

M̄2(Sε) by

Zε = {zε,p : p ∈ Sε} (3.35)

with tangent space at zε,p

Tzε,pZε = span

{
∂zε,p

∂pi
, i = 1, 2

}
.

We let

(Tzε,pZε)
⊥ =

{
v ∈Mzε,p(Sε) : 〈v, ∂z

ε,p

∂pi
〉1,2 = 0 i = 1, 2

}
so that Mzε,p(Sε) = Tzε,pZε⊕ (Tzε,pZε)

⊥, where 〈·, ·〉1,2 is the scalar product

in H1,2(B,R3).



34 3. Free boundary Plateau problem for large H-surfaces

3.2.6. Remark. Let v ∈ Mzε,p(Sε). Since for every σ ∈ ∂B, Tzε,p(σ)Sε is

spanned by the vectors (1, 0, ϕε,q
x (σ + εω′q(σ))) and (0, 1, ϕε,q

y (σ + εω′q(σ)))

so for a.e. σ ∈ ∂B we have

v3(σ) = v1(σ)ϕε,q
x (σ + εω′q(σ)) + v2(σ)ϕε,q

y (σ + εω′q(σ))

and hence by the trace theorem

‖v3‖
H

1
2 ,2(∂B)

≤ Cε(‖v1‖1,2 + ‖v2‖1,2) ≤ Cε‖v‖1,2. (3.36)

Secondly we observe that there exists C > 0 depending only on Ω such that

for every ε� 1 ∫
B

|v|2 ≤ C

∫
B

|∇v|2, ∀v ∈ (Tzε,pZε)
⊥. (3.37)

In fact on the one hand letting v ∈ (Tzε,pZε)
⊥ we have by (3.33),

∣∣∫
B v

i
∣∣ ≤

ε‖v‖1,2 and by Poincaré inequality we have

‖vi‖ ≤ C

(
‖∇vi‖+

∣∣∣∣∫
B

vi

∣∣∣∣) i = 1, 2.

On the other hand by (3.36)

‖v3‖L2(∂B) ≤ ε‖v‖1,2,

so using the following inequality (see [85], Theorem A.9),

‖v3‖ ≤ C
(
‖∇v3‖+ ‖v3‖L2(∂B)

)
,

we obtain

‖v‖ ≤ C‖∇v‖+ ε‖v‖1,2.

3.2.3 The finite-dimensional reduction

We define

Wzε,p =

{
v ∈ (Tzε,pZε)

⊥ :

∫
B

∇v·∇Eε,q
i = 0 i = 1, 2, 3

}
, (3.38)

so that by (3.37) we may assume that the following decompositions hold

Mzε,p(Sε) = Tzε,pZε ⊕ (Tzε,pZε)
⊥ = Tzε,pZε ⊕Wzε,p ⊕Gzε,p. (3.39)
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On the other hand by the regularity of the approximate solutions, we have

Tzε,pZε and Gzε,p are subspaces of Tzε,pM̄2(Sε), so we may also assume the

following splitting:

Tzε,pM̄2(Sε) = Tzε,pZε ⊕Wzε,p ∩ Tzε,pM̄2(Sε)⊕Gzε,p. (3.40)

As explained in the first section, we want to reduce the problem of finding

critical points of Iε on M̄2(Sε) to a finite dimensional one. A sub-manifold

Z̃ε of M̄2(Sε) is said to be a natural constraint for Iε if

〈dIε|Z̃ε
(u), φ〉 = 0 ∀φ ∈ TuZ̃ε =⇒ 〈dIε(u), φ〉 = 0 ∀φ ∈ TuM̄2(Sε).

Our aim is to perturb the sub-manifold of approximate solutions Zε to

a natural constraint. This will be done by finding solutions of the form

u = expz(w) with z ∈ Zε and w ∈ Wz ∩ TzM̄2(Sε) such that ΞzdIε(u) ∈
TzZε⊕Gz. Here (z, w) 7→ expz(w) denote the exponential map of M̄2(Sε),

Ξz : H2,2(B,R3) → TzM̄2(Sε) is the orthogonal projection onto TzM̄2(Sε)

and u 7→ dIε(u) ∈ TuM̄2(Sε) is the gradient vector-field of Iε. If we denote

by Pz : TzM̄2(Sε) → Wz ∩ TzM̄2(Sε) the restriction of the orthogonal

projection Mz →Wz, our problem becomes equivalent to the system{
PzΞzdIε(expz(w)) = 0,

Pzw = w.

By a Taylor expansion this is equivalent to solve the following fixed point

problem

w = −Lz
−1{PzdIε(z) + PzΞzNz(w)},

where Lz = Pzd
2Iε(z) and Nz is quadratic in w. We will solve it in a small

ball of Wz ∩ TzM̄2(Sε) to get w(ε, z). To verify that Z̃ε = {expz(w(ε, z)) :

z ∈ Zε} is a natural constraint for Iε, we will use the argument of [[4]

section 8.4] and [16].

The remaining of this section is devoted to carry out this program. We

need first to show that ‖dIε(zε,p)‖ is small, and that d2Iε(z
ε,p) is uniformly

invertible on Wzε,p ∩Tzε,pM̄2(Sε). From now on, we will assume that p = 0

corresponds to the origin by replacing Sε with Sε − p.

3.2.7. Lemma. There exists constant C1 > 0 such that for every ε > 0,

|〈dIε(zε,p), v〉| ≤ C1ε
2‖v‖1,2 ∀v ∈Mzε,p(Sε).
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Proof. First of all, thanks to (3.31) and (3.36), for every v ∈ Mzε,p(Sε)

one has∫
∂B

∂zε,p

∂n
·vds =

∫
∂B

Nε(σ + εω′q(σ)) · v(σ)ds+ ‖v‖1,2O(ε2).

Moreover since Nε(σ + εω′q(σ)) is normal to Tzε,p(σ)Sε, it follows that∣∣∣∣∫
∂B

∂zε,p

∂n
·vds

∣∣∣∣ ≤ Cε2‖v‖1,2. (3.41)

By Lemma 3.2.5, one has that L(ωq+ 1
2〈hqX,X〉) = 0 and then by (3.30)

|〈LΨε,q, v〉| ≤ Cε2‖v‖1,2. (3.42)

If v ∈Mzε,p(Sε) then by integration by parts,

〈dIε(zε,p), v〉 =

∫
B

∇zε,p·∇v + 2

∫
B

(zε,p
x ∧ zε,p

y )·v

= −
∫

B

(∆Θ− 2Θx ∧Θy) ·v −
∫

B

(
∆Ψε,q − 2Ψε,q

x ∧Ψε,q
y

)
·v

+

∫
∂B

∂zε,p

∂n
·vds+ 2

∫
B

(Ψε,q
x ∧Ψε,q

y )·v.

Now we use 1. in Lemma 2.3.1 and the Hölder inequality to have

|〈dIε(zε,p), v〉| ≤ |〈LΨε,q, v〉|+
∣∣∣∣∫

∂B

∂zε,p

∂n
·vds

∣∣∣∣+ 2‖∇Ψε,q‖2‖v‖,

hence from (3.41) and (3.42) the lemma follows.

3.2.8. Proposition. There exists a constant C2 > 0 such that for all

ε > 0 small,

〈d2Iε(z
ε,p)v, v〉 ≥ C2‖∇v‖2 ∀v ∈ Wzε,p with

∫
B

∇v·∇zε,p = 0,

〈d2Iε(z
ε,p)zε,p, zε,p〉 = −4π +O(ε).

Proof. Since d2Iε(z
ε,p) ' d2I0(Θ), we may rely on Lemma 3.1.4.

By (3.32) and (3.33) and recalling that WΘ = (TΘZ)⊥ ∩Hn (see (3.17)), it

is enough to consider those v ∈Mzε,p(Sε) ∩Hn satisfying∫
B

vi = 0, i = 1, 2 with

∫
B

∇v·∇Θ = 0.

For such v, we define {
∆v̄3 = 0 in B,

v̄3 = v3 on ∂B.
(3.43)
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By (3.36),

‖v̄3‖1,2 = O(ε)‖∇v‖. (3.44)

Let v̌3 = v3− v̄3 ∈ H1
0(B; R). We then have v = v̌+ v̄ where v̌ = (v1, v2, v̌3)

and v̄ = (0, 0, v̄3); ‖∇v‖2 = ‖∇v̌‖2 + ‖∇v̄‖2 and v̌ ∈ WΘ. Clearly

〈d2I0(Θ)v, v〉 = 〈d2I0(Θ)v̌, v̌〉+ 2〈d2I0(Θ)v̌, v̄〉+ 〈d2I0(Θ)v̄, v̄〉.

Since

〈d2I0(Θ)v̌, v̄〉 =

∫
B

∇v̌·∇v̄+1

3

∫
B

v̌·(v̄x∧Θy+Θx∧v̄y)+
1

3

∫
B

v̄·(v̌x∧Θy+Θx∧v̌y)+
1

3

∫
B

Θ·(v̌x∧v̄y+v̄x∧v̌y),

by (3.44) we have

〈d2I0(Θ)v̌, v̄〉 = O(ε)‖∇v‖2.

It is easy to verify that

〈d2I0(Θ)v̄, v̄〉 = ‖∇v̄‖2,

so we get

〈d2I0(Θ)v, v〉 = 〈d2I0(Θ)v̌, v̌〉+O(ε)‖v‖2
1,2 + ‖∇v̄‖2. (3.45)

Let us estimate 〈d2I0(Θ)v̌, v̌〉. We define v = v̌ + φ, where

φ =

(
0, 0,

∫
B ∇v̄

3 · ∇Θ3

‖∇Θ3‖2 Θ3
)
.

Clearly φ ∈ H1
0(B,R3) and φ = O(ε)‖∇v‖e3, moreover v ∈ WΘ and satis-

fies
∫

B ∇v · ∇Θ = 0. Furthermore ‖∇v‖2 = ‖∇v̌‖2 + ‖∇φ‖2 + O(ε)‖∇v‖2

hence by Lemma 3.1.4

〈d2I0(Θ)v, v〉 ≥ C‖∇v‖2 = C‖∇v̌‖2 +O(ε)‖∇v‖2.

Now we have

〈d2I0(Θ)v̌, v̌〉 = 〈d2I0(Θ)v, v〉 − 2〈d2I0(Θ)v, φ〉+ 〈d2I0(Θ)φ, φ〉

and by Hölder inequality

〈d2I0(Θ)v, φ〉 = O(ε)‖∇v‖‖∇v‖, 〈d2I0(Θ)φ, φ〉 = ‖∇φ‖2 = O(ε)‖∇v‖2,

thus

〈d2I0(Θ)v̌, v̌〉 ≥ C‖∇v̌‖2 +O(ε)‖∇v‖2. (3.46)

Therefore by (3.45) and (3.46), we conclude that

〈d2I0(Θ)v, v〉 ≥ C̄2‖∇v‖2 +O(ε)‖∇v‖2 ∀v ∈ Wzε,p,

∫
B

∇v·∇zε,p = 0.

This ends the proof.

We will also need the following result.
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3.2.9. Lemma. Let f ∈ L2(B,R3), and u = (u1, u2, u3) ∈Mzε,p(Sε) satisfy∫
B

∇u·∇v =

∫
B

f ·v ∀v ∈Mzε,p(Sε). (3.47)

Then u ∈ H2,2(B,R3) and there exists a constant C > 0 such that for every

ε� 1,

‖u‖2,2 ≤ C‖f‖.

Proof. Without loss of generality, we may assume that zε,p(x, y) =

(x, y, ϕε,q(x, y)) for every (x, y) ∈ ∂B. Notice that H1,2
0 (B,R3) ⊂Mzε,p(Sε)

so u satisfies ∆u = f a.e. in B and thus u ∈ H2,2
loc (B,R3).

Let ψ ∈ H1,2(B,R), then considering the test function v = (1, 0, ϕε,q
x )ψ ∈

Mzε,p(Sε) and using the fact that

∇u · ∇v = ∇u1 · ∇ψ + ϕε,q
x (∇u3 · ∇ψ) + (∇u3 · ∇ϕε,q

x )ψ

= ∇u1 · ∇ψ +∇(ϕε,q
x u3) · ∇ψ − u3∇ϕε,q

x · ∇ψ + (∇u3 · ∇ϕε,q
x )ψ

we have ∫
B

∇(u1 + ϕε,q
x u3)·∇ψ −

∫
B

u3∇ϕε,q
x · ∇ψ =

∫
B

f̃ψ,

where f̃ = f 1 + f 3ϕε,q
x −∇u3 · ∇ϕε,q

x . By the Gauss-Green formula∫
B

u3∇ϕε,q
x · ∇ψ =

∫
B

div(u3∇ϕε,q
x )ψ −

∫
∂B

(∇ϕε,q
x · n)u3ψds.

Setting w = u1 + ϕε,q
x u3 ∈ H1,2(B,R), g = f̃ + div(u3∇ϕε,q

x ) ∈ L2(B,R)

and φ = (∇ϕε,q
x · n)u3 ∈ H 1

2 ,2(∂B,R) then w satisfies∫
B

∇w·∇ψ = −
∫

∂B

φψds+

∫
B

gψ, ∀ψ ∈ H1,2(B,R).

It follows that w is a weak solution of the problem{
∆w = −g in B;

∂w
∂n = −φ on ∂B,

hence the following properties hold

u1 + ϕε,q
x u3 ∈ H2,2(B,R); (3.48)

‖u1 + ϕε,q
x u3‖2,2 ≤ C(‖f‖+ ‖ϕε,q‖C2(B̄)‖u3‖1,2). (3.49)

By a similar argument testing on v = (0, 1, ϕε,q
y )ψ, we have

u2 + ϕε,q
y u3 ∈ H2,2(B,R); (3.50)
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‖u2 + ϕε,q
y u3‖2,2 ≤ C(‖f‖+ ‖ϕε,q‖C2(B̄)‖u3‖1,2). (3.51)

Since u ∈Mzε,p(Sε),

u3(σ) = u1(σ)ϕε,q
x (σ) + u2(σ)ϕε,q

y (σ) for a.e. σ ∈ ∂B. (3.52)

We multiply equation (3.48) by ϕε,q
x and (3.50) by ϕε,q

y , and take the sum

to have

u3(1 + |∇ϕε,q|2) ∈ H
3
2 ,2(∂B,R)

thus thanks to (3.48) and (3.50), u ∈ H 3
2 ,2(∂B,R3) and hence u ∈ H2,2(B,R3).

Now let us estimate theH2,2-norm of u3. We write u = ǔ+ū where ū = ū3e3

and ū3 is the harmonic extension of u3 as in the proof of Proposition 3.2.8.

We have by (3.52) and the trace theorem that

‖ū3‖2,2 ≤ C‖u3‖ 3
2 ,2 ≤ C̃ε‖u‖2,2.

If we consider the test functions in the form v = ψe3 = (0, 0, ψ) ∈Mzε,p(Sε)

for every ψ ∈ H1,2
0 (B,R), it follows that

‖ǔ3‖2,2 ≤ C‖f‖.

The two previous inequalities give

‖u3‖2,2 ≤ C(‖f‖+ C̃ε‖u‖2,2).

Hence using (3.49) and (3.51) we obtain

‖u‖2,2 ≤ C(‖f‖+ C̄ε‖u‖2,2),

so we have the result.

We let P (= Pε,p) : Mzε,p(Sε) → Wzε,p be the projection onto Wzε,p. By

(3.40) the restriction of P on the tangent space Tzε,pM̄2(Sε) satisfies:

P : Tzε,pM̄2(Sε) →Wzε,p ∩ Tzε,pM̄2(Sε).

Via duality, we will be considering d2Iε(z
ε,p) : Tzε,pM̄2(Sε) → Tzε,pM̄2(Sε)

and we define

Lε,p = P ◦ d2Iε(z
ε,p) : Wzε,p ∩ Tzε,pM̄2(Sε) →Wzε,p ∩ Tzε,pM̄2(Sε).

From Proposition 3.2.8 and Lemma 3.2.9, we deduce the
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3.2.10. Corollary. For for every ε� 1, and every p ∈ Sε, the operator

Lε,p is invertible on Wzε,p ∩ Tzε,pM̄2(Sε) and there exists a constant C̄2 > 0

such that

‖L−1
ε,pv‖2,2 ≤ C̄2‖v‖1,2 ∀v ∈ Wzε,p ∩ Tzε,pM̄2(Sε), p ∈ Sε.

Proof. Since
∫

B ∇z
ε,p·∇∂zε,p

∂pi
= O(ε), one has

‖∇zε,p −∇Pzε,p‖ = O(ε) (3.53)

and from Proposition 3.2.8,

Lε,pz
ε,p = −4πPzε,p +O(ε).

Now following [4]-(section 8.4) and according to Remark 3.2.6-(3.37), set-

ting

V1 = RPzε,p; V2 =

{
v ∈Mzε,p(Sε) :

∫
B

∇v · ∇zε,p = 0

}
,

thanks to (3.53), we may assume that V1 ⊥ V2. We decompose Wzε,p =

V1⊕ V2 then in matrix form with respect to V1 and V2, Lε,p can be written

as (
−4πId+O(ε) O(ε)

O(ε) Bε,p

)
,

where Bε,p satisfies, by Proposition 3.2.8, ‖Bε,pv‖1,2 ≥ C2‖v‖2
1,2 for every

v ∈ V2 ∩ Tzε,pM̄2(Sε). Hence there exists C̃2 > 0 such that for ε� 1

‖L−1
ε,pv‖1,2 ≤ C̃2‖v‖1,2 ∀v ∈ Wzε,p ∩ Tzε,pM̄2(Sε). (3.54)

We set u = L−1
ε,pv so that Pd2Iε(z

ε,p)[u] = Pv, or equivalently d2Iε(z
ε,p)[u]−

v ∈ Tzε,pZε⊕Gzε,p by (3.40). Then, there exist αi, i = 1, 2 and βj, j = 1, 2, 3

such that for any φ ∈ Tzε,pM̄2(Sε),

〈d2Iε(z
ε,p)u, φ〉−

∫
B

v·φ =
2∑

i=1

αi

∫
B

(
∇∂z

ε,p

∂pi
·∇φ+

∂zε,p

∂pi
·φ
)

+
3∑

j=1

βj

∫
B

∇Eε,q
j ·∇φ.

We first estimate αi and βj. By equation (3.33) and (3.34), we may write

∂zε,p

∂pi
= ei + εOi

q(X) i = 1, 2,

Eε,q
j = Ej + εOj

q(X) j = 1, 2, 3,
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therefore for every φ ∈ Tzε,pM̄2(Sε)

2∑
i=1

αi

∫
B

ei·φ+
3∑

j=1

βj

∫
B

∇Ej·∇φ+ε
2∑

i=1

αi

∫
B

Oi
q·φ+ε

3∑
j=1

βj

∫
B

Oj
q·φ = 〈d2Iε(z

ε,p)u, φ〉−
∫

B

v·φ

thus by the mutual orthogonality of ei, Ej for i = 1, 2, j = 1, 2, 3 it follows

by (3.54) that

2∑
i=1

|αi|+C̄
3∑

j=1

|βj|−εC̃

(
2∑

i=1

|αi|+
3∑

j=1

|βj|

)
≤ C(‖u‖1,2+‖v‖1,2) ≤ C‖v‖1,2.

Finally observe that u satisfies the following:∫
B

∇

(
u−

2∑
i=1

αi
∂zε,p

∂pi
−

3∑
j=1

βiE
ε,q
j

)
·∇φ = −2

∫
B

(
ux ∧ zε,p

y + zε,p
x ∧ uy

)
·φ+

∫
B

v·φ+
2∑

i=1

αi

∫
B

∂zε,p

∂pi
·φ

for all φ ∈ Tzε,pM̄2(Sε). By density of Tzε,pM̄2(Sε) in Mzε,p(Sε), Lemma

3.2.9 and (3.54) we get

‖u‖2,2 ≤ C̄2(‖u‖1,2 + ‖v‖1,2) ≤ C̄2‖v‖1,2.

This concludes the proof.

We consider the projection Ξ (= Ξε,p) : H2,2(B,R3) → Tzε,pM̄2(Sε) which

is well defined since Tzε,pM̄2(Sε) is a closed subspace of H2,2(B,R3) by the

compact embedding of C(B̄,R3) into H2,2(B,R3). This projection varies

differentially in p by the regularity of M̄2(Sε), see also [90].

With an abuse of notation, we denote u 7→ dIε(u) ∈ TuM̄2(Sε) the gradient

vector-field of Iε.

The following proposition shows that, by Lemma 3.2.7 and Corollary 3.2.10,

the manifold of approximate solution Zε can be perturbed to a natural con-

straint Z̃ε for Iε.

3.2.11. Proposition. Let Iε be the functional defined in (3.26) and Wzε,p

in (3.38). Then for ε > 0 small and p ∈ Sε, there exists a unique w =

w(ε, p) ∈ Wzε,p ∩Tzε,pM̄2(Sε) such that Ξε,pdIε(expzε,p(w)) ∈ Tzε,pZε⊕Gzε,p.

The function Sε 3 p 7→ w(ε, p) is of class C1. Moreover, the function

Fε(p) = Iε(expzε,p(w(ε, p))) is of class C1 in p and satisfies

F ′
ε(p) = 0 =⇒ 〈dIε(expzε,p(w(ε, p))), φ〉 = 0 ∀φ ∈ Texpzε,p(w(ε,p))M̄2(Sε).

Proof.
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Our aim is to solve the problem:{
PΞdIε(expzε,p(w)) = 0,

Pw = w.
(3.55)

We make the Taylor expansion for the mapping w 7→ expzε,p(w) 7→ dIε(expzε,p(w))

form Tzε,pM̄2(Sε) into Texpzε,p(w)M̄2(Sε) in terms of w:

dIε(expzε,p(w)) = dIε(z
ε,p) + d2Iε(z

ε,p)[w] +Nε,p(w)

with
‖N (w)‖2,2

‖w‖2,2
→ 0 as ‖w‖2,2 → 0 uniformly in ε and p. Observe that with

this expansion, (3.55) is equivalent to find w ∈ Wzε,p ∩ Tzε,pM̄2(Sε) such

that

−Pd2Iε(z
ε,p)[w] = PdIε(z

ε,p) + PΞNε,p(w)

because dIε(z
ε,p) and d2Iε(z

ε,p)[w] belong to Tzε,pM̄2(Sε) and thus we are

led to the following fixed point problem

w = −Lε,p
−1{PdIε(zε,p) + PΞN (w)}.

We define the map Tε,p(w) = −Lε,p
−1 {PdIε(zε,p) + PΞN (w)}. By

Corollary 3.2.10, Tε,p is defined from Wzε,p ∩ Tzε,pM̄2(Sε) into itself. We

are going to find a fixed point of Tε,p in the ball on Tzε,pM̄2(Sε) defined as

BR =
{
w ∈ Wzε,p ∩ Tzε,pM̄2(Sε) : ||w||2,2 ≤ ε2R

}
where R > 0 will be determined later. Let w ∈ BR. Thanks to Corollary

3.2.10 and Lemma 3.2.7 one has that

||Tε,p(w)||2,2 ≤ C̄2{ε2C1 + Cε4R2}

and thus, if we chooseR sufficiently large and ε small respectively, Tε,p(w) ∈
BR. Now since N (w) is quadratic, if ε is small enough, the map Tε,p is a

contraction in BR, yielding the existence.

Following [6] Proposition 4.3, we can deduce the C1 regularity of p 7→
w(ε, p) and hence of Fε with∥∥∥∥∂w(ε, p)

∂p

∥∥∥∥
2,2

= O(ε2). (3.56)

To prove the last assertion, we set Z̃ε =
{
expzε,p(w(ε, p)) : p ∈ Sε = 1

ε∂Ω
}
.

With an abuse of notation, we write z = zε,p, w = w(ε, p) and let u =
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expz(w). Call Gu the subspace of TuM̄2(Sε) spanned by the following

vectors

Eu
1 =

∂u ◦ gθ,(0,0)

∂θ |θ=0
,

Eu
2 =

∂u ◦ g0,(a1,0)

∂a1 |a1=0
+ 2e1,

Eu
3 =

∂u ◦ g0,(0,a2)

∂a2 |a2=0
+ 2e2.

(3.57)

By the smallness of w, it is not difficult to see that Eu
j = Eε,q

j +O(ε) with

q = εp and the Eε,q
j ’s are defined in (3.34). Moreover we may assume that

TuM̄2(Sε) splits, as in (3.40), in the following way:

TuM̄2(Sε) = TuZ̃ε ⊕Wu ∩ TuM̄2(Sε)⊕Gu

because the result of Remark 3.2.6-(3.37) holds true also for u (in the place

of zε,p) by the smallness of w and (3.56).

We claim that Z̃ε is a natural constraint for Iε. In fact, suppose that p

is a critical point of Fε thus u = expzε,p(w(ε, p)) is a critical point of Iε|Z̃ε

meaning that dIε(u) is perpendicular to TuZ̃ε on the one hand. On the

other hand, since also o(ε) = w ∈ Wz ' Wu solves (3.55), we may assume

that dIε(u) is perpendicular to Wu ∩ TuM̄2(Sε) hence it remains only to

check if

0 6= dIε(u) ∈ Gu.

Following ([16] section 2), let us show that the latter case cannot happen.

Indeed, suppose there exist β̃k such that

〈dIε(u), φ〉 =
3∑

k=1

β̃k

∫
B

∇Eu
k ·∇φ, (3.58)

for every φ ∈ TuM̄2(Sε).

We use the invariance of Iε with the group, that is Iε(u ◦ g) = Iε(u) for
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every g ∈ G. We have, thanks to (3.57) and (3.58),

0 =
d

dθ
Iε(u ◦ gθ,(0,0))|θ=0 = 〈dIε(u),

∂u ◦ gθ,(0,0)

∂θ |θ=0
〉

=
3∑

k=1

β̃k

∫
B

∇Eu
k ·∇Eu

1

=
3∑

k=1

(δ1k +O(ε))β̃k.

This shows that β̃1 = 0 if ε is sufficiently small. Applying the same ar-

gument using the curves a1 → g0,(a1,0) and a2 → g0,(0,a2), we can see that

β̃k = 0 for every k ∈ {2, 3}. In conclusion we have

〈dIε(u), φ〉 = 0 ∀φ ∈ TuM̄2(Sε) = TuZ̃ε ⊕Wu ∩ TuM̄2(Sε)⊕Gu

which end the proof.

3.2.4 Embedded solutions to the partitioning problem

Let us show that the image of solutions of our problem which are given

by Proposition 3.2.11 are embedded if ε is small enough. We do this by

showing that, up to translations, the solutions are C1 closed to a hemi-

sphere. Let ε → pε ∈ Sε = 1
ε∂Ω be a curve of critical points of Fε such

that εpε → q ∈ S. In view of our construction there hold

‖expzε,pε(w(ε, pε))−
(
Θ− ε−1q

)
‖C(B̄,R3) ≤ C‖expzε,pε(w(ε, pε))−

(
Θ− ε−1q

)
‖2,2 → 0 as ε→ 0

(3.59)

by the Sobolev embedding.

Letting uε = (uε
1, u

ε
2, u

ε
3) = expzε,pε(w(ε, pε)) then by construction we can

write uε = Θ + f ε with ‖f ε‖2,2 → 0 as ε → 0. Because of the embedding

of H1,2(B,R3) into Lh(B,R3) for 1 ≤ h < ∞ we have ‖∇f ε‖Lh(B,R3) → 0

when ε tends to zero for 1 ≤ h <∞. This shows that by Hölder inequality,

‖uε
x∧uε

y−Θx∧Θy‖Lh(B,R3) = ‖f ε
x∧Θε

y+Θx∧f ε
y+f ε

x∧f ε
y‖Lh(B,R3) → 0 as ε→ 0.

(3.60)

Observing that from Lemma 2.3.1, uε satisfies

∆(uε −Θ) = 2
(
uε

x ∧ uε
y −Θx ∧Θy

)
in B,
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we deduce from (3.60) that

‖uε − (Θ + ε−1q)‖C1,β(B,R3) ≤ C‖uε − (Θ + ε−1q)‖H2,h
loc (B,R3) → 0 as ε→ 0

for h > 2 by regularity theory and Sobolev embedding. We conclude that

uε(B) is embedded (in particular has no interior branch points).

We now show that uε(B) is a solution to the partitioning problem. In

the orientation chosen in Section 3.2 by assuming that q = (0, 0, 0) is

the origin and the tangent plane, spanned by (1, 0, ϕε,q
x ) and (0, 1, ϕε,q

y ),

corresponds to R2 × {0}, we have that uε(B̄) is contained in a ball of R3

centered at the origin (with radius 2 for example) by (3.59). Moreover it

is evident that the boundary conditions is equivalent to uε
3 = ϕε,q(uε

1, u
ε
2)

on ∂B while 〈∂uε

∂n , (1, 0, ϕ
ε,q
x (uε

1, u
ε
2))〉 = 〈∂uε

∂n , (0, 1, ϕ
ε,q
y (uε

1, u
ε
2))〉 = 0 on ∂B.

This together with Lemma 2.3.1-2, imply that uε −Θ satisfies:

∆(uε −Θ) = 2
(
uε

x ∧ uε
y −Θx ∧Θy

)
=: gε in B,

uε
3 −Θ3 = ϕε,q(uε

1, u
ε
2) on ∂B,

∂(uε
1 −Θ1)

∂n
= −ϕε,q

x (uε
1, u

ε
2)
∂uε

3

∂n
on ∂B,

∂(uε
2 −Θ2)

∂n
= −ϕε,q

y (uε
1, u

ε
2)
∂uε

3

∂n
on ∂B.

Therefore by elliptic regularity theory and (3.60), we get

‖uε
3 −Θ3‖2,h ≤ C‖gε‖h + Cε (‖uε

1‖2,h + ‖uε
2‖2,h) .

On the other hand we have, thanks to Sobolev embeddings and (3.59), for

i = 1, 2 and h > 2 there hold

‖uε
i −Θi‖2,h ≤ C‖gε‖h + C̃ε

(
‖uε

3 −Θ3‖2,h + ‖Θ3‖2,h

)
It follows from the previous inequalities and again from Sobolev embed-

dings that for h > 2 we have

‖uε− (Θ + ε−1q)‖C1,β(B̄,R3) ≤ C‖uε− (Θ + ε−1q)‖2,h → 0 as ε→ 0. (3.61)

Finally we show that εuε(B̄) is contained in Ω̄ when ε is small enough.

Since uε(∂B) ⊂ Sε = 1
ε∂Ω, it follows that dε(uε(σ)) = 0 for every σ ∈ ∂B,

where dε is the distance function defined in Section 3.2. Observe that by

(3.61) we have

dε(uε(X)) = Θ3+O(ε) = µ(X)−1+εOpε
(X) ∀X ∈ B; lim

t→0+

dε(uε(σ − tn))

t
= 1+εOpε

(σ) ∀σ ∈ ∂B,
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where µ (see Lemma 2.3.1) satisfies 1 < µ < 2 in B and ‖Opε
‖C(B̄) ≤ C

for any ε positive small by (3.61). This shows that if ε is small enough

dε(uε(X)) > 0 for every X ∈ B. We conclude that εuε = ε expzε,pε(w(ε, pε))

is an embedding of B into Ω if ε is sufficiently small without neither interior

nor boundary branch points by (3.61).

3.3 Proof of Theorem 4.0.1 and Theorem 3.0.2

In view of Proposition 3.2.11, we can obtain existence of solutions to (3.3)

by finding critical points of the functional Fε(p). The following lemmas are

devoted to the expansions of Fε with respect to p and ε.

For i ∈ {1, . . . , 4}, the mapping Gi : ∂Ω → R is a smooth function,

maybe depending on ε and uniformly bounded together with its derivative

as ε→ 0.

3.3.1. Lemma. For ε small one has

V ◦ ηε(z
ε,p) = V (z̃ε,p) = − π

12
εH∂Ω(q) + ε2G1(q)

with q = εp.

Proof. We first need to provide the expansion of the extension z̃ε,p of

zε,p. For simplicity, we assume that p is the origin of R3 and we write

z = zε,p also z̃ (resp. z̄) will mean the extension of z̃ε,p (resp. the harmonic

extension) of zε,p.

We recall form (3.24) that

z̃(X) = z̄(X)− νε(z̃(X))dε(z̄(X)),

and the expansion of the interior normal νε, given by (3.22), at the point

z̃(X) ∈ Sε:

νε(z̃(X)) = e3 − ε(hqz̃
′(X), 1) + ε2Oq(X),

where z̃′ stands for the first two components of z̃ : z̃′ = (z̃1, z̃2). Moreover

dε(z̄(X)) = e3·z̄(X) +
ε

2
〈h̃qz̄(X), z̄(X)〉+ ε2Oq(X).

Using (3.19), the fact that the harmonic extension of Θ is (X, 0) and that

ω̄3
q = 0, we have

z̄(X) = (X, 0) + ϕ̄ε,q(X, εω′q(X))e3 + ε2Oq(X),
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where ϕ̄ε,q(X, εω′q(X)) denotes the harmonic extension of the composition

of mappings X 7→
(
X, εω′q(X)

)
7→ ϕε,q(X, εω′q(X)). It follows that

dε(z̄(X)) = ϕ̄ε,q(X)− ε

2
〈hqX,X〉+ ε2Oq(X).

Hence we obtain

z̃ε,p(X) = (X + εω̄′q(X),
ε

2
〈hqX,X〉) + ε2Oq(X),

and thus

(z̃ε,p
x ∧ z̃ε,p

y )·z̃ε,p = −ε(X + εω̄′q)·(hqX) +
ε

2
〈hqX,X〉+ ε2Oq(X)

= −ε
2
〈hqX,X〉+ ε2Oq(X).

We conclude that

V (z̃ε,p) = −ε
6

∫
B

〈hqX,X〉+
ε2

3

∫
B

Oq(X) = −επ
12
H∂Ω(q) + ε2G1(q).

3.3.2. Lemma. For ε small, the following expansions holds

Iε(z
ε,p) =

2π

3
− π

3
εH∂Ω(q) + ε2G4(q),

where q = εp.

Proof. We recall that zε,p = Θ + Ψε,q and

Iε(z
ε,p) =

1

2

∫
B

|∇zε,p|2 +
2

3

∫
B

zε,p·(zε,p
x ∧ zε,p

y )− 2V (z̃ε,p).

Let us expand term by term the right hand side of the above equality

1

2

∫
B

|∇zε,p|2 =
1

2

∫
B

|∇Θ|2 +
1

2

∫
B

|∇Ψε,q|2 +

∫
B

∇Θ · ∇Ψε,q;

∫
B

zε,p·(zε,p
x ∧ zε,p

y ) =

∫
B

zε,p·
(
Θx ∧Θy + Θx ∧Ψε,q

y + Ψε,q
x ∧Θy

)
+

∫
B

zε,p · (Ψε,q
x ∧Ψε,q

y )

=

∫
B

Θ·(Θx ∧Θy) +

∫
B

Θ·
(
Θx ∧Ψε,q

y + Ψε,q
x ∧Θy

)
+

∫
B

Ψε,q·(Θx ∧Θy)

+

∫
B

Ψε,q·
(
Θx ∧Ψε,q

y + Ψε,q
x ∧Θy

)
+

∫
B

zε,p · (Ψε,q
x ∧Ψε,q

y ).
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Using 1. and 5. of Lemma 2.3.1 and an integration by parts, we have∫
B

zε,p·(zε,p
x ∧ zε,p

y ) = −1

2

∫
B

|∇Θ|2 −
∫

B

∇Θ · ∇Ψε,q − 1

2

∫
B

∇Θ · ∇Ψε,q +
1

2

∫
∂B

∂Θ

∂n
·Ψε,qds

+ 2

∫
B

Θ · (Ψε,q
x ∧Ψε,q

y )−
∫

∂B

Θ · (Ψε,q ∧ ∂Ψε,q

∂t
)ds+

∫
B

zε,p · (Ψε,q
x ∧Ψε,q

y ).

Hence adding up, we conclude that

Iε(z
ε,p) =

1

6

∫
B

|∇Θ|2 − 1

3

∫
∂B

ϕε,qds− 2V (z̃ε,p) + ε2G2(q),

where

ε2G2(q) =
1

2

∫
B

|∇Ψε,q|2+2

∫
B

Θ·(Ψε,q
x ∧Ψε,q

y )−2

3

∫
∂B

Θ·(Ψε,q∧∂Ψε,q

∂t
)ds+

∫
B

Ψε,q·(Ψε,q
x ∧Ψε,q

y ).

Now by property 6. of Lemma 2.3.1 and the following computations∫
∂B

ϕε,qds =
ε

2

∫
∂B

〈hqX,X〉ds+ε2
∫

∂B

〈hqX,ω
′
q〉ds+ε3

∫
∂B

Oq(σ)ds = πεH∂Ω(q)+ε2G3(q),

we obtain

Iε(z
ε,p) =

2π

3
− π

3
εH∂Ω(q)− 2V ◦ ηε(z

ε,p) + ε2G2(q) + ε2G3(q).

Therefore the conclusion follows from Lemma 3.3.1.

Proof of Theorem 4.0.1 and Theorem 3.0.2

First of all we have

Fε(p) = Iε(expzε,p(w(ε, p))) = Iε(z
ε,p) + 〈dIε(zε,p), w(ε, p)〉+N (w(ε, p)).

Using Lemma 3.2.7 and the fact that ‖w(ε, p)‖2,2 ≤ Rε2 we infer that

Fε(p) = Iε(z
ε,p) +O(ε4).

Hence Lemma 3.3.2 yields

Fε(p) =
2π

3
− π

6
εH∂Ω(εp) + ε2G(εp) +O(ε4). (3.62)

It follows that if Q0 is a strict local maximum or minimum of H∂Ω, Fε will

have critical points pε for which εpε → Q0 as ε→ 0. Furthermore we have

by (3.56) that

‖Fε −
2π

3
+
π

6
εH∂Ω ◦ ρε‖C1(Sε) = O(ε2), (3.63)
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where ρε(p) = εp. If Q0 is a non-degenerate critical point of H∂Ω then the

implicit function theorem yields also a curve ε→ pε of critical point of Fε

with εpε → Q0.

The proof of Theorem 3.0.2 follows immediately by Proposition 3.2.11 and

the fact that Fε is C1 so it has at least cat(∂Ω) critical points. We refer to

[5].

3.3.3. Remark. As mentioned in Section earlier, we can compare our re-

sult to the one of [93]. The expansions of the mean curvature of a geodesic

sphere of radius ε contains only terms of order ε2 and higher, see [93], equa-

tion (1.4). If we perform our construction in a manifold, by (3.62) it is ev-

ident that the boundary mean curvature would determine the main terms in

the Lyapunov-Schmidt reduction. Other geometric quantities, with respect

to the scalar curvature as the second fundamental form of the boundary

could be relevant for the location of solutions only when the mean curva-

ture is constant, see § 7.3.





Chapter 4

Free boundary CMC hypersurfaces condensing along
a sub-manifold

We let Ω ⊂ Rm+1 and K a k-dimensional smooth submanifold of ∂Ω. We

let n := m − k be the dimension of the normal bundle of K in ∂Ω. We

define Ωε := ε−1Ω and Kε := ε−1K.

Recall that our aim is to find solutions of (GMP ). Consider the “half”-

geodesic tube contained in Ωε around Kε of radius 1

S̄ε(Kε) := {q ∈ Ω̄ε : d(q,Kε) = 1},

with

d(q,Kε) :=

√
|dist∂Ωε(q̃, Kε)|2 + |q − q̃|2

where q̃ is the projection of q on ∂Ωε and

dist∂Ωε(q̃, Kε) = inf
{
length(γ) : γ ∈ C1([0, 1]) is a geodesic in ∂Ωε; γ(0) ∈ Kε; γ(1) = q̃

}
.

By the smoothness of ∂Ω and K, the tube is a smooth, possibly immersed,

hypersurface provided ε is sufficiently small. This tube by construction

meets ∂Ωε perpendicularly. Furthermore the mean curvature of this tube

satisfies (see also § 4.2)

mH(S̄ε(Kε)) = n+O(ε) (4.1)

as ε tends to zero and hence it is plausible under some rather mild assump-

tions on K that we might be able to perturb this tube to satisfy (GMP )

with mean curvature n
m . It turns out that this is not known to be possible

for every (small) ε > 0 but we prove the following theorem :

4.0.1. Theorem. Let Ω be a smooth bounded domain of Rm+1, m ≥ 2.

Suppose that K is a non-degenerate minimal submanifold of ∂Ω. Then,

there exist a sequence of intervals Ii = (ε−i , ε
+
i ), with ε−i < ε+

i and limi→+∞ ε
+
i =

0 such that, for all ε ∈ I := ∪iIi the “half” geodesic tube ε S̄ε(Kε) may

be perturbed to a hypersurface εSε satisfying (GMP ) with mean curvature

HεSε
≡ n

m ε−1 and contact angle π
2 . Namely there exists a family of embed-

ded constant mean curvature hypersurfaces in Ω with boundary on ∂Ω and

intersecting it perpendicularly.
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4.0.1. Remark. • We emphasize that our argument provides also a sta-

tionary area separating of Rm+1 \ Ω̄ when considering the lower hemi-

sphere parameterized by the stereographic projection from the north

pole over the unit ball, see Section 4.2.

• Notice that the surfaces we obtained might have interesting topology.

In fact as far as ε tends to zero, our solutions concentrate along K

hence inherit its topological structure. Furthermore we cite that some

existence result of various minimal immersions were obtained in [55]

and [81].

We believe that the minimality condition on K should also be neces-

sary to obtain a result in spirit of Theorem 4.0.1, see the last paragraph

of [64]. The non-degeneracy condition might fail in some interesting

situations, for example when a symmetry is present. In this case how-

ever, one can take advantage of it working in a subclass of invariant

functions: this might also guarantee existence for all small ε, see [64]

Section 5.

• The hypersurface Sε is a small perturbation of S̄ε(Kε) in the sense that

it is the normal graph (for some function whose L∞ norm is bounded

by a constant times ε) over a small translate of Kε in ∂Ωε (by some

translation whose L∞ norm is bounded by a constant), we refer to

Section 4.3 for the precise formulation of the construction of Sε.

• This result also remains true for the existence of capillary hypersur-

faces in Ω namely those with stationary area which intersect ∂Ω in

a constant angle γ ∈ (0, π) along there boundaries. For more precise

comments see Remark 4.5.1.

To prove the latter theorem, following [56], [64] and [93], we parameter-

ize all surfaces nearby S̄ε(Kε) having boundaries in ∂Ωε by two parametric

functions Φ : K → Rn and w : Sn
+ × ε−1K → R. Here

Sn
+ :=

{
x = (x1, · · · , xn+1) ∈ Rn+1 : |x| = 1 and xn+1 > 0

}
.

This yields a perturbed tube Sε(w,Φ). A standard computations show

that the mean curvature H(w,Φ) of Sε(w,Φ) is constant, with the right

boundary conditions, is equivalent to solve a system of nonlinear partial

differential equations where the principal part is the Jacobi operator about

a hypersurface close to S̄ε(Kε). The solvability is based on the invertibility
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of this linear operator depending on ε (small parameter). As we will see

later, it turns out that this is possible only for some values of ε tending

to zero. Once we have the invertibility our problem becomes readily a

fixed point problem that we can solve provided our approximate solution

is accurate enough. Our method here is similar in spirit to the one in [56].

It goes back to Malchiodi-Montenegro in [59] (see also [57], [58] and [60],

for related issues).

To begin the procedure, we construct first an approximate solution in the

following way: let (y1, y2 . . . , yk) ∈ Rk (resp. (z1, z2 . . . , zn) ∈ Bn
1 ) be the

local coordinate variables on Kε (resp. on Sn
+). Letting Φ : K → Rn and

w : Bn
1 ×Kε → R, consider

S0 : (y, z) 7→ y × ε−1Φ(εy) + (1 + w(y, z)) Θ(z).

The surfaces nearby S̄ε(Kε) are parameterized (locally) by

G(y, z) : (y, z) −→ S0(y, z) −→ F ε(S0(y, z))

where F ε : Rk × Rn+1 → Ω̄ is defined in (4.10) is “an almost isometry”

which parameterize a neighborhood ofKε in Ωε, B
n
1 is the unit ball centered

at the origin and Θ =
(
Θ1, . . . ,Θn,Θn+1

)
is the stereographic projection

from the south pole. Call the image of this map Sε(w,Φ), so in particular

Sε(0, 0) = S̄ε(Kε).

Notice that since Θn+1
∣∣∣

∂Bn
1

= 0, it follows that all these surfaces close to

Sε(Kε) parameterized in this way have boundaries on ∂Ωε.

One of the main features of this work is to we compute the mean curva-

ture of Sε(w,Φ), in § 4.2 which can be done following [56] but in contrast

with that paper, we have to gather some new linear and quadratic terms

involving Φ which will be relevant for the solvability. The linearized mean

curvature operator about S̄ε(Kε) splits into some linear operators on w and

Φ, given by

−Lεw − ε 〈J Φ, Θ̃〉+ εL1w + εJ 1(Φ) + ε2 L(w,Φ), (4.2)

where J is the Jacobi operator about K in the supporting surface ∂Ω, see

§ 4.1.2;

Lε := ε2 ∆K+∆Sn
+
+n; J 1Φ := −(3n+1) Θn+1h(Θ̃)a〈Φā, Θ̃〉+ Θn+1h(Φā)

a+2Θn+1h : Γ(Φ)
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and L1, L(w,Φ) are second order differential operators, see § 4.1.3, here

h (resp. Γ) is the second fundamental form of ∂Ω (resp. K) and h :

Γ = habΓab, where summation over repeated indices is understood. The

quadratic part of the mean curvature is given by

n

2
(εwā + 〈Φā, Θ̃〉)2 − ε〈Φā,∇Snwā〉 − 2ε2∇2

Kw : Γ(Φ)

+
n+ 2

6
〈R(Φ, Θ̃)Φ , Θ̃〉 − 1

3
〈R(Φ, Ei)Φ , Ei〉+Q(w) + εQ(w,Φ),(4.3)

where Θ̃ =
(
Θ1, . . . ,Θn, 0

)
. Finally the boundary condition reads

〈N,Vε〉 = (−1 + w)
∂w

∂η
+ Ō(ε2) + ε2 L̄(w,Φ) + ε Q̄(w,Φ) on ∂Sn

+ ×K,

where η = −En+1 is the normal vector field of ∂Sn
+ in Sn

+.

As we will explain later, the Jacobi operator about S̄ε(Kε) (very closed

to the operator (4.2)) has inverse norm which blows-up at rate 1
εR for some

R > 0 and then one do not hope to apply a fixed point argument at this

state.

However, we can adjust the tube S̄ε(Kε) as accurate as possible, to a

tube Sε(ŵ
(r), Φ̂(r)) satisfying (4.4) below. For that, letting r ≥ 1 be an

integer and setting

ŵ(r) =
r∑

d=1

εdw(d) and Φ̂(r) =
r−1∑
d=1

εdΦ(d),

we have solved

mH(ŵ(r), Φ̂(r)) = n+O(εr+1) in Sε(ŵ
(r), Φ̂(r)),

〈N,Vε〉 = Ō(εr+2) on ∂Sε(ŵ
(r), Φ̂(r)).

(4.4)

This leads to an iterative scheme see § 4.3. The term of order O(ε) ap-

pearing in the expansion of the mean curvature (§ 4.2) depends linearly on

the tangential curvature of K which is in the kernel of ∆Sn
+

+ n (spanned

by Θi with i = 1, . . . , n) and normal curvature K which is perpendicular

to this kernel. Consequently by Fredholm theorem, we can kill these terms

by w(1) provided K is minimal.

Now to annihilate the higher order terms with suitable couples (w(d),Φ(d−1)),

d ≥ 2, if we project on the kernel of ∆Sn
+

+ n, there appears only J (the

Jacobi operator about K) acting on Φ(d−1) because when we project, the
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term J 1Φ(d−1) disappear by oddness. Moreover neither the nonlinear terms

appearing in the expansion of H(w,Φ) nor the perpendicularity condition

will influence the iteration as well. Therefore the non-degeneracy of K is

sufficient for this procedure at each step of the iterative scheme. In this

way for any integer r ≥ 1 we will be able to have (4.4) yielding good

approximate solutions. We notice that it is more convenient to use the

operator ∆Sn
+

+ n + 〈J, Θ̃〉 to accomplish this task because it is invertible

in L2(Sn
+ ×K). Unfortunately one cannot use it for the full solvability of

the problem because w may not gain regularity. We refer to Section 4.3

for more details.

The final step (see § 4.4) is more delicate and consists of the invertibil-

ity of the Jacobi operator about Sε(ŵ
(r), Φ̂(r)) which we call Lε,r. Let us

mention that at this level all terms in the expansion depend on r except

the model operator −Lεw − ε 〈J Φ, Θ̃〉. At first glance one sees that the

operator Lε,r is not so close to the model one in the usual Sobolev norms

because of the competition between the operators 〈J Φ, Θ̃〉 and L1
r. This

is due to fact that if one consider a tube of radius ε in a manifold M
with boundary sitting on ∂M, the mean curvature expansion makes ap-

pear terms of order ε depending on the second fundamental form of ∂M.

On the contrary, dealing with manifolds without boundary, as in [56], it

turns out that in this case the first error terms are of order ε2 and thus

also in the expansion of the mean curvature of there perturbed tube, there

cannot appear terms like εL, see [56] Proposition 4.1. Having bigger error

terms than those in [56], we need more accurate approximate solutions and

different spaces for the spectral analysis. Since our operator Lε,r acts on

the couple (w,Φ) almost separately, to tackle this it is natural to adjust

the norms used for w and Φ. For any v ∈ L2(Sn
+ × K) we decompose it

as v = ε1−2sw + 〈Φ, Θ̃〉 where Φi, i = 1, . . . , n are the components of the

projection of v onto the Kernel of ∆Sn
+
+n for some s ∈ (0, 1/2). With this

decomposition, in a suitable weighted Hilbert subspace of L2(Sn
+ ×K) we

can see Lε,r as a perturbation of the model one, see Proposition 4.4.1.

As mentioned above the existence of families of constant mean curvature

surfaces holds only for a suitable sequence of intervals with length decreas-

ing to zero and not the whole ε is related to a resonance phenomenon

peculiar to concentration on positive dimensional sets and it appears in

the study of several class of (geometric) non-linear PDE’s. Concentration
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along sets of dimension k = 1, . . . , n − 1 has been proved here, and anal-

ogous spectral properties hold true. By the Weyl’s asymptotic formula,

if solutions concentrate along a set of dimension d the average distance

between those close to zero is of order εd. The resonance phenomenon was

taken care of using a theorem by T. Kato, see [52], page 445, which allows

to differentiate eigenvalues with respect to ε. In the aforementioned papers

it was shown that, when varying the parameter ε, the spectral gaps near

zero almost do not shrink, and invertibility can be obtained for a large fam-

ily of epsilon’s. The case of one dimensional limit sets can be handled using

a more direct method based on a Lyapunov-Schmidt reduction, indeed in

this case the distance between two consecutive small eigenvalues, candi-

dates to be resonant, is sufficiently large and working away from resonant

modes one can perform a contraction mapping argument quite easily. Here

instead the average distance between two consecutive eigenvalues becomes

denser and denser, to overcome this problem one needs to apply Kato’s

Theorem constructing first good approximate eigenfunctions, we refer to

Section 4.4. And finally following [56], one can estimate the size of the

spectral gaps, which determine the size of the norm of the inverse of Lε,r.

For suitable values of ε the norm of the inverse of Lε,r is of order O( 1
εR )

with a fixed R > 0 independent of r. Now as far as r can be chosen arbi-

trary large, our fixed point problem can be merely solved. This program

is carried out in the last section.

4.1 Geometric backgroung

Let K be a k-dimensional submanifold of (∂Ω, g) (1 ≤ k ≤ m − 1) and

set n = m − k. We choose along K a local orthonormal frame field

((Ea)a=1,···k, (Ei)i=1,··· ,n) which is oriented and call N∂Ω the interior normal

field along ∂Ω and N∂Ω

∣∣∣
K

= En+1. At points of K, Rm+1 splits naturally

as T∂Ω⊕ REn+1 with T∂Ω = TK ⊕NK, where TK is the tangent space

to K and NK := NK∂Ω represents the normal bundle in ∂Ω, which are

spanned respectively by (Ea)a and (Ej)j.
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4.1.1 Fermi coordinates on ∂Ω near K

Denote by ∇̄ the connection induced by the metric g and by ∇̄⊥ the cor-

responding normal connection on the normal bundle. Given q ∈ K, we use

some geodesic coordinates y centered at q defined by

f : y −→ expK
q (yaEa). (4.5)

This yields the coordinate vector fields Xa := f∗(∂ȳa). We also assume that

at q the normal vectors (Ei)i, i = 1, . . . , n, are transported parallely (with

respect to ∇̄⊥) through geodesics from q, so in particular

g
(
∇̄Ea

Ej , Ei

)
= 0 at q, i, j = 1, . . . , n, a = 1, . . . , k. (4.6)

In a neighborhood of q, we choose Fermi coordinates (y, ζ) on ∂Ω defined

by

F : (y, ζ) −→ exp∂Ω
f(y)(

n∑
i=1

ζ iEi); (y, ζ) =
(
(ya)a, (ζ

i)i

)
. (4.7)

Hence we have the coordinate vector fields

X i := F̄∗(∂ζi) and Xa := F̄∗(∂ȳa).

By our choice of coordinates, on K the metric gα,β := 〈Xα, Xβ〉 splits in

the following way

g(q) = gab(q) dy
a ⊗ dyb + gij(q) dζ

i ⊗ dζj; q ∈ K. (4.8)

We denote by Γb
a(·) the 1-forms defined on the normal bundle of K by

Γb
a(Ei) = g(∇Ea

Eb, Ei). (4.9)

The submanifold K is said to be minimal if the trace Γa
a(·) = 0.

When we consider the metric coefficients in a neighborhood of K, we ob-

tain a deviation from formula (4.8), which is expressed by the next lemma,

see Proposition 2.1 in [56] for the proof. Denote by r the distance function

from K.

4.1.1. Lemma. In the above coordinates (y, ζ), for any a = 1, ..., k and

any i, j = 1, ..., n, we have

gij(0, ζ) = δij + 1
3 〈R(Ei, Es)Et, Ej〉 ζs ζt + O(r3);

gaj(0, ζ) = O(r2);

gab(0, ζ) = δab − 2 Γb
a(Ei) ζ

i +
[
〈R(Es, Ea)Eb, El〉+ Γc

a(Es) Γb
c(El)

]
ζsζ l +O(r3).
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Here Ristj are computed at the point q of K parameterized by (0, 0).

The boundary of the scaled domain ∂Ωε := 1
ε∂Ω is parameterized, in a

neighborhood of ε−1q ∈ Kε := ε−1K by

F̄ ε(y, x′) :=
1

ε
F̄ (εy, εx′) with x′ := (xi, · · · , xn).

Hence we have the induced coordinate vector fields

Xi := F̄ ε
∗ (∂xi) and Xa := F̄ ε

∗ (∂ya).

By construction, Xα|ε−1q = Eα and Vε(ε−1q) = En+1. From Lemma 4.1.1

it is evident that the metric g on (∂Ωε, g) has the expansion given by the

4.1.2. Lemma. In a neighborhood of Kε the following estimates hold

gij(0, x) = δij + ε
3 〈R(Ei, Es)Et, Ej〉xs xt + O(ε2r3);

gaj(0, x) = O(εr2);

gab(0, x) = δab − 2 Γb
a(Ei)x

i + ε
[
〈R(Es, Ea)Eb, El〉+ Γc

a(Es) Γb
c(El)

]
xsxl +O(ε2r3).

We can now parameterize tubular neighborhood of Kε in Ωε,

F ε(y, x′, xn+1) =
1

ε
F̄ (εy, εx′) + xn+1Vε(y, x′), (4.10)

where Vε(y, x′) := N∂Ω(1
ε F̄ (εy, εx′)). We denote by h the second funda-

mental form of ∂Ω so that:

〈dVε(p)[Xα], Xβ〉 = ε hα,β(q) (4.11)

when q = F̄ ε(p).

4.1.2 The Jacobi operator about K

The linearized mean curvature operator about K is given by

J := ∆⊥ −R⊥ + B, (4.12)

with the normal Laplacian ∆⊥ is defined as

∆⊥ := ∇̄⊥
Ea
∇̄⊥

Ea
− ∇̄⊥

∇̄T
Ea

Ea
,

∇̄⊥ denoting the connection on the normal bundle of K in ∂Ω while B is

a symmetric operator defined by

ḡ(B(X), Y ) = Γb
a(X) Γa

b(Y ) for all X, Y ∈ NK,
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Γ is defined in (4.9) and R⊥ : NpK −→ NpK is given by

R⊥ := (R(Ea, ·)Ea)
⊥ ,

and (·)⊥ denotes the orthogonal projection on NK. Finally, we recall that

the Ricci tensor is defined by

Ric(X, Y ) = −ḡ(R(X,Eγ)Y,Eγ) for all X, Y ∈ Tp∂Ω.

Finally, we recall that submanifold K is said to be non-degenerate if the

Jacobi operator J is invertible, or equivalently if the equation JΦ = 0 has

only the trivial solution among the sections in NK.

4.1.3 Notations for error terms

In the following, expressions of the form L(w,Φ) denote linear operators,

in the functions w and Φj as well as their derivatives with respect to the

vector fields εXa and Xi up to second order, the coefficients of which are

smooth functions on Sn(γ)×K bounded by a constant independent of ε in

the C∞ topology (where derivatives are taken using the vector fields Xā and

Xi). Also L̄(w,Φ) are restrictions of expressions like L(w,Φ) on ∂Sn(γ)×K
with L(w,Φ) contains only one derivative of w or Φ with respect to the

vector fields εXa and Xi.

Similarly, expressions of the form Q(w,Φ) denote nonlinear operators,

in the functions w and Φj as well as their derivatives with respect to the

vector fields εXa and Xi still up to second order, whose coefficients of the

Taylor expansion are smooth functions on Sn(γ)×K which are bounded by

a constant independent of ε in C∞ topology (where derivatives are taken

using the vector fields Xa and Xi). Moreover, Q vanishes quadratically

in the pair (w,Φ) at 0 (that is, its Taylor expansion does not involve any

constant nor any linear term). Also Q̄(w,Φ) are restrictions of expressions

like Q(w,Φ) on ∂Sn(γ) ×K with Q(w,Φ) contains only one derivative of

w or Φ with respect to the vector fields εXa and Xi.

Finally, terms denoted O(εd) are smooth functions on Sn(γ)×Kε which

are bounded by a constant times εd in C∞ topology (where derivatives are

taken using the vector fields Xa and Xi). Also expressions like Ō(εd) are

restrictions of O(εd) on ∂Sn(γ)×K.
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4.2 Geometry of tubes

We derive expansions as ε tends to 0 for the metric, second fundamental

form and mean curvature of S̄ε(Kε) and their perturbations.

Perturbed tubes

We now describe a suitable class of deformations of the geodesic tubes (in

the metric induced by F ε on Rm+1) S̄ε(Kε), depending on a section Φ of

NKε := Sn
+ ×Kε and a scalar function w on the spherical normal bundle

(SNKε)+ in ∂Ωε.

We recall that (y1, y2 . . . , yk) ∈ Rk (resp. (z1, z2 . . . , zn) ∈ Bn
1 ) are the

local coordinate variables on Kε (resp. on Sn
+). Letting Φ : K → Rn and

w : Bn
1 ×Kε → R, consider

S0 : (y, z) 7→ y × ε−1Φ(εy) + (1 + w(y, z)) Θ(z).

The nearby surfaces of S̄ε(Kε) is parameterized (locally) by

G(y, z) : (y, z) −→ S0(y, z) −→ F ε(S0(y, z))

namely

G(y, z) := F ε

(
y,

1

ε
Φ(εy) + (1 + w(y, z))Θ̃(z), (1 + w(y, z))Θn+1(z)

)
.

Since Θn+1
∣∣∣

∂Bn
1

= 0, it follows

G(y, z)
∣∣∣

∂Bn
1

∈ ∂Ωε for any y.

The image of this map will be called Sε(w,Φ). In particular

Sε(0, 0) = S̄ε(Kε).

It will be understood that for any fixed point p = F ε(y, 0) ∈ Kε, Φ(ε y) ∈
NKε ⊂ Tp∂Ωε and Θ(z) ∈ Sn

+ ⊂ NKε⊕REn+1 are in the tangent space at

p of Rm+1 endowed with the metric induced by F ε. For more convenience

we introduce the following notations

Notation: On Kε we will consider

Φ := Φj Ej Φa := ∂ya Φj Ej Φab := ∂ya∂yb Φj Ej
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Θ := Θj Ej+Θn+1En+1 = Θ̃+Θn+1En+1 Θi := ∂ziΘj Ej+∂ziΘn+1En+1 = Θ̃i+Θn+1
i En+1.

For simplicity, we will write

wj := ∂zjw; wa := ∂yaw; wij := ∂zi ∂zjw; wab := ∂ya ∂ybw; waj := ∂ya ∂zjw;

It is easy to see that the tangent space to Sε(w,Φ) is spanned by the vector

fields

Za = G∗(∂ya) = Xa + wa Υ + Ψa + (1 + w)Θn+1DaVε, a = 1, . . . , k

Zj = G∗(∂zj) = (1 + w) Υj + wj Υ + (1 + w)Θn+1DjVε, j = 1, . . . , n,
(4.13)

where

Ψ := Φj Xj; Ψa := ∂ya Φj Xj;

Υ := Θj Xj + Θn+1Vε; Υi := ∂ziΘj Xj + ∂ziΘn+1Vε

and

DaVε(y, (1 + w(y, z))Θ̃ + ε−1Φ(εy)) = ε
(
haα + (waΘ

l + Φl
a)hlα

)
Xα;

DjVε(y, (1 + w(y, z))Θ̃ + ε−1Φ(εy)) = ε
(
wjΘ

l + (1 + w)Θl
j

)
hlαXα.

(4.14)

The first fundamental form

In this subsection we expand the coefficients of the first fundamental form

of Sε(w,Φ). Using the expansions in Lemma 4.1.2, one can easily get

〈Xa, Xb〉 = δab − 2 εΓb
a(Θ)− 2 Γb

a (Φ) +O(ε2) + εL(w,Φ) +Q(w,Φ)

〈Xi, Xj〉 = δij + ε
3

(
〈R(Θ, Ei) Φ, Ej〉+ 〈R(Φ, Ei) Θ, Ej〉

)
+ 1

3〈R(Φ, Ei) Φ, Ej〉

+ O(ε2) + ε2 L(w,Φ) + εQ(w,Φ)

〈Xi, Xa〉 = O(ε2) + εL(w,Φ) +Q(w,Φ).
(4.15)

These together with the fact that R(Θ̃, Θ̃) = 0 imply

〈Υ,Υj〉 =
ε

3
〈R(Φ, Θ̃) Θ̃, Θ̃j〉+

1

3
〈R(Φ, Θ̃) Φ, Θ̃j〉+O(ε2)+ε2 L(w,Φ)+εQ(w,Φ)

(4.16)

Using similar arguments, and the fact that 〈Υ,Υ〉 = 1 on Kε yields

〈Υ,Υ〉 = 1 +
1

3
〈R(Φ, Θ̃) Φ, Θ̃〉+O(ε2) + ε2 L(w,Φ) +Q(w,Φ) (4.17)
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Moreover

〈Υi,Υj〉 = 〈Θi,Θj〉+
1

3

(
〈R(Φ, Θ̃i) Θ̃, Θ̃j〉+ 〈R(Φ, Θ̃j) Θ̃, Θ̃i〉

)
(4.18)

+
1

3
〈R(Φ, Θ̃i) Φ, Θ̃j〉+O(ε2) + ε2 L(w,Φ) +Q(w,Φ).

Now, by (4.14) we have that

〈DjVε,Υ〉 = ε(1+w)〈h(Θ̃), Θ̃j〉+εwj〈h(Θ̃), Θ̃〉+O(ε2)+ε2 L(w,Φ)+εQ(w,Φ)

(4.19)

and

〈DjVε,Υi〉 = ε(1+w)〈h(Θ̃i), Θ̃j〉+εwj〈h(Θ̃), Θ̃i〉+O(ε2)+ε2 L(w,Φ)+εQ(w,Φ)

(4.20)

We are now in position to expand the coefficients of the first fundamental

form of Sε(w,Φ). We have

4.2.1. Proposition. For any a, b ∈ {1, · · · , k} and i, j ∈ {1, · · · , n}, we

have that

〈Za, Zb〉 = δab+2εΘn+1hab−2εΓb
a(Θ̃)−2 Γb

a(Φ)+O(ε2)+εL(w,Φ)+Q(w,Φ)

(4.21)

〈Za, Zj〉 = 2εΘn+1h(Θ̃j)
a + 〈Φā, Θ̃j〉+O(ε2) + εL(w,Φ) +Q(w,Φ)(4.22)

〈Zi, Zj〉 = 〈Θi,Θj〉 (1 + 2w) + 2ε(1 + 3w)Θn+1〈h(Θ̃i), Θ̃j〉

+ 2εΘn+1
(
〈h(Θ̃i), Θ̃〉wj + 〈h(Θ̃j), Θ̃〉wi

)
+

ε

3

(
〈R(Θ̃, Θ̃i) Φ, Θ̃j〉+ 〈R(Θ̃, Θ̃j) Φ, Θ̃i〉

)
+ wiwj + 〈Θi,Θj〉w2(4.23)

+
1

3
〈R(Φ, Θ̃i) Φ, Θ̃j〉+O(ε2) + ε2 L(w,Φ) + εQ(w,Φ).

The normal vector field

In this subsection we expand the unit normal to Sε(w,Φ). Define the vector

field

Ñ := −Υ + αj Zj + βc Zc,

it is the outer normal field along Sε(w,Φ) if we can determine αj and βc so

that Ñ is orthogonal to all of the Zb and Zi. This leads to a linear system

for αj and βa.
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We have the following expansions

〈Υ, Za〉 = wa + 〈Φā, Θ̃〉+ εΘn+1 (h(Θ̃))a + ε2 L(w,Φ) + εQ(w,Φ); (4.24)

〈Υ, Zj〉 = wj + ε(1 + 2w)Θn+1〈h(Θ̃), Θ̃j〉+ 2εΘn+1wj〈h(Θ̃), Θ̃〉

+
ε

3
〈R(Φ, Θ̃) Θ̃, Θ̃j〉+

1

3
〈R(Φ, Θ̃) Φ, Θ̃j〉+O(ε2) + ε2 L(w,Φ) + εQ(w,Φ),(4.25)

These follow from (4.15) together with the fact that 〈Υ, Za〉 = 0 and

〈Υ, Zj〉 = 0 on Kε.

Using Proposition 4.2.1, and some algebraic calculations, one can obtain

βc = wc + 〈Φc, Θ̃〉+ εΘn+1h(Θ̃)c +O(ε2) + εL(w,Φ) +Q(w,Φ). (4.26)

and

αj 〈Θj,Θi〉 = wi + εΘn+1〈h(Θ̃), Θ̃i〉+ εΘn+1〈h(Θ̃), Θ̃〉wi

− 2εΘn+1
(
〈h(Θ̃l), Θ̃i〉wl + h(Θ̃i)

awa + h(Θ̃i)
a〈Φa, Θ̃〉

)
+

1

3
ε〈R(Φ, Θ̃) Θ̃, Θ̃i〉 − εΘn+1h(Θ̃)a〈Φa, Θ̃i〉 (4.27)

− 2wwi − wa〈Φa, Θ̃i〉 − 〈Φa, Θ̃〉〈Φa, Θ̃i〉+
1

3
〈R(Φ, Θ̃) Φ, Θ̃i〉

+ O(ε2) + ε2 L(w,Φ) + εQ(w,Φ).

Using these and the fact that 〈Θj,Θi〉 = µ2δij, a straightforward compu-

tations imply

|Ñ |−1 = 1 + εΘn+1
(

1

µ2 〈h(Θ̃), Θ̃i〉wi + h(Θ̃)cwc + h(Θ̃)c〈Φc, Θ̃〉
)

+
1

6
〈R(Φ, Θ̃) Φ, Θ̃〉

+
1

2

(
w2

c +
1

µ2w
2
j + 2wc〈Φc, Θ̃〉+ 〈Φc, Θ̃〉2

)
+O(ε2) + ε2 L(w,Φ) + εQ(w,Φ).

The unit normal to the perturbed geodesic tube is then given simply by

N = Ñ
|Ñ | . We summarize this in the following lemma

4.2.2. Proposition. The normal vector field N to Sε(w,Φ) is given by

N = Ñ
|Ñ | where

Ñ := −Υ + αj Zj + βc Zc (4.28)

and where the coefficients αj and βc are given by formulas (7.9) and (4.26).

Using the fact that Θn+1
∣∣∣

∂Bn
1

= 0 we can easily deduce
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4.2.1. Lemma. The perpendicularity condition is given by

〈N,Vε〉 = (−1+w)wjz
j + Ō(ε2)+ ε2 L̄(w,Φ)+ ε Q̄(w,Φ) on ∂(SNK)+,

Proof. Since Θn+1
∣∣∣

∂Bn
1

= 0 it follows that 〈Vε,−Υ + βc Zc〉 = 0 on ∂Bn
1

on the other hand using the fact that R(Ei, Ei) = 0 with ∂Θ̃
∂τ

∣∣∣
∂Bn

1

= 0 (see

§2.3) we get

〈αj Zj,Vε〉 = (−1+w)wjΘ
n+1
j +Ō(ε2)+ε2 L̄(w,Φ)+ε Q̄(w,Φ) on ∂(SNK)+.

The lemma now follows since Θn+1
j = −µΘj = −µ2zj and µ

∣∣∣
∂Bn

1

= 1.

The second fundamental form

In this subsection we expand the coefficients of the second fundamental

form. Recall that ∇̄ is the Levi-Civita connection on ∂Ω and h its second

fundamental form, the derivation for vector fields on ∂Ω yields

∂

∂zi
Xα(y, (1+w(y, z))Θ̃+ε−1Φ(εy)) = ε(wiΘ

l+(1+w)Θl
i)
(
∇̄Xl

Xα − hlαVε
)
,

∂

∂ya
Xα(y, (1+w(y, z))Θ̃+ε−1Φ(εy)) = εδab

(
∇̄Xb

Xα − hbαVε
)
+ε
(
waΘ

l + Φl
a

) (
∇̄Xl

Xα − hlαVε
)
.

4.2.3. Proposition. The following expansions hold

〈N, ∂

∂ya
Za〉 = −εΓa

a(Θ̃) + εΘn+1haa − waa − ε 〈Φaa, Θ̃〉 − ε 〈R(Φ, Ea)Ea, Θ̃〉

+ εΓc
a(Θ̃) Γa

c(Φ)− 2εΘn+1wah(Θ̃)a +
ε

µ2wl

(
Γa

a(Θ̃l)− haaΘ
m+1
l

)
(4.29)

+ O(ε2) + ε2 L(w,Φ) + εQ(w,Φ);
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〈N, ∂
∂zj

Zj〉 = µ2(1 + w)− wjj − εΘn+1〈h(Θ̃), Θ̃〉wjj − 2εΘn+1
j 〈h(Θ̃), Θ̃〉wj

+ ε(1 + 2w)
(
Θn+1〈h(Θ̃j), Θ̃j〉 − 2Θn+1

j 〈h(Θ̃), Θ̃j〉 −Θn+1〈h(Θ̃), Θ̃jj〉
)

+
ε

µ2wk

(
2Θn+1〈h(Θ̃k), Θ̃ii〉+ 2Θn+1

i 〈h(Θ̃k), Θ̃i〉+ Θn+1
k 〈h(Θ̃i), Θ̃i〉

)
+

2

3
ε 〈R(Φ, Θ̃j) Θ̃, Θ̃j〉 −

ε

3
〈R(Φ, Θ̃) Θ̃, Θ̃jj〉+ 2εwc

(
Θn+1

j h(Θ̃j)
c + Θn+1h(Θ̃jj)

c
)

+ 2ε〈Φc̄, Θ̃〉
(
Θn+1

j h(Θ̃j)
c + Θn+1h(Θ̃jj)

c
)

+ εΘn+1h(Θ̃)c
(
〈Φc, Θ̃jj〉+ µ2〈Φc, Θ̃〉

)
(4.30)

+ εΘn+1h(Θ̃)c
(
wc〈Θ̃, Θ̃jj〉+ µ2wc

)
− 1

6
µ2〈R(Φ, Θ̃) Φ, Θ̃〉 − 1

3
〈R(Φ, Θ̃) Φ, Θ̃jj〉

− 1

2
µ2w2

c +
1

2
µ2|〈Φc, Θ̃〉|2 −

1

2
w2

k + 2w2
j + 〈Φc, Θ̃jj〉wc + 〈Φc, Θ̃〉〈Φc, Θ̃jj〉

+ (1 + 2w)αk〈Θjj,Θk〉+O(ε2) + ε2 L(w,Φ) + εQ(w,Φ);

〈N, ∂

∂ya
Zb〉 = −Γb

a(Θ̃) + εΘn+1hab − wab +O(ε2) + εL(w,Φ) +Q(w,Φ)) a 6= b;

〈N, ∂

∂ya
Zj〉 = εΘn+1

j h(Θ̃)a + εΘn+1h(Θ̃j)
a − waj +O(ε2) + εL(w,Φ) +Q(w,Φ);

〈N, ∂
∂zi

Zj〉 = −wij − εΘn+1
i 〈h(Θ̃), Θ̃j〉 − εΘn+1

j 〈h(Θ̃), Θ̃i〉+ εΘn+1〈h(Θ̃i), Θ̃j〉

− εΘn+1〈h(Θ̃), Θ̃ij〉+ αk〈Θij,Θk〉+O(ε2) + εL(w,Φ) +Q(w,Φ), i 6= j.

Proof. The proof is similar in spirit to the one of Proposition 3.3 in [56].

So we will be sketchy here referring to the aforementioned paper for more

details. We have that

∂

∂ya
Za = ε

(
∇̄Xa

Xa − haaVε
)

+ waaΥ + 2Θn+1waDaVε + εΦl
aaXl + Θn+1DaDaVε

+
(
O(ε2) + ε2L(w,Φ) + εQ(w,Φ)

)
Xα +

(
O(ε2) + ε2L(w,Φ) + εQ(w,Φ)

)
Vε

and for a 6= b

∂

∂ya
Zb = ε

(
∇̄Xb

Xa − habVε
)

+ wabΥ

+
(
O(ε2) + εL(w,Φ) +Q(w,Φ)

)
Xα +

(
O(ε2) + ε2L(w,Φ) + εQ(w,Φ)

)
Vε;
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∂

∂zi
Zi = wiiΥ + 2wiΥi + 2εΘlΘs

iwi

(
∇̄Xs

Xl − hslVε
)

+ 2Θn+1DiVεwi + (1 + w)Υii

+ (1 + w)
(
2Θn+1

i DiVε + Θn+1DiDiV
)

+ ε(1 + 2w)Θl
iΘ

s
i

(
∇̄Xs

Xl − hslVε
)

+
(
O(ε2) + ε2L(w,Φ) + εQ(w,Φ)

)
Xα +

(
O(ε2) + ε2L(w,Φ) + εQ(w,Φ)

)
Vε;

and for i 6= j

∂

∂zi
Zj = wijΥ + wiΥj + wjΥi + Θn+1

i DjVε + Θn+1
j DiVε + (1 + w)Υij + εΘl

iΘ
s
j

(
∇̄Xs

Xl − hslVε
)

+ Θn+1DiDjVε +
(
O(ε2) + εL(w,Φ) +Q(w,Φ)

)
Xα +

(
O(ε2) + ε2L(w,Φ) + εQ(w,Φ)

)
Vε.

Finally

∂

∂ya
Zj =

∂

∂zj
Za = εΘs

j

(
∇̄Xs

Xa − hasVε
)

+ wajΥ + waΥj + Θn+1
j DaVε

+
(
O(ε2) + ε2L(w,Φ) + εQ(w,Φ)

)
Xα +

(
O(ε2) + ε2L(w,Φ) + εQ(w,Φ)

)
Vε.

Recalling the expansions, see Lemma 2.1 in [56].

∇̄Xi
Xj = (O(ε) + L(w,Φ) +Q(w,Φ))Xγ,

∇̄Xa
Xi = −Γb

a(Ei)Xb + (O(ε) + L(w,Φ) +Q(w,Φ))Xγ,
(4.31)

We will also need the following expansion which follows from the result of

Lemma 2.2 in [56] (with obvious modifications).

∇̄Xa
Xb = Γb

a(Ej)Xj − 〈R(ε Θ̃ + Φ, Ea)Ej, Eb〉Xj

+
1

2

(
〈R(Ea, Eb) (ε Θ̃ + Φ), Ej〉 − Γc

a(ε Θ̃ + Φ) Γb
c(Ej)− Γb

c(ε Θ̃ + Φ) Γc
a(Ej)

)
Xj(4.32)

+ (O(ε) + L(w,Φ) +Q(w,Φ))Xc + (O(ε2) + εL(w,Φ) +Q(w,Φ))Xj.

These imply in particular

〈Υ, ∇̄Xa
Xa〉 = ΘlΓa

a(Ei)
(
∂li + 2εΘn+1hli

)
− ε〈R(Θ̃, Ea)Θ̃, Ea〉 − 〈R(Θ̃, Ea)Φ, Ea〉

− εΓc
a(Θ̃)Γa

c(Θ̃)− Γc
a(Θ̃)Γa

c(Φ) +O(ε2) + εL(w,Φ) +Q(w,Φ).

On the other hand we have that

DaDaVε = εwaah(Θ̃)αXα+
(
O(ε2) + ε2L(w,Φ) + εQ(w,Φ)

)
Xβ+

(
O(ε2) + ε2L(w,Φ) + εQ(w,Φ)

)
Vε,

which implies

〈DaDaVε,Υ〉 = εwaa〈h(Θ̃), Θ̃〉+O(ε2) + ε2L(w,Φ) + εQ(w,Φ). (4.33)
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Using these together with (4.26), (7.9) and Lemma 4.1.2, the first estimate

follows at once. For the other estimates one can proceed similarly.

The mean curvature of perturbed tubes

Collecting the estimates of the last subsection we obtain the expansion of

the mean curvature of the hypersurface Sε(w,Φ). In the coordinate system

defined in the previous sections, we get

mH(w,Φ) = n− εΓa
a(Θ̃) + εΘn+1 haa + εΘn+1

[
(n+ 3)〈h(Θ̃), Θ̃〉 − hjj

]
+O(ε2)

−
(
∆Kε

w + ∆Snw + nw
)
− ε

(
〈∆KΦ +R(Φ, Ea)Ea, Θ̃ 〉 − Γc

a(Φ) Γa
c(Θ̃)

)
− εΘn+1〈h(Θ̃), Θ̃〉∆Snw − 2ε(n+ 3) Θn+1〈h(Θ̃),∇Snw〉+ 2εΘn+1∇2

Snw : h

− ε
(
〈h(Θ̃), Θ̃〉+ hjj + haa

)
〈∇Snw,En+1〉 − (1 + 3n)εΘn+1h(Θ̃)awa

− 2εΘn+1h(∇Snwa)
a + εΓa

a(∇Snw)− 2ε∇2
Kε
w : Γ(Θ̃) + 2εΘn+1haawaa

− (3n+ 1)εΘn+1h(Θ̃)a〈Φā, Θ̃〉+ εΘn+1h(Φā)
a + 2εΘn+1h : Γ(Φ)

+ nw2 + 2−n
2 |∇Snw|2 + 2w∆Snw − n

2 (wa + 〈Φā, Θ̃〉)2

− 〈Φā,∇Snwa〉 − 2∇2
Kε
w : Γ(Φ) + n+2

6 〈R(Φ, Θ̃)Φ , Θ̃〉 − 1
3〈R(Φ, Ei)Φ , Ei〉

+ O(ε2) + ε2 L(w,Φ) + εQ(w,Φ).

Here we have used the formulas in Lemma 2.3.1, the fact that

∆Sn =
1

µ2 (∆Rn − 〈Θii,Θk〉∂k) .

and the notation A : B = AstBst for two linear operators A and B. Here

summation over repeated indices is understood.

Let us emphasize the use of the variables yā = εya on K. With an abuse

of notation, we call w the function w̄(ȳ) = w(y) = w(ε−1ȳ) defined on K

so that εwā = wa and ε2wāā = waa. We first define the following operators

appearing in the above expansion

L1(w) : = −〈h(Θ̃), Θ̃〉∆Snw − 2(n+ 3) Θn+1〈h(Θ̃),∇Snw〉+ 2Θn+1∇2
Snw : h

−
(
〈h(Θ̃), Θ̃〉+ hjj + haa

)
〈∇Snw,En+1〉 (4.34)

− ε(1 + 3n)Θn+1〈h(Θ̃),∇Kw〉+ εΘn+1h(∇Snwā)
a − 2ε2∇2

Kw : Γ(Θ̃) + 2ε2Θn+1haawāā,
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J 1Φ := −(3n+ 1) Θn+1h(Θ̃)a〈Φā, Θ̃〉+ Θn+1h(Φa)
a + 2Θn+1h : Γ(Φ),

(4.35)

and the quadratic term

Q1(w,Φ) : = nw2 +
2− n

2
|∇Snw|2 + 2w∆Snw − n

2
(εwā + 〈Φā, Θ̃〉)2 − ε〈Φā,∇Snwā〉

− 2ε2∇2
Kw : Γ(Φ) +

n+ 2

6
〈R(Φ, Θ̃)Φ , Θ̃〉 − 1

3
〈R(Φ, Ei)Φ , Ei〉. (4.36)

Next, we define

Lε := ε2 ∆K + ∆Sn + n, L0 := ∆Sn + n

and the Jacobi operator about K in (∂Ω, ḡ), see § 4.1.2

J := ∆⊥ −R⊥ + B.

Recall that (see § 2.3) the outer unit normal to the boundary of ∂Sn
+ in Sn

+

is η = −En+1,
∂w

∂η
= −〈∇Sn

+
w,En+1〉.

Using these definitions, we obtain the following result :

4.2.4. Proposition. Assume that K is a minimal submanifold, then the

mean curvature of Sε(w,Φ) can be expanded as

mH(w,Φ) = n+ εΘn+1 haa + εΘn+1
[
(n+ 3)〈h(Θ̃), Θ̃〉 − hjj

]
+O(ε2)

− Lεw − ε 〈J Φ, Θ̃〉+ εL1w + εJ 1(Φ) +Q1(w,Φ)

+ ε2 L(w,Φ) + εQ(w,Φ) in Sε(w,Φ),

where L1 is defined in (4.34), J 1 is given in (4.35), while Q1 is a quadratic

term defined in (4.36). Moreover, the orthogonality condition is equivalent

to the following boundary condition on the function w:

〈N,Vε〉 = −∂w
∂η

+w
∂w

∂η
+ Ō(ε2) + ε2 L̄(w,Φ) + ε Q̄(w,Φ) on ∂Sε(w,Φ).

(4.37)

Proof. The expression of the mean curvature can be obtained rather eas-

ily taking into account the above definitions (with obvious modifications)

and the minimality of K which implies

Γa
a = 0.
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With these notations finding w and Φ such that the equation mH = n

and 〈N,Vε〉 = 0 hold is equivalent to solve
Lεw + ε 〈J Φ, Θ̃〉 = εΘn+1 haa + εΘn+1

[
(n+ 3)〈h(Θ̃), Θ̃〉 − hjj

]
+O(ε2)

+ εJ 1(Φ) + εL1w +Q1(w,Φ) + ε2 L(w,Φ) + εQ(w,Φ) in Sn
+ ×K,

∂w

∂η
= w

∂w

∂η
+ Ō(ε2) + ε2 L̄(w,Φ) + ε Q̄(w,Φ) on ∂Sn

+ ×K.

(4.38)

4.3 Adjusting the tube S̄ε(Kε)

In this section we annihilate the error terms (O(ε)) appearing in (4.38)

at any given order. The non-degeneracy of the submanifold K will play a

crucial role in such a construction. We denote by Π1 the L2 projection on

the subspace spanned by the Θi, i = 1, · · · , n and set (SNK)+ := Sn
+×K.

We set

ŵ(r) =
r∑

d=1

εdw(d) and Φ̂r =
r−1∑
d=1

εdΦ(d).

Construction of w(1): We first want to kill the term O(ε). This is equiv-

alent to have mH(ŵ(r), Φ̂(r)) = n+O(ε2) in Sε(ŵ
(r), Φ̂(r)),

〈N,Vε〉 = Ō(ε2) on ∂Sε(ŵ
(r), Φ̂(r)).

This gives the following equation in w(1)

L0w
(1) = Θn+1 haa + Θn+1

[
(n+ 3)〈h(Θ̃), Θ̃〉 − hjj

]
in (SNK)+;

∂w(1)

∂η
= 0 on ∂(SNK)+.

By the result from § 2.3 (with γ = π
2 ) and Fredholm alternative theorem,

the solvability of the above system is possible provided

∫
Sn

+

(
Θn+1 haa + Θn+1

[
(n+ 3)〈h(Θ̃), Θ̃〉 − hjj

])
Θi dθ = 0 for all i = 1, · · · , n
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which is the case by oddness, here dθ denotes the volume element on Sn
+.

Notice that the variable ȳ is being considered as a parameter so that w(1)

is as smooth as the right hand side in this variable.

Constructing w(2) : We turn now to the term of order ε2. We have

 mH(ŵ(r), Φ̂(r)) = n+O(ε3) in Sε(ŵ
(r), Φ̂(r)),

〈N,Vε〉 = Ō(ε2) on ∂Sε(ŵ
(r), Φ̂(r)).

Since the terms involving Φ in Q1(εw(1), εΦ(1)) are of the form ε3L(Φ(1))

and Q(Φ̂(r), Φ̂(r)), we are led to a system in w(2) and Φ(1) given by

L0w
(2) = 〈JΦ(1), Θ̃〉+O(1) + L1w(1) + J 1(Φ(1)) +Q(Φ̂(r), Φ̂(r)) in (SNK)+

∂w(2)

∂η
= Ō(1) on ∂(SNK)+.

Note that Π1J 1 = 0 and Π1Q(Φ(1),Φ(1)) = 0 so the above problem is

solvable if and only if∫
Sn

+

〈JΦ(1), Θ̃〉Θi dθ+

∫
Sn

+

(
O(1) + L1w(1)

)
Θi dθ+

∮
∂Sn

+

Ō(1) Θi dθ̄ = 0 for all i = 1 · · ·n,

where dθ and dθ̄ are the volume elements on Sn
+ and ∂Sn

+ respectively. This

gives an equation on Φ(1) which can be solved using the non degeneracy of

the submanifold K because in this case J is invertible. Once this is done,

we obtain readily w(2).

Constructing w(r): We want to construct an approximate solution as ac-

curate as possible, and to do so we will use an iterative scheme. Suppose

the couple (w(r−1),Φ(r−2)) is already determined. To find (w(r),Φ(r−1)), it

suffices to check that when we project on the Kernel of L0, the operator

involving Φ(r−1) should be only the invertible Jacobi operator J. This is

the case since the only term that can bring Φ(r−1) at this iteration step is

Q1
r−1(w,Φ) which gives only terms of the form ε2Φ and Q(Φ̂(r), Φ̂(r)) more-

over Π1J 1
r−1(Φ

(r−1)) = Π1Q(Φ̂(r), Φ̂(r)) = 0.

The index r appearing in the linear and quadratic terms means that

they depend on the iteration step while the operator J 1
r keep its same

properties because it is influenced only by the even quadratic terms in

Q(Φ̂(r) + Φ, Φ̂(r) + Φ) appearing in Q1(ŵ(r) + w, Φ̂(r) + Φ).
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By induction, in the same argument, for every r ∈ N, we can find

(w(d),Φ(d)), d = 1, · · · , r smooth such that

ŵ(r) =
r∑

d=1

εdw(d) = O(ε) and Φ̂(r) =
r−1∑
d=1

εdΦ(d) = O(ε) (4.39)

and that

mH(ŵ(r), Φ̂(r)) = n+O(εr+1) in Sε(ŵ
(r), Φ̂(r)), 〈N,Vε〉 = Ō(εr+2) on ∂Sε(ŵ

(r), Φ̂(r)).

4.3.1. Remark. Notice that as in [57] we omitted the terms involving

derivatives with respect to ȳ of the function w (by considering L0 instead

of Lε), this is due to the fact that since w is slow dependent on ya, when

differentiating with respect to yā we pick up an ε at each differentiation,

this gives us smaller terms. However, when applying elliptic regularity the-

orems we might loose two derivatives at each iteration. This indeed is not

a problem since one needs just a finite number of iterations. We refer the

reader to [57], where a more explanation is given.

We are left to find w and Φ such that

mH(ŵ(r) + w, Φ̂r + Φ) = n in Sε(ŵ
(r) + w, Φ̂r + Φ),

〈N,Vε〉 = 0 on ∂Sε(ŵ
(r) + w, Φ̂r + Φ).

(4.40)

We define the linearized mean curvature operator about Sε(ŵ
r, Φ̂r)

Lε,r(w,Φ) =
1

ε

(
Lεw + εL1

r(w)
)

+ 〈JΦ, Θ̃〉+ J 1
r (Φ) + εLr(w,Φ).

The index r appearing in the constant, linear and quadratic terms means

that they depend on the iteration step but keep there properties.

We Notice that Lε,r is not precisely the usual Jacobi operator because we

are parameterizing this hypersurface as a graph over Sε(ŵ
r, Φ̂r) using the

vector field −Υ rather than the unit normal N .

Using Remark 2.1.1 (with γ = π
2 ), suppose that Σ = Sε(ŵ

r, Φ̂r) and

N̂ = −Υ. From (4.39) and Proposition 4.2.2 we have

〈N,−Υ〉 = 1 +O(ε2).

Furthermore, from Proposition 4.2.1 and (4.39), the volume forms of the

tubes Sε(ŵ
r, Φ̂r) and (SNK)+ are related by

dvolSε(ŵr,Φ̂r) = (1 +O(ε)) dvol(SNK)+.
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We define δε,r > 0 by

〈N,−Υ〉 dvolSε(ŵr,Φ̂r) = δε,r dvol(SNK)+. (4.41)

Multiplying by δε,r, the system (4.40) will change the terms L1
r, Lr,

L̄r, the constant and quadratic terms will keep there properties and there

will be a new linear operator L̄1
r(w) on the boundary. We keep the same

notations for these terms and call Lε,r the new selfadjoint operator δε,r Lε,r

with respect to the standard L2(SNK)+-inner product.

Now since L̄r(w,Φ) and L̄1
r(w) involves only terms of the form w, ∂ziw,

we may extend L̄r(w,Φ), L̄1
r(w) and Ōr(ε

r+1) in (SNK)+ and this will

just add some terms in Lr(w,Φ), L1
r(w) and Or(ε

r) respectively which will

maintain there properties.

Without loss of generality we may replace the solvability of (4.40) with

the following equation.

Lε,r(w,Φ) = 1
εQr(w,Φ) +Or(ε

r) in (SNK)+,

∂w

∂η
=

1

ε
Q̄r(w,Φ) on ∂(SNK)+.

(4.42)

We will try to invert the linear operator on the left hand side and this

will lead us to study the spectrum of the operator by selfadjointness.

4.4 Spectral analysis

Function space: Fix 1
2 > s > 0. For any v ∈ L2(SNK)+ := L2(Sn

+×K),

set

〈Φ, Θ̃〉 := Π1 v, ε−1+2sw := Π⊥
1 v,

so that

v = ε1−2sw + 〈Φ, Θ̃〉. (4.43)

It will be understood that Φi for i = 1, · · · , n are the components of Π1 v

on NK. Conversely if couple a (w,Φ) ∈ Π⊥
1 L

2(SNK)+ × L2(K,NK) is

given, we associate to it a function v as in (4.43).

Later we will often decompose

w = w0 + w1 (4.44)

where w0 is a function on K and w1 has zero mean value with respect to

the angular integrals.



4.4. Spectral analysis 73

The volume element of (SNK)+ = Sn
+ ×K will be denoted by dθ dȳ.

As it will be apparent later, we will consider the following weighted Hilbert

subspaces of L2(SNK)+

L2
ε :=

{
v = ε1−2sw + 〈Φ, Θ̃〉 ∈ L2(SNK)+ : ε−2s

∫
(SNK)+

|w|2 dθ dȳ +

∫
K

|Φ|2 dȳ <∞
}

with corresponding norm

‖v‖2
L2

ε
:= ε−2s

∫
(SNK)+

|w|2 dε̄ dȳ +

∫
K

|Φ|2 dȳ.

We also define

H1
ε :=

{
v ∈ L2

ε : ε−2s

∫
(SNK)+

(ε2 |∇Kw|2 + |∇Sn
+
w|2 + |w|2) dθ dȳ +

∫
K

(|∇KΦ|2 + |Φ|2) dȳ <∞
}

with corresponding norm

‖v‖2
H1

ε
:= ε−2s

∫
(SNK)+

(ε2 |∇Kw|2+|∇Sn
+
w|2+|w|2) dθ dȳ+

∫
K

(|∇KΦ|2+|Φ|2) dȳ.

Let |Sn
+| denote the volume of Sn

+. Notice that∫
Sn

+

(Θi)2 dθ =
|Sn

+|
n+ 1

for all i = 1 · · ·n.

We define %n :=
|Sn

+|
n+1 .

With these definitions in mind we redefine Lε,r by duality as follows∫
(SNK)+

v Lε,r v
′ dε̄ dȳ :=

− ε−2s

∫
(SNK)+

ε2w′ ∆Kw dε̄ dȳ + ε−2s

∫
(SNK)+

(∇Sn
+
w∇Sn

+
w′ − nww′) dθ dȳ

+ %n

∫
K

〈JΦ,Φ′〉 dȳ +

∫
(SNK)+

(J 1
r (Φ) + L1

r(w) + εLr(w,Φ)) (ε1−2sw′ + 〈Φ′, Θ̃〉) dθ dȳ.

We associate to Lε,r its quadratic bi-linear form

Cε,r(v, v
′) :=

∫
(SNK)+

v Lε,r v
′ dθ dȳ,

and the associated quadratic form Qε,r(v) := Cε,r(v, v).

As mentioned in the first section, following [57], we want to find the values

of ε for which the operator Lε,r is invertible. By selfadjointness this leads to
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find the values of ε for which the eigenvalues of the form Qε,r are bounded

away from zero. Such techniques requires first that our form should be very

close to a model one that we can characterize its spectrum (just the small

eigenvalues). Secondly, to understand the behavior of small eigenvalues

seeing as “set” valued functions in ε. We will estimate the Morse index of

Qε,r and prove the monotonicity of its small eigenvalues. The former can

be done using Weyl’s asymptotic formula and the latter can be obtained

by applying a result by Kato. We shall do this in the remaining of this

section.

We define the model form, by duality, as

C0(v, v
′) := −ε−2s

∫
(SNK)+

ε2w′ ∆Kw dθ dȳ + ε−2s

∫
(SNK)+

(∇Sn
+
w∇Sn

+
w′ − nww′) dθ dȳ

+ %n

∫
K

〈JΦ,Φ′〉 dȳ

and the associated quadratic form Q0(v) := C0(v, v).

4.4.1. Proposition. There exists a constant c > 0 (independent of r)

such that

|Cε,r(v, v
′)− C0(v, v

′)| ≤ c εs ‖v‖H1
ε
‖v′‖H1

ε
. (4.45)

Proof. First of all we notice that in L1
r(w) their may appear expres-

sions of the forms w, ε∂yaw, ε2 ∂ya∂ybw, ∂zjw, ∂zj∂zj′w. Nevertheless after

integrating by parts and using Hölder inequality∣∣∣∣∫
(SNK)+

ε1−2sw′L1
r(w) dθ dȳ

∣∣∣∣ ≤ εc‖v‖H1
ε
‖v′‖H1

ε
,

and by definition of the H1
ε norm∣∣∣∣∫

(SNK)+
〈Φ′, Θ̃〉 L1

r(w) dθ dȳ

∣∣∣∣ ≤ cεs‖ε1−2sw‖H1
ε
‖Φ′‖L2(K,NK)

≤ cεs‖v‖H1
ε
‖v′‖H1

ε
.

Furthermore Π1J 1(Φ) = 0. Now it is clear that even if J 1
r (Φ) + Lr(w,Φ)

involves terms of the form w, ε∂yaw, ε ∂ya∂ybw, ∂zjw, ∂zj∂zj′w and also Φj,

∂yaΦj and ∂ya∂yb Φj, in any case after integration by parts and using Hölder

inequality we get∣∣∣∣∫
(SNK)+

(ε−1J 1
r (Φ) + Lr(w,Φ)) (ε1−2sw′ + 〈Φ′, Θ̃〉) dθ dȳ

∣∣∣∣ ≤ c‖v‖H1
ε
‖v′‖H1

ε
.
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The result follows at once.

The Morse index of Qε,r: Define the two quadratic forms

Q±(v) := Q0(v)± γ εs ‖v‖2
H1

ε
.

From (4.45), if γ > 0 is sufficiently large and ε small enough, then

Q− ≤ Qε,r ≤ Q+,

so that the index of Qε,r is bounded by those of Q+ and Q−.

Given any function w defined on (SNK)+, we set

D±
0 (w) := (1± γ εs)

∫
K

ε2 |∇Kw|2 dȳ − (n∓ γ εs)

∫
K

|w|2 dȳ,

D±
1 (w) := (1±γ εs)

∫
(SNK)+

(ε2 |∇Kw|2+|∇Sn
+
w|2) dθ dȳ−(n∓γ εs)

∫
(SNK)+

|w|2 dθ dȳ,

and finally,

D±(Φ) := −(1± γ εs)

∫
K

〈J Φ,Φ〉 dȳ.

With these definitions in mind, we have

Q±(v) = (n+ 1)%n ε
−2sD±

0 (w0) + ε−2sD±
1 (w1) + %nD

±(Φ),

if we decompose v = ε1−2sw+ 〈Φ, Θ̃〉 and further decompose w = w0 +w1

as usual. Following Section 6.3 in [56] it is easy to see that if (1±γ εs) > 0

then the index of D± is the index of K. Moreover the index of D±
1 is equal

to zero if 2 (n+ 1) (1− γ εs)− (n+ γ εs) > 0 because

Π1w1 = 0 and

∫
Sn

+

w1 dε̄ = 0

hence ∫
Sn

+

|∇Sn
+
w1|2 dθ ≥ 2 (n+ 1)

∫
Sn

+

|w1|2 dθ.

This shows that the asymptotic behavior of the index of Qε,r should be

determined by D±
0 . It is the case since its index is given by

]{j : (1± γεs)λj < (n∓ γεs)},

where λj are the eigenvalues of −ε2∆K counted with multiplicities. Now

using Weyl’s formula one obtain its index,

IndD±
0 ∼ cK

( n
ε2

)k
2

.

Collecting these estimates, one obtains the following
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4.4.1. Lemma. The Morse index of Qε,r is asymptotic to cε−k when ε tends

to zero, where c depends only on m and K.

Approximate eigenfunctions: In order to apply Kato’s theorem [52]

we need to characterize the eigenfunctions (eigenspaces) corresponding to

small eigenvalues. We prove

4.4.2. Lemma. Let σ be an eigenvalue of Lε,r and v = ε1−2sw + 〈Φ, Θ̃〉
a corresponding eigenfunction and ε1−2sw0 =

∫
Sn

+
v dθ is the decomposition

from (4.44). There exist constants c, c0 > 0 such that if |σ| ≤ c0, then

‖v − ε1−2sw0‖2
H1

ε
≤ c εs ‖v‖2

H1
ε
,

for all ε > 0 small enough.

Proof. For any v′ = ε1−2sw′ + 〈Φ′,Θ〉, we have

Cε,r(v, v
′) = σ

∫
(SNK)+

(ε2−4sww′ + 〈Φ,Θ〉〈Φ′,Θ〉) dθ dȳ

= σ

∫
(SNK)+

ε2−4sww′ dθ dȳ + σ %n

∫
K

〈Φ,Φ′〉 dȳ.

In addition, (4.45) gives∣∣∣∣∫
(SNK)+

ε−2s(ε2∇Kw∇Kw
′ +∇Sn

+
w∇Sn

+
w′ − (n+ σ ε2−4s)ww′) dθ dȳ

+ %n

∫
K

(〈JΦ,Φ′〉 − σ 〈Φ,Φ′〉) dȳ
∣∣∣∣ ≤ c εs ‖v‖H1

ε
‖v′‖H1

ε
.

(4.46)

Step 1 : Let Φ′ = 0 and w′ = w1 to get∣∣∣∣∫
(SNK)+

ε−2s(ε2 |∇Kw1|2 + |∇Sn
+
w1|2 − (n− σ ε2−4s) |w1|2) dθ dȳ

∣∣∣∣ ≤ c εs ‖v‖H1
ε
‖ε1−2sw1‖H1

ε
.

However, since

Π1w1 = 0 and

∫
Sn

+

w1 dθ = 0,

we have ∫
Sn

+

|∇Sn
+
w1|2 dε̄ ≥ 2 (n+ 1)

∫
Sn

+

|w1|2 dθ,

hence∣∣∣∣∫
(SNK)+

ε−2s(ε2 |∇Kw1|2 +
1

2
|∇Sn

+
w1|2 + (1− |σ| ε2−4s) |w1|2) dθ dȳ

∣∣∣∣ ≤ c εs ‖v‖2
H1

ε
.
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This implies that

‖ε1−2sw1‖2
H1

ε
≤ c εs ‖v‖2

H1
ε
,

for all ε ∈ (0, 1), provided |σ| ≤ 1/2.

Step 2: Now let w′ = 0 and Φ′ = Φ+ (resp. Φ′ = Φ−) in (4.46), where

Φ+ (resp. Φ−) is the L2 projection of Φ over the space of eigenfunctions of

J associated to positive (resp. negative) eigenvalues. This yields∣∣∣∣∫
K

(〈JΦ,Φ±〉 − σ 〈Φ,Φ±〉) dȳ
∣∣∣∣ ≤ c εs ‖v‖H1

ε
‖〈Φ±, Θ̃〉‖H1

ε
.

Since J is invertible, there exists c1 > 0 such that

c1 ‖〈Φ±, Θ̃〉‖2
H1

ε
≤
∣∣∣∣∫

K

〈JΦ,Φ±〉 dȳ
∣∣∣∣ .

Hence

(c1 − |σ|) ‖〈Φ±, Θ̃〉‖2
H1

ε
≤ c εs ‖v‖2

H1
ε
.

This conclude the proof with c0 := min{1/2, c1/2}.

4.4.1. Remark. If v is an eigenspace corresponding to an eigenvalue given

by the above lemma, then it satisfies∣∣∣∣∫
(SNK)+

ε−2s(ε2 |∇Kw|2 + |∇Sn
+
w|2 − (n+ σε2−4s) |w|2) dθ dȳ

+ %n

∫
K

( 〈JΦ,Φ〉 − σ 〈Φ,Φ〉) dȳ
∣∣∣∣ ≤ c εs ‖v‖2

H1
ε
,

and∣∣∣∣∫
(SNK)+

ε−2s(ε2 |∇Kw|2 + |∇Sn
+
w|2 − n |w|2) dθ dȳ

∣∣∣∣ ≤ c εs ‖v‖2
H1

ε
. (4.47)

Notice that ∇Sn
+
w = ∇Sn

+
w1 if w is decomposed as w = w0 + w1 one has∣∣∣∣∫

(SNK)+
ε−2s(ε2 |∇Kw|2 − n |w|2) dθ dȳ

∣∣∣∣ ≤ c εs ‖v‖2
H1

ε
,

so that

ε−2s

∫
(SNK)+

ε2 |∇Kw|2 dθ dȳ ≤ c εs ‖v‖2
H1

ε
+ nε−2s

∫
(SNK)+

|w|2 dθ dȳ.

In particular we have

‖v‖H1
ε
≤ c‖v‖L2

ε
.
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Variation of small eigenvalues with respect to ε: To understand the

behavior of small eigenvalues of the symmetric quadratic form Qε,r, we

need to apply a result by Kato, see [52]. Considering the eigenvalues σ(ε)

as differentiable multivalued function in ε, the result states that

∂εσ ∈
{∫

(SNK)+
v (∂εLε,r) v dθ dȳ : Lε,rv = σ v, ‖v‖L2 = 1

}
.

(4.48)

An good estimate of a bound for the set on the right of (4.48) allows one to

estimate the spectral gaps of the linearized operator when the parameter

ε is small, see [56] § 6.3.

This is indeed given in the following lemma.

4.4.3. Lemma. There exist constants c1, c > 0 such that, if σ is an eigen-

value of Lε,r with |σ| < c1, then

ε ∂εσ ≥ 2n− c εs,

provided ε is small enough.

Proof. We have just to provide bounds for the set on the right of (4.48)

using the above remark.

Assume that Lε,rv = σ v, but rather than normalizing the function v

by ‖v‖L2 = 1, assume instead that ‖v‖L2
ε
= 1. In order to compute ∂εLε,r,

recall that

w = ε−1+2s Π⊥
1 v and that 〈JΦ, Θ̃〉 = Π1 v,

so we can write

Lε,r v = −ε2s∆K (Π⊥
1 v) +

1

ε2−2s
L0 (Π⊥

1 v) + Π1 v +
1

ε1−2s
L1

r (Π⊥
1 v)

+J 1 (J−1
r Π1 v) + εLr(ε

−1+2s Π⊥
1 v, J

−1Π1 v).

Since Π1 and Π⊥
1 are independent of ε, we have

∂εLε,rv = −2sε−1+2s∆K (Π⊥
1 v) + (−2 + 2s)ε−3+2sL0 (Π⊥

1 v) + (−1 + 2s)ε−2+2sL1
r (Π⊥

1 v)

+ L̃r(ε
−1+2s Π⊥

1 v, J
−1Π1 v),

where the operator L̃r varies from line to line but satisfies the usual as-
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sumptions. This now gives∣∣∣∣∫
(SNK)+

v (∂εLε,r) v dθ dȳ − 2ε−1−2s

∫
(SNK)+

ε2|∇Kw|2 dθ dȳ

+
(2− 2s)

ε
ε−2s

∫
(SNK)+

(ε2|∇Kw|2 + |∇Sn
+
w|2 − n |w|2) dθ dȳ

∣∣∣∣
≤ c ‖v‖2

H1
ε
+

∣∣∣∣1− 2s

ε

∫
(SNK)+

〈Φ, Θ̃〉L1
r (w) dθ dȳ

∣∣∣∣
≤ c

ε1−s
‖v‖2

H1
ε
.

Consequently if v is an eigenfunction of Lε,r with corresponding eigenvalue

|σ| ≤ c0, where c0 is given in the previous lemma, by the inequality (4.47),

see the above remark, we have∣∣∣∣∫
(SNK)+

v (∂εLε,r) v dθ dȳ − 2ε−1−2s

∫
(SNK)+

ε2|∇Kw|2 dθ dȳ
∣∣∣∣ ≤ c

ε1−s
‖v‖2

H1
ε
.

(4.49)

Again from the above remark, one gets

ε−1−2s

∫
(SNK)+

ε2|∇Kw|2 dθ dȳ ≤ c ε−1+s ‖v‖2
H1

ε
+n ε−1−2s

∫
(SNK)+

|w|2 dθ dȳ.

If we normalize v by ‖v‖L2
ε
= 1 then inserting this into (4.49) we get∣∣∣∣∫

(SNK)+
v (∂εLε,r) v dθ dȳ −

2

ε
n

∣∣∣∣ ≤ c

ε1−s
(4.50)

for all eigenfunction v such that Lε,rv = σ v which is normalized by ‖v‖L2
ε
=

1.

Now since ||v||L2 ≤ ‖v‖L2
ε
, we conclude that

inf
Lεv=σ v

‖v‖L2=1

∫
(SNK)+

v (∂εLε) v dθ dȳ ≥ inf
Lεv=σ v

‖v‖L2
ε
=1

∫
(SNK)+

v (∂εLε) v dθ dȳ,

and (4.50) implies that

∂εσ ≥
2

ε
n− c

ε1−s
.

This completes the proof of the result.
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4.5 Proof of Theorem 4.0.1

Using Lemma 4.4.1 and Lemma 4.4.3, reasoning as for the proof of Lemma

6.3 in [56] we can find a sequence of open interval Ii, i ∈ N such that the

smallest eigenvalue of Lε,r is bounded away from zero for any ε ∈ ∪iIi.

More precisely we have

4.5.1. Lemma. Fix any q ≥ 2. Then there exists a sequence of disjoint

nonempty open intervals Ii = (ε−i , ε
+
i ), ε±i → 0 and a constant cq > 0 such

that when ε ∈ Iq := ∪iIi, the operator Lε,r is invertible and

(Lε,r)
−1 : L2

ε −→ L2
ε,

has norm bounded by cq ε
−k−q+1, uniformly in ε ∈ I. Furthermore, Iq :=

∪iIi satisfies ∣∣H1((0, ε) ∩ Iq)− ε
∣∣ ≤ c εq, ε↘ 0.

For p ∈ N and 0 < α < 1, we denote by Cp,α the usual Hölder spaces on

the closure of (SNK)+.

4.5.2. Lemma. Let f ∈ C0,α and v satisfy

Lε,r v = f.

Then there exit a constant c > 0 (independent of ε but may depend on r)

and R > 0 depending only on q, α, s and k such that

‖v‖C2,α ≤ c ε−R ‖f‖C0,α

for any ε ∈ Iq.

Proof. Fix q ≥ 2. Observe that by definition of the weighted norm of

L2
ε, from Lemma 4.5.1 we have

‖v‖L2 ≤ cq ε
−k−q+1−s ‖f‖L2.

By standard elliptic regularity theory, there exists c > 0 (may be depending

on r) such that the following Hölder estimate holds

ε2+α‖v‖C2,α ≤ c ε2 ‖f‖C0,α + c ε−
k
2 ‖v‖L2.

From these last two inequalities, we can choose R > 3k
2 + q + α+ 1 + s.
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We end the proof of the main theorem by finding a fixed point for the

mapping

Tε,r(v) := −(Lε,r)
−1 {Or(ε

r) +Nε,r(v)} ,

where∫
(SNK)+

Nε,r(v) v
′ dθ dȳ :=

∫
(SNK)+

ε−1Qr(ε
−1+2s Π⊥

1 v,Π1 v) v
′ dθ dȳ

+

∮
∂(SNK)+

ε−1 Q̄r(ε
−1+2s Π⊥

1 v,Π1 v) v
′ dθ̄ dȳ.

Since by definition, Qr and Q̄r are (at least) quadratic we have

‖Nε,r(v)‖C0,α = ε−2+2sO(‖v‖C2,α) ‖v‖2
C2,α;

‖Nε,r(v1)−Nε,r(v2)‖C0,α = ε−2+2sO(‖v1‖C2,α, ‖v2‖C2,α)‖v1 − v2‖C2,α.

Now we fix r > 2R+ 2− 2 s. By Lemma 4.5.2 and the above inequalities,

for every ε ∈ Iq, Tε,r(v) maps the ball

{v ∈ C2,α : ‖v‖C2,α ≤ C εr+1−R}

into itself moreover it is a contraction. Therefore it has a unique fixed

point v = ε1−2sw + 〈Φ, Θ̃〉 in the ball yielding

mH(ŵ(r) + w, Φ̂r + Φ) = n in Sε(ŵ
(r) + w, Φ̂r + Φ) ⊂ Ωε,

〈N,Vε〉 = 0 on ∂Sε(ŵ
(r) + w, Φ̂r + Φ) ⊂ ∂Ωε.

If ε ∈ Iq is sufficiently small then rescaling back, the tube ε Sε(ŵ
(r) +

w, Φ̂r + Φ), is an embedded hypersurface of Ω (because the C1,α-norm of

ŵ(r) + w tends to zero as ε → 0) with constant mean curvature equal to
n
mε

−1 and intersecting the boundary of Ω perpendicularly along its bound-

ary.

4.5.1. Remark. Existence of stationary Capillary hypersurfaces.

Letting γ ∈ (0, π) be an angle, recall from § 4.1.1 that (y1, y2 . . . , yk) ∈ Rk

(resp. (z1, z2 . . . , zn) ∈ Bn
r(γ)) are the local coordinate variables on Kε

(resp. on Sn(γ)), where r(γ) := 1−cos γ
1+cos(γ) (see § 2.3) and

Θ(γ) := p
∣∣∣
Bn

r(γ)

− cos(γ)En+1
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parameterizes the spherical cap Sn(γ) which intersects the horizontal plane

Rm with angle γ.

As in the case where γ = π
2 , we can use the same class of deformations

letting Φ : K → NKε and w : Bn
γ ×Kε → R, consider

Sγ : (y, z) 7→ y × ε−1Φ(εy) + (1 + w(y, z)) Θ(γ).

The surfaces nearby a geodesic tube around Kε which make an angle almost

equal to γ with ∂Ωε can be parameterized (locally) by

Gγ(y, z) : (y, z) −→ Sγ(y, z) −→ F ε(Sγ(y, z)),

namely

Gγ(y, z) := F ε

(
y,

1

ε
Φ(εy) + (1 + w(y, z))Θ̃(γ), (1 + w(y, z))Θn+1(γ)

)
.

Notice that Θn+1(γ)
∣∣∣
∂Bn

r(γ)

= 0, so

Gγ(y, z)
∣∣∣
∂Bn

r(γ)

∈ ∂Ωε for any y

The image of this map will be called Sγ
ε (w,Φ).

Observe that the hypersurfaces close to Sγ
ε (0, 0) are parameterized using

the vector field −Υ(γ) = Θj(γ)Xj + Θn+1(γ)Vε rather than the normal

Ξ := pj Xj +pn+1Vε because it is more reasonable if we want the boundary

of Sγ
ε (w,Φ) to be on ∂Ωε without imposing simultaneously a Neumann and

Dirichlet boundary condition on w. Suppose Zj(γ), Za(γ) span the tangent

space of Sγ
ε (w,Φ) as in § 7.2.1, we can obtain the normal fields N(γ) by

finding αj(γ) and βa(γ) so that

N(γ) = −Ξ + αj(γ)Zj(γ) + βa(γ)Za(γ).

As we did in Section 4.2, the mean curvature at every point of Sγ
ε (w,Φ)
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can be obtained:

mH(w,Φ) = n− ε

(
Γa

a(p̃) + pn+1 haa + pn+1 [3〈h(p̃), p̃〉 − hjj] + nΘn+1(γ)〈h(p̃), p̃〉
)

+O(ε2)

−
(
ε2∆K (〈Θ(γ),p〉w) + ∆Sn (〈Θ(γ),p〉w) + n (〈Θ(γ),p〉w)

)
− ε

(
〈∆KΦ +R(Φ, Ea)Ea , p̃ 〉 − Γc

a(Φ) Γa
c(p̃)

)
− ε

(
(3n+ 1) Θn+1(γ)h(p̃)a〈Φā, p̃〉+ pn+1h(Φā)

a + 2pn+1h : Γ(Φ)

)
− n

2 (εwā + 〈Φā, p̃〉)2 − 〈Φā, ε∇Snwā〉 − 2ε2∇2
Kw : Γ(Φ)

+ n+2
6 〈R(Φ, p̃)Φ , p̃〉 − 1

3〈R(Φ, Ei)Φ , Ei〉

+ εL(w) + ε2 L(w,Φ) +Q(w) + εQ(w,Φ).

Moreover (recall that Vε is the interior normal of ∂Ωε) using the fact that

Θn+1(γ)
∣∣∣
∂Bn

r(γ)

= 0, the equation 〈 − Vε, N〉 = cos(γ) is equivalent to

〈Θ(γ),p〉(1− w)
∂w

∂η(γ)
= Ō(ε2) + ε2 L̄(w,Φ) + Q̄1(w,Φ) + ε Q̄(w,Φ) on ∂Sn(γ)×K,

which is again equivalent to

∂(〈Θ(γ),p〉w)

∂η(γ)
= w

∂〈Θ(γ),p〉
∂η(γ)

+ Ō(ε2) + ε2 L̄(w,Φ) + Q̄1(w,Φ) + Q̄(w)

+ε Q̄(w,Φ) on ∂Sn(γ)×K

= w cot(γ) + Ō(ε2) + ε2 L̄(w,Φ) + Q̄1(w,Φ)

+Q̄(w) + ε Q̄(w,Φ) on ∂Sn(γ)×K,

where

Q̄1(w,Φ) := cot(γ)

(
εwā〈Φā, p̃〉+ 〈Φā, p̃〉〈Φā, p̃〉 −

1

3
〈R(Φ, p̃) Φ, p̃〉

)
.

Using the results from § 2.3 and from § 4.3, one can adjust the tube to

Sγ
ε (ŵ(r), Φ̂(r)) accurately. Moreover with the decomposition of the functions

v = ε1−2sw+〈Φ, p̃〉 ∈ L2(Sn(γ)×K) as in (4.43) we conclude that the spec-

tral analysis of the linearized mean curvature operator over Sγ
ε (ŵ(r), Φ̂(r))

carried out as we obtain in Section 4.4 in the new weighted Hilbert sub-
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spaces of L2(Sn(γ)×K)

L2
ε,γ :=

{
v = ε1−2sw + 〈Φ, p̃〉 ∈ L2(Sn(γ)×K) :

ε−2s

∫
Sn(γ)×K

〈Θ(γ),p〉|w|2 dθ(γ) dȳ +

∫
K

|Φ|2 dȳ <∞
}

{
v ∈ L2

ε,γ : ε−2s

∫
Sn(γ)×K

〈Θ(γ),p〉(ε2 |∇Kw|2 + |∇Sn(γ)w|2 + |w|2) dθ(γ) dȳ

+

∫
K

(|∇KΦ|2 + |Φ|2) dȳ <∞
}
.

Under the usual assumptions on K, if ε ∈ Iq is sufficiently small then

rescaling back, we can find a couple (w,Φ) so that the tube ε Sγ
ε (ŵ(r) +

w, Φ̂r + Φ) , is an embedded hypersurface of Ω with constant mean cur-

vature n
mε

−1 and intersecting ∂Ω with and angle γ. This yields a set of

stationary Capillary hypersurfaces in Ω with constant “contact angle” γ

and condensing to the submanifold K.



Chapter 5

Capillary minimal surfaces in Riemannian manifolds

This Chapter deals with minimal surfaces sloving (GMP ) in Riemannian

manifolds. Minimal surfaces are surfaces with mean curvature vanishing

everywhere. These include, but are not limited to, surfaces of minimal area

subject to various constraints.

In this chapter we are interested in minimal surfaces which intersect a given

hypersurface with a constant angle. We prove existence results of capil-

lary surfaces with prescribed topology in Riemannian manifolds. Roughly

speaking, we first show the existence of a class of capilary (minimal) disc-

type surfaces embedded in a Riemannian surface of revolution (see below).

In particular, shrinking enough the thickness of the surface of revolution,

this class constitutes a foliation. Secondly we have existence of minimal

disc-type surfaces embedded in a geodesic tube of a curve which intersect

perpendicularly the boundary of the tube.

Before stating the main results, we need to define what we mean by Rie-

mannian surface of revolution.

A surface of revolution, is a surface created by rotating a parametric

curve [a, b] 3 s→ (κ(s) , φ(s)) ∈ R2 lying on some plane around a straight

line (the axis of rotation) in the same plane.

The resulting surface C 1 therefore always has azimuthal symmetry. Ex-

amples of surfaces of revolution include cylinder (excluding the ends), hy-

perboloid, paraboloid, sphere, torus, etc.

In more generality one can obtain surfaces of revolution in Rm+1, m ≥ 2

using the standard parametrization

S(s, z) = (κ(s) , φ(s) Θ(z)) ,

where z 7→ Θ(z) ∈ Sm−1, φ(s) 6= 0 ∀s ∈ [a, b].

Assuming that the rotating curve is parameterized by arc length namely

(φ′(s))2 + (κ′(s))2 = 1,

clearly the disc Ds,1 centered at (κ(s) , 0) (on the axis of rotation) with
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radius φ(s) parameterized by

Bm
1 3 x 7→ (κ(s) , φ(s)x) ,

has zero mean curvature and intersects the above surface of revolution with

a constant angle equal to arccos φ′(s), where Bm
1 stands for the unit ball

of Rm centered at the origin, namely Ds,1 is a capillary surface.

Motivated by capillarity problems, for questions of stability, see [34], it

is not restrictive to assume that the angle of contact is in (0, π), namely

φ′(s) ∈ (−1, 1) or equivalently

κ′(s) 6= 0. (5.1)

We shall extend these definitions of surface of revolution in a Rieman-

nian setting.

Let (Mm+1, g) be Riemannian manifold, and Γ an embedded curve pa-

rameterized by a map γ : [0, 1] →M. As in Section 4.1, we consider a local

parallel orthogonal frame E1, · · · , Em of NΓ along Γ. This determines a

coordinate system by

[0, 1]× Rm 3 (x0, ζ) 7→ (x0, ζ) := expγ(x0)(ζ
iEi) ∈ M.

For a small parameter ρ > 0, consider the Riemannian surface of revolution

C ρ around Γ in M parameterized by

(s, z) −→ F (ρ S(s, z)) = F (ρ κ(s) , ρ φ(s)Θ(z)) = expγ(ρ κ(s))(ρ φ(s)Θi(z)Ei),

where z 7→ Θ(z) ∈ Sm−1, and call its interior Ωρ := int C ρ which is nothing

but a tubular neighborhood for Γ if ρ is small enough. Here we are assuming

always that φ(s) 6= 0 and that (φ′(s))2 + (κ′(s))2 = 1.

For any s ∈ [a, b], we consider the following set

Ds,ρ := F (ρ κ(s) , ρ φ(s)Bm
1 ),

it is clear that ∂Ds,ρ ⊂ C ρ and we have that the mean curvature HDs,ρ
of

Ds,ρ, see § 5.3.1, satisfies

HDs,ρ
= O(ρ) in Ds,ρ (5.2)

while the angle between the unit outer normals (see also § 5.3.2) can be

expanded as

〈NDs,ρ
, NC ρ〉 = φ′(s) +O(ρ) on ∂Ds,ρ. (5.3)
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Our aim is to perturb Ds,ρ to a capillary minimal submanifold, Ds,ρ, of

Ωρ centered on Γ with contact angle arccos φ′(s) along ∂Ds,ρ ⊂ C ρ, as it

happens in Rm+1.

5.0.1. Theorem. Suppose we are in the situation described above. Let

[a′, b′] ⊂ [a, b] be such that φ(s)φ′′(s) > 0 for every s ∈ [a′, b′]. Then there

exists ρ0 > 0 such that for any s ∈ [a′, b′] and ρ ∈ (0, ρ0), there exists

an embedded minimal disc Ds,ρ ⊂ Ωρ, intersecting C ρ by an angle equal

to φ′(s) along its boundary. Moreover Ds,ρ is a normal graph over the set

Ds,ρ for which the norm (in the C2,α-topology) of this function defining the

graph tends to zero uniformly as ρ tends to zero.

Furthermore there exists a tubular neighborhood Oρ of γ([a′, b′]) foliated by

such minimal discs for which each leaf intersects ∂Oρ transversally along

its boundary.

5.0.2. Remark. • When we parameterize in particular C ρ with κ(s) =

s, and if we require the capillary discs to be perpendicular to C ρ, we ob-

tain the conditions φ′ = 0 and φ′′ 6= 0. This means that non-degenerate

extrema of the width φ determine the location of such surfaces.

• An example is the hyperboloid, φ(s) = cosh s and κ(s) = sinh s. Here

one may see M as a Lorentzian manifold modeled on the Minkowski

space Rm
1 . Letting q ∈ M and E0 a unit time-like vector of TqM and

γ(x0) = expq(x0E0) so one can see D0,ρ as a space-like minimal disc

in the geodesic sphere of radius ρ.

An interesting particular case which is not covered by Theorem 5.0.1 is

when φ ≡ 1 and κ =Id, namely when we deal with geodesic tubes. In

this situation (recall that in this case the angle of contact is π
2 ) it is the

geometry of the manifold to determine the position of the discs. More

precisely, we have that C ρ is the geodesic tube of radius ρ > 0 around Γ,

C ρ = {q ∈M : distg(q,Γ) = ρ},

and its interior is nothing but

Ωρ := {q ∈M : distg(q,Γ) < ρ}.

In this case due to invariance by translations along the axis of rotation,

we reduced our problem of finding minimal surfaces to a finite-dimensional

one. Namely we have obtained the following
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5.0.3. Theorem. There exists a smooth function ψρ : [a, b] → R such

that, for ρ small, if s0 is a critical point of ψρ the set Ds0,ρ can be smoothly

perturbed to an embedded minimal hyper-surface Ds0,ρ ⊂ Ωρ intersecting C ρ

perpendicularly along its boundary. Furthermore, for any integer k, there

exists a constant ck (independant on ρ) such that

‖ψρ −
n∑
i,j

〈Rp(Ej, Ei)Ej, Ei〉‖Ck[a,b] ≤ ckρ
2,

where Rp is the Riemann tensor of M at p = γ(ρ s).

Some remarks are due: let Γ 3 p → Ψ(p) =
∑m

i,j 〈Rp(Ej, Ei)Ej, Ei〉 any

strict maxima or minima of Ψ imply the existence of minimal surfaces. In

particular suppose at some point p0 = γ(ρ s0) interior to Γ, there hold

dΨ(p0)[γ̇(ρ s0)] = 0 and
∣∣d2Ψ(p0)[γ̇(ρ s0), γ̇(ρ s0)]

∣∣ > c,

for some constant c independent on ρ. By the implicit function theorem,

there exits a curve (0, ρ0) 3 ρ 7→ sρ with sρ → s0 such that sρ is a critical

point of ψρ. Hence for every ρ ∈ (0, ρ0), there exits an embedded minimal

disc Dsρ,ρ, centered at γ(ρ sρ), contained in Ωρ that intersects ∂Ωρ perpen-

dicularly along its boundary.

5.0.4. Remark. • We have that

Ψ(p) =
m∑
i,j

〈Rp(Ej, Ei)Ej, Ei〉 = S(p) + 2Ricp(γ̇(ρ s), γ̇(ρ s)),

where

S(p) =
m∑

α,β=0

〈Rp(Eα, Eβ)Eα, Eβ〉

is the scalar curvature of M at p = γ(ρ s), E0 = γ̇(ρ s) and Ricp is

the Ricci tensor of M at p. From Theorem 5.0.3, we have that if

s 7→ Ricp(γ̇(ρ s), γ̇(ρ s)) is constant along Γ then stable critical points

the scalar curvature yields existence of minimal discs.

• Recall that if (Mm1
1 , g1) and (Mm2

2 , g2) are two manifolds, the Rie-

mann tensor R of the (Riemannian) Cartesian product Mm1+m2 :=

(M1 ×M2, g1 ⊕ g2) decomposes as R = R1 ⊕R2 since the connection
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∇ is given by ∇X1+X2
(Y1 +Y2) = ∇1

X1
Y1 +∇2

X2
Y2 for any X1, Y1 (resp.

X2, Y2) vector fields of M1 (resp. M2), where ∇i is the connection of

Mi. Clearly for any p2 ∈ M2, the set (M1)(p2) := {(p1, p2) ∈ M :

p1 ∈M1} is a submanifold of M, diffeomorphic to M1.

In particular if m1 = 1, R1 = 0, by Theorem 5.0.3 we obtain that sta-

ble critical points of the mapping S
∣∣∣
(M1)(p2)

yield existence of minimal

discs inside (small) geodesic tubes around the curve (M1)(p2), where

as before S is the scalar curvature of M.

• As a simple byproduct of our analysis, we find that if Γ is a closed

curve, we have at least 2 (equal to the Lusternik-Schnierelman category

of Γ, see [5] ) solutions (without any assumptions on the curvature of

M).

• We believe that this result might be generalized to higher codimensions

namely if N `, 1 < ` < m, is an `-dimensional submanifold of Mm+1

and considering the following surface of revolution with axis of rotation

R`

S(s, z) = (κ1(s), . . . , κ`(s), φ(s) Θ(z)),

where z 7→ Θ(z) ∈ Sm−`, one could obtain (m − ` + 1)-dimensional

minimal disc-type submanifolds of M centered on N `.

Let us describe the proof of the theorems above. We first recall, see [78],

that Capillary hypersurfaces with constant contact angle arccos φ′(s) are

stationary for the energy functional

E(D) = Area(D ∩ Ωρ)− φ′(s) Area(Ω′
ρ), (5.4)

among (orientable smooth) surfaces D ⊂ Ωρ with ∂D ⊂ ∂Ωρ and Ω′
ρ ⊂ ∂Ωρ

is the part (on one side of D) for which the angle is measured. Moreover

the Euler-Lagrange equations is nothing but

HD = 0 in D,

〈ND, N∂Ωρ
〉 = φ′(s) on ∂D.

(5.5)

Here HD is the mean curvature of D while ND and N∂Ωρ
are outer unit

normals of D and ∂Ωρ respectively. Since we look for stationary surfaces

with a given profile for this energy functional, clearly by (5.2)-(5.3) a man-

ifold of approximate solutions is given by Zρ := {Ds,ρ : s ∈ [a, b]}.
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For any given hyper-surface Ds,ρ ∈ Zρ, we parametrize (locally) a neighbor-

hood of Ds,ρ (in the manifold in M) by a mapping F s : R×Bm
1 →M for

which F s(t, ∂Bm
1 ) ⊂ ∂Ωρ, for every t, while the direction F s

∗ (∂t) is nearly

normal to Ds,ρ, and moreover Ds,ρ = F s(0, Bm
1 ), see (5.9). This allows

to parametrize any set D nearby Ds,ρ satisfying ∂D ⊂ ∂Ωρ by a function

w : Bm
1 → R such that D(w) = F s(w,Bm

1 ). We call H(s, ρ, w) the mean

curvature of D(w) and B(s, ρ, w) the angle between the normals N∂D(w)

and NC ρ of ∂D(w) and ∂Ωρ respectively.

One of the main features in this work in the (technical) Sections 5.3.1,

§ 5.3.2 is to calculate H(s, ρ, w) as a nonlinear elliptic partial differen-

tial operator, depending on ρ and s acting on w coupled with the mixed

boundary operator which we denote by B(s, ρ, w). In these calculations it

is important to gather various different types of error terms, some of which

depend linearly and some nonlinearly on w, and some of which are inho-

mogeneous terms vanishing to some order in ρ. It turns out to be helpful

to rescale the local coordinates y by ε(s) = ρφ(s) which is the radius of

the discs. The final expression, Proposition 5.3.5, for the mean curvature

of D(w) then is

− φ
κ′
H(s, ρ, w) = −Lρ,s(w) +O(ρ2) + ρQ(w) in D(w),

where Lρ,s is the linearized mean curvature operator about D(0) = Ds,ρ:

Lρ,s(w) = −∆w + ρLs(w) in D(w);

also the angle between the normals satisfies (see Proposition 5.3.6)

ρ−1 (B(s, ρ, w)− φ′(s)) = Bρ,s(w) +O(1) + ρ Q̄(w),

where

Bρ,s(w) =

(
(κ′(s))2 ∂w

∂η
+ φφ′′w

)
+ ρ L̄s(w) on ∂D(w).

Here Ls (resp. L̄s) is a second order (resp. first order) differential operator

and Q(w), Q̄(w) are quadratic in w, see also the end of Section 5.1 for

more precise definitions.

It turns out that the problem of finding w such that D(w) solves (5.5)

namely
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H(s, ρ, w) = 0 in D(w),

B(s, ρ, w) = φ′(s) on ∂D(w),

can be transformed to a fixed point problem for which the solvability is

based on the invertibility of Lρ,s on a suitable space of functions w such

that Bρ,s(w) = 0. If φφ′′ > 0 , the operator Lρ,s (resp. −Lρ,s) is invertible

by means of usual Sobolev inequalities. Hence after suitable adjustment of

the disc D(w), we readily prove the first theorem. This program is carried

out in § 5.4.1. Now in the situation where φ ≡ 1 and κ =Id, it is clear

that the linearized mean curvature Lρ,s about any D ∈ Zρ may have small

(possibly zero) eigenvalues on the space of functions for which Bρ,s(w) =
∂w
∂η + ρ L̄s(w) = 0. This is related to the invariance by translations along

the axis of rotation in the ”flat” case. Hence Lρ,s may not be invertible

on such space. However restricting again ourselves on space of function

orthogonal to the constant function 1, we can perturb Zρ to a manifold

Zρ (constituted by sets having constant and small mean curvatures, see

§ 5.4.3) which turns out to be a natural constraint for E namely critical

point of E
∣∣∣
Zρ

is also stationary for E . For that we use an argument from

Kapouleas in [51] which was successfully employed in [73]. We will follow

the argument of the latter, we refer to § 5.4.3.

It is worth noticing that this method is also closely related to variational-

perturbative methods introduced by Ambrosetti and Badiale in [3] and

subsequently used with success to get existence and multiplicity results

for a wide class of variational problems in some perturbative setting we

refer to the book by Ambrosetti Malchiodi [4] for more details and related

applications.

5.1 Preliminaries and notations

We consider (φ, κ) : [a, b] → R2 smooth with κ′(s), φ(s) 6= 0 for every

s ∈ [a, b] moreover we assume that s is the arc length of the rotating curve

s 7→ (φ(s), κ(s)) precisely

(φ′(s))2 + (κ′(s))2 = 1 ∀s ∈ [a, b].

We also assume that x0 is the arc length of γ, and we will let E0 := γ′.

We choose a parallel (local) orthonormal frame E1, · · · , Em of NΓ along Γ.



92 5. Capillary minimal surfaces in Riemannian manifolds

This determines a coordinate system by defining

F (x0, ζ) := expγ(x0)(ζ
iEi) for ζ = (ζ1, · · · , ζm)

which therefore defines coordinates vector fields :

Y0 := F ∗(∂x0
), Yi := F ∗(∂zi

).

We will adopt the convention that the indices i, j, k, · · · ∈ {1, . . . ,m} while

α, β, · · · ∈ {0, . . . ,m} with Yα = Y0 when α = 0.

By construction, ∇Xi
Y0

∣∣∣
Γ
∈ TΓ so that we can define

〈∇Xi
Y0, Y0〉

∣∣∣
Γ

= −Γ0
0(Ei).

There also holds

∇Yi
Yj(ζ) = O(|ζ|)γYγ. (5.6)

If q = F (x0, ζ) ∈ M near the point p = F (x0, 0) ∈ Γ, we can expand the

metric gαβ(q) = 〈Yα, Yβ〉 in ζ, more accurately than in Lemma 5.1.1 by

looking at M here as Ω. ( See for instance [56], Proposition 2.1 for the

proof).

5.1.1. Lemma. In the above coordinates (x0, ζ), for any i, j = 1, ...,m, we

have

gij(q) = δij + 1
3 〈Rp(Y,Ei)Y,Ej〉+ 1

6 〈∇YRp(Y,Ei)Y,Ej〉+ Op(|ζ|4);

g0j(q) = 2
3 〈Rp(Y,E0)Y,Ej〉+Op(|ζ|3);

g00(q) = 1− 2Γ0
0(Y ) + 〈Rp(Y,E0)Y,E0〉+ Op(|ζ|3),

where Y := ζ iEi.

Notation for error terms: Any expression of the form L(ω) (resp. L̄(ω))

denotes a linear combination of the function ω together with its derivatives

with respect to the vector fields Yi up to order 2 (resp. order 1). The

coefficients of L or L̄ might depend on ρ and s but, for all k ∈ N, there

exists a constant c > 0 independent of ρ ∈ (0, 1) and s ∈ [a, b] such that

‖L(ω)‖Ck,α(Bm
1 ) ≤ c ‖ω‖Ck+2,α(Bm

1 ),

‖L̄s(ω)‖Ck,α(Bm
1 ) ≤ c ‖ω‖Ck+1,α(Bm

+ ).

Similarly, any expression of the form Q(ω) (resp Q̄(ω)) denotes a nonlinear

operator in the function ω together with its derivatives with respect to the
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vector fields Yi up to order 2 (resp. 1). The coefficients of the Taylor

expansion of Qa(ω) in powers of ω and its partial derivatives might depend

on ρ and s and, given k ∈ N, there exists a constant c > 0 independent of

ρ ∈ (0, 1) and s ∈ [a, b] such that

‖Q(ω1)−Q(ω2)‖Ck,α(Bm
1 ) ≤ c

(
‖ω1‖Ck+2,α(Bm

1 ) + ‖ω2‖Ck+2,α(Bm
1 )

)
‖ω1−ω2‖Ck+2,α(Bm

1 ),

provided ‖ωi‖Ck+2,α(Bm
1 ) ≤ 1, i = 1, 2. Also

‖Q̄(ω1)−Q̄(ω2)‖Ck,α(Bm
1 ) ≤ c

(
‖ω1‖Ck+1,α(Bm

1 ) + ‖ω2‖Ck+1,α(Bm
1 )

)
‖ω1−ω2‖Ck+1,α(Bm

1 ),

provided ‖ωi‖Ck+2,α(Bm
1 ) ≤ 1. We also agree that any term denoted by O(rd)

( with r ∈ R may depend on s) is a smooth function on Bm
1 that might

depend on s but satisfies

‖O(rd)

|r|d
‖Ck,α(Bm

1 ) ≤ c

for a constant c independent of s.

5.2 On the surface of revolution around Γ

We start by fixing the following notations which will be useful later.

Notations:

Through the following of this chapter,

ε(s) = ρ φ(s) and ε1(s) = ρ κ(s) for every s ∈ [a, b].

In terms of cylindrical coordinates, letting Θ(z) : Rm−1 → Sm−1, the sur-

face of revolution C ρ around Γ can be parameterized by

Cρ(s, z) := F (ε1(s), ε(s)Θ(z)) = expγ(ε1(s))(ε(s)Θ
i(z)Ei).

The tangent plane is spanned by the vector fields

Zc
0 = Cρ

∗(∂x0
) = ε′1Y0 + ε′Υ,

Zc
j = Cρ

∗(∂zj) = εΥj, j = 1, · · · ,m,

where

Υ = ΘiYi.

We recall also from [56]
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5.2.1. Lemma. Let q = Cρ(s, z) ∈ C ρ, there hold

〈Υ,Υ〉q = 1,

〈Υ, Y0〉q = 0,

〈Υ,Υj〉q = 0.

5.2.2. Lemma. In the notations above, the first fundamental form of C ρ

has the following expansions

〈Zc
0, Z

c
0〉 =

ε2

φ2 − 2ε|ε′1|2Γ0
0(Θ) + ε2|ε′1|2〈R(Θ, E0)Θ, E0〉+O(ε5),

〈Zc
l , Z

c
k〉 = ε2〈Θl,Θk〉+O(ε4),

〈Zc
0, Z

c
k〉 = O(ε4).

Proof. Recalling that

|ε′1|2 + |ε′|2 =
ε2

φ2

we obtain, using also the Lemmas 5.2.1, 5.1.1, that

〈Zc
0, Z

c
0〉 = |ε′1|2

(
1− 2εΓ0

0(Θ) + ε2〈R(Θ, E0)Θ, E0〉+O(ε3)
)

+ |ε′|2

=
ε2

φ2 − 2ε|ε′1|2Γ0
0(Θ) + ε2|ε′1|2〈R(Θ, E0)Θ, E0〉+O(ε5)

The other expansions are easy consequences of the Lemmas 5.2.1 5.1.1.

5.2.1 The unit normal field to the surface of revolution

Call

M := ε′X0 − ε′1Υ

and set

Ñc(s, z) = M + α0Z
c
0 + αkZ

c
k.

Note that this vector filed is normal (not necessary unitary) to the surface

whenever we can determined αk so that 〈Ñc, Z
c
k〉 = 〈Ñc, Z

c
0〉 = 0 for all
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k = 1, . . . ,m. This therefore leads to solving a linear system. Observe

that

〈M,Zc
0〉 = ε′1ε

′〈Y0, Y0〉 − ε′1ε
′〈Υ,Υ〉

= ε′1ε
′ (1− 2εΓ0

0(Θ) + ε2〈R(Θ, E0)Θ, E0〉 − 1 +O(ε3)
)
,

hence

〈M,Zc
0〉 = −2ε′1ε

′εΓ0
0(Θ) + ε′1ε

′ε2〈R(Θ, E0)Θ, E0〉+O(ε5).

Also we have

〈M,Zc
k〉 = εε′〈X0, Yk〉 − ε′1ε〈Υ, Yk〉 = O(ε4).

If we use Lemma 5.2.2, we have

α0〈Zc
0, Z

c
0〉 = −αk〈Zc

k, Z
c
0〉 − 〈M,Zc

0〉

= αkO(ε4) + 2εε′1ε
′Γ0

0(Θ)− ε2ε′1ε
′〈R(Θ, E0)Θ, E0〉+O(ε5)

so

α0 =
ε′ε′1
ε2 φ

2 (2εΓ0
0(Θ)− |ε′1|2〈R(Θ, E0)Θ, E0〉

)
+4φ2 |ε′1|3

ε2 ε′Γ0
0(Θ)Γ0

0(Θ)+O(ε3)+αkO(ε4).

(5.7)

Since

αk〈Zc
k, Z

c
l 〉+ α0〈Zc

0, Z
c
l 〉 = −〈M,Zc

l 〉

and using (5.7)

αk〈Zc
k, Z

c
l 〉+ αkO(ε6) +O(ε5) = O(ε4)

we get

αk

(
ε2〈Θl,Θk〉+O(ε4)

)
= O(ε4),

therefore

αk = O(ε2).

Recalling that ε = ρ φ while ε1 = ρ κ we define ᾱ0 by the relation

α0 = φ′ᾱ0 +O(ε3).

Namely

ᾱ0 = 2ε′1φΓ0
0(Θ)− ε′ε′1φ〈R(Θ, E0)Θ, E0〉+ 4ε′1κ

′εΓ0
0(Θ)Γ0

0(Θ).
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Now let us compute the norm of this normal vector field. Since

Ñc(s, z) := M + α0Z
c
0 + αkZ

c
k

we have by construction

〈Ñc, Ñc〉 = 〈M,M〉+a2
0〈Zc

0, Z
c
0〉+αkαl〈Zc

k, Z
c
l 〉+2α0〈M,Zc

0〉+2αk〈M,Zc
k〉+2αkα0〈Zc

k, Z
c
0〉.

Notice that

α0〈Zc
0, Z

c
0〉 = −〈M,Zc

0〉 − αk〈Zc
k, Z

c
0〉

= −〈M,Zc
0〉+O(ε6)

and

α2
0〈Zc

0, Z
c
0〉 = −α0〈M,Zc

0〉+O(ε6),

hence

〈Ñc, Ñc〉 = 〈M,M〉+ α0〈M,Zc
0〉+O(ε6).

Now observe that

〈M,M〉 = |ε′|2〈X0, X0〉+ |ε′1|2〈Υ,Υ〉

=
ε2

φ2 + |ε′|2
(
−2εΓ0

0(Θ) + ε2〈R(Θ, E0)Θ, E0〉+O(ε3)
)

and

α0〈M,Zc
0〉 = −2εε′1ε

′Γ0
0(Θ)α0+O(ε4)α0 = −4

ε2

ρ2 |ε
′|2|ε′1|2Γ0

0(Θ)Γ0
0(Θ)+O(ε5).

So we have

φ2

ε2 〈Ñc, Ñc〉 = 1 + |ε′|2
ε2 φ

2
(
−2εΓ0

0(Θ) + ε2〈R(Θ, E0)Θ, E0〉
)
− 4φ4

ε2 |ε′|2|ε′1|2Γ0
0(Θ)Γ0

0(Θ) +O(ε3)

Finally we conclude that

ε
φ|Ñc|−1 = 1 + |ε′|2

ε φ
2Γ0

0(Θ) +
(
3|ε′ε |

4φ4ε2 + 2|ε
′
1

ε |
2|ε′|2φ4

)
Γ0

0(Θ)Γ0
0(Θ)− |ε′|2

2
〈R(Θ, E0)Θ, E0〉+O(ε3)

and, setting

Hc(Θ,Θ) :=

(
3
|ε′|2

ε2 + 2
|ε′1|2

ε2

)
φ2Γ0

0(Θ)Γ0
0(Θ)− 1

2
〈R(Θ, E0)Θ, E0〉,

we can simply write

ε

φ
|Ñc|−1 = 1 + |ε′|2φ2

[
1

ε
Γ0

0(Θ) +Hc(Θ,Θ)

]
+O(ε3).

We collect all these in the following
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5.2.3. Proposition. There exists an interior (non unit) normal vector

field of C ρ which has the following expansions

ÑC ρ(s, z) = −ε′1Υ + ε′Y0 + (φ′ᾱ0 +O(ε3))Zc
0 + αkZ

c
k,

where

ᾱ0 = 2ε′1φΓ0
0(Θ)− ε′ε′1φ〈R(Θ, E0)Θ, E0〉+ 4ε′1κ

′εΓ0
0(Θ)Γ0

0(Θ);

αk = O(ε2).

Moreover

ρ
∣∣∣ÑC ρ

∣∣∣−1
= 1 + |φ′|2

(
εΓ0

0(Θ) + ε2Hc(Θ,Θ)
)

+O(ε3),

where

Hc(Θ,Θ) =
(
|φ′|2 + 2φ4)Γ0

0(Θ)Γ0
0(Θ)− 1

2
〈R(Θ, E0)Θ, E0〉+O(ε3).

5.3 Discs centered on Γ with boundary on C ρ

For δ > 0, Bm
δ will denote the ball of Rm with radius δ centered at the

origin. For any s, we consider the disc Ds,ε of radius ε centered at γ(ε(s))

given by

Ds,ε := F (ε1(s) , ε(s)B
m
1 ),

parameterized by

Bm
1 3 x 7→ Ds,ε(x) = F (ε1, ε x).

Notations

ε̄(s, t) := ε(s+ ε(s)t) ε̄1(s, t) := ε1(s+ ε(s)t);

ε̄′(s, t) := ∂tε(s+ ε(s)t) = ε(s)ε′(s+ ε(s)t) ε̄′1(s, t) := ∂tε1(s+ ε(s)t) = ε(s)ε′1(s+ ε(s)t).

Notice that

ε̄′(s, t) = (ε′+εε′′ t+ε3O(t2))ε, ε̄′1(s, t) = (ε′1+εε′′1 t+ε
3O(t2))ε. (5.8)

A parametrization of the neighborhood of the disc (in M) centered at

p = γ(ε1(s)) ∈ Γ with radius ε ( ρ small) can be defined by

F s(t, x) := F (ε̄1(s, t) , ε̄(s, t)x) ∀x ∈ Bm
1 , |t| � 1. (5.9)
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Note that by construction,

F s(t , ∂Bm
1 ) ⊂ C ρ, ∀|t| � 1

and more precisely, for every |t| � 1

F s(t, x) = Cρ(s+ ε t, ε(s+ ε t)x) ∀x ∈ ∂Bm
1 = Sm−1.

We consider the following vector fields induced by F s

ε T0 := F∗(∂t) = ε̄′1 Y0(t) + ε̄′X(t),

ε̄ Tj := F∗(∂yj) = ε̄ Yj(t).

Here X = xiEi.

5.3.1. Lemma. At q = F s(t, x),we have

〈Yi(t), Yj(t)〉q = δij + ε2

3 〈Rp(X,Ei)X,Ej〉+ ε3

6 〈∇XRp(X,Ei)X,Ej〉+Op(ε
4) + ε3O(t) + ε4Op(t

2);

〈Y0(t), Yj(t)〉q = 2ε2

3 〈Rp(X,E0)X,Ej〉+Op(ε
3) + ε3Op(t) + ε4Op(t

2);

〈Y0(t), Y0(t)〉q = 1− 2ε̄Γ0
0(X) + 2ε2U 0

0 (X)t+ ε2 〈Rp(X,E0)X,E0〉+ Op(ε
3) + ε3Op(t) + ε4Op(t

2),

where p = γ(ε1(s)) ∈ Γ and

εU 0
0 (X) = ε′1Γ

0
00 − ε′Γ0

0(X).

Proof. There holds

d

dt
〈Y0(t), Y0(t)〉q

∣∣∣
t=0

= 2〈∇εT0
Y0, Y0〉

∣∣∣
t=0

= 2ε̄′1〈∇Y0
Y0, Y0〉

∣∣∣
t=0

+ 2ε̄′〈∇XY0, Y0〉
∣∣∣
t=0

= 2ε(ε′1Γ
0
00 − ε′Γ0

0(X)) +Op(ε
3).

In this formula we have used (5.8), hence the last expansion follows. On

the other hand one has

d

dt
〈Y0(t), Yi(t)〉q

∣∣∣
t=0

= 〈∇εT0
Y0, Yi〉

∣∣∣
t=0

+ 〈Y0,∇εT0
Yi〉
∣∣∣
t=0

= ε̄′1〈∇Y0
Y0, Yi〉

∣∣∣
t=0

+ 2ε̄′〈∇XY0, Yi〉
∣∣∣
t=0

+ ε̄′1〈Y0,∇Y0
Yi〉
∣∣∣
t=0

+ 2ε̄′〈Y0,∇XYi〉
∣∣∣
t=0

Since by construction 〈∇E0
E0, Ei〉+〈E0,∇E0

Ei〉 = 0 and also 〈∇XE0, Ei〉+
〈E0,∇XEi〉 = 0 on Γ, we infer that

d

dt
〈Y0(t), Yi(t)〉q

∣∣∣
t=0

= Op(ε
3).
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In the same way, the first expansions follows similarly.

Using the above lemma, and (5.8) we get

5.3.2. Lemma. The following expansions hold

〈Ti, Tj〉 = δij + ε2

3 〈Rp(X,Ei)X,Ej〉+ ε3

6 〈∇XRp(X,Ei)X,Ej〉+ Op(ε
4) + ε3O(t) + ε4Op(t

2);

〈T0, Tj〉 = ε′xi +Op(ε
3) + ε4Op(t) + ε5Op(t

2);

〈T0, T0〉 = ε2

φ2 + |ε′1|2
(
−2ε̄Γ0

0(X) + 2ε2U 0
0 (X)t

)
+Op(ε

5) + ε5Op(t) + ε6Op(t
2),

where p = γ(ε1(s)) ∈ Γ.

Observe that all disc-type surfaces nearby Ds,ρ with boundary contained

in C ρ can be parameterized by

Gs(x) := F s(w(x) , x), (5.10)

for some smooth function w : Bm
1 → R. We will call Ds,ε(s)(w) = Gs(Bm

1 ).

5.3.1 Mean curvature of Perturbed disc D(w)

It is not difficult to see that the tangent plane of D(w) = Ds,ε(s)(w) is

spanned by the vector fields

Zj = Gs
∗(∂xj) = εwxjT0 + ε̄(s, w)Tj.

From Lemma 5.3.2, it is clear that at the point q = Gs(x) = F s(w(x) , x)

there hold

〈Ti, Tj〉q = δij + ε2

3 〈Rp(X,Ei)X,Ej〉+ ε3

6 〈∇XRp(X,Ei)X,Ej〉+ O(ε4) + ε3L(w) + ε4Q(w);

〈T0, Tj〉q = ε′xj +O(ε3) + ε4L(w) + ε5Q(w);

〈T0, T0〉q = ε2

φ2 + |ε′1|2
(
−2ε̄Γ0

0(X) + 2ε2U 0
0 (X)w

)
+Op(ε

5) + ε5L(w) + ε6Q(w).

(5.11)

Observing that ε̄(s, w) = ε + εε′w + ε3Q(w) and using (5.11), we get the

first fundamental form hij := 〈Zi, Zj〉,

ε−2hij = (1 + 2ε′w) δij + ε′(wxixj + wxjxi) + ε2

3 〈Rp(X,Ei)X,Ej〉+ ε3

6 〈∇XRp(X,Ei)X,Ej〉

+ O(ε4) + ε3L(w) + ε2Q(w).
(5.12)
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The normal vector field

Consider the vector field

ÑD = Y0 + akZk.

Observe that it is normal (not necessary unitary) to the disc whenever

we can find ak such that 〈ÑD , Zk〉 = 0 for any k = 1, . . . ,m. Namely ak

satisfies

Ds,ε(s)(w) ak hik = −〈Y0, Zi〉. (5.13)

Since

〈Y0, Zi〉 = ε̄′1wxi〈Y0, Y0〉+ ε̄′wxi〈Y0, X〉+ ε̄〈Y0, Yi〉

then from (5.12) and (5.8), we get the formula

ε2ak = εε′1wxk〈Y0, Y0〉+ ε〈Y0, Yk〉+O(ε4) + ε4L(w) + ε3Q(w). (5.14)

And also since ε̄ = ε+ ε2L(w), ε̄1 = ε1 + ε2L(w), we get

ε2 ak = −εε′1(1−2εΓ0
0(X))wxk−2ε3

3
〈R(X,E0)X,Ek〉+O(ε4)+ε4L(w)+ε3Q(w)

and thus

ak = −ε
′
1

ε
(1−2εΓ0

0(X))wxi− 2ε

3
〈R(X,E0)X,Ei〉+O(ε2)+ε2L(w)+εQ(w).

Moreover using also (5.13) we have

〈ÑD , ÑD〉 = 〈Y0, Y0〉 − akal hkl

= 〈Y0, Y0〉 − ak(O(ε3) + ε2L(w) + ε4Q(w))

= 〈Y0, Y0〉 −
(
O(ε) + L(w) + ε2Q(w)

) (
O(ε3) + ε2L(w) + ε2Q(w)

)
= 〈Y0, Y0〉+O(ε4) + ε3L(w) + ε2Q(w).

Hence ∣∣∣〈ÑD , ÑD〉
∣∣∣−1

= |〈Y0, Y0〉|−1 +O(ε4) + ε3L(w) + ε2Q(w) (5.15)

Therefore∣∣∣〈ÑD , ÑD〉
∣∣∣−1

= 1 + ε̄Γ0
0(X) +O(ε2) + ε2L(w) + ε2Q(w). (5.16)
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We then conclude that the unit normal has the following expansions:

ND =
(
1 + εΓ0

0(X) +O(ε2) + ε2L(w) + ε2Q(w)
)
Y0

+
(
−ε′1

ε (1 + εΓ0
0(X))wxk − 2ε

3 〈R(X,E0)X,Ek〉+O(ε2) + ε2L(w) + εQ(w)
)
Zk.

(5.17)

Sometimes we will simply need to write ND in the more compact form

ND = Y0 +
(
O(ε2) + εL(w) + ε2Q(w)

)
α
Yα.

The Second Fundamental Form

Observe that in the scaled variables ζ = ε x, since the functions O(εd),

L(w) and Q(w) are depending on x whereas the vector fields Yα depend

on ζ = ε x, we have for any integers 1 ≤ m and d ≥ 1

Ei(O(εd)) = O(εd−1), Ei(ε
dL(w)) = εd−1L(w), Ei(ε

dQ(w)) = εd−1Q(w).

Having this in mind, we state the following

5.3.3. Lemma. There holds

〈T0,∇Zi
ND〉 = O(ε3) + εL(w) + ε2Q(w).

Proof. Using (5.17) and recall that T0 = ε′1Y0 + ε′X + εL(w)αYα, we

have

〈T0,∇Zi
ND〉

∣∣∣
w=0

= 〈T0,∇εYi
(1 + εΓ0

0(X))Y0〉+O(ε3)

= εΓ0
0(Ei)〈T0, Y0〉+ ε(1 + εΓ0

0(X))〈T0,∇Yi
Y0〉+O(ε3)

= εε′1Γ
0
0(Ei)〈Y0, Y0〉+ εε′1(1 + εΓ0

0(X))〈Y0,∇Yi
Y0〉+O(ε3)

= εε′1Γ
0
0(Ei)− εε′1Γ

0
0(Ei) +O(ε3).

Hence we get the result.

Let us now estimate the second fundamental form of D(w).

5.3.4. Lemma. The following expansion holds.

〈∇Zi
Zj, ND〉 = ε

(
1− εΓ0

0(El)x
l
)
wxixj + ε2〈∇Y iYj, Y0〉+O(ε4)

− ε2 (wxjΓ0
0(Ei) + wxiΓ0

0(Ej)
)

+ ε3L(w) + ε3Q(w).
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Proof. We have

〈∇Zi
Zj, ND〉 = ε〈∇Zi

(wxjT0), N〉+ 〈∇Zi
(ε̄Tj), ND〉.

We first estimate 〈∇Zi
(wxjT0), ND〉.

Observe that

∂

∂xi
〈wxjT0, ND〉 = 〈∇Zi

(wxjT0), ND〉+ 〈wxjT0,∇Zi
ND〉,

which implies that

〈∇Zi
(wxjT0), ND〉 =

∂

∂xi
〈wxjT0, ND〉 − wxj〈T0,∇Zi

ND〉.

The formula (5.13) shows that

〈Y0, ÑD〉 = 〈Y0, Y0〉+ ak〈Zk, Y0〉 = 〈Y0, Y0〉 − akal〈Zk, Zl〉 =
∣∣∣ÑD

∣∣∣2
and then

〈Y0, ND〉 =
∣∣∣ÑD

∣∣∣ .
From the fact that 〈Y0, X〉 = 0 when w = 0 and that

〈Zk, X〉 = εxk +O(ε4) + ε2L(w) + ε5Q(w)

we obtain ak〈Zk, X〉 = O(ε2) + εL(w) + ε2Q(w), from which the following

hold

〈εT0, ND〉 = ε̄′1〈Y0, ND〉+ ε̄′〈X,ND〉

= ε̄′1

∣∣∣ÑD

∣∣∣+ ε̄′(ε2 + εL(w) + ε2Q(w))

= εε′1(1− εΓ0
0(X)) +O(ε4) + ε3L(w) + ε4Q(w).

From this, we deduce that

∂

∂xi
〈wxjT0, ND〉 = ε′1

(
1− εΓ0

0(X)
)
wxixj−εε′1Γ0

0(Ei)wxj +ε3L(w)+ε2Q(w).

We conclude using also Lemma 5.3.3 that

〈∇Zi
(wxjT0), ND〉 = ε′1

(
1− εΓ0

0(X)
)
wxixj−εε′1Γ0

0(Ei)wxj+ε3L(w)+ε2Q(w).

(5.18)

It remains the term 〈∇Zi
(ε̄Tj), ND〉 = εwxi〈∇T0

(ε̄Tj), ND〉+ε̄〈∇Ti
(ε̄Tj), ND〉.

Since

ε̄(s, w) = ε(s) + εL(w) + ε3Q(w), (5.19)
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we can write

〈∇Ti
(ε̄Tj), ND〉 = ε〈∇Ti

Tj, N〉+ 〈∇Ti
((ε2L+ ε3Q)Tj), ND〉.

Recalling that ∇Yi
Yj = (O(ε)+εL+ε2Q)αYα also 〈Ti, ND〉 = ε2 +εL+ε2Q

thus

〈∇Ti
(ε̄Tj), ND〉 = ε〈∇Yi

Yj, Y0〉
∣∣∣
w=0

+O(ε3) + ε3L(w) + ε3Q(w).

Moreover (5.8) and (5.19) yield

〈∇T0
(ε̄Tj), ND〉

∣∣∣
w=0

= εεε′1〈∇Y0
Yj, ND〉+ εεε′〈∇XYj, ND〉 = −εεε′1Γ0

0 +O(ε4).

This implies that

〈∇T0
(ε̄Tj), ND〉 = −εεε′1Γ0

0 +O(ε4) + ε2L(w) + ε3Q(w).

Finally, collecting these and using (5.19) it turns out that

〈∇Zi
(ε̄Tj), ND〉 = εε〈∇Yi

Yj, Y0〉
∣∣∣
w=0

+O(ε4)−εεε′1Γ0
0(Ej)wxi+ε4L(w)+ε3Q(w).

(5.20)

The result follows from (5.18) and (5.20).

We need also to expand more precisely 〈∇Yi
Yj, Y0〉

∣∣∣
w=0

. By construction

it vanish on Γ and

Yl〈∇Yi
Yj, Y0〉 = 〈∇Yl

∇Yi
Yj, Y0〉+ 〈∇Yi

Yj,∇Yl
Y0〉.

Furthermore by (5.6) and since (see for instance [38] Lemma 9.20)

∇Yl
∇Yi

Yj

∣∣∣
γ(x0)

= −1

3
(R(El, Ei)Ej +R(El, Ej)Ei) ,

it follows that

〈∇Yi
Yj, Y0〉 = −ε

3
(〈R(X,Ei)Ej, E0〉+ 〈R(X,Ej)Ei, E0〉) +O(ε2).

We conclude that from Lemma 5.3.4 that the Second fundamental form

qij = 〈∇Zi
Zj, N

D〉 of the perturbed disc Ds,ε(s)(w) centered at the point

γ(ε(s)) with radius ε(s) is given by

qij = εε′1
(
1− εΓ0

0(El)x
l
)
wxjxi − ε3

3 (〈R(X,Ei)Ej, E0〉+ 〈R(X,Ej)Ei, E0〉)

+ O(ε4)− ε2ε′1
(
wxjΓ0

0(Ei) + wxiΓ0
0(Ej)

)
+ ε4L(w) + ε3Q(w).

(5.21)
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We recall that if Eα is an orthogonal basis of TpM, then

Ricp(X, Y ) = −〈Rp(X,Eα)Y,Eα〉 ∀X, Y ∈ TpM.

Finally we obtain

qij h
ij = ε′1

ε

(
1− εΓ0

0(X)
)

∆w − 2ε
3 Ricp(X,E0)

+ O(ε2)− 2ε′1 Γ0
0(∇w) + ε2L(w) + εQ(w),

where X = xlEl.

5.3.5. Proposition. In the above notation, the mean curvature H(s, ρ, w)

of Ds,ρ(w) has the following expansions

φ

κ′
H(s, ρ, w) = ∆w − 2ρ

3

φ2

κ′
Ricp(X,E0) +O(ρ2) + ρL(w) + ρQ(w).

In particular if Γ is a geodesic, Γ0
0 = 0 then

φ

κ′
H(s, ρ, w) = ∆w − 2ρ

3

φ2

κ′
Ricp(X,E0) +O(ρ2) + ρ2L(w) + ρQ(w).

5.3.2 Angle between the normals

By construction, at q = Gs(x) we have F s(w(x), x) = Cε(s + εw(x), ε(s +

εw(x))), for every x ∈ ∂Bm
1 . Recall from § 5.2.1 and 5.3.1 that

ÑC ρ(s, z) = −ε′1(s)X + ε′(s)Y0 + α0Z
c
0 + αkZ

c
k,

where α0 = φ′ᾱ0 +O(ε3) and αk = O(ε2) also

ÑD = Y0 + akZk.

One easily verifies that

〈ÑD , ρ
−1ÑC ε(s+ εw)〉q = −κ′〈X, Y0〉q + φ′〈Y0, Y0〉q +

α0

ρ
〈Zc

0, Y0〉q +
αk

ρ
〈Zc

k, Y0〉q

− κ′ak〈X,Zk〉q + φ′ak〈Zk, Y0〉q +
ak

ρ
α0〈Zc

0, Zk〉q +
αk

ρ
al〈Zk, Z

c
l 〉q.

We have to expand

κ′(s+εw) = κ′(s)+εκ′′(s)w+ε2Q(w) φ′(s+εw) = φ′(s)+εφ′′(s)w+ε2Q(w).
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We will also need the following result which uses just the expansions of the

metric Lemma 5.3.1

〈Zc
0, Zk〉 = O(ε2) + ε2L(w) + ε3Q(w),

〈Zc
l , Zk〉 = O(ε2) + ε2L(w) + ε3Q(w),

〈X,Zk〉q = (ε+ ε′εw)xk + ε3L(w) + ε5Q(w).

(5.22)

We use the fact that ak〈Zl, Zk〉 = −〈Y0, Zk〉 to have

ρ−1〈ÑD , ÑC ε(s+ εw)〉q = (φ′ + εwφ′′)〈Y0, Y0〉q + (κ′ + ε κ′′w)α0〈Y0, Y0〉q +
αk

ρ
〈Zc

k, Y0〉q

− (κ′ + εκ′′w)ak〈X,Zk〉q − φ′akal〈Zk, Zl〉q +
ak

ρ
α0〈Zc

0, Zk〉q +
αk

ρ
al〈Zk, Z

c
l 〉q

+ ε3L(w) + ε2Q(w).

Now from (5.22) we get

−φ′akal〈Zk, Zl〉q+
α0

ρ
ak〈Zc

0, Zk〉q+
αk

ρ
al〈Zk, Z

c
l 〉q = O(ε3)+ε3L(w)+ε2Q(w)

and also since

〈Zc
k, Y0〉q = O(ε3) + ε3L(w) + ε4Q(w),

one has

ρ−1〈ÑD , ÑC ε(s+ εw)〉q = (φ′ + εwφ′′)〈Y0, Y0〉q + (κ′ + εwκ′′)ᾱ0〈Y0, Y0〉q

− (κ′ + εκ′′w)ak〈X,Zk〉q +O(ε3) + ε3L(w) + ε2Q(w).

From (5.22) and recalling the formula for ak in (5.14) we get

ak〈X,Zk〉q = −ε′1
∂w

∂η
〈Y0, Y0〉q − (1 + ε′w)〈Y0, X〉q +O(ε3) + ε3L(w) + ε2Q(w)

= −ε′1
∂w

∂η
〈Y0, Y0〉q +O(ε3) + ε3L(w) + ε2Q(w)

and then we deduce that

ρ−1〈ÑD , ÑC ε(s+ εw)〉q = φ′ (1 + κ′ᾱ0) 〈Y0, Y0〉q + (εwφ′′ + κ′ε′1)
∂w

∂η
〈Y0, Y0〉q + 2ε2κ′′κ′wΓ0

0(X)

+ O(ε3) + ε3L(w) + ε2Q(w).

Using (5.15), we have that

ρ−1〈ND , ÑC ε(s+ εw)〉q = φ′ (1 + κ′ᾱ0) |Y0|q + (εwφ′′ + κ′ε′1)
∂w

∂η
|Y0|q + 2ε2κ′′κ′wΓ0

0(X)

+ O(ε3) + ε3L(w) + ε2Q(w).
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Since α0 = φ′(s+ εw)ᾱ0 +O(ε3), one has

α0 = (φ′(s) + φ′′(s)ε(s)w)ᾱ0 + ε2Q(w)ᾱ0

so that

α0 = φ′(s)ᾱ0 − 2φ′′(s)ε′1εwΓ0
0(X) + ε3L(w) + ε2Q(w).

Moreover notice that

Γ0
0(X)

∣∣∣
q
= Γ0

0(X) + ε2L(w) + ε3Q(w)

and also

|φ′(s+ εw)|2 = (φ′ + 2εwφ′′)φ′ + ε2Q(w),

we have that

ρ
∣∣∣ÑC ρ(s+ εw)

∣∣∣−1
= 1+(φ′+2εφ′′w+ε′w)εφ′Γ0

0(X)+|φ′(s)|2ε2Hc(X,X)+O(ε3)+ε3L(w)+ε3Q(w)

from which we deduce that

ρ
∣∣∣ÑC ρ(s+ εw)

∣∣∣−1

q
|Y0|q = 1− (κ′)2εΓ0

0(X) + ε2 (3− (φ′)2 + (φ′)4 + 2(φ′)2φ4)Γ0
0(X)Γ0

0(X)

+
2− (φ′)2

2
〈Rp(X,E0)X,E0〉+ εw (−ε′ + 2εφφ′′ + ε′φ′) Γ0

0(X) + 2ε2U 0
0 (X)w

+ O(ε3) + ε3L(w) + ε2Q(w).

Consequently we may expand the angle as

〈ND , NC ε(s+ εw)〉q = ρφ′ (1 + κ′ᾱ0) |Y0|q
∣∣∣ÑC ρ(s+ εw)

∣∣∣−1

q
+ 2ε2κ′′κ′wΓ0

0(X)

+
(
1− (κ′)2εΓ0

0(X)
)(

εwφ′′ + κ′ε′1
∂w

∂η

)
+ O(ε3) + ε3L(w) + ε2Q(w).

Hence we get

〈ND , NC ε(s+ εw)〉q = φ′(s)
(
1 + (κ′)2εΓ0

0(X)
)

+
(
1− (κ′)2εΓ0

0(X)
)(

εwφ′′ + κ′ε′1
∂w

∂η

)
+ φ′ε2

(
3− 2(κ′)4 − (φ′)2 + (φ′)4 + 2(φ′)2φ4

)
Γ0

0(X)Γ0
0(X)

+ 2−(φ′)2

2 φ′ε2〈Rp(X,E0)X,E0〉+ εφ′w
(
− ε′ + 2εκ′′κ′ + 2εφφ′′ + ε′φ′

)
Γ0

0(X)

+ 2ε2U 0
0 (X)w +O(ε3) + ε3L(w) + ε2Q(w).
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We define

B(s, ρ, w) := 〈ND(w), NC ε(s+ εw)〉q.

Now we conclude this section by collecting all these in the following

5.3.6. Proposition. In the above notations,

B(s, ρ, w) = φ′(s)
(
1 + (κ′)2ρφΓ0

0(X)
)

+ ρ

(
(κ′)2 ∂w

∂η
+ φφ′′w

)
+ O(ρ2) + ρ2L̄(w) + ρ2Q̄(w),

while if φ′(s) = 0, one has

B(s, ρ, w) = ρ(κ′)2∂w

∂η
+O(ρ3) + ρ3L̄(w) + ρ2Q̄(w).

In particular if Γ is a geodesic, we get precisely

B(s, ρ, w) = φ′(s)
(
1 +

1 + (κ′)2

2
ρ2φ2〈Rp(X,E0)X,E0〉

)
+ ρ

(
(κ′)2∂w

∂η
+ φφ′′w

)
+ O(ρ3) + ρ3L̄(w) + ρ2Q̄(w).

5.4 Existence of capillary minimal submanifolds

5.4.1 Case where φ(s0)φ
′′(s0) > 0

We may assume that φ(s)φ′′(s) > 0 for all s ∈ Is0
(δ) := [s0 − δ, s0 + δ] for

some δ > 0 small.

We define the following operator Ls by

(Lsw, v) :=

∫
Bm

1

∇w∇v dx+
φφ′′

(κ′)2

∮
∂Bm

1

wv dσ.

It is clear from the inequality (see [85], Theorem A.9)∫
Bm

1

w2 dx ≤ C(m)

(∫
Bm

1

|∇w|2 dx+

∮
∂Bm

1

w2 dσ

)
, ∀w ∈ H1, (5.23)

that the operator Ls is coercive if ρ is small. We call ws,ρ
1 the unique

solution to the equation

(Lsw1, v) := −φ
∮

∂Bm
1

Γ0
0(X)v dσ.

Namely ws,ρ
1 solves the problem

−∆w1 = 0 in Bm
1 ,

∂w1

∂η
+
φφ′′

(κ′)2 w1 = −φΓ0
0(X) on ∂Bm

1 .
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By elliptic regularity theory, there exist a constant c > 0 (independent

of ρ and s) such that

‖ws,ρ
1 ‖C2,α ≤ c ∀s ∈ Is0

(δ).

Moreover we have that for all k ≥ 0

‖∂
kws,ρ

1

∂sk
‖C2,α ≤ ck ∀s ∈ Is0

(δ),

for some constant ck which does not depend on s nor on ρ small.

Clearly by construction H(s, ρ, ws,ρ
1 ) = O(ρ) in Ds,ρ(w

s,ρ
1 ),

B(s, ρ, ws,ρ
1 ) = φ′(s) +O(ρ2) on ∂Ds,ρ(w

s,ρ
1 ).

We define the space

C2,α
s,ρ :=

{
w ∈ C2,α(Bm

1 ) :
∂

∂v
B(s, ρ, ws,ρ

1 + v)
∣∣∣
v=0

[w] = 0

}

=

{
w ∈ C2,α(Bm

1 ) :
∂w

∂η
+
φφ′′

(κ′)2w + ρL̄s(w) = 0

}
.

We consider the linearized mean curvature operator about Ds,ρ(ws,ρ
1 ) (see

Proposition 5.3.5), Lρ,s(w) : C2,α(Bm
1 ) → C0,α(Bm

1 ) defined by

Lρ,s(w) := − φ
κ′

∂

∂v
H(s, ρ, ws,ρ

1 + v)
∣∣∣
v=0

[w] = −∆w + ρLs(w).

We define also Φ(s, ρ, x), Qs,ρ(w) ∈ C0,α(Bm
1 ) by duality as

(Φ(s, ρ, x), w′) := − φ
κ′

∫
Bm

1

H(s, ρ, ws,ρ
1 )w′ dx+ρ−1

∮
∂Bm

1

(B(s, ρ, ws,ρ
1 )− φ′(s))w′ ds

and for every w ∈ C2,α

(Qs,ρ(w), w′) :=

∫
Bm

1

Q(w)w′ dx+

∮
∂Bm

1

Q̄(w)w′ ds, ∀w′ ∈ L2.

Clearly the solvability of the system H(s, ρ, ws,ρ
1 + w) = 0 in Ds,ρ(w

s,ρ
1 + w),

B(s, ρ, ws,ρ
1 + w) = φ′(s) on ∂Ds,ρ(w

s,ρ
1 + w)

(5.24)
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is equivalent to the fixed point problem

w = −
(

Lρ,s

∣∣∣
C2,α

s,ρ

)−1

{Φ(s, ρ, x) + ρQs,ρ(w)} . (5.25)

Furthermore one has

‖Qs,ρ(w)‖C0,α = O(‖w‖C2,α) ‖w‖2
C2,α;

‖Qs,ρ(w1)−Qs,ρ(w2)‖C0,α = O(‖w1‖C2,α, ‖w2‖C2,α)‖w1 − w2‖C2,α,

also by construction, there exist a constant c > 0 (independent of ρ and

s) such that

‖Φ(s, ρ, ·)‖C0,α ≤ cρ ∀s ∈ Is0
(δ).

By (5.23) the operator Lρ,s is coercive on C2,α
s,ρ if ρ is small enough and also

by elliptic regularity theory, Lρ,s is an isomorphism from C2,α
s,ρ into C0,α(Bm

1 )

therefore we can solve the fixed point problem (5.25) in a ball of C2,α
s,ρ with

radius Cρ for some C > 0 which does not depend neither on ρ small nor s.

And thus for ρ small and s ∈ Is0
(δ) there exists a function ws,ρ ∈ C2,α

s,ρ , with

‖ws,ρ‖C2,α ≤ Cρ such that H(s, ρ, ws,ρ
1 + ws,ρ) = 0 in Ds,ρ(w

s,ρ
1 + ws,ρ),

B(s, ρ, ws,ρ
1 + ws,ρ) = φ′(s) on ∂Ds,ρ(w

s,ρ
1 + ws,ρ).

Namely Ds,ρ(w
s,ρ
1 + ws,ρ) is a capillary submanifold of Ωρ with constant

contact angle arccos φ′(s) if ρ is small enough by C2,α bound up to the

boundary of w̃s,ρ = ws,ρ
1 +ws,ρ. Furthermore it follows from the construction

that, for all k ≥ 0

‖∂
kw̃s,ρ

∂sk
‖C2,α ≤ ckρ ∀s ∈ Is0

(δ), (5.26)

for some constant ck which does not depend on s nor on ρ small.

5.4.2 Foliation by minimal discs

Call w̃s,ρ = ws,ρ
1 + ws,ρ. From (5.9), Lemma 5.3.1 and (5.26) the mapping

Is0
(δ)×Bm

1 3 (s, x)
Ψρ−→ F s(w̃s,ρ(x), x) = F (ε̄1(s, w̃

s,ρ(x)) , ε̄(s, w̃s,ρ(x))x)

has Jacobian determinant which expands as

ρ2m+2
( (

1− |x|2(φ′)2) φ2m +Os(ρ)
)



110 5. Capillary minimal surfaces in Riemannian manifolds

and hence since (φ′)2 ∈ (0, 1) (see (5.1) ), Ψρ is a local homeomorphism if

ρ is small enough. In particular it is a homeomorphism of a neighborhood

of (s0, 0) which implies that there exist 0 < δ′ < δ and % > 0 such that

Ψρ(s , B
m
% ) ∩Ψρ(s

′ , Bm
% ) = ∅ ∀s 6= s′ ∈ Is0

(δ′),

for every ρ sufficiently small.

In this way the family of discs Ds,ρ%(w̃
s,ρ), s ∈ Is0

(δ′) with radius ρ% φ(s)

centered at γ(ρ κ(s)) constitutes a foliation of a neighborhood of γ(ρ κ(s0))

for which each leaf Ds,ρ%(w̃
s,ρ) is a minimal disc intersecting C ρ% trans-

versely along its boundary (the angle of contact may not be equal to

arccos φ′(s)).

5.4.3 φ ≡ 1 and κ =Id, C ρ is the geodesic tube around Γ

In this situation,

C ρ = {q ∈M : distg(q,Γ) = ρ}

and its interior is

Ωρ = {q ∈M : distg(q,Γ) < ρ}.

By [78], it is well known that (smooth) minimal surfaces D ⊂ Ωρ with

∂D ⊂ C ρ are stationary for the area functional relative to C ρ which is

D 7→ Area(D ∩Ωρ) under variations Ψt : D →M such that ∂Ψt(D) ⊂ C ρ

moreover the Euler-Lagrange equations are given by

HD = 0 in D,

〈ND, NC ρ〉 = 0 on ∂D.
(5.27)

A finite-dimensional reduction

For every s ∈ [a, b] and X = xiEi, we let ws,ρ
1 be the solution of the

following problem:

−∆w1 = −2
3 Ricp(X,E0) in Bm

1 ,

∂w1

∂η
= 0 on ∂Bm

1 ,

where p = γ(ρ κ(s)).

By elliptic regularity theory, there exist a constant c > 0 (independent of

ρ and s) such that

‖ws,ρ
1 ‖C2,α ≤ c ∀s ∈ [a, b]. (5.28)
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As in § 5.4.1, we let

C2,α
s,ρ :=

{
w ∈ C2,α(Bm

1 ) :
∂

∂v
B(s, ρ, ρws,ρ

1 + v)
∣∣∣
v=0

[w] = 0

}
=

{
w ∈ C2,α(Bm

1 ) :
∂w

∂η
+ ρL̄(w) = 0

}
.

As explained in the first section, the linearized mean curvature operator

about Ds,ρ(ρws,ρ
1 ) restricted on C2,α

s,ρ defined by

Lρ,s(w) := − ∂

∂v
H(s, ρ, ρws,ρ

1 + v)
∣∣∣
v=0

[w] = −∆w + ρLs(w).

may have small (possibly zero) eigenvalues hence it may not be invertible

on C2,α
s,ρ . However instead of solving (5.27), we will prove that there exists

a constant λs,ρ ∈ R and a function ws,ρ ∈ C2,α
s,ρ such that H(s, ρ, ws,ρ) = λs,ρ in Ds,ρ(w

s,ρ),

B(s, ρ, ws,ρ) = 0 on ∂Ds,ρ(w
s,ρ).

(5.29)

To achieve this we let P be the L2 projection on the space of functions

w ∈ L2 which are orthogonal to the constant function 1,
∫

Bm
1
w dx = 0.

Now if ρ is small enough, the Poincare inequality implies together with

elliptic regularity theory that the operator P ◦Ls,ρ is an isomorphism from

PC2,α
s,ρ into PC0,α(Bm

1 ). Here letting

(Φ(s, ρ, x), w′) := −
∫

Bm
1

H(s, ρ, ρws,ρ
1 )w′ dx+

∮
∂Bm

1

B(s, ρ, ρws,ρ
1 )w′ ds

one has

‖Φ(s, ρ, ·)‖C0,α ≤ cρ2 ∀s ∈ [a, b].

Consequently for ρ small, our fixed point problem

w =

(
P ◦ Lρ,s

∣∣∣
C2,α

s,ρ

)−1

{P ◦ Φ(s, ρ, x) + ρP ◦ Qs,ρ(w)}

admits a unique solution ws,ρ ∈ PC2,α
s,ρ , in a ball of radius c ρ2 of PC2,α

s,ρ .

More precisely∫
Bm

1

ws,ρ dx = 0 and ‖ws,ρ‖C2,α(Bm
1 ) ≤ cρ2 ∀s ∈ [a, b]. (5.30)

Furthermore it follows from the construction that, for all k ≥ 0

‖∂
kws,ρ

∂sk
‖C2,α(Bm

1 ) ≤ ckρ
2 ∀s ∈ [a, b],
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for some constant ck which does not depend on s nor on ρ small. We then

conclude that P ◦ H(s, ρ, ρws,ρ
1 + ws,ρ) = 0 hence the existence of a real

number λs,ρ ∼ ρ2 such that (5.29) is satisfied.

We have to mention that by (5.30), provided ρ is small, the correspond-

ing disc Ds,ρ := Ds,ρ(w̃
s,ρ) with w̃s,ρ = ρws,ρ

1 + ws,ρ is embedded into Ωρ.

This defines a one dimensional manifold of sets satisfying (5.29):

Zρ := {Ds,ρ ⊂ Ωρ, ∂Ds,ρ ⊂ ∂Ωρ : s ∈ [a, b]}.

5.4.1. Remark. We notice that, in section 5.4.1, the same argument as

above implies that whenever φ′′(s0) = 0, there will be a capillary disc cen-

tered at γ(ρ s0) with constant and small mean curvature.

Variational argument:

We will show that in fact problem (5.27) can be reduced to a finite

dimensional one. We now define the reduced functional ϕρ : [a, b] → R by

ϕρ(s) := Area(Ds,ρ)

for any Ds,ρ ∈ Zρ. We have to show the following

5.4.2. Lemma. There exists ρ0 small such that for any ρ ∈ (0, ρ0) if s is

a critical point of ϕρ then λs,ρ = 0.

Proof. Let λ ∈ R and let q = γ(ρ(s+ λ t)). Then provided t is small, it

is clear that the hyper-surface Dq,ρ can be written as a normal graph over

Dp,ρ, p = γ(ρs) by a smooth function gp,ρ,t,λ. This defines the variation

vector field

ζp,ρ,λ =
∂gp,ρ,t,λ

∂t

∣∣∣
t=0
NDp,ρ

.

Letting Z be the parallel transport of λE0 along geodesics issued from

p = γ(ρ s). Then, we can easily get the estimates:

‖ζ − Z‖ ≤ cρ|λ|.

Assume that s is a critical point of ϕρ then from the first variation of area

see § 2.1.1,

0 =
dϕρ(ρ(s+ λt))

dt

∣∣∣
t=0

= λρϕ′ρ(s)

= m

∫
Ds,ρ

HDs,ρ
〈ζ,NDs,ρ

〉 ds+

∮
∂Ds,ρ

〈ζ,NDs,ρ
∂Ds,ρ

〉,
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where NDs,ρ
∂Ds,ρ

∈ TDs,ρ stands for the normal of ∂Ds,ρ in Ds,ρ. Therefore by

construction one has

0 = λs,ρ

∫
Ds,ρ

〈ζ,NDs,ρ
〉 ds. (5.31)

Notice that

〈ζ,NDs,ρ
〉 − 〈Z, Y0〉 = 〈ζ − Z,NDs,ρ

〉+ 〈Z,NDs,ρ
− Y0〉,

so using the fact that NDs,ρ
= Y0 +O(ρ), see § 5.3.1, we have∣∣〈ζ,NDs,ρ

〉 − λ
∣∣ ≤ cρ|λ|.

Inserting this into (5.31), we get

−λλs,ρ Area(Ds,ρ) ≤ cρ |λs,ρ| |λ|Area(Ds,ρ)

but since Area(Ds,ρ) = Area(ρBm
1 )+Os(ρ

2+m) by (5.12); (5.28) and (5.30),

it follows that

−λλs,ρ ≤ cρ |λs,ρ| |λ| .

Therefore taking λ = −λs,ρ, we see that |λs,ρ|2 ≤ cρ |λs,ρ|2 and this implies

that λs,ρ=0.

We shall end the proof of the Theorem 5.0.3 by giving the expansion of

ϕρ. From (5.30) the first fundamental form hij of a disc Ds,ρ expands as

ρ−2 hij = δij +
ρ2

3
〈Rp(X,Ei)X,Ej〉+

ρ3

6
〈∇XRp(X,Ei)X,Ej〉+Os(ρ

4),

where p = γ(ρs) ∈ Γ.

From the formula√
det(I + A) = 1 +

1

2
tr(A) +O(|A|2),

we obtain the volume form:

ρ−m
√

det(h) = 1− ρ2

6
〈Rp(X,Ei)X,Ei〉+

ρ3

12
〈∇XRp(X,Ei)X,Ei〉+Os(ρ

4)

and since by oddness
∫

Bm
1
〈∇XRp(X,Ei)X,Ej〉 dx = 0 we deduce that

ϕρ(s) = Area(Ds,ρ) = Area(Bm
ρ )

(
1− ρ2

6m

m∑
i,j=1

〈Rp(Ej, Ei)Ej, Ei〉+Os(ρ
4)

)
.
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Thus setting

ψρ(s) :=
6m

ρ2

(
1− ϕρ(s)

Area(Bm
ρ )

)
=

m∑
i,j=1

〈Rp(Ej, Ei)Ej, Ei〉+Os(ρ
4)

we get the result.



Chapter 6

Perimeter minimizing sets enclosing small volumes

Let M be a complete Riemannian manifold and Ω a smooth bounded

domain of M. We recall that the De Girogi perimeter is defined as

Pg(E,Ω) := sup

{∫
E

divgY dvg : 〈Y, Y 〉 ≤ 1

}
,

where Y is a smooth vectorfield on M with compact support in Ω. Here

we are counting only the part of E inside Ω. Notice that if a set E is

smooth then the Gauss-Green formula yields Pg(E,Ω) = Area(∂E ∩ Ω).

The relative isoperimetric profile of Ω is the mapping

v 7→ IΩ(v) := min
E⊂Ω,|E|g=v

Pg(E,Ω).

By combination of the results of Almgren [2], Grüter [39], Gonzalez, Mas-

sari, Tamanini [37] we obtain the following fundamental existence and reg-

ularity theorem (see also Morgan [67]).

6.0.3. Proposition. Let Ω be a smooth bounded domain in a Riemannian

manifold (Mm+1, g). For any v ∈ (0, |Ω|g) there is an open set E ⊂ Ω

which minimizes the perimeter Pg(·,Ω) for any volume v . The boundary

Σ := ∂E ∩ Ω can be written as a disjoint union Σ1 ∪ Σ0, where Σ1 is the

regular part of Σ and Σ0 is the set of singularities. Precisely, we have

1. Σ1 is a smooth, embedded hypersurface with constant mean curvature.

2. If p ∈ Σ1 ∩ ∂Ω, then Σ1 is a smooth, embedded hypersurface with

boundary contained in in a neighborhood of p; in this neighborhood, Σ1

has constant mean curvature and meets ∂Ω orthogonally.

3. Σ0 is a closed set of Hausdorff dimension less than or equal to m− 7.

4. At every point q ∈ Σ0, there is a tangent minimal cone C ⊂ TqM dif-

ferent from a hyperplane. The square sum of the principal curvatures

of Σ1 tends to ∞ when we approach q from Σ1.

It is clear then that the most important questions is to undertand the

topology and geometric properties of minimizers. This has been achieved
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only in some special cases, one can see for example [13], [75], [21], [77], [53],

[84], etc. . . In particular perimeter minimizing sets in M trapping small

volumes have been studied by F. Morgan and D.L. Johnson. The authors

prove that if v is small enouh, minimizers of IM(v) are “smooth“ spheres.

Namely up to scaling, they converge smoothly to spheres (no presence

of singularities). Recently, Narduli, in his Phd thesis has weakened the

minimizing property. Moreover he shwod that minimizers are located near

strict-maxima of the scalar curvature of M.

In 1982, Bérard-Meyer, motivated by the study of nodal domains for

Dirichlet eigenvalues, have shown that, in the infenitesimal level, the isoperi-

metric profile of a compact Reimannian manifold Mm+1 approaches that

of Rn+1. Namely they establish that IM(v) ∼ IRm+1(v) as v → 0. This was

adapted by Bayle and Rosales for the relative profile IΩ(v) ∼ IRm+1
+

(v) as

v → 0. The former result has been refined by Druet (2002) who gave the

first coefficient in the Taylor expansion of IM

IM(v) ∼
(

1− αm max
p∈∂M

S(p) v
2

m+1 +O
(
v

4
m+1

))
IRm+1(v),

where αm is a constant depeding only on m and S is the scalar curvature of

M. Our main goal in this chapter is the location of minimal area separating

hyper-surfaces of Ω enclosing a small volume.

6.0.4. Theorem. Isoperimetric regions with small volume in Ω are hemi-

spheres centred near stricly global maxima of the mean curvature of ∂Ω.

To prove the above theorem, we first show a regularity result which gen-

eralizes Theorem 2.2 in [69] see Lemma 6.1.2. We notice that the proof of

Theorem 2.2 in [69] highlights that the diameter of an isoperimetric region

Ev tends to zero as the volume v tends to zero. Moreover as pointed out

by Bayle and Rosales [8], this set must touch the boundary ∂Ω if v is small

enough (Ev is not compactly contained in Ω). From this one sees that Ev is

contained in a geodesic sphere centered at some point p ∈ ∂Ω for v small.

Hence using results in [69] Theorem 2.2, one has that the hyper-surface

Σv = ∂Ev ∩ Ω can be written, after suitable scaling, as a graph over a

round hemisphere and the function which defines the graph tends to zero.

This also shows that ∂Σv ⊂ ∂Ω. But, according to our argument we need

a convergence up to the free boundary. We achieve this, following [40], by

proving a monotonicity result for the area of Σv in a tubular neighborhood
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of ∂Ω. This allow us to get a bound for the area of ∂Σv and hence, by

compactness, to have a weak convergence up to the free boundary and

smoothly by [41].

The second step is to reduce the isoperimetric problem to a finite di-

mensional variational one, see Lemma 6.1.7 by adopting a variant of the

method in [72]. To this end, by means of the implicit function theorem

we construct, for any fixed v sufficiently small, a manifold of sets having a

volume v that we call Cv which is diffeomorphic to ∂Ω, see Lemma 6.1.6.

A set E ∈ Cv is a pseudo-half-ball (see Definition 6.1.5) which is uniquely

determined by its center of mass p ∈ ∂Ω while its boundary, ∂E = Σp,ωp,v ,

is a normal graph over a geodesic sphere centered at p with ωp,v (defining

the graph) tends to zero as v → 0.

Finally we show that an isoperimetric region with small volume v must

belong to Cv so looking for the minimum of the perimeter among sets in Ω

with volume v is equivalent to take the minimum among sets in Cv. Taking

advantage of the role of the mean curvature in the expansion of the area of

normal graphs centered at the free boundary ∂Ω Appendix A, the theorem

then follows.

From the reduction of the isoperimetric problem to a finite dimensional

one, Lemma 6.1.7, we can determine the first coefficient of the asymptotic

expansions of the profile of Ω near zero.

Letting v =
∣∣rBm+1

+

∣∣ in Lemma 6.1.7-6.1.8. We have obtained that

IΩ(v) = min
p∈∂Ω

{
IRm+1

+
(v)− m

m+ 2

|Bm|∣∣Bm+1
+

∣∣ H∂Ω(p) v +Op

(
v

m+2
m+1

)}
,

where H∂Ω(p) is the mean curvature of ∂Ω at p and Op(ρ) is a smooth

function in p and ρ tending to zero uniformly with respect to p as ρ tends

to zero. Hence we have the corollary

6.0.5. Corollary. There holds

IΩ(v) ∼
(

1− βm max
p∈∂Ω

H∂Ω(p) v
1

m+1 +O
(
v

2
m+1

))
IRm+1

+
(v),

where βm = m
(m+1)(m+2)

|Bm|

|Bm+1
+ |

m+2
m+1

.

Let us also mention that in [21], the authors have shown that an isoperi-

metric region outside a convex domain, in euclidean space, has no less
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perimeter than the area of a hemisphere provided it encloses the volume of

half ball. Futhermore in [8]-Proposition 5.1, the authors show, under con-

vexity assumption of Ω in a Riemannian manifold, that IΩ(v) < IRm+1
+

(v)

for small v. Here, from Corollary 6.0.5, we can weaken the convexity by

strictly H-convex domain (a domain with non-negative mean curvature)

under small volume constarints.

6.0.6. Corollary. If Ω is a strictly H-convex smooth bounded domain of

Rm+1 then provided v small enough

IRm+1\Ω(v) > IRm+1
+

(v).

As a final result, we have the following geometric comparion which is also

a direct consequence of Corollary 6.0.5.

6.0.7. Corollary. Suppose Ω is a bounded smooth domain in a Rieman-

nian manifold (Mm+1, g) let also Ω0 be a bounded smooth domain in any

other Riemannian manifold (Mm+1
0 , g0) with mean curvatures satisfying

maxp∈∂ΩH∂Ω(p) < maxp∈∂Ω0
H∂Ω0

. Then if v is small enough,

IΩ(v) > IΩ0
(v).

6.1 Proof Theorem 6.0.4 and expansions of the isoperimetric

profile IΩ

P.Berard and D.Meyer ([9], Appendix C) have shown by a localization

argument that the isoperimetric profile of a compact Riemannian manifold

asymptotically approaches that of Rm+1 while, V.Bayle and C.Rosales ([8],

proposition 2.1) proved that the relative isoperimetric profile of a domain

Ω of a Riemannian manifold behaves like the profile of the half space Rm+1
+ .

Precisely setting

I(r) := IΩ
(∣∣rBm+1

+

∣∣) = min
E⊂Ω, |E|g=|rBm+1

+ |
Pg(E,Ω)

and

I+(r) = IRm+1
+

(∣∣rBm+1
+

∣∣) = P(rBm+1,Rm+1
+ ),

they proved that
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6.1.1. Proposition. For any ε > 0, there exists r0(ε) > 0 such that

(1− ε)I+(r) ≤ I(r) ≤ (1 + ε)I+(r), whenever r ≤ r0.

Notice that from this upper bound, an isoperimetric region with small

volume must touch the boundary (perpendicularly) because otherwise it

would contradict the lower bound in [9] Appendix C. Moreover this upper

bound will help after suitable scaling together with the Heintze-Karcher

inequality to obtain a uniform bound for the mean curvature of the mini-

mizing hyper-surface trapping a small volume, see[69] § 2 .

We start by proving the following regularity result which was obtained in

[69] and under weaker assumptions in [70] for compact Riemannian mani-

folds.

6.1.2. Lemma. There exits r0 > 0 such that if r ∈ (0, r0) any set E ⊂ Ω

satisfying Pg(E,Ω) = I(r), there exist p ∈ ∂Ω and ωp,r : Sm
+ → R such that

∂E ∩ Ω = F p(r(1 + ωp,r Sm
+ ))

with ‖ωp,r‖C2,α(Sm
+ )+‖ωp,r‖C1,α(Sm

+ ) → 0 as r → 0 and F p is a local parametriza-

tion of a neiborhood, in M, of p ∈ ∂Ω defined in (7.1).

Proof. We let Ej ⊂ Ω such that Pg(Ej,Ω) = I(rj), rj → 0 as j → +∞.

Call Ωj = 1
rj

Ω and E ′
j = 1

rj
Ej so that |E ′

j|gj
=
∣∣Bm+1

+

∣∣ and Pgj
(E ′

j,Ωj) =
1

rm
j
Pg(Ej,Ω) ≤ c′ I+(1).

Following [69] § 2 with the help of Proposition 6.1.1, we may assume

that there exists a constant R > 0 such that

diamgj
(E ′

j) ≤ R

and since ∂E ′
j intersects ∂Ωj , then

sup
e∈∂Ej

distgj
(e, ∂Ωj) ≤ diamgj

(E ′
j) ≤ R.

We can let pj ∈ ∂Ωj and Uj ⊂ Rm+1
+ be such that E ′

j = Fj(Uj), where

Fj : γjB
m+1
+ → Ωj is defined by Fj(·) := 1

rj
F pj(rj(·)) and γj → ∞ as

j →∞.

For j fixed and sufficiently large, let hj := (Fj)∗(gj) be the metric in-

duced by Fj on Rm+1
+ , one has that Uj minimizes the perimeter Phj

(·, γjB
m+1
+ )

in (γjB
m+1
+ , hj) among sets enclosing its volume |Uj|hj

= |Bm+1
+ | and also

intersects perpendicularly ∂Rm+1
+ = Rm × {0}.
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Now since hj is converging to the euclidean metric, we get diam(Uj) ≤ c

for every large j. And so we have Phj
(Uj,Rn+1

+ ) ≤ c which implies that

P(Uj,Rm+1
+ ) ≤ c. Hence by compactness there exist U ⊂ Rm+1

+ such that

D1Uj

∗
⇀ D1U . Furthermore by the trace theorem, 1Uj

∣∣∣
Rm×{0}

L1

→ 1U

∣∣∣
Rm×{0}

.

Now to see that U is a minimizer, we let V ⊂ Rm+1 such that |V | = |Bm+1
+ |

and define cj → 1 such that cj|V |hj
= |Bm+1

+ | (this is possible since also hj

converges to the euclidean metric) but then we have

Phj
(Uj,Rm+1

+ ) ≤ c
m

m+1

j Phj
(V,Rm+1

+ )

and this implies together with the semi-continuity of the perimeter that

P(U,Rm+1
+ ) ≤ P(V,Rm+1

+ ).

We conclude that U is a minimizer in Rm+1
+ among sets that enclose the

volume |Bm+1
+ |, namely U = Bm+1

+ . Finally, again by [69] § 2, we have a

smooth convergence because mean curvatures are bounded. Hence we may

assume that there exists ωpj ,rj ∈ C2,α(Sm
+ ) such that

Σj := ∂Uj ∩ Rm+1
+ = (1 + ωpj ,rj)Sm

+ (6.1)

with ‖ωpj ,rj‖C2,α(Sm
+ ) tending to zero as j →∞.

We now estimate the free boundary, Hm(∂Σj), by slicing with hyper-

planes Rm × {0}+ hN∂Ω with h ∈ R. For terminology, we refer the reader

to [68]. In the following, with an abuse of notation, we will call Σj the

integer ( Hm+1(Σj) + Hm(∂Σj) ≤ ∞ if j is sufficiently large) rectifiable

current associated to the set Σj. We define µj(h) by

µj(h) := Hm(Σj ∩ {d < h}) = P(Uj, {dj < h}) for 0 < h <
1

2
,

where Rm+1 3 x 7→ d(x) = xm+1 (is the distance function from ∂Rm+1
+ =

Rm × {0}). For h ≥ 0 we consider the slice

〈Σj, d, h+〉 := (∂Σj) x {d > h} − ∂(Σjx{d > h}).

Clearly we deduce that

〈Σj, d, 0+〉 = ∂Σj.

From [68], § 4.11, (3) we get

Hm−1(〈Σj, d, 0+〉) ≤ Lip(d) lim inf
h↘0

µj(h)

h
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and from Lip(d) = 1 it follows that

Hm−1(〈Σj, d, 0+〉) ≤ lim inf
h↘0

µj(h)

h
.

Since µj(h) is increasing the same argument yields for L 1 a.e. h > 0

Hm−1(〈Σj, d, h+〉) ≤ µ′j(h).

Observe that by (6.1) and Lemma 7.3.2

µj(h) = P(Uj, {d < h}) = Hm((1 + ωpj ,rj)Sm
+ ∩ {d < h})

≤ h (1 +O(rj))Hn−1(〈Σj, d, h+〉)

≤ h (1 +O(rj))µ
′
j(h).

Hence we get

µj(h) ≤ 2hµ′j(h),

which is equivalent to (
µj(h)

h
+ 2µj(h)

)′
≥ 0

for every L 1 a.e. 1
2 > h > 0. From this and the fact that µj is increasing

we conclude that

Hm−1(∂Σj) ≤ Hm(Σjx{d < h}) (
1

h
+ 2)

for every h ∈ (0, 1
2).

From this together with Lemma 7.3.2 we have

Hm−1(∂Σj) ≤ cHm(Σj) ≤ c̃ for any large j.

Consequently, Σj is an integral current and moreover by compactness ([68],

5.5) ∂Σj converges weakly to ∂Sm
+ . Since mean curvatures of Σj are

bounded (see also [69] (2.4)), C1,α convergence up to the free boundary fol-

lows by Gruter-Jost [41]. Hence finally we can assume that ωpj ,rj ∈ C1,α(Sn
+)

if j is sufficiently large with

∂E ′
j ∩ Ωj =

1

rj
F pj(rj(1 + ωpj ,rj)Sm

+ ),

and ‖ωpj ,rj‖C2,α(Sm
+ ) + ‖ωpj ,rj‖C1,α(Sm

+ ) → 0 as r → 0.
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6.1.3. Remark. Observe that when applying the first compaccity result

namely D1Uj

∗
⇀ D1U we also have (by Rellich theorem) that 1Uj

L1

→ 1U .

Since U = Bm+1
+ , by [70], ∂Uj ∩ Rm+1

+ can be written as a normal graph

over Sm
+ by a smooth function ωpj ,rj for which ‖ωpj ,rj‖C2,α(Sm

+ ) → 0 as r → 0.

We also notice that Ck,α regularity and estimates of ωpj ,rj can be obtained

by a boot-strap argument using Proposition 7.2.2 as in [69], [70].

The following lemma shows the smoothness of the center of mass c(r, p, ω) ∈
∂Ω of the hyper-surface Σp,r,ω := F p(r(1 + ω)Sm

+ )) as a function in r, p

and ω. The proof can be obtained, with slight modifications, from [72]

Lemma 1.3-1.4.

6.1.4. Lemma. There exists a smooth map c : R × ∂Ω × C2,α(Sm
+ ) → ∂Ω

such that ∫
Σp,r,ω

(F c)−1(z) dvolΣp,r,ω
= 0.

Moreover there exists a smooth vector field Xp,r,ω on Tp∂Ω such that

c(r, p, ω) = exp∂Ω
p (r Xp,r,ω)

with

Xp,0,ω =

∫
Sm

+
(1 + ω)m Θ̃

√
‖dω‖2 + (1 + ω)2 dσ∫

Sm
+
(1 + ω)m−1

√
‖dω‖2 + (1 + ω)2 dσ

,

where dω is the differential of ω.

According to Proposition 7.2.2, with H(p, r, ω) being the mean curvature

of Σp,r,ω, we define T (p, r, ·) : C2,α(Sm
+ ) → C0,α(Sm

+ )∫
Sm

+

T (p, r, ω)ω′ dσ :=

∫
Sm

+

r H(p, r, ω)ω′ dσ −
∮

∂Sm
+

〈N∂Ω
∂Σp,r,ω

, N
Σp,r,ω

∂Σp,r,ω
〉ω′ds,

(6.2)

for every ω′ ∈ H1.

We recall that Ep,r,ω is the set bounded by the hyper-surface Σp,r,ω and

∂Ω.

6.1.5. Definition. A set Ep,r,ω is called a pseudo-half-ball if

Π ◦ T (p, r, ω) ≡ 0,
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which is equivalent to

Π1
⊥ ◦ T (p, r, ω) ≡ Const ∈ R,

where T (p, r, ω) is defined in (6.2).

Observe that letting Ξ ∈ Tp∂Ω be such that Π1 ω = 〈Ξ, Θ̃〉, by Lemma

6.1.4, we get

c(r, p, ω) = p+
|Sm

+ |
m+ 1

rΞ + r2{Lp(ω) +O(r) +Qp(ω)}αEα. (6.3)

On the other hand from the expansion of the volume of the sets Ep,r,ω,

Lemma 7.3.3, we define

Φ(p, r, ω) := r−m−1 |Ep,r,ω|g −
∣∣Bm+1

+

∣∣
=

∫
Sm

+

ω dσ +O(r) +

∫
Sm

+

(
O(r)ω + Q̂p(ω)

)
dσ.

It turns out that

Φ(p, 0, 0) = 0,
∂Φ(p, 0, 0)

∂ω
[u] = Π0 u.

Now for any hyper-surface Σp,r,ω, we can associate to it the smooth mapping

Ψ : ∂Ω× (0, 1)× C2,α(Sm
+ ) → Tp∂Ω× ΠC0,α(Sm

+ )× R

by

Ψ(p, r, ω) :=

(
m+ 1

|Sm
+ |

Xp,r,ω, Π ◦ T (p, r, ω), −mΦ(p, r, ω)

)
.

6.1.6. Lemma. There exist r0 > 0 and c0 > 0 such that for any p ∈ ∂Ω

and r ∈ (0, r0), there exists a unique smooth ωp,r ∈ C2,α(Sm
+ ) with

‖ωp,r‖C2,α(Sm
+ ) ≤ c0r0

such that Ψ(p, r, ωp,r) = (0, 0, 0), namely

c(r, p, ωp,r) = p; Π1
⊥◦T (p, r, ωp,r) ∈ R and |Ep,r,ωp,r |g =

∣∣rBm+1
+

∣∣ .
for every r ∈ (0, r0).

Proof. We make the following identification: Ck,α(Sm
+ ) ≡ Tp∂Ω ×

ΠCk,α(Sm
+ ) × R and that for any u ∈ Ck,α(Sm

+ ), we decompose it as u =

〈Ξ, Θ̃〉+ Πu+ u0 = 〈Ξ, Θ̃〉+ w.
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It is easy to see that Ψ(p, 0, 0) = (0, 0, 0) while

〈∂Ψ

∂ω
(p, 0, 0)[u], u′〉 =

∫
Sm

+

∇Sm
+
w∇Sm

+
w′ −mww′ dσ +

∫
Sm

+

〈Ξ, Θ̃〉〈Ξ′, Θ̃〉 dσ.

Since ∂Ψ
∂ω (p, 0, 0) is an isomorphism from C2,α(Sm

+ ) in to C0,α(Sm
+ ), the lemma

then follows by the implicit function theorem.

By choosing r0 small enough in Lemma 6.1.6, we may assume that the

hyper-surfaces Σp,r,ωp,r are embedded into Ω for any r ∈ (0, r0) since ‖ωp,r‖C1,α(Sm
+ ) →

0 as r0 → 0. For simplicity, we will call Ep,r := Ep,r,ωp,r the sets bounded

by Σp,r,ωp,r and ∂Ω.

Remark that the above lemma yields, for any fixed r ∈ (0, r0), a manifold

of pseudo-half-ball diffeomorphic to ∂Ω having volume
∣∣rBm+1

+

∣∣ defined by

Cr := {Ep,r,ωp,r ⊂ Ω : Ψ(p, r, ωp,r) = (0, 0, 0), ‖ωp,r‖C2,α(Sm
+ ) ≤ c0r0, p ∈ ∂Ω}.

We can now prove the following result

6.1.7. Lemma. If r�1, then

I(r) = inf
E∈Cr

Pg(E,Ω) = inf
p∈∂Ω

Pg(Ep,r,Ω),

where Ep,r, p ∈ ∂Ω, denote the elements of Cr.

Proof. We have to check that a solution to the isoperimetric problem

with volume
∣∣rBm+1

+

∣∣ belongs to Cr if r is small enough.

Let E be a solution to the isoperimetric problem with |E|g =
∣∣rBm+1

+

∣∣,
then if r�1, Lemma 6.1.2 implies that ∂E ∩ Ω = F q(r(1 + uq,r)Sm

+ ) for

some q ∈ ∂Ω and ‖uq,r‖C2,α(Sm
+ ) → 0 as r → 0.

Letting p ∈ ∂Ω be the center of mass of ∂E then by (6.3), distg(p, q) ≤
c
(
r2 + r ‖uq,r‖C2,α(Sn

+)

)
so if r�1, we can find v(p, r) with ‖v(p, r)‖C2,α(Sm

+ ) →
0 as r → 0 such that ∂E ∩ Ω = Σp,r,v(p,r). Clearly since p is the cen-

ter of mass, it follows that Xp,r,v(p,r) = 0. From the mean curvature

expansions, we get Π ◦ T (p, r, v(p, r)) = 0 because the mean curvature

of ∂E is constant and ∂E intersect ∂Ω perpendicularly. Consequently

Ψ(p, r, v(p, r)) = (0, 0, 0). We conclude that if r is small enough then

E ∈ Cr.
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6.1.8. Lemma. For any Ep,r ∈ Cr, we have

Pg (Ep,r,Ω) = P
(
rBm+1,Rm+1

+
)
− m

m+ 2

|Bm|∣∣Bm+1
+

∣∣ H∂Ω(p)
∣∣rBm+1

+

∣∣+Op

(∣∣rBm+1
+

∣∣m+2
m+1

)
,

where Op(ρ) is smooth and tends to zero as ρ→ 0 uniformly in p.

Proof. Let Ep,r ∈ Cr: differentiating the expression Φ(p, r, ωp,r) = 0

with respect to r, we can deduce that

Π0ω
p,r =

∫
Sm

+

ωp,r dσ = − r

m+ 2
〈Sp(Ei), Ei〉

∫
Sm

+

Θm+1dσ +Op(r
2).

This together with Lemma 7.3.2 we get

r−mPg(Ep,r,Ω) = P(Bm+1,Rm+1
+ ) + r

∫
Sm

+

(
〈Sp(Ei), Ei〉 − 〈Sp(Θ̃), Θ̃〉

)
Θm+1dσ +mr

∫
Sm

+

ωp
0dσ

+ Op(r
2)

= P(Bm+1,Rm+1
+ ) +

2r

m+ 2
〈Sp(Ei), Ei〉

∫
Sm

+

Θm+1dσ −
∫

Sm
+

〈Sp(Θ̃), Θ̃〉Θm+1dσ

+ Op(r
2).

Recall that H∂Ω(p) = − 1
m〈Sp(Ei), Ei〉. Moreover since∫

Sm
+

〈Sp(Θ̃), Θ̃〉Θm+1dσ = 〈Sp(Ei), Ej〉
∫

Sm
+

ΘiΘjΘm+1dσ

and observing that ∫
Sm

+

ΘiΘjΘm+1dσ = 0 if i 6= j,

we deduce that

Pg(Ep,r,Ω) = P(rBm+1,Rm+1
+ )− cmH∂Ω(p)

∣∣rBm+1
+

∣∣+Op

(∣∣rBm+1
+

∣∣m+2
m+1

)
with

cm =
m∣∣Bm+1
+

∣∣ ∫
Sm

+

(
2

m+ 2
− (Θ1)2

)
Θm+1dσ

=
m

m+ 2

|Bm|∣∣Bm+1
+

∣∣ .
We have used the fact that∫

Sm
+

Θm+1dσ =
Area(Sm−1)

m
= |Bm| ,

∫
Sm

+

(Θi)2Θm+1dσ =
Area(Sm−1)

m(m+ 2)
.

(6.4)
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The proof of Theorem 6.0.4 is finalized by the following

6.1.9. Lemma. Let rk be a sequence tending to 0 and Ek ⊂ Ω satisfy

|Ek|g = |rkBm+1
+ | and Pg(Ek,Ω) = I(rk). Let pk ∈ ∂Ω be the center of

mass of ∂Ek converging to a point p ∈ ∂Ω. Then

H∂Ω(p) = max
q∈∂Ω

H∂Ω(q).

Proof.

If k is large enough, Ek = Epk,rk
∈ Crk

and also by Lemma 6.1.7 we have

that

Pg(Epk,rk
,Ω) = I(rk) = min

q∈∂Ω
Pg(Eq,rk

,Ω)

where Ep,rk
, p ∈ ∂Ω, denote the elements of Crk

. Now by Lemma 6.1.8, we

have

−H∂Ω(pk) +O(pk, rk) = min
q∈∂Ω

(−H∂Ω(q) +O(q, rk))

with |O(pk, rk)| → 0 and supq∈∂Ω |O(q, rk)| → 0 when k tends to infinity.

The lemma then follows taking k to infinity.



Chapter 7

Appendix

7.1 Preliminaries and notations

Throughout this chapter, Ω is a smooth domain of an (m+1)-Riemannian

(M, g). We denote by N∂Ω the unit interior normal vector field along ∂Ω.

We consider ((Ei)i=1,...,m, N∂Ω) be an (oriented) orthonormal frame of M
along ∂Ω. Recalling from the first chapter, the mean curvature of ∂Ω at

p is given by the trace of h(= h∂Ω) the second fundamental form of ∂Ω.

Namely H∂Ω(p) := − 1
m〈hp(Ei), Ei〉. We first introduce geodesic normal

coordinates in a neighborhood (in ∂Ω) of a point p ∈ ∂Ω with coordinates

x′ = (x1, . . . , xm) ∈ Rm. We set

f p(x′) := exp∂Ω
p (xiEi).

This choice of coordinates induces coordinate vector-fields on ∂Ω:

Yi(x
′) = f∗(∂xi) for i = 1, . . . ,m.

Now consider a local parametrization of a neighborhood of p in M by

F p(x) := expMfp(x′)(x
m+1N∂Ω), x = (x′, xm+1) ∈ Rm+1. (7.1)

This yields the coordinate vector fields in M,

Xi(x) := F p
∗ (∂xi) i = 1, . . . ,m;

Xm+1(x) := F p
∗ (∂xm+1).

7.1.1. Lemma. Near the point F p(x′, 0) = f p(x′)

Xi = Yi + xm+1h(Yi) +
(xm+1)2

2
RMp (N∂Ω, Yi)N∂Ω +O(|xm+1|3).

Moreover near p = F p(0) we have

〈Yi, Yj〉 = δij +
1

3
〈Rp(Ek, Ei)El, Ej〉xkxl +O(|x|3).

Where Rp (resp. RMp ) is the Riemannian tensor of ∂Ω (resp. M).



128 7. Appendix

Proof. By construction we have

∇k
Xm+1

Xm+1

∣∣∣
f(x′)

= 0 for any integer k ≥ 1.

By definition, ∇Xm+1
Xi

∣∣∣
f(x′)

= ∇Xi
Xm+1

∣∣∣
f(x′)

= h(Yi) and Xm+1

∣∣∣
f(x′)

=

N∂Ω. We also have that

∇2
Xm+1

Xi

∣∣∣
f(x′)

= ∇Xm+1
(∇Xi

Xm+1)
∣∣∣
f(x′)

= RMp (N∂Ω, Yi)N∂Ω+∇Xi
∇Xm+1

Xm+1

∣∣∣
f(x′)

= RMp (N∂Ω, Yi)N∂Ω.

Finally, the proof of the last expansions follows from Lemma 4.1.1.

From the above lemma, we have the following proposition which gives the

expansions of the metric gαβ := 〈Xα, Xβ〉 in a neighborhood, of p ∈ ∂Ω in

M, with α, β ∈ {1, . . . ,m,m+ 1}.

7.1.2. Proposition. In a neighborhood of p,

gij = δij + 2〈h(Yi), Yj〉xm+1 +
1

3
〈Rp(Ek, Ei)El, Ej〉xkxl

+r2 (〈RMp (N∂Ω, Ei)N∂Ω, Ej〉+ 〈h(Yi), h(Yj)〉
)
(xm+1)2 +O(|x|3);

gim+1 = O(|x|3);

gm+1m+1 = 1.

Where Rp (resp. RMp ) is the Riemann tensor of ∂Ω (resp. M) at p.

Observe that all hypersurfaces nearby a geodesic sphere centered at

p ∈ ∂Ω with radius r can be parametrized by a mapping G : Bm → M
defined by

G(z) := F p
(
r(1 + ω)Θ̃(z), r(1 + ω)Θm+1(z)

)
, (7.2)

for some p ∈ ∂Ω and ω : Sm
+ → R. Notice that by construction, since

Θm+1 = 0 on ∂Sm
+ ,

∂Σp,r,ω ⊂ ∂Ω.

Given p ∈ ∂Ω and ω : Sm
+ → R, throught this chapter, the expression Σp,r,ω

will denote the hyper-surface F p(r(1 + ω)Sm
+ ) while Ep,r,ω will denote the

set bounded by Σp,r,ω and ∂Ω.

Notation: Any expression of the form Lp(ω) (resp. L̄p(ω)) denotes

a linear combination of the function ω together with its derivatives with
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respect to the vector fields Θi up to order 2 (resp. order 1). The coefficients

of Lp or L̄p might depend on r and p but, for all k ∈ N, there exists a

constant c > 0 independent of r ∈ (0, 1) and p ∈ ∂Ω such that

‖Lp(ω)‖Ck,α(Sm
+ ) ≤ c ‖ω‖Ck+2,α(Sm

+ ),

‖L̄p(ω)‖Ck,α(Sm
+ ) ≤ c ‖ω‖Ck+1,α(Sm

+ ).

Similarly, given a ∈ N, any expression of the form Qa
p(ω) (resp. Q̄a

p(ω))

denotes a nonlinear operator in the function ω together with its derivatives

with respect to the vector fields Θi up to order 2 (resp. 1). The coefficients

of the Taylor expansion of Qa
p(ω) in powers of ω and its partial derivatives

might depend on r and p and, given k ∈ N, there exists a constant c > 0

independent of r ∈ (0, 1) and p ∈M such that Qa
p(0) = 0 and

‖Qa
p(ω1)−Qa

p(ω2)‖Ck,α(Sm
+ ) ≤ c

(
‖ω1‖Ck+2,α(Sm

+ ) + ‖ω2‖Ck+2,α(Sm
+ )

)a−1
‖ω1−ω2‖Ck+2,α(Sm

+ ),

provided ‖ωi‖Ck+2,α(Sm
+ ) ≤ 1. Also

‖Q̄a
p(ω1)−Q̄a

p(ω2)‖Ck,α(Sm
+ ) ≤ c

(
‖ω1‖Ck+1,α(Sm

+ ) + ‖ω2‖Ck+1,α(Sm
+ )

)a−1
‖ω1−ω2‖Ck+1,α(Sm

+ ),

provided ‖ωi‖Ck+2,α(Sm
+ ) ≤ 1. We also agree that any term denoted by Op(r

d)

is a smooth function on Sm
+ that might depend on p but satisfies

‖Op(r
d)‖Ck,α(Sm

+ ) ≤ c rd,

for a constant c independent of p.

The tangent space of Σp,r,ω is spanned by the vector-fields

Zj = G∗(∂zj) = r(1 + ω) Υj + rωj Υ, j = 1, . . . ,m. (7.3)

It is not difficult to see that at the point G(z), one has by Proposition 7.1.2

that

〈Xi, Xj〉 = δij + 2r(1 + ω)〈h(Υ̃i), Υ̃j〉Θm+1 + r2(1+ω)2

3 〈Rp(Θ̃, Θ̃i)Θ̃, Θ̃j〉

+ r2
(
〈RMp (N∂Ω, Θ̃i)N∂Ω, Θ̃j〉+ 〈h(Υ̃i), h(Υ̃j)〉

)
(Θm+1)2

+ O(r3) + r3L(ω) + r3Q(ω);
(7.4)

〈Xi, Xm+1〉 = O(r3) + r3L(ω) + r3Q(ω); (7.5)

〈Xm+1, Xm+1〉 = 1. (7.6)

Letting g
Σp,r,ω

ij := 〈Zi, Zj〉, from the above, we get the first fundamental

form of Σp,r,ω.
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7.1.3. Proposition.

(1 + ω)−2r−2g
Σp,r,ω

ij = µ2 +
(
2ωj〈h(Υ̃), Υ̃i〉+ 2ωi〈h(Υ̃), Υ̃j〉+ 2(1 + ω)〈h(Υ̃j), Υ̃i〉

)
rΘm+1

+ ωiωj +
1

3
〈Rp(Θ̃, Θ̃i)Θ̃, Θ̃j〉r2 + 〈h(Υ̃j), h(Υ̃i)〉r2(Θm+1)2

+ (Θm+1)2〈RMp (N∂Ω, Θ̃j)N∂Ω, Θ̃i〉r2 +O(r3) + r2L(ω) + rQ2(ω) +Q3(ω).

7.2 Mean curvature expansion of Σp,r,ω

This section is devoted to give the expansion of the mean curvatureH(p, r, ω)

of a hyper-surface Σp,r,ω in terms of r and ω. The proof is similar to the

one in Chapter 4 so we will give a sketch here for the reader’s convenience.

Let z 7→ G(z) parametrizes Σp,r,ω as defined in (7.2).

Notation: With an abuse of notations, at the point p, we let

Θ := Θj Ej+Θm+1N∂Ω = Θ̃+Θm+1N∂Ω, Θi := ∂ziΘj Ej+∂ziΘm+1N∂Ω,

while at the point G(z), we define the vector fields

Υ := Θj Xj+Θm+1Xm+1 = Υ̃+Θm+1Xm+1, Υi := ∂ziΘj Xj+∂zj
Θm+1Xm+1.

We also set

ωj := ∂zjω ωij := ∂zi ∂zjω.

From the above notations, it is clear that the tangent space of Σp,r,ω is

spanned by the vector fields

Zj = G∗(∂zj) = r(1 + ω) Υj + rωj Υ, j = 1, . . . ,m. (7.7)

Letting gΣ
ij := 〈Zi, Zj〉 be the first fundamental form of Σp,r,ω(= Σ), using

Proposition 7.1.3 one has

(1+ω)−2r−2gΣ
ij = µ2 +2 r 〈S(Θ̃j), Θ̃i〉Θm+1 +O(r2)+ rL(ω)+Q(ω). (7.8)

7.2.1 The normal vector field

In this subsection we expand the unit normal to Σp,r,ω. The vector field

ÑΣ := −rΥ + αj Zj.
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is the outer normal field (not necessarily unitary) along Σp,r,ω if we can

determine αj so that its tangential components 〈ÑΣ, Zj〉 vanish. This leads

to a linear system for αj .

We have the following expansion

〈Υ, Zj〉 = rωj + 2r2Θm+1〈S(Θ̃), Θ̃j〉+O(r3) + r2 L(ω) + r2Q(ω),

which follows from (7.4)-(7.6).

Using (7.8), and some algebraic calculations, one obtains

αj 〈Zj, Zi〉 = r〈Υ, Zi〉 (7.9)

= r2
(
ωi + 2rΘm+1〈S(Θ̃), Θ̃i〉+O(r2) + r L(ω) +Q(ω)

)
,

hence straightforward computations imply that

αk〈Θi,Θk〉 = ωi + 2rΘm+1〈S(Θ̃), Θ̃i〉+O(r2) + r L(ω) +Q(ω).

Now we have, using also (7.9) that

〈ÑΣ, ÑΣ〉 = r2〈Υ,Υ〉 − 2rαk〈Zk,Υ〉+ αlαk〈Zk, Zl〉

= r2(1 + 2rΘm+1〈S(Θ̃), Θ̃〉+O(r2) + rL(ω) +Q(ω))− αlαk〈Zk, Zl〉

= r2(1 + 2rΘm+1〈S(Θ̃), Θ̃〉+O(r2) + rL(ω) +Q(ω)).

From this we deduce that

|ÑΣ|−1 = r−1
(
1− rΘm+1〈S(Θ̃), Θ̃〉+O(r2) + r L(ω) +Q(ω)

)
.

Therefore the unit normal can be expanded as

NΣ =
ÑΣ

|ÑΣ|
= −

(
1− rΘm+1〈S(Θ̃), Θ̃〉

)
Υ+αk Zk+

(
O(r2) + r L(ω) +Q(ω)

)
α
Xα.

7.2.2 The second fundamental form

In this subsection we expand the coefficients of the second fundamental

form.

Noticing that by definition, ∇Zi
Zj ' DZj

dzi , we can readily get the follow-

ing expansions:

r−1∇Zi
Zj = ωijΥ + ωjΥi + ωiΥj + (1 + ω)Υij + rΘα

i Θβ
j∇Xα

Xβ

+
(
O(r2) + rL(ω) +Q(ω)

)
α
Xα,



132 7. Appendix

so using (7.4)-(7.6), we get

r−1〈NΣ,∇Zi
Zj〉 = −(1 + ω)

(
1− rΘm+1〈S(Θ̃), Θ̃〉

)
〈Υij,Υ〉 − ωij + αk〈Υij,Υk〉

+ r
(
Θm+1〈S(Θ̃i), Θ̃j〉 −Θm+1

i 〈S(Θ̃), Θ̃j〉 −Θn+1
j 〈S(Θ̃), Θ̃i〉

)
+ O(r2) + r L(ω) +Q(ω).

Observing that

〈Υij,Υ〉 = 〈Θij,Θ〉+ 2rΘm+1〈S(Θ̃), Θ̃ij〉+O(r2) + r L(ω) +Q(ω)

and also

〈Υij,Υk〉 = 〈Θij,Θk〉+O(r) + r L(ω) +Q(ω),

we obtain with a little work the

7.2.1. Proposition. The second fundamental form of the Σp,r,ω has the

following expansion

r−1〈NΣ,∇Zi
Zj〉 = −

(
1 + ω − rΘm+1〈S(Θ̃), Θ̃〉

)
〈Θij,Θ〉

−
(
ωij + 2rΘm+1〈S(Θ̃), Θ̃ij〉

)
+ αk〈Θij,Θk〉

+ r
(
Θm+1〈S(Θ̃i), Θ̃j〉 −Θn+1

i 〈S(Θ̃), Θ̃j〉 −Θm+1
j 〈S(Θ̃), Θ̃i〉

)
+ O(r2) + r L(ω) +Q(ω).

Let H(p, r, ω) be the mean curvature of the hyper-surface Σp,r,ω, con-

tracting with the metric, (7.8), and using also Lemma 2.3.1, we have the

7.2.2. Proposition. In the above notations there hold

rH(p, r, ω) = m −
(
∆Sm

+
ω +mω

)
+ rΘm+1

(
(m+ 3)〈S(Θ̃), Θ̃〉 − 〈S(Ei), Ei〉

)
+ O(r2) + r L(ω) +Q(ω) in Σp,r,ω;

〈NΣp,r,ω

∂Σp,r,ω
, N∂Ω

∂Σp,r,ω
〉 = − ∂ω

∂η
+ r2 L̄(ω) + Q̄(ω) on ∂Σp,r,ω,

where η ≡ −N∂Ω is the outer unit normal to ∂Sm
+ and NA

B stands for the

normal of B in A.
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Proof.

We first determineN∂Ω
∂Σp,r,ω

. Let s 7→ Θ̄(s) ∈ Sm−1 = ∂Bm a parametriza-

tion of the unit sphere. Noting that Θ(Θ̄(s)) = Θ̄(s), the mapping

s 7→ Ḡ(s) := f p(r(1 + ω)Θ̄(s)) = F p(r(1 + ω)Θ̄(s), 0)

parametrizes ∂Σp,r,ω ⊂ ∂Ω and hence its tangent space is spanned by

Z̄i = r(1 + ω) Ῡi + r∂siω Ῡ i = 1, . . . ,m− 1,

where

Ῡ := Θ̄j Yj, Ῡi := ∂siΘ̄j Yj.

Hence setting

Ñ∂Ω
∂Σp,r,ω

= −r Ῡ + βkZ̄k, (7.10)

we need only to find βk, k = 1, . . . ,m so that it is orthogonal to Z̄i. But,

this can be found in [73] Lemma 2.1 and one has

βk〈Z̄k, Z̄i〉 = r∂siω, (7.11)

while r−2〈Z̄k, Z̄i〉 = 〈Θ̄k, Θ̄i〉
(
1 +O(r2) + r2L(ω) +Q(ω)

)
and also

∣∣∣Ñ∂Ω
∂Σp,r,ω

∣∣∣−1
=

r−1 (1 +Q(ω)).

We now determine N
Σp,r,ω

∂Σp,r,ω
. To this aim, we denote by ν the unit outer

normal to the unit disc Bm and similarly as we have expanded Ñ∂Ω
∂Σp,r,ω

, we

let

ÑΣ
∂Σ = G∗(∂ν)

∣∣∣
∂Bm

+ γkZ̄k

= −r (1 + ω)N∂Ω + r ∂νωΥ̃
∣∣∣
∂Bm

+ γkZ̄k

= −r (1 + ω)N∂Ω + r ∂νωῩ + γkZ̄k,

we have use the fact that ∂νΘ̃
∣∣∣
∂Bm

= 0 and ∂νΘ
m+1
∣∣∣
∂Bm

= −1. Noting that

〈N∂Ω, Z̄j〉=0 and 〈Ῡ, Z̄j〉 = r ωj, then ÑΣ
∂Σ ∈ TΣp,r,ω is normal to ∂Σp,r,ω if

γk〈Z̄k, Z̄j〉 = r2ωj∂νω.

Moreover we can deduce that
∣∣∣ÑΣ

∂Σ

∣∣∣−1
= r−1 (1 +Q(ω)).

Collecting these with the fact that 〈NΣ
∂Σ, N

∂Ω
∂Σ 〉 = 0 when ω = 0, we have

that

〈NΣ
∂Σ, N

∂Ω
∂Σ 〉 = −∂ω

∂η
+ r2 L̄(ω) + Q̄2(ω) on ∂Σp,r,ω
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because ∂νω = ∂ω
∂η which holds true since µ = 1.

7.3 Area and volume expansion of geodesic hemispheres

In this section, we give expansions of the area and enclosed volume of

hyper-surfaces ∂Ep,r,ω = Σp,r,ω.

Using Proposition 7.1.3 we can deduce the expansion of the volume form.

7.3.1. Lemma. The volume form expands as

rm
√

det gΣp,r,ω = µm + rΘm+1µm−2〈h(Υ̃i), Υ̃i〉+mωµm

+ rΘm+1µm−2
(
3(m+ 1)ω〈h(Υ̃i), Υ̃i〉+ 2ωi〈Υ̃, Υ̃〉

)
+

r2

2
(Θm+1)2µm−2

(
〈h(Υ̃i), h(Υ̃i)〉+ µ−2|〈h(Υ̃i), Υ̃i〉|2 − 2µ−2|〈h(Υ̃i), Υ̃j〉|2

)
+

r2

6
µm−2〈Rp(Θ̃, Θ̃i)Θ̃, Θ̃i〉+

r2

2
(Θm+1)2µm−2〈RMp (N∂Ω, Θ̃i)N∂Ω, Θ̃i〉

+
µm−2

2

(
ω2

i +m(m− 1)µ2ω2)+O(r3) + r2L(ω) + rQ2(ω) +Q3(ω).

Observe that

〈h(Yk), Yl〉
∣∣∣
fp(r(1+ω)Θ̃)

= 〈h(Ek), El〉+〈T (Θ̃, Ek), El〉+O(r2)+rL(ω)+Q(ω),

(7.12)

where T (Yi, Yk) = ∇Yi
∇Yk

N∂Ω. In fact we have

Yi〈h(Yk), Yl〉 = 〈T (Yi, Yk), Yl〉+ 〈∇Yk
N∂Ω,∇Yi

Yl〉.

By the parallel transport of the vector-fields Yj with respect to the con-

nection ∇∂Ω of ∂Ω, we have

∇∂Ω
Yi
Yl

∣∣∣
p

= 0.

Since

∇Yi
Yl = ∇∂Ω

Yi
Yl − 〈h(Yi), Yl〉N∂Ω,

it follows that

〈∇Yk
N∂Ω,∇Yi

Yl〉
∣∣∣
p

= 0.

Therefore by odness, we readly deduce the following
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7.3.2. Lemma. The area of the hyper-surface Σp,r,ω has the following ex-

pansion

r−mA(Σp,r,ω) = P(Bm+1,Rm+1
+ ) + r

∫
Sm

+

(
〈h(Ei), Ei〉 − 〈h(Θ̃), Θ̃〉

)
Θm+1dσ +m

∫
Sm

+

ωdσ

+ 3r(m+ 1)

∫
Sm

+

(
〈h(Ei), Ei〉 − 〈h(Θ̃), Θ̃〉

)
Θm+1ωdσ + 2r

∫
Sm

+

Θm+1〈h(Θ̃),∇Smω)〉dσ

+
r2

2

∫
Sm

+

((
〈h(Ei), h(Ei)〉 − 〈h(Θ̃), h(Θ̃)〉

)
+
(
〈h(Ei), Ei〉 − 〈h(Θ̃), Θ̃〉

)2
)

(Θm+1)2dσ

− r2

2

∫
Sm

+

(
|〈h(Θ̃), Θ̃〉|2 − 2|〈h(Ei), Ei〉|2 + |〈h(Ej), h(Ei)〉|2

)
dσ − r2

6

∫
Sm

+

Ricp(Θ̃, Θ̃)dσ

− r2

2

∫
Sm

+

(
RicMp (Θ̃, Θ̃) + 〈RMp (N∂Ω, Θ̃)N∂Ω, Θ̃〉

)
(Θm+1)2dσ

+
1

2

∫
Sm

+

(
|∇Smω|2 +m(m− 1)ω2) dσ +Op(r

3) +

∫
Sm

+

(
r2L(ω) + rQ2(ω) +Q3(ω)

)
dσ.

Use Proposition 7.1.2 and (7.12) to have the volume form of BM(p, ρ) in

M for ρ small,

ρ−m
√

det gij = 1 + ρΘm+1
(
〈h(Ei), Ei〉+ ρ〈T (Θ̃, Ei), Ei〉

)
+
ρ2

2
〈RMp (N∂Ω, Ei)N∂Ω, Ei〉

+
ρ2

6
〈Rp(Θ̃, Ei)Θ̃, Ei〉+ ρ2(Θm+1)2〈RMp (N∂Ω, Ei)N∂Ω, Ei〉+

ρ2

2
(Θm+1)2〈h(Ei), h(Ei)〉

+
ρ2

8
(Θm+1)2 |〈h(Ei), Ej〉|2 −

ρ2

4
(Θm+1)2 |〈h(Ei), Ek〉|2 +O(ρ3).

Integration over the set ρ ≤ r(1 + ω) gives the expansion of the volume

bounded by Σp,ω,r and ∂Ω.
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7.3.3. Lemma. The following expansion holds

r−m−1|E(p, r, ω)|g =
1

m+ 1
P(Bm+1,Rm+1

+ ) +
r

m+ 2
〈h(Ei), Ei〉

∫
Sm

+

Θm+1dσ +

∫
Sm

+

ωdσ

+
r2

m+ 3

(
1

8
|〈h(Ei), Ei〉|2 +

1

2
〈h(Ei), h(Ei)〉 −

1

4
|〈h(Ei), Ej〉|2

)∫
Sm

+

(Θm+1)2dσ

+ − r2

6(m+ 3)

∫
Sm

+

Ricp(Θ̃, Θ̃)dσ − r2

2(m+ 3)
RicMp (N∂Ω, N∂Ω)

∫
Sm

+

(Θm+1)2dσ

+ r〈h(Ei), Ei〉
∫

Sm
+

Θm+1ωdσ +
m

2

∫
Sm

+

ω2dσ +Op(r
3)

+

∫
Sm

+

(
O(r2)ω +O(r)Q̂2(ω) + Q̂3(ω)

)
dσ,

where Q̂a(ω) is a polynomial in w, at least of order a, with smooth coef-

ficients depending on p, Θ and maybe on r but uniformly bounded by a

constant depending only on Ω.

7.4 CMC hemispheres in Riemannian manifolds

Let E be an open smooth subset of Ω and Σ := ∂E ∩ Ω. Assume that

the boundary of ∂Σ is nonempty and is contained in ∂Ω. From the first

variation of area, see for instance [77], E is a critical point for the perimeter

functional under variations that keep the volume invariant if and only if

mHΣ ≡ const. in Σ and 〈NΣ
∂Σ, N

∂Ω
∂Σ 〉g = 0 in ∂Σ,

where for B ⊂ A, the expression NA
B denotes the unit outer normal of B

in A while HΣ is the mean curvature of Σ.

We have seen in Section 6.1 that solutions Er to the isoperimetric prob-

lem trapping a volume
∣∣rBm+1

+

∣∣ have mean curvatures H∂Er
blowing up

and in fact H∂Er
∼ m

r . Moreover their boundaries are normal graph over

a hemisphere centered at some point in ∂Ω. Also in Chapter 3, we prove

the existence of 1
ε-surfaces uε concentrating at critical points of the mean

curvature of ∂Ω while the image of these maps solve GMP . The result

of this section, in geometric point of view, is a generalization of the afore

mentioned result. Our aim in this section is to prove the
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7.4.1. Proposition. There exist r0 > 0 and a smooth function f : (0, r0)×
∂Ω → R such that for every r ∈ (0, r0), if p is a critical point of f(r, ·)
then (GMP ) admits a solution Σp,r which is a normal graph over F p(rSm

+ ).

Furthermore

‖f(r, ·)−H∂Ω‖C1(∂Ω) ≤ c r,

for some positive constant c.

Let us describe the proof of this. We have to recall that we look for

stationary sets with a given profile for the total energy functional

Er(E) = Pg(E,Ω) +
m

r
|E|g.

We have that the set Zr := {F p(r Bm+1
+ ), p ∈ ∂Ω} is a manifold of

approximate solutions for Er. Namely

r−m ∂

∂ω
Er(F

p(r(1 + ω)Bm+1
+ ))

∣∣∣
ω=0

= O(r),

see Lemma 7.3.2 and Lemma 7.3.3. Moreover the linearized mean curvature

operator together with the orthogonality conditions (see Proposition 7.2.2)

may has small (possibly zero) eigenvalues, so we cannot invert it to apply

fixed point argument to solve the problem. However we will perturb Zr

to a manifold Z̃r of critical point for E modulo m ”Lagrange-multipliers”.

This is related to the invariance by translations when ∂Ω = Rn is ”flat”.

In this case we have an m dimensional kernel for the Jacobi operator about

Sm
+ which is −∆Sm

+
+m. (In contrast with the the Free Boundary Plateau

Problem, the invariance by the Möbius group is not taken into account

here because it essentially give the same geometric object.)

The second step is to show that in fact Z̃r is a natural constraint for E
namely critical point of E

∣∣∣
Z̃r

is also stationary for E . For that we use an

argument from Kapouleas in [51] which were successfully employed by [73]

to obtain constant mean curvature spheres in Riemannian manifolds. We

will closely follow the argument of the latter.

It is worth noticing that this method is also closely related to variational-

perturbative methods introduced by Ambrosetti and Badiale in [3] which

we also adapt in Chapeter 3 for the Free Boundary Plateau Problem

(FBPP). In contrast with the the FBPP, when working with the geometric

object F p(r Bm+1
+ ) instead of paramterisation, the invariance by Möbius

group, rotation are not taken into account here because they essentially
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give the same object. This is exactly what we had in mind in order to

carry out the proof of Proposition 3.2.11.

7.5 Existence of CMC hemispheres

We first recall the mean curvature expansion in Proposition 7.2.2,

rH(p, r, ω) = m −
(
∆Sm

+
ω +mω

)
+ rΘm+1

(
(m+ 3)〈h(Θ̃), Θ̃〉 − 〈h(Ei), Ei〉

)
+ O(r2) + r L(ω) +Q(ω) in Σp,r,ω;

〈NΣp,r,ω

∂Σp,r,ω
, N∂Ω

∂Σp,r,ω
〉 = − ∂ω

∂η
+ r2 L̄(ω) + Q̄(ω) on ∂Σp,r,ω,

where η ≡ −N∂Ω is the outer unit normal to ∂Sm
+ . Define

〈L0(u), u
′〉 :=

∫
Sm

+

(∇Sm
+
u∇Sm

+
u′ −muu′) dσ,

since the Kernel of this operator is Λ1, see (2.15), by the Fredholm theorem

there exists a unique ω̄p ∈ C2,α(Sm
+ ) such that

L0ω̄ = Θm+1
(
(m+ 3)〈h(Θ̃), Θ̃〉 − 〈h(Ei), Ei〉

)
in Sm

+ ;

∂ω̄

∂η
= 0 on ∂Sm

+

because of the evenness of the right hand side. Moreover ω̄p satisfies

m

∫
Sm

+

ω̄pdσ =

∫
Sm

+

Θm+1
(
(m+ 3)〈h(Θ̃), Θ̃〉 − 〈h(Ei), Ei〉

)
dσ. (7.13)

Fixed point argument:

7.5.1. Lemma. for every p ∈ ∂Ω and r small, there exit a unique ω̂p,r and

a vector field Ξp,r on Tp∂Ω such that

rH(p, r, rω̄p + ω̂) = m in Sm
+ ;

〈NΣ
∂Σ, N

∂Ω
∂Σ 〉 = 〈Ξp,r, Θ̃〉 on Sm−1.

(7.14)

Proof.

We recall that Π1 is the L2 projection on Λ1, the space spanned by Θi,

i = 1 · · ·m. For any v ∈ L2(Sm
+ ), we decompose it as

v = ω̂ + 〈Ξ, Θ̃〉 = ω1 + ω0 + 〈Ξ, Θ̃〉,
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where Π0ω = ω0 =
∫

Sm
+
ω dσ and ω̂ = Π1

⊥ v. Recalling the definition of T

in (6.2), we define Lp,r : C2,α(Sm
+ ) → C0,α(Sm

+ ) by

〈Lp,rv, v
′〉 := 〈∂T (r, p, rω̄p + ω)

∂ω
(p, r, 0)[v], v′〉−

∮
Sm−1

〈Ξ, Θ̃〉〈Ξ′, Θ̃〉ds, ∀v′ ∈ L2.

Namely

(Lp,rv, v
′) =

∫
Sm

+

(∇Smω̂∇Smω̂′−mω̂ω̂′)dσ−
∮

Sm−1

〈Ξ, Θ̃〉〈Ξ′, Θ̃〉ds+r
∫

Sm
+

v′L(ω̂)dσ+r

∮
Sm−1

v′L̄(ω̂)ds.

Since
∫

Sm
+
|∇ω1|2 dσ ≥ 2(m+ 1)

∫
Sm

+
|ω1|2 dσ, it is easy to see that

Π ◦ Lp,r ≥ 1

2
+ or(1);

Π0 ◦ Lp,r ≤ −m+ or(1);

Π1 ◦ Lp,r ≤ −
|Sm

+ |
m+ 1

+ or(1),

where or(1) is a function in r (maybe depending on p) which tends to zero

(uniformly in p) as r → 0. From this, we deduce that Lp,r is uniformly

invertible and there exists a constant independent on p and r such that

||L−1
p,r||L2 ≤ C for any p ∈ ∂Ω, r�1.

Now the system (7.14) is equivalent to the fixed point equation

v = (Lp,r)
−1 {Op(r

2) +Qp(ω̂)
}
,

where Q2(ω̂) is the quadratic part of the mapping T defined in (6.2). By

elliptic regularity theory, in a small ball of radius cr2 in Π1
⊥C2,α(Sm

+ )×Tp∂Ω

the above equation has a unique solution (ω̂p,r,Ξp,r) such that (7.14) is

satisfied.

We notice that since also the implicit function theorem applies, one has

the smoothness of p 7→ ωp,r and p 7→ Ξp,r ∈ Tp∂Ω. Moreover differentiating

the mean curvature equation in p, using standard elliptic regularity theory,

we can deduce that

‖ω(·),r‖C2,α×C1(∂Ω) + ‖Ξ(·),r‖C1(∂Ω) ≤ c r2

for some constant c > 0 independent of r.
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Variational argument:

By Lemma 7.5.1, fixing r > small, for any p ∈ ∂Ω, we have a unique

hyper-surface Σp,r := Σp,r,ωp,r which is embedded if r is small because the

C1,α bound (up to the boundary) of ωp,r := rω̄p + ω̂p,r tends to zero as

r → 0. This now yields for fixed r > 0 a manifold Z̃r of sets Ep,r ⊂ Ω,

p ∈ ∂Ω, bounded by Σp,r and ∂Ω which is homeomorphic to ∂Ω. We have

to show that Z̃r is a natural constraint for E . For that we define the reduced

functional ϕr : ∂Ω → R by

ϕr(p) = E(Ep,r) = Pg(E
p,r,Ω)− m

r
|Ep,r|g , (7.15)

for any Ep,r ∈ Z̃r. We have to prove the following

7.5.2. Lemma. Let ϕr given by (7.15). Suppose that p is a critical point

of ϕr then Ξp,r = 0.

Proof. Let p be a critical point of ϕr. Then for any vector field Ξ on

Tp∂Ω ,

dϕr(p)[Ξ] = 0.

If q := exp∂Ω
p (tΞ), then for t sufficiently small the surface Σq,r is a graph

over Σp,r for some smooth function wp,r,Ξ,t with variation vector field ζp,r,Ξ

in TpM satisfying

ζp,r,Ξ :=
∂

∂t
wp,r,Ξ,t

|t=0
N∂Ω

∂Σ on ∂Σp,r ⊂ ∂Ω,

where N∂Ω
∂Σ is the normal of ∂Σp,r in ∂Ω.

It is easy to see that for any parallel transport (in ∂Ω) Z along geodesics

issued from p of Ξ we have the estimate

‖ζp,r,Ξ − Z‖ ≤ cr‖Ξ‖ on ∂Σp,r.

Now the first variation of area and volume yield

0 = dϕr(p)[Ξ]

0 =

∫
Σp,r

(
HΣp,r

− m

r

)
〈ζp,r,Ξ, N

Σ
∂Σ〉dσ +

∮
∂Σp,r

〈ζp,r,Ξ, N
Σ
∂Σ〉ds.

By construction,

HΣp,r
=
m

r
in Σp,r and 〈NΣ

∂Σ, N
∂Ω
∂Σ 〉 = 〈Ξp,r, Θ̃〉 on ∂Σp,r
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thus ∮
∂Σp,r

〈ζp,r,Ξ, N
∂Ω
∂Σ 〉〈Ξp,r, Θ̃〉ds = 0.

We have

〈ζp,r,Ξ, N
∂Ω
∂Σ 〉 = −〈Z, Υ̃〉+ 〈ζp,r,Ξ − Z,N∂Ω

∂Σ 〉+ 〈Z,N∂Ω
∂Σ + Υ̃〉 on ∂Σp,r.

The expansions of the metric together with the normal N∂Ω
∂Σ (see (7.10) and

(7.11)) show that

N∂Ω
∂Σ + Υ̃ = O(r) while Υ̃ = Θ̃(1 +O(r)).

Therefore we have the estimates

|〈ζp,r,Ξ, N
∂Ω
∂Σ 〉+ 〈Ξ, Θ̃〉| ≤ cr‖Ξ‖.

This implies, also by Hölder inequality, that∮
∂Σp,r

〈Ξp,r, Θ̃〉〈Ξ, Θ̃〉ds ≤ cr‖Ξ‖
∮

∂Σp,r

〈Ξp,r, Θ̃〉ds

≤ cr‖Ξ‖

(∮
∂Σp,r

ds

) 1
2
(∮

∂Σp,r

|〈Ξp,r, Θ̃〉|2ds

) 1
2

.

Using the expansion of the metric of small perturbed geodesic sphere (see

[73] Lemma 2.1) we find that∮
∂Σp,r

〈Ξp,r, Θ̃〉〈Ξ, Θ̃〉ds ≤ cr‖Ξ‖r
m−1

2

(∮
∂Σp,r

|〈Ξp,r, Θ̃〉|2ds

) 1
2

,

while
1

2
Area(Sm−1)rm−1‖Ξ‖2 ≤ m

∮
∂Σp,r

|〈Ξ, Θ̃〉|2ds.

Hence we have∮
∂Σp,r

〈Ξp,r, Θ̃〉〈Ξ, Θ̃〉ds ≤ cr

(∮
∂Σp,r

|〈Ξ, Θ̃〉|2ds

) 1
2
(∮

∂Σp,r

|〈Ξp,r, Θ̃〉|2ds

) 1
2

.

And, finally setting Ξ = Ξp,r, we obtain∮
∂Σp,r

|〈Ξp,r, Θ̃〉|2ds ≤ cr

∮
∂Σp,r

|〈Ξp,r, Θ̃〉|2ds.

Consequently it must be Ξp,r = 0 for r small.
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Using Lemmas 7.3.2 and 7.3.3, we get

r−mPg (Ep,r,Ω) = P
(
Bm+1,Rm+1

+
)

+ r

∫
Sm

+

(
〈h(Ei), Ei〉 − 〈h(Θ̃), Θ̃〉

)
Θm+1dσ +m

∫
Sm

+

ωdσ

+ Op(r
2);

r−1−m|Ep,r|g =
1

m+ 1
P
(
Bm+1,Rm+1

+
)

+
r

m+ 2
〈h(Ei), Ei〉

∫
Sm

+

Θm+1dσ +

∫
Sm

+

ωdσ +Op(r
2).

This now give (recalling (6.4))

r−m ϕr(p) = r−m Er(E
p,r)

=
1

m+ 1
P
(
Bm+1,Rm+1

+
)

+ r

∫
Sm

+

(
2

m+ 2
〈h(Ei), Ei〉 − 〈h(Θ̃), Θ̃〉

)
Θm+1dσ +Op(r

2)

=
1

m+ 1
P
(
Bm+1,Rm+1

+
)
− m |Bm|

(m+ 2)
r H∂Ω(p) +Op(r

2).

We end the proof of Proposition 7.4.1 by setting

f(r, p) :=
−(m+ 2)

rm |Bm|

(
r−mϕ(p)− 1

m+ 1
P
(
Bm+1,Rm+1

+
))

= H∂Ω(p)+Op(r).

7.6 Area and Volume expansion of CMC hemispheres

Using (7.13), we also get precise expansions of the area of the of constant

mean curvature hypersurfaces as well as the volume of the domain they

enclose.

7.6.1. Corollary. For any Ep,r ∈ Z̃r, there hold

r−mPg(E
p,r,Ω) = P(Bm+1,Rm+1

+ )−m |Bm| r H∂Ω(p) +Op(r
2);

r−m−1 |Ep,r|g =
∣∣Bm+1

+

∣∣− m+ 1

m+ 2
|Bm| r H∂Ω(p) +Op(r

2).



Chapter 8

Concluding remarks and open problems

The study of (GMP ) is clearly interesting in itself because it involves differ-

ent fields of mathematics like spectral theory, partial differential equations,

differential geometry, calculus of variations, asymptotic analysis,... Our in-

terest and involvement in the study of the afore mentioned problem, allows

us to give a (little) contribution in the “study CMC hypersurfaces” based

on perturbative methods and critical point theory and also to be able to

set some open questions related to what we have done in this thesis. We

first notice how our the results of Chapters 3,4,6 are parallel to those of

the singularly perturbed problem:

ε2 ∆u− u+ up = 0 in Ω ⊂ Rm+1,
∂u

∂η
= 0 on ∂Ω, (8.1)

where u : Ω → R and satisfies u > 0 in Ω and η is the unit outer normal to

∂Ω. This problem arises in several contexts, as the nonlinear Schrödinger

equation or the modeling reaction-diffusion systems. Solutions with mul-

tiple concentration at stable critical points of the mean curvature of ∂Ω,

as ε tends to zero have been proved to exist in [46]. Moreover in [71],

Ni-Takagi proved that least-energy solutions uε, ε small, has only one local

maximum point pε with H∂Ω(pε) → maxp∈∂Ω H∂Ω(p) as ε → 0. Moreover

Mahmoudi-Malchiodi [57] provided a sequence of solutions uεm
, εm → 0 as

m → ∞, which concentrate along non-degenerate minimal submanifolds

of ∂Ω. If now we consider

ε2 ∆u− u+ up = 0 in M, u > 0 in M, (8.2)

with (M, g) a compact Riemannian manifold with metric g, it turns out

that the role of the mean curvature in (8.1) is now played by the scalar

curvature of g. This is obtained by Micheletti-Pistoia [62] and Byeon-

Park [14]. These results parallel the one of Ye [93], Pacard-Xu[73] and

Nardulli [72] in the study of (GMP ).

• According to our knowledge in the literature, the counterpart of the

result in [56] (solutions of (8.2) which concentrate along minimal sub-

manifolds of M) has not yet been treated.



144 8. Concluding remarks and open problems

• Recently, under generic assumptions with n = 1, Wei-Yang established

the existence of a sequence of solutions which concentrate along a curve

which intersect transversely Ω and meet ∂Ω perpendicularly. One

can investigating the counterpart of the latter result to the problem

(GMP ).

On the other hand, one can attache an infinite CMC cylinder outside

a bounded domain Ω and intersecting ∂Ω perpendicularly.

• If φ′′ ≡ 0, namely when φ(s) = cs + d, S parametrizes the cone, we

were not able to conclude. However we notice that the proof of The-

orem 5.0.3 highlights that near a point γ(ρ s0) for which φ′′(s0) = 0,

there will be capillary surfaces with constant and small mean curva-

tures, see Remark 5.4.1.

• Recalling the notation of Chapter 5, an interesting question is also to

perturb the set

expγ(ρ κ(s))(ρ φ(s)Sm−1)

to a closed minimal submanifold of C ρ. One can see also the work by

S.Secchi [82].

• Another problem can be set as follows. Let U be a smooth bounded do-

main of M, and Γ ↪→ ∂U be a smooth curve. We let ỹ = (y1, . . . , ym)

and N∂U be a unit interior normal field along ∂U . Choosing an ori-

ented orthogonal frame (E1 . . . , Em−1) along Γ in ∂U , one obtains a

coordinate system by letting, for any y = (ỹ, ym) = (y1, . . . , ym−1, ym),

F (x0, ỹ, y
m) := expMexp∂U

γ(x0)(y
iEi)

(ymN∂U).

Now consider the set

F (ρ κ(s), ρ φ(s)Bm
+ ),

where Bm
+ = {x = (x1, . . . , xm−1, xm) ∈ Rm : |x| = 1, xm > 0}.

One may be tempted to perturb the set above into capillary minimal

surfaces that meet the ”half”-surface of revolution

F (ρ κ(s), ρ φ(s)Sm−1
+ )

by an angle equal to arccos φ′. In this case, as we believe, a result

like Theorem 5.0.1 would carry over. On the other hand one would

need maybe to impose some conditions on the principal curvature of

∂U along Γ in order to obtain a variant of Theorem 5.0.3.
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• In Chapter 6, we showed that perimeter minimizing sets enclosing

small volumes are centered near strict maxima of the mean curvature

of the supporting surface, in particular are critical points of the mean

curvature. It should be then interesting to ask the following question.

Let ΣH , a family of CMC solving (GMP ) and concentrating to a point

p ∈ ∂Ω as H →∞, does this force p to be a critical point of the mean

curvature of ∂Ω? Results supporting the affirmative of this question

can be found in [64].
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[43] Grüter M., regularity of weak H-surfaces, J. Reine Angew. Math.329

(1981), 1-15.
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