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Chapter O

Introduction

The thesis is devoted to Differential Geometry of parametrized curves in Lagrange Grassman-
nians and its applications to Optimal Control Problems and Hamiltonian Dynamics, especially
to Sub-Riemannian Geometry.

0.1 Jacobi curves

About a decade ago A. Agrachev proposed the program of studying Differential Geometry of
geometric structures on manifolds via Differential Geometry of curves in Lagrangian Grassman-
nians ([6]). He introduced the notion of the Jacobi curve of an extremal of the optimal control
problems, naturally associated with the geometric structure. The Jacobi curve is a curve in a
Lagrangian Grassmannian defined up to a symplectic transformation and containing all infor-
mation about the solutions of the Jacobi equations along this extremal. The reason to introduce
Jacobi curves was two-fold. On one hand, it can be used to construct curvature-type invariants
of geometric structures (state-feedback invariants of control systems), namely, any symplectic
invariant of Jacobi curve, i.e. an invariant with respect to the action of the linear symplectic
group on the Lagrange Grassmannian, produces an invariant of the original geometric structure.
On the other hand, the Jacobi curve contains all information about conjugate points along the
extremals.

In more detail, by a smooth geometric structure on a manifold we mean any submanifold
2l ¢ TM, transversal to the fibers. Let 2, = AN T,M. For example, if 2, is an intersection of
an ellipsoid centered at the origin with a linear subspace Dy in Ty M (where both the ellipsoids
and the subspaces D, depend smoothly on g), then 2 is called a sub-Riemannian structure on
M with underlying distribution D. In this case g is the unit sphere w.r.t. the unique Euclidean
norm || - ||, on Dy, i.e. fixing an ellipsoid in Dy is equivalent to fixing an Euclidean norm on
D, for any ¢ € M. This reformulation justifies the term “sub-Riemannian”. In particular,
it defines in the obvious way the length of any curve tangent to the underlying distribution.
If in the constructions above we replace the ellipsoids by the boundaries of strongly convex
bodies in T, M containing the origin in their interior (sometimes also assumed to be symmetric
w.r.t. the origin) we will get a sub-Finslerian structure on M. Note also that, if the underlying
distribution D = T M, we get just a Riemannian (a Finslerian) structure on M.

Actually one can associate with the geometric structure 2 certain control system on M: the
set 2, defines the set of all admissible velocities of motions from the point g. A Lipschitzian
curve 7 : [0,T] — M is said to be admissible, if 4(t) € 2, for a.e. t € [0,T]. Now we can
consider the time-optimal problem on 2: given two points gy and ¢; to find an admissible curve,
steering from g to ¢ in a minimal time. The extremals of this optimal-control problem are



obtained by Pontryagin Maximum Principle of Optimal Control Theory([22]).

Here for simplicity let us assume that the maximized Hamiltonian of the Maximum Principle

h(p,q) = max p-v, g€ M,peTyM (0.1.1)
q

is well defined and smooth in an open domain O C T*M and for some ¢ > 0 (and therefore for
any c¢ > 0 by homogeneity of h on each fiber of T*M) the corresponding level set

He={A€O:h(X)=c}

is nonempty and consists of regular points of h.

Now let 7 : T*M — M be the canonical projection. For any A € T*M, A = (p,q), ¢ € M,
p e Ty M, let c(N)() = p(ms-) be the tautological Liouville form and o = —ds be the standard
symplectic structure on T*M. Consider the Hamiltonian vector field h on H,, corresponding
to the Hamiltonian h, i.e. the vector field satisfying iz0 = dh. The integral curves of this
Hamiltonian system are normal Pontryagin extremals of the time-optimal problem, associated
with geometric structure 2, or, shortly, normal extremals of 2. For example, if 2 is a sub-
Riemannian structure with underlying distribution D, then the maximized Hamiltonian satisfies

h(p,q) = ||p1’Dqu7 (0.1.2)

i.e. h(p,q) is equal to the norm of the restriction of the functional p € Ty M on D, w.r.t. the
Euclidean norm || - ||; on Dy; O = T*M\D~, where D is the annihilator of D,

DL = {(p,q) € T*"M :p-v=0, Yo €Dy}, Df =D T} M. (0.1.3)

The projections of the trajectories of the corresponding Hamiltonian systems to the base mani-
fold M are normal sub-Riemannian geodesics. If D = T'M, then they are exactly the Riemannian
geodesics of the corresponding Riemannian structure.

Further let Hc(q) = HeNT; M. Then H.(q) is a codimension 1 submanifold of T;'M. For
any A € H, denote II) = Ty (Hc(w(/\))), where 7 : T*M — M is the canonical projection.
Actually II, is the vertical subspace of ThH,,

Iy = {§{ € TaH, : & = 0}. (0.1.4)

Now with any integral curve of h one can associate a curve in a Lagrange Grassmannian,
which describes the dynamics of the vertical subspaces II) along this integral curve w.r.t. the
flow e, generated by h. For this let

~ A 4 >
o D) 2 e (T, ) [{RA(N)). (0.1.5)
The curve J)(t) is a curve in the Lagrange Grassmannian of the linear symplectic space

Wy = T\H/{RR(N\)}

(endowed with the symplectic form o induced in the obvious way by the canonical symplectic
form o of T*M). It is called the Jacobi curve of the curve eth\ attached at the point A. Note
also that if X = e\ and ® : Wi — Wj is a symplectic transformation induced in the natural
way by a linear mapping ef:h : ThyHe — T5H,, then by (0.1.5) we have

J5(t) =2t — ). (0.1.6)
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In other words, the Jacobi curves of the same integral curve of h attached at two different
points of this curve are the same, up to symplectic transformation between the corresponding
ambient linear symplectic spaces and the corresponding shift of the parameterizations. There-
fore, any symplectic invariant of the Jacobi curve produces the function on the manifold H,,
intrinsically related to the geometric structure 2. The value of this function at A € H, is equal
to the value of the chosen symplectic invariant of the curve J)(¢) at ¢ = 0. In this way the prob-
lem of finding differential invariants of the geometric structures can be essentially reduced to the
much more treatable problem of finding symplectic invariants of certain curves in a Lagrange
Grassmannian.

Jacobi curves of integral curves of k are not arbitrary curves of Lagrangian Grassmannian
but they inherit special features of the geometric structure 2. To specify these features recall
that the tangent space TAL(W) to the Lagrangian Grassmannian L(W) at the point A can
be naturally identified with the space Quad(A) of all quadratic forms on linear space A C W.
Namely, given 0 € TAL(W) take a curve A(t) € L(W) with A(0) = A and A = . Given some
vector I € A, take a curve £(-) in W such that £(t) € A(t) for all ¢ and £(0) = [. Define the
quadratic form

d
Qa(l) = w(l, Z4(0))- (0.1.7)

Using the fact that the spaces A(%) are Lagrangian, it is easy to see that Qg(l) does not depend
on the choice of the curves £ and A(t) with the above properties, but depends only on 2. So,
we have the linear mapping from T L(W) to the spaces Quad(A), U — Q. A simple counting
of dimensions shows that this mapping is a bijection and it defines the required identification.
A curve A(+) in a Lagrange Grassmannian is called regular at a point T, if its velocity at 7
is a nondegenerated quadratic form, and nonregular at 7 otherwise. The rank of the velocity
A(7) of a curve A(-) at a point 7 is called shortly the rank of A(-) at 7. A curve A(:) is
called monotonically nondecreasing (nonincreasing) if the velocity is nonnegative (nonpositive)
definite at any point. We also will call such curves monotonic.

It turns out (see, for example, [3, Proposition 1]) that the velocity of the Jacobi curve Jj(t)
at t = 0 is equal to the restriction of the Hessian of h to the tangent space to Hp(y) at A.
This together with (0.1.6) implies easily ([3]) that the rank of the Jacobi curve Jy(t) at t =7
is not greater then dim QLW(CT,—L N For sub-Riemannian structures the rank of Jacobi curves
at any point is equal to rank D — 1, where D is the underlying distribution, i.e. except the
case D = TM (corresponding to a Riemannian structure), the Jacobi curves appearing in sub-
Riemannian structures are nonregular at any point. Besides, if h is the maximized Hamiltonian,
the corresponding Jacobi curves are monotonic.

The Jacobi curve contains all information about conjugate points along the extremals. Recall
that time tg is called conjugate to 0 if

eI\ NI, 5, # 0. (0.1.8)

and the dimension of this intersection is called the multiplicity of to. The curve m(A(-))|jo, is
WL -optimal (and even C-optimal) if there is no conjugate point in (0,t) and is not optimal
otherwise. Note that (0.1.8) can be rewritten as: e;tohﬂeto,; , NIL\ # 0, which is equivalent to

In(to) NJA(0) #0O.

Remark 0.1. Jacobi curves can be constructed in more general situation, when the maxi-
mized Hamiltonian is not defined (for example, for sub-pseudo-Riemannian structures, defined
by a distribution D and pseudo-Euclidean norms on each space D(q)). Assume that for some
open subset O C T*M there exists a smooth map u : O — 2 such that for any A = (p,q) € O



the point u()\) is a critical point of a function hy : 2%, — R, where hy(v) 2 p(v). Define
h(X) = p(u())). The function h is called a critical Hamiltonian associated with the geometric
structure 2 and one can make the same constructions as above with any critical Hamiltonian.

0.2 Description of main problems and results

The following general questions arise naturally in the context of the previous constructions:

1. How to construct a complete system of symplectic invariants of curves in Lagrangian
Grassmannians?

2. Given a geometric structure on a manifold how to calculate invariants coming from Jacobi
curves of its extremals in terms of the geometric structure itself?

3. How do the symplectic invariants effect the appearance of the conjugate points along
extremals of optimal control problems (and therefore the optimality properties of them)
and other qualitative properties of the flow of extremals (e.g. hyperbolicity).

Regarding the first question, the basic characteristic of a curve in a Lagrange Grassmannian
is its Young diagram. The rank of the curve is the number of boxes in its first column. The
number of boxes in its kth column is equal to the rank of the kth derivative of the curve
(which is an appropriately defined linear mapping) at a generic point. The complete system of
symplectic invariants for curves in Lagrangian Grassmanians was previously constructed only in
the following two cases: for regular curves (or, equivalently, when the Young diagram consists
of one column, which corresponds to the Jacobi curves of extremals of Riemannian or Finslerian
structures ([6]), and for rank 1 curves (or, equivalently, when the Young diagram consists of one
row ([3], [4], and in the final form in [23]), which corresponds to the Jacobi curves of extremals in
optimal control problems with scalar input, in particular, in sub-Riemannian structures on rank
2 distributions. Also, the notion of cross-ratio of four points in Lagrange Grassmannians was
used in [3] in order to construct some basic symplectic invariants of curves (both parametrized
and unparametrized) in Lagrange Grassmannians of any rank.

In the first chapter of the thesis we give the answer to the first question in full generality.
We construct the canonical bundle of moving frames and the complete system of symplectic
invariants for parametrized monotonic curves in Lagrange Grassmannians with any given Young
diagram and for non-monotonic curve, satisfying certain generic assumption (condition (G), see
subsection 1.2.3) with any given Young diagram. As a consequence, for a very wide class of
geometric structures and control systems on a manifold M (including sub-Riemannian and
sub-Finslerian structures) one has the canonical (in general, non-linear) connection on an open
subset of the cotangent bundle, the canonical splitting of the tangent spaces to the fibers of the
cotangent bundle T*M and the tuple of maps, called curvature maps, between the subspaces
of the splitting intrinsically related to the geometric structure or the control system. Besides,
the structural equation for a canonical moving frame of the Jacobi curve of an extremal can be
interpreted as the normal form for the Jacobi equation along this extremal and the curvature
maps can be seen as the “coefficients” of this normal form. ,

Regarding the second question, we restrict ourselves to sub-Riemannian structures. Note
that in the case of a Riemannian metric there is only one curvature map and it is naturally
related to the Riemannian sectional curvature. However, for the proper sub-Riemannian struc-
tures (i.e. when D # TM), very little is known about the curvature maps, except that they
depend algebraically on points of fibers of T*M. The curvature maps were explicitly calcu-
lated before only in the case of contact distributions of three-dimensional manifolds (in the



unpublished notes of A. Agrachev and I. Zelenko and then in [7]) and the calculations used
coordinates. In order to understand better the curvature maps, we suggest to study them
for a special class of sub-Riemannian structures on distributions D having sufficiently many
infinitesimal symmetries which span integrable distribution transversal to D. In this case, at
least locally, we can make a factorization of M by the foliation of the integral manifolds of this
transversal distribution and the sub-Riemannian structure induces a Riemannian metric on the
reduced manifold. Such sub-Riemannian structures appear naturally on principal connections of
principal bundles over Riemannian manifolds (including Yang-Mills fields as a particular case):
the sub-Riemannian structure is given by a pull-back (with respect to the canonical projection)
of the Riemannian metric of the base manifold to the distribution defining the connection. How
the above-mentioned curvature maps are expressed in terms of the Riemannian curvature tensor
of the base manifold and the curvature form of the principal connection? In chapter 2 we answer
this question in the case when principal bundles have one-dimensional fibers. It is well known
that such geometric structures describe magnetic fields on Riemannian manifolds, where the
connection form is seen as the magnetic potential. We also develop the language, which allows
to implement all calculations in the coordinate-free way. We believe that this coordinate-free
language will be useful in the treatment of the more general situations mentioned above. We
also estimate the number of conjugate points along the sub-Riemannian extremals in terms of
the bounds for the Riemannian curvature tensor of the base manifold and the magnetic field
in the case of a uniform magnetic field, giving the partial answer to the third question above.
Note that before the estimation of conjugate points (Comparison Theorems) in terms of sym-
plectic invariants were obtain only in the following two cases: in [6] for regular curves and for
rank 1 curves in the Lagrangian Grassmannians of four dimensional symplectic space in [4],
appearing as Jacobi curves of extremals of sub-Riemannian structures on rank 2 distributions
of three-dimensional manifolds.

Finally, in chapter 3 we apply our technique of the calculations of the symplectic invariants
to the study of hyperbolicity of sub-Riemannian geodesic flows. We consider sub-Riemannian
structures, appearing naturally on principal connections of principal bundles over Riemannian
manifolds, when the structure group of the bundle is commutative. In this case one can proceed
with the Poission (symplectic) reduction to obtain the reduced flows of the sub-Riemannian
geodesic flows (on the common level set of all integrals in the cotangent bundle). We give
sufficient conditions for this flow to be hyperbolic in terms of the Riemannian curvature tensor
of the base manifold and the curvature form of the principal connection by applying the criteria
of [8] for the hyperbolicity of Hamiltonian flows. This result is the generalization of results of
[14] on Anosov magnetic flows (corresponding to bundles with one-dimensional fibers).



Chapter 1

Differential geometry of curves in
Lagrange Grassmannian with Given
Young diagram

We will describe the construction of the canonical bundle of moving frames and the complete
system of symplectic invariants, called curvature maps, for parametrized curves in Lagrange
Grassmannians satisfying with very general assumptions. It allows to develop in a unified way
local differential geometry of very wide classes of geometric structures on manifolds, includ-
ing both classical geometric structures such as Riemannian and Finslerian structures and less
classical ones such as sub-Riemannian and sub-Finslerian structures, defined on nonholonomic
distributions. The results of this chapter are published in [25] and [24].

1.1 The main results on curves in Lagrangian Grassmannians

Let W be a 2m-dimensional linear space endowed with a symplectic form w. Recall that an
m-dimensional subspace A of W is called Lagrangian, if w|px = 0. Lagrange Grassmannian
L(W) of W is the set of all Lagrangian subspaces of W. It has a structure of smooth manifold
([5]). The linear symplectic group (the set of all linear maps preserving the symplectic form)
acts naturally on L(W). Invariants of curves in a Lagrange Grassmannian w.r.t. this action are
called symplectic.

1.1.1 The flag and the Young diagrams associated with a curve

With any curve A(-) in Grassmannian Gy (W) of k-dimensional subspaces of a linear space W
one can associate a curve of flags of subspaces in W. For this let G(A) be the set of all smooth
curves £(t) in W such that £(t) € A(t) for all t. Denote

&) eesm),0<j<i) 111)

A () = span{ d

The subspaces A (7) are called the ith extension of the curve A(-) at the point 7. Recall

that the tangent space TAGr(W) to any subspace A € Gx(W) can be identified with the space

Hom (A, W/A) of linear mappings from A to W/A. Using this identification, if P : A — W/A

is the canonical projection to the factor, then AM)(r) = P(~)(Im A(r)), which implies that
dim A (7) — dim A() = rank A(7). By construction AG~1(r) C A®(7). The flag

AMr)yC AD(r) c AP (r) C ... (1.1.2)



is called the associated (Tight) flag of the curve A(-) at the point t.

;From now on we suppose that dimensions of all subspaces A@(t) (and therefore of Agy(t))
are independent of ¢. In this case from (1.1.1) it is easy to obtain that the following inequalities
hold

dim AD — dim A® < dim A® — dim AGY. (1.1.3)

Using inequalities (1.1.3), to any curve A(-) we can assign the Young diagram in the following
way: the number of boxes in the ith column of this Young diagram is equal to dim AW —
dim AG—D . Tt will be called the Young diagram of the curve A(-). In particular, the number of
boxes in the first column is equal to the rank of the curve.

Now suppose that W is an even-dimensional linear space endowed with a symplectic struc-
ture w and the curve A(-) is a curve in the Lagrangian Grassmannian L(WW).

Remark 1.1. Without loss of generality, we will suppose that there exists an integer p such
that A®)(t) = W. Otherwise, if AP+1(t) = AP)(t) C W, then the subspace A®) () does not
depend on t. Set V = A®)(t). Then V4 C A(t) for any ¢ and all information about the original
curve A(-) is contained in the curve A(-)/ V4, which is the curve of Lagrangian subspaces in the
symplectic space V/V4, and the pth extension of the curve A(-)/ V< is equal to V/V4. So, we
can work with the curve A(-)/V< and the symplectic space V/V“ instead of the curve A(-) and
the symplectic space W. U

1.1.2 The normal moving frame.

The Young diagram is a basic invariant of the curve in Lagrange Grassmannians. As indices
of vectors in our Darboux moving frames we will take the boxes of the Young diagram instead
of the natural numbers. We found it extremely useful both for formulation of our results and
their proofs.

First note that using the flag, to any A(-) we can assign the Young diagram in the following
way: the number of boxes of the ith column is equal to dim A®@#) — dim AC~D(¢). Assume
that the length of the rows of D be p; repeated r; times, ps repeated rp times, . . ., pg repeated
74 times with p; > p2 > ... > pg. In this case, the Young diagram D is the union of d rectangular
diagrams of size r; x p;,1 <4 < d. Denote them by D;,1 < i < d. For our convenience, we also
assign a “smaller” Young diagram A, consisting of d rows such that the ith row has p; boxes. It
will be called the reduced diagram or the reduction of the diagram D. In order to distinguish
between boxes and rows of the diagram D and its reduction A, the boxes of A will be called
superbozes and the rows of A will be called levels. To the jth superbox a of the ith level of A
one can assign the jth column of the rectangular subdiagram D; of D and the integer number
r; (equal to the number of boxes in this subcolumn), called the size of the superbox a.

As usual, by A x A we will mean the set of pairs of superboxes of A. Also denote by Mat
the set of matrices of all sizes. The mapping R : A x A — Mat is called compatible with the
Young diagram D, if to any pair (a,b) of superboxes of sizes s1 and s3 respectively the matrix
R(a,b) is of the size s X s1. The compatible mapping R is called symmetric if for any pair
(a,b) of superboxes the following identity holds

R(b,a) = R(a,b)T. ‘ (1.1.4)

Denote by T; the ith level of A.

Also denote by a; and o; the first and the last superboxes of the ith level T; respectively and
by r : A\{o;}., — A the right shift on the diagram A. The last superbox of any level will
be called special. For any pair of integers (i,7) such that 1 < j <4 < d consider the following



tuple of pairs of superboxes

(a5,a5), (a5,7(a0)), (rlaz), (@), (r(ay), r*(@)), - (% (az), 17 (a),
(rPi(az), "M (i), - - -, (rP=az), 7P (ai))-

Actually the tuple (1.1.5) is obtained as follows: the first pair consists of the last two
superboxes of the considered levels, then until the superbox of the ith level will not become
special, each next even pair is obtained from the previous pair of the tuple by the right shift
of the superbox of the ith level in the previous pair and each next odd pair is obtained from
the previous pair of the tuple by the right shift of the superbox of the jth level in the previous
pair. When the superbox of the ith level become special, each next pair is obtained from the
previous pair of the tuple by the right shift of the superbox of the jth level.

Now we are ready to introduce two crucial notions, which will be very useful in the formu-
lation of our main theorem:

(1.1.5)

Definition 1.1. A symmetric compatible mapping R : A x A — Mat is called quasi-normal
if the following two conditions hold:

1. Among all matrices R(a,b), where the superbox b is not higher than the superboz a in the
diagram A, the only possible nonzero matrices are the following: the matrices R(a,a) for
all a € A, the matrices R(a,r(a)), R(r(a), a) for all nonspecial bozes, and the matrices,
corresponding to the pairs, which appear in the tuples (1.1.5), for all1 <j <i < d;

2. The matriz R(a,r(a)) is antisymmetric for any nonspecial superboz a.

Definition 1.2. A quasi-normal mapping R : A x A — Mat is called normal if it
satisfies the following condition: for any 1 < j <1 < d, the matrices, corresponding to the first
(p; — pi — 1) pairs of the tuple (1.1.5), are equal to zero.

Now let us fix some terminology about the frames in W, indexed by the boxes of the Young
diagram D. A frame ({ea}aen; {fatac p) of W is called Darbouz or symplectic, if for any
a, B € D the following relations hold

w(emeﬂ) = w(fm fﬁ) = w(eay fﬂ) - 6a,ﬁ =0, (1‘1'6)

where J, g is the analogue of the Kronecker index defined on D x D. In the sequel it will be
convenient to divide a moving frame ({ea(t)}aen, {fa(t)}aep) of W indexed by the boxes of
the Young diagram D into the tuples of vectors indexed by the superboxes of the reduction A
of D, according to the correspondence between the superboxes of A and the subcolumns of D.
More precisely, given a superbox a in A of size s, take all boxes a1, ..., a5 of the corresponding
subcolumn in D in the order from the top to the bottom and denote

Ea(t) = (eal(t)?' "7eas(t))? Fa(t) = (fa1(t)7"' :,fas(t))'

In what follows we will suppose that the curve A(t) is monotonically nondecreasing, i.e.
the velocity A(t) is a nonnegative definite quadratic form for any ¢. The case of monotonically
nonincreasing curve can be treated then by reversing of time. We restrict ourselves to the
monotonic curves just in order to avoid technicalities both in the formulation and the proof of
our main result (Theorem 1.1 below). The similar result with essentially the same proof is valid
also for nonmonotonic curves under additional generic assumptions, which will be introduced
in Subsection 1.2.3 (see condition (G) there). In Section 1.3 we point out what changes one has
to make in Theorem 1.1 in nonmonotonic situation (see Theorem 1.3 below). Note also that
Jacobi curves in sub-Riemannian and, more generally, in sub-Finslerian geometry are monotonic,
because the corresponding maximized Hamiltonians are convex on the fibers of T*M (see the
Introduction).



Remark 1.2. In [25] we used alternative language of graded spaces for description of the
results and of the condition (G), inspired by discussions with Pierre Deligne. This language
allows to describe the results on monotonic and nonmonotonic case in more short and unified
way, but it less elementary and requires from the reader more efforts to understand the results.

Definition 1.3. The moving Darbouz frame ({E4(t)}aca, {Fa(t)}aca) is called the nor-
mal (quasi-normal) moving frame of a monotonically nondecreasing curve A(t) with the Young
diagram D, if

A(t) = span{ E,(t) }aca
for any t and there exists an one-parametric family of normal ( quasi-normal) mappings Ry :
A x A —> Mat such that the moving frame ({E.(t)}aca, {Fa(t)}aca) satisfies the following
structural equation:

(EL(t) = Eyo)(t) if a€ A\ A

EL(t) = Fu(t) if a€F

Fl(t) = wbzA Ey(t)Ry(a,b) — Fry(t) if a€A\S (1.1.7)
[S

Fl(t) = — bZAEb(t)Rt(a, b) if a€S

where Fy is the first column of the diagram A, S is the set of all its special superbozes, and
1:A\F, — A, r: A\ 8 — A are the left and right shifts on the diagram A. The mapping Ry,
appearing in (1.1.7), is called the normal (quasi-normal) mapping, associated with the normal

moving frame ({Ey(t)}aea, {Fa(t) taen)-
With all this terminology we are ready to formulate our main theorem:

Theorem 1.1. For any monotonically nondecreasing curve A(t) with the Young diagram D
in the Lagrange Grassmannian there ezists a normal moving frame ({Ea(t)}aca, {Fa(t) aca)-
A moving frame

({Ea(t)}aca, {Fa()}aca)

is a normal moving frame of the curve A(-) if and only if for any 1 < i < d there ezists a
constant orthogonal matriz U; of size m; x r; such that for all t

Eo(t) = B,(O)U;, Fot) = F,()U;, Va€ ;. (1.1.8)

Actually, the second statement of this theorem means that if for any £ one collects all possible
Darboux frame ({E,}aea, {Fa)}aca) in W such that there exists a normal moving frame, which
coincides with ({Eq}aca, {Fa)}aca) at t = £, then one gets the principle O(r1) X ... x O(rq)
bundle over the curve A(t) endowed with the canonical principal connection in the following
way: the normal moving frames are horizontal curves w.r.t. this connection.

1.1.3 The canonical splitting and curvature maps

Before proving Theorem 1.1 let us discuss it a little bit. Take some normal moving frame

({Ea(®)}aca, {Fa(t) Yaen)-

Relations (1.1.8) imply that for any superbox a € A of size s the following s-dimensional

subspace
Va(t) = span{E(t)} (1.1.9)



of A(t) does not depend on the choice of the normal moving frame. The subspace V, will be
called the subspace, associated with the superbox a. So, there exists the canonical splitting of
the subspace A(t):

A(t) = P Val®)- (1.1.10)

aEA
Moreover, each subspace V,(t) is endowed with the canonical Euclidean structure such that
the tuple of vectors FE, constitute an orthonormal frame w.r.t. to it. Note that the canonical
splitting is obtained in one of the first steps of the normalization procedure in the proof of
Theorem 1.1 (see subsection 1.2.3).
Another very important consequence of (1.1.8) is that the following subspace

Atens(t) = (] span{ Fy (1)} (1.1.11)
aEA

does not depend on the choice of the normal moving frame. By construction, W = A(t) &
APans(4) for any t. The curve A™#2S(¢) will be called the canonical complementary curve of the
curve A(-). As we will see in Section 1.4 this notion is crucial for the construction of the canonical
(non-linear) connection for sub-Riemannian and, more generally, sub-Finsler structures.

Remark 1.3. Note also that the canonical complementary curve is different in general
from the so-called derivative curve A%(-), constructed in [3], which is also intrinsically related
to A(-) such that the space A%(t) is transversal to A(t) for any ¢. The main disadvantage of the
derivative curve A°(-), comparing to the curve A™"S(.), constructed here, is that if one uses it
for the construction of the moving frames intrinsically related to the curve A(-) , as was done
in [3] and [4] (see also [5]), then it is very hard to analyze their structural equations and to
distinguish a complete system of invariants from it (in the mentioned papers it was partially
done only in the case of curves of rank 1), while in the present paper we construct the normal
moving frame step by step according to the heuristic rule that the matrix of its structural
equation should be as simple as possible (should contain as much zeros as possible), which gives
the complete system of invariants automatically.l]

Further, we say that a pair (a,b) of superboxes is essential if R(a,b) is not necessarily zero
for a normal mapping R : A x A — Mat. Note that this notion depends only on the mutual
locations of the superboxes a and b in the diagram A, except the case of consecutive superboxes
a and b in the same level of A. In the last case it depends on the size of the superboxes. Namely,
the pair (a,7(a)) is essential if and only if the size of a is greater than 1 (see condition (1) of
Lemma 1.6). B

Assume that R; : A x A — Mat and R; : A x A — Mat are the normal mappings,
associated with normal moving frames ({E,(t)}aca, {Fa(t) }aca) and ({Ea(t)}aca, {Fult) aca),
which are related by (1.1.8). Then from (1.1.7) and (1.1.8) it follows immediately that

Ry(a,b) = U;'R(a,b)U;, a€Tibe ;. (1.1.12)

The last relation means actually that for any essential pair (a,b) of superboxes the linear
mapping R(a,b) : V, — Vb, having the matrix R;(a,b) w.r.t. the bases E, and Ej of V, and
V; respectively, does not depend on the choice of a normal moving frame.! The linear mapping

1Here we restrict ourselves to essential pairs, because for nonessential pairs such linear mappings are zeros
automatically.
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Ry (a,b) will be called the (a,b)-curvature map of the curve A(-). Finally, all (a,b)-curvature
maps form the canonical map R, : A(t) — A(t) as follows:

Ry =Y Ri(a,b)va, Ve € Valt),a € A. (1.1.13)
beA

The map R; is called the big curvature map of the curve A(+) at time t.

The only nontrivial blocks in the matrix of the structural equations for the normal moving
frames correspond to (a,b)-curvature mappings. Hence the tuple of all (a,b)-curvature maps
constitute a kind of complete system of symplectic invariants of the curve. For precise formu-
lation of this statement it is convenient to use the notion of quivers and their representations
([13]). Recall that a quiver is an oriented graph, where loops and multiple arrows between two
vertices are allowed. A representation of a quiver assigns a vector space X, to each vertex o
of the quiver and a linear mapping from X, to X to each arrow of the quiver, connecting a
vertex o with a vertex .

Take the quiver Qp such that its vertices are levels of the diagram A and the set of arrows
from the level T; to the level T; is parametrized by essential pairs (a,b) € T; x T;. A represen-
tation of the quiver 9p will be called compatible with the Young diagram D ifforany1 <i<d
the space of the representation corresponding to the vertex T; is a r;-dimensional FEuclidean
space and the linear mappings R(a,b) of the representation corresponding to the arrows (a,b)
satisfy the following relations: R(a,b)* = R(b,a) and R(a,r(a)) are antisymmetric w.r.t. the
corresponding Euclidean structure.

The subspaces V,(t) for any ¢ and any a € T; are naturally identified together with the canon-
ical Euclidean structure on them (Vg (t1) ~ Vi, (t2) by sending Eq, (t1) to Eq,(t2)). Therefore,
we can identify all these spaces with one Euclidean space, which will be denoted by &;. The
tuple of spaces X; and the (a,b)-curvature maps of the curve A(t), considered as elements of
Hom(&X;, ;) for (a,b) € T; x T;, define the one-parametric family SR; of compatible represen-
tations of the quiver Qp. This family will be called the quiver of curvatures of the curve A(t).
Here the linear mappings corresponding to the arrows of the quiver depend on 2, while the
linear spaces, corresponding to its vertices, are independent of ¢. In the sequel we will consider
only this type of one-parametric families of representations of quivers. Two families = (t) and
Hy(t) of compatible representations of the quiver p are called isomorphic, if there exists a
tuple of isometries (independent of t) between the corresponding spaces of the representations,
conjugating all corresponding linear mappings. If the sizes of all superboxes in A are equal
to 1, then the normal moving frames of the curve are defined up to the discrete group (U; in
(1.1.8) are scalars, which are equal to 1 or —1) and all (a, b)-curvature maps are determined by
scalar functions of ¢, which are symplectic invariants of the curve. These scalar functions will
be called, for short, (a,b)-curvatures. Besides, the compatible representations of the quiver Qp
is in one-to-one correspondence with tuples of numbers parametrized by the essential pairs of A
(which is equal to D in the considered case). The following theorem is the direct consequence
of the structural equations for normal moving frames and Theorem 1.1:

Theorem 1.2. For the given one-parametric family Z(t) of representations of the quiver Qp
compatible with the Young diagram D with |D| bozes there ezists the unique, up to a symplectic
transformation, monotonically nondecreasing curve A(t) in the Lagrange Grassmannian of 2|D|-
dimensional symplectic space with the Young diagram D such that the quiver of curvatures of
A(t) is isomorphic to E(t). If, in addition, all rows of D have different length, then given a tuple
of smooth functions {pap(t) : (a,b) € A x A, (a,b) is an essential pair} there exists the unique,
up to a symplectic transformation, monotonically nondecreasing curve A(t) in the Lagrange
Grassmannian of 2|D|-dimensional symplectic space with the Young diagram D such that for
any essential pair (a,b) € A x A and any t its (a,b)-curvature map at t coincides with pap(t).
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Finally note that rank 1 curves in Lagrange Grassmannians, considered in [23], have the
Young diagrams, consisting of just one row, and the main results of the mentioned paper
(Theorems 2 and 3 there) are very particular cases of Theorems 1.1 and 1.2 here. In this case
the pair (a,b) of superboxes is essential if and only if a = b.

1.2 Proof of Theorem 1

The proof consists of several steps.

1.2.1 Contractions of the curve A(:)

We start with some general constructions for curves in Grassmannians. Given a curve A(-) in
the Grassmannian Gi(W), for any 7 we will construct a monotonic sequence of subspaces of
A(7) in addition to the extensions A®. For this let A()(t) = A(t) and recursively

30 € 6(Ag_1y) with £()) =v } (1.2.1)

Ay () = {U € Aiy(7) : such that ¢(7) € Agi—1)(7)

where, by analogy with above, G(A(;)), 7 > 0, is the set of all smooth curves £(t) in W such
that £(t) € A_q1y(t) for any t. The subspaces Ay;)(7) are called the ith contraction of the curve
A(-) at the point 7. Under the identification TpAGk(W) ~ Hom (A, W/A) the first contraction
A(1)(7) is exactly the kernel of the velocity A(r), Agy(T) = Ker A(7). Moreover, it implies that

dim A (1) — dim A(7) = dim A(7) — dim Ay (7). (1.2.2)

Indeed, for the velocity A(7) we assign a unique B (7) € Hom (A, W/A) by B(v) = —[¢'(0)] for
a curve £(-) : £(0) = v. It is evident that B(v) does not depend on the choice of the curve £(-).
As a consequence, we see that the left-hand side of (1.2.2) is equal to dim(Im Bx(7)), while the
righthand side is equal to dim A(t) — dim (Ker Ba(7)).

Note also that in (1.2.1) one can replace the quantor 3 by V, because the existence of a curve
£ € &(Ay_yy) with £(7) = v and £'(T) € A;_1)(7) implies that any smooth curve ie G(Agi-1))
with £(r) = v satisfies #/(1) € A(i—1)(7). Note that the following relations follow directly from
the definitions

(A@(™) gy =D+ (1), (A )W c Ag_qy(7) (1.2.3)

If we suppose that A(-) is a curve in Lagrange Grassmannian of the symplectic space W,
then the symplectic structure gives an additional relation between the ith extension and the ith
contraction. Namely, given a subspace L C W denote by L4 its skew-symmetric complement,
ie. L“={veW:w(v,l) =0Vl e L}

Lemma 1.1. The subspaces A;(7) is a skew-symmetric complement of the subspace A®(7)
for any T, namely

Agy(m) = (A® (T))é, vr. (1.2.4)

Proof. We proceed the proof by induction on ¢. For ¢ = 0 there is nothing to prove, because
A(T) (= A(7) = Ao(7) by definition) is a Lagrangian subspace. Assume that (1.2.4) is valid
for 4 = 7 — 1 and prove it for i = 4, 4 > 1. Indeed, if v € Ag(7), then by definition there
exists a regular curve of vectors v(¢) such that v(t) € Ag_y(t) for any t close to 7, v(7) = v
and v'(7) € AG_1)(7). Let us prove that v € (A(i)(T))é. For this take v; € A()(7). Then by
definition there exist a curve of vectors w(t) in W such that w(t) € AG=D(2) for any t close to
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7 and w'(7) = v;. By induction hypothesis w(v(t),w(t)) = 0. Differentiating the last identity
at t = 7 we get
w(v,v1) = —w(v'(1),w(r)) = 0. (1.2.5)

(the last equality holds because of the relations v'(7) € Ag_1)(7), w(7) € AGD(7) and the
induction hypothesis). Since (1.2.5) holds for any v; € A®(7), we get that v € (AG) (T))é. So,
. Z
we have proved that A () C (A(z) ('r)) )
- z
Now let us prove the inclusion in the opposite direction. Suppose that v € <A(Z) (T)) . Take

any w € AG=D(7) and a curve of vectors w(t) in W such that w(t) € AGD(4) for any t close
to 7 and w(r) = w. Then by definition w’(1) € A®(7) and by our assumptions

w(v,w' (7)) = 0. (1.2.6)

On the other hand, since A1) (7) € A (7), then (AG) (T))L C (A@“l)(r))L = AG_1)(7) (the
last equality is our induction hypothesis). So, v € Ag_1y(7). Take a curve of vectors v(t) in
W such that v(t) € Ag_1)(t) for any t close to 7 and v(7) = v. Then by induction hypothesis
w(v(t),w(t)) = 0 for any ¢ close to 7. Differentiating the last identity at ¢ = 7 and using
(1.2.6) we get that w(v'(r),w) = 0. Since the last identity holds for any w € AG=1(7), then

- z
() € (A(l"l)('r)> = A_1)(7) (the last equality is our induction hypothesis). So, v € A (T),

. V
which implies the inclusion (A(’) (7)) C A (7). The proof of the lemma is completed. O

1.2.2 Filling the Young diagram D by bases of A(t)

As before, assume that the reduced diagram A of the curve consists of d level, the number of
superboxes in the ith level of the diagram A is equal to p;, and their sizes are equal to ;. By
our assumptions APV (¢) = W, which together with (1.2.4) implies that

Ay () =0, dimAg,_1)(t) =71. (1.2.7)

Denote also by o; the special (i.e. the last) superbox of the ith level of A. ;From the second
relation of (1.2.3) it follows that

1 .
(Ap0) @ S Apn®), Vi<i<q (1.28)

~ @)
For any 1 < i < d choose a complement V,(t) of the subspace (A(pi)) (t) in the space
Ap,—1)(t) (smoothly w.r.t. t):

Api—1) = (A@i))(l)(t) & Vo, (1). (1.2.9)

Note that from (1.2.7) it follows that V. (t) = Agp,—1y(t)- Let A be the diagram, obtained from
A by joining to A one more column from the left, having the same length as the first column of
A. The boxes of A will be called superboxes as well. For any 1 < < d take a tuple of vectors
E,,(t), constituting a basis of V5, (t) (smoothly in t). Then to any superbox of A we will assign
a tuple of vectors in the following way

B (5 () E ED(), Y0<j<p, (1.2.10)

where [ is the left shift on the diagram A.
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Lemma 1.2. Assume that a superboz a € A lies in the j(a)th column and i(a)th level of
the diagram A and let Ov, be the set of all superbozes, lying over a in the column of a. Then
the following relations hold

(BN (D wan{B0)}) @ Agw-n®) =0,

beOvq (1.2.11)
dim span{E,(t)} = dim span{E,,, )} =ri)-

Proof. Let < be the order on the set of superboxes of the diagram Z, defined as follows: b; < by
if either by is higher than by in A or they are on the same level, but b; is located from the right
to by (or, equivalently, either i(b1) < i(bs) or i(b1) = i(b2), but j(b1) > j(b2)). Let us prove
(1.2.11) by induction on the set of superboxes of the diagram A with the introduced order <.
For a = 01 relations (1.2.11) follow immediately from (1.2.7). Now assume that (1.2.11) is true
for any superbox a € A such that a < o and prove it for a = 0. We have the following two
cases:

1. The superbox o is special. In this case by induction hypothesis it is easy to show
that W

(D span{B0)}) © A ® = (Apiy) (1.2.12)
beOv,

This together with (1.2.9) and the definitions of the numbers r; implies (1.2.11) for a = 0.

2. The superbox ¢ is not special. Using our induction assumptions we can choose a
subspace C(t) of A¢j(s)—1)(t) smoothly w.r.t. ¢ such that

A(j(a)—l)(t) = (b g} Span{E’b(t)}) D Span{Er(a)(t)} @ A(j(a))(t) D C(t), (1.2.13)
€0v,(g)

where as before (o) is the superbox, located from the right to ¢ in A.
;From (1.2.2), the first relation of (1.2.3), and (1.2.13) it follows that

dim(Aj()-1) M (1) = dim Agyo) 1) () = dim Agj()1)(t) = dim Ao () =

. _ ilo) , (1.2.14)
Z dim span{ Ey(t) } + dim C(t) = Z rr + dim C(¢).
beOV (o) Ur(o) k=1

On the other hand, using (1.2.10), (1.2.13), one gets easily that

i(o)—1
dim(A(j(0)-1)) P () = dim Agio)-1y(t) < Y ri + (dimspan{ By (1), Bo () } -
k=1

1.2.15
i(o) ( )

dim span{ET(a)(t)}) + (dim cW(t) — dim Ct) < Z i, + dim C(¢).
k=1 .

If for a = o one of the identities in (1.2.11) does not hold, then in the chain of the inequalities
(1.2.15) there is at least one strict inequality, which is in the contradiction with (1.2.14). So, the
identities (1.2.11) are valid for a = o, which completes the proof of (1.2.11) by induction.  [J

Let Fy be the kth column of the diagram A. From Lemma 1.2 it follows easily the following
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Corollary 1.1. The following splittings hold for any 0 < j < p1

Ap® = D span{E.0)}, (Ay)P@) = D span{E,(t)}  (1.2.16)

anzLj-;»l Fs ac S22 s—j+1 FsUl(Fjq1)
In particular, A(t) = @,cn span{E,(t)}.

One can imagine that we fill the diagram A (or the original diagram D) by columns E, )T
by choosing bases of the subspaces IN/(, satisfying (1.2.9), and by differentiating these bases as
in (1.2.10). Tuples {E,(t)}aea, obtained in this way, will be called fillings of the Young diagram
D, associated with the curve A(-). The flag 0 = Ay, (t) C A, —1(t) .- C A()(t) = A(t) can be
recovered from this filling by the first relation of (1.2.16). In particular, this flag (and therefore
the curve A(-) itself) can be recovered from the curves t — Vi, (t), 1 < 4 < d by taking the
corresponding extensions of them.

M
1.2.3 The canonical complement of (A(pi)> (t) in A(p,—1)(t) and the canonical
Euclidean structure on it

In the present subsection we will show that the complement V,, (as in (1.2.9)) can be chosen
canonically if the following condition holds.

Condition (G) For any1 <i<d—1 and anyt the rank of the restriction of the quadratic
form A(t) to the subspace (A(pz_l)) P (t) is equal to Zrk,
k=1

Vi<i<d—1landVt: rank (A(t){(A(pi_l))(pi_n(t)) =3 e (1.2.17)
k=1

Since Ker A(t) = A(p(t) and (A(pi_l))@i"z)(t) C A (t) (as a consequence of (1.2.3)), any

curve A(t) with the Young diagram D satisfies: rank (A(t)l( A 1))(171-—1)(15)) < Z?c=1 7y, for any
pi—

1 <4< d. It implies easily that germs of curves, satisfying condition (G), are generic among all

germs of curves with given Young diagram D. Besides, it is clear that curves with rectangular

Young diagram satisfy condition (G) automatically (condition (G) is void in this case).

Lemma 1.3. Any monotonic curve A(t) with the Young diagram D satisfies condition (G).

Proof. For definiteness, let the curve A(t) be monotonically nondecreasing. Take a filling
{Eq4(t)}aca of the Young diagram D, associated with the curve A(-). Let

Zi(#) = span{ E&* V(0)}iey, 1<i<q (1.2.18)

It is clear that {Z;(t)}%, is a monotonically increasing (by inclusion) sequence of subspaces for
any t. As a consequence of Lemma 1.2, we have

%

dim Zi(t) =Y %, (1.2.19)
k=1
(Agpu—1) P () = ((Am—l))(p"’”(t) n A(1>(t)> D Zi(t) (1.2.20)
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Since Ker A(t) = A(1y(t), we get from (1.2.20) that

rank (A(t)|(A(pi_1))(pi_1)(t)) — rank (A(t)]zi(t)). (1.2.21)

Besides, from monotonicity the quadratic form A(t)| 7, is positive definite. Hence, the quadratic

forms A(t)] 7z;(t) are positive definite as well. Then the lemma follows form relations (1.2.19) and
(1.2.21). 0

Now define the following subspaces of the ambient symplectic space W:
Wilt) = (Agpn—1y ()@ + (Ay_1y )7 + .+ Aoy D. (12.22)

Lemma 1.4. If a curve A(t) with the Young diagram D satisfies condition (G), then for
any 1 < i < d the restriction of the symplectic form w to the subspace W;(t) is nondegenerated

and dimW; = 22 DETk-
k=1

Proof. The proof of the lemma is by induction w.r.t. 7. First let us introduce some notations.
Let A be the diagram obtained from A by the reflection w.r.t. its left edge. We will work
with the diagram A U A, which is symmetric w.r.t. the left edge of the diagram A. Similar to
above, we will denote by I the left shift on the diagram A U A. If S is a subset of the diagram
A, we will denote by S the subset of A, obtained by the reflection of S w.r.t. the left edge of
A. Also in the sequel, given two tuples of vectors Vi = (v11,...,V1n,) and Vo = (va1y- -, Van,)
by w(Vi, V) we will mean the n; x ny-matrix with the (¢, j)-entry equal to w(vy;,va;). Take a
filling {E4(t) }aea of the Young diagram D, assomated with the curve A(:). Define tuples Ej,

also for a € A in the following way: Ej; (@) = )(t) 1 < j < p;, where, as before, a; is the
first superbox in the ith level T; of A. By deﬁmtlon Wi(t) = span{E,(t )}aeu;e TRUT

1. Let us prove the lemma for ¢ = 1. By condition (G) the matrix w(E p1-1) (t), EF 1)(t)) i
nonsingular. On the other hand, since Aq)(t) = (A(l)(t)) , one has w(E(p 1)( t), E p 1=2) ) =0.

Differentiating the last identity, we get w(Eg:‘;lH) (1), Ec(,fl_Z) (t) = (Ea’il (t), E(p 1 1)(t)). n
the same way, using (1.2.4), it is easy to obtain that

w(BES*I @), ER (1)) = (-1)w(BEY (@), EE V().

In particular, all matrices w(Eé—IilH)(t),Egzil—i"l)(t)) are nonsingular. Therefore the matrix
with the entries, which are equal to the value of the form w on all pairs of vectors from the tuple
{Ea(t)}4er,uT, is block-triangular w.r.t. the nonprincipal diagonal with nonsingular blocks on
the nonprincipal diagonal. This implies that the tuple {Eq(t)},cy,ut, constitutes the basis of
W, and the form w|w, is nondegenerated, which completes the proof of the statement of the
lemma in the case i = 1.

2. Now assume that the statement of the lemma holds for 7 = ip — 1 and prove it for ¢ = 4.

Let A; be the subdiagram of A, consisting of the first i rows of A, A; = U Y. Divide the
k=1
diagram A;, U A;, on four parts {Ax}i_;: A; is a union of the last p; — p;, columns of the
diagram A;,, A is obtained by the reflection of A; w.r.t. the left edge of Ay, ie. A2 = A,
Az = Aio—l\(Al U Az), and Ay = Tio-
Set Cx(t) = span{Eq(t)}acas, k =1,...,4. Note that from (1.2.16) it follows that C1(t) =
Ap, ) (t). By constructions Wi, (t) = C1(t) + Ca(t) + C3(t) + Cy(t) and Wiy—1 = C1(t) + Ca(t) +
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Cs(t). Moreover, by comparison of dimensions,

I/V»L‘O..l(t) = Cl(t) b Cz(t) D Cg(t) (1.2.23)
C1(t)4 N Wiy_1(t) = C1(t) ® C3(1)- (1.2.24)

Besides, using (1.2.4), one has also that
C1 + Cs+ Cy C CL(t)~. (1.2.25)

4

Assume that z € Kerw|WiO(t), T = Zxk, where 7 € Cg(t). Then (1.2.25) implies that

=1
wv,z) = w(v,z2) = 0 for any v ekCl(t). This together with (1.2.23) and (1.2.24) yields
that zo = 0.

Further, by the same arguments as in the proof of the case i = 1, applied for the tuple
{Ea}ac Forg Mg instead of the tuple E,,, one obtains from (1.2.17) for i = 4o that w|c, ) +cu() i
nondegenerated and dim(C3(t) + Ca(t)) = 2pi, 1 rg. The latter implies that C3(t)NCa(t) =
0. Besides, from (1.2.25) it follows that w(v,z) = w(v,z3 + £4) = 0 for any v € Cs(t) + Ca(t),
which together with two previous sentences implies that z3 = z4 = 0. Therefore x € Cy(t) C
Wi,—1(t), which implies that z = 21 = 0 by induction hypothesis. This yields that the form
leio (t) 18 nondegenerated. Moreover, from the same arguments it follows that the condition

4

ka — 0 implies that zz = 0 for any 1 < k < 4. Hence Wj,(t) = C1(t) ® Ca(t) @ C3(t) © Cu(?)
k=1
and the statement of the lemma about the dimension of Wj,(t) holds. The proof of the lemma

is completed. }

Finally, let
Vi(t) = Apy—1) (&) N Wima (£)7 (1.2.26)

As a direct consequence of Lemma 1.4, we get that the subspace V;(t) is complementary to

@, .
(M) (@) in A1),

A ® = (3g9) " @ Vit (1227

a
The subspaces V;(t), defined by (1.2.26) will be called the canonical complement of (A(pi)> )(t)

in Ap,—1)(t). The following equivalent description of the subspaces V;(t) will be very useful in
the sequel:

Lemma 1.5. A sequence of subspaces {V}z (t)}4,, satisfying (1.2.9), consists of the canonical
complements of (A(pi)>(1)(t) in Np,—1)(t) for any 1 < i < d if and only if smooth (w.r.t. t)
tuples of vectors E,,(t), constituting bases of V;,(t), satisfy:

Vi<j<i<dandV1<k<pj—p+1: w(ngf"U(t),Ef,’;j‘”’“)(t)) =0 (1.2.28)
or, equivalently, taking into account notations in (1.2.10), !
Vi<j<i<dandV1<k<pj—pi+1: w(E(),EP(t)=0. (1.2.29)

The lemma can be easily proved by rewriting identity (1.2.26) in terms of bases Ey,(t) and
appropriate differentiations.

Further, it turns out that on each canonical complement V;(t) one can define the canonical
quadratic form. Indeed, given a vector v € V;(t) take a smooth curve g(t) in W such that
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1. e(r) =v;
2. e(t) € Vi(t) for any t close to 7.

Then by our constructions it is easy to see that for any 0 < j <p; —1

eW(r) e Agpi—1-5(7), (1.2.30a)
eVD(T) ¢ Ap_1—jy(7), v #0, (1.2.30b)
et (r) e Api—1—j(7), ifv=0 (1.2.30c)

For this take a basis Eg,(;) of Vi(t), depending smoothly on ¢, expand our curve e(t) w.r.t. this
basis, and use the fact that for any 0 < j < p; — 1

J
P span {EL ()} € Ap—1—(7),  span{EI ()} N Agy_1-5)(7) =0, (1.2.31)
s=0

which is a direct consequence of Lemma, 1.2. From (1.2.30a), (1.2.30c), the fact that A(t) is the
curve of Lagrangian subspaces,

Qir(v) = w(e® D (r),eP) (7)) (1.2.32)

is a well defined quadratic form on V;(7), which does not depend on the choice of the curve &(7)
satisfying conditions (1) and (2) above. The form Q; -(v) will be called the canonical quadratic
form on Vi(). Moreover, the quadratic forms @Q;r(v) are nondegenerated for any 1 <14 < d.
Indeed, if tuples E,, ) constitute bases of Vi(t) for any 1 < i < d and Z4(t) is as in (1.2.18),
then from Lemma 1.5 it follows that the matrix of the quadratic form A(7)|z (r) in the basis

{Ec(,i’“_l)(f)}%:l is block-diagonal and the diagonal blocks are exactly the matrices of the forms
Qi,r(v) in the bases E,, ;). Then the nondegenericity of the form Qi - (v) follows from condition
(G) and (1.2.21). Moreover, if the curve A(t) is monotonically nondecreasing, then the forms
Qi are positive definite. In this case the Euclidean structure on V,(7), corresponding to the
form Q; , will be called the canonical Euclidean structure on Vi(7).

From now on for simplicity of presentation we will assume that the curve A(t) is monotoni-
cally nondecreasing. All necessary changes in the formulation of the results for nonmonotonic
curves, satisfying condition (G), will be indicated in Section 1.3. For any 1 < i < d, let B; be
a fiber bundle over the curve A(t) such that the fiber of %B; over the point A(t) consists of all
orthonormal bases of the space V;(t) w.r.t. the canonical Euclidean structure on V;(t). Note
that 98, is the principle bundle with the structure group O(r;).

1.2.4 The canonical connections on the bundles 8;.

Now let us prove the following

Proposition 1.1. Each bundle B; is endowed with the canonical principal connection
uniquely characterized by the following condition: the section Ey,(t) of B is horizontal w.r.t.
this connection if and only if span{bl(,fi)(t)} are isotropic subspaces of W for any t. Given any
two horizontal sections E,,(t) and Eq,(t) of B; there exists a constant orthogonal matriz U;
such that ~

Eq, (t) = E;,(t)U;. (1.2.33)
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Proof. As in the proof of Lemma 1.4, given two tuples of vectors Vi = (v11, ..., V1p,) and
Vo = (va1, - - -,V2n,) by w(Vi, V) we will mean the ny X no-matrix with the (7, j)-entry equal
to w(vy,ve;). With this notation, it is obvious that if V; = span{E,,}, then the subspace

span{Ec(yfi)(t)} is isotropic if and only if
w(EP) (), E®I(2)) = 0. (1.2.34)

Note also that from definition of the canonical Euclidean structure it follows immediately that
for any section E,(t) of the bundle B; the following identity holds

w(BSV (), B () = 1d. (1.2.35)

Take any two section E, (t) and E,,(t) of the bundle B;. Then there exists a curve U; (t) of
orthonormal matrices such that Ey, (t) = Eo,(t)Ui(t). Using relation Aqpy(t) = (A(l)(t))é and
formula (1.2.35), it is easy to get that

W(BEO (@), BEO (1) = U (2007 (2) + (B (), ES(0)U )
So, relation (1.2.34) holds if and only the matrix U (t) satisfies the following differential equation
—2p;U' (t) + w(ESI(t), EF) (1)) U(t) = 0. (1.2.36)

Note that the matrix w(ngi)(t), Ec(,fi)(t)) is antisymmetric. So, equation (1.2.36) has solutions
in O(r;), which are defined up to the right translation there. This completes the proof of the
proposition. O

Now, if for any 1 < i < d we take a horizontal section Eg,(t) of the bundle %B; and set , as
before, Eyj(y,)(t) = Eg)(t) for 0 < j < p; —1, then from (1.2.33) it follows that for any superbox
a the subspaces V,(t) = span{ E,(t)} do not depend on the choice of a horizontal sections Ey, (t).
Moreover, from this and Lemma 1.2 we get the canonical splitting A(t) = Docn Va(t) of the
subspaces A(t).

1.2.5 The completion of horizontal sections to quasi-normal moving frames.

In the sequel it will be more convenient to use the following obviously equivalent description of
quasi-normal mappings:

Lemma 1.6. A symmetric compatible mapping R : A x A — Mat s quasi-normal if and
only if the following four conditions hold:

1. If a and b are two consecutive superbozes in the same level of A, then the matriz R(a,b)
18 antisymmetric;

2. If both superbozes a and b are not special and do not lie in the same or adjacent columns,
then R(a,b) = 0;

£

3. If both superbozes a and b are not special, lie in the adjacent (but not the same) columns
and one of the superbozes is located from below and from the left w.r.t. the other, then
R(a,b) =0;

4. If a superbox a is special, a superbox b is not special and b is located from the left to a,
but not in the adjacent column, then R(a,b) = 0.
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Further, for all 1 < i < d, fix a horizontal section E, (t) of the bundle B, and complete it to
the moving basis {E,(t)}aea of A(t) by setting, as before, Ejj(,)(t) = Egz)(t) for0<j<p—1.
Also let

Fo,(t) = E('h_ (t). (1.2.37)

;From the definition of the canonical Euclidean structure it follows that w(Fy,(t), Fo,(t)) =
Id. From the normalization conditions (1.2.29) with k = 1 it follows that w(Fy,(t), Ee; (1)) =
0 for any i # j. Further, by definition of the horizontal section of the bundle %; one has
w(Fy,(t), Fo,(t)) = 0. Finally, from the normalization conditions (1.2.29) with k = 2 it follows
that w(Fy, (), Fa, (t)) = 0 for i # j as well. Combining all these identities with the fact that

the subspaces A(t) are Lagrangian and the relation Ap)(t) = (A(l)(t))l, we get that the tuple
({Ea}ae A, {Fy(t) }oer, ), where, as before, F1 denotes the first column of A, does not contradict
the relations for a Darboux frame. Besides, by our constructions it satisfies first two equations
of (1.1.7). In this subsection we prove the following

Proposition 1.2. The tuple ({Ea}aea, {Fs(t)}ver) can be uniquely completed to a quasi-
normal moving frame of the curve A(t).

Proof. Take a tuple {F}(t)}pea\ s, which completes the tuple ({Ea}taca, {Fb(t)}ver ) to amov-
ing Darboux frame in . Then from the definition of Darboux frame and the first two equations
of (1.1.7) it follows that this moving Darboux frame have the structural equation (1.1.7) for
some symmetric mappings R; : A x A — Mat compatible with the Young diagram D. As
before, denote by F; the jth column of A, 1 < j < p;. Our proposition will follow from the
following

Statement 1. For any 1 < k < p; there exists a unique tuple of columns of vectors

k
(R :bel]) 7}

j=1

k
such that the tuple ({Ea}aca, {Fs(t) : b€ U F;}) can be completed to a moving Darboux frame
j=1

({Ea}acn, {Fs(t)}bea)

such that if the mapping Ry : A x A — Mat appears in the structural equation (1.1.7) for this
moving frame, then the mapping Ry satisfies conditions (1)-(4) of Lemma 1.6 for any pair (a,b)
with at least one superbox belonging to the first (k — 1) columns of A.

Indeed, our proposition is just Statement 1 in the case k = p; (the only pair of superboxes,
which is not covered by Statement 1, is (07, 01), where, as before, o1 is the special (the last)
superbox of the first level, but this pair does not satisfy any of conditions (1)-(4) of Lemma
1.6).

We will prove Statement 1 by induction w.r.t. k. For k = 1 there is nothing to prove,
because the tuple {F.}.cr, is uniquely determined by the second line of (1.1.7) (which together
with the first line of (1.1.7) is equivalent to (1.2.37)), while the Statement 1 for k =1 does not
impose any conditions on the symmetric compatible mapping R;, appearing in (1.1.7).

Now suppose that Statement 1 is proved for some k = k, where 1 < k < p; — 1, and prove

_ k -
it for k =k + 1. Let {Fy(t) : b € |J F;} be the tuple, satisfying Statement 1 for k = k. Take
Jj=1
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a tuple {Fp(t) : b € A\ U F;}, which completes the tuple ({Ea}taca, {Fb(t) 1 b € U Fj}) to a
=1
moving Darboux frame in W and assume that R; : A X A — Mat is the mapping, a,ppearmg in

the structural equation for this frame. If {Fb(t) :be A\ U F;} is another tuple, completing the
i=1
tuple ({Ea}aen, {F5(t)}oer) to a moving Darboux’s frame in W, then there exists a symmetric
k k
mapping T} : (A\ U F;) x (A\ U F;) — Mat, compatible with the diagram, obtained from
7=1 ji=1

D by erasing the first & column, such that

k

Vae A\|JF F@)=FE®+ Y  E)Itab) (1.2.38)
= beA\ él Fj

Suppose that R, : AxA — Mat is the symmetric mapping compatible with the Young diagram
D such that similarly to last two equations of (1.1.7) one has

;

.
Fl(t)=— Y EyRi(a,b) — F.(qy ifae U F;
beA j=1 .
~ ~ ~ k
Fi(t) == 3 EpRi(a,b) = Frq) if a€ A\(U FUS) (1.2.39)
beA e
Fy(t) == 3 ByRi(a,b) if acs,
beA

(note that from the first line of (1.2.39), one has Ri(a,b) = Ri(a,b), if at least one of the
superboxes (a,b) belongs to the first k£ columns of A). Let us extend the mappings I :

(A\ U Fj) x (A\ U F;j) — Mat to the symmetric mapping, still denoted by I's, from A x A
=1
to Mat compatlble Wlth the diagram D, by setting

k
Ti(a,b) = Ty(b,a)" =0, Vbe|]FacA (1.2.40)

j=1

Then, substituting (1.2.38) into two last lines of (1.2.39) and using (1.1.7), one can easily obtain
= d
Rt(a, b) = Rt(a, b) + E%Pt(a, b) + T (a, T(b)) + I (T(a), b), (1241)

where the term I';(a, (b)) is omitted, if b is special, and the term T';(r(a),b) is omitted, if a is
special. Using transformation rule (1.2.41), we will prove the following

Statement 2. There exists the unique choice of matrices I' (& 5) with at least one of the
superbozes belonging to the (k+1)th column of A and the other one lying from the right to the
kth column of A such that the matriz Ri(a,b) satisfies all conditions (1)-(4) of Lemma 1.6 for
any pairs (a,b) with at least one of the superbozes belonging to the kth column of A and the
other one lies from the right to the (k — 1)th column of A

It is clear that Statement 2, relation (1.2.38), and the induction hypothesis will imply
Statement 1 for k = k -+ 1. Let us prove statement 2. Suppose that a € Fj. Then from (1.2.40)
it follows that %I‘t(a, b) =0 and I'; (a,'r(b)) = 0. So, relations (1.2.41) in this case have a form

Ry(a,b) = Re(a,b) + T¢(r(a),b), (1.2.42)
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where the term I';(r(a),b) is omitted, if a is special. Therefore, according to (1.2.42), if a is

k —~~
special or b € |J F;j we have Ry(a,b) = Ry(a,b), i.e. the matrix R¢(a,b) is already independent
j=1
of the choice of the complement of

k
({Ea}aen, {F3(t) : be U fj})

Jj=1

to a moving Darboux frame.

k
Now assume that a is not special and b ¢ |J F;. Then there are the following three cases:

j=1
E+1 -
a) b ¢ |J Fj, ie. bis not in the first k + 1 columns of A. Then the matrix I (r(a),b)
j=1
appears only once in all relations,
R.(@,b) = Ry(a,b) + I (r(a),b), (1.2.43)

where & runs over the whole kth column Fj of A. Putting
T;(r(a),b) = —Ru(a,b), (1.2.44)

we get Ry(a,b) = 0 for any a € Fj, which corresponds to conditions (2) and (4) of Lemma 1.6,
if b is not from the left to a. Obviously, the choice of I';y(r(a),b) as in (1.2.44) is the unique one
with these properties.

b) b € Fj,q, but b # r(a), i.e. b lies in the (k + 1)th column of A, but it is not in the same
row with a. Let a; = [(b). Then from the symmetricity of the mapping I'; (i.e. the relation
Ti(a,b) = (T4(b, a,))T) it follows that the matrix T'y(r(a1),r(a)) appears twice in all relations
(1.2.43), where @ runs over the kth column Fj of A and b runs over the (£ +1)th column Fj_

of A. Namely, substituting (&,b) = (r(a),a1) into (1.2.43) and using the symmetricity of the
mapping I'; we will get the following relation in addition to (1.2.42) (with b= r(a1)):

ﬁt(al,r(a)) = Ri(a1,7(a)) + Ty ('r(a),r(al))T. (1.2.45)
Hence, from symmetricity again we have
ﬁt(a,r(al)) — R}(T(a), a1) = Ry(a,r(a1)) — Ri(r(a),a1),

i.e. the matrix R; (a,r(al)) — Ry (r(a), al) does not depend on the choice of the complement of

k
({E&}aEA7{FB(t) ‘be U j?j})
j=1

to a moving Darboux frame. Besides, for any pair of superboxes (a,a1),a # ai in the kth column
F% by an appropriate choice of T (r(a), r(al)) we cannot "kill” both matrices R (r(a), a1) and
Ri(a, r(al)), but only one of them. We choose the following normalization: E(a, r(a1)) =0,ifa;
is higher than a. We can do it by putting Tt (r(a),7(a1))) = —R¢(a,(a1)). This normalization
corresponds to conditions (3) of Lemma 1.6. Obviously, such choice of I't (r(a),r(a1)) is the
unique one with these properties.
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c) b= r(a). Then the matrix I';(r(a),(a)) appears only once in all relations (1.2.43) where
a runs over the whole kth column Fz of A, namely

Ri(a,m(a)) = Ri(a,r(a)) + Tt(r(a), m(a)). (1.2.46)

On the other hand, by our assumptions I'; (r(a),r(a)) should be symmetric. Therefore, using
(1.2.46), we cannot "kill” the whole matrix Ri(a,r(a)), but only its symmetric part (by putting
Ti(r(a),r(a)) = —2(Ri(a,7(a)) + Ry(a,7(a))T)). It corresponds to conditions (1) of Lemma 1.6
with a € Fj. Obviously, such choice of I'; (r(a), r(a)) is the unique one with these properties.

- _ k
In this way we have found uniquely all matrices I'¢(@,b) with @ € Fz 4, b ¢ |J F; such that the
: i
matrix Ry(a,b) satisfies all conditions (1)-(4) of Lemma 1.6 for any pairs (a,b), where a € Fy,

k-1 - - ~
b¢ |J F;. Taking I'y(b,a) = I':(a, b)T, we will have the same properties for R;(b, a) with a and
j=1

b as in the previous sentence. This completes the proof of Statement 2, therefore also the proof

of the Statement 1 for k = k -+ 1, and then by induction the proof of Proposition 1.2. O

1.2.6 Normality of the obtained quasi-normal moving frames

The normalization conditions (1.2.29) with & > 3, which is not used before, will ensure the
normality of the obtained quasi-normal moving frame. As before, we denote by d the number
of levels in the diagram A, by p; the number of superboxes in the ith level, and by a; the first
superbox in the ith level. The normality of the constructed quasinormal frame will obviously
follow from the following

Proposition 1.3. A quasi-normal moving frame ({Ea(t)}aea, {F,(t)}aen) is normal if and
only if conditions (1.2.29) hold for any 1 <j<i<d and3 < k<pj—pi+1

Proposition 1.3 will follow by induction from the following

Statement 3. Fiz s € N and let Ry : A x A — Mat be a quasi-normal mapping, satisfying
the following condition: for any i and j, 1 < j < i < d, the matriz Ri(a,b) = 0 for all first
min{s — 1,p; — p; — 1} pairs (a,b) in the tuple (1.1.5). Then for any i and j, 1 < j <i<d,
such that 1 < s < pj — p;, the sth pair (a7,a3) of the tuple (1.1.5) satisfies

Ri(af,a) = 2w (ES) (), Eai(1))- (1.2.47)

Before proving Statement 3, let us introduce some notations. As in the proof of Lemma 1.4,
let A be the diagram obtained from A by the reflection w.r.t. its left edge. In the sequel we
will work with the diagram A UA. The boxes of this diagram will be also called superboxes.
Similar to above, we will denote by [ and r the left and the right shifts on the diagram A U A,

respectively.

Definition 1.4. A (finite) sequence 1 = {bo,...,bn} of superbozes of the diagram AUA is
called an admissible path in this diagram, if the following two conditions hold:

1. If b; € A then bi_|_1 S {bz,l(bz)},
2. Ifb; € A then biv1 € {bi, l(bi)} UA

(see an example on Figure 1). The superbozes from the admissible path n will be called the
vertices of the path. We will distinguish three types of vertices: the vertez bm, 0 <m < n, will
be called walking, if bpy1 = [(bm), it will be called sleeping, if byt1 = bm, and it will be called
jumping, if by, € A and by € A.

i
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‘ ' <= . |—o—1—o—r .. @ =‘ J
e
by,
o
Figure 1.

Further, given any superbox z of A we will denote by T the superbox in A, obtained from
z by the reflection of z w.r.t. the left edge of the diagram A; Similarly, given any superbox x
of A we will also denote by Z the superbox , obtained from z by the reflection of z w.r.t. the
right edge of the diagram A.

;From the definition of Darboux frame it follows that the quantity w(Ey, ,E(5+2)) we are

interested in, is equal to the coefficient near Fj,, of the expansion of E(s+2) into linear com-
bination w.r.t. the frame ({E4(t)}eea, {Fa (t)}aEA) satisfying the structural equation (1.1.7).
Admissible paths in the diagram AU A help to describe the coefficients of such expansions. For
this to any admissible path 7 = {bo, ..., bn} we will assign a curve of size(bn) x size(bo)-matrices
P,(+). If n consists of only one vertex n = {bo}, we set Pp(t) to be the identity matrix for any ¢.
Further for the path 7 = {bo, ... ,bn—1,bn}(n > 1) the curve of matrices F(-) is obtained from

the curve of matrices P{bo,...,bn_l } by the following recursive formula:

P{bOr--vbn—l}(t) if b’n = l(bn—-—l); bn—l € A;
—Pppy,.. b1} (B) if by, = l(bp—1), bn-1 € A,
Plro,...ba—1,bn} (£) = {borrbns , (1.2.48)
° ' Pébo,-..,bnwl}(t) if by, = bp1,

Rt(gn—-h bn)P{bo,,..,bn_l}(t) if bn—l S Zu b’n eA

Given {a,b} C AUA and n € NU{0} denote by Q2(a, b, n) the set of all admissible paths in the
diagram AUA, starting at a, ending at b, and consisting of n+1 vertices. Then from structural
equation (1.1.7 ), definition (1 2.48) of matrices P, and elementary rules of differentiations it
follows that

w(E,, EE) = > P (1.2.49)
neaz,ai,5+2)

Remark 1.4. Tt is clear from the last line of the recursive formula (1.2.48) that if P, (t) # 0,
then ~
Rt(bm5bm+1) 7é 0

for any jumping vertex by, of . [

Further, it is convenient to enumerate the columns of the diagram AU A by integers in the
following way: to the jth column (from the left) of A we assign the same number j while to the
4th column from the right of A we assign the number 1—7j. Given a superbox a € AUA, denote
by c(a) the number of the column, according to the rule described in the previous sentence.
The following simple lemma will be useful in the sequel g

Lemma 1.7. Suppose that Ry : A x A — Mat is a quasi-normal mapping and Ri(a,b) #0.
Suppose that superbozes a and b lie in the jth and ith level of A respectively (7 < i). Then the
pair (a,b) is the (c(b) — c(@))th pair in the tuple (1.1.5).

Indeed, by Lemma 1.6 the nonzero matrix R¢(a,b) must correspond to a pair from the
appropriate tuple of the form (1.1.5). The second sentence of the lemma is obvious.
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Proof of Statement 3. Fix some admissible path n = {bo, . ..,bst2} from Q(aj, 8,5 + 2)
(by definition, by = a;j and bsio = @;). Let us denote by k the number of jumping vertices in
n. Also, let by, ... ,bm, be all jumping vertices of 1, where m; < mg < ... < Mg. Set also
mo = —1, mpp1 = s + 2. It is evident that for any 1 <u <k +1 the number of superboxes on
n between by, ,+1 and b, (including by, _, 1 but not bm,) is equal to ¢(bmy_s+1) = ¢(bmy,)-
Therefore the fact that all superboxes b, with 0 < u < s+ 1 are either walking or sleeping or
jumping can be expressed as follows

k+1
Z(c(bmu_1+1) — ¢(bm,)) + #{sleeping vertices of n} + &k = s+ 2. (1.2.50)
u=1
Lemma 1.8. Under the condition (1.2.29) with k > 3 if P, # 0 for a pathn € Q(aj,ai,s+2)
(j < 1) with pj —p; > s, then there is only one jumping vertez and there are no sleeping vertices
mnn.
Proof. Since any path 1 € Q(aj,@;, s + 2) has to contain at least one jumping vertex (in order
to jump somehow from jth to ith level) the lemma is actually equivalent to the fact that

#{sleeping vertices of n} +k =1 (1.2.51)
Assume the converse, i.e.
#{sleeping vertices of n} +k > 2. (1.2.52)

Given a superbox z € A, denote by p(z) the number of superboxes in the level of z. Assume
that the superboxes by, and bp,+1 lie in different levels. By Remark 1.4, Ri(bmy,, by +1) # 0.
Therefore, according to Lemma 1.7 either (bp,,bm,+1) OF (by41,0m,) is the (c(bm,+1) —
¢(bm,,))th pair in the tuple (1.1.5). Combining this with Remark 1.4 and assumptions of State-
ment 3,

(1) — (bmy) > min{s = 1, [p(bm,1) = p(Bm,)| — 13- (1.2.53)

Further, since c(bp) = 1 and c(bs42) = 0 (recall that by = aj, bs12 = as, and myy1 = s+ 2),
we have

k+1 k
Z(c(bmu~1+l) - C(bmu)) = Z(C(bmu+1) - C(bmu)) +1 (1.2.54)
u=1 u=1

Substituting it into (1.2.50) and using assumption (1.2.52) we obtain

k

> (elbmyt1) = clbm,)) < 5 1. (1.2.55)

u=1

Since all terms in the sum in the left-hand side of the previous inequality are positive, we have
¢(bmy+1) — ¢(bm,) < 5 — 1 for any 1 < u < k. Combining it with (1.2.53) we obtain that

(bmy+1) — (bmy,) = [P(Omyr1) — (b, ). (1.2.56)

Besides, if the superboxes by, and by, 41 lie in the same level, then the inequality (1.2.56) holds
automatically.

On the other hand, by our constructions the superboxes bpy,+1 and by lie in the same
level of A. This fact together with inequalities (1.2.56) and (1.2.55) implies that

K
“PiSZlP(bmuﬂ)-‘ ma) | <Z bmy+1) my) S 85— 1,
i=1
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which contradicts the assumption p;—p; > s of the lemma. The proof of the lemma is completed.
O

Now, if 7 has only one jumping vertex and no sleeping vertices, then from (1.2.50) and
(1.2.54) it follows that c(bmy+1) — ¢(bm,) = s. Besides, in this case the superbox by, lies in the
jth level and the superbox by, 11 lies in the ith level. But then from Remark 1.4 and Lemma
1.7 it follows that if P, # O then the pair (bm,,bm,+1) is exactly the sth pair of the tuple
(1.1.5), which together with (1.2.48) and (1.2.49) implies (1.2.47). The proof of Statement 3 is
completed. O

As we have already mentioned, Proposition 1.3 follows immediately from Statement 3 by
induction w.r.t. s, starting with s = 1 (for which the assumptions of Statement 3 hold auto-
matically).

1.2.7 Final steps of the proof of Theorem 1.1

The ”if’ part of Proposition 1.3 implies that the tuple ({E£q(t) }aca, {Fa(t) }aca) constructed in
Subsection 1.2.5 is a normal moving frame of the curve A(-). Moreover, by the constructions

®
of Subsection 1.2.3 the space V;(t) = span{Ey, (t)} is the canonical complement of (A(m)) (t)

in Ag,—1)(t) for any 1 < i < d, where o; is the special superbox of the ith level, and by
constructions of Subsection 1.2.4 the curves E,,(t) are horizontal sections of the bundle B;,
defined in Subsection 1.2.3 . N

Now suppose that ({E,(t)}aea, {Fa(t)}aca) is another normal moving frame of the curve
A(). From the second line of the structural equation (1.1.7) (where all E,(t) and F,(t) are
replaced by E,(t) and Fy(t)) and the definition of Darboux frame it follows that conditions
(1.2.29) (again with all Eq4(t) replaced by E,(t)) hold for any 1 < j <i < dand k = 1,2.
Indeed, w(Eo, (t), £, (t)) = w(Ea;(t), Fo; (t)) = 0 and w(Eq,(t), Eq, (1) = —w(E, (1), B (1) =
—w (ﬁaz (), F‘aj (t)) = 0. Further, by Proposition 1.3, from the normality of the frame {Ea(®)Yaca, {Fa(t) }acn)
it follows that conditions (1.2.29) (again with all E,(t) replaced by E,(t)) hold for any 1 < j <
i < dand 3 < k < pj—p;+1. Therefore, Lemma 1.5 implies that span{E,, (t)} = span{E,,(t)} =
Vi(t). Besides, from the second line of the structural equation (1.1.7) (where again all E,(t)
and F,(t) are replaced by E,(t) and Fy(t)) and Proposition 1.1 it follows that the curves E,,
are horizontal sections of the bundle B;, which together with (1.2.33) implies relations (1.1.8).
This completes the proof of Theorem 1.1.

1.3 Nonmonotonic curves satisfying condition (G)

Now consider possibly non-monotonic curves with fixed Young diagram D and reduced Young
diagram A, satisfying condition (G) (see Subsection 1.2.3). For such curves the canonical

1)
complements V;(t) to (A(pi)) (t) in Agp,_1)(t) are defined as well. Denote by I and I; the
positive and the negative index of the quadratic form A(t)l( Ape—1) @D (1) and let rif =T T,

and r; =I'; —I'/_;. Actually the numbers r;.*' and r; are equal to the positive and negative
inertia index of the canonical quadratic forms @;; on V;(t) . These numbers do not depend
on t and they will be called the ith positive inertia index and the ith negative inertia index
of the curve A(t) respectively. Similarly to Definition 1.3 one can define the normal (quasi-
normal) moving frame for a curve in a Lagrange Grassmannian, satisfying condition (G). The
only modification comparing to this definition is that one should replace the second line in the
structural equation (1.1.7) by E, = Fa(t)ITQL a € F1 N'Y;, where r; and r; are the ith

Ty
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positive and negative inertia indices of the curve A(t), and the matrix [+ - s the diagonal
(rf +7;) x (rf” 4+ r;)—matrix such that its first 7+ diagonal entries are equal to 1 and others
are equal to —1. Also, set O(r;",r;) = {A € Rri xri . ATI 4 - AI . - =1d}. Continuing the

2014

normalization procedure by complete analogy with obvious n;odiﬁcatiorzls, one gets the following
generalization of Theorem 1.1 to nonmonotonic curves satisfying condition (G):

Theorem 1.3. For any curve A(t) with the Young diagram D in the Lagrange Grassmannian,
satisfying condition (G), there ezists a normal moving frame ({Ea(t)}aeA,{Fa(t)}aeA). A

moving frame
({éa(t)}aeDa {fa(t)}aeD)

is a normal moving frame of the curve A(-) if and only if for any 1 <1 < d there exists a
constant matriz U; € O(r;,r7") such that for all

Eo(t) = E)Us, Fo(t) = Fa( 3 ,-Uil+ .-, Va €Ty, (1.3.1)

where i and v are the ith positive and the negative inertia indices of the curve A(t).

Further, take a Young diagram D, as before, and fix a tuple of nonnegative integers {r; },L‘-i:l
such that 0 < 7, < r; for any 1 <17 < d. Let Qp be the quiver, defined in Subsection 1.1.3
. A representation of the quiver Qp will be called compatible with the Young diagram D and
the tuple {r; 3¢, if for any 1 < i < d the space of the representation corresponding to the
vertex T; is a r-dimensional pseudo-Euclidean space with negative inertia index r; and the
linear mappings R(a, b) of the representation corresponding to arrows (a,b) satisfy the following
relations: R(a,b)* = R(b,a) and R(a,r(a)) is antisymmetric w.r.t. the corresponding pseudo-
Euclidean structure. Then by complete analogy with Theorem 1.2 we have

Theorem 1.4. For the given one-parametric family Z(t) of representations of the quiver
Qp compatible with the Young diagram D with |D| bozes and the tuple of monnegative integers
{r; Y&, there exists the unique, up to a symplectic transformation, curve A(t), satisfying condi-
tion (G), in the Lagrange Grassmannian of 2|D|-dimensional symplectic space with the Young
diagram D such that the quiver of curvatures of A(t) is isomorphic to E(t) and its ith negative
inertia indez is equal to r; for any 1 <14 < d. If, in addition, all rows of D have different length,
then given a tuple of smooth functions {pap(t) : (a,0) € A X A, (a,b) is an essential pair} there
exists the unique, up to a symplectic transformation, curve A(t), satisfying condition (G), in
the Lagrange Grassmannian of 2|D|-dimensional symplectic space with the Young diagram D
such that for any essential pair (a,b) € A x A and any t its (a,b)-curvature map att coincides
with pap(t) and its ith negative inertia indez is equal to vy for any 1 < i< d.

1.4 Consequences for geometric structures on manifolds

Let 2 be a geometric structure on a manifold M, as in the Introduction, and h be the maximized
or a critical Hamiltonian associated with the geometric structure 2. Assume that the point
A € T*M satisfies: h(\) > 0, dh()\) # 0, and the germ of the Jacobi cirve Ji(t) at ¢ = 0
has Young diagram D with the reduced diagram A and with p; boxes in the first row. Let,
as before, Wy = ThaHp(n)/ {RA(\)} be the symplectic space, where the Jacobi curve Jx(¢) lives.
The point X will be called D-regular if, in addition to above,

3¥(0) = w, (1.4.1)
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and the germ of the Jacobi curve Jx(t) at t = 0 satisfies condition (G). The latter holds
automatically in the case of the maximized Hamiltonian by Lemma 1.3. Here for simplicity we
will work mainly with D-regular points for some Young diagram D. Let

3x(0) = EPVa() (1.4.2)

aEA

be the canonical splitting of the subspace J)(0) (w.r.t. the canonically parametrized curve
J(0)) and projy : TaHu(xy — Wi be the canonical projection on the factor space. Set

Va(A) = (projy) "t (Va(N) NILy, (1.4.3)

where II) is the vertical subspace of T\Hpy), defined by (0.1.4). Taking into account that projy
establishes an isomorphism between ITy and J,(0), we get from (1.4.2) and (1.4.3) the following
canonical splitting of the tangent space T (T:()\)M ) to the fiber of T*M at X:

TTpM = @Va(N) @ span {(V)}, (1.4.4)
aEA

where ¢ is the Euler field of T*M, i.e. the infinitesimal generator of the homotheties of the
fibers of T* M. Besides, each subspace V,(\) is endowed with the canonical pseudo-Euclidean
structure and the corresponding curvature maps between the subspaces of the splitting are
intrinsically related to the geometric structure 2L.

Moreover, let Ry (a,b) : Va(A) — Vs(A) and Ry : Iy — II be the (a,b)-curvature map and
the big curvature map of the Jacobi curve J)(-) at ¢ = 0. These maps are intrinsically related
to the geometric structure 2. They are called the (a,b)-curvature map and the big curvature
map of the geometric structure 2 at the point A. Also, the canonical complement 3§\rans(t) at
t = 0 gives rise a canonical complement of ITy in Wy. For any a € A, denote

yirans yy — ytrans gy (1.4.5)

Then the space
Hor(\) = DV () @ RA())
a€EA

is transversal to the tangent space T (T;(/\)M ) to the fiber of T*M at A. Thus, if for some

diagram D the set U of its regular D-points is open in T*M \h?, then for any ¢ € 7(U) the
subsets T, M NU of the linear space T; M is endowed with very rich additional structures: at
each point A € Ty M NU there is the canonical splitting of tangent spaces (smoothly depending
on \) such that the subspaces of the splitting are parametrized by the superboxes of the reduced
diagram A, the dimension of each subspace is equal to the size of the corresponding superbox,
these subspaces are endowed with the canonical pseudo-Euclidean structures, and the canonical
linear mappings between these subspaces (i.e. the (a,b)-curvature map) are defined. Besides, the
distribution of “horizontal” subspaces Hor(\) defines the connection on U C T*M, canonically
associated with geometric structure 4. .

-

Finally, let A € T*M and let A(t) = e®A. Assume that (EX(t), F)Nt))aea is a normal
moving frame of the Jacobi curve Jx(t) attached at point A. Let e be the Euler field on

T*M, as in the Introduction. Clefmﬂy TA(T*M) = Ta\Hpen) © Re(A). The flow eth on T*M
induces the pushforward maps (eth)* between the corresponding tangent spaces Th\T*M and
T .z, T*M, which in turn induce naturally the maps between the spaces T(T*M)/Rh(X) and
Tt,;/\T*M/Ri-{(e”;/\). The map K between T (T*M)/Rh(\) and Tet,;/\T*M/Rﬁ(etﬁ/\), sending

[
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EX(0) to (e ﬁ) At), F(0) to (e th) FX(t) for any a € A, and the equivalence class of €(A) to the
equivalence class of e(eth)\) is independent of the choice of normal moving frames. The map Kt

is called the parallel transport along the extremal eth) at time ¢. For any v € T\(T*M)/Rh()),
its image v(t) = Kt(v) is called the parallel transport of v at time t. Note that from the
definition of the Jacobi curves and the construction of normal moving frame it follows that the
restriction of the parallel transport KC; to the vertical subspace T (Tw( M) of Ta(T*M) can

be considered as a map onto the vertical subspace T, (T : (e }\)M ) of Tetﬁ \(T*M). A vertical
vector field V is called parallel if V(eth)) = ICH(V ().
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Chapter 2

Jacobi Equations and Comparison
Theorems for Corank 1
sub-Riemannian Structures with
Symmetries

We will obtain explicit expressions for the curvature map of the corank 1 sub-Riemannian
structures with symmetries in terms of the curvature tensor of the reduced Riemannian manifold
and the magnetic field. We will also estimate the number of conjugate points along the sub-
Riemannian extremals in terms of the bounds for the curvature tensor of this Riemannian
manifold and the magnetic field in the case of a uniform magnetic field. The results of this
chapter can be found in [18].

2.1 Sub-Riemannian structures

As was already mentioned in the Introduction, if 2, is an intersection of an ellipsoid centered
at the origin with a linear subspace Dy in T,M (where both the ellipsoids and the subspaces
Dy depend smoothly on g), then % is called a sub-Riemannian structure on M with underlying
dzstmbutzon D. In this case 2, is the unit sphere w.r.t. the unique Euclidean norm l|-]lq on Dg,
i.e. fixing an ellipsoid in D, is equivalent to fixing an Euclidean norm on D, for any g € M.
This reformulation justifies the term “sub-Riemannian”. In the sequel, we Will assume that the
distribution D is nonholonomic. Then from Rashevskii-Chow theorem (see e.g. [11]) it follows
that any given two points on M can be connected by an admissible curve. The maximized
Hamiltonian, defined by (0.1.1) is equal to |[p|,, ||g, i-e. it is equal to the norm of the restriction
of the functional p € T; M on Dy w.r.t. the Euclidean norm || - llg on Dy. Actually it is more
convenient to work thh the half of the square of this maximized Hamﬂtoman Thus, in the
sequel the sub-Riemannian Hamiltonian A is the following one:
WY 2 Slpl, I, A= (p,0) €T'M, g€ M, p e T;M, (2.1.1)
The Hamiltonian k is nonnegative quadratic form on the fibers. First it implies the mono-
tonicity of the corresponding Jacobi curves. Further assume that in this case relation (1.4.1)
holds for some \ and p;. Then there is a neighborhood U of 7(A) in M and an open and dense
subset O of U that satisfies the following property: for any § € O there exists a neighborhood
U € O and a Young diagram D such that for each § € U the intersection of the set of its
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D-regular points with T3 M is an nonempty Zariski open subset of T3 M. Besides, the canonical
splitting, the canonical Euclidean structures on the subspaces of the splitting, the curvature
maps, and the canonical connection above depend algebraically on points of the fibers of T*M.
Thus, to any sub-Riemannian metric satisfying assumptions above one can assign very rigid
additional structures on T M. -

Condition (1.4.1) has the following equivalent description in terms of the extremal et ).
Projections of the Pontryagin extremals to the base manifold M are called extremal trajectories.
Conversely, an extremal projected to the given extremal trajectory is called its lift. From the
Pontryagin Maximum Principle it follows that the set of all lifts of given extremal trajectory can
be provided with the structure of linear space. The dimension of this space is called corank of
the extremal trajectory. It turns out that if condition (1.4.1) holds, then corank of the extremal
trajectory m(et"\) is equal to 1. Conversely, if corank of the extremal trajectory m(etP)) is
equal to 1, then J (f,%it))(()) = W, for t from generic set. Note also that if corank of the
extremal trajector; is greater than 1, then this extremal trajectory is the projection of a so-
called abnormal extremal (a Pontryagin extremal living on zero level set of the corresponding
Hamiltonian).

Recently, A. Agrachev proved ([2]) that any sub-Riemannian metric on a completely non-
holonomic vector distribution has at least one corank 1 extremal trajectory or, equivalently, not
all extremal trajectories of it are projections of abnormal extremals. Therefore the constructions
above can be implemented for any sub-Riemannian metric on any completely nonholonomic vec-
tor distribution.

In the case of a Riemannian metric the canonical connection above coincides with the Levi-
Civita connection ([6]) and the splitting of the tangent spaces to the fibers is trivial. Moreover,
there is only one curvature map and it is naturally related to the Riemannian sectional curvature
tensor. Denote this box by a. The structure equation for a normal moving frame is of the form:

Eq(t) = Fa(t)
{sz—&mmm@, (2.1.2)

Remark 2.1. Note that from (2.1.2) it follows that if (Ea(t),ﬁa(t)) is a Darbour moving
frame such that E,(t) is an orthonormal frame of A(t) and span {F.(t)} = A"#S(t). Then there

exists a curve of antisymmetric matrices B(t) such that

EL(t) = E.(t)B(t) + Fu(t)
{@@=—E®@M®+E@mm (2.1.3)

where Rq(a,a) is the matriz of the curvature map Ry(a,a) on A(t) w.r.t. the basis E,(t).

In [6] and [5] it was shown that in the considered case the canonical connection coincides
with the Levi-Civita connection and the unique curvature map Rx(a,a) : Va(A) — Va(})
(where V,()\) = II)) was expressed by the Riemannian curvature tensor. In order to give this
expression let RV be the Riemannian curvature tensor. Below we will use the identification
between the tangent vectors and the cotangent vectors of the Riemannian manifold M given by
the Riemannian metric. More precisely, given p € Ty M let p" € T,M such that p-v = {ph, v)
for any v € T,M. Since tangent spaces to a linear space at any point are naturally identified
with the linear space itself we can also identify in the same way the space TA(T:( )\)M ) with
TronyM.

Ra(a,a)v = Rv(ph,vh)ph, VA= (g,p) € Hp-100),9 € M,p € T;M, wvell. (2.1.4)
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Given a vector X € T,M denote by Vx its lift to the Levi-Civita connection, considered as
an Ehresmann connection on 7*M. Then by constructions the Hamiltonian vector field his
horizontal and satisfies h = Vp. Take any v,w € II) and let V be a vertical vector field such
that V(\) = v. ;From (2.1.4) , structure equation (2.1.2), and the fact that the Levi-Civita
connection (as an Ehresmann connection on 7*M) is a Lagrangian distribution it follows that
the Riemannian curvature tensor satisfies the following identity:

(RY (", v")p", wh) = =0 ([V, Vs (X), Vi) - (2.1.5)

For the nontrivial case of sub-Riemannian structures, i.e. when D & TM, let us consider
the simplest case: the sub-Riemannian structure on a nonholonomic corank 1 distribution. Fix
dim M = n(n > 3). Recall that our considerations are local, thus we can select a nonzero
1-form wy satisfying wo|p = 0. Then dwp|p is well-defined nonzero 2-form up to a multiplication
of nonzero function. Therefore, for any ¢ € M, the skew-symmetric linear map Jg : Dy — Dy
satisfying dwo(q)(X,Y) = (JX,Y),,VX,Y € Dg is well-defined up a nonzero constant. Let
D;]L be as in (0.1.3). Then one has the following series of natural identifications:

('7’>

Ty M/Dy ~ D % Dy, (2.1.6)

where D, C Ty M is the dual space of Dy. According to this identification, J, can be taken as
the linear map from the fiber T; M of T*M to T; M/D;- (in this case, Jq]DaL =0).

Let D be the Young diagram consisting of two columns, with (n — 2) boxes in the first
column and 1 box in the second column. Then the set of D-regular points coincides with
{(p,q) € 'H% : Jgp # 0}(see Proposition 2.1 below for the proof in the particular case with
symmetries) . In the case of n > 3, the reduced Young diagram consists of three boxes: two in
the first column and one in the second. The box in the second column will be denoted by a, the
upper box in the first column will be denoted by b and the lower box in the first column will
be denoted by c. Note that size(a) = size(b) = 1 and size(c) = n — 3. When n = 3, the reduced
Young diagram consists of two boxes, a and b as above and the box ¢ does not appear. All
formulae for n > 3 will be true for n = 3 if one avoids the formulae containing the box c. In this
case, the symmetric (Darboux) compatible mapping (with Young diagram D) is normal if and
only if R¢(a,b) = 0 and the canonical splitting of IT has the form: I = Vo(A) ® Vs () @ Vc(N),
where V,()\), Vs()\) are of dimension 1 and V(A) is of dimension n — 3. These subspaces can be
described as follows. As the tangent space of the fibers of T* M can be naturally identified with
the fibers themselves (the fibers are linear spaces), one can show that

Va(A) = Dypyy-
Using the fact that Vy(A\)@V.(A)®Rp is transversal to D;IL, one can get the following identification
Vo(A) @ Ve(N) @ Rp ~ Ty M/ Dy, (2.1.7)
Finally, combining (2.1.6) and (2.1.7), we have that
Vy(3) ® Ve(\) ®Rp ~ D, ~ D, V (2.1.8)
Under the identifications, one can show that (see step 1 in Subsection 2.2.3 below):
Vs(X) =RJp, Ve(A) = (span{p, Jp})*. (2.1.9)

Regarding the (a,b)—curvature map, even in the considered case it is difficult to get the
explicit expression in terms of sub-Riemannian structures without additional assumptions. Here
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we calculate them in the special case of sub-Riemannian structures on corank 1 distribution,
having additional infinitesimal symmetries. After an appropriate factorization, such structure
can be reduced to a Riemannian manifold equipped with a symplectic form (a magnetic field)
and the curvature maps can be expressed in terms of the Riemannian curvature tensor and the
magnetic field. The main results of this chapter are the explicit expressions of the curvature
maps (Theorems 2.1-2.3 below) and the estimation of the number of conjugate points along
sub-Riemannian extremals (Theorem 2.4 below) in terms of the Riemannian curvature tensor
of the reduced manifold and the magnetic field (the latter is done in the case of the uniform
magnetic field).

2.2 Algorithm for calculation of canonical splitting and (a,b)-
curvature map

We begin with the discussion of sub-Riemannian structures with additional symmetries and show
that they can be reduced to a Riemannian manifold with a symplectic form. Then we describe
the algorithm of finding of normal moving frames for the Jacobi curves of the extremals of such
structures. As a result, we write down the canonical complement Ptrans )) ysing the symplectic
form o, Lie derivatives w.r.t. R and the tensor J. Further, we establish certain calculus relating
Lie derivatives and the covariant derivative of the reduced Riemannian structure. As a result,
we can characterized sub-Riemannian connection in terms of Levi-Civita connection and the
tensor J.

2.2.1 Corank 1 sub-Riemannian structures with symmetries

As before, assume that D is a nonholonomic corank 1 distribution. Assume that the sub-
Riemannian structure (M, D, (-,-)) has an additional infinitesimal symmetry, i.e. a vector field
X such that
eiXOD =D, (eth)* <'= > = ('7 ) .

Assume also that X, is transversal to the distribution D, RXo @ Dy = 1M, Vg € M. In this
case, the 1—form wp, defined by wo|p = 0, as before, can be determined uniquely by imposing
the condition wo(Xg) = 1. Therefore dwo|p and the operator J; are also determined uniquely.
Let ¢ be the 1-foliation generated by Xo. Denote by M the quotient of M by the leaves of £
and denote the factorization map by pr : M — M. Since our construction is local, we can
assume that M is a manifold. The sub-Riemannian metric (-, -) induces a Riemannian metric g
on M. Also dwg and J, induce a symplectic form {2 and a type (1,1) tensor on M , Tespectively.
We denote the (1,1) type tensor by J as well. Actually, { can be seen as a magnetic field and
J can be seen as a Lorenzian force on Riemannian manifold M. The projection by pr of all
sub-Riemannian geodesics describes all possible motion of a charged particle (with any possible
charge) given by the magnetic field {2 on the Riemannian manifold M (see e.g. [20, Chapter 12]
and the references therein).

Define ug : T*M — R by uo(p, q) & p-Xo(q), (p,q) € T*M,q € M,p € T; M. Since Xg is a
symmetry of the sub-Riemannian structure, the function ug is the first integral of the extremal
flow, i.e., {h,ug} = 0, where {-,-} is the Poisson bracket.
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2.2.2 Algorithm of normalization

In the considered case the structural equation for the normal moving frame is of the form:
Ey(t) = Ep(t)

Ey(t) = Fy(t)

EL(t) = Fe(t)

F}(t) = —E()Ri(a, ) — Ea(t)Ri(a, a)

F}(t) = —Ec(t) Ry (b, ¢) — Ey(t) Ri(b,b) — Fa(t)

| FL(t) = —Eo(t)Ri(c,¢) — Ey(t)Re(c,b) = E,(t)Rs(c,a).
Assume that each element of the set {Ea(A), E(N), Ec(A), Fa(N), Fp(N), Fe(A)} is either a

vector field or a tuple of vector fields, depending on the size of the corresponding box in the
Young diagram such that

(Ea(eFN), E(&FN), Eo(eN), FaleFN), Fi(eFN), FoleN)
Kt(ga(/\)7 gb(A)a SC(A)’ fa(A)7 fb(A)a fc()‘))a

where Ct is the parallel transport, defined in Section 1.4. Recall that for any vector fields X, Y
one has the following formula: -j—t ‘ 0 €% tXy — adxY. So, the derivative w.r.t. ¢ on the level

(2.2.1)

of curves can be substituted by taking the Lie bracket with h on the level of sub-Riemannian
structure. The normalization procedure of chapter 1 can be described in the following steps:

Step 1 The vector field £,()) can be characterized , uniquely up to a sign, by the following
conditions: £,()) € Iy, adh &,()) € I, and

olad hE,(N), (adh)?E.(N)) = 1.

Then by the first two lines of (2.2.1) &(A) = adh £,(\) and Fp(N) = (adR)2E,(N).
Step 2 The subspace Vc()) is uniquely characterized by the following two conditions:

1. Ve()) is the complement of V() @ Vp(A) in IIy;
2. V() lies in the skew symmetric complement of
Va(\) @ Vo(N) © R(adh)?E,(\) @ R(adh)*Eq(N).
Tt is endowed with the canonical Euclidean structure, which is the restriction of 3»(0) on it.

Step 3 The restriction of the parallel transport KCt to Ve()\) is characterized by the following
two properties:

1. Kt is an orthogonal transformation of spaces V() and V. (etﬁ)\);
2. The space span{%((e'tﬁ)*(lﬁv)) l,_o : v € Ve(A)} is isotropic.

Then Virans()) = span{ 4 ((e‘tﬁ)*(lCtv))ltzo cv e Ve(N)}
Step 4 To complete the construction of normal moving frames it remains to fix Fo(A). The
field F,()) is uniquely characterized by the following two conditions (see line 4 of (2.2.1)):

1. The tuple {E2(N), E(N), Ee(N), Fa(N), Fo(A), Fe(A) } constitutes a Darboux frame;
2. o(ad BFa(N), Fo(N) = 0.

To find F,()\), one can choose any Fa(A) such that {Ea()\),c‘,’b()\),EC(A),ﬁa(A),fb()\),fc()\)}
constitutes a Darboux frame. Then

FalN) = Fal(A) — o(adh Foa(N), Fo(N))Ea(N). (2.2.2)

34



2.2.3 Preliminary implementation of the algorithm

In order to implement the algorithm for the corank 1 sub-Riemannian structure with symmetries,
let us analyze the relation between T*M and T*M in more detail. Let Z be the 1-foliation such
that its leaves are integral curves of @iy. Let PR : T*M — T*M /Z be the canonical projection
to the quotient manifold. .

Fix a constant ¢. The quotient manifold {up = c}/= can be naturally identified with T*M.
Indeed, a point X in {ug = c}/Z can be identified with a leaf PR™!()\) of E which has a form
((e7tX0)*p, etXoq), where A = (p,q) € PR (), ¢ € M and p € Ty M. On the other hand, any
element in T*M can be identified with a one-parametric family of pairs (etX°g, (e~*%)*(p|p)).
The mapping I : {ug = ¢}/ — T*M sending (e!X0q, (e7%0)*p) to (e!Xoq, (e7%°)*(p|p)) is
one-to-one (because p(Xo) = ug is already prescribed and equal to ¢) and it defines the required
identification. Therefore, for any vector field X on T*M , we can assign the vector field X on
T*M st. PR,X = (I71).X and mX € D.

Let & be the standard symplectic form on T*M. Note that (I o PR)* is a 2-from on
{ug = c}. Let, as before, o be the standard symplectic form on T*M. Let wg be the 1-form
as in Subsection 2.2.1. Then o and 7*dwg induce two 2-forms on {ug = c} by restriction. The
following lemma describes the relation between these 2-forms.

Lemma 2.1. The following formula holds on {ug = c}.
o = (I o PR)"G — ugm*dwp. (2.2.3)
Proof. First define a 1-form ¢p on T*M by
G0 (v) = uowo(msv), v € TAM, A= (p,q) € T*M,qe M,peT;M.

Let ¢ and ¢ be the tautological (Liouville) 1—forms on 7*M and T *M respectively. Then on
the set {ug = ¢} one has ¢ = (I o PR)*¢ + ¢o. Therefore, by definition of standard symplectic
form on a cotangent bundle, we have

o= (I o PR)*& — dgg = (I o PR)*G — dug A m"wo — ugm” dwo. (2.24)
We complete the proof of the lemma by noticing that dgy = ugm*dwo on {ug = c}. O

Before going further, let us introduce some notations. Given v € T\I; M (~TyM ), where
q = m()\), we can assign a unique vector vh € Tpp(q)M to its equivalence class in T/ M /Va(A) by

using the identifications (2.1.7) and (2.1.8). Conversely, to any X € Tpr(gyM one can assign an
equivalence class of T\(T M)/Va()). Denote by X € ThTy M the unique representative of this
equivalence class such that dug(X") = 0.

Lemma 2.2. For any vectors X,V € T\T*M with m,V = 0 we have o(X,v) = g(m.X, vh).

Proof. Let A = (p,q) € T*M, p € T;M,q € M and < be the tautological (Liouville) 1-form
on T*M as before. Extend the vector X to a vector field and V to a vertical vector field in
a neighbourhood of A. It follows from the definition of the canonical symplectic form and the
verticality of V that ‘

o(X, V) = ~ds(X, V) = V(s(X)) + 51X, V]) =
Vip-mX)—p mV,X] =V -mX.

In the last equality here we use again the identification between T)T, oM and TyM. Finally,
V- mX = g(Vh, m.X) by the definition of vh. O
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Lemma 2.1 implies that the sub-Riemannian Hamiltonian vector field can be decomposed
into the Riemannian Hamiltonian vector field and another part depending on the tensor J.

Lemma 2.3. The following formula holds.

h(\) = Vi — uo(Jph)”, (2.2.5)

where A = (p,q) € T*M,q € M,p € T; M and V. 1is the lift of p™ to T*M w.r.t. the Levi-Civita
connection.

Proof. Denote by h the Riemannian Hamiltonian function on T*M. Since the Hamiltonian
vector field h is horlzontal w.r.t. the Levi-Civita connection and its projection to M is equal

to pl, we have h = Vpn. Further, it follows from the definition of I that (I o PR)* h = h and
(Io PR) (V n) = V. Thus, for any vector X tangent to {uo = ¢}, we have

U(_V_g’i’ X) = ((IoPR)"6— UOW*dWQ)(Y—B}:, X)
= §(Vph, (I 0PR).X) — uodwo(p", m X)
= dh((I o PR),X) — ugdwo(p", mX)
= (I oPR)*dh(X) — ugdwo(p", s X)
= d((IoPR)*R)(X) — uog(Jp", 7 X)
= dh(X) +ueo((Jp")", X)
It follows that E(A) and V,n —uo(J p") are equal modulo R, which is the symplectic comple-

ment of the tangent space to {ug = c}. But meh(N), 7 (V) € Dy and mtip = Xo ¢ Dy, which
implies (2.2.5). - O

Now we give more precise description of normal moving frames following the steps as in
Subsection 2.2.2. Assume that VI7ens(X), VEirans (), Yirans()) are defined by (1.4.5).
Step 1 First define the vector field £, on T M by

&\ €T, Ea(N) € DY, dug(E,(N) =1 (2.2.6)

For further calculatlons it is convenient to denote &, by Ou,, because to take the Lie brackets
of &, with k is the same as to make “the partial derivatives w.r.t. uo” in the left-hand side of
(2.2.5). Indeed, by (2.2.5) adh 8y, = (Jp")? € IT, and then w*((adh) Oue) = —Jp". Besides,
by direct computations,

mulh, (JpM)Y] = —Jp. (2.2.7)

Then from Lemma 2.2 it follows immediately that
o(adh By, (adh)? 8y0) = || JP".
As a direct consequence of the last identity we get
Proposition 2.1. A point A = (p,q) € T*M 1is a D—regular point if and only if Jgp # 0.

Remark 2.2. Note that if D is a contact distribution the operators J, are non-singular,
and all points of T*M out of the zero section are D-regular.
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Further from step 1 of Subsection 2.2.2, we have that

Ouo
Ea(A) = 2k (2.2.8)
(I 1
6O) = gy (luphu)a"“ (2:29)
— 1 e hy\v r 1 hy\v \2 1
A = gl 135 () @+ 8 (g e 2200

Step 2 Let us characterize the space Ve(A). For this let IO, = {v € I, : dug(v) = 0} and
let 7o : ITy — II, be the projection from II, to II, parallel to £,()). Note that mo(v) = (v).
Since V () € II) and V.()) lies in the skew symmetric complement of (adh)2E, (), we have,
using (2.2.7) and Lemma 2.2, that

V.(A) = (span{p”, Jp"}1)’  mod RE,(N). (2.2.11)

Further, let V.()) = 7o (Ve(X)). Using the condition that V.(}) is in the skew symmetric
complement of (adk)3£,()), we have

VeA) = {v+ AN 0)E(N) : v e V(M) (2.2.12)

where A()\,v) is the linear functional on the Whitney sum 7% M @ T*M over M, given by

a 7\2 h\v
A\ v) = o <v, %l) . (2.2.13)

Step 3 Since the normal moving frame is a Darboux frame, the space PITans )y lies in the
skew symmetric complement of V,()\). Besides, its image under m, belongs to D(w())). Then,
using Lemma 2.2 we obtain that

(prom)s (Vfrans()\)) = span{p”", Jp"}* modRp", (2.2.14)

where, as before, pr : M — M is the canonical projection. For VITanS()) e T,\(T*M )/RAE(N)
one can take a canonical representative in Ty (T*M) which projects exactly to span{p", Jp"}*+
by (prom).. In the sequel, this canonical representative will be denoted by Vtranso\) as well.

Further, given any X € span{p", Jp"}+ denote by V% the lift of X to V;F31S(X), i.e. the
unique vector V4 € VITAS()) such that (pr o m),V% = X. Then there exist the unique
Be End(fic()\)) and o, 8 € V.(\)* such that

(Jp")

Vf}h = _VLh--Jr B(’/TO('U)) -+ (I(U)W

+ B(v)0uy, Vv € Vo(N) (2.2.15)
where, as before, V stands for the lifts to the Levi-Civita connection on T*M. Let us describe
the operator B and the functionals o and 8 more precisely. First we prove the following lemma,
using the property (1) of the parallel transport Kt listed in Subsection 2.2.2:

Lemma 2.4. The linear operator B is antisymmetric w.r.t. the canonical Euclidean structure
in Ve(N).

Proof. Fix a point A € T*M and consider a small neighborhood U of A. Let £.(\) = {E4(A)}7
be a frame of V.()\)) (i.e. Ve(\) = span{&:(A\)}) for any A € U such that the following four
conditions hold
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1. &:()) is orthogonal w.r.t. the canonical Euclidean structure on Ve(N);

9. Each vector field £X() is parallel w.r.t the canonical parallel transport Ky, i.e. Ei(eth)) =
JCLEL(N) for any A and ¢ such that A, e\ € U;

3. The vector fields (Jp")? and £4()\) commute on U N T:(;\)M;
4. The vector fields @y and £:(\) commute on U N T;(X)M .

Note that the frame £.(\) with properties above exists, because the Hamiltonian vector field £
is transversal to the fibers of 7* M and it commutes with .

;From the property (2) of the parallel transport ICt (see property (2) in step 3 of Subsection
2.2.2) it follows that

Vo = —adh E(N) (2.2.16)

Let Ei(\) = mo(€(N)) for 1 <i < n—3 and E2(X) = YL Also let EON) = {E(VH-
Using the above defined identification I : {up = ¢}/2 — T*M, where ¢ = ug(\), one can look
on the restriction of the tuple of vector fields £()\) to the submanifold {ug = c} as on the tuple
of the vertical vector fields of M (which actually span the tangent to the intersection of the
fiber of T* M with the level to the corresponding Riemannian Hamiltonian). Then first the tuple
£()) is the tuple of orthonormal vector fields (w.r.t. the canonical Euclidean structure on the
fibers of T*M , induced by the Riemannian metric g). Further, by Remark 2.1 the Levi-Civita
connection of g is characterized by the fact that there exists a field of antisymmetric operators
Be End (span £ (A)) such that

[V, E' (V)] = -V (E) BE'(N) (2.2.17)

EW)

;From (2.2.16) and (2.2.17), using (2.2.5),(2.2.12), and the property (3) of EX(N), one has

T = —adR ) = — [V — u(TpN), E ) + AQ, E) ]

(20) :: o 170" 2218

= V(gio‘))h +BE'(N) — AN E (A))W mod Ry, .

Note that one has the following orthogonal splitting of the space span {E N}
span{E(N)} = V.(\) @ R(Jp")". (2.2.19)

The operator B is exactly the endomorphism of jic()\) such that B% is the projection of E@
to V.()\) w.r.t. the splitting (2.2.19) for any 0 € V,()\). Obviously, the antisymmetricity of B
implies the antisymmetricity of B. The proof of the lemma is completed. |

Now we are ready to find B explicitly using the fact that Virans()\) is isotropic. For this let
¢ be the projection from (RpM)* to span{p", Jp"}* parallel to J ph. Obviously,

~ ~ -~ h Jph ~ =~
o(0) =1 — g(,Jp )W, Vo € Veo(N). (2.2.20)
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Lemma 2.5. The operator B satisfies

(Bﬁ)h = ——7“-‘2% o Ji, Vie 1700\) (2.2.21)
or, equivalently,
h\v .
Bt = %O- (—(Jf)h)v + g(Jo", Jph) l(}jihflz\) , Yo e V(M. (2.2.22)

Proof. Since VI#5()\) is an isotropic subspace, we have
a(vgil,v;g) =0, Vou,v €V,

On the other hand, from (2.2.15) and the fact that V™"S()\) lies in the skew symmetric
complement of V,(A) @ Vy(A) it follows that

o(Vop Vip) = 0{Vop + B, Vop + B®2), (2.2.23)

where ©; = mo(v;), i = 1,2. Then, using (2.2.3), the fact that the Levi-Civita connection (as an
Ehresmann connection) is a Lagrangian distribution in 7*M and Lemma 2.2, we get

0=0(VEy, V) = ((I o PR)*5 — uow*dw()) (zﬁ_ + By, V,p + B«}Z) -

- uodwo(vi‘, ol — ((Bﬁl)h h) + 9((352)}1:”{1) =
- uOg(JvlaUZ - ((Bvl)h ) + g((B*Ul) ,’US‘).

Taking into account that B is antisymmetric, we get identity (2.2.21). Then, using relation
(2.2.20) and Lemma 2.2, one easily gets identity (2.2.22). O

Further we need the following notation. Given a map S : T*M & W) — R, define a map
SO . T*MaT*M — R by

d -
S\ v) = ES(eth,zctu) , A\veT*M, (2.2.24)
=0
where in the second argument we use again the natural identification of T;( ,\)M with T\ (T;( )‘)M ).
Lemma 2.6. The functionals o and B from (2.2.15) satisfy the following identities

1. ov) = —0(Vyn, adh (Jp™));

(1 v
2. 8(0) =~ (mA) (@) =~ AD O, 04) = () A @4)1):
Proof. First, from step 2 in Subsection 2.2.2 it follows that for any v € V(A), we have

(Jp")”
’ 7P
o(Vyn,adh (Jp")?) + a(v).

0=o(Ve,adk (Jp*)") = o(Vyn + B(mo(v)) + a(v) 5 + B(0)du,adh (Jp*)¥) =

Therefore, a(v) = —0(Vyh, adh (Jp")").
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Further, take the tuple of vertical vector fields £.(\) = {EX(A)}L 1_1 as in the proof of Lemma
2.4. Then from (2.2.15),(2.2.16), and the fact that the vector fields h and @, commute it follows
that

B(EXN) = o (T, Vigiay) = —0(iio, ad hE(N))

L R L (2.2.25)
= —[h, &M (uo) = — (k0 £2(N) (u0) = —h (0 (Tho, E:(N)))-
Then from by (2.2.12) it follows
o (i, EXN)) = 7 h”A(A LELN). (2.2.26)
The item (2) of the lemma follows immediately from (2.2.25) and (2.2.26). O

Step 4 According to the algorithm, described in Subsection 2.2.2, first find some vector
field Fo(A) such that the tuple {€,(N), Ep(N), Ec(A), Fa(A), Fo(N), Fe(A)} constitutes a Darboux
frame. Let Uy be a vector in V¢(A) such that

(Lo, Vir) = B(v), Vv € V(D). (2.2.27)
Also, let 20 be a vector in V315()) such that
o(v,Wo) = A\, v), Yv e V(N). (2.2.28)

Note that by constructions the map v — V¢, is an isomorphism between V() and Pirans (),
Let 1 be a vector in Ve(A) such that 2o = V§,,. Then from (2.2.27) and (2.2.28) it follows
1

that
AN, Do) = B(0y). (2.2.29)

Lemma 2.7. A vector field .7?&(/\) can be taken in the following form

Fu0) = 991+ 199180 ~ 0 + 1R 5 ) 609 = W1 () 0
2.2.30

Proof. Note that such vector field Fa(N) is defined modulo RE,(\) = Rd,,. Therefore we can
look for Fo(A) in the form

FalN) = milo +72E(N) + 1 F(N) + ve + e, (2.2.31)
where v, € V.()\) and 7, € VI"5(\). Then
1. From relations O(EQ(A),JEQ(/\)) =1 and (2.2.8) it follows that v; = —|Jp"||;

2. From relations U(Eb()\),fa(/\)) =0 and (2.2.9) it follows that v3 = —||Jp"||A (IIleJhI );

3. From relations J(Fb()\),]?a(/\)) =0 and (2.2.10) it follows that 7, = ||Jp"||()? (’I'I"]'%‘}{'IT);

4. From relations o(F,(\),VE) = 0 for any v € V.()\) and the decomposition (2.2.15) it
follows that o(ve, VE,) = | Jp"||B(v) for any v € V.(\). Hence v, = ||Jp"||Bo;

5. From relations o(F,(\),v) = 0 for any v € V,(A) and relation (2.2.12) it follows that
o (e, v) = A(\,v) for any v € V(A). Hence 7, = —20;.
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Combining items (1)-(5) above we get (2.2.31). U
The canonical F,()) is obtained from F,()) by formula (2.2.2).
Now as a direct consequence of structure equation (2.2.1), we get the following preliminary
descriptions of (a,b)— curvature maps.

Proposition 2.2. Let V be a parallel vector field such that V/(X) = v. Then the curvature
maps satisfy the following identities:

9((Ra(c, ), wh) = —a(adh V&, VEL), Yw € Ve(N) (2.2.32)

R (c,b)v = o(adh Vvh,fb(/\))”p = o(adh Fp()), vvh)W (2.2.33)
R, a)v = o(adh VS, Fa(X)Ouo (2.2.34)

95 (0, B)(HZ) = —o(adh 7N, HO)) (S (2.2.35)

Rx(a, a)0u, = —0(adh Fu(N), FalN))ug (2.2.36)

2.3 Calculus and the canonical splitting

2.3.1 Some useful formulas

Constructions of the previous section show that in order to calculate the (a,b)— curvature maps
it is sufficient to know how to express the Lie bracket of vector fields on the cotangent bundle
T*M via the covariant derivatives of the Levi-Civita connection on T*M. For this, we need
special calculus which will be given in Proposition 2.3 below.

Let A be a tensor of type (1, K) and B be a tensor of type (1,N) on M, K,N > 0. Define
a new tensor A e B of type (1, K+ N — 1) by

AeB(X1,...XKiN-1) ZA(XL X, B(Xig1, - Xip ), Xig N1y oy XK4N-1)-

This definition needs a clarification in the cases when either K =0 or N = 0. If K =0, then
we set Ae B =0, and if N =0, i.e. B is a vector field on M, then we set Ae B(X1,..., Xk 1) =
S A(X, o, Xi, B, Xig, o, Xk—1). Also define by induction Al = A e A'. For simplicity,
in this subsection, we denote

Apt = A(p",p", ., "), Ap = (Ap")". (2.3.1)
K

Besides, we denote by VA the covariant derivative (w.r.t. the Levi-Civita connection) of the
tensor A, i.e. VA is a tensor of type (1, K + 1) defined by

VAX1, o, Xi, Xi41) = (Vg A) (X1, 0 XK)- (2.3.2)
Also define by induction V1A = V(V*A).

Now we are ready to give several formulae, relating Lie derivatives w.r.t. the h and classical
covariant derivatives, which will be the base for our further calculations:

Proposition 2.3. The following identities hold:
(1) [Ap, Bp] = (B e A)p — (A ® B)p;
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(2) [VA'ph? Bpjl = MV(A-B)ph + ((vAphB)ph)u;

(3) [vApha VBph] = V(VAphB)ph——(VBphA)ph + (RV(Aph7 Bph)ph)v - Q’(Aph7 Bph)ﬁm
where the 2-form S is as in subsection 2.2.1 (recall that UX,Y) = g(JX,Y)).

(4) Vp(g(Ap", Bp")) = g((VA)p", Bp*) + g(Ap", (VB)p").

Proof. Obviously, it is sufficient to prove all items of the proposition in the case, when the
tensors A and B have the form A = SX and B =TV, where S and T are tensors of the type
(0, K) and (0, L) respectively and X and Y are vector fields. By analogy with (2.3.1), let

Sp = S(p",p", ..., p") and Tp* = T(p",p", ..., p").
\_——\Kf'—-—/ \.—\{——-/

Then directly from definitions we have
(A e B)p" = Bp(Sp")X, (2.3.3)
where by Bp(Sp") we mean the derivative of the function Sph in the direction Bp. Therefore
[Ap, Bp] = [Sp" X", Tp"Y"] = Ap(Tp")Y" — Bp(Sp") X" = (B e A)p — (A e B)p,

which completes the proof of item (1).

For the proof of the remaining items one can use the following scheme: First one shows that
it is sufficient to prove them in the case K = L =0, i.e. when A and B are vector fields in M.
Then one checks them in the latter case. As a matter of fact, the required identities in the latter
case follow directly from the definitions of the Levi-Civita connection for items 2 and 4 and from
the definition of the Riemannian curvature tensor for item (3), where the nonholonomicity of
the distribution D causes the appearance of the additional term.

Let us prove item (2). The left-hand side of the required identity for A= SX and B =TY
has the form

[V aph, BD] = [Vgpux, T"Y"] = SphX (Tp")Y” — Bp(Sp")Vx + Sp"Tp"([Vx, V"] (2.3.4)

Using (2.3.3), the first term in the right-hand side of the required identity can be written as
follows:

v(AoB)p”“ = Bp(Sph)_Y__X_ (235)
Further, let us analyze the second term of the right-hand side of the required identity:
(VB = (Vpnx TP"Y)p" = Sp" X (Tp")Y + Sp"Tp"VxY. (2.3.6)

Comparing (2.3.4) with (2.3.5) and (2.3.6) we conclude that in order to prove the item (2)
it is sufficient to show that [Vx,(Y)?] = (VxY)". The last identity directly follows from the
definition of the covariant derivative. :

Let us prove item (3). The required identity is equivalent to the following one

{vAph, VBph] - V(VAPhB)Ph“(VBphA)Ph = (Rv (Aph, Bph)ph)v - Q(Aph, Bph)’ﬂ:o (237)

Note that both sides of the last identity are tensorial: the result of the substitution A = SX to
both of them is equal to S multiplied by the result of the substitution of A = X (and the same
for the corresponding substitutions of B). Therefore it is sufficient to prove this identity in the
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case when A = X and B =Y, where X and Y are vector fields on M. Since the Levi-Civita,
connection is torsion-free, i.e. VxY — Vy X = [X,Y], the required identity in this case has the
form

(19, Yv) = View) ) = (BT (6, Y)p1)* = (X, V)ito(). (2:38)

Let us prove identity (2.3.8). For this let DY = {v € TZ\T*M : mw € Dy} be the pullback of
the distribution D w.r.t. the canonical projection 7. Then we have the following splitting of
the tangent space ThT*M to the cotangent bundle at any point A:

T\T*M = DE()\) @ Rijp. (2.3.9)

Denote by 7F and 7& the projection onto DL and the projection onto Riip w.r.t. the splitting
(2.3.9), respectively. By definition, for any vector field Z on M, one has Vz € DL. Thus by
definition of the Riemannian curvature tensor,

(RV(X,Y)p")? = nf ([Vx, Vy](V) — Vixy(A) (2.3.10)
It remains only to prove that
3 ([Vx, Vy]) = —Q(X,Y)o. (2.3.11)

Note that from (2.2.4) it follows that D’ is the symplectic complement of the vector field 9y, .
Besides, by definition, o(up, dug) = 1. Therefore,

5 (Vx, Vy]) = o([Vx, V], 0uo)o (2.3.12)
Using again (2.2.4) and the definition of the form 2 we get
o([Vax, Vyl, 0up) = wo(m[Vx, Vy]) = —dwo(m.Vx,m Vy) = —QX,Y),

where wy is the 1-form on M defined in Subsection 2.2.1. This completes the proof of the
formula (2.3.11) and of the item (3).

Finally, let us prove item (4). As in the proof of item (2), we can substitute into the left-
hand side and right-hand side of the required identity A = SX and B = T'X to conclude that
it is sufficient to show that

P"(9(X,Y)) = g(VaY,Y) + g(X, VYY),

but the latter is actually the compatibility of the Levi-Civita connection with the Riemannian
metric. O

Remark 2.3. Note that if K =0 then item (2) has the form
V4, Br] = (Var B)p")’ (2.3.13)
and if N = 0 then item (2) has the form

[V aphs Bl = =V (4eB)ph; (2.3.14)
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2.3.2 Calculation of the canonical splitting

Using formulae given by Proposition 2.3, we are ready to express the canonical splitting of W),
(= T,\H1 /Rh) in terms of the Riemannian structure and the tensor J on M. Note that by

(2.2.8) the subspace V,()\) is already expressed in this way. To express the subspace Vp(A) and
Virans()) we need the following

Lemma 2.8. The following identities hold:

(1) B () =~ s e, VI M8

2) (E)Q (W%Eﬁ) ”JthSg (Jph VJ(p )) “Jph”3g(v']( ) V(p h7ph))
— eIt VI 0 o) + s (9 (7" VJ(ph,ph))Jrg(Jph vJ(Jp",p")
+g(Jph, VI (p", Tp"))).

Proof. (1) Using item (4) of Proposition 2.3 we have

Iy (908", I0)) = 29(VI (0", 5, Tp"); (2.3.15)
Besides,

(Jp") (g(Jph, Jph)) = 29(J%p", Jp") = 0. (2.3.16)

Combining the last two identities with (2.2.5) we immediately get the first item of the lemma.
(2) Using item (4) of Proposition 2.3, we get from (2.3.15) that

(Vp)? (900", I")) = 29 (9(VI (", 5", ") = 29(V? 7" 5", 8", To")
+29(VJ (", p"), VI (0", p"));
Further,
(T8 (9(VI (", "), I")) =
(o(vI (70", ) + (976, T, 78")) + (o(VI (0,2, 7))
Using the last two identities together with (2.3.16), one can get the second item of the lemma
by straightforward computations. O

Now substituting item (1) of Lemma 2.8 into (2.2.9) we get the expression for the subspace
Vy(A). Now let us find the expression for Vf@()). First by (2.2.5) and item (2) of Proposition
2.3 we have

[, (Jp")"] = [V = uo(JP")°, (J9")"] = =V g + (VI (0", ") (2.3.17)

Substituting the last formula and the items (1) and (2) of Lemma 2.8 into (2.2.10) we will get
the required expression for Vi*2(X).
Further, according to (2.2.12) in order to find the expression for V.(\) we have to express

AN, v).
Lemma 2.9. Let v € IIx. Then

A\ v) = o, VI (", M) — g™, J2ph). (2.3.18)

2 ( ug
17 1707
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Proof. Using relation (2.3.17) and items (2) and (3) of Proposition 2.3, we get
(prom)s« ((adﬁ)2(Jph)”) = —2VJ(p",p") + ugJ2p".

Then
1 > 1
a(v, HJph”adzh(Jph)”) = WU(% —2vJ(p",p") + ugJ?p" + || Tp"|2p")
2 h b h ug h 72k
ijh”g(v ,VJ(p P )) - ijh“g(v 7‘7 p )7
which completes the proof of the lemma. O

In order to express V&()\) it is sufficient to express the operator B and functionals o
and (3, defined by (2.2.15). The operator B is already expressed by (2.2.22). Further, from
decomposition (2.2.3), Lemma 2.2, and the fact that the Levi-Civita connection is a Lagrangian
distribution it follows that

av) = —0(Vyr,—Vyp + (V")) (2.3.19)
—ugdwo(v®, Jpt) — g(v*, VI (p", "))
uog(v”, J2p*) — (", VI (0", 1")
Note that from (2.2.22), (2.3.18), and (2.3.19) it follows by straightforward computations that

UM _ o e Ly ) PN
() = ARG

To derive the formula for 3 we need to study the operator 4(/1). For later use we will work
in more general setting. Let & be a tensor of type (1,K) on M. This tensor induces a map
S:T*M&T*M — R by

S\ v) = g(&p",v"), A= (p,q) € T*M,pe M,p e Ty M. (2.3.21)
where Gp” is as in (2.3.1).
Proposition 2.4. Let v € V().

1 Jph)? 1
s v) =-3$ (A, %%) A, ) + 90", (VE)p" — uo( 0 N)p" + S (] ¢ S)p")
Proof. Take v € V()\) and let ¥ = mo(v). Let V and V be parallel vector fields such that
V()) = v and V()) =3. We first show that the following identity holds.

o o~ h\v au

[h,V](\) = —Vgn — %A(/\,f))%l‘—%;%w + —29(J6h)”. (2.3.22)
For this first by (3.4.2) and (2.2.16) we have

h = —Vzh — f)—avw(Jph)v—— v :

On the other hand from (2.2.12) it follows that v = @ + A(X,7)€,()). Hence from (2.2.8),
(2.2.9), and the second relation of Lemma 2.6 one gets

[E,V]()\) - [77:’ V](A) = [57"4()‘773)8(1(/\)]

PNNC DN LoD e — a2 g
- A(A,U) “Jphll + <”JthA> (/\7U)6u0 - A(A: ) ﬁ( )6u0
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Therefore, by (2.3.23) and (2.3.20) we have

dy i i (Jp")° _ (M)
E t:()e thv(t) - _vﬁh - B(’U) - a(v) HJ hHZ - A()\,U) ”Jphn
= V- A(A %) (H{f h)“ + o (JT")

The proof of (2.3.22) is completed.
Further, from Lemma 2.2 and definition of S given by (2.3.21) it follows that

S\ v) = U(U,YEE}L)

SO\ v) =0 ([ii, VO, ye_ph) + o (B, [, Vepr]) (2.3.24)

The first term in identity (2.3.24) can be calculated using the relation (2.3.22) and Lemmas
2.2 and 2.3. Then we apply Proposition 2.3 and relation (2.3) to get (pro m). (adﬁ(VgphD =

(VS)p" — up(G o J)ph and we can calculate the second term using again Lemma 2.2, Putting
all the calculations together, we completed the proof of the proposition. ]

As a straightforward consequence of the previous Proposition and lemma 2.8 we get

Corollary 2.1. Let v € Vc(N).

AV ) =1 ; 7Y g (", 2920 (", 9", p") — 3uo VI (T 1)
2.3.25
—2uoVJ (p", Jp") + —ugﬁph) — A\ v)A ()\, LJ?E,?—) : .
2 170

The function 3 can be expressed by substituting (2.3.25) and item (1) of Lemma 2.8 into
item (2) of Lemma 2.6. In this way one gets the required expression for the subspace plrans()).
To summarize, we have

¢ =V A(A )(H 5 ")H O(Jvh)v+ B(v)Dyy- (2.3.26)

To ﬁnish the representation of the canonical splitting, we find more detailed expression for
yirans()) = RF,()\) on the base of equations (2.2.2) and (2.2.30). For this we will describe the
properties of vectors Vo, B, and Wy from Step 4 of Subsection 2.2.3 which will be used in the
calculations of the curvature maps (section 2.4).

Lemma 2.10. Let v € Vo()\) and V be a parallel vector field such that V/(X\) = v. Then the
following identities hold: .

(1) B} = (prom), 2o = — 2y VI (0", 9"+ 3y T2+ ol JpM P+ g g (VI (0, 91), Tp") TP

(2) o (%o, adi( th))=g<<sm(c, c)v)h,m’;>,

o(200, adh Fp(N)) = ——g((iﬁ,\(c, b),)", ”j—g,’j”) ;
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Proof.
(1) jFrom (2.2.28) and Lemma 2.9 it follows that
J?p", mod span{p”, Jp"}.

(prom).2Wo = — VJ(p h7ph) + TR

2
7™ IIJ "H

Note that by constructions (pr o 7),20¢ € span{p", Jp"}*+. Let us work with the orthogonal
splitting T,M = span{p", Jp"t @ Rp" @ RJp". Assume that the vector ”—Jf;,r”VJ (p", ph) —

H—JEOEI—IJ 2ph has the following decomposition w.r.t. this splitting:

2
——VJ(p", p" J2ph = —(pr o m).Wo + 11p" + 1 Jp".
T V@) = P = (o me e £ pl + v

Then

Uo T2t h
n= (ltJhHW(p )= T p”’)

Note that g(VJ(p",p"),p") = Vig(Jp", p*) = 0. So, M1 = uo||Jp".
Finally,
1

2 Ug
= vJ ph,ph - J2ph7 Jph>
2= TP (WH ®2) ~ 5]

Note that since J is antisymmetric, we have g(J2p", Jp*) = 0. Therefore,

9
Yo = ”—J;,;ﬂgg(VJ(p’th), Jp),

which completes the proof of item (1).

(2) Relations in this item are direct consequences of relations (2.2.32) and (2.2.33) respec-
tively.
O

2.4 Curvature maps via the Riemannian curvature tensor and
the tensor J on M

Let A = (p,q), ¢ € M, p € T; M be the given D-regular point, as before. Fix v € V.(\). As
before, denote by RV the Riemannian curvature tensor.

Theorem 2.1. The curvature map Ryx(c,c) can be represented as follows
2
h U, 1
g((m)\((:? C)(U)) 7vh) = g(Rv(phavh)ph)Uh> + UOQ(Uha VJ(phavh)) + —49"”‘]’0}1”2 - ZA2(>‘J ’U),

where A is as in (2.3.18)

Proof. Take v € V.()\) and parallel vector fields V' such that V() = v. As in the proof of
Lemma 2.4 we can take V' such that

[(Jp")*, VI =0, AeUnT;M, (2.4.1)

where U is a neighborhood of A. For simplicity denote & = (I o PR)*5.
Recall that by Proposition 2.2, (relation (2.2.32) there)

g(PRr(c, ), wh) = —a(adh Vi, Vo).
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Let us simplify the right-hand side of the last identity. First, from the last line of the
structural equations (2.2.1) it follows that

(pro W)*(adi"i(vg,h)) e Rp". (2.4.2)
Then from (2.3.26) it follows that
o (adh(V$n), Ver) = o(adh(VEn), Vo) (2.4.3)

Further, from the decomposition (2.2.3) it follows that the form uom*dwg = o — & is semi-basic
(i.e. its interior product with any vertical vector field is zero). Besides, since v € V,(A), from
(2.2.11) it follows that 7*dwg(h, V) = g(Jp",v") = 0. Therefore,

9((F(c, )v)", 0") = —G(adh Vin, Vo). (2.4.4)
Also, from relation (2.2.32) it follows that it is enough to consider adh Vi n modulo Vg (A)@Ve(A).
We also need the following
Lemma 2.11. Let V,W be vector fields of T*M such that 7,V = w,W = 0. Then

(1) ([(JpP)?, (JVR I = (TP, (V) D™
(2) U([(Jph)v7y_zﬁ]7y__w_i) = “‘g(Wh7 Vj(ph, Vh))

Proof. (1) It is clear that if item (1) holds for vector field V' then also holds for vector field aV'.
Thus in order to prove item (1) it is sufficient to prove it when V is constant on the fibers of
T*M, i.e., when V" is a vector field on M. But in this case from item 1 of Proposition 2.3 for
K =1,N =0 it follows that both sides of the formula of our item 1 are equal to —J%v".

(2) Both sides are linear on vector field V', thus it is sufficient to prove it when V' is constant
on the fibers of 7*M, which is a direct consequence of identity (2.3.13) and Lemma 2.2. O

Now we are ready to start our calculations:

AR, v) [V, (T5%)7] (2.4.5)

adh(Vin) = [Vpr, V] = uo(Jp"), Vyn] - AT v

o

~ [V, (JVA)] + 3‘25[<Jph)”, (JVP)), modVa(A) @ Ve(N)

Note that the last term of (2.4.5) vanishes by item (1) of Lemma 2.11 and relation (2.4.1).
Therefore, by (2.4.4),

9((Fale, 0)v)*, v*) = =5([Vyp, Vyn), Vi) +uoa ([(J1")?, V], V) +

A\ v) _ N Ug _ v
ma([y_pia (']ph) ]7 V,Uh)) + —2_0-([_V_p}i7 (Jvh) ]7_v__y_’}_)

Now we analyze the right-hand side of the last equation term by term. First, it follows from
identity (2.1.5) that

(2.4.6)

5[y Vil V) = —g(BT (M)t ). (247)
Also it follows from item (2)—gf—Lemma 2.11 that

ST, Vyal, Vor) = (VI (", 08), ). (248)
Also it follows from identity (2.3.17) that

5([Vyr, (D)), Vo)) = g (v, VI (", p)). (2.4.9)

To analyze the fourth term of (2.4.6) we need the following
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Lemma 2.12. The following identity holds:

(Jp")”

— INOo h. (.
wrd] d Rp (2.4.10)

(prom)a([Vpr, Vin)]) = ( W) - «4(/\,1))

Proof. First, it follows from the equations (2.1.3) and the identity (2.2.17) that

(pr 0 ).V, Vy)]) = —Bof, mod Ry

. where B is as in (2.2. 17) Further, comparing identities (2.2.18) and (2.3.26), we get B B(v")? =

~%Q(J TORE %A(/\, v) (”‘{]p h)” The proof of the proposition is completed. |

Finally, it follows from identity (2.4.10) that

h\v
(19, (I, Fat) = 50010, s 0H)7) = o2 — A o), o).

[T
(2.4.11)
Substituting identities (2.4.7), (2.4.8), (2.4.9), and (2.4.11) into (2.4.6), we get the required
expression for Ry (c, c). O

Theorem 2.2. The curvature maps Ry(c,b) and Rx(c,b) can be represented as follows
1) Ri(c,b)v = p,\(c b)(v)Ep(N), where p(c,b) € V (A\)* and it satisfies
P D)) = 17 hHg(RV(p L JpMph, o) — g (W, V2T (0", 0", ")

4y
I/p hH

T h“3g(Jp VI, pM)g", VI (" ))—ﬁ;}zH—gg(Jph,VJ(ph,ph))g(vh,JQph);

HJ hN

g, VI(Ip", ") + VI (", Tp") + T7s h“g(Jv ,J2p")

2) R (b, 0)E(X) = pa(b,0)Ex(A), where

oabD) = 17 h“zg(Rv(Jph,ph)Jp ,0") — ”J19,“49 (VJ (p",ph) Jp")
3UO

20 g(Jph, VI (TP ") - 9 (T VI p") + T2 p"|?
AR I I+ 1|Jph||2” ”
Sketch of the proof. Recall that by Proposition 2.2 (relations (2.2.33) and (2.2.35) there)

pa(e, b)v = a(adh Fyp(N), VEs)

B} (2.4.12)
pa(b,b) = —c(adh Fp(A), Fo(A))- .
First it follows from (2.2.10) that
a r — 1 a 7\2 hyv 7 1 a 7 hyv
dh Fp(N) HJth( dh)*(Jp™)* + 3h (ijh“) (adh)(Jp") 013

\2 1 hy\v \3 1
+3(h) (quhn)“”) + () IIJpH)a“"
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Note that the last two terms of (2.4.13) belong to the space V,(A) @ Vy(A), which lies in the
skew-symmetric complement of V¢, € V¥#$()\) w.r.t. o. Therefore

c,blv=rco a hyv o adh hye e, 4.
pales o = (o aUp) + 98 (oo ) AR Ve ) 2y
In a similar way, since V,(A) = Rd,,, we have 0(8y,, Fp(A)) = 0. Therefore

_ 1 = 1 adi (T a2 (L hyw
1) = =0 (P )+ 35 (e ) b)) + 307 (o ) ()" )

(2.4.15)
Note that (adh)(Jp")? is computed in (2.3.17) and ()2 (IIT;W) is computed in item (2) of
Lemma 2.8. Furthermore, from relations (2.3.17) and (2.2.5), using items (1), (2), and (3) of
Proposition 2.3, it follows that
(adh)*(Jp")" = [Vpp = uo(JP")", =V (gpry + (VI (0", )]
= —2Vyy(ph phy + U0V gz + [|T0"P00 — (BY (", Jp")pM)Y + V2I (0", p",p")  (2.4.16)
= uo(VJI(Jp", p"))* = 2u0(VI (0", Jp™)” + uo (VI (", )"

Substituting all this into (2.4.14) and (2.4.15) and using identity (2.2.3) and Proposition 2.3
one can get both items of the theorem by long but straightforward computations. [J

Further, let ; be as in Step 4 of Subsection 2.2.3. Note that the expression for %{‘ can be
found in item (2) of Lemma 2.10.

Theorem 2.3. The curvature maps Ry(c,a) and Ry (a,a) can be represented as follows
1) Ri(c,a)v = p,\(c,a)(v)ﬂ—gg%—ﬂ-, where py(c,a) € V.(A\)* and it satisfies

1

pr(eay = 177 (mA)(2)<A,v —g(wc,c)v) )+ 11 () oade e

*

)
2) Ri(a,a)0y, = pr(a,a)du,, where py(c,a) €V, and it satisfies

pa(@0) = F (pateb)mh) + 15" Hh<n y hu) (A(5,0)) + (e, )(T1)

— LI — c 1 e — |t 1
P () or(e @0 + 11 (o ) o) + 1 (7

where py(c,b) and px(b,b) are as in Theorem 2.2, A is expressed in (2.3.18) and W% is expressed
by item (1) of Lemma 2.10.

Proof: 1) Recall that by Proposition 3.2, (relation (2.2.34) there)
ox(c,a)v = a(adhvvh,fa(/\)) (2.4.17)

Since &,(A) lies in the skew-symmetric complement of FFa"S()\) w.r.t. o, then it follows from
relations (2.2.2) and (2.4.17) that

pale,a)v = J(adhvvh,}" (A) (2.4.18)
Further it follows from relations (2.2.30) and (2.4.2) that
_ - 1
oa(e,a)0 = o(adRV S, —[lTp | — 20 — [Tp" | ( , Jph“) F(V) (2.4.19)
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Now let us analyze the right-hand side of identity (2.4.18) term by term. First from identity
(2.3.26) it follows that
(adhvvh, i) = —h(B(V)) (2.4.20)

Substituting relation (2.4.20) into identity (2.4.18) and using item (2) of Lemma 2.10, we have

p(e,a)v = —| TP IR(BOVY) — g(@w«:, c)v)”m?) T (W;h—”) pa(e,bv. (24.21)

Taking into account item (2) of Lemma 2.6, we get the item 1) of the theorem.
2) Recall that by Proposition 3.2, (relation (2.2.36) there)

pa(a,a) = —a(adhFo(N), Fa(N)) (2.4.22)
Further, from the fourth line of structural equations (2.2.1) it follows that
(prom)adhF,(A\) =0, mod Rp", o(adhF,(N), () =0 (2.4.23)
Then it follows from relations (2.2.30) and (2.2.2) that
pa(a, a) = —o(adhFy(N), — || Jp" |t — o) (2.4.24)

Now let us analyze the right-hand side of identity (2.4.24). First since [k, @] = 0, we get
o(adhFa(N), @) = —h(o(To, Fa(N))) (2.4.25)
Let us calculate o(t, Fo(A)). Since
Fa(X) = o, mod Vy(X) © Ve(N) ® Vi (X) © V™ (N),
we get
o(dg, Fo(N) =0 (2.4.26)
Further, it follows from relation (2.2.2) that

o (o, Fa(N) = — o(adh Fo(N), Fy(N) = — o(adh Fy(N), Fo(N)) (2.4.27)

1 1
70" 170"

Furthermore, it follows from the line before last of structural equations (2.2.1) and relation
(2.2.30) that

o (o (N, FulV) = o (8 A0, ~3 0~ B0 — 15 (o) A0 2426)

Substituting it into (2.4.27) and using relation (2.4.13), item (2) of Lemma 2.10 and the second
identity of (2.4.12), we get

U(ﬁ07-7:a()‘)) = ”(5)3 <HJ;}LH> - “J;h“PA(C b)(ml) + h’ <HJ1h”) p)\(bzb) (2429)

Finally, we have
o(adh Fo(N), Wo) = o (adh Wo, Fu(N)) = —pa(c, a)Ws. (2.4.30)

Substituting identities (2.4.25),(2.4.29) and (2.4.30) into (2.4.24), we obtain the required ex-
pression for py(a, a).

Note that using the calculus developed in the previous section and the previous theorem,
one can express the curvature maps ) (c, a) and Ry (a,a) explicitly in terms of the Riemannian
metric on M and the tensor J , but the expressions are too long to be presented here. Instead
we analyze in more detail the expressions for curvature maps in the case of a uniform magnetic
field, i.e. when VJ = 0. Remarkably, the curvature maps R)(c,a) and ) (a,a) vanish in this
case.
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Corollary 2.2. Assume that J defines a uniform magnetic field , i.e., VJ = 0. Then the
curvature maps have the following form

(1) g((wc, 9 (v))”,vh) — g(BY (0, o), ") + 2 (1002 = e, 29h));

u2
(2) Fa(e,b)o = (g (RY (0, Tph)ph, o*) + g (ot 720%) ) E5(N);

(3) pa(b,b) = g (RY (Jo", 57) T0", %) + k| 7290
(4) Ra(c,a) = 0;

(5) Ra(a,a) =0,

where py(b,b) is as in Theorem 2.2.

Proof Items (1), (2) and (3) are direct consequences of Theorems 2.1 and 2.2. Now we will
show the proofs for items (4) and (5). We will denote by X,Y, Z, W,V the vector fields on M.
Assume that v € V.()\) and V is a parallel vector field such that V() = v. The following two
propositions will be needed.

Lemma 2.13. If VJ =0, then
(1) For any positive integer k € N, V(J*) =0, VFJ =0;
(2) J(RV(X,Y)Z) =RV (X,Y)JZ;
(3) 9(BY(X,Y)IW, Z) = —g(R¥ (X, Y)W, JZ);

Proof. The item (1) is proved by definition; The item (2) is an analogy of [17, Chapter IX,
Proposition 3.6 (2)]; The item (3) follows from item (2) immediately. O

Lemma 2.14. For Vv € V.()\), the following identities hold:
(1) A\ v) = —2rg(oh, %),

u2
(2) 'A(l) (A, 7)) = Wg(vha J3ph):

h”2

w3l g2 ud
(3) A®) (Aav) = 4||1|Jpp}2]|3 g(vh, szh> - 4|]Jph“g(”ha J4ph)'

Proof. The items (1) (2) are direct consequences of Lemma 2.9 and Corollary 2.1, respectively;
The item (3) can be proved by applying Proposition 2.4 to A1, O

Let us prove Ry (c,a) = 0. It follows from item (1) of Lemma 2.8 that

h <H—J%’Tﬂ> =0. (2.4.31)

Then it follows from item 1) of Theorem 2.3 that
el = AP O) - g (e 00)", 2} (2432)

Further it follows from item (1) of Lemma 2.10 that

U
gh = ”J;h“ TP 4 o Jp"||p". (2.4.33)
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Substituting identity (2.4.33) into the expression of Ry (¢, ¢), we get

g(cﬁxaa@v)hﬁn?)::gcRV<p%vhn>, "

70"
+ 19 (J” ' T7p h||J3Ph+uOl|Jp 17p ) (2.4.34)

1
" 4[Jp huzg(J h h)9<“J “J2ph+UOI|JP Ip", J> h))

JFrom item (3) of Lemma 2.14 it is easy to see that the sum of the last two items of (2.4.34) is
equal to —A® (\,v). Thus

p)\(c, (1)’1) = —g(RV(ph7Uh)p )

7 h“JQph + ug | Jp|p") (2.4.35)
Finally by items (2), (3) of Lemma 2.13 and algebraic properties of the Riemannian curvature
tensor we conclude that py(c,a)v =0

Now let us prove that %y(a,a) = 0. First using that Ry(c,a) = 0 and relation (2.4.31) we
get from item 2) of Theorem 2.3 that

pa(a,a) = R (pr(c,b)(T1)) (2.4.36)

Let us show that py(c,b)(P1) = 0. Indeed, from item (2) of the present corollary it follows

px(c,0) (V1) = g(RY (p", TpM)p", 01 + 90— g(J0%, J2ph) (2.4.37)

HJ 7 1° HJ hH

Note that the first term of the right-hand side of last identity coincides with the right-hand side
of (2.4.35), taken with the opposite sign. Hence, it vanishes. The second term also vanishes
due to relation (2.4.33) and the antisymmetricity of J. By this we complete the proof of the
corollary. [

Finally consider even more particular but important case when VJ = 0 and J 2 = _1d, ie.
when the tensor J defines a complex structure on M and the pair (g,J) defines a Kéahlerian
structure on M. As a direct consequence of the previous theorem, one has

Corollary 2.3. Assume that J defines a complez structure on M, i.e. VJ =0 and J? = —Id.
Then

’LL2
9(Fa(e, ) @), 0" = g(BRY (", v")p", ") + Ll

Ra(b,c)(v) = g(RY (", Tp")p",v™E(N),
pa(b,) = g(RY(p", Jp")p", Jp") + o,
Rir(c,a) = 0 and Ri(a,a) =0,

2.5 Comparison Theorems

In the present section we restrict ourselves to sub-Riemannian structures with a transversal
symmetry on a contact distribution such that the corresponding tensor J satisfies VJ = 0. We
give estimation of the number of conjugate points (the Comparison Theorem) along the normal
sub-Riemannian extremals (Theorem 2.4 below) in terms of the bounds for the curvature of the
Riemannian structure on M and the tensor J. The main tool here is the Generalized Sturm
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Theorem for curves in Lagrangian Grassmannians ([10] and [15]), applied to our structure
equation (2.2.1).

Let, as before, A = (p,q) € T*M,q € M,p € T; M. Define the following two quadratic forms
on the space Vy(A) @ Ve(N)

Qr(v) 17" ~

Qa(v)

Il

1
HJ hH2g(Jv , Jph)? (2.5.1)

3r0) - 2@ (we), (252)

where the vector v, € V.()\) comes from the decomposition v = v, + v with v, € Vy()). The
quadratic form Q » has the natural geometric meaning: the number Q A(v) is equal to the square
of the area of the parallelogram spanned by the vectors Jv and Jp" in T, r(q)M divided by

|l7p"||?. In particular, the quadratic forms Q) are positive definite. The reason for introducing
the form (@, is that the identities in the Corollary 2.2 can be rewritten as follows, using the big
curvature map R, of the sub-Riemannian structure:

g(@@)",0") = g(RY (", 00", o) + 3@ (use), (2.5.3)

where the vector vy € V(M) ®Ve(\) comes from the decomposition v = vy +vpe With v, € V().

Now fix T' > 0. In the sequel given a real analytic function ¢ : [0,7] — R denote by
ir{e(z) = 0} the number of zeros of ¢ on the interval [0, 7] counted with multiplicities. Given
a normal sub-Riemannian extremal A : [0,7] — H 1 denote by fi7(A(-)) the number of conjugate

point to 0 on (0,7]. Let

: wt wt . Wt .
bult) = sin —‘é;(\/a_Jt cos -\/-2—— — 2sin 1—2_-—), ifw#0, ; (2.5.4)
¢t ifw=0
siny/wt, if w#0,
Yu(t) = Ve . #0 (2.5.5)
t ifw=0
Further, define the following integer valued function on R?:
de _
Zr(wswo) 2 tr{ b (90120 = 0} (2.5.6)
An elementary analysis shows that
(n— 3)[T\/w_c] + [ ] + ﬁT{tan( bx) — ——cc =0},if wp > 0, we > 0;
_ ) B + tr{tan(x£2 ) NET 0} if wp > 0, we < 0;
Zr(wh, we) = /o
(n=3)[=], ifw <0, wc>0.
0, fw,<0, w.<0.
(2.5.7)

Theorem 2.4. Let cy,¢., &y, and €. are constants such that the curvature tensor RY of the
Riemannian metric g on M satisfies
allop ]l + ccllop|® < g(RY (0", of + vl)p", vf +oF) < lluf? + v,

YA e H%,Ub € Vo(N),ve € Ve(N). (2.5.8)
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Also let ky, k¢, Ky, K. be constants such that

kol [vg 11> + kellvl 1P < Qa(vs +ve) < Epllof|® + Kelol ], YA€ Hi,vp € Vo(A),ve € Ve(A).-
(2.5.9)
Let A(-) be a normal sub-Riemannian extremal on HiN{ug = Up} Then the number of conjugate
2

points 7 (A(-)) to 0 on (0,T) along A(-) satisfies the following inequality
Zr(cp + kT3, co + ketid) < tr(A()) < Zr(Cy + Kyid, €. + K a2). (2.5.10)

Remark 2.4. If the sectional curvature of the Riemannian metric g on M s bounded from
below by a constant ¢ and bounded from above by a constant €, then in (2.5.8) one can take
p=c¢=cand € =C,=¢.

Proof. We start with some general statements. Let, as before, W be a linear symplectic space
and A : [0,T] — L(W) be a monotonically nondecreasing curve in the Lagrange Grassmannians
L(W) with the constant Young Diagram D. In this case the set of all conjugate points to 0 is
obviously discrete. Denote by #7(A(+)) the number of conjugate points (counted the multiplic-
ities) of A(-) on (0,T]. Then §(A())) = > gy dim(A(7) N A(0)). We will use the following
corollary of the generalized Sturm theorems from [15] and [10]:

Theorem 2.5. Let hr, Hr be two quadratic non-stationary Hamiltonians on W such that
for any 0 < 7 < T, the quadratic form h, — H, is non-positive definite. Let P,, P, be linear
Hamiltonian flows generated by h,, H;, respectively:

o — 0 ~ — ~ ~ )
EPT = h. P, —a——;PT =H.P, Py=PF =1d.
Further, let A(),/N&() be nondecreasing trajectories of the corresponding flows on L(W), both

having constant Young diagram D:
A(r) = PA(0), A(r)=PA(0), 0<r<T.

Then #7(A(-)) < #r(A()).

The detailed proof of this statement (even a in slightly general setting) can be found in [21]
(see also [4]). As the direct consequence of this theorem and the structural equations (1.1.7) we
get the following

Corollary 2.4. Let A, A : [0,T] — L(W) be two monotonically nondecreasing curves in the
Lagrangian Grassmannian L(W) with the same Young diagram D. Assume that A(-) and A()
have normal moving frames ({Ea(t) }aca, {Fa(t) }aca) and ({Ea(t) baca, {Falt) }aca) respectively
such that if Ry is the matriz of the big curvature map of A(-) w.r.t. the basis ({E4(t)}aca and Ry
is the matriz of the big curvature map of A(-) w.r.t. the basis ({Ea(t)}aeA, then the symmetric
matriz Ry — Ry is non-positive definite. Then tp(A()) < #r(A(")).

Now let the diagram D be as for the case of sub-Riemannian structures on corank 1 distri-
butions. Let, as before, J»(-) is the Jacobi curve attached at the point A. Given constants wp
and we let Ty, . (-) be the curve in L(W) with the Young diagram D such that its curvature
maps satisfy:

Ri(a,a) = 0,Ri(c,a) = 0,R¢(c,b) = 0,R4(b,b) Epy = wpEp, Re(c, ) = wld Vit (2.5.11)

Then from the identity (2.5.3), conditions (2.5.8) and (2.5.9), and Corollary 2.4 it follows
immediately that

fr (Fcb+kbﬁ%,cc+kcﬁg(')) < ﬂT(TD\(')) <ir (F¢b+Kbﬁg,¢c+Kcag(')) (2-5’12)
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In order to prove Theorem 2.4 it remains to show that

47 (Caniwe (1)) = Zr(wo, we)- (2.5.13)

Let us prove identity (2.5.13). Let (E,(t), Ep(t), Ec(t), Fa(t), Fy(t), Fe(t) be a normal moving
frame of the curve Iy, ., (-). Substituting (2.5.11) into the structural equation (2.2.1) we get

E,(t) = Ep(t)
Ey(t) = Fy(t)
E(t) = (75)

o = (2.5.14)

Fé(t) - _wbEb(t)Rt(b7 b) - Fa(t)
FI(t) = —weEl(t).

;From this we obtained the following two separated equations for £, and for E,, respectively:

B+ B =0 (2.5.15)
E' 4+ w.E, =0 o
Assume first that wyp # 0 and w. # 0. Then there exist vectors ai,...,04 and B BE k=

1,...n— 3 in W such that

()*e a1+ei‘/3’7’-ta2+a3+ta4,
Ey(t) = eV — iy Jipe TV + g, (2.5.16)
B(t) = (V0] + e VRRpL, L, VIR omiVERt gn)
Besides, by constructions vectors oy, . . ., a4, 83,83, .. ., B 3 gn 5 ~3 have to be linearly indepen-
dent.
Introducing some coordinate in W we can look on the tuple

(Ea(t), Bo(t), Ec(t), Ea(0), Ey(0), Ec(0))

as on 2(n — 1) x 2(n — 1)—matrix, representing each involved vector as a column. Let d(t) be
the determinant of this matrix. Obviously, ¢ is conjugate point to 0 of multiplicity ! if and only
if £ is zero of multiplicity I of function d(t). On the other hand, using expressions (2.5.16) it is
easy to show that the function d(¢) is equal, up to a nonzero constant factor, to

eVt g eVt 1 Jay

eIt g, fiopeT VRt ] —z\/'_ 1"®
1 0 1 *Zx/w_ct 1
t 1 0 1

which in turn is equal, up to a nonzero constant factor, to the function ¢, (t)f/)]jc‘?’ (t) appearing
in the definition (2.5.6) of the function Zr(wp,w.). The case when one or both wy and w, are
equal to zero can be treated analogously. This completes the proof of (2.5.13) and Theorem 2.4
itself. O

Now let us state separately what Theorem 2.4 says about the intervals along normal ex-
tremals of the considered sub-Riemannian structure which do not contain conjugate points or
contain at least one conjugate point:
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__ Corollary 2.5. Under the same estimates on the curvature of the Riemannian metric g on
M and on the quadratic forms Qy as in Theorem 2.4 the following statement hold for a normal
sub-Riemannian extremal on H 10 {uo = o}

1) If €+ Kpiz > 0 and €.+ K 43 > 0, then there are no conjugate points to 0 in the interval
0, 0
Xis

. - ]
(O’ min{ Vot K2’ \/Ct K al }) ’

2) If &+ Kpiid > 0 and €.+ K, 12 < 0, then there are no conjugate points to 0 in (0, ——22— ;
0 0

v €+ K3
ks )
Vet+Keat’’

(4) If €& + Kpid <0 and €. + K u3 <0, then there are no conjugate points to 0 in (0,00);

3) If €+ Kpiia < 0 and €.+ K G > 0, then there are no conjugate points to 0 in (0,
0 0

5) If cp+kptid > 4(c.+koad) > 0, then there is at least one conjugate point to 0 in (0, ——2Z— ;
0 0

w/cb—l-kbﬂ%
(6) If cc + kg > L(co + kpid) > 0, then there is at least n — 3 conjugate points to 0 in
(0, _\/—c_f“";;‘??] ( at least n — 2 conjugate points in the case ¢ + kptig = 4(cc + k.3) > 0);
cTRely

7) If ¢, + kpiz > 0 and ¢, + ka3 < 0, then there is at least one conjugate point to 0 in
bt 0
_2m
©, w/cb+kba3]
8) If ¢, + kptip < 0 and c. + ke > 0, then there is at least m — 3 conjugate points to 0 in
0

(0’ A/ cc—l—kcﬂg]

Finally note that if in addition J? = —Id then the quadratic forms Q) have the following
simple form:

1
Qa(ve+ ) = [of12 + FIEI? - Vop € V() e € Vel

1

Therefore in this case one can take ky = K =1 and k. = K, = i
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Chapter 3

Hyperbolic flows in sub-Riemannian
structures with symmetries

For the sub-Riemannian structures with multidimensional transversal commutative infinitesimal
symmetries, we proceed with the Poission (symplectic) reduction to obtain the reduced flows
of the sub-Riemannian geodesic flows (on the common level set of all integrals in the cotangent
bundle). We give conditions for this flow to be hyperbolic by applying the criteria of [8] for the
hyperbolicity of Hamiltonian flows. The main results of this chapter can be found in [19].

3.1 Reduction

In this chapter we consider sub-Riemannian metrics (-, -) on distribution D of corank s, having
s transversal infinitesimal symmetries, i.e. s vector fields X1, ..., X, on M such that

eiXiD =D ) (etXi)* ('7 ) = ('7 > o 1<e< S,

and TM = D & span{X1,..., X;}. Suppose further that the symmetries {X; : 1 <14 < s} are
commutative (see Remark 1 for noncommutative case), i.e.

[X:, X;] =0, V1<4i,j<s. (3.1.1)

Denote by M the quotient of M by the leaves of the integral manifold of the involutive
distribution spanned by Xi,...X, and denote the factorization map by pr : M — M. Then
M is a Riemannian manifold equipped with the Riemannian metric g induced from the sub-
Riemannian metric.

For any vector field X; define the “quasiimpluses” u; : T*M — R by
ui(p,q) =p- Xi(q), g€ TyM,g € M, V1 <i < s.
Let h be the sub-Riemannian Hamiltonian as in (2.1.1). Since X; is a symmetry,
(hyui} =0V1<i<s. e (3.12)
and from (3.1.1) it follows that
{ui,u;} =0, V1 <4,5 <s, (3.1.3)

where { , } is the Poisson bracket. In other words, u;, 1 < i < s are first integrals in involution
of the Hamiltonian system et".

a8



Now we can apply the Poisson reduction (see e.g. [1], [9]) to our Hamiltonian flow eth. For
simplicity, denote by u = (u1, ...,us) and let it = (@7, ..., s). Now take a common level set

%ﬂ_{h"“_}m{u“u}

for some it € R®.
Note that span{h,@;, 1 < i < s} =ker olpy3, . Therefore,
7.0

Wy = T,\H%’a/span{ﬁ(/\),ﬁi(/\), 1<i<s}

is a symplectic space with the symplectic form o* naturally inherited from the symplectic form
o on M. Moreover, let IT) be as in (0.1.4) and

Hl;t = TA(H%,ﬁ) N 1T,

is a Lagrangian subspace in W}.
Further it follows from relations (3.1. 2) and (3.1.3) that Hl o is an invariant set of the flow

eth and et u1 = 1;, V1 < i < s. Hence, e'" induces a symplectlc transformation et W}\
wr. \ Set

e

(1) & er Y Jspan{h, i, 1< i < s). (3.1.4)

The curve t 3§(t) is a curve in the Lagrange Grassmannian of the symplectic space Wf

It is called the reduced Jacobi curve of the extremal eth attached at A\ € T*M obtained by the
reduction by the first integrals u to the level set {u = i}, or shortly, the reduced Jacobi curve of

the extremal eth

Remark 3.1. If the symmetries {X; : 1 <1< s} are not commutative but

g = spanp{Xy,...Xs}

1s a Lie algebra, then the reduced Jacobi curve can be defined for extremals lying on certain
levels of the corresponding first integrals. Indeed, assume that the derived Lie algebra g* = [g, g]
has dimension k. We can always assume that the first k of the symmetries X1, ..., X, span the
algebra g*. Then on the level setsu = (0,...,0, cry1, ..., ¢s) the integrals uy, . .., us commute and
N’
k times
all constructions above work. However, to consider extremals of the original sub-Riemannian
structure on the level sets u=(0,...,0,Cg41,...,Cs) is the same as to consider extremals of the
o o’
k times
sub-Riemannian structure obtained from the original one by the reduction by first k-symmetries
Xi,..., Xk. After such a reduction we will get the sub-Riemannian structures on the distribution
of corank s — k having s — k commutative symmetries (induced by Xyi1,...,Xs). Hence the
case of mon-commutative symmetries can be reduced in essence to the case of commutative
symmetries.

Proposition 3.1. The reduced Jacobi curve J5(t) s a regular monotonically nondecreasing
curve in L(WY).

Proof. The intersection of the set H1 with a fiber of T*M is a cylinder with an elliptic base,

while the intersection of {u = i1} Wlth this fiber is a linear subspace transversal to the generator
of this cylinder. So, the intersection of the set H lg with a fiber of T*M is an ellipsoid. The
proposition follows from the fact that the velocity of the reduced Jacobi curve is equivalent
(under linear substitutions of variables in the corresponding quadratic forms) to the second

fundamental form of this ellipsoid, following from [3, Proposition 1] |
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Let =% be the s-foliation on T*M such that its leaves are integral curves of . Similar to
Subsection 2.2.3 (the corank 1 case there), one can show that {u = ii}/E" is identified with the
cotangent bundle T° *M. Denote the identification by I*. As in Subsection 2.2.3, for any vector
field X on T*M, we can assign the vector field X on T*M s.t. PR.X = (I71),X and m X € D,
where PR : T*M — T*M/E" is the canonical projection to the quotient manifold.

Further, if denote Ny = H %j/ Bt then it follows from relations (3.1.2) and (3.1.3) that eth

—

induces a Hamiltonian flow (e‘").eq on Nz. It is called the reduced flow by the first integrals u.
Then the reduced Jacobi curve J5(-) is actually the Jacobi curve associated with the Hamiltonian
flow eth : Ny — Ny, defined as (0.1.5).

Now let Dj‘ be as in (0.1.3). Then similar to (2.1.6) one has the following series of natural
identifications:

T M/DE ~ D3 ' Dy~ T M. (3.1.5)

where D C T, M is the dual space of Dg. Given v € T\T; M (~ Ty M), where ¢ = m(A),
we can assign a unique vector v" € Tpr(q)ﬁ to its equivalence class in Ty M/ Dj“ by using the
identifications (3.1.5). Conversely, to any X € Tpr(q)M one can assign an equivalence class of
T\(Ty; M)/ in. Denote by X € Ty\T,; M the unique representative of this equivalence class such
that du;(X") =0,V1 <i<s.

3.2 Reduced curvature map

Since the curve J3(-) is regular in the corresponding Lagrangian Grassmannian, its reduced
Young diagram consist of one box, which will be denoted by c. Since J}(0) and II} can be
naturally identified, there is a canonical splitting of Wy :

Wi =115 © 3N, (3.2.1)

where J%()\) = (J%)¥20(0) is the canonical complement of the reduced Jacobi curve Ji() at 0.
Furthermore, one can define the curvature map R} : IT} — II} such that RY = R (0), where
Ree(t) is the curvature maps of the regular Jacobi curve J5(-) at ¢t = 0. Recall that I €
T5\T*M /span{h()\),i}. As a canonical representative of J%()) one can take the representative,
which projects to D by 7. and projects to (Rp™) by (pro 7). In the sequel, this canonical
representative will be denoted by J*(\) as well.

Besides, let w = (w;)1<i<s be the R-valued 1-form defined by wilp = 0 and w;(X;) =
Sij, V1 < 4,7 < s. Then dw = (dw;)1<i<s induces a R®-valued 2-form on M. We denote the
2-form by Q = (Q)1<i<s- Now we define a tuple J = {J;(§)};_; of s tensors of type (1,1) on
M as follows

95(Ji(@)v, w) = Qi(q) (v, w), v,w € Tqﬁ,(j € M, V1<i<s.

Besides we can define the following s-dimensional pencils of 2-forms Q* and (1, 1)-tensors
Ju: @

El 3
= w, S =) wdi, w=(u,..u) €R (3.2.2)
i=1 i=1
Now we are ready to give the expression for the reduced curvature map using the curvature

tensor RV of the Riemannian metric on M and the tensors J*. Let r} be the following quadratic
form induced by the reduced curvature map, i.e.

ri(v) = g(Riv)*,0"), Vo eI,
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The form 7Y is called the (reduced) curvature form.

Theorem 3.1. Let v € II5. Then
1 3
ri(v) = g(RY (", v")p", o) + g(VTH (", 0"), ") + 29(T %", TH0") + S (g, T

The proof of the theorem above is given in section 3.4.

3.3 Conditions for hyperbolicity of extremal flows

First let us recall some elements of Hyperbolic Dynamics. More details can be found in [16].

Definition 3.1. Let !X, t € R be the flow generated by the vector field X on a manifold
M. A compact invariant set W € M of the flow et is called a hyperbolic set if there ezists a

Riemannian structure in a neighborhood of W, a positive constant §, and a splitting: T, M =
Ero E; ®RX(z), z € W such that X(z) # 0 and

(1) &XEf = By, XE; = Egx,

(2) I ¢l > e®lic*], vt > 0,%¢* € B,

(3) Il < e, Wt > 0,9 € B

If the entire manifold M is a hyperbolic set, then the flow etX s called an Anosov flow
The following theorem is a direct consequence Theorem 2 in [8]:

_Theorem 3.2. Let i € R”. Assume that Ky C Ny 15 a compact invariant set of the flow
(€™)eq on Ny. If the curvature form rf\‘ is negative at every point of Ky, then Ky is a hyperbolic
set of the flow (€!)eq on Ny.

Now denote by S1 M the unit tangent bundle. Combining the previous theorem with Theo-
rem 3.1 and using that g(w, Jv)? < g(Jv, Jv) for v,w € S;M, we get the following

Theorem 3.3. Assume that the reduced Riemannian manifold (M ,g) is compact and has
sectional curvature bounded from above by kmax- If a vector it € R® satisfies

max  g(v, VJ*(w;v)) + 9(J™, J*v)) < —kmax, (3.3.1)
vweSiMuvlw

where J* is as in (3.2.2), then the flow (etﬁ)md is an Anosov flow on Nj.

Note that the left-hand side of the inequality (3.3.1) is always positive, because the second
term inside the max is positive and the first term can be made nonnegative, if necessary, by
changing the sign of w. Hence, Theorem 3.3 makes sense only if Emax < 0. Note also that if
@ = 0, then the flow (€%?);eq on Ny is exactly the Riemannian geodesic flow of the Riemannian
structure (M ,9) (by the identification between TM and T*M via the Riemannian metric 9)-
So, Theorem 3.3 gives the classical result of Hyperbolic Dynamics ([16], [12]): Geodesic Flows
of compact Riemannian manifold with negative sectional curvatures are Anosov flows. The flow
(e“j)red on Ny can be considered as a perturbation of the Riemannian geodesic flow: the flow
(eth)red on Nj remains to be an Anosov flow for it € R® sufficiently close to the origin. Our
Theorem 3.3 gives more explicit estimation of the domain of i around the origin for which
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the flow (e“?‘)red on Ng remains to be an Anosov flow. Finally note that in the case of s = 1
our Theorem 3.3 actually coincides with the main result of [14]. As was mentioned before, in

this case the projections to M of all sub-Riemannian extremals from H% . describe all possible

motion of a charged particle given by the magnetic field 2 on the Riemannian manifold M and
Theorem 3.3 for s = 1 gives the sufficient condition for a magnetic flow to be an Anosov flow.
Thus, this theorem for arbitrary s can be seen as a generalization of this situation.

3.4 Proof of Theorem 3.1

We first express the canonical complement in terms of the Levi-Civita connection of the Rie-
mannian metric and the tensor J* and then we can give the proof of Theorem 3.1 using the
calculus formulae from Subsection 2.3.1. Let & be the standard symplectic form on 7* M , as
before.

3.4.1 The canonical complement 5“(/\)

To express the canonical complement 5”(/\) in more detail, we need the decomposition of the
symplectic form o and the Hamiltonian field h, which are analogs of Lemmas 2.1 and 2.3.

Lemma 3.1. On the level set {u =1}, o= (I*o PR)*G — (pro m)*QF,

Lemma 3.2. Letp e T;M,q € M. Denote by Vi the lift of p* to T*M with respect to the

Levi-Civita connection. Then
h(p,q) = Vo — (JUpM)°. (3.4.1)

Given any X € IT{ denote by Vy» the lift of X to J*(\): the unique vector Vs € 34N
such that (prom),Vys = X" Then there exist the unique B € End(II}) such that

Voh =V +Bu, Vo ellt, (3.4.2)

Similar to Lemma 2.4, one can show that B is antisymmetric w.r.t. the canonical Euclidean
structure in IT§ (with complete similar proof). Moreover, we have

Lemma 3.3. The operator B satisfies
1 1
(Bo)r = —§J“€1h + 5g(J“f)h, Pt Vo ey (3.4.3)
Proof. Since 5”(/\) is an isotropic subspace, we have
0(€7U{1,6U3) =0, Vv, v eI}

On the other hand, using Lemma 3.1, the fact that the Levi-Civita connection (as an Ehres-
mann connection) is a Lagrangian distribution in T*M and Lemma 2.2, we get

0=0(V,,75,) = (0 PR)*5 — (pro w)*Q“) Vip + B,V + By =
- QU(U{LJUSL) - g((Bﬁl)hvvg) + g((B’EQ)haU{z) =
=9I, 05) = g((Bon)h, of) + g((B*51)", uh).

Taking into account that B is antisymmetric, we get

1
(Bo)h = ~§J“6h + a(@)ph, (3.4.4)
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for some o € (II})*. Since B? € IT}, then B3 is tangent to the level of h. Thus it follows from
(3.4.1) that

» 1 1
0 = olh,—3(J'7")" + (@) (0")") = —59(I*p", J5") + a(9).
From the last identity and the identity (3.4.4), we get the relation (3.4.3). The proof of the
lemma is completed. O

Corollary 3.1. The canonical complement 5“(/\) can be ezxpressed as follows:
~ 1 1
THO) = {Tun = 5N + gl g (), v e TIE).

3.4.2 Proof of the formula for the reduced curvature map

As a direct consequence of structure equation (1.1.7), we get the following preliminary descrip-
tions of the reduced curvature maps.:

Proposition 3.2. Let v € II¥. Let V be a parallel vector field such that V(\) = v. Then
the reduced curvature map satisfies the following identity:

g((R30)",v") = —o(adh (Vyn), V,0). (3.4.5)

Also, the following lemma will be needed in the calculation of the reduced curvature map,
which is an analog of Lemma 2.11.

Lemma 3.4. The following identities holds:
(D) ([(J*p")7, (JVRY DR = J([(T4ph), (VR)))R,
(2) O'([(Juph)v’_‘ﬁ/_h_]:&’i) = g(vju(ph’ Uh): vh)7

Now we can show the proof of Theorem 3.1.

Proof of Theorem 3.1 In the following calculations, we adapt the Einstein summation
convention and all indices range from 1 to s. As in the proof of Lemma 2.4, we can take a
parallel vector field V' such that V()\) = v and

[(J"), VI =0, XeUNnT:M, (3.4.6)

where U is a neighborhood of A. For simplicity denote & = (I* o PR)*o.
Let us simplify the right-hand side of the identity (3.4.5). First, from the last line of the
structural equations (1.1.7) it follows that

(pro7)«(adh(Vym)) € Rph. (3.4.7)

Then from Corollary 3.1 it follows that

U(&dﬁ(%vh}, iv7vh) = U(a’dﬁ(%V’l% Vyh + %Q(Juvh7ph)(ph)v) i (348)

Besides, it follows from 3.1 and Proposition 2.3 that
o(adh(Vyn), (")) = ~o(Vyn, adh(p")?) = o(Vyn, V) = 0. (3.4.9)
Hence it follows from (3.4.8) and (3.4.9) that
o(adh(Vyn), Vor) = o(adh(Vyn), V) (3.4.10)
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Now we are ready to start our calculations:

(1) = (Vi V] = [(T01)7, D] = 5 (Vs (V)] + ST, (7]

) . (3.4.11)
+ 590" PV, (07)] = 59(Tm M), (")), mod R(p")”

Note that the fourth term of the right-hand side of (3.4.11) vanishes by item (1) of Proposition
3.4 and relation (3.4.6). Also the last term vanishes by item (1) of Proposition 2.3. Therefore,
by relation (3.4.5), we get

(@), 0") = =5 ([Vn, Vin], Vi) + Q((pr 0 1) ([Vih, Vyn]), v")
+([(*p")", Vyn], Von) = Q((or o m)u([(J*9")°, Vy]), o)

9yt ()] Fat) = 50 (@rom) (T (7))

— SO (T, (1)), Vo) + 50 (0 om)-((Ty, ()], 0% 9T, 27)

(3.4.12)

Now we analyze the right-hand side of the last identity term by term. First, it follows
identity (2.1.5) that
5(I 0, V], V) = —g(RY (5", v)ph, o). (3.4.13)

Also it follows from item (2) of Lemma 3.4 that
S, Vo, V) = g(V 70" ), 01, (3.4.14)
Also it follows from straightforward computations that

Q¥((pr o 1) ([Vpr, (J0M)]), ") = (TP, v") = [|7*")? (3.4.15)

and
Q*((pr o 1), [V, ()], 0") = —Q% (", o) = g(p*, J*M). (3.4.16)

Also we have

- Qu((pr ° W)*([VpthVhD7vh) - _2'5-([22’17 (Juvh)vlv_vv_h)

= g((pr o 1) [V, Vi), J*0h) — %a([vph, Voul, (J40M)?) (3.4.17)

Also it follows from item (2) of Proposition 2.3 that
5[V, (0)"], V) = 5(= Y, Vo) = 0. (3.4.18)

In order to calculate the other terms in the right-hand side of identity (3.4.12), we need the
following lemma.

Lemma 3.5. The following relations hold:
(1) (prom)([(J*p"), Vym]) = J*ot,

(2) (prom)u([Vyn, Vyn]) = 370" — Bg(Juh, ph)ph.
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Proof. (1) Applying the Jacobi identity and the relation (3.4.6), we get
0= [Ty, [T, (VM)]) = ([, (62)7), (VA + [T, [V, (VA
Then it follows immediately that

(pr o M ([(*p")", Vya)) = = (or o m) ([(J*P")", [V, (VA)Y]))

= (Promu(([Vpr, (T2 (V')]) = =(pr o m)a([[V gugh, (VH)?]) = TH0P.

Note that the last identity follows from direct computations.
(2) As an analog of Lemma 2.12, we have

(pr o m)u([Vph, Vya]) = %J“vh - %g(J“vh,ph)ph, mod p". (3.4.19)
Moreover, it follows from identity (3.4.18) of Proposition 2.3 that
5([Ty, Vn, 0)?) = 3([ Vs, (5)7], Vi) = 0 (3.4.20)
Comparing identities (3.4.19) and (3.4.20), we get the item (2) of the lemma. O
Now applying item (1) of Lemma 3.5, we get
Q((pr o m)u([(J4p")°, Vyal),ob) = QU(T4h o) = — T2, (3.4.21)

Applying item (2) of Lemma 3.5, we get from (3.4.17) that

(Vo Tyal) o) = 3Ty (T, V) = TP - 2 0", 7o) (34.22)

Substituting identities (3.4.13)-(3.4.16), (3.4.18), (3.4.21), (3.4.22) into identity (3.4.12), we
get the required expression for the reduced curvature map. [J
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