Scuola Internazionale Superiore di Studi Avanzati Universitè Pierre et Marie Curie

A genomic approach to interneuron diversity and the emergence of an epileptic brain.

Thesis submitted for the degree of "Doctor Philosophiae"

S.I.S.S.A. – Neurobiology Sector Inserm U739 "Cortex et epilepsie"

CANDIDATE

Motti Dario

SUPERVISORS

Enrico Cherubini Richard Miles

CO-SUPERVISOR

Stefano Gustincich

Table of contents

NOTES	2
ABBREVIATIONS	3
ABSTRACT	4
INTRODUCTION	6
1. The Hippocampus	
1.1 Structural Organization	
2. The Hippocampal circuitry	
2.1 Fibres inputs, outputs and internal connexions	
2.2 Synaptic Transmission	
3. Cellular components of the Hippocampus	
3.1 Major neuronal types in the hippocampus	
3.2 Glial Cells.	
4. Interneurons of the hippocampus	
4.1 Overview	
4.2 Towards a classification of the interneurons	
4.3 Functional role of interneurons	
4.4 Molecular and genetic variety of interneurons	
5. Temporal Lobe Epilepsy	
5.1 Epilepsy	
5.2 Epileptic Syndromes	
5.3 Etiology of epilepsies	
5.4 Mesial Temporal Lobe Epilepsy - MTLE	
5.5 Molecular Mechanisms of MTLE	
6 Genomic tools to approach the complexity of the brain	
6.1 Gene Expression Analysis	
6.2 Gene expression profile studies in brain	
METHODS AND RESULTS	
• Different patterns of gene expression in Somatostatin-containing inter	neurons and
pyramidal cells of the hippocampus	
Introduction.	
Materials and Methods	
Results	
Discussion	69
• Gene expression changes associated with the emergence of epileptifor	m activity
after injection of kainic acid into the mouse hippocampus.	•
Introduction	
Materials and Methods	
Results	
Discussion	
CONCLUSIONS AND PERSPECTIVES	
REFERENCES	
SUPPLEMENTARY TABLES	

Notes

This thesis has been co-supervised by the International School for Advanced Studies in Trieste, Italy and the University Marie Curie in Paris, France. The work described in this dissertation was carried out in Trieste, Italy, between October 2004 and October 2007, under the direction of Prof. Enrico Cherubini and Prof. Stefano Gustincich and in the "Cortex et Epilepsie" lab in Paris, France, between November 2007 and August 2008 under the direction of Prof. Richard Miles. All work reported here, with the exception of the electrophysiological experiments (carried out by Caroline Le Duigou), and the morphological studies on epileptic network (carried out by Nicole Chemaly and Lucia Wittner), arises from my own experiments. All statistical analysis of the gene expression experiments on somastostatin-containing interneurons was performed by Remo Sanges, who also performed the normalization of GeneChip data in the epileptic network study. The work will be included in the following works in preparation:

Motti D, Le Duigou C, Eugene E, Chemaly N, Wittner L, Lazarevic D, Krmac H, Sanges R, Stupka E, Cherubini E, Gustincich S, Miles R. Gene expression changes associated with the emergence of an epileptiform activity after focal injection of kainic acid into the mouse hippocampus. *In preparation*

Motti D, Vlachouli C, Lazarevic D, Lagostena L, Minneci F, Sanges R L, Stupka E, Miles R, Cherubini E and Gustincich. Different pattern of gene expression in somatostatin-containing interneurons and pyramidal cells of the hippocampus. *In preparation*

The following study (under submission) arises from a collaborative project not included in the present thesis:

Valen E, Pascarella G, Chalk A, Maeda N, Sano H, Kojima M, Kawazu C, Murata M, Nishiyori H, Marstrand TT, Tang MHE, Krogh A, Winther O, Lazarevic D, **Motti D**, Arakawa T, Kawai J, Wells G, Daub G, Harbers M, Hayashizaki M, Gustincich S, Sandelin A, Carninci P. Genome-wide detection and analysis of hippocampus core promoters using DeepCAGE. (Under submission)

Abbreviations

GABA: gamma-aminobutyric acid **GABARs:** GABA receptors **EPSPs:** Excitatory Postsynaptic Potentials **IPSPs:** Inhibitory Postsynaptic Potentials **mRNA:** messenger ribonucleic acid PCR: polymerase chain reaction CNS: central nervous system **NSC:** Neural Stem Cells **SOM:** Somatostatin GAD: Glutamate Decarboxylase **GIN:** GFP-expressing Inhibitory Neurons RT-PCR: Reverse Transcription – Polymerase Chain Reaction **MTLE:** Mesial Temporal Lobe Epilepsy **EEG:** Electroencephalogram HS: Hippocampal Sclerosis **IPI:** Initial Precipitating Event KA: Kainic Acid WT: Wild Type

Abstract

The hippocampus is an archicortical region involved in functions including memorisation and spatial navigation. These operations depend on complex synaptic interactions involving both excitatory and inhibitory signaling between hippocampal neurones. Changes in the balance of excitatory and inhibitory systems may result in pathological conditions such as epilepsy. Understanding the properties of hippocampal cells and networks at multiple levels and in both physiological and pathological conditions is thus an important task for research on the healthy and diseased brain.

Genomic tools provide access to an essential level of organisation, that of gene expression and regulation in hippocampal cells. They may serve as a marker to study how a cell population responds to a physiological stimulus or identify genes specific to a defined cell type. Genetic approaches are also used to examine how gene expression is changed during pathological conditions and may help identify novel processes or molecules thus providing new pharmacological targets.

In the first part of my thesis, microarray analysis of gene expression was used to compare patterns of gene expression in a subfamily of Somatostatin containing hippocampal interneurons and principal glutamatergic excitatory cells. GABAergic interneurons constitute a heterogeneous group while pyramidal cells are probably a rather homogeneous population. Interneurone diversity is important for the function hippocampal networks, and this genomic analysis will help understand this diversity.

I found significant differences in genes expressed in interneurones and pyramidal cell populations. Protein products of differentially expressed genes are mainly involved in transport and signalling, together with some proteins coding for neurotransmitter receptors and channels and a cluster of transcription factors. Although these data need to be confirmed with RT PCR and immunocytochemical experiments, further work is necessary to identify genes involved in the development of the distinct phenotypes, in the control of different physiological properties or for use as cell type markers.

The second part of my thesis examined changes in gene expression during the establishment of an epileptic network after intra-hippocampal injection of kainic acid. Many genes were changed with different time courses and spatial localisation with respect to the injection site. The altered genes are often involved in immune and inflammation responses but also in cell death and growth processes. Some genes coding for proteins that control cellular excitability and neuronal communication were also changed. The major implication of inflammatory and immune processes is consistent with previous work on animal models of epilepsy or human epileptic tissue. I confirmed changes in some individual genes with qPCR analysis.

My work suggests that kainate injection changes the expression of early response genes near the lesion at 6hrs, but also induces distinct alterations at distant sites in contralateral hippocampus. A maximum number of changed genes was identified during the latent phase at 15 days after kainate injection but before the emergence of spontaneous seizures. At 6 months, recurrent spontaneous seizures have emerged and changes in gene expression are limited to the area near the lesion.

The progression of epilepsy in this animal model was confirmed with EEG and slice records and anatomical work was done to characterize the time course of cell death and fibre degeneration. Alterations in gene regulation correspond quite well to these electrical and anatomical data. Furthermore immuno-histochemical stains for specific proteins produced by differentially regulated genes revealed their expression by proliferating astrocyte precursors and by activated astroglial cells that were differentially localized in the two hippocampi.

In conclusion multiple different processes are triggered with different spatial patterns and timing during the emergence of an epileptic network. However, during the expression of recurrent seizures, few genes are changed except at sites surrounding the sclerotic lesion.

Introduction

1. The Hippocampus

1.1 Structural Organization

The hippocampus is one of best characterized brain structures, since its layered organization (Andersen, Bliss et al. 1971) is especially suitable for anatomical and physiological studies. In his book "*De Humano Foetu liber*" (Rome, 1564) Giulio Cesare Aranzi (1529-1589) named this brain structure "hippocampus" after the sea horse monster of Greek mythology (in Greek *hippo* means "horse" and *kampos* means "sea monster") due to a distinctive, curved shape that he likened to the famous mythological beast. The resemblence of the hippocampus to the horns of a ram, prompted another name - "cornu arietis" later changed by René Croissant de Garengeot (1688-1759) to "cornu ammonis" because of the ancient Egyptian god of Theba Amun who was presented as a ram headed man, or a ram headed sphinx. The shape of the hippocampus is maintained across the range of mammalian species, from hedgehog to human. Ramon y Cajal (1852-1934) made major advances in understanding the microscopic structure of the nervous system, using a modification of the Golgi (1843-1926) staining method, which completely stains a small proportion of cells. His discoveries on the cellular architecture of the hippocampal formation and its regional subdivisions remain a keystone of present day knowledge of the hippocampus as part of the archicortex.

The hippocampus plays a major role in some forms of learning and memory (Kandel 2001). Deep structures of the temporal lobe, including the hippocampus (Amaral and Witter 1989), are involved in the storage of long-term traces in humans and other mammalian species (Milner, Squire et al. 1998; Eichenbaum, Dudchenko et al. 1999; Kim and Baxter 2001; Burgess, Maguire et al. 2002). The rodent hippocampus is involved in spatial navigation and some hippocampal cells called "place cells" respond specifically with a high rate of firing when the animal moves through a specific location in an environment (O'Keefe 1983).

The hippocampus also has a high seizure susceptibility (Green 1964). Many human epilepsies originate in the temporal lobe and these seizures are often the most difficult to control with

anti-epileptic drugs. The hippocampus is especially vulnerable to ischemic and anoxic insults and parts of the hippocampal formation, particularly the enthorinal cortex, are prime targets for the pathology associated with Alzheimer's disease.

Anatomically, the hippocampus is an elongated structure located on the medial wall of the lateral ventricle, whose longitudinal axis forms a semicircle around the thalamus. Figure 1 shows the location of the hippocampal formation in the rat brain. With a layered organisation, cutting the hippocampus across its transverse, septo-temporal axis, results in a familiar structure well preserved in all slices with this orientation. The hippocampus proper and its neighbouring regions, the dentate gyrus (DG), subiculum and enthorinal cortex, are collectively termed the "hippocampal formation". Cajal divided it into four regions or "cornu ammonis" areas CA1-CA4 based on the size and appeareance of neurons. CA1 and CA3 are the largest zones, CA4, or the hilus, corresponds to the initial part of CA3 and in rodents the CA2 region is small. While CA1 represent a small-celled distal region, CA3 and CA2 fields are equivalent to a larger-celled region closer to dentate gyrus. Evenmore CA1 and CA3 present a clear connectional difference that will be discussed in the next section. The CA2 field was originally defined as a zone of large cells like CA3 but that did not receive innervation like the CA1. In CA3 area Lorente de Nó (1934) identified 3 subareas by anatomical position: CA3a (the bend of the CA3), CA3b (the ventral portion between the bend and the lateral end of the DG) and CA3c (the portion incapsulated by the blades of the DG). Pyramidal cell somata are arranged in a layer, the stratum pyramidale, in all these regions. Other identified layers include stratum oriens, the site of pyramidal neuron basilar dendrites, stratum radiatum, and stratum lacunosum*moleculare* where the apical dendrites of pyramidal cells are radially oriented. The principal cells of the dentate gyrus, granule cells, possess only apical dendrites.

2. The Hippocampal circuitry

2.1 Fibres inputs, outputs and internal connexions

The main input to the hippocampus is the perforant path. It originates in the enthorinal cortex, mainly in layers II and III, but also in layers IV and V. It passes through the subicular complex and terminates mainly in the dentate gyrus, making synapses on granule cells.

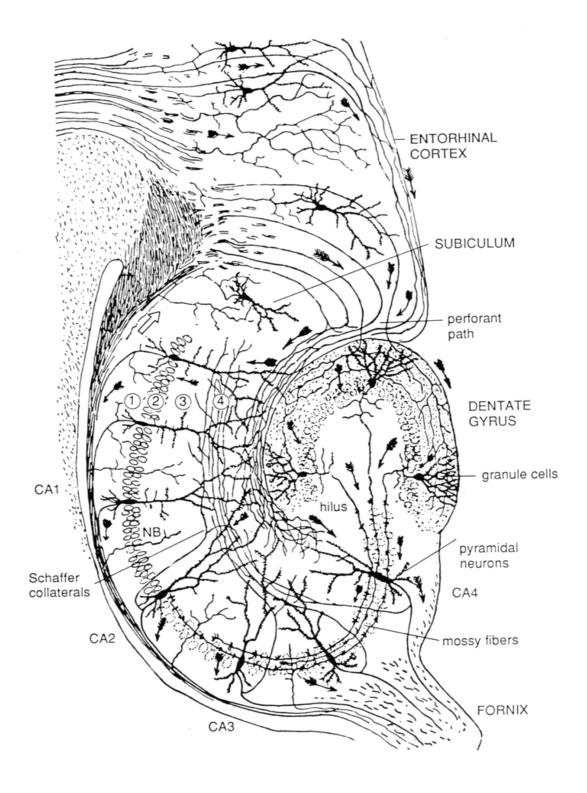


Fig. 1. NEURONAL ELEMENTS OF THE HIPPOCAMPAL FORMATION. Labelled areas include the subiculum, part of the enthorinal cortex, the fornix, the dentate gyrus and the region CA1 to CA4. The hippocampus *proper* is divided into *stratum oriens* (1), *stratum pyramidale* (2; cell bodies drawn as ovals), *stratum radiatum* (3) and *stratum lacunosummoleculare* (4). (Modified from Ramón y Cajal, 1911)

The distinctive unmyelinated axons of the granule cells, the mossy fibres (MF), give rise to large *en passant* swellings and terminal expansions on CA3 principal neurons or mossy cells seen as giant boutons at the electron microscopic level. These presynaptic swellings adapt very well to specialized postsynaptic elements present on proximal dendrites of CA3 principal cells, called *thorny excrescences*. The MF synaptic complex contains multiple active zones (up to 50) associated with postsynaptic densities. In addition MF make synaptic contacts with GABAergic interneurons present in the *hilus* and in the CA3 area and these represent the majority of all MF connections. These have either the shape of small boutons or filopodial extensions. Differences in morphology between MF terminals at principal cells and interneurons may account for the distinct functional properties of these synapses which appear to be regulated in a target specific way. The axons of CA3 pyramidal cells ramify locally and also form Schaffer collaterals which contact CA1 pyramidal neurones. CA1 pyramidal cells project to the subiculum and the deep layers of enthorinal cortex.

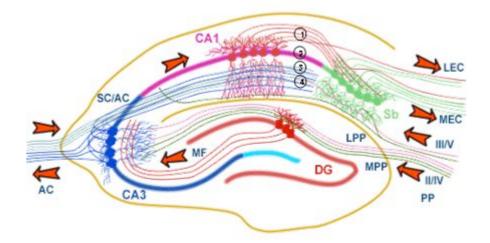


Fig. 2. THE HIPPOCAMPAL NETWORK. Hippocampus forms a uni-directional network with inputs from the Entorhinal Cortex (EC) that forms connection with the Dentate Gyrus (DG) and CA3 pyramidal neurons via the perforant path (PP-split into lateral and medial, LPP and MPP respectively). CA3 neurons receive also input from the DG via the Mossy Fibres (MF). They send axons to the CA1 pyramidal cells via the Schaffer Collateral Pathway (SC) as well as to CA1 cells in the controlateral hippocampus via the Associational Commissural Pathway (AC). CA1 neurons also receive inputs directly from the PP and send axons to the Subiculum (Sb). These neurons in turn send the main hippocampal output back to the EC forming a loop.

Thus, neuronal signals entering the entorhinal cortex from a specific cortical area can traverse the complete tri-synaptic hippocampal circuit before returning to the cortical area from which they originated.

Commissural associative fibres connect mainly CA3 pyramidal neurons of ipsi- and contralateral hippocampi, *via* the fornix. CA3 pyramidal cells also make synapses with their neighbouring

cells via axon collaterals. The simultaneous activation of these connections may be involved in generating epileptiform activity, characterised by synchronised and rhythmic firing in the CA3 cell population (Miles and Wong 1986; Traub and Miles 1991). These connections may contribute to the initiation of seizures in this region when convulsive drugs are applied (Ben-Ari and Cossart 2000). Physiologically, the recurrent associative network in the CA3 region may contribute to the associative memory recall (Nakazawa, Quirk et al. 2002)

2.2 Synaptic Transmission

Most synaptic contacts between neurons are made between synaptic *boutons*, either at an axon terminal or along (*en passant*) axons of a presynaptic neuron, and finger-like processes, or spines, of postsynaptic dendrites (axo-dendritic synapses). Synaptic contacts may occur also between axon terminals and soma (axo-somatic), between two axons (axo-axonic) and between dendrites (dendro-dendritic synapses).

Chemical synapses operate via the release of neurotransmitters from presynaptic nerve terminals. Once released, neurotransmitters diffuse in the synaptic cleft and bind to selective membrane proteins (receptors) present on the postsynaptic membrane in close opposition to presynaptic release sites. The bind of the transmitter to the receptors induces the opening of ion channels and electrical changes in the postsynaptic cells. The resulting depolarizing or hyperpolarizing voltage changes (the excitatory postsynaptic potentials or EPSPs and the inhibitory postsynaptic potentials or IPSPs) move the membrane potential towards or away from action potential threshold, respectively. IPSPs usually reduce cell excitability. The reduction in excitability may result from (either or both) a shift in membrane potential towards negative values or by a reduction in membrane resistance (also known as a shunting effect). An inhibitory current can be elicited by the inflow of negative charged ions or by the outflow of positive charges through ligand or voltage-activated channels. In the adult brain, GABA is the main inhibitory neurotransmitter (Sivilotti and Nistri 1991; Kaila 1994) and glutamate (Glu) is the major excitatory transmitter (Storm-Mathisen 1977; Roberts and Sharif 1981). Ionotropic receptors for Glu were first classified, on the basis of their most effective agonists, as alphaamino-3-hydroxy-5-methyl-4-isoxazolepropionate (AMPA), kainate or N-methyl-D-aspartate (NMDA). These receptors not only bind neurotransmitter but also open a membrane channel permeable to Na⁺, K⁺ and sometimes Ca⁺⁺ (Ascher and Nowak 1986). Calcium in turn can activate different signaling pathways. GABA activates ionotropic receptors permeable to Cl⁻

and to a lessser degree to HCO₃⁻ (Bormann, Hamill et al. 1987; Schofield, Darlison et al. 1987; Polenzani, Woodward et al. 1991).

The second major class of post-synaptic receptor has been termed metabotropic because they do not form ion channels but are indirectly linked to ion channels through GTP-binding proteins (G-proteins). The nature of the ion channels and of the G-protein interaction determines the functional effects of metabotropic transmission. Eight distinct metabotropic receptors which operate via several distinct intracellular signalling cascades have been identified for glutamate: mGluR1-8 (Schoepp and Conn 1993; Pin and Duvoisin 1995). Their activation tends to induce a post-synaptic excitation often by the suppression of specific K-channels. Activation of mGluRs expressed on axon terminals enhances transmitter release. G-coupled receptors for GABA, known as GABAB receptors (Hill and Bowery 1981; Wilkin, Hudson et al. 1981; Kaupmann, Huggel et al. 1997), inhibit neurones via inward rectifying K+ conductances (Gage 1992; Mott and Lewis 1994; Misgeld, Bijak et al. 1995) or by suppressing voltage-sensitive Ca²⁺ conductances (Kamatchi and Ticku 1990) and they may reduce transmitter release when expressed at pre-synaptic sites.

3. Cellular components of the Hippocampus

3.1 Major neuronal types in the hippocampus

Pyramidal cells, which account for about 90% of hippocampal neurons, are a rather uniform cell population with homogenous morphology. They are named for their somatic shape and possess apical and basal dendrites. Pyramidal cells are excitatory and liberate the neurotransmitter glutamate (Storm-Mathisen 1977; Roberts, J. et al. 1981).

In contrast, inhibitory interneurons, which form about 10% of hippocampal neurons constitute a heterogeneous population of cells (Freund and Buzsaki 1996) and liberate the transmitter γ -aminobutyric acid (GABA). They play a critical role in controlling communication between pyramidal neurones and the balance between excitation and inhibition, a critical factor in hippocampal function. Interneurons are distributed across all layers of the hippocampus and have a highly variable morphology. They differ from pyramidal cells in their active and passive membrane properties. For instance, pyramidal cells accommodate (during a steady current

pulse the firing is not maintained but decline with time) while interneurons usually do not accommodate and can fire at frequencies up to 400 Hz with little reduction in frequency (Lacaille 1991). This may be due to major differences in transcript expressions for distinct subunits of voltage-gated K⁺ channels. Kv3.1 and Kv 3.2 would be preferentially expressed in basket cell interneurons while Kv4.2 and Kv4.3 in pyramidal cells (Martina, Schultz et al. 1998). The resting membrane potential of pyramidal cells and interneurons also differs being in interneurons 10-15 mV more depolarized. Moreover, in comparison with principal cells, interneurons exhibit a higher input resistance (Morin, Beaulieu et al. 1996; Cauli, Audinat et al. 1997; Savic, Pedarzani et al. 2001). These differences seem to depend on the differential expression of pH-sensitive leak potassium channel TASK, a subtype of KCNK channel that regulates resting membrane potential and input resistance. TASK channel subunits 1 and 3 seem to be more highly expressed in pyramidal cells than in interneurons (Taverna, Tkatch et al. 2005).

Pyramidal cells and interneurones also differ in peptide composition, neurotransmitter receptor subunit expression and neurotransmitter release mechanisms (Buzsaki 2001). Further studies and novel techniques may uncover additional differences between these two classes of neurons. Global gene expression profiling for instance (see *Section 6*) may provide a useful strategy for identifying different neuronal subtypes (Mott and Dingledine 2003; Markram, Toledo-Rodriguez et al. 2004). Microarray mRNA expression analysis has been used to compare the cellular heterogeneity of excitatory and inhibitory neurons in different brain areas (Sugino, Hempel et al. 2006) including the CA1 region of the hippocampus (Kamme, Salunga et al. 2003).

Hippocampal function is thought to depend on the balance between synaptic excitation and inhibition and changes in this balance may lead to aberrant activities including seizures. Differences in the expression of subunits for Glu and GABA receptors may thus be finely tuned to generate appropriate and different behaviours of pyramidal cells and interneurons. Differences in subunit composition have been examined by immunohistochemistry (Macdonald and Olsen 1994; Pickard, Noel et al. 2000), by combined patch – single cell PCR studies (Martina, Schultz et al. 1998; Taverna, Tkatch et al. 2005) and by work on mRNA expression profiles (Telfeian, Tseng et al. 2003). However, without full information on differences in genes expressed by these two cell types, knowledge of factors underlying distinct physiologies and diversities will remain incomplete.

3.2 Glial Cells

Glial cells comprise two major subclasses: microglia and macroglia with different origins, morphology and function. While glial were thought to support and maintain neurones, recent evidence suggests their involvement in synaptic transmission and modulation of neuronal excitability as well as other further functions that remain to be clarified.

3.2.1 Microglia

Microglial cells, which are distributed throughout the CNS, form about 20% of brain glial cells (Lawson, Perry et al. 1990). They have a myeloid origin, deriving from bone marrow precursor cells (Ling and Wong 1993) and form a resident, stable population of innate immune cells whose phenotype seems to represent an adaptation of the monocyte and macrophage cells of the blood to a neural environment.

In normal brain, microglial phenotype is downregulated and characterized by a low expression of the CD45 leukocyte antigen. Microglia normally have no phagocytitotic or endocytotic activity and proteins that induce or mediate typical macrophage functions are poorly expressed or absent (Kreutzberg 1996). Normal levels of neuronal activity apparently act to maintain this inactivate microglial cell phenotype via neurotrophin signalling (Neumann, Misgeld et al. 1998; Wei and Jonakait 1999) as well as neurotransmitter and peptide levels (Hetier, Ayala et al. 1991; Delgado, Carlin et al. 1998). It has recently been suggested that neurons signal directly to microglia, in cell-to-cell fashion, with an inhibitory signal involving the membrane glycoprotein OX2 (Hoek, Ruuls et al. 2000; Wright, Puklavec et al. 2000).

A wide range of injuries can quickly transform resting microglia to an activated state in which they act as the main immune effector cells of the brain (Gehrmann, Matsumoto et al. 1995). Microglial activation or "maturation" involves a stereotyped sequence of steps including proliferation, expression of new molecules and movement to the injury site. This response can be induced via direct interaction with pathogens and microbial structures (Medzhitov and Janeway 2000) or may involve membrane receptors for different cytokines liberated in the CNS during inflammation (Aloisi 2001). Microglia also respond quickly to increases in potassium, due to their expression of a unique palette of potassium channels, in this way providing a feedback from a cell-firing dependant increase in extracellular potassium (Gehrmann, Mies et al. 1993).

When activated, microglia has phagocytic capacity and secretes multiple signalling molecules including pro- and anti-inflammatory cytokines (i.e. IL-1, TNF- α , INF- γ), chemokines (i.e. IL-8, MIP-1 and RANTES) and prostanoids (i.e. PGD₂ and PGE₂). These factors stimulate and

modulate humoral and cell mediated immune responses, recruit and regulate T-cell responses and also have cytotoxic actions (for a review see Aloisi 2001).

Beside the resident population in many types of neuroinflammatory, neuroinfectious or neurodegenerative processes, recruitment of new cells from the bone marrow occurs (Davoust, Vuaillat et al. 2008) leading to a renewal of the microglial population (Lassmann, Schmied et al. 1993; Flugel, Bradl et al. 2001; Priller, Flugel et al. 2001). In vitro studies suggested a role from astrocytes (see next section) in the differentiation of the bone marrow derived progenitors into microglial cells (Schmidtmayer, Jacobsen et al. 1994; Sievers, Parwaresch et al. 1994).

3.2.2 Macroglia

Macroglia are a large cell class including oligodendrocytes and astrocytes. They originate, as do neurones, from the differentiation of multipotent neural stem cells (NSCs).

Oligodendrocytes, located in white matter, act primarily to form myelin (Bunge 1968) an insulation of modified plasma membrane that surrounds myelinated axons. They govern the speed and efficacy of axonal impulse conduction and so are essential to CNS function.

Astrocytes were thought to support neuronal function by supplying essential substrates and removing toxic substrates, but recent data suggests they are intimately involved in the neurogenesis occuring in restricted brain regions of adult mammals including the hippocampus (Doetsch and Scharff 2001; Song, Stevens et al. 2002). Astrocytes can retain stem cell like properties (Doetsch 2003) and induce differentiation in adult neural stem cells (Song, Stevens et al. 2002) or direct differentiation in neuronal cell types (Berninger, Costa et al. 2007).

Another interesting role for astrocytes is as a third partner, with pre- and post-synaptic elements in the structural and functional organization of synapses. Porter and colleagues have shown that astrocytes express receptors and respond to several neurotransmitters including glutamate (Porter and McCarthy 1996; Porter and McCarthy 1997) and GABA (Kang, Jiang et al. 1998; Araque, Martin et al. 2002). Astrocytes modulate also neurotransmission by controlling ambient transmitter levels with glutamate transporters and instruct the development, maintenance and recovery of synapses.

Synaptic stimuli from neurones can evoke astrocytic responses including increases in intracellular Ca²⁺ and release of "gliotransmitter". Self propagating waves of Ca²⁺ signals are reported to spread long distances to other glial cells via gap junctions or ATP signals (Newman 2001). Reciprocally, reports suggest that astrocytes can release glutamate (Bezzi, Carmignoto et al. 1998; Araque, Li et al. 2000; Pasti, Zonta et al. 2001; D'Ascenzo, Fellin et al. 2007; Fellin, D'Ascenzo et al. 2007) or D-Serine, an endogenous ligand for NMDA receptors (Mothet, Pollegioni et al. 2005) and depolarize neurones in several regions including hippocampus (Hassinger, Atkinson et al. 1995). Studies also suggest that a potentiation of hippocampal synaptic transmission induced by repetitive inhibitory cell firing may depend on glutamate release

from nearby astrocytes (Kang, Jiang et al. 1998). These results confirm that astrocytes have a real role in synaptic transmission.

4. Interneurons of the hippocampus

4.1 Overview

Since the anatomical studies of Ramón y Cajal (1911) and Lorente de Nó (1934) on the hippocampal cortex, it has been clear that the morphology and connectivity of local circuit neurons are heterogeneous while those of principal seem to be more uniform.

The term interneuron was originally used to describe invertebrate cells that were neither input nor output neurons. As the concept of synaptic inhibition developed (Eccles 1964), it came to be used as a synonym for inhibitory cells with short axons. These cells were seen to play an essential role in the regulation of local circuit excitability, while principal cells, with long axons, were considered as channels to project information to distant brain regions. The continued emergence of functional, biochemical and anatomical data on principal and inhibitory cells has revealed exceptions to this definition such that the original views on interneurons are clearly an oversimplification. Glutamatergic cells make synapses locally as well as at a distance, and GABAergic cells can make synapses at a distance as well as locally. Thus the short axon cells of Golgi, non pyramidal cells of Ramón y Cajal and Lorente de Nó, and inhibitory interneurons of Eccles may be identical but they are far from the full story.

For this work, 'non-principal cells' of the hippocampus may be a sufficiently simple and accurate term to describe GABAergic local circuit inhibitory cells, even while recognizing that some of these cells may have long-range extra-hippocampal or commissural projections. At the same time, glutamatergic neurons such as the mossy cells which have a purely local connectivity are not considered to be interneurons. Since most, if not all, non-principal cells use GABA as a transmitter (Freund and Buzsaki 1996), the definition "GABAergic non-principal cells" appears to be the most adequate for hippocampal interneurons.

With a unifying criterion established, attention has turned to a search for how to classify GABAergic non-pyramidal cells, with a goal of constraining interneuron diversity into a manageable number of precisely defined and non-overlapping subgroups. The different approaches to this goal will be described in detail.

4.2 Towards a classification of the interneurons

The problem of a classification of interneurones remains to be completely resolved. Ideally a combination of functional, chemical and anatomical markers should permit separation of hippocampal GABAergic cells into neat sub-populations. Multiple schemes have been proposed: they vary from 10-20 classes defined in terms of morphology and neurochemistry (Freund and Buzsaki 1996; McBain and Fisahn 2001; Maccaferri and Lacaille 2003; Somogyi and Klausberger 2005) to suggestions that while groups exist, interneurons may be difficult to classify when anatomy, physiology and the expression of receptors for modulating transmitters are all taken into account (Mott, Turner et al. 1997; Parra, Gulyas et al. 1998).

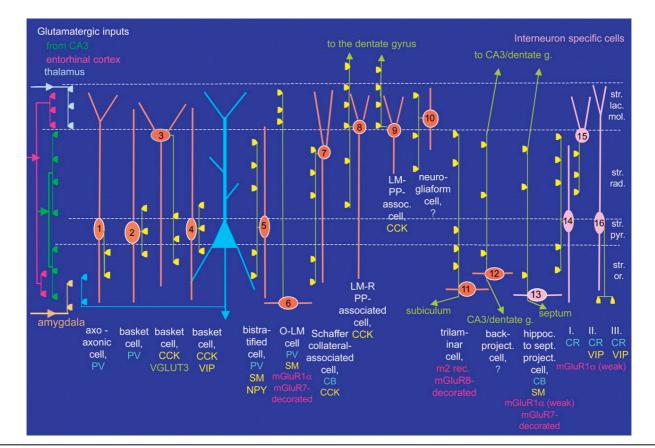


Fig. 3. INTERNEURONS IN THE CA1 AREA OF THE HIPPOCAMPUS. Somata and dendrites of interneurons innervating pyramidal cells are shown in orange, those innervating other interneurons are shown in pink. Axons are green and the main termination zone of GABAergic synapses are shown in yellow. Molecular cell markers in combination with the axonal patterns help the recognition and characterisation of each class. Further data may lead to lumping of some classes and to the identification of additional cell types. CB, calbindin; CR, calretinin; LM-PP, lacunosum-moleculare-perforant path; LM-R-PP, lacunosum-moleculare-radiatum-perforant path; m2, muscarinic receptor type 2; NPY, neuropeptide tyrosine; PV, parvalbumin; SM, somatostatin; VGLUT3, vesicular glutamate transporter 3. (Somogyi and Klausberger 2005)

Interneurons illustrate the wider problem of the definition of a cell type. There are both theoretical and practical difficulties in such a definition. The criteria to define a cell type are not universally accepted, but also conclusions must sometimes be based on small data-sets using

partial criteria. Furthermore we should recognize that variability does, and perhaps must, exist within a single cell population (Aradi, Santhakumar et al. 2002; Foldy, Aradi et al. 2004) even though it can complicate cell classification.

The following sections provide an overview of a different interneuron features used in classification schemes (see Maccaferri and Lacaille 2003). It is probable that measurements of many parameters should permit a given cell to be clustered with similar cells in a region of parameter space corresponding to a *cell type*. Experimentally only a few parameters may be available, so it is important to establish which partial measures can best situate a cell correctly within its class, in a cortical area, across areas or across species. Progress towards this goal may be most rapid in simple cortical areas such as the CA1 region of the hippocampus (Somogyi and Klausberger 2005).

4.2.1 Morphological classification

The idea that neurones with different shapes have distinct roles in the cortex was implicit in the early work of Ramón y Cajal and was elegantly elaborated by Janos Szentagothai (1975). A differential and highly selective location of synaptic terminals made by short axon cells on all target neurones suggests that different cells may have specific and distinct functional roles (Ramon y Cajal 1893; Szentagothai 1975). Indeed, interneuron anatomy alone provides insights into how different cell types contribute within hippocampal circuits, by relating the somatodendritic location to the layer specificity of synaptic input and the axonal projections to the postsynaptic target domain.

Based on Golgi staining Ramon y Cajal (1893) and Lorenté de No (1934) distinguished ~20 different types of hippocampal interneurons. Distinct cell types were first described according to features of their axonal or dendritic processes (e.g. basket cell, horizontal cell and stellate cell). Labelling techniques can now reveal the entire dendritic and axonal processes of recorded cells (Buhl, Halasy et al. 1994). The large number of interneuron types was matched by an equally rich terminology including both classical descriptions such as basket cells and new terms emphasizing different aspects of interneuron anatomy (Gulyas, Miles et al. 1993). The postsynaptic target domain has been highlighted for the 'axo–axonic cells', which innervate the axon initial segment of pyramidal cells (Buhl, Halasy et al.1994). The site of layers containing the soma and axonal processes is noted in the names of O-LM cells (oriens–lacunosum moleculare, Freund and Buzsáki 1996), P-LM cells (pyramidale–lacunosum moleculare, Oliva, Jiang et al. 2000) and O-OR bistratified cells (oriens–oriens and radiatum, Maccaferri, Roberts et al. 2000). For long-range projecting interneurons, the origin and target brain regions were embedded in the terminology, as for hippocampo–septal neurons. Other names have emphasized the orientation of interneuron dendrites, as in stellate cells, and the vertical or horizontal cells of

stratum oriens, as well as the nearby excitatory synapses on post-synaptic sites such as the Schaffer-collateral associated interneurons.

However, without a universal nomenclature the same type of interneuron has been named differently by different investigators (e.g. horizontal cells in McBain, DiChiara et al. 1994, and O–LM cells in Maccaferri, Roberts et al. 2000; vertical cells in McBain, DiChiara et al. 1994, and basket or bistratified cells in Buhl, Halasy et al. 1994). There is a strong need for an accepted interneuron vocabulary as was pointed out very recently by the foundation of The Petilla Interneuron Nomenclature Group (PING) a representative group of researchers that provided a set of terms to describe the anatomical, physiological and molecular features of GABAergic interneurons of the cerebral cortex (Ascoli, Alonso-Nanclares et al. 2008). Despite the descriptive power of an accurate anatomical characterization, the role of an interneuron in an active brain network is also crucially shaped by its functional properties which must, therefore, be included in its definition.

4.2.2 Functional classification

Interneurons are not completely defined by their anatomy. Cells with a similar morphology may have widely varying electrical and molecular properties. The first physiological descriptions were based on action potential firing patterns, and again different investigators made different classifications : accommodating or non-accommodating, bursting, fast-spiking cells and regular-spiking cells (Lacaille, Mueller et al. 1987; Traub, Miles et al. 1987; Kawaguchi and Hama 1988). More recently, interneurons have been divided according to their steady-state or initial responses to stimuli, or spontaneous firing pattern, distinguishing for instance between cells that fired in a regular, irregular or clustered fashion (Parra, Gulyas et al. 1998). Such classifications are useful, but as for the morphology, few studies have attempted to demonstrate that discrete classes exist rather than a continuum.

Furthermore, firing patterns result from a combination of the activities of numerous voltagegated conductances. The proteins responsible have distinct somato-dendritic expression patterns in different interneurons. During firing their effects overlap in time, to impart subtle characteristics to action potential timing and waveform. So, while practically useful, this classification may become problematic with the large number of membrane channels known to contribute to the distinct electrical activity of inhibitory neurons (Vinet and Sik 2006). Another physiological basis for interneuron classification derives from the nature of transmission at afferent excitatory synapses. In particular the facilitation or depression of EPSPs, recorded in experiments on connected pairs of neurons, during repetitive afferent activation is suggested as a useful descriptive criterion. However, the utility of such schemes can be questioned, since single axons can transmit information in a target-specific manner (Maccaferri, Toth et al. 1998; Scanziani, Gahwiler et al. 1998).

4.2.3 Neurochemical classification

Differences in chemical markers expressed by interneurons, determined with immunohistochemical tools, have provided data for classification schemes. Even while no single marker defines a specific interneuron type, neuropeptides and Ca-binding protein distribution has been especially useful to distinguish cell types (Freund and Buzsaki 1996).

Interneurons all contain GABA (Storm-Mathisen, Leknes et al. 1983), and the GABAsynthesizing enzymes GAD65 and GAD67 (Ribak 1978). Specific interneuron populations contain different peptides, including somatostatin, cholecystokinin (CCK) and substance P, or Ca²⁺-binding proteins, such as calbindin, parvalbumin and calretinin, (Somogyi, Hodgson et al. 1984). These markers have been used to produce a neurochemical classification which may also imply functional differences (Freund and Buzsaki 1996; Baraban and Tallent 2004). Parvalbumin, calbindin or calretinin expression seems to discriminate between interneurons with different dendritic geometry, postsynaptic target selection and synaptic input density (Gulyas, Megias et al. 1999). However, morphologically defined interneurons may co-exist in a single neurochemically identified subgroup. For example, O-LM, O-bistratified, P-LM and radiatumlacunosum moleculare (R- LM) interneurons of the CA1 hippocampal subfield are all immunoreactive for somatostatin (Katona, Acsady et al. 1999; Maccaferri, Roberts et al. 2000; Oliva, Jiang et al. 2000; Losonczy, Zhang et al. 2002). Similarly, parvalbumin is expressed by basket and axo-axonic cells (Kosaka, Katsumaru et al. 1987; Klausberger, Magill et al. 2003) as well as at lower levels in the soma and dendrites but not terminals of O-LM cells (Maccaferri, Roberts et al. 2000; Losonczy, Zhang et al. 2002). Furthermore distinct markers may be expressed in morphologically similar interneurons with different functional properties. Basket cells for instance express parvalbumin or CCK (Freund 2003). Therefore, a combined neurochemical and anatomical classification will be more useful than a scheme based on either one of these parameters. Addition of physiological properties results in further overlap since for instance somatostatin-expressing neurons exhibit a high degree of electrophysiological variability (Ma, Hu et al. 2006).

Recent *in vivo* data suggest a functional approach based on axonal and dendritic anatomy, chemical markers and cellular firing pattern during population activities such as theta oscillations and sharp waves may be useful. Parvalbumin-positive basket cells, axo–axonic cells and somatostatin-containing O–LM cells fired in distinct patterns (Klausberger, Magill et al. 2003). More data is needed on further cell types, but these results suggest that specific types of interneuron are selectively recruited for distinct functions in different brain states.

4.3 Functional role of interneurons

Many principles of interneuron function were first defined in the hippocampus, especially the dentate gyrus (Freund and Buzsaki 1996). This work suggested that GABA-releasing hippocampal interneurons act to regulate the activity of principal cells. Recent evidence indicates that interneurons may also be intimately involved in the generation and control of rhythmic brain activities. Their highly divergent network connectivity, the existence of interneurons that specifically target other interneurons and the complex inhibitory cell firing patterns due to specific distributions of voltage-gated currents are finely tuned to permit inhibitory interneurons to regulate network oscillations. Perisomatic interneurons in particular exert a strong control on pyramidal cell population discharges, and thus cognitive operations, (Freund 2003). The diverse yet precise connectivity of different types of interneurons (Ramon y Cajal 1893; Lorente de Nó 1934) enables them to carry out multiple tasks.

Interneurons are excited by synaptic input from several sources both intrinsic and extrinsic to the hippocampus (Lacaille, Mueller et al. 1987; Kawaguchi and Hama 1988; Freund and Buzsaki 1996; Oliva, Jiang et al. 2000) which exhibit various activity-dependent plasticity (Losonczy, Zhang et al. 2002). Gulyas, Megias et al. (1999) studied differences in excitatory innervation of CA1 interneurons containing parvalbumin, calretinin and calbindin. Both parvalbumin and calretinin interneurons received synapses from all strata, while calbindin cells were excited primarily by Schaffer collaterals in stratum radiatum. This suggests calbindin cells are activated by feed-forward circuits, while parvalbumin and calretinin fortaining cells receive both feed-forward excitation from the Schaffer collaterals, entorhinal fibres and thalamic afferents, and feed-back excitation by CA1 recurrent collaterals. Activity-dependant plasticity at synapses that excite interneurons appears to differ from synapses that excite principal cells (Maccaferri and McBain 1996; McBain, Freund et al. 1999).

Several evidences revealed that inhibitory interneurons of the hippocampus are interconnected by electrical synapses. An electrical synapse is a mechanical and electrically conductive junction between two cells woth a narrow gap between pre- and postsynaptic cell known as a gap junction. Dendrodendritic gap junctions between interneurons are frequently seen in areas CA1 and CA3 (Kosaka and Hama 1985) and in the dentate gyrus (Kosaka 1983). Several types of gap junction–coupled interneurons have been identified (Katsumaru, Kosaka et al. 1988; Fukuda and Kosaka 2000). The structural proteins comprising gap junctional channels are called connexins. Single-cell RT-PCR experiments has revealed the presence of mRNA encoding for connexin 36 (Cx36) in interneurons (Venance, Rozov et al. 2000). Furthermore, although

electrical coupling between pairs of interneurons was abundant in the CA3 and in the dentate areas of wild-type mice, it was absent in cells of Cx36 knockout mice (Hormuzdi, Pais et al. 2001).

The functions of electrical coupling between hippocampal interneurons are not yet well understood. Many studies have focused on the possibility that gap junctions play a role in generating or modulating synchronous oscillations or seizure-like activity (Draguhn, Traub et al. 1998; Hormuzdi, Pais et al. 2001; Traub, Draguhn et al. 2002; Buhl, Harris et al. 2003).

4.4 Molecular and genetic variety of interneurons

Recent technical developments, including single-cell reverse transcriptase polymerase chain reaction (RT-PCR), *in vivo* labelling and other molecular biological methods now permit a molecular approach to interneuron diversity (Meyer, Katona et al. 2002; Blatow, Rozov et al. 2003; Monyer H 2004). The generation of transgenic mice expressing fluorescence in parvalbumin positive interneurons allowed Meyer and colleagues to study electrical coupling between these cells. They showed an interesting developmental regulation of the presence and strength of electrical coupling in distinct brain areas (Meyer, Katona et al. 2002). Blatow and collagues used the same animals to identify a new subclass of PV positive interneurons that differed physiologically from the fast-spiking interneurones which also express parvalbumin. These distinct Multipolar Bursting cells (MB) also express calbindin while fast-spiking cells do not (Blatow, Rozov et al. 2003). Can this approach determine whether interneurons should be divided into discrete classes, or rather considered as a continuum of different neurons?

The acceptance of distinct anatomical classes of interneurons has been facilitated by the evident functional differences between cells that for instance target different somato-dendritic domains of pyramidal cells. At the molecular level, some markers are expressed only by certain interneuron types. However, it seems clear that no single marker defines a single anatomical or electrical interneuron sub-type, but rather multiple markers must be analysed. At the electrical level, the diversity might seem arbitrary, probably due to the lack of defined functions for the different behaviours. The class-versus-continuum issue can probably only be resolved objectively by studies that examine variations in gene expression.

The electrical diversity of neocortical interneurons results from the somato-dendritic pattern of expression of distinct ion-channels as well as neuronal form. Ion-channel gene expression seems to correlate with interneuron physiology falling into three clusters according to expression of different calcium-binding proteins (Markram, Toledo-Rodriguez et al. 2004). The correlation between expression profiles and electrical phenotypes, constraints in co-

expression profiles and the 'flip' of entire expression profiles into opposing electrical phenotypes, suggest that expression of distinct combinations of just a few transcription factors, may define a finite number of distinct interneuron classes (Toledo-Rodriguez, Blumenfeld et al. 2004; Toledo-Rodriguez, Goodman et al. 2005). Recent work in this field suggests the *Lhx* and *Dlx* families of transcription factors are especially important. Ghanem and colleagues have shown that different enhancers of the *Dlx1* and 2 locus (*i12b* and *URE2*) are expressed in distinct subsets of cortical interneurons (Ghanem, Yu et al. 2007). Zhao and colleagues have provided new detail on how Lhx6 controls the specification and development of interneurons (Zhao, Flandin et al. 2008).

So, most interneurons probably belong to distinct electrical, morphological and molecular classes. Detected diversity is much less than that expected for a continuum of electrical types with more than 100 available ion-channel genes. This points to strong constraints on diversity which can be studied with molecular and genetic tools, permitting perhaps a resolution of the class-versus-continuum debate for interneurons.

This work has already begun with the use of transgenic animals to examine molecular variability of interneurons. The use of knock out mice has already helped understand links between the chemical content of GABAergic interneurons and their network functions (Deans, Gibson et al. 2001; Hormuzdi, Pais et al. 2001). At a practical level, transgenic mice now permit easy visualisation of specific interneuronal subfamilies (Oliva, Jiang et al. 2000; Meyer, Katona et al. 2002) greatly facilitating classification studies.

5. Temporal Lobe Epilepsy

5.1 Epilepsy

The hippocampus is vulnerable to anoxia and ischemia and it is affected early in the pathology associated with Alzheimer's disease. The hippocampal formation also has an especially low threshold for certain forms of epilepsy (Green 1964). The word "Epilepsy" derives from the greek *Epilambanein*, meaning "to take hold of" or "to seize". A seizure corresponds to a sudden abnormally synchronous neuronal activity at one or more brain regions. The clinical characteristics of the seizure depend on the regions involved.

5.2 Epileptic Syndromes

Multiple epileptic syndromes exist and together affect ~1% of the world population (McNamara 1999). The incidence in developed countries is ~50/100.000 persons per year. The incidence is higher in infants and elderly people and also in non developed countries (MacDonald, Cockerell et al. 2000; Sander 2003; Forsgren, Beghi et al. 2005).

Epileptic syndrome classification has evolved over the years. Systems were published in 1969 and 1981, then again in 1985 and 1989 by the Commission on Classification and Terminology of the International League Against Epilepsy (TFCT-ILAE 1981; TFCT-ILAE 1989). The 1969 / 1981 classification was based exclusively on clinical and electroencephalographic criteria. The more recent classification of 1985 / 1989 also takes the presumed origins of the pathology into account. The first system made a major distinction between focal, or partial, seizures, generalized convulsive seizures and generalized non convulsive seizures, also known as absence seizures. The second classification introduced idiopathic, symptomatic and cryptogenic syndromes.

Partial seizures originate in a defined unilateral region, known as the epileptic *focus*. Often the focus of partial epilepsies is located inside the temporal lobe (66%), but frontal (25%) and more rarely occipital (3%) and parietal (2%) epileptic foci also occur (Semah, Picot et al. 1998). Generalized seizures involve abnormal activity which seems to originate simultaneously in extended cortical and sub cortical regions of both hemispheres.

Idiopathic syndromes occur in the absence of an evident, organic cerebral lesion, while for symptomatic syndromes a focal or diffuse lesion can be detected, usually by non-invasive imaging. Cryptogenic lesions differ from idiopathic syndromes but no lesion can be detected.

5.3 Etiology of epilepsies

Some epilepsies are inherited, while others are induced by acquired factors which create a lesion. Epileptic syndromes with Mendelian genetics are rare, so most syndromes with an inherited component probably involve multiple genes as well as interactions with environmental factors. Genetic epilepsies corresponding to idiopathic syndromes account for $\sim 30\%$ of cases (Hauser, Annegers et al. 1993; Jallon, Loiseau et al. 2001). Acquired epileptic syndromes due to events such as cranial traumas, developmental malformations, post-infections lesions or tumours are

collectively termed symptomatic and account for $\sim 25\%$ of patients (Hauser, Annegers et al. 1993; Jallon, Loiseau et al. 2001).

5.3.1 Symptomatic syndromes

Multiple external factors contribute to the etiology of an epileptic syndrome. Some anomalies of cortical development, often with a genetic component, are associated with severe and drug-resistant epilepsies (Benlounis, Nabbout et al. 2001; Guerrini and Carrozzo 2001; Guerrini and Carrozzo 2002). If the malformation is focal, a partial epileptic syndrome may result (Barkovich, Kuzniecky et al. 2001).

Two broad classes of malformation produce an epileptic brain: defects in neuronal migration, or errors in cortical organization. Neuronal migration syndromes include the lissencephalies, where the cortex has a smooth rather than a sulcated phenotype and heterotopias of the grey substance, where groups of neurons are abnormally situated and localized. Heterotopias may be sub-cortical (or laminar) band heterotopias also known as "double cortex" syndromes (Barkovich, Guerrini et al. 1994) and periventricular heterotopias.

While symptomatic epilepsies are considered acquired, recent data suggested they may have a significant genetic component. Specific syndromes have been linked to mutations in genes coding for proteins associated with the cytoskeleton including Filamin1 (FLN1; (Sheen, Dixon et al. 2001; Guerrini, Mei et al. 2004), Doublecortin (Dclx) (des Portes, Pinard et al. 1998) or reelin which is associated with the extracellular matrix.

Cortical organization errors associated with epileptic syndromes include different dysplasias, polymicrogyrias and schizencephalia. Of them, focal cortical dysplasia is the most frequent cause of intractable epilepsy in children. It corresponds to a cortical cellular expansion with grey matter less differentiated than white matter, a disorganised laminar architecture and glial and neuronal abnormalities including the presence of abnormally large balloon cells (Palmini, Najm et al. 2004).

A distinct group of factors in the etiology of epileptic syndromes are those that induce convulsions in childhood which are succeeded by adult onset epilepsy. They include CNS infections such as viral encephalitis and bacterial meningo-encephalitis (Annegers, Hauser et al. 1988). Cerebral febrile affections occuring at ages up to five years old may induce febrile convulsive sizures in genetically predisposed persons (Maher and McLachlan 1995; Camfield and Camfield 2002).

Brain tumours may induce epileptic syndromes (Cascino 1990; Smith, Hutton et al. 1991). Most frequently they include oligodendrogliomas, astrocitomas, meningiomas, metastasis and glioblastomas of frontal central cortex. Cranial trauma may induce a post-traumatic epilepsy (Annegers, Hauser et al. 1998). Seizures typically appear at one week to two years after the trauma (Willmore 1992; Pohlmann-Eden and Bruckmeir 1997) usually without a chronic state. In the elderly, a stroke may trigger an epileptic syndrome (Loiseau, Loiseau et al. 1990), usually within two years, and more frequently for ischemic than hemorrhagic accidents.

5.3.2 Idiopathic Syndromes: channelopaties.

Hippocrate in 400 B.C may have been the first to note that epileptic syndromes could be inherited. Patterns of transmission of distinct syndromes differ and genetic variation may have a major impact on treatment response, prognosis and consequences.

Mutations in more than 70 genes have now been linked to epileptic syndromes or other episodic cortical dysrhythmias. Many of these genes code for membrane ion channels involved in the transmission of the nerve impulse or the control of neuronal excitability, recalling the necessity for a balance between brain excitation and inhibition for normal function. Other genes with quite different functions have also been linked to distinct epileptic syndromes. They include transcription factors regulating early development and plasticity as well as structural proteins and those related to the cytoskeleton.

These "epilepsy" genes have usually been identified starting from linkage analysis and then genetic DNA sequencing in order to discover the pathological mutation, to functional assays to show how the mutation affects network properties (George 2004). Since many of them code for proteins that form or are associated with voltage-gated or receptor-operated membrane channels these conditions have been termed "channelopathies". They include both regulatory and pore-forming subunits of voltage gated channels as well as receptors for neurotransmitters and neuromodulators (Noebels 2003).

Inherited Epilepsies

Syndrome (OMIM No.)	Chromosomal Locus	Gene	Gene Product
BNFC			
BNFC type 1 (121200)	20q13.2	KCNQ2	Voltage-gated potassium channel, α subunit
BNFC with myokymia (606437)	20g13.2	KCNQ2	Voltage-gated potassium channel, α subunit
BNFC type 2 (121201)	8g24	KCNQ3	Voltage-gated potassium channel, a subunit
Benign familial neonatal infantile seizures (607745)	2q24	SCN2A	Voltage-gated sodium channel, a subunit
Febrile seizures			0.0
GEFS+ type 1 (604233)	19g13.1	SCN1B	Voltage-gated sodium channel, β1 subunit
GEFS+ type 2 (604233)	2g24	SCN1A	Voltage-gated sodium channel, a subunit
GEFS+ type 3 (604233)	5q31.1-q33.1	GABRG2	GABA, receptor, y ₂ subunit
Febrile seizures associated with afebrile seizures (604233)	2g24	SCN2A	Voltage-gated sodium channel, a subunit
Severe myoclonic epilepsy of infancy, Dravet syndrome (607208)	2g24	SCN1A	Voltage-gated sodium channel, a subunit
Intractable childhood epilepsy with frequent generalized tonic-clonic seizures	2q24	SCN1A	Voltage-gated sodium channel, $\boldsymbol{\alpha}$ subunit
Familial febrile convulsions type 4 (604352)	5q14	MASS1	Monogenic audiogenic seizure-susceptible ge
ADNFLE			
ADNFLE type 1 (600513)	20q13.2-q13.3	CHRNA4	nAChR, α_4 subunit
ADNFLE type 2 (603204)	15q24	?	?
ADNFLE type 3 (605375)	1q21	CHRNB2	nAChR, β ₂ subunit
Absence epilepsy			
Childhood absence epilepsy type 1 (600131)	8q24	?	?
Childhood absence epilepsy type 2 and febrile seizures (607681)	5q31.1-q33.1	GABRG2	GABA _A receptor, γ_2 subunit
Childhood absence epilepsy type 3 (607682)	3q27.1*	CLCN2	Voltage-gated chloride channel
Juvenile absence epilepsy (607631)	3q27.1*	CLCN2	Voltage-gated chloride channel
Myoclonic epilepsy			
Autosomal dominant juvenile myoclonic epilepsy (606904)	5q34-q35	GABRA1	GABA _A receptor, α ₁ subunit
Juvenile myoclonic epilepsy (606904)	3q27.1*	CLCN2	Voltage-gated chloride channel
Juvenile myoclonic epilepsy (606904)	2q22-2q23	CACNB4	Voltage-gated calcium channel, β4 subunit
Myoclonic epilepsy of Unverricht and Lundborg (254800)	21q22.3	CSTB	Cystatin B
Myoclonic epilepsy of Lafora (254780)	6q24	EPM2A	Protein tyrosine phosphatase (laforin)
Benign adult familial myoclonic epilepsy (601068)	8q24	?	?
Other epilepsy syndromes			
Epilepsy with grand mal seizures on awakening (607628)	3q27.1*	CLCN2	Voltage-gated chloride channel
Autosomal dominant lateral temporal lobe epilepsy (600512)	10q24	LGI1	Leucine-rich gene, glioma inactivated
X-linked infantile spasm syndrome, West syndrome (308350)	Xp22.13	ARX	Aristaless-related homeobox gene
X-linked infantile spasm syndrome, West syndrome (308350)	Xp22.13	STK9	Serine/threonine kinase 9

Abbreviations: ADNFLE, autosomal dominant nocturnal frontal lobe epilepsy; BNFC, benign familial neonatal convulsions; GABA, γ-aminobutyric acid; GEFS+, generalized epilepsy with febrile seizures plus; nAChR, nicotinic acetylcholine receptors; OMIM, Online Mendelian Inheritance in Man database (available at: http://www.ncbi.nlm.nih.gov/Omim/); question mark, unknown.

*Indicates the cytogenetic location was refined (database available at: http://genome.uscs.edu).

Fig. 4: MAJOR INHERITED EPILEPTIC SYNDROMES AND GENES ASSOCIATED. In the table in the picture are listed the major syndrome associated with a genetic inheritance, in the second column the chromosomal loci candidate or demonstrated to be linked to the pathology. In the third and fourth columns are listed the different genes associated, in case of mutation, to the distinct syndromes

1) *Na⁺ channels*: mutations in several subunits of Na+ channels have been linked to epileptic syndromes (Grieco, Afshari et al. 2002). Three different genes (Scheffer and Berkovic 1997) have been associated with the syndrome GEFS⁺, generalized epilepsy with febrile seizures plus, first described by Scheffer and Berkovic (1997). Mutations in an alpha subunit, SCN1A (Escayg, MacDonald et al. 2000; Escayg, Heils et al. 2001; Wallace, Scheffer et al. 2001) have been characterized (Spampanato, Escayg et al. 2001; Lossin, Wang et al. 2002; Cossette, Loukas et al. 2003; Lossin, Rhodes et al. 2003; Spampanato, Escayg et al. 2003). Some of

these mutations are associated with a gain in function probably leading to neuronal hyperexcitability while paradoxically others seem to induce a loss-of-function but evidences have been reported that the loss of function is specific to inhibitory PV positive interneurones (Ogiwara, Miyamoto et al. 2007). Distinct alpha-subunit mutations (SCN2A; (Sugawara, Tsurubuchi et al. 2001) and beta sub-unit mutations (SCN1B) associated with GEFS⁺ (Wallace, Wang et al. 1998) have not yet been functionally characterized. Sodium channel mutations are associated with other syndromes including SCN1A mutations that cause trafficking problems linked to severe myoclonic epilepsy of infancy (Claes, Del-Favero et al. 2001; Fujiwara 2006).

2) K^+ channels: Many distinct subunits participate in voltage-gated family K^+ channels assemblies, and in consequence many combinatorial possibilities of the subunit proteins exist. As yet, few of them have been associated with inherited epileptic disorders. Mutations of KCNA1 affecting channel assembly, targeting or kinetics (Rea, Spauschus et al. 2002) are linked to temporal lobe epilepsies. For this gene too, different mutations have been linked with distinct pathologies - some KCNA1 mutations are associated with neuromyoatonia (Zuberi, Eunson et al. 1999; Eunson, Rea et al. 2000). Another mutation in the subunit KCNAB2 may be associated with the 1p36 deletion syndrome (Heilstedt, Burgess et al. 2001) that has an epileptic phenotype, but the association is not yet proven (Kurosawa, Kawame et al. 2005). Mutations in the genes KCNQ2 and KCNQ3 were discovered by cloning material from patients with a benign familial neonatal convulsion syndrome (Charlier, Singh et al. 1998; Singh, Charlier et al. 1998; Leppert and Singh 1999). These genes, members of the Q family, named for the link between KCNQ1 and the congenital cardiac long Q-T syndrome, coassemble in different ways. They generate persistent voltage and transmitter-modulated currents, first known as M-currents, since they are blocked by muscarine. Activation of Qfamily currents reduces neuronal excitability and suppresses repetitive firing (Wang, Pan et al. 1998). Mutations in KCNQ2 and KCNQ3 induce a loss-of-function but as other inhibitory influences on neuronal excitability predominate; this pathology recedes after few weeks of life. These two genes both expressed in pyramidal cells of neocortex and hippocampus (Saganich, Machado et al. 2001) and KCNQ2 is expressed in inhibitory neurons (Cooper, Harrington et al. 2001). Novel mutations associated with this benign epileptic syndrome are still being discovered (Tang, Li et al. 2004; Li, Li et al. 2008; Sadewa, Sasongko et al. 2008).

3) Ca^{2+} channels: Changes in internal calcium concentration act as a trigger for many biological processes including neurotransmitter release, excitation-contraction coupling and gene expression. Relations between subunit mutations and inherited epilepsies are therefore somewhat different for voltage-gated Ca^{2+} channels and for Na⁺ or K⁺ channels. Changes in the biophysical properties of Ca²⁺ channels modify synaptic strength and promote aberrant synchronies. Several spontaneous mice mutants exhibit epileptic syndromes linked to mutations in proteins coding for Ca²⁺ channels subunits and have been associated with absence-type seizures. Mutants in CACNA1A, coding for the ala subunit are detected in mice strains including totterer, leaner, rocker, roller. Mutations in CACNB4 are associated with the *lethargic* mouse phenotype, in CACNA2D2 coding for the $\alpha 2\delta$ subunit in the mouse *ducky*, and in the $\gamma 2$ Ca channel subunit coded by CACNG2, in *stargazer* and *waggler* mice exhibit absence seizures as well as ataxia (Burgess and Noebels 1999; Crunelli and Leresche 2002). Ca channel mutations underlying human inherited epilepsies are less frequent but have been detected for the $\alpha 1$ (Jouvenceau, Eunson et al. 2001) and $\beta 4$ subunits (Escayg, De Waard et al. 2000). Mutations in the CACNA1H gene, coding for T-type voltage-gated Ca channel have been linked to Childhood absence epilepsy (CAE). In two studies, fifteen distinct mutations

4) *Cl⁻ channels*: Chloride channels gated by voltage are involved directly and indirectly in inhibitory processes, both by hyperpolarizing cells directly and also by contributing to internal Cl⁻ levels which affect the polarity of GABAergic signalling. The CLCN2 gene codes for a chloride channel widely expressed by pyramidal, interneurones and astrocytes (Sik, Smith et al. 2000) that contributes to Cl- homeostasis by a voltage-sensitive inwardly rectifying chloride conductance (Staley 1994). Mutations in this channel have been linked to an idiopathic generalized epilepsy syndrome with seizures of diverse phenotype (Haug, Warnstedt et al. 2003). In families with mutations in this gene, the epileptic phenotypes do not always segregate as true monogenic traits, suggesting that modifier genes contribute to the phenotype.

5.3.3 Idiopathic Syndromes: mutations on not-channel genes.

have been described (Chen, Lu et al. 2003; Heron, Phillips et al. 2004).

Genes coding for neurotransmitter receptors and other aspects of synaptic function have been linked to epileptic syndromes.

1) *GABA transmission*: GABA receptors are receptor-operated channels, permeable to chloride and bicarbonate, that mediate synaptic inhibition in higher brain regions. Mutations of the $\gamma 2$ subunit, coded by the gene GABRG2 are associated with GEFS⁺, the same syndrome linked with SCN1A mutations (Baulac, Huberfeld et al. 2001; Wallace, Marini et al. 2001). Mutations in GABRA1, which codes for the $\alpha 1$ subunit, have been related to an adolescent epileptic syndrome, Juvenile myoclonic epilepsy (Cossette, Liu et al. 2002).

Genes that affect GABA release, synthesis and recapture could be associated with epiletic phenotypes. Probably the best known example is that of mutations in GAD65, one of the two isoforms of the enzyme involved in GABA synthesis (Kash, Johnson et al. 1997).

2) *Glu transmission*: Mutations of genes associated with glutamatergic neurotransmission and linked to epileptic syndromes include one in GluRB, the gene conding the β subunit of the glutamate receptor, (Brusa, Zimmermann et al. 1995) as well as a mutation of the transporter EEAT1 that removes glutamate from the active zone (Sepkuty, Cohen et al. 2002), and a deficiency of EEAT2, a distinct glutamate transporter (Tanaka, Watase et al. 1997).

3) *Ach transmission*: Mutations of two different subunits of a neuronal nicotinic receptor have been linked to an epileptic syndrome termed Autosomal dominant nocturnal frontal lobe epilepsy. They concern the gene CHRNA4 that codes for the α 4 subunit (Steinlein, Mulley et al. 1995; Hirose, Iwata et al. 1999; Tenchini, Duga et al. 1999) and CHRNB2 which codes for the β 2 subunit (De Fusco, Becchetti et al. 2000).

Many knockout mice of genes involved in the physiology of synaptic transmission and electrical activity possess an epileptic phenotype. Genes include those coding for proteins expressed at the synapse and involved in transmitter mobilization and release such as the SNARE and RAB proteins as well as vesicle-associated proteins. Other genes whose deletion or mutation is associated with epileptic syndromes include those involved in cellular proliferation, migration and other developmental processes. This family of proteins also includes transcription factors (see for review Noebels 2003). These developmental errors often correspond to different forms of dysplasia where neurones are misplaced in focal or band patterns.

Genetic variations have been linked even to symptomatic epilepsy syndromes. Epileptic syndromes of Mendelian inheritance with a single altered gene are clearly a minority. With a complex genetic equilibrium involving multiple genes as well as changes in protein function or expression induced by external factors, subtle genetic and genomic variations may contribute to a wider range of epileptic syndromes than presently admitted.

5.4 Mesial Temporal Lobe Epilepsy - MTLE

The focal site for seizures in partial epileptic syndromes is often located in the temporal lobe. Mesial Temporal Lobe Epilepsies (MTLE) account for ~60% of the adult human epilepsies (Bancaud 1987; Semah, Picot et al. 1998). While they are often seen as a single syndrome, several types of epilepsies with different properties arise from the temporal lobe. In humans, such epilepsies typically emerge in adolescence, but may often be traced to an initial precipitating event (IPI) of childhood, such as a febrile seizure, hypoxia, trauma, intracranial infection, partial onset status-epilepticus, brain tumors and strokes. Pharmaco-therapy may be effective, and usually involves multiple molecules often with different targets. In many patients, however, the efficacy of anti-epileptic drugs is reduced with time.

Pharmacoresistant epilepsies affect 20% of patients with partial epilepsies; (Hauser 1992). In these cases, a unilateral removal of seizure-generating circuits of the hippocampus and amygdala may be an effective treatment (Gloor 1991; Engel, Williamson et al. 1997). Physiological work on resected tissue demonstrates an abnormal hyperexcitability of dentate granule cells and hippocampal pyramidal neurons (Schwartzkroin 1986; Masukawa, Higashima et al. 1989).

5.4.1 Semiological remarks and histological features

Epilepsies of the mesial temporal lobe are diagnosed principally from electroencephalogram (EEG) records and functional magnetic resonance images (fMRI). They show:

- Temporal seizures arise in the temporal lobe, especially the hippocampus/amygdala.
- An intercritical pathological EEG activity is generated in focal areas between seizures.
- Hippocampal volume is reduced (de Lanerolle, Brines et al. 1992)

Resected human tissue has permitted work on the causes of the reduction in volume. It reflects a hippocampal sclerosis corresponding to a selective neuronal loss accompanied by a gliosis in the CA3 and CA1 areas (Babb, Lieb et al. 1984; Engel 1992). Synaptic contacts are reorganised in sclerotic human temporal lobe. The best example is from the dentate gyrus where mossy fibres sprout and form aberrant synapses with nearby granule cells (Sutula, Cascino et al. 1989). While CA1 and CA3 are reduced in size, the area of the dentate gyrus sometimes increases, with a dispersion of granule cells, and even an abnormal giant morphology and an ectopic location (Houser, Miyashiro et al. 1990). It is difficult to determine whether these changes in the dentate are a cause or a consequence of either repeated seizure activity or of the sclerotic neuronal loss in the CA3 region.

One major problem in studies on patients lies in relating such pathological changes to an initial injury such as a febrile seizure. Tissues become typically available many years later after a *latent* period between the IPI and the onset of recurrent seizures. Severe prolonged insults like prolonged febrile convulsions may lead to a shorter latency period (VanLandingham, Heinz et al. 1998). There is also a period of several years during which seizures can be controlled by pharmacotherapies (Berg, Langfitt et al. 2003) before they become pharmacoresistant. The mechanisms underlying the delayed emergence of recurrent seizures in MTLE have not yet been completely resolved.

5.4.2 Hippocampal Sclerosis

Hippocampal sclerosis (HS), with neuronal loss and glial proliferation, was first associated with temporal lobe epilepsies by Bouchet and Cazauvieilh in 1825. More than 50% of pyramidal cells in the CA1 and CA3 areas and the hilus may die, resulting in a severe atrophy. Both temporal lobes are usually affected but one side is almost always more sclerosed than the other hemisphere (Margerison and Corsellis 1966). CA2 pyramidal cells and dentate granule cells are much less affected, and dentate granule cells may disperse and take abnormal morphologies (Houser, Miyashiro et al. 1990; Houser 1992; Lurton, Sundstrom et al. 1997; Mathern, Babb et al. 1997). Mossy fibre axons of dentate granule cells re-organize, probably in response to the loss of their targets in CA3. Aberrant and pro-epileptic connections are formed with the dendrites of nearby dentate cells (Mathern, Babb et al. 1997).

The existence of a causal association between hippocampal sclerosis and temporal lobe seizures remains unclear. In patients sclerosis usually preceeds the emergence of seizures, but it is mild or even absent in some patients. In contrast, sclerosis does not necessarily lead to mesial temporal lobe seizures.

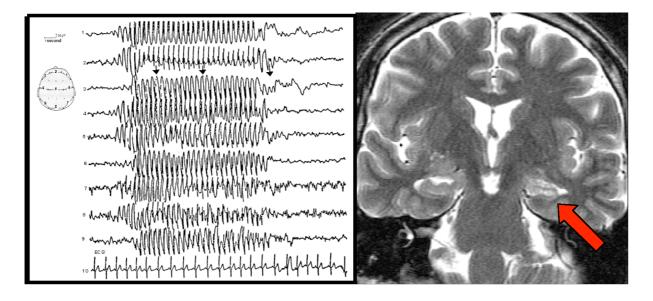


Fig.5: TEMPORAL LOBE EPILEPSY WITH HIPPOCAMPAL SCLEROSIS. On the left panel EEG recordings showing aberrant electrical activity in a patient affected by Temporal Lobe Epilepsy. On the right panel MRI of brain in an epileptic patient, presenting evidence of Hippocampal Sclerosis marked by the red arrow.

Very similar patterns of cell loss are described in geriatric patients with neurocognitive impairments and dementia (Dickson, Davies et al. 1994; Vinters, Ellis et al. 2000). Morphometric studies on sclerosis in *post mortem* or surgically removed tissue has shown major differences in the form, extent and severity of scerosis in epileptic patients. Marguerison and Corsellis (1996) detected a pattern of cell death involving primarily the hilus and CA3c region. Bruton (1988) proposed three categories: classic sclerosis, total sclerosis and sclerosis limited to CA3c-hilus (Bruton 1988). The limited sclerosis accounts for about 5 % of cases, with the majority following a classical pattern of cell death in the hilus, CA3 and CA1 regions. Neuronal death and gliosis is detected, to a lesser extent, in extra-hippocampal regions including the entorhinal cortex and the amygdala in about 60% of cases (Yilmazer-Hanke, Wolf et al. 2000; Bocti, Robitaille et al. 2003). Typical anti-epileptic surgery removes the amygdala as well as the regions of hippocampal cell death (Gloor 1991; Wieser 1998).

5.4.3 Natural history of MTLE

Patients with mesial temporal lobe epilepsies tend to share a similar history (Mathern, Babb et al. 1996; Engel, Williamson et al. 1997) with a common progression of clinical features that reinforces the notion of a disease that evolves over a long time period:

1) *IPI*. In patients with MTLE, it is often possible to identify a childhood incident, frequently associated with a convulsion or status-epilepticus. Both external insults and innate conditions may be involved but careful studies on the progression from such an incident to adolescent seizures are rare. Febrile seizures are the most common precipitant but not all such events lead eventually to adult epilepsies. Infant hypoxia, brain trauma and intracranial infection also act as precipitants. A distinct genetic background may be associated with either the predisposition to childhood convulsions or to an enhanced susceptibility for the development of either hippocampal sclerosis or adult epilepsy.

Kunz et al (2000) have related a specific mitochondrial dysfunction to the susceptibility for MTLE (Kunz, Kudin et al. 2000). Evidence has also grown for a role of inflammatory processes in the development of pro-epileptic circuits (Vezzani and Granata 2005) and Crespel and colleagues have suggested that such processes may be activated both by the initial precipitating episode and during the formation of a glial scar (Crespel, Coubes et al. 2002). Some gene polymorphisms may be related to the susceptibility to develop adult seizures. Preliminary data supports associations with polymorphisms in genes coding for the GABAB1 receptor (Gambardella, Manna et al. 2003), prodynorphin (Stogmann, Zimprich et al. 2002; Gambardella, Manna et al. 2003) and members of the Interleukin 1 pathway (Kanemoto, Kawasaki et al. 2000),

2) *Latent period*: There may be a delay, of weeks to many years, between the IPI and the emergence of recurrent seizures. The processes occuring during this latent period remain to be fully characterized. Possibly interictal activity, which may be limited to the hippocampus, is generated before recurrent seizures that propagate to extra-hippocampal sites. Such activity could induce further cell death and so contribute to a progressive evolution of the sclerosis, (Saukkonen, Kalviainen et al. 1994; Mathern, Pretorius et al. 1995; Mathern, Pretorius et al. 1996; Pitkanen, Tuunanen et al. 1998). Other processes that presumably occur during this period include the formation of novel connections, formation and

evolution of populations of activated glial cells, the generation of new neurons perhaps in sites outside the dentate and changes in inhibitory synaptic function. These processes will be discussed in the following sections.

3) *Emergence of recurrent seizures*: After a delay, recurrent seizures may last for several tens of seconds. They are initiated in the hippocampal formation and propagate to extra-hippocampal sites. Initially seizures may be controlled with paharamcotherapy, but later they become pharmacoresistant (Engel, Williamson et al. 1997). Seizure frequency can vary from several per day to monthly and it may vary according to hormonal or emotional factors.

5.4.4 Animal models of MTLE

Physiological and molecular mechanisms underlying the development of temporal lobe epilepsies after an initial convulsion cannot be followed in experiments on humans. Studies on mechanisms can be performed in animal models of the syndrome which should mimic the human condition as closely as possible.

1) *Kindling models*: A spontaneously epileptic state is induced after several weeks of daily electrical stimulation of moderate intensity. This process was first described by Grahame Goddard (Goddard 1967; Goddard, McIntyre et al. 1969). The amygdala and hippocampus have especially low thresholds, but other brain structures are also susceptible to kindling (McNamara, Bonhaus et al. 1985; Racine, Mosher et al. 1988; Sutula, He et al. 1988). The kindling procedure does not mimic status epilepticus, but probably does engages similar plastic processes to those of epileptogenesis. Discharges generated during kindling are not equivalent to a status-epilepticus and it is difficult to identify a latent phase (McNamara 1984). A single prolonged stimulation of the perforant pathway (Olney, deGubareff et al. 1983; Sloviter 1983) may also generate spontaneous, persistent seizures (Lothman, Bertram et al. 1990; Bertram 1997; Mazarati, Wasterlain et al. 1998) associated with a severe sclerosis of the dentate gyrus (Sloviter 1983; Sloviter, Dean et al. 1996) and mossy fibre sprouting.

2) *Hyperthermia and hypoxia models*: Two models mimic conditions that induce seizures in infants. A heating protocol can induce prolonged febrile seizures in young rodents (Baram,

Gerth et al. 1997). Spontaneous seizures emerge in the following weeks (Dube, Richichi et al. 2006) but are not associated with a classical hippocampal sclerosis even though there is some cell loss (Toth, Yan et al. 1998; Bender, Dube et al. 2003; Dube, Yu et al. 2004). Changes are reported in the Ih current (Chen, Aradi et al. 2001; Santoro and Baram 2003) which indirectly affects GABAergic signalling (Chen, Baram et al. 1999; Chen, Ratzliff et al. 2003). The association between these changes and spontaneous seizure activity remains to be established (Baram, Eghbal-Ahmadi et al. 2002).

Neonatal hypoxia may be a precipitating factor for adult seizures (Bergamasco, Benna et al. 1984; Volpe 1994). Jensen and colleagues developed a model (Jensen, Applegate et al. 1991) in which a perinatal hypoxia of 15 min duration induced seizures in young rats (P7 to P15) but activities were not maintained and hippocampal sclerosis did not develop in adult animals.

3) *Neurotoxin injection*: Lesions that mimic hippocampal sclerosis are induced by focal or systemic injection of neurotoxic or convulsant substances. Cell death and gliosis is followed by the emergence of an epileptic phenotype after several weeks or months.

Kainic Acid (KA) is an agonist at a family of glutamatergic receptors. Systemic injection of KA generates a status-epilepticus and induces severe cell loss in the hippocampus, some cortical regions, lateral septum and amygdale, and mossy fibre sprouting (Ben-Ari, Tremblay et al. 1981; Olney, Collins et al. 1986). Spontaneous, recurrent seizures emerge after a latent phase of several weeks (Ben-Ari, Tremblay et al. 1981; Lothman and Collins 1981; Zaczek and Coyle 1982). Partial seizures are initiated in the hippocampal formation and rapidly generalize to frontal cortical areas.

Pilocarpine, a muscarinic receptor agonist, induces a similar epileptic phenotype to KA. Systemic injection induces a status-epilepticus (Cavalheiro 1995). A bilateral sclerosis is induced in the hippocampus and other limbic structures with a severe cell loss and a moderate gliosis (Honchar, Olney et al. 1983; Turski, Cavalheiro et al. 1983; Cavalheiro, Leite et al. 1991; Cavalheiro 1995). Mossy fibre sprouting occurs as does dispersion of the dentate structure (Mello, Cavalheiro et al. 1993). Recurrent seizures emerge after a latent period of 1-6 weeks. Seizures arise in either hippocampus, and become generalized to involve wide frontal regions over time (Leite, Bortolotto et al. 1990; Cavalheiro, Leite et al. 1991).

Intra hippocampal injection of tetanus or botulinum toxin has been used to create another animal model of temporal lobe epilepsy (Mellanby, George et al. 1977). These toxins inhibit transmitter release by proteolitic cleavage of the presynaptic protein synaptobrevin (Schiavo, Benfenati et al. 1992). While their injection does not induce a status-epilepticus, in the days after injection epileptiform activity emerges in the hippocampus and evolves towards recurrent seizures which generalize (Hawkins and Mellanby 1987; Jefferys, Borck et al. 1995; Finnerty and Jefferys 2002). Cell loss is limited to CA1 region and does not always occur (Mellanby, George et al. 1977). The seizure state tends to be transient, expressed over a restricted period of several months. Presumably seizures do not induce further cell loss in this model, and it is suggested that adaptive changes in GABAergic circuits underly the cessation of spontaneous seizures (Whittington and Jefferys 1994).

5.4.5 Intrahippocampal injection of Kainic acid

In the first studies using Kainic acid to produce epileptic animals, Ben-Ari and colleagues, made focal intra-amygdaloid rather than systemic injections (Ben-Ari and Lagowska 1978; Ben-Ari, Lagowska et al. 1979). Focal injections produce a unilateral and spatially restricted cellular lesion (Magloczky and Freund 1993; Suzuki, Junier et al. 1995). This restricted cellular damage also permits separation of local and distant effects of both cell death and epileptiform activity.

The status epilepticus induced by focal KA injection lasts up to 24 hours (Ben-Ari 1985; Ben-Ari and Cossart 2000). During this phase pyknotic neurons appear in the hilus and the CA1 and CA3 regions exclusively in the injected hemisphere (Suzuki, Junier et al. 1995). Le Duigou showed that during status epilepticus, cellular activity was almost abolished near the injection site, and epileptiform discharges were generated at distant sites (Le Duigou, Wittner et al. 2005).

After one week, cell death is observed close to the injection site (Bouilleret, Ridoux et al. 1999). After 3-4 weeks pyramidal cells of the CA1 and CA3c regions of the injected hippocampus have largely disappeared (Riban, Bouilleret et al. 2002) and some specific types of interneurons are also lost (Magloczky and Freund 1993; Bouilleret, Loup et al. 2000). Over the same period, the dentate gyrus becomes enlarged, granule cells disperse (Suzuki, Junier et al. 1995; Bouilleret, Ridoux et al. 1999; Knuesel, Zuellig et al. 2001), and mossy fibres sprout to establish novel contacts in the subgranular molecular layer of the dentate gyrus and stratum oriens of ipsilateral hippocampus. Mossy fibre sprouting may sometimes even extend to the contalateral hippocampus (Bouilleret, Ridoux et al. 1999). Gliosis, as evident in an increased

number of GFAP positive cells, occurs over a similar time period in the dentate gyrus as well as in the CA3 and CA1 regions.

While morphological changes occur over a period from days to months after KA injection, physiological alterations detected by EEG traces evolve more slowly and with a delay. Up to 3-4 weeks only sporadic interictal events occur. They may evolve to short discharges but seem to be limited to the injected hippocampus and there is no behavioural correlate. In the chronic state after 4 weeks, EEG records show interictal and recurring seizure activity. Seizures are associated with immobilization or convulsive behaviours. Both the unilateral sclerosis and the recurrent seizures persist and, in this respect, the KA injection model is similar to the human MTLE syndrome (Magloczky and Freund 1993; Magloczky and Freund 1995).

5.4.6 Comparison of the different animal models

Comparison of different animal models for MTLE must consider both physiological and anatomical changes, including hippocampal sclerosis. All models except for kindling and tetanus toxin injection induce an initial status epilepticus. However, factors other than the status epilepticus may contribute to the emergence of a chronic epileptic syndrome. It is not easy to identify an equivalent of the latent period in the kindling model, where all discharges are induced by direct stimulation. The presence of a latent phase in an animal model may provide insights into the evolution of factors in the exacerbation of the lesion (Bragin, Engel et al. 1999; Bragin, Wilson et al. 2000; Riban, Bouilleret et al. 2002). The efficiency of the different models for induction of recurrent spontaneous seizures varies. Seizures induced by systemic KA and by Tetanus toxin may tend to disappear with time. Furthermore, focal injection of convulsants such as KA or pilocarpine clearly induces a unilateral sclerosis, whereas systemic injection tends to affect both hippocampi to a similar extent. In conclusion, consideration of all factors suggests that focal pilocarpine or KA injection produce a syndrome most similar to human MTLE.

5.5 Molecular Mechanisms of MTLE

While the sequence of anatomical and physiological changes associated with the emergence of mesial temporal lobe epilepsies are relatively clear, the molecular mechanisms remain to be clarified. Understanding at this level will be crucial, both to identify causal relations and eventually to develop new therapies. It seems important to establish for instance whether seizures cause cell death or whether a hippocampal sclerosis is crucial for the emergence of an epileptic brain. In animal models, can changes induced by convulsants be separated into proepileptic factors and homeostatic mechanisms that act to counter epileptogenesis? Does the synaptic reorganization induced by cell death promote aberrant discharge patterns or might it act to stabilize hippocampal excitability? Here, recent progress on understanding molecular factors and putative mechanisms for the genesis of the chronic epileptic phenotype will be reviewed.

5.5.1 Cell loss

The initial event during the evolution of hippocampal sclerosis is a massive, selective cell death. After a convulsant is injected, neurons die either by necrosis or by activation of apoptotic programmes both of which are triggered by a massive Ca^{2+} entry (Pollard, Charriaut-Marlangue et al. 1994; Fujikawa, Shinmei et al. 2000).

Oliva et al visualised morphological changes in dendrites of EGFP-Somatostatin positive O-LM interneurons during the early stages of cell death due to KA application (Oliva, Lam et al. 2002). Indeed intereneurones seem to be more sensitive to cell death induced by KA and pilocarpine and death ensues within hours (Bouilleret, Ridoux et al. 1999; Bouilleret, Loup et al. 2000; Dinocourt, Petanjek et al. 2003). Patterns of interneuron death are not uniform: interneurones of the hilus are most susceptible (Leranth and Ribak 1991; Obenaus, Esclapez et al. 1993; Sloviter, Dean et al. 1996; Buckmaster and Dudek 1997; Sloviter, Zappone et al. 2003) then CA1 interneurones while CA3 interneurones are resistant (Bouilleret, Loup et al. 2000; Cossart, Dinocourt et al. 2001; Kobayashi and Buckmaster 2003; Sloviter, Zappone et al. 2003).

Distinct subtypes of interneurons are differentially susceptible, with SOM-containing cells of the CA1 region being especially sensitive (de Lanerolle, Kim et al. 1989; Magloczky and Freund 1995; Buckmaster and Jongen-Relo 1999; Cossart, Dinocourt et al. 2001; Wittner, Magloczky et al. 2001; Dinocourt, Petanjek et al. 2003; Kobayashi and Buckmaster 2003). Parvalbumin-containing interneurones are differentially sensitive: basket cells survive while axo-axonic cells tend to die (Cossart, Dinocourt et al. 2001; Dinocourt, Petanjek et al. 2003). Patterns of death of Calretinin and Calbindin containing interneurons vary according to their location (Bouilleret, Ridoux et al. 1999; Bouilleret, Loup et al. 2000). The differential susceptibility of distinct types of interneurone may depend on changes in internal Ca²⁺ according to their expression of distinct KA (Cossart, Esclapez et al. 1998; Frerking, Malenka et al. 1998; Cossart, Epsztein et al. 2002) or Ca²⁺-permeable AMPA receptors (Koh, Geiger et al. 1995; Leranth, Szeidemann et al. 1996).

Two different mechanisms with distinct kinetics induce pyramidal cell death after KA treatment: necrotic death occurs first due to excitotoxic processes initiated by an increase in intracellular Ca²⁺ (Choi, Maulucci-Gedde et al. 1987; Fujikawa, Shinmei et al. 2000) and activation of the apoptotic pathway induces death which occurs with a slower time course (Pollard, Charriaut-Marlangue et al. 1994). In the hilus and the CA3 region, KA or pilocarpine induce an almost complete death of pyramidal cells (Riban, Bouilleret et al. 2002). Pyramidal cell loss in the CA1 regions may reach 60% of the total, in the subiculum 20-30% (Knopp, Kivi et al. 2005) but granule cells of the dentate gyrus and CA2 pyramidal cells are preserved (Covolan, Ribeiro et al. 2000). KA is reported to induce a reduction in expression of the GluR2 subunit in CA3 and hilar pyramidal cells. AMPA receptors lacking this subunit are Ca²⁺ permeable (Pellegrini-Giampietro, Gorter et al. 1997) which may exacerbate susceptibility to necrotic or apoptotic processes. In contrast, reduction of the Ca-binding protein calbindin (Nagerl, Mody et al. 2000) or increased mGluR4 expression (Lie, Becker et al. 2000) may be an adaptive response.

Some studies have provided evidence for cell death contralateral to focal KA injection including a decreased expression of calbindin in the CA1 region, and changes in the peptides CCK and neuropeptide Y (Bouilleret, Loup et al. 2000; Arabadzisz, Antal et al. 2005). During hippocampal sclerosis, changes in expression have also been noted for molecules that induce or regulate cell death. Proteins including IL-1RA (receptor for Interleukin 1) or TNF may be upregulated in homeostatic fashion to aid neuronal survival (Liu, D'Amore et al. 1993; Bruce, Boling et al. 1996; Panegyres and Hughes 1998), while growth factors including GDNF and

aFGF may act to reduce seizure frequency and so enhance neuronal survival (Cuevas, Revilla et al. 1994; Martin, Miller et al. 1995; Cuevas and Gimenez-Gallego 1996).

5.5.2 Fibre sprouting

Death of post-synaptic target neurons can induce reactive sprouting of pre-synaptic axons and the establishment of novel synaptic contacts (Scheff, Benardo et al. 1977; Nadler, Perry et al. 1981; Frotscher and Zimmer 1983). Mossy fibre sprouting has been especially well studied since mossy fibre terminals have high levels of the metal zinc, which is detected by the Timm's stain. Axons of the dentate granule cells sprout following the loss of hilar cells. They occupy and form synapses in novel regions including the inner molecular layer of the dentate gyrus (Frotscher and Zimmer 1983; Sutula, He et al. 1988) and the CA3 stratum oriens. Sprouting is first detected at 5 days after KA injection, peaks at about 3 weeks and may persist up to 18 months after the lesion (Cavazos, Golarai et al. 1991; Cavazos, Golarai et al. 1992).

Novel synaptic terminals are formed with the spines of granule cells and with inhibitory interneurons including basket cells (Ribak and Peterson 1991; Buckmaster, Zhang et al. 2002; Cavazos, Zhang et al. 2003). Physiological studies have shown that these new connections are functional (Tauck and Nadler 1985; Wuarin and Dudek 1996; Lynch and Sutula 2000; Wuarin and Dudek 2001).

Axons of CA1 pyramidal cells also sprout into previously non-innervated regions after KA treatment. Axon collaterals extend to the CA1 stratum lacunosum-moleculare and radiatum where they presumably form new excitatory synapses with other CA1 pyramidal cells and also into the subiculum (Perez, Morin et al. 1996; Esclapez, Hirsch et al. 1999; Morin, Beaulieu et al. 1999; Cavazos, Jones et al. 2004). The establishment of recurrent connections in the dentate and CA1 regions (Deuchars and Thomson 1996) creates novel feedback mechanisms that may contribute to epileptiform behaviours (Smith and Dudek 2001; Smith and Dudek 2002; Sadewa, Sasongko et al. 2008).

Several molecules, including cytokines and growth factors, have been identified as stimulators of axonal sprouting and guidance factors. Brain derived neurotrophic factor (BDNF) and basic Fibroblast growth factor (bFGF) induce sprouting *in vitro* (Lowenstein and Arsenault 1996). The expression of both BDNF (Ernfors, Bengzon et al. 1991; Isackson, Huntsman et al. 1991; Zafra, Lindholm et al. 1992) and bFGF (Humpel, Lippoldt et al. 1993; Follesa, Wrathall et al.

1994; Simonato, Molteni et al. 1998) are upregulated in several different seizure models. The first discovered neuronal growth factor (NGF) is involved since its inhibition decreases axonal outgrowth (Holtzman and Lowenstein 1995; Van der Zee, Rashid et al. 1995). Gall and Isackson (1989) first described NGF upregulation in epilepsy, and this has been repeatedly confirmed (Zafra, Hengerer et al. 1990; Ballarin, Ernfors et al. 1991).

Evidence for a sprouting process for inhibitory axons is contradictory. An increase in GADpositive terminals was detected in the dentate of rat epilepsy models (Houser 1992; Gruber, Greber et al. 1993) and in the subiculum of tissue from epilepsy patients (Arellano, Munoz et al. 2004), but other work found no consistent change (Wittner, Magloczky et al. 2001; Wittner, Eross et al. 2005). It is likely that inhibitory cell axonal sprouting differs between regions and between different types of interneurons.

5.5.3 Cellular excitability

Neuronal expression of both voltage-gated and receptor-operated channels is changed in animal models of epilepsy.

Three sodium channel subunits, Scn2a1, Scn8a and Scn1b are upregulated after pilocarpine treatment (Ellerkmann, Remy et al. 2003) and may contribute to neuronal hyperexcitability. In contrast the subunit Scn2a1 is reported to be downregulated in the sclerotic zones of tissue obtained from patients (Lombardo, Kuzniecky et al. 1996). An increase in expression of the Ca⁺-channel subunit Cacna1c has been detected in activated astrocytes (Westenbroek, Bausch et al. 1998). Upregulation might be associated with an increased neuronal excitability, but existing evidence suggests that the Cacna1a subunit is rather downregulated following KA treatment (Vigues, Gastaldi et al. 1999).

A reduced expression or efficacy of K^+ channel subunits would also have pro-epileptic consequences. Bernard and colleagues described changes in the Kcnd2 and Kcnb1 subunits as "acquired channelopathies" after pilocarpine treatment (Bernard, Anderson et al. 2004). Both a transcriptional down-regulation and a post-translational reduction in efficacy of dendritic conductances due to alterations in phosphorylation by ERK for Kcnd2 and PKC for Kcnb1 were detected (Bernard, Anderson et al. 2004; Misonou, Mohapatra et al. 2004).

In the kainate model, Shah and colleagues (Shah, Anderson et al. 2004) showed a down-regulation of HCN1 and 2, hyperpolarization-activated, cyclic nucleotide-gated channels

underlying the h-current which generates a depolarization when cells are hyperpolarized. Changes in the expression of these two subunits have also been noted in human tissue (Brewster, Bender et al. 2002).

These modifications may alter intrinsic neuronal properties so as to produce a hyperexcitable pro-epileptic phenotype as reported for subicular pyramidal cells after KA-treatment (Wellmer, Su et al. 2002).

Changes are also reported in the expression of molecules associated with chemical synaptic transmission. Glutamate receptor subunit expression is altered by treatment with KA or pilocarpine. GluR1 and GluR2/3 expression is upregulated both in human tissue and animal models (Babb, Mathern et al. 1996; Mathern, Pretorius et al. 1998). There is also evidence for altered phosphorylation or redux modulation of GluR subunits (Lieberman and Mody 1999; Sanchez, Wang et al. 2000; Rycroft and Gibb 2004).

The expression of the metabotropic receptors mGluR1 and 5 is reduced in pyramidal cells (Akbar, Rattray et al. 1996; Tang, Lee et al. 2001) of KA-treated animals. In contrast astrocytic expression of mGluR5 is increased (Ulas, Satou et al. 2000) and in human tissue mGluR 2, 3, 4 and 8 subunits are upregulated on astrocytes (Tang and Lee 2001).

Changes in gene expression or protein regulation can also affect ambient levels of extracelluar glutamate. Thus, the neuronal glutamate transporters EAAT3 and 1 are upregulated in granule cells and CA3 pyramidal cells while EAAT2 is downregulated in astrocytes of the CA1 region and hilus in human tissue (Mathern, Mendoza et al. 1999). In KA-treated mice the murine homologue of the transporter EAA1, GLAST, is upregulated in CA3 and hilus after status epilepticus (Nonaka, Kohmura et al. 1998), while EACC1 (homologue to EAAT3) and GLT1 (homologue to EAAT2) seem to be downregulated (Simantov, Crispino et al. 1999).

Changes in expression of GABA receptor subunits also occur in human tissue and animal models of epilepsy. Expression is often downregulated in sclerotic regions (Schwarzer, Tsunashima et al. 1997; Fritschy, Kiener et al. 1999; Bouilleret, Loup et al. 2000), but increases have been reported for the α 1 and α 2 subunits in temporal lobe epilepsy patients (Loup, Wieser et al. 2000). Interestingly the α 5 subunit of GABA-A receptors is downregulated in CA1 pyramidal cells (Houser and Esclapez 1996) since this subunit is specific for extra-synaptic GABA receptors (Mody 2001; Semyanov, Walker et al. 2004). GABA_B receptor subunits Gabbr1 and Gabbr2 are downregulated in the CA1 and CA3 areas of KA-treated animals (Straessle, Loup et al. 2003). Changes have also been described in molecules associated with GABA-A receptors including the structural proteins gephyrin (Kumar and Buckmaster 2006) and dystrophin (Knuesel, Zuellig et al. 2001).

5.5.4 Neurogenesis

The subgranular zone of the dentate gyrus is one of the two areas of rodent brain where adult neurogenesis is maintained (Altman and Das 1965; Kuhn, Dickinson-Anson et al. 1996). Progenitor cells of this area develop a granule cell morphology (Cameron, Woolley et al. 1993; Seki and Arai 1993). Seizures trigger proliferation of precursor cells of the sub-granular zone (Parent, Yu et al. 1997; Thom, Sisodiya et al. 2002; Crespel, Rigau et al. 2005). Parent and colleagues showed that pilocarpine treatment stimulates differentiation of these proliferating cells into young granule cells (Parent, Yu et al. 1997). This process may be related to granule cell dispersion. Newly differentiated neurons also migrate to CA3 where they form novel connections that may contribute to epileptogenesis (Scharfman, Goodman et al. 2000).

Neuronal proliferation in the dentate is induced by status epilepticus not only in a KA-treated hippocampus but also in the contralateral non-injected hippocampus even in the absence of cell death (Kralic, Ledergerber et al. 2005). On the contralateral side, the newly generated elements differentiate largely into dentate granule cells and to a lesser extent into astrocytes. In contrast most cells in the injected hippocampus are GFAP-positive suggesting they remain trapped as astrocytes. The effects of spontaneous recurrent seizures on cellular proliferation and differentiation are much smaller than those of convulsant injection.

Differential expression of several markers for neurogenesis and astrogliosis has been described:

The identity of cascades of signalling pathways that control cell proliferation and differentiation is still being clarified. Markers for proliferative cells (PCNA), for new born neurons (DCX and PSA-NCAM) and for newly generated glial cells (GFAP) have been examined in KA-treated animals (Ledergerber, Fritschy et al. 2006). The basic Fibroblast Growth Factor (bFGF) is upregulated in and around the proliferative zone following seizures (Humpel, Lippoldt et al. 1993; Bugra, Pollard et al. 1994; Ballabriga, Pozas et al. 1997; Gomez-Pinilla, Dao et al. 1997). *In vitro* studies suggest that bFGF may be involved in the differentiation of neural precursors towards a neuronal phenotype, rather than in cellular proliferation (Basilico and Moscatelli 1992). Further work is clearly needed on reciprocal interactions between seizures and the proliferation and differentiation of neuronal and glial progenitor cells.

5.5.5 Inflammatory response and glia activation

It has become increasingly clear that different types of glial cells contribute to the development of MTLE. Experimental and clinical studies have associated inflammatory processes and epileptogenesis (Billiau, Wouters et al. 2005; Vezzani and Granata 2005; Gorter, van Vliet et al. 2006; van Gassen, de Wit et al. 2008). A gene profiling study from Gorter and colleagues has described a significant activation of immune responses during the latent period before seizure emergence (Gorter, van Vliet et al. 2006).

Microglial cells are associated with brain immune responses and after seizures these cells are activated: they proliferate, their morphology and gene expression change (Niquet, Ben-Ari et al. 1994; Represa, Niquet et al. 1995). Microglia is also activated by infection and fever which are among the most frequent precipitating events for MTLE. Activated glial cells secrete molecules including cytokines, neurotoxic substances, chemokines, growth factors (Giulian 1993; Chao, Hu et al. 1995) which have rapid effects on neurones but also initiate structural and genetic changes occuring over a longer time scale. The complement system, part of the immune system, is activated in epileptic human tissue (Jamali, Bartolomei et al. 2006) and seems to be differentially expressed during different phases of epileptogenesis in animal models (Gorter, van Vliet et al. 2006; Aronica, Boer et al. 2007)

Astrocytes are also activated after convulsant injection in animal models. Although it is unclear whether cell death or electrical activity of the status epilepticus is the effective stimulus, they proliferate as well as they change their shape and gene expression. Astrocyte activation stimulates precursor cell production. There is evidence that neuronal precursors move towards an astrocytic phenotype at sclerotic sites (Ledergerber, Fritschy et al. 2006) even though astrocyte-like cells are a precursor element for newly generated neurones (Berninger, Costa et al. 2007). Astrocytes may aid granule cell migration in the dentate gyrus (Crespel, Coubes et al. 2002) and it is suggested that astrocyte proliferation after seizures serves to repopulate sclerotic regions (Borges, McDermott et al. 2006), but the maintained presence of a glial scar suggests the process remains incomplete (Crespel, Coubes et al. 2002). Astrocyte activation also affects electrical properties. Sodium channel expression is increased, and events similar to action potentials can be generated (O'Connor, Sontheimer et al. 1998).

Astrocytes become more sensitive to glutamate (Seifert, Schroder et al. 2002) and participate

in the inflammatory response by releasing NFkB in models of epilepsy (Lerner-Natoli, Montpied et al. 2000). Calcium imaging studies suggest that astrocytes may even generate slow, coupled oscillations in internal calcium and membrane potential (Wang, Lou et al. 2006; Jourdain, Bergersen et al. 2007; Winship, Plaa et al. 2007)

Changes in intracellular Calcium in astrocytes may liberate neuroactive molecules like glutamate (Bezzi, Carmignoto et al. 1998), interleukins and growth factors. Among them, bFGF, IL-2 and TNF- α may modulate cellular excitability or increase seizure susceptability by alternative pathways (Nistico and De Sarro 1991; Liu, D'Amore et al. 1993; De Sarro, Rotiroti et al. 1994; Probert, Akassoglou et al. 1995; Liu and Holmes 1997; Yuhas, Shulman et al. 1999). Other liberated growth factors, like aFGF and GDNF (Martin, Miller et al. 1995; Cuevas and Gimenez-Gallego 1996), may counteract these effects by decreasing seizure intensity and duration.

The timing and consequences of activation of diverse types of glial cell during the development of an epileptic brain remains a vital subject for further work.

5.5.6 Transcription activity and conclusion

Changes in gene expression are clearly involved in the proliferation and differentiation of new cells and modify the physiology of existing cells. Presumably they are orchestrated by cell-specific transcription factors activated sequentially during the process of epileptogenesis.

Early-response genes which are upregulated in the hippocampus during status epilepticus include c-fos, EGR-1 and EGR-2 (Ben-Ari 2001; Rakhade, Yao et al. 2005). Elliott and colleagues described changes in the basic helix-loop-helix (bHLH) transcription factors (Elliott, Khademi et al. 2001) while altered expression is also described for ICER (Porter, Lund et al. 2008), p53, MDM2 (Engel, Murphy et al. 2007), NFkB (Lubin, Ren et al. 2007) and REST (Spencer, Chandler et al. 2006). Upregulation of transcription factors is known to induce cascades of activities leading eventually to gene transcription, as exemplified by the induction of CREB and the pro-inflammatory gene COX-2 (Lee, Dziema et al. 2007). The role of these factors in the establishment of an epileptic brain remains to be assessed.

In a typical case of MTLE an initial insult acts as a precipitating event often inducing a status epilepticus. The complex cascade of events that follows is not completely understood. The effects of neuronal cell death and glial cell activation, the involvement of inflammatory and

immune responses, the modifications of synaptic connectivity and the expression of voltagegated and receptor-operated channels combine but it remains difficult to separate causes and effects, pro-epileptic responses and anti-epileptic homeostatic mechanisms. A molecular or genetic approach offers a distinct way to characterize how a healthy brain evolves into a pathological network.

6 Genomic tools to approach the complexity of the brain

6.1 Gene Expression Analysis

Molecules of mRNA are the products of transcription of the genetic heritage of a cell. A quantitative and qualitative description of transcribed mRNA in a cell gives a vision of its state and the activity of its genes. As precursors of translated proteins, changes in mRNA molecules determine the future proteome. Changes in gene expression have classically been analyzed by Northern blot and RT-PCR and by more advanced methods including differential display and SAGE (serial analysis of gene expression). While these techniques have identified novel differentially expressed genes (Kozian and Kirschbaum 1999), they are restricted to a limited number of genes. Larger-scale studies on gene expression have been enabled by microarray technology which permits the parallel analysis of thousands of genes in a single assay. These techniques include oligonucleotide microarrays (Lockhart, Dong et al. 1996) and cDNA microarrays (Schena, Shalon et al. 1995; Schena, Shalon et al. 1996).

6.1.1 Microarrays and DNA-Chips

Micro-arrays consist of miniaturised hybridisation assays that permit analysis of thousands of nucleic acid fragments. Nucleic acid sequences, or "probes", are immobilised on an array and fluorescently labelled "target" samples are hybridized against the array. Fluorescent signals related to the quantity of hybridized target are read by a detection system for analysis. cDNA microarrays consist of preformed nucleic acid sequences immobilized onto several thousand spots of several µm diameter on a glass wafer support. The cDNAs usually consist of clones

amplified by polymerase chain reaction (PCR) from a collection of transcripts. DNA-chips, in contrast, are produced by proprietary technologies (Gene Chip®, Affymetrix). Oligo-nucleotides of 20-25 base pairs are synthesized and spotted directly onto a solid support by photolithography (Watson, Mazumder et al. 1998).

For gene expression analysis with spotted arrays, mRNA samples are converted into labelled populations of target nucleic acids. These populations consist of complex collections of many thousands of fragments which are labelled with fluorescent dyes, such as the cyanines Cy3 and Cy5. The use of more than one dye permits comparison of two or more samples on the same microarray. In GeneChip® RNA molecules are directly labelled and hybridized on the Chips. With a high reproducibility across chips, single channel analysis may be the better choice. In either case, labelled fragments form duplexes with immobilized complementary probes. The number of duplexes reflects the number of each specific fragment in the target. Two or more differently labelled samples can be hybridised simultaneously, and from measurements on the distinct fluorescent signals the relative abundance of specific sequences can be determined.

6.2 Gene expression profile studies in brain

Neurons are among the most actively transcribing cells of an organism. Even while neuronal shape, connectivity, intercellular communication and electrical activity are richly diverse, it is thought that neuronal cell types should share physiological properties, morphology or molecular markers. The characterization of such families remains however incomplete. It is suggested that gene expression profiles may offer an unbiased framework for neuronal classification (Mott and Dingledine 2003; Markram, Toledo-Rodriguez et al. 2004). The basic assumption is that the complete profile of genes transcribed by a cell underlies the highly specialized phenotype while in a neuron defines its physiological properties. During the transition to disease states, such as epilepsy, changes in gene profile seem likely to accompany pathological alterations to the normal features of a neuronal cell type. Thus gene expression profile studies have been used to answer question on both physiological and pathological conditions. The complexity of the brain makes such work both interesting and challenging.

6.2.1 Gene expression profile analysis and brain.

Most genomic approaches to the brain have examined specific regions (Sandberg, Yasuda et al. 2000; Zhao, Lein et al. 2001; Zirlinger and Anderson 2003) where tissue heterogeneity may average important signals from different or minority cell types. A better comprehension of neuronal taxonomy from gene expression profile may be achieved by first separating functionally distinct cell types. There are technical difficulties with this approach: cells of interest may constitute a small minority of the total or may share features with cells from different subclasses making recognition complex. Gene expression profiles of single cells have often been compared to electrophysiological features (Monyer and Markram 2004; Yano, Subkhankulova et al. 2006). Such approaches based on genetic material from a single cell have been used for some time (Eberwine, Yeh et al. 1992), but technical problems persist. A single cell yields small amounts of mRNA and one may still ask whether sufficient material can be reliably obtained from a single cell. Nevertheless, following such an approach, Kamme and colleagues have found that interneurons and pyramidal cells of the CA1 region of the hippocampus express specific subsets of different genes (Kamme, Salunga et al. 2003). Paradoxically, they also revealed differences in gene profile within the putatively homogenous pyramidal cell population.

Technical advances aid such work. Laser capture microdissection (Emmert-Buck, Bonner et al. 1996) permits RNA to be obtained from small groups of single cells and methods for PCRbased amplification of small quantities of RNA improve continuously (Eberwine, Yeh et al. 1992; Luo, Salunga et al. 1999). Specific subsets of neurons can now be recognized in tissue from transgenic animals made by fusing fluorescent proteins with molecules specific to a given cell type (Feng, Mellor et al. 2000; Oliva, Jiang et al. 2000; Chattopadhyaya, Di Cristo et al. 2004; Lopez-Bendito, Sturgess et al. 2004). Application of cell sorting techniques such as Fluorescent activated cell sorting (FACS) or Laser capture microdissection has permitted the analysis of gene expression profiles of isolated groups of homogeneous cells (Arlotta, Molyneaux et al. 2005; Sugino, Hempel et al. 2006). Gustincich and colleagues used such a transgenic animal to examine gene expression in catecholaminergic neurons of the retina, a retinal cell type (Gustincich, Contini et al. 2004). Sugino and colleagues, exploited several transgenic mice to compare gene expression in twelve different inhibitory and excitatory cell types from different brain regions (Sugino, Hempel et al. 2006). In conclusion, mcroarray analysis of gene expression is becoming an increasingly useful tool to examine cellular heterogeneity in the brain as better techniques are applied to the separation of functional neuronal families.

6.2.2 Gene expression profile analysis in epilepsy.

Microarray technology has also been used to explore modifications in gene expression during changes and pathologies of the brain such as development (Geschwind, Ou et al. 2001; Mody, Cao et al. 2001) ischemia (Matzilevich, Rall et al. 2002) and aging (Lee, Weindruch et al. 2000; Jiang, Tsien et al. 2001) as well as disorders including Alzheimer's disease (Ginsberg, Hemby et al. 2000), multiple sclerosis (Whitney, Becker et al. 1999; Lock, Hermans et al. 2002) and schizophrenia (Mirnics, Middleton et al. 2000; Hakak, Walker et al. 2001).

Characterization of gene expression in epileptic tissue obtained from patients or from animal models of epilepsy may suggest novel therapeutic targets. In one early study, gene expression in sclerotic human hippocampus obtained after operations on pharmacoresistant patients was compared with that in control or lesioned hippocampi (Becker, Chen et al. 2002). They found that 21 genes were differentially regulated. A closed examination of a subset of these revealed that two (ataxin-3 and glial fibrillary acid protein: GFAP) were upregulated while one (calmodulin) was down regulated. Differentially regulated genes were classed as neuronal- or glial-specific, or as for calmodulin, related to a structural modification rather than to a change in the expression of a specific cell type. Jamali and colleagues made expression profile analysis on genes expressed in the entorhinal cortex of epileptic patients (Jamali, Bartolomei et al. 2006). They linked six genes to human MTLE: a serotonin receptor (HTR2A), a neuropeptide Y receptor type 1 (NPY1R), a protein (FHL2) associating with the KCNE1 (minK) potassium channel subunit and with presenilin-2 and three immune system-related proteins (C3, HLA-DR-gamma and CD99).

In contrast to work on tissues obtained from epileptic patients, animal models offer the possibility to follow changes in gene expression at several time points during epileptogenesis. These works demonstrate immediate genetic effects of several precipitating factors. Thus, the pro-epileptic effects of traumatic brain injury on hippocampal gene expression has been examined at 1 hr, 4-8 hrs and 1 day after the damage (Matzilevich, Rall et al. 2002; Long, Zou et al. 2003). Matzilevich and colleagues found that about 6% of 8.800 identified transcripts

were differentially expressed. These transcripts were involved in oxidative stress, metabolism, inflammation, structure and cellular signaling. Long and coworkers found that the expression of 253 genes was altered: 106 increased, 147 decreased. Most up-regulated genes were involved in cell homeostasis and calcium signaling, downregulated genes coded for mitochondrial enzymes, metabolism, and structural proteins, while genes coding for proteins involved in inflammatory reactions were both up and down regulated. Comparison of the effects of KA treatment on gene expression in parietal cortex on the day of injection and one day later (Tang, Lu et al. 2002) revealed 186 differentially expressed genes mostly involved in inflammation.

Distinct changes in genetic profile occur during the latent phase in the dentate gyrus of rat 14 days after treatment (Elliott, Khademi et al. 2001). Lukasiuk, Kontula and Pitkanen used amygdala kindling in the rat and analysed the effects in microarray analysis of hippocampal and temporal lobe tissue at delays of 1, 4 and 14 days. Pooling mRNA from both ipsi-lateral and contralateral hippocampi provided evidence for a complex network of gene expression with changes specific to the different time points (Lukasiuk, Kontula et al. 2003). They identified 282 genes whose expression changed during epileptogenesis: 87 hippocampal and 207 temporal lobe transcripts. 13 genes were common to both structures, but only four genes (all expressed sequence tags) changed in the same direction at the same time in both regions.

Similar time points were combined in a hippocampal kindling model by Gorter and coworkers with a regional analysis that compared changes in CA3, the entorhinal cortex and the cerebellum (Gorter, van Vliet et al. 2006). Gene expression changed even in the unstimulated cerebellum. The largest changes occurred for genes associated with immune responses, such as cytokines, complement factors and interleukins, and these changes were maintained for several months after stimulation. Genes associated with synaptic transmission, including the GABA-A receptor subunits α 5 and δ , tended to be downregulated during both the acute and latent phase. These studies led to the identification of several epilepsy candidate genes, and had great importance in giving more insights in the complex networks of events that lead from a first injury to the establishment of an epileptic brain.

Methods and Results

• Different patterns of gene expression in Somatostatincontaining interneurons and pyramidal cells of the hippocampus

Different patterns of gene expression in Somatostatin-containing interneurons and pyramidal cells of the hippocampus

In preparation

Dario Motti, Christina Vlachouli, Dejan Lazarevic, Laura Lagostena, Federico Minneci, Remo Sanges, Elia Stupka, Richard Miles, Enrico Cherubini, Stefano Gustincich.

Introduction

Hippocampal neurons can be broadly divided into pyramidal cells and interneurons. Pyramidal cells liberate glutamate to excite post-synaptic neurons while interneurons release GABA which inhibits principal cells and other inhibitory cells. Even though GABAergic interneurons form a minority of about 10% of hippocampal neurons, they are diverse in terms of their anatomy, their expression of neuropeptide co-transmitters and Ca-binding proteins as well as in neurophysiological properties (Ramon y Cajal 1893; Freund and Buzsaki 1996).

Attempts made to classify interneurons according to these criteria (Freund and Buzsaki 1996; Parra, Gulyas et al. 1998) have been only partially satisfactory (Parra, Gulyas et al. 1998; McBain and Fisahn 2001). It remains a challenge to find a classification scheme that encompasses anatomical, physiological, pharmacological, developmental and phylogenetic aspects of the interneuron phenotype in the face of novel molecular data. A promising approach may involve a systematic analysis of the expression of large numbers of molecules. Recent work has used techniques including RT PCR (Toledo-Rodriguez, Goodman et al. 2005) and gene profile expression derived from microarray systems (Sugino, Hempel et al. 2006) to explore the molecular composition of distinct groups of GABAergic cells.

Such molecular approaches to interneuron classification may be usefully combined with the recent development of transgenic techniques for identification of subsets of interneurons. In these animals, enhanced green fluorescent protein (EGFP) is coupled to a promoter that controls the expression of a specific peptide or calcium binding protein (Monyer and Markram 2004). Oliva *et al.* (2000) have used this technique to generate transgenic mice that express EGFP under the control of the regulatory sequence of the gene coding for the Glutamate Decarboxylase 1 protein (67 KDa, *Gad1* or *Gad67*). EGFP was found, in one transgenic mouse strain, to be expressed in hippocampal and neocortical interneurons containing Somatostatin. This strain has been named GIN for GFP-expressing Inhibitory Neurons. These GFP-expressing cells seem not to express (Oliva et al, 2001) other markers such as Calbindin (CB) and Neuropeptide Y (NPY) that are present in some SOM-expressing hippocampal interneurons (Kohler, Eriksson et al. 1987; Toth and Freund 1992). They did not express parvalbumin (PV) or calretinin (CR), but systematically expressed the "a" spliced form of the metabotropic glutamate receptor 1 (mGluR1a, Oliva et al. 2000).

The identification of fluorescent EGFP-positive cells of GIN mice has facilitated anatomical and physiological studies on this subset of GABAergic cells. The axon of nearly all EGFP positive cells with somata in *stratum oriens* of the CA1 region projects to *stratum lacunosum-moleculare* (O-LM; Oliva *et al.* 2000). Multiple physiological studies have also been made on O-LM interneurons both before and after the emergence of the GIN mouse strain (Lacaille, Mueller et al. 1987; Lacaille and Williams 1990; McBain, DiChiara et al. 1994; Maccaferri and McBain 1996; Maccaferri, Roberts et al. 2000; Maccaferri and Lacaille 2003; Maccaferri 2005).

In this study, I used microarray techniques to compare gene expression of EGFP+ fluorescent interneurons from the GIN mouse strain and non-fluorescent CA1 pyramidal cells. These cell types were sorted on the basis of their fluorescence after dissection with laser capture microscopy (Oliva, Jiang et al. 2000). This work identified 443 differentially expressed genes: 260 of them were more highly expressed by interneurons and 183 genes were expressed at higher levels in pyramidal cells. The differentially expressed genes included several proteins involved in tramission of nerve impulse or modulation of synaptic activity, as well as 37 transcription factors or genes associated with transcription regulation which displayed distinct expression patterns.

Materials and Methods

All experiments were carried out in accordance with the European Community Council Directive of 24 November 1986 (86/609EEC) and were approved by local authority veterinary service.

Dissociation of hippocampal neurons

Experiments were performed on wild-type FVB mice and GIN mice, aged P15-P20 (GIN mice: Jackson Laboratories, Maine, USA; (Oliva AA Jr 2000). Animals were decapitated after anaesthesia induced by intraperitoneal injection of urethane (2 g/Kg body weight) and both hippocampi were dissected.

Several different procedures were tested to optimise the stability and quantity of RNA that could be isolated from GFP-positive interneurons and pyramidal cells of the hippocampus. The first procedure used a fluorescence activated cell sorter to sort fluorescent interneurones from pyramidal cells. Hippocampi were placed in ice-cold phosphate buffer solution (PBS) and cut into small pieces ($\sim 2x2$ mm) with a scalpel blade, removing white matter as far as possible to facilitate cell dissociation. These pieces were then put in a Falcon tube containing 5 ml of cold EBSS (Earle's Balanced Salt Solution: 10X EBSS, Sigma, St Louis, MO, USA; 7.5% NaHCO₃; 1M HEPES, Sigma, St Louis, MO, USA; 0,35g/ml of Glucose; pH adjusted to 7.4 with 1N HCl). This solution was briefly washed with 5 ml of a Digestion Solution (137 mM NaCl, 5mM KCl, 7 mM, Na₂HPO₄, 25 mM HEPES, 4.2 mM NaHCO₃, 200 mM Kynurenic Acid, pH adjusted to 7.4). It was then replaced by 5 ml of the same solution containing 20 U/ml papain (Worthington Biochemical Co., Freehold, NJ). Papain was pre-activated by incubation at 37°C for 30 min in the presence of 1 mM L-cysteine and 0.5 mM EDTA. After adding activated papain, 250 µl DNAseI was added to the digestion solution and the tube was gently agitated at 37°C for 20 min. The digestion medium was then removed and the contents washed briefly in EBSS. An additional wash (5 min at 4°C) was then performed with 5ml of EBSS containing 500 µl of 1% Ovomucoid Inhibitor (Worthington Biochemical Co, Freehold, NJ) and 1% BSA (Sigma, St Louis, MO, USA). This inhibitor was then removed, the tissue was briefly washed in EBSS before treating the tissue again with 750 µl of dissection buffer and 250 µl of DNAse in EBSS. Hippocampi were mechanical triturated with fire-polished glass pasteur pipettes in this solution before centrifugation at 1000 rpm for 5

min. Pelletted cells were then resuspended in 2 ml of extracellular solution or RNAlater (Qiagen, Chatsworth, CA, USA).

Fluorescence Activated Cell Sorting

Fluorescence Activated Cell Sorting was done in collaboration with Dr. Myrza Suljagic using a FACSCalibur System (BD Biosciences, Franklin Lakes, NJ USA) kindly provided by Prof. Oscar Burrone at the Centre for Genetic Engineering and Biotechnology in Trieste. Resuspended cells were diluted with PB and the solution was passed through the machine. Fluorescence acquisition and data analysis were performed with CellQuest Pro Software (BD Biosciences, Franklin Lakes, NJ USA). Sorted cells were collected in 50 ml Falcon Tubes.

Laser Capture Microdissection

As an alternative approach, we used laser capture microdissection to separate EGFP+ interneurons and CA1 pyramidal cells according to C. Vlachouli *et al*; manuscript in preparation. For these experiments, brains were dissected and incubated in 1X Zinc Fix (BD Biosciences, Franklin Lakes, NJ USA) in H₂O treated with Diethyl Pyrocarbonate (DEPC, Sigma, St Louis, MO, USA) solution for 6 hours. After fixation, brains were exposed overnight to a 1X Zinc Fix + 30% sucrose solution. They were then included in section medium Neg-50 (Richard Allan scientific, Kalamazoo, MI, USA) and placed on an isopentane layer (Sigma, St Louis, MO, USA) that had been frozen in liquid nitrogen. Blocks of tissue were placed in a freezing cryostat (Microm International, Walldorf, Germany) and maintained at -21°C for 30 min. Frontal sections of whole brain were then cut at a thickness of 16 µm and transferred to Superfrost Plus glass slides (Menzel-Glaser, Menzel GmbH & co KG, Braunschweig, Germany). EGFP-positive interneurons cells were identified in unstained tissue using a Zeiss P.A.L.M. LCM microscope (Carl Zeiss Inc., Germany). Sections were air dried for 2 min and fluorescent cells were microdissected, collected in adhesive caps (PALM Microlaser Technologies GmbH, Bernried, Germany) and their mRNA was rapidly extracted.

Pyramidal cells were collected using similar procedures in experiments on FVB wild type mice, aged P15-P20. Pyramidal cell bodies were recognised by applying a modified Nissl stain protocol to coronal sections. Cells of the pyramidal layer were identified on dry sections, microdissected, collected and mRNA was rapidly extracted.

Modified Nissl Staining

A modified rapid Nissl staining was needed to reduce the possibility that sections dried during the time between cryostat cutting and use of the laser capture microdissector (C.Vlachouli, personal comunication). Slices on glass slides were washed for 30sec in PBS 1X and stained for 10 min in a Cresyl Violet solution (0.5X Cresyl Violet, 1% Acetic Acid, 0.04X Sodium Acetate in nuclease-free H₂O). They were then passed through PBS, 70% EtOH, and 95% EtOH for 30 s in each solution. Laser micro-dissection was then performed.

RNA extraction and probe synthesis

mRNA from EGFP-positive interneurons and pyramidal cells was extracted, isolated, purified and amplified with the µMACS SuperAmp kit (Miltenyi Biotec, Bergisch Gladbach, Germany) according to manufacturer's protocol (C. Vlachouli *et al.*; manuscript in preparation). GlobalPCR product was purified with the High Pure PCR Product Purification Kit (Roche diagnostics GmbH, Mannheim, Germany) and the DNA concentration of samples was measured with ND-1000 spectrophotometer (Nanodrop technologies, Wilmington, DE, USA). For hybridization on two microarray slides (SISSA1/SISSA2), 350 ngm of globalPCR were labelled with µMACS SuperAmp kit with added Klenow Fragment (20 units, Fermentas Inc., Glen Burnie, MD, USA) and 25nmol cy3-dCTP (GE Healthcare, UK) according to manufacturer's protocol. When labelled, the probe was purified with Illustra CyScribe GFX Purification kit (GE Healthcare, UK). Dye incorporation and DNA concentration were measured with a ND-1000 spectrophotometer.

For total hippocampus hybridizations, animals were decapitated and tissue removed into icecold PBS 1X in DEPC-treated H₂O. Hippocampi were dissected in RNAse free conditions and placed in Eppendorf containing 1 ml TRIzol (Invitrogen, Carlsbad, CA, USA). Total RNA was isolated according to the manufacturers instructions. Samples were treated to avoid genomic contamination with 2 units of RNAse-free DNAse (2 units/µl; Ambion, Austin, TX USA) for 15 min at 37°C. Total RNA was further purified with RNeasy Mini Kit (Qiagen, Chatsworth, CA, USA). The quality of purified RNA quality was assessed using an Agilent 2001 Bioanalyzer (Agilent, Palo Alto, CA, USA) and quantified with a ND-1000 spectrophotometer (Nanodrop technologies, Wilmington, DE, USA). In hybridization experiments, 10 µg of purified RNA were used.

Standard RNA processing for microarray experiments

For hybridization on two microarray slides (SISSA1/SISSA2), 10 μ g of Universal mouse reference RNA (Stratagene, La Jolla, CA, USA) was mixed with 5 μ l of Random Primers (Concentration, Manufacturer) and 2 μ l of smart T7-24 primer.

After 5 min at 70°C, 4 µl of 5X First Strand Buffer, 2 µl of DTT (both reagents from Invitrogen, Carlsbad, CA, USA), 2 µl of amino allyl dUTP-dNTPs, 1 µl of SuperScript II (Invitrogen, Carlsbad, CA, USA) and 0.5 µl of RNAse Out (Invitrogen, Carlsbad, CA, USA) were added to this pre-mix. The reaction mix was incubated for 2 hours at 37°C and for 5 min at 70°C to inactivate the enzyme. After adding 1 µl of 0.5M EDTA pH 8.0 and 10 µl 1M NaOH, the reaction was performed at 70°C for 10 min before adding 20 µl of 1M HEPES. The standard probe was precipitated at 4°C for 30 min by adding 3M NaOAc to a final concentration of 0.3M, 1 µl of Linear Acrylamide (Ambion, Austin, TX, USA), 150 µl of Nuclease Free H₂O and 150 µl of Isopropanol. Samples were centrifuged for 30 min at 15000xg, isopropanol was removed and pellets washed with 70% EtOH. They were resuspended in 4.5 µl of Nuclease Free H₂O and 4.5 µl of 0.1M NaHCO₃ and incubated for 15 min at RT. Cy5 dye (GE Healthcare, UK) in 2 µl of DMSO was then added and coupling was done overnight at RT. The coupling reaction was quenched with 4.5 µl of 4M hydroxyamine incubated at RT in the dark for 15 min before adding 35 µl of 100mM NaOAc pH 5.2. The labelled probe was purified with PCR purification kit (Qiagen, Chatsworth, CA, USA). Dye incorporation and DNA concentration were measured with an ND-1000 spectrophotometer.

Microarray hybridization

Before hybridization, SISSA1/SISSA2 slides were incubated for 1 hr at 55°C in 0.2X SSC (Ambion, Austin, TX USA) buffer filtered through a 0.22 μ m filter, washed in distilled water and centrifuged at 2000 rpm for 5 min. For each slide pair, ~2 μ g of probe were mixed with 2 μ g of standard RNA probe together with 1.3 μ l of 3.5 mg/ml Salmon Sperm (Sigma, St Louis, MO, USA), 1.3 μ l of 1 mg/ml Cot-1 mouse (Invitrogen, Carlsbad, CA, USA), 6.6 μ l of PolyA and 6.6 μ l of 11.8 mh/ml tRNA (Sigma, St Louis, MO, USA). Sample volume was brought to 150 μ l with distilled H₂O, before adding 150 μ l of 2X formamide-based hybridization buffer (Genisphere, Hatsfield, PA, USA) pre-heated to 65°C for 10 min. Slides were mounted on a GeneMachines Hyb4 Microarray Station (Genomic Solutions, MI, USA) and after pre-heating to 80°C for 10 min. 150 μ l of the sample was pipetted onto each slide. Hybridization was achieved with the sequence: 65°C for 2 hr, 55°C for 2 hr and 44°C for 12 hr. Slides were washed 5 times with 2X SSC + 0.2 SDS at 65°C, 5 times with 2X SSC at 42°C. Each wash included 10s of flowing solution, and 30s at holding temperature. Before scanning, slides were centrifuged at 2000 rpm for 10 min in the dark.

Analysis of expression profile data

Slides were scanned with a GenePix Personal 4100A microarray scanner (Molecular Devices Corporation, CA, USA). Pre-processing, including slide reading and intra- and inter-array normalization, was done independently for each group. Loading, normalization and statistical analysis were done with the LIMMA package from BioConductor or statistical computing in the R programming environment (Gautier L 2004). Normalization within arrays was done with the function "normalizeWithinArrays" based on the LOWESS algorithm: "normalizeWithinArrays(RG,method="loess",bc.method="normexp",offset=50)".

Normalization between arrays was done with the function "normalizeBetweenArrays" based on the quantile method: "normalizeBetweenArrays(MA,method="quantile")".

After loading and normalization, all signals were merged before statistical analysis. Our hybridization design permitted two distinct types of analysis: a) to compare single cell or tissue RNA levels to a control (universal mouse RNA): similar to the 'single-channel

hybridization'; b) to compare RNA expression levels between two different cell types or tissues, using the same reference (universal mouse RNA) for both hybridizations. All statistical analyses were done using the eBayes function of the LIMMA package. Filters used are the widely accepted: fold change $\leq \log 2$ (-1) or fold change $\geq \log 2$ (1) (corresponding to a ± 2 fold change on a linear scale) and corrected p-value ≤ 0.05 .

Heatmaps were generated by submitting gene lists to the MultiExperiment Viewer program (Institute for Genomic Research, Rockville, MD, USA; <u>www.tigr.org</u>). Fold Changes for each experiment compared the sample to the Standard Reference and were then normalized to perform Hierarchical Clustering (Eisen, Spellman et al. 1998) based on Euclidean Distance. Gene Ontology analysis was performed using tools for annotating gene lists available at DAVID Bioinformatics Resources: <u>http://david.abcc.ncifcrf.gov/</u> (Dennis, Sherman et al. 2003).

Results

Dissociation and FACS analysis of EGFP positive cells.

Data was obtained from mice of the GIN strain at P10-P15. The optimum cell dissociation protocol (see methods section) was based on papain rather than trypsin or pronase digestions. Microscopic observation of dissociated cells plated onto a poly-lysine coated petri suggested that up to 10^6 cells of healthy appearance based on a Trypan Blue vitality test (data not shown) could be obtained from the hippocampi of 4 animals.

We first attempted to separate fluorescent interneurons and non-fluorescent pyramidal cells with a fluorescence activated cell sorting machine (Herzenberg, Sweet et al. 1976), which analyzed the fluorescence and size of cells passed through it. Parameters measured were Forward Scattering (FSC-H) which reflects cell size, Side Scattering (SSC-H) related to cell shape and Green (FL1-H) or Red (FL2-H) fluorescence signals. The same analysis was performed on dissociated hippocampal cells from WT animals as a control.

We first used a resuspension media containing RNAlater (Qiagen, Chatsworth, CA, USA). However, analysis of FSC-H and SSC-H signals (Fig. 1A) suggested that while this solution preserved RNA, it also induced a significant cell shrinkage. Signals from tissue dissociated from WT or GIN animals were dispersed due to cell bodies and debris and a high percentage of data points were close to the lowest levels of detection. We then switched to a standard extracellular solution which permitted detection of two distinct cell populations in both EGFP and WT animals. These cell groups showed different levels of Forward Scattering, with more cells in a group with a lower FSC-H.

Cell shrinkage induced by RNAlater was associated with a loss of fluorescence evident in plots (Fig. 1B) of green fluorescence (FL1-H) against forward scattering (SSC-H)). It revealed an accumulation of cells at the lowest levels of fluorescence with detection thresholds set between 10^1 and 10^2 to exclude detection of cells from WT samples. Comparing specific and aspecific fluorescent signals by plotting red (FL2-H) against green fluorescence (FL1-H) revealed a specific green signal in a population of selected cells.

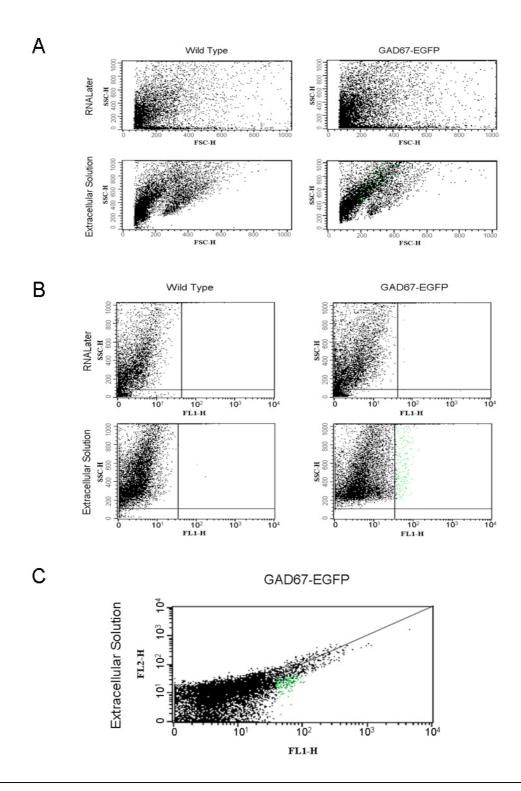


Fig.1: FACS ANALYSIS OF DISSOCIATED CELLS FROM WILD TYPE AND GIN MICE HIPPOCAMPI. Each panel compares Side Scattering (SSC) to Forward Scattering (FSC). 1A, there was signal dispersion from cells resuspended in RNAlater, while two populations, in terms of size and shape, were evident for cells resuspended in fresh extracellular solution. 1B, comparison of green fluorescence (FL1) with respect to SSC (1B) revealed no difference between wild type and GFP positive cells when RNAlater was used, and the signal accumulation near threshold levels is suggestive of a large cellular shrinkage. Cells from GIN and WT mice resuspended in extracellular solution showed different levels of fluorescence, permitting isolation of up to 10⁴ cells with fluorescence higher than a set threshold (1B). Isolated cells are shown as green spots in all graphs. The specific fluorescence is evident in comparisons of FL1 and FL2 (1C).

Using this threshold, $0.5 - 1*10^4$ cells could be sorted from a suspension of about 10^6 dissociated cells derived from the hippocampi of two GIN mice. This represents 0.9 - 1.2 % of the number of cells analyzed. It is consistent with estimates that EGFP positive interneurons of GIN mice account for ~1% of hippocampal neurons (Oliva et al, 2000).

All fluorescent cells fell into the population of smaller cells based on FSC-H values and most of them showed high SSC-H values. However, isolated cells were collected from the sorter in a volume of \sim 50 ml of PBS which was too large for further steps towards gene profiling. We therefore searched for an alternative method to distinguish between EGFP-positive interneurons and pyramidal cells.

We next used laser capture microscopy to collect mRNA from fluorescent interneurons and from pyramidal cells. In this technique, a laser beam precisely cuts small areas of tissue and focal laser pulses can then be used to catapult cut tissue into a collection tube (Emmert-Buck, Bonner et al. 1996).

Slice preparation.

GIN mice, aged P15-P20 were sacrificed, and their brains dissected in RNAse-free conditions. Brains included in cutting medium were then frozen in isopentane and cut at a cryostat in 16 μ m thick slices. Due to the nature of the tissue, and given the lack of fixation (to preserve RNA integrity) slices were immediately moved under the microscope to perform Laser Capture Dissection. In order to identify the pyramidal layer and collect pyramidal cells slices were stained with Cresyl Violet before laser capture. Nissl staining protocol was modified to be faster in order to avoid drying of slices and RNA degradation.

Laser Capture Dissection.

Cells of tissue derived from GIN animals were selected on the basis of their fluorescence and the location of their soma in the *stratum oriens* of the CA1 region. In each experiment ~300 EGFP positive cells were collected from the sections. While axonal projection patterns could not be determined, most of these fluorescent cells probably corresponded to O-LM interneurons. For comparison, about 300 pyramidal cells were dissected from the *stratum pyramidale* of CA1 and CA3 regions of tissue from same animals.

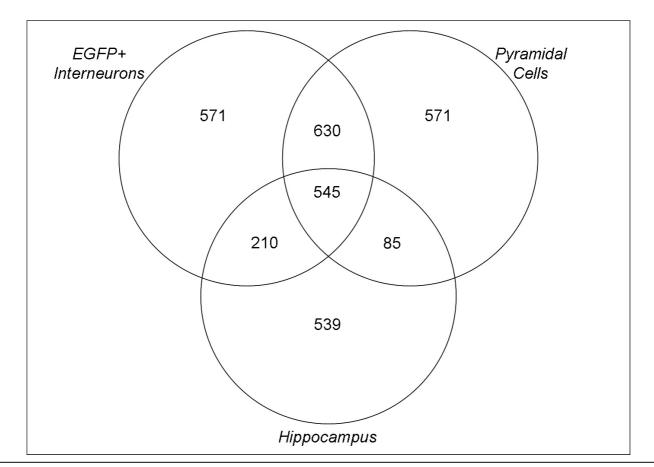
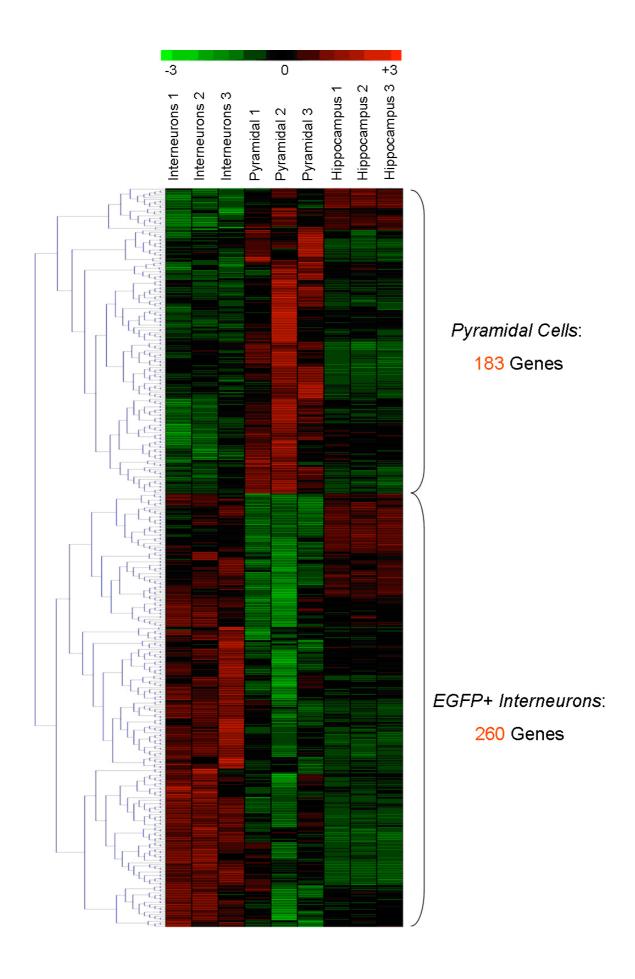


Fig.2: STATISTICAL ANALYSIS OF DIFFERENTIALLY EXPRESSED PROBES. Three distinct microarray hybridizations were done on EGFP+ Interneurons, Pyramidal Cells and total Hippocampus. Each sample was hybridized against a reference RNA. Statistical analysis identified transcripts differentially expressed between the single sample and the reference RNA. In the circles are reported the numbers of transcripts passing the statistical analysis for sample type. In the intersected areas the number of transcripts shared between the different analyses.

RNA extraction and hybridization.

Samples from these cells were processed for mRNA extraction and amplification with μ MACS SuperAmp kit (Miltenyi Biotec, Bergisch Gladbach, Germany) which uses magnetic beads to specifically isolate messenger RNA. This RNA was then amplified, labelled with fluorofores and hybridized on home-made microarrays. The same analysis was performed on total hippocampal mRNA extracted from isolated hippocampi of GIN animals. The arrays used were home-spotted with the FANTOM 2 collection of mouse transcripts (Okazaki, Furuno et al. 2002); (FANTOM international Consortium). We chose ~14 000 well characterized and non-redundant transcripts from ~60 000 transcripts in the collection. Genes


were represented in triplicate and the whole collection was printed on two slides which were both hybridized in each experiment. Hybridizations were repeated three times for each cell population, and were always hybridized against a standard universal mouse reference RNA sample.

Differentially expressed genes.

Fig.2 shows the number of transcripts in EGFP-positive interneurons, identified pyramidal cells and total hippocampal tissue that were differentially expressed with respect to reference RNA. After application of threshold procedures described in the methods, we detected 1956 transcripts expressed by interneurons, 1831 by pyramidal cells, and 1379 transcripts by the total hippocampal tissue. As shown in Fig. 2, some of these transcripts were common to the different groups. For example, 1175 probes, differentially expressed with respect to reference RNA, were common to both EGFP+ cells and pyramidal cells.

We next attempted to separate genes that were expressed differently by EGFP-positive interneurons and pyramidal cells. Data from the two populations were reanalysed using a Bayesian algorithm to identify statistically significant differences. After filtering according to p-values and Log-fold changes (see methods) we detected 443 genes that were differently expressed in these two cell groups. In the heatmap shown in Fig.3, where slots are coloured according to expression levels with respect to the reference for each experiment, two major clusters were detected corresponding to the different cell types. It shows 260 transcripts were more represented in EGFP positive interneurons, and 183 had higher expression levels in pyramidal cells.

Fig.3, next page: HEATMAP OF GENES DIFFERENTIALLY EXPRESSED BETWEEN SOM-CONTAINING INTERNEURONS AND PYRAMIDAL CELLS. Each slot represents the differential expression of the gene in the row as Fold Change in logarithmic scale between the cell type/tissue in the column and the Reference. The gradient goes from green to red. Two main clusters of genes were identified: those overrepresented in the interneuronal population (260) and those overrepresented in the pyramidal cells (183)

Association of differentially expressed genes with Gene Ontology terms.

We examined associations of differentially expressed genes with *cellular component*, *molecular function* and *biological process* terms of the Gene Ontology database. 400 of 443 transcripts were present in the database for mice. 328 of them were clustered for association with one or more terms after application of a threshold p-value, ≤ 0.05 , provided by the clustering analysis (<u>http://david.abcc.ncifcrf.gov/</u>; (Dennis, Sherman et al. 2003).

More than half of the differentially expressed genes were associated with *cytoplasmic compartment* and *intracellular region* from the *cellular component* terms.

Of *molecular function* terms, more than 10% of differentially expressed genes (52 transcripts) were associated with *nucleotide binding*.

The most differentially expressed was the gene Rab3b, a member of the Rab family, more highly expressed in interneurons with a log-fold change of 3.1. Rabs are GTP-binding proteins involved in regulating membrane traffic (Darchen and Goud 2000; Deneka, Neeft et al. 2003) and Rab3b is one of four Rab proteins implicated in exocytosis (Touchot, Chardin et al. 1987; Matsui, Kikuchi et al. 1988; Zahraoui, Touchot et al. 1989).

Pyramidal cells showed a higher representation of the Transient receptor potential cation channel, subfamily C, member 4 associated protein (Trpc4ap) from the molecular component terms. This gene is expressed in the brain (Soond, Terry et al. 2003) and recent data suggests polymorphisms exist which may be associated with a susceptibility to Alzheimer's Disease (Poduslo, Huang et al. 2008).

Among the *biological process* terms, multiple differentially expressed genes were associated wih *transport* activity and *signal transduction*. Of 57 genes related to these functions, 36 were more highly expressed in interneurons and 21 more expressed in the pyramidal cells. These genes included a differential expression of GABA_A receptor subunits with α 4, δ and γ 2 (Gabra4, Gabrd and Gabrg2) more highly expressed in interneurons and the θ subunit (Gabraq) more expressed in pyramidal cells.

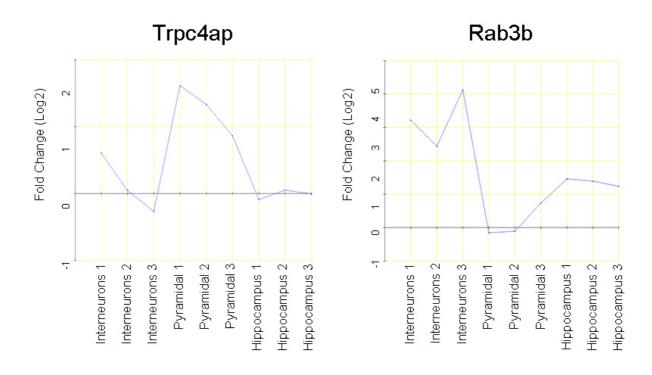


Fig.4: Differential expression in all hybridizations of genes associated with *molecular function: nucleotide binding*. Rab3b was more highly expressed by EGFP+ interneurons than by pyramidal cells according to fold-changes between the different cell types and Standard RNA in all hybridizations. In contrast Trpc4ap is more highly expressed by pyramidal cells.

Among the genes that may be involved directly in the determination of the distinct phenotypes of interneurons and pyramidal cells, we also detected differences in the expression of transcription factors (TF). Thus differentially expressed TFs may form a *"fingerprint"* to recognize and classify cell types. From *biological process* terms corresponding to differentially expressed genes, a subset of 37 genes was associated with *Regulation of gene expression*. As shown in the heatmap of Fig. 5, 13 of them were more highly expressed in pyramidal cells and 24 were more highly represented in the subset of EPFP-positive GABAergic neurons.

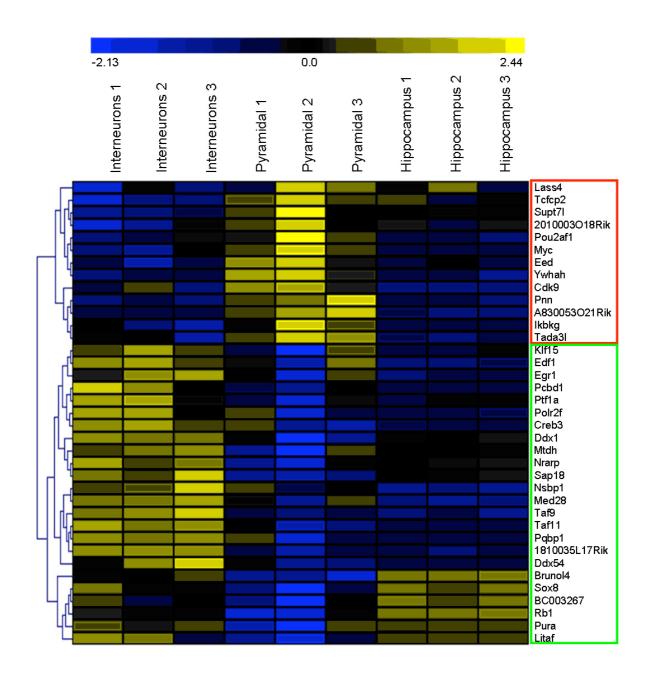


Fig.5: HEATMAP OF DIFFERENTIALLY EXPRESSED GENES ASSSOCIATED WITH *REGULATION OF GENE EXPRESSION*. Each slot represents the differential expression of the gene in the row as Fold Change in logarithmic scale between the cell type/tissue in the column and the Reference. The genes in the red box are more highly expressed in pyramidal cells, and those in the green box are more highly represented in SOM containing interneurons.

Discussion

We have analyzed differences in gene expression by CA1 pyramidal cells and a subset of hippocampal interneurons labelled with green fluorescent protein in the GIN mice (Oliva, Jiang et al. 2000). These cells seem to correspond to a subpopulation of interneurons that express somatostatin (SOM). The somata of cells that we analysed were located in the *stratum oriens* of the CA1 region and it seems likely that they correspond to the O-LM group of interneurons whose axon projects to the *stratum lacunosum-moleculare*. Using gene arrays based on the FANTOM collection, we detected differential expression of 443 mRNA transcripts, with 260 species more represented in EGFP-positive interneurons, and 183 more highly expressed in pyramidal cells.

Technical issues.

The combination of fluorescence activated cell sorting and microarray analysis has been used to determine differential gene expression in neurons (Arlotta, Molyneaux et al. 2005; Marsh, Minarcik et al. 2008). We found that resuspension of dissociated cells in RNAlater medium to preserve genetic material caused a significant cell shrinkage which seriously reduced fluorescent signals. Fluorescent cell sorting was achieved in extracellular solution with no added RNAlater. It permitted the separation of a population of green fluorescent cells (FL1-H reading > $10^{1.2}$). Our yields were ~5000 fluorescent cells per hippocampus. However after collection cells were suspended in a solution of 50 ml, too large for mRNA preparation. We therefore turned to laser capture techniques to dissect EGFP positive cells from hippocampal slices (Lefebvre d'Hellencourt and Harry 2005; Yao, Yu et al. 2005; Sugino, Hempel et al. 2006). Pyramidal cells were collected in a similar way after staining tissue with a rapid variant of the cresyl violet Nissl stain to identify the location of pyramidal cell somata. Tissue fixation, cell harvest and RNA purification have been previously optimized for LCM-based gene expression profiling (C. Vlachouli; PhD thesis *in preparation*).

Microarray experiments were performed by hybridizing RNA from the two cell populations as well as from total hippocampus against a standard reference RNA. This permitted identification of differences in transcript expression in the two cell types. The differences in gene expression should be confirmed with single cell or Real Time PCR data. Immuno-histochemistry with antibodies raised against specific gene products of mRNA species showing distinct expression

patterns in pyramidal cells and O-LM interneurons may identify additional specific markers for these interneurons.

Contribution to the molecular basis for the distinct phenotype of O-LM interneurons.

Our data may contribute to the problem of the classification of GABAergic interneurons (Maccaferri and Lacaille 2003). They provide a gene profile for a well-characterized class of hippocampal interneuron and reveal several interesting differences in gene expression between these cells and pyramidal neurons of the same region. We should note that our data was obtained from ~300 cells of either type lumped together so masking possible variability in genes expressed by cells of the same group. A similar approach has been used to characterize parvalbumin positive (Meyer, Katona et al. 2002) and parvalbumin and calbindin-positive GABAergic cells (Blatow, Rozov et al. 2003).

The O-LM group of interneurons has a distinct somatic site, axonal arborisation pattern and dendritic morphology from CA1 pyramidal cells. O-LM cell expression of Ca-binding proteins may be diverse (Parra, Gulyas et al. 1998), but they consistently express the peptide somatostatin (Oliva, Jiang et al. 2000) and type I metabotropic glutamate receptors (van Hooft et al, 2000). Firing behaviour and the properties of afferent excitatory synapses differ between O-LM interneurons and CA1 pyramidal cells (Ali and Thomson 1998). These differences in phenotype presumably derive in part from differential gene expression between the two cell types. Our data revealed that large numbers of genes were differentially expressed, although they did not include those coding for Ca-binding proteins, neuropeptides or mGluRs. In fact we could not provide data for well known differentially expressed genes described for these cells (Oliva, Jiang et al. 2000) like Somatostatin or mGluR1 because they are not present in our transcripts database. Instead we detected differences in genes associated with *biological process, cellular component* or *molecular function* terms from the Gene Ontology classification.

As expected, many differentially expressed genes were associated with the *cytoplasmic compartment* of the *cellular component* division of the Gene Ontology. In terms of *molecular function*, genes associated with *nucleotide binding* were more strongly expressed in the EGFP-psotive intereneurons. They included the gene coding for Rab3b (higher than 8 times difference in expression) which has been implicated in vesicular exocytosis (Touchot, Chardin et al. 1987; Matsui, Kikuchi et al. 1988; Zahraoui, Touchot et al. 1989). In contrast pyramidal cells showed a higher expression of Trpc4ap (Soond, Terry et al. 2003). Differentially expressed genes associated with terms from the *biological process* division of the Gene Ontology numbered 57, and included those related to *transport* activity and *signal*

transduction. Three GABA_A receptor subunits $\alpha 4$, δ and $\gamma 2$ (Gabra4, Gabrd and Gabrg2) were more highly expressed by interneurons and the θ subunit (Gabraq) was more expressed in pyramidal cells. The gene coding for the pre-synaptic protein Synaptotagmin I was expressed at higher levels in EGFP-positive interneurons than in CA1 pyramidal cells.

Interestingly we detected differences in 37 genes associated with *Regulation of gene expression* with 13 transcripts more highly expressed in CA1 pyramidal cells and 24 detected at higher levels in O-LM interneurons. The expression of distinct combinations of such genes, including transcription factors, may define specific classes of interneurons by controlling the expression of cytoplasmic and membrane proteins that distinguish their phenotype from that of pyramidal cells (Toledo-Rodriguez, Blumenfeld et al. 2004; Toledo-Rodriguez, Goodman et al. 2005).

• Gene expression changes associated with the emergence of epileptiform activity after injection of kainic acid into the mouse hippocampus.

Gene expression changes associated with the emergence of epileptiform activity after injection of kainic acid into the mouse hippocampus.

In preparation.

Dario Motti, Caroline Le Duigou, Emmanuel Eugène, Nicole Chemaly, Lucia Wittner, Dejan Lazarevic, Helena Krmac, Remo Sanges, Elia Stupka, Enrico Cherubini, Stefano Gustincich and Richard Miles.

Introduction

Disease processes involve changes in expression and function of many proteins that may contribute to the pathology as well as to participate in adaptive responses. Gene profiling techniques assays permit simultaneous measurements of changes in the expression of thousands of genes. Importantly, gene expression studies using micro-arrays have helped identifying molecular defects associated with human diseases including cancer, asthma and neurodegeneration (Karp, Grupe et al. 2000; Lock, Hermans et al. 2002; van 't Veer, Dai et al. 2002).

Gene profile studies on the epilepsies have been facilitated by the availability of living brain tissue after surgery on patients with pharmacoresistant syndromes. Following these studies, human temporal lobe epilepsies have been associated with changes in the immune and complement systems (Jamali, Bartolomei et al. 2006; Aronica, Boer et al. 2007) as well as with altered glial function (Ozbas-Gerceker, Redeker et al. 2006). While such micro-array data from human tissue is valuable, there are some difficulties in its interpretation. First, adequate control tissue is hard to obtain. Second, changes in gene expression may differ between sclerotic regions, sites of neuronal cell death and glial activation, and the regions that generate aberrant population activities (Arion, Sabatini et al. 2006; Jamali, Bartolomei et al. 2006). Third, at the time of their surgery, patients may have experienced seizures over 10-20 years. Therefore, adaptive changes may have occured in response to both pathological changes underlying the epilepsy and prolonged treatments with anti-epileptic drugs (Tang, Glauser et al. 2004; Aronica, Boer et al. 2007).

Animal models of the epilepsies may provide solutions to some of these problems. Kindling is a widely used animal model that closely mimics temporal lobe epilepsies (Goddard 1967; Gorter, van Vliet et al. 2006), In these experimental settings, repetitive stimulation of the hippocampus or the amygdale initiates spontaneous seizures over days or weeks. Temporal lobe epilepsies can be also mimicked by the application of convulsants such as pilocarpine or kainic acid (Ben-Ari, Lagowska et al. 1979; Becker, Chen et al. 2003). These convulsants initiate a prolonged status epilepticus, with a cell death pattern that is similar to human hippocampal sclerosis. Interestingly, spontaneous, recurrent seizures emerge after a period of several weeks. In both animal models control tissue is readily available. Regions of sclerosis and those generating epileptiform activity can be identified and analyzed separately, if needed. Furthermore, gene expression changes can be followed during the evolution of the disease.

Animal models might also offer insights into the nature of the stimuli responsible for the emergence of an epileptic brain. Between convulsant injection and the emergence of spontaneous recurrent seizures, the hippocampus engages in a prolonged epileptic activity (Pitkanen, Nissinen et al. 2002; Williams, Hellier et al. 2007), During this period some neurones die (Sater and Nadler 1988; Magloczky and Freund 1993), expression and distribution of cell surface receptors and channels change (Misonou, Mohapatra et al. 2004; Shah, Anderson et al. 2004; Epsztein, Represa et al. 2005), different cohorts of glial cells are activated (Vezzani and Granata 2005; Wetherington, Serrano et al. 2008), immune and inflammatory responses are triggered (Andersson, Perry et al. 1991; Vezzani and Granata 2005) and novel aberrant synaptic circuits are formed (Sutula, He et al. 1988; Patrylo and Dudek 1998). How these events are related and how they are associated with the emergence of seizures is only partially clear.

In an attempt to clarify some of these questions we used gene profile technology, in association with EEG recordings and anatomy, to examine the progression towards recurrent seizures in mice treated with kainic acid (KA). Experiments were performed at three different time points corresponding to three different phases of progression of the model: 6 hours after injection (corresponding to the initial status epilepticus), 15 days after injection (corresponding to the latent phase) and 6 months after the injection (corresponding to the establishment of a recurrent epileptic activity).

In our experimental settings, KA was injected into one hippocampus (Bouilleret, Ridoux et al. 1999; Le Duigou, Wittner et al. 2005). In a former work we showed differential involvement of the ventral and dorsal part of both the injected and the contralateral hippocampus in the electric activity (Le Duigou, Wittner et al. 2005). Therefore experiments were performed separately in the injected area (Ipsilateral Dorsal area), in the ventral part of the same hippocampus (Ipsilateral Ventral area) and in the dorsal (Contralateral Dorsal area) and ventral area (Contralateral Ventral area) of the hippocampus contralateral to the injected one.

As we shall show, focal intracranial KA application may allow separation of several stimuli that may be involved in the emergence of an epileptic brain.

Both the injected and the contralateral hippocampi participate in a status epilepticus which lasts for several hours after KA injection. In contrast, cell death occurs exclusively in the injected hippocampus and is most evident near the injection site in the dorsal hippocampus. Axonal degeneration and the consequent de-afferentation is strongest near the site of KA injection but also occurs in the ventral injected hippocampus and at mirror sites in the contralateral non-injected hippocampus. We therefore compared changes in gene expression in the dorsal and ventral injected hippocampus and in the dorsal and ventral contralateral hippocampus. The cell specificity and regional distribution of selected genes was further examined with immuno-histochemical techniques.

Materials and Methods

Intrahippocampal KA injection

Experiments were performed on adult C57BL/6J male mice (Janvier, Le Genest Saint Isle, France), weighing 30-35g and housed in a 12 hours light-dark controlled cycle. All experiments were performed in accordance with the European Committee Council Directive of November 24, 1986 (86/89/EEC) and with INSERM guidelines. Male mice aged 2-3 months were anaesthetized with 4% chloral hydrate (120 ml/kg; Sigma, St Louis, MO, USA) and 4% urethane (1000 ml/kg; Sigma, St Louis, MO, USA,) and placed in a stereotaxic frame. Injections were made by a stainless steel cannula of outside tip diameter 0.28 mm connected to a 500 nl microsyringe (Hamilton, Fisher Labosi, France). A volume of 50 nl kainic acid (Sigma, St Louis, MO, USA) dissolved at 20 mM in 0.9% NaCl was injected into the right dorsal hippocampus (Bouilleret, Ridoux et al. 1999). Control animals were prepared identically and injected with the same volume of 0.9% NaCl solution. Injections were made at the stereotaxic coordinates: anterior-posterior = -1.8 mm, medial-lateral = -1.8 mm, dorsalventral = -1.8 mm with respect to the bregma. These coordinates correspond to an apical dendritic site in the CA1 region of dorsal hippocampus. After recovery from anaesthesia, animals displayed behavioural signs of status epilepticus, specifically maintained turning movements.

EEG recordings

EEG records were made using nickel/chrome wire electrodes of external diameter 200 μ m. Bipolar records were made using two wires twisted together from (1) a site near the position of kainate injection in the right, dorsal hippocampus, (2) the equivalent site in the contralateral hippocampus, (3) a ventral site in the injected right hippocampus and (4) a mirror ventral site in the non-injected contralateral hippocampus. AP = - 3,28 mm, L = +/- 3 mm, P = - 2.8 mm. Monopolar records were made bilaterally from the parieto-occipital cortex. A monopolar reference electrode was implanted in the cerebellum and a neutral electrode above the olfactory cortex. EEG electrode connectors were fixed to the skull with dental cement. Animals were housed singly after implanting EEG electrodes. EEG signals were recorded during sessions of duration 3-4 hrs typically in the afternoon during the period from 1 day to 6 months after KA-injection. EEG signals were amplified with a 24-channel system (Medelec, Oxford Instruments, Abingdon UK) and acquired to a computer at 1024 Hz and 22-bit resolution. Signals were filtered between 0.5 and 500 Hz. Recordings were made by Caroline Le Duigou and Nicole Chemaly at the INSERM U739 lab in Paris, France.

Morphology

Cell death and fibre degeneration was studied using Nissl Staining and the Fink-Heimer silver impregnation technique (Fink and Heimer 1967). For Fink-Heimer impregnation animals were perfused intracardially with cold ACSF followed by 100 ml of fixative containing 4% paraformaldehyde and 15% saturated picric acid dissolved in 0.1M phosphate buffer (PB). The brains were removed and 100 µm thick sections were cut with a Vibratome and washed in PB. After impregnation, sections were washed in PB, mounted on gelatine coated slides and covered with DePeX (Laboratoire DBH, France). As well as cell bodies, degenerating axons and synaptic terminals are coloured black by this silver-staining technique. Fink-Heimer staining experiments were conducted by Lucia Wittner.

Preparation of tissue for RNA extraction

After decapitation both hippocampi, the injected ipsilateral and the contralateral one, were dissected in cold PBS 1X in DEPC-treated (Sigma, St Louis, MO, USA) H₂O under RNAse free conditions. Each hippocampus was divided into a ventral and a dorsal part which were placed in an Eppendorf containing 1 ml of TRIzol (Invitrogen, Carlsbad, CA, USA), frozen and packed in dry ice and then sent to Trieste, Italy, where samples were stored at -80°C before former treatments. In the end for each mouse we obtained four areas: ipsilateral dorsal (ID, close to where kainate was injected), ipsilateral ventral (IV), contralateral dorsal (CD) and contralateral ventral (CV)

Total RNA was isolated according to the TRIzol Reagent Protocol provided by the manufacturer. To avoid genomic contamination samples have been treated with 2 units of RNAse free DNAse (2 units/µl; Ambion, Austin, TX USA) for 15 min at 37°. Total RNA was further purified with RNeasy Mini Kit (Qiagen, Chatsworth, CA, USA). RNA quality was assessed using an Agilent 2001 Bioanalyzer (Agilent, Palo Alto, CA, USA), samples with an R.I.N. index (RNA Integrity Number) higher than 8 were considered good and used for following hybridizations. Samples were then quantified with a ND-1000 spectrophotometer (Nanodrop technologies, Wilmington, DE, USA). 500 ng of Total RNA from each sample were used as a template to generate biotinylated cRNA following the protocol from Illumina Total Prep Amplification Kit (Agilent, Palo Alto, CA, USA).

Hybridization and scanning

Sample labelling, hybridization to arrays and image scanning were carried out as described in the Affymetrix Expression Analysis Technical Manual. cRNA was hybridized to Affymetrix murine 430A 2.0 gene chips which analyze the expression level of approximately 14,000 well-characterized mouse genes. Chips were scanned with a laser Agilent 3000 Scanner. Image analysis was performed with GeneChip® Operating Software. WT samples for dorsal and ventral hippocampus were hybridized in double. For each time points 2 samples for each area from Kainate injected mice were hybridized, together with one sample per area from NaCl injected mice.

Analysis of expression profile data

Expression levels were calculated with the Bioconductor (Gautier L 2004) collection of packages in the R programming environment for statistical computing. They were calculated using the RMA function (Irizarry, Hobbs et al. 2003) in the 'Affy' package with default parameters which make use of the quantile normalization. To extract changes in gene

expression each single time point was compared to the wild type sample and to the NaClinjected control of the same area. Genes were considered as "changing" if both values of expression in the kainate treated samples were outside the range covered by the expression levels of the two wild type samples and the NaCl controls for the very same time point and area. "Changing" genes were then filtered by Fold Change (in logarithmic scale): in order to be included in downstream analysis a gene should have fold change (Kainate injected vs. WT AND Kainate injected vs. NaCl) $\leq \log 2$ (-1) or fold change $\geq \log 2$ (1) (which is a fold change of ± 2 on a linear scale). Exceptions were included if fold change in respect to Wild Type or NaCl was ≤ -0.98 or ≥ 0.98 with the Fold Change in respect to the other value (either NaCl or WT) was ≤ -1.2 or ≥ 1.2 accordingly with the former one.

When more than one probe for a single gene was found differentially regulated in one area/time point, only the highest Fold Change was taken in consideration. We never find probes screening for the same gene moving in opposite direction during the analysis (for instance one probe upregulated and another downregulated).

Gene Ontology profiles were performed with GenMAPP 2.0 (<u>http://www.genmapp.org</u>) analysis software. The lists of selected genes for each area and time point were submitted together with the list of all the probes contained in our reference Chip: the murine 430 A 2.0 as a background. Ontology terms were considered only if Z-Score was higher than 1.96 (corresponding to a p-value ≤ 0.05).

Real Time Experiments

To validate some of the changes that were detected with Affymetrix Chips, real-time quantitative PCR analysis was performed using RNA obtained from injected mice at 6 hours after the injection extracted and treated in the same way as those used in the array experiments. For each gene that was chosen Forward and Reverse Primers were designed with the Beacon Designer[™] 6.0 (PREMIER Biosoft International, Palo Alto, CA, USA). To design the primers, the transcripts' sequences extracted from Ensembl (www.ensembl.org) were submitted to the program together with the following criteria: avoiding cross homology, primer length between 18 and 25 bp, product length between 75 and 200 bp and Tm between 58°C and 62°C. The transcripts' sequences were also processed with Mfold v3.2 (Zucker M., Nucleic Acids Res., 2005) to evaluate the secondary structure of the transcripts, to avoid

primers to anneal to unreachable positions. The analysis was performed with the default criteria except for: annealing reaction 60°C, Na⁺ concentration 50 mM and Mg⁺⁺ concentration 5 mM. The genes selected and the relative primers are: Isl1 (Forward Primer: 5'-5'-ATTGTCCAACCACCATTTCACTG-3', Reverse Primer: GATTACACTCCGCACATTTCAAAC-3'), Lcn2 (Forward Primer: 5'-ACGACAACATCATCTTCTC-3', Reverse Primer: 5'-ATGCTCCTTGGTATGGTG-3'), Trpm7 (Forward Primer: 5'-CTTGGAACAGGCTATGCTTGATG-3', Reverse Primer: 5'-TGAGATGGAACAACATTGGATTGG-3'), **P2ry12** (Forward Primer: 5'-ATTCACAGAAGAACACTCAAGG-3', Reverse Primer: 5'-TTGACACCAGGCACATCC-3'), Hspa1b (Forward Primer: 5'-TTCGTGGAGGAGTTCAAG-3', Reverse Primer: 5'-GTGATGGATGTGTAGAAGTC-3'), Hes5 (Forward Reverse: 5'-GAGATGCTCAGTCCCAAG-3', Reverse Primer: 5'- AAGGCTTTGCTGTGTTTC-3'), Gad2 (Forward Primer: 5'-GGCTCTGGCGATGGAATC-3', Reverse Primer: 5'-GACTATGCTCTGATGTGAACG-3'). As housekeeping genes we tested with Real Time PCR the levels of transcription of Actb (Forward Primer[.] 5'-TGGGTATGGAATCCTGTGGCATC-3', Reverse Primer: 5'-GTGTTGGCATAGAGGTCTTTACGG-3') and (Forward Primer: 5'-Gapdh AGAAGGTGGTGAAGCAGGCATC-3', Primer: 5'-Reverse

CGAAGGTGGAAGAGTGGGAGTTG-3'). All of the samples were run in duplicate. Real Time Experiments were performed on tissues from three distinct injected mice. All RNAs were diluted at the lowest concentration and 1 µg of it was used for the reaction of Reverse Transcription, together with 4 µl of 5x iScript Select reaction mix and 1µl of iScript reverse transcriptase from the iScript cDNA Synthesis Kit (Bio-Rad Laboratories, Hercules, CA, USA). The final volume was adjusted with Nuclease Free H₂O to 20 µl. The mix was kept for 5' at 25°C to allow primer annealing. Reverse Transcription was performed at 42°C for 50', followed by 5' at 80°C to inhibit the enzyme. 250 ng of cDNA per sample were mixed with 10 µl of 2X iQ Supermix (Bio-Rad Laboratories, Hercules, CA, USA), and specific primers to a final concentration of 250 nM in 20 µl of final volume (reached with Nuclease Free H₂O) to perform the Real Time PCR experiments. Time monitoring of PCRs was performed using the iQ5 Real-Time PCR Detection System (Bio-Rad Laboratories, Hercules, CA, USA). The mixture was incubated for 30' at 43°C, for Reverse Transcription, then heated to 95°C for 3' for initial denaturation. Following PCR reaction included the following cycling conditions: 41 cycles of denaturation at 95°C for 20sec, annealing at 60°C for 20sec and extension at 72°C for 30sec. Fluorescence was measured by a triple acquisition mode at 72°C after each cycle. Primer dimers' presence and specific/non-specific products ratio were detected by measuring a melting curve after the amplification by holding the temperature at 55°C for 1' followed by a gradual increase in temperature to 95°C at a rate of 0.05°C/s. Analysis of data was performed using the iQ5 Optical System Software v2.0.

Immunofluorescence

To evaluate whether changes in gene expression correspond to changes in protein expression we performed immunofluorescence analysis on Vimentin and GFAP, genes we identified as differentially regulated during the latent phase of progression of the pathology and that are related to proliferation of astroglial cells. Kainate-injected mice and NaCl-injected control mice where perfused transcardially with 50 ml of PFA 4% in 1X PBS. Brains where extracted and put in PFA 4% for one hour of post fixation, then washed 3 times in 1X PBS, 15' minimum per wash, and incubated in 30% in 1X PBS Sucrose solution overnight. After overnight incubation at 4°C the brains where frozen in dry ice and sectioned at a cryostat: 50 µm horizontal sections were collected in Prolong Gold Antifade Reagents (Invitrogen, Carlsbad, CA, USA). To avoid non specific binding sections were incubated in TBS plus 0.5% Triton X100 (Roche Diagnostics, France) for 1 hour at room temperature. Sections were incubated with primary antibody overnight at 4°C. All antibodies where diluted 1:1000 in TBS+. After incubation with the primary antibody sections were washed three times for 1 hour per wash with 0.1M PB at room temperature and incubated with Cy2-conjugated antichicken, Cy3-conjugated anti-rabbit and Cy5-conjugated anti-mouse secondary antibody (Jackson Immuno Research, West Grove, PA; diluted 1:1000 in TBS+) for 4 hours at room temperature. Antibody against Vimentin (anti-Vim; polyclonal chicken; Abcam, Cambridge, UK), Glial Fibrillary Acidic Protein were used (anti-Gfap; monoclonal rabbit; Promega, Madison, WI, USA) and NeuN (anti-NeuN; Chemicon, Temecula, CA, USA)

Results

Experimental Settings

Adult C57BL/6J mice, aged 2-3 months were anaesthetized and placed in a stereotaxic frame. Then 50 nl of KA or 0.9% NaCl was injected into the right dorsal hippocampus, the apical dendritic site in the CA1 region of dorsal hippocampus (for coordinates see *Materials and Methods*) (Bouilleret, Ridoux et al. 1999). After recovery from anaesthesia, animals displayed behavioural signs of status epilepticus, specifically maintained turning movements. Mice were then sacrificed at different time points and in different ways due to the specific experiment. A total of 80 mice were injected, 31 died during or immediately after surgery.

Analysis of EEG recordings.

To evaluate short-term electric activity, EEG recordings were made from dorsal and ventral sites in both injected and non-injected hippocampus for 24 hrs after KA injection. A distinct large, slow EEG activity emerged first close to the injection site at 2-3 hrs after KA-injection. This activity grew in size and complexity with time and spread throughout both hippocampi (see Fig.1). Propagation occurred from dorsal to ventral regions of the injected hippocampus, then to ventral and dorsal regions of contralateral non-injected hippocampus. At 5 hrs after the injection all regions of both hippocampi participated in a status epilepticus which persisted for up to 24 hrs after injection.

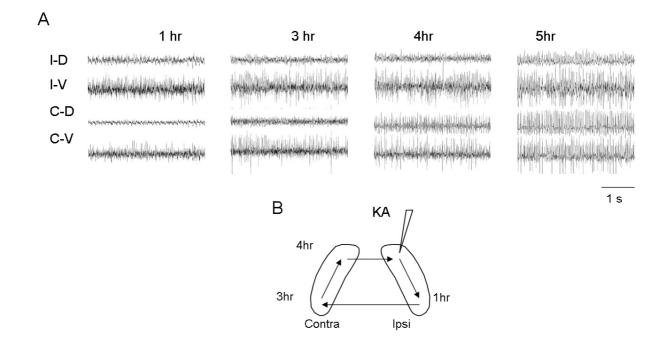


Fig.1: EEG RECORDINGS AT EARLY STAGES. In panel A EEG recordings taken from the injection site (I-D), the ventral part of the same hippocampus (I-V) and the dorsal and ventral area of the contralateral hippocampus show propagation of the electrical activity starting from I-V through to all of the evaluated areas following a scheme represented in panel B. At 5 hours after the injection all of the areas participate to the status epilepticus.

In long term recordings made 3 to 4 days after KA injection, no epileptiform activity was detected. Simple bilateral spike and wave activities emerged over the next two weeks. More complex sequences of recurring, bilateral epileptiform activities were observed at 3-4 weeks. Electrographic tonic-clonic seizures with few clear behavioural correlates were detected in records made from this time-point up to 10 months after KA-injection. The seizure initiation usually seemed to be localised to the KA-injected hippocampus but in some cases seizures appeared to emerge from the non-injected hemisphere (Fig. 2).

These data show that both dorsal and ventral portions of both ipsilateral injected and contralateral non-injected hippocampus participated in the status epilepticus provoked by KA-injection. They suggest that further epileptiform activity was absent until 2-3 weeks later when spike and wave discharges and occasional tonic-clonic seizures were established.

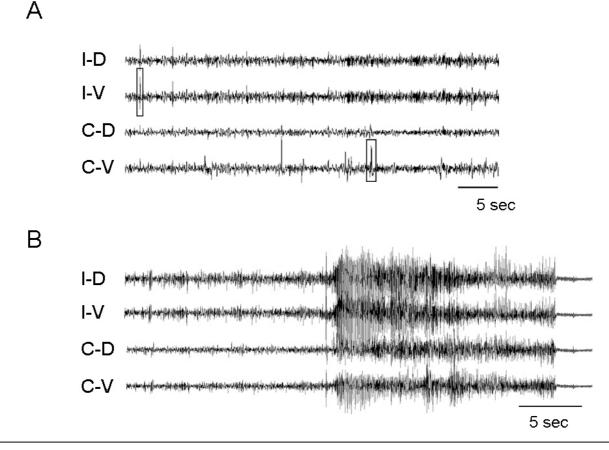


Fig.2: EEG RECORDINGS DURING LATENT AND CHRONIC PHASE. In panel A recordings from the four different areas from a few days to 3 to 4 weeks after the injection show no epileptic activity. Bilateral spikes may be observed that are highlighted in the boxes. In panel B are shown recordings from hippocampi of mice 6 months after the injection. Bilateral epileptic activity is observed starting from both the injected and the contralateral hippocampus.

Analysis of cell death

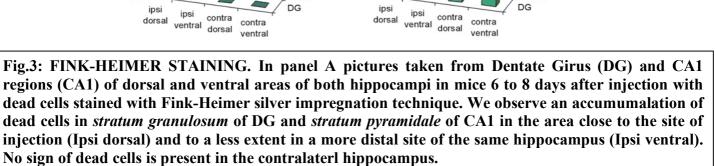
Previous work on KA-injected animals suggests that a significant pyramidal cell death occurs in the CA1, CA3 and hilar regions (Le Duigou, Wittner et al. 2005). We performed Nissl staining which confirmed a severe cell loss around the injection site in dorsal hippocampus at 4 weeks. There was a lesser cell loss at the ventral injected hippocampus but no cell death could be detected in dorsal or ventral regions of contralateral hippocampus. Cell loss were revealed by the disappearance of cell bodies in the hilar region and the thickening of the pyramidal layer in tha CA1 region.

Then we performed Fink-Heimer staining, a procedure that shows both dead cells and degenerating fibres. To this purpose we examined hippocampi from three different KA-

injected animals at 6-8 days after injection when fibre degeneration should be maximal. Mice were anesthetized and perfused with ACSF. Brains were then extracted and cut in slices 100 μ m thick that were than processed for Fink-Heimer impregnation. Both cell death and fibre degeneration were estimated semi-quantitatively from the dentate gyrus, CA1, CA3 and subiculum of sections prepared from the middle regions of dorsal and ventral injected hippocampus and from dorsal and ventral non-injected hippocampus.

At 6-8 days after injection we detected a profound cell loss in dorsal injected hippocampus and a less extensive cell loss in ventral regions of this hippocampus. Cell death was largest in the CA1 and CA3 regions while some black-staining somata were evident in the dentate gyrus and in the subiculum. In the non-injected hippocampus, less than 0.1% black-staining cell bodies were detected. In contrast, fibre degeneration was apparent in both somatic and dendritic regions of both dorsal and ventral sites from the contralateral hippocampus. The extent of degeneration was similar in the dentate gyrus, subiculum and in the CA1 and CA3 regions. Contralateral fibre degeneration was less than that detected in the ipsilateral KAinjected hippocampus where diffuse Fink-Heimer staining of fibre-like elements was most strong in dorsal CA1 and in subicular regions close to the injection site.

These data suggest that cell death is limited to the injected hippocampus and is most severe near the dorsal injection site. At 6-8 days after injection, fibre degeneration is not limited to those sites but is also evident in dorsal and to a lesser extent ventral hippocampus. This degeneration is presumably correlated with a partial de-afferentation of contralateral cells.


In summary, these data show that epileptiform activity, both interictal-like and ictal-like events induced by tetanic stimulation, is not limited to the KA-injected hippocampus. All regions participated in the initial status epilepticus. Cell death was maximal in dorsal, evident in ventral injected hippocampus, but absent from both dorsal and ventral contralateral hippocampus. Fibre degeneration, and presumably partial de-afferentation, was maximal in dorsal and ventral injected hippocampus but was also detected in dorsal and to a lesser extent ventral contralateral hippocampus. These data allowed some comparative procedures to examine the relative influence of status epilepticus, cell death and de-afferentation on gene expression changes leading eventually to the establishment of an epileptic hippocampus.

contra contra DG ipsi ipsi dorsal ventral dorsal ventral . . . CA1 s p Cell degeneration Axon degeneration 5 4 4 3 3

В

2

А

2

Subi

CAI

CA3

Subi

CAI

CA3

In panel B a graphical representation of the level of cell and axon degeneration in the four areas and different sites (Subiculum, CA1, CA3 and Dentate Gyrus) 6 to 8 days after kainate injection measured after Fink-Heimer staining.

We examined changes in gene expression using the Affymetrix murine 430A 2.0 gene chips which analyzes the expression level of approximately 14,000 well-characterized mouse genes. Mice were injected as described before. Two KA-injected and one NaCl-injected were sacrificed at three different time point after the injection: 6 hours, 15 days and 6 months. Together with these, two WT mice were sacrificed with the same procedure. Hippocampi were dissected in nuclease-free condition. Both hippocampi were divided in two so changes could be compared in the dorsal ipsilateral hippocampus (the injection site) as well as the ventral ipsilateral hippocampus and the dorsal and ventral contralateral regions of the non-injected hippocampus. Tissue samples included the dentate gyrus, areas CA1 and CA3 as well as the subiculum.

Following treatment included RNA precipitation (following TRIzol protocol provided by the manufacturer) and purification (with the RNeasy Mini Kit from Qiagen, Chatsworth, CA, USA). RNA quality was assessed using an Agilent 2001 Bioanalyzer (Agilent, Palo Alto, CA, USA): only samples with an RNA Integrity Number (R.I.N.) higher then 8 were used to perform the analysis. 500 ng of Total RNA from each sample were used as a template to generate biotinylated cRNA following the protocol from Illumina Total Prep Amplification Kit (Agilent, Palo Alto, CA, USA).

After overnight hybridization, Chips were scanned. Image files were then processed to obtain raw data as CEL files. These were then processed for normalization, and expression levels were calculated through Bioconductor (Gautier L 2004).

From gene expression levels, two threshold procedures were used to define differentially expressed genes so that up- or down-regulated from kainate-treated animals differed from both wild-type animals and from animals injected with NaCl.

Analysis of Gene expression profiles: summary of results

Fig. 4 shows the tempo/spatial distribution of genes altered by kainate-treatment: not considering overlapping, a total of 1563 genes resulted differentially expressed in at least 1 time and 1 space point (the complete list is in the *Supplementary Table* section).

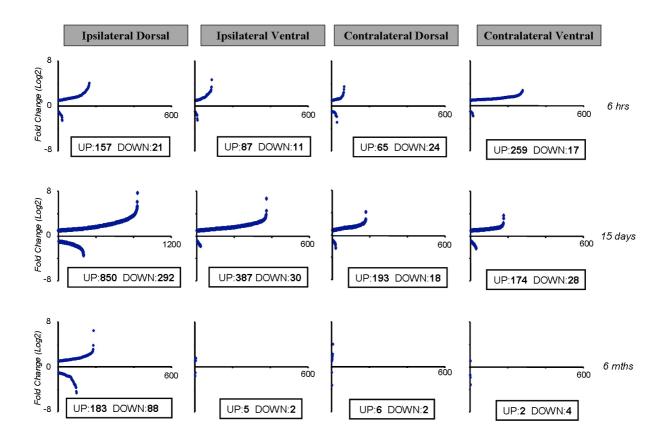


Fig.4: TEMPORAL AND SPATIAL DISTRIBUTION OF DIFFERENTIALLY EXPRESSED GENES AFTER KA INJECTION. In the graphs are reported the number of genes differentially regulated for each area at the three different time points. In each graphs on x-axe are reported the number of genes, on y the Fold Change in logarithmic scale. Below each graphs the number of Upor Down-regulated genes are shown.

In summary we found that:

6 hours after injection:

- Neglecting overlap, a total of 507 genes were changed.
- Near the injection site in dorsal ipsilateral hippocampus, 157 genes were upregulated and 21 genes down-regulated.
- The region with the largest number of changed genes was the contralateral noninjected ventral hippocampus with 276 genes up-regulated and 16 genes downregulated.
- Interestingly, the composition of these two groups of genes was rather different: 150 of 178 genes changed (84%) in the dorsal ipsilateral hippocampus were

unchanged in contralateral ventral hippocampus and 90% of 276 genes changed in the contralateral ventral area were unchanged in the dorsal ipsilateral samples.

 A smaller number of genes was changed in the dorsal contralateral (89 genes) and ventral ipsilateral areas (98 genes). They were mostly similar to genes changed close to the injection site, with a percentage of overlapping of 57% for the ipsilateral ventral and 43% for the contralateral ventral area.

Therefore, we can conclude that at 6 hours after the injection a common pattern of expression was induced by kainate in dorsal and ventral ipsilateral as well as dorsal controlateral hippocampi. Surprisingly, a specific and large transcriptional response was present in the controlateral ventral hippocampus.

15 days after injection:

- This is the time point with the largest number of changed genes: 1218.
- In the ipsilateral dorsal hippocampus 850 genes were up-regulated and 292 genes were down-regulated (a total of 1142 genes).
- In the ventral ipsilateral hippocampus 417 genes changed their expression with 95% of them common with the dorsal ipsilateral region.
- In contralateral dorsal hippocampus the expression of 211 genes was changed with, again, 98% genes common to the expression at the site of injection.
- In contralateral ventral hippocampus, changes occurred in the expression of 202 genes, of which 26% differed from those changed in the dorsal ipsilateral hippocampus.

We noticed a colocalization of changes in areas close to the site of injection, with 186 genes in common to the ipsilateral dorsal, ipsilateral ventral and contralateral dorsal areas. Among these, only 32 (17%) were present in one or more of the areas at 6 hours. A smaller overlapping has been reported with the contralateral ventral area, however the amount of specific genes is much less significant than at 6 hours with 47 (23%) genes differentially expressed only in this area. Among them 21 (44% of the specific ones) were common to the controlateral ventral specific pattern at 6 hours.

6 months after injection:

• At this time point a total of 276 genes changed their expression.

- Nearly all the changed genes were located in the ipsilateral dorsal injected hippocampus (271 / 292 or 93%). A relatively high proportion of these genes were down-regulated.
- Six to eight genes were changed in each of the other regions. In total, 10 of these genes differed from those altered in the dorsal ipsilateral region (4 in the IV, 4 in the CD and 2 in the CV).

In conclusion 6 months after the injection of kainate almost all of the gene expression changes we identified were confined to the site of the injection, while the other areas account for a very small amount of changes and most of them overlap with changes in the ipsidorsal site.

Comparison of the time course and spatial location of gene expression provided some insights into the structure of changes induced by kainate-treatment. With twelve different time/space points, 2^{12} or 4096 different combinations of changed or unchanged expression were possible. We found that 134 different patterns of expression existed.

Interestingly, more than half of these genes (n=911 of 1563; 58%) were changed only at a single site and at a single time point with the most evident groups being:

- 545 genes were only changed at 15 days in ipsilateral dorsal hippocampus

- 178 genes changed exclusively in contralateral ventral hippocampus at 6 hours.

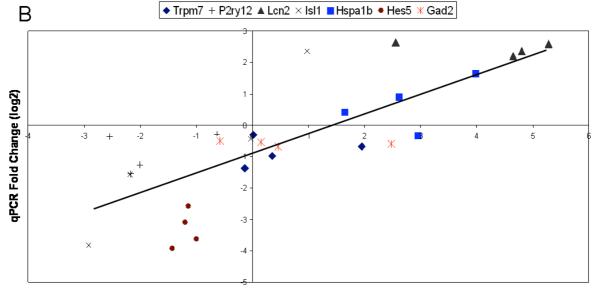
Several temporal and spatial patterns were evident in the 681 genes that were altered at multiple time points. For these genes, maximal changes were detected at:

- the ipsilateral dorsal injection site at 6hrs (n=58 genes)
- at 15 days (n=471 genes)
- at 6months (n=53 genes).

The size of these changes in expression often followed a similar spatial order. The same gene showed the largest change in expression at the dorsal site of injected hippocampus, the next largest in ventral ipsilateral hippocampus, then in dorsal contralateral hippocampus and the smallest change occurred in ventral contralateral regions.

A fourth set of genes showed maximal changes at 6hrs in the contralateral ventral hippocampus (n=53). Asmaller number of different patterns associated with smaller numbers

of genes were also detected (n=42). Most clusters consisted of groups of upregulated genes, however a downregulation was detected most often (41 out of 53 genes) in the cluster of genes that changed at 6 months in ipsilateral hippocampus where were down-regulated.


Analysis of Gene expression profiles: Correlation and verification of Affymetrix gene profile data with data from RT-PCR

We decided to compare data on changes in gene expression determined by micro-array analysis with those estimated by real-time PCR analysis to define the accuracy of our methods.

Three mice where injected with KA as previously described. 6 hours after injection they were sacrificed and tissue samples from the four different areas where collected in RNAse free conditions. RNA samples were collected from three wild type mice following the same procedure. RNA was extracted, purified and checked for good quality (see *Materials and Methods*). RNA samples where then used to perform quantitative analysis for seven transcripts where the chip analysis had reported a large change in expression at 6 hours after the injection in at least one site: *Lcn2* (log-fold changes of 5.28, 4.64, 4.80, 2.55 between KA-treated and WT tissue from ipsilateral dorsal, ipsilateral ventral area, contralateral dorsal area and contralateral ventral areas respectively), *Hspa1b* (3.98, 2.61, 2.94, 1.64), *Trpm7* (0.35, 0.02, -0.13, 1.95), *Gad2* (0.15, 0.46, -0.57, 2.48), *Hes5* (-1.42, -1.19, -1.13, -0.99), *P2ry12* (-2.17, -2.54, -2.01, -0.63) and *Isl1* (-2.18, -0.03, -2.92, 0.97) as well as two housekeeping genes *Actb* and *Gapdh* for calibration.

Results showed that, overall, the direction of the change in expression detected with the q-PCR technique agreed with that predicted by the micro-array work in 22 of 28 cases. Comparative values were best fitted with a linear relation of the form: qPCR value = $0.57*(Affymetrix value) - 0.86 (r^2 = 0.48)$. As shown in Fig. 5, the data for changes in gene expression determined from the two techniques agree relatively well, with the array measurements rather more sensitive than those made with q-PCR. Fig. 5 also presents a Table comparing the more significant fold-changes for up- and down-regulated genes from the array analysis and corresponding values from qPCR experiments.

~	Probe	Gene	Area	GeneChip Fold Change	qPCR Fold Change
	1427747_a_at	Lcn2	Ipsilateral Dorsal	5.286875474	2.58695503
	1427747 <u>a</u> at	Lcn2	Contralateral Dorsal	4.800379683	2.36447272
	1427126_at	Hspa1b	Ipsilateral Dorsal	3.980084941	1.64262066
	1456010_x_at	Hes5	Ipsilateral Dorsal	-1.426888946	-3.92980454
	1431724_a_at	P2ry12	Ipsilateral Ventral	-2.541444925	-0.35845677
	1450723_at	Isl1	Contralateral Dorsal	-2.918052288	-3.82903056

GeneChip Fold Change (log2)

Fig. 5: CORRELATION BETWEEN GENECHIP ANALYSIS AND qPCR EXPERIMENTS. Real Time PCR experiments were performed for 7 genes differentially expressed in the four areas at 6 hours after injection. In tab A are reported the Fold Changes for the GeneChip analysis and for the qPCR for 6 representative highly variable points. In graph B all of the results of qPCR experiments were plotted against the corresponding Fold Changes according to Gene Expression Profiling for a total of 28 points. 21 out of 28 points show a good agreement between the results of the two techniques. The approximate linear correlation represented in the plot is: qPCR value = 0.57*(Affymetrix value) - 0.86

Analysis of Gene expression profiles: Gene Ontology terms

The identity of genes whose expression changed provided clues on the time course and nature of pathological processes initiated by KA-treatment.

For a general view of the time course of processes intervening between KA-injection and the emergence of an epileptic brain, we examined associations of groups of altered genes with

terms from the Gene Onthology system. As a first approach, we compared genes from injected and from contralateral hippocampus at all three time points pooling together genes from the dorsal or ventral areas. List of genes where submitted to GenMAPP (<u>http://www.genmapp.org</u>) and analysed. Gene Ontology terms were sorted according to Z-score and percentage of number of altered genes associated/number of genes present on the Chip associated.

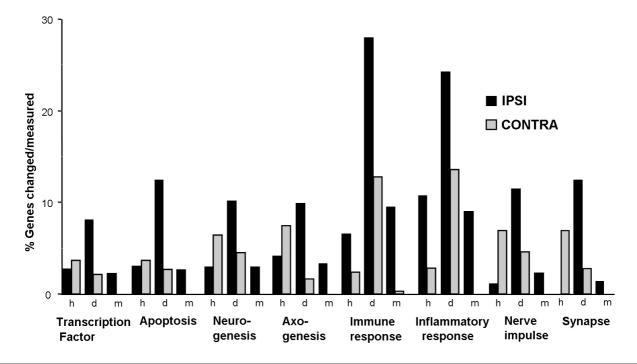


Fig. 6: CHANGES IN GENE EXPRESSION ASSOCIATED WITH GENE ONTOLOGY TERMS The graph shows the number of genes changed as a percentage of the number measured for 8 GO terms. Plots are made for each GO term, at each time point (6hr, 15 days and 6 months) for tissue from injected (IPSI) and from contralateral hippocampus (CONTRA).

Data for some of the most highly associated terms is shown in Fig. 6. We noted that:

- Inflammatory and Immune responses were the terms with the highest proportion of genes whose expression was changed. At 6 hours ~10% of the genes were altered in the ipsilateral hippocampus, less than 5% in the contralateral. At 15 days there are more than 20% of them differentially expressed in the injected side with a consistent 12% in the contralateral. Changes were still detected at 6 months in the area near the injection site.
- Up to 10% of the genes associated with *transcription factor activity* present on the Chip changed after KA injection. These alterations were initiated at the 6 hr time

point, at 15 days increased just in the injected side where some changes were maintained until 6 months.

- Genes associated with both *neurogenesis* and *axogenesis* were more affected at contralateral sites at the 6 hr time point, but maximum activity occurred ipsilaterally to the injection site at 15 days.
- Similar results were found for genes associated with apoptosis.
- Terms associated with *nerve impulse transmission* and *synaptic function* also showed early activity in the contralateral hippocampus. These reached a maximum in the injected site of the hippocampus at 15 days but only minor alterations persisted at 6 months.

Analysis of Gene expression profiles: Identification of gene clusters.

We also examined the composition of smaller clusters of genes with similar spatial and temporal patterns and directions of altered expression. Fig. 7 shows a graphical representation of the differential expression in the clusters we identified:

- 1. Genes upregulated only at 15 days at least in the ipsilateral dorsal site. The largest of these clusters consisted of genes upregulated at the ipsilateral dorsal injection site, at 15 days. This cluster consisted of 850 genes with a majority (594 genes) changing only at this time point and 346 changing only at this site. Many of these genes participate in inflammatory processes such as interferon (*Ifi47* or *Isgf3g*) and other cytokines (*Tnfrsf13b*, *Il10ra* and *Cxcr6*), while others are associated with apoptosis (*Casp1*, *Casp7* and *Casp8*). Genes associated with the extracellular matrix composition (*Expi*, *Col20a1* and *Mmp19*) may participate in the development of the glial scar associated with neuronal death. Genes upregulated in other areas at this time point included caspases, chemokines, cytokines and receptors pointing to a wider activation of inflammation, cell death and sclerotic processes during the latent phase.
- 2. *Genes upregulated at both 15 days and 6 months at least in the ipsilateral dorsal site* after KA-treatment were considered separately. Usually these genes were upregulated to a lesser extent at the later time point. These were often correlated with GeneOntology terms similar to those described in the former cluster. Interestingly we

also identified 7 genes participating in the complement cascade (*C3ar1*, *C5ar1*, *C4b*, *C1qa*, *C1qb*, *C1qc* and *C3*) a process implicated in the progression towards seizures (Jamali, Bartolomei et al. 2006; Aronica, Boer et al. 2007) present in this cluster. 31 of these genes were also showing alteration at 6 hours still in the injection area. This subset includes the gene *Ctla2a* which codes for a protein related to inflammation. The fold changes detected for this gene were 3.06, 2.07 and 1.38 fold at 6 hrs, 15 days and 6 months respectively. This process seems reduced with time even though the number of genes that changed did not. Vimentin, a marker of radial astroglial cells (*Vim*: 1.49, 2.78 and 1.84) and the brain-derived neurotrophic factor (*Bdnf*: 1.49, 2.9 and 1.9) were also present in this subset.

- 3. Genes downregulated at 6 months only in the ipsilateral dorsal site. In the ipsilateral hippocampus at 6 months the highest ratio of downregulated genes compared to the upregulated ones. So we considered as a separate cluster the downregulated genes in this area/time point (88 genes). Most of these genes were already downregulated at 15 days but to a lesser extent. They included transcription factors (i.e. genes related to neurogenesis Isl1 and Neurod6) and genes associated with neuronal signalling (Trpv4 and Rab20). Of these, three potassium channel genes (Kcnh2, Kcnq5 and Kcne2) were downregulated at both 15 days and 6 months. Genes belonging to this downregulated cluster also coded for proteins involved in the establishment and maintenance of the architecture of brain tissue. These included three collagen subunits (Col9a3, Col6a3 and *Col8a1*), Claudin 1 and 2 and the protein *Tjp3* which are involved in the formation of tight junctions (Eum, Andras et al. 2008; Van Itallie, Holmes et al. 2008; Xu, Kausalya et al. 2008). Downregulation of Claudin 8 during kindling has been described by Lamas et al (2002). The presence of these genes at the injection site suggests that after KA-treatment and neuronal death, the extracellular matrix undergoes long-term changes consistent with the formation of a glial scar.
- 4. *Genes differentially expressed only at 6 hours only in the contralateral ventral area.* Our differential analysis of dorsal and ventral regions of both injected and contralateral hippocampi permitted identification of changes at different distances from the site of KA-injection. We noted a cluster of 178 genes selectively changed at

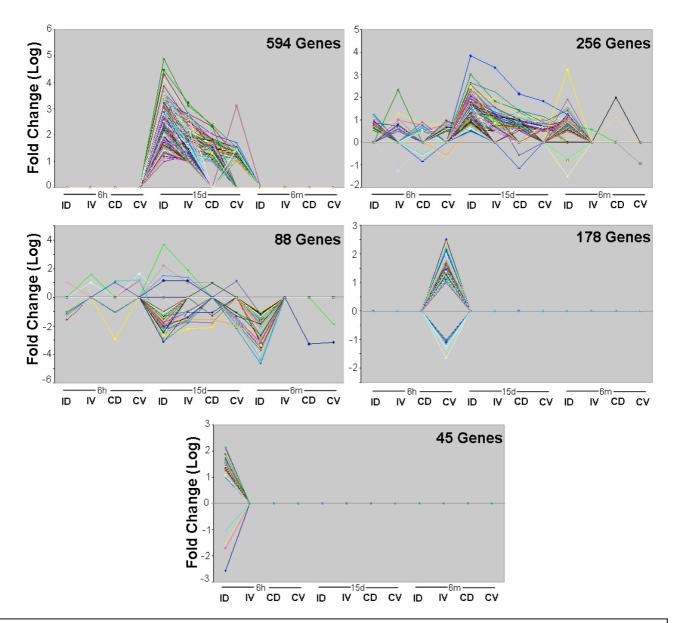


Fig. 7: CLUSTERS OF GENE EXPRESSION CHANGES. In the graphs are represented 5 clusters of common patterns of expression including most of the changes we identified. For each time point and area (x; ID= ipsilateral dorsal, IV=ipsilateral ventral, CD= contralateral dorsal, CV=contralateral ventral) the Fold Change is plotted (y). Different lines and colors indicate different genes. One single condition per cluster was used to filter the genes. Cluster 1: genes upregulated just at 15 days. Cluster 2: genes upregulated at 15 days and at more time point. Cluster 3: genes downregulated at 6 months in ID. Cluster 4: genes differentially regulated only in CV at 6 hours. Cluster 5: genes differentially regulated only in ID at 6 hours

the contralateral ventral site at 6 hrs after injection. These genes were mostly moderately up-regulated with fold changes in the range -2 to +2.5. They included genes associated with transcription and protein synthesis (*Pa2g4*, *Chd4* or *Nr2c2*) genes coding for regulators of chromatin assembly (*Smarcc1* and *Smarca*) and four factors that initiate translation (*Eif3s10*, *Eif4g1*, *Eif4a1* and *Eif5b*). Possibly these

genes are induced by activity associated with the status epilepticus since the Fink-Heimer silver stain revealed subsequent little cell death or fibre degeneration in this zone.

5. Genes differentially regulated only at 6 hours only in the ipsilateral dorsal area. A smaller cluster consists of genes (n=45) with medium changes in expression limited to the injection site during status epilepticus. These early responding genes included *Fos*, *Jun* and *JunB* as well as some Kruppel-like transcription factors (members 4, 6 and 9). The *Klf* family is involved in multiple processes including lymphocyte proliferation and differentiation, as well as apoptosis (Good and Tangye 2007; Britschgi, Trinh et al. 2008; Pearson, Fleetwood et al. 2008). The presence of these genes, with *Il6*, a factor associated with the pathogenesis of neurodegeneration during the development of an epileptic phenotype (Fassbender, Rossol et al. 1994; De Simoni, Perego et al. 2000) as well as the chemokines *Ccl7* and *Ccl11* suggest that the KA-treatment induces a rapid proliferation and activation of glial and microglial cells.

Analysis of Gene expression profiles: Neurotransmitter receptors and voltage-gated channels.

Genes coding for membrane proteins associated with synaptic signalling and cellular excitability showed only moderate changes. Five GABA-receptor subunits were differentially regulated.

- *Gabrg1*was downregulated (-1.2) and *Gabrg2* upregulated (1.18). at 15 days in the injected site.
- *Gabra1* and *Gabrb3* were moderately upregulated in the Contralateral Ventral area at 6 months (fold-chages of 1.27 and 1.58 respectively).
- Surprisingly, the subunit *Gabra6*, thought to be expressed only in the cerebellum (Kato 1990; Luddens, Pritchett et al. 1990) was detected at three different sites (ID, 1.74; CD, 1.85; CV, 1.02) at 6 months after the injection.

Expression changes were detected for four glutamate receptor subunits:

- *Gria3* was upregulated at 6 hours in the CV area (fold-change of 1.29)
- *Gria1*, *Grim1* and *Grik1* were moderately downregulated at 15 days in close to the site of KA-injection. Possibly these changes resulted from a dilution effect related to neuronal loss in the area.

The polypeptide 1 of the alpha nicotinic receptor (*Chrna1*) was up-regulated at both 15 days and 6 months in the injected area.

The strongest changes in genes coding for membrane channels controlling cellular excitability were observed for potassium channel subunits. Fig. 8 shows complex temporal and spatial patterns of up- and down regulation detected for genes of this family.

- Five genes (*Kcnk4*, *Kcnmb2*, *Kctd2*, *Kcnq2* and *Kcnab2*) were downregulated in the injected site of the dorsal hippocampous at 15 days.
- *Kcnq5* was down-regulated at 15 days in the injection site as well as in ipsilateral ventral and contralateral dorsal areas. At 6 months it was still downregulated in the ipsilateral dorsal site.
- *Kcne2* was downregulated at 15 days in both injected hippocampus and in contralateral ventral area with an increased down-regulation (fold-change of -4.65) at 6 months in the ipsilateral dorsal hippocampus.
- *Kcnell* was the only K-channel subunit up-regulated at all four sites at 15 days especially (maximum fold-change of 4.67) in the ipsilateral dorsal where it also remained upregulated at 6 months.

Analysis of gene expression profiles: Transcription Factors.

A large number of differentially expressed genes were transcription factors. Expression changed significantly for 74 of them. Changes were detected at 6 hrs after KA-treatment for *Jun, Fos* and *Fosb.* While these changes were not unexpected, the largest alterations were detected for the transcription factor *Atf3* which is related to neuronal protection and known to be upregulated by KA-treatment (Francis, Dragunow et al. 2004). This transcription factor was upregulated at both 6 hrs and at 15 days. *Stat3,* a transcription factor involved in microglia activation (Fielding, McLoughlin et al. 2008; Huang, Ma et al. 2008), was upregulated at all time points in the injected area, underlying perhaps a persistent microglial activation to promote the inflammatory process.

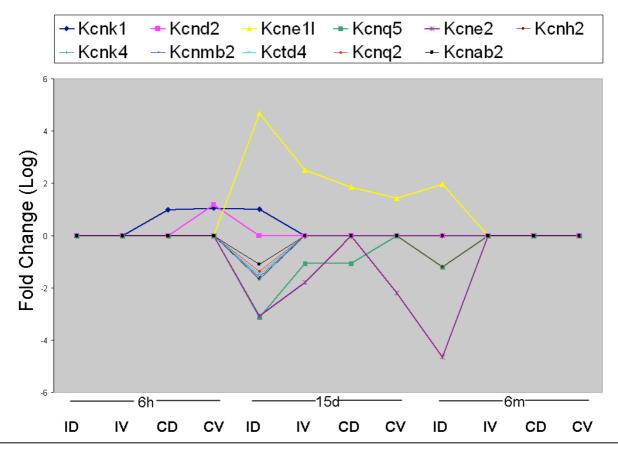


Fig. 8: TEMPORAL PATTERN OF DIFFERENTIAL EXPRESSION OF K CHANNELS. Fold Change of gene expression alteration expressed as a function of time points and areas (ID= ipsilateral dorsal, IV=ipsilateral ventral, CD= contralateral dorsal, CV=contralateral ventral) for subunits of K+ channels reported in the legend.

Many of the changes in transcription factor expression detected at 15 days after KAtreatments also seem likely to be involved in the orchestration of inflammatory responses. They include the interferon-related factors (*Irf7* and *Irf8*), as well as *Mef2c* or *Fli1*. Other identified regulatory genes have been associated with cellular proliferation and differentiation. The transcription factor *Satb2*, involved in the specification of a neuronal phenotype (Szemes, Gyorgy et al. 2006; Alcamo, Chirivella et al. 2008) was strongly downregulated at 15 days in the injected area as was *Lhx9* (Molle, Pere et al. 2004).

Some others transcription factors with altered expression limited to the ipsilateral dorsal site of the hippocampus showed alteration at 15 days persistant at 6 months. They were typically downregulated, including Dlx1 and Dlx5, which form part of a family of transcription factors associated with interneuronal differentiation and migration (Anderson, Eisenstat et al. 1997) via inhibitory actions on axonal and dendritic growth (Cobos, Borello et al. 2007).

Suppression of *Dlx1* results in a loss of interneurons and induces seizures (Cobos, Calcagnotto et al. 2005).

Immuno-histochemical exploration of cell-type specificity of changes in selected genes.

While micro-array data from brain homogenates obtained from KA-treated animals provide evidence that a number of identified transcripts are up- or down regulated, they did not allow identifying the cells in which gene expression was changed. We therefore turned to immunohistochemistry to try to link gene profile data with cell types and their localisation within the hippocampus.

Glial cell activation is a key process induced by KA-treatment (refs) as confirmed by our micro-array data. We traced this process using antibodies that recognize vimentin and Glial Fibrillary Acidic Protein, two intermediate filament proteins expressed in astrocytes. Vimentin is expressed in both early and late developmental stages, but GFAP is only present in mature astrocytes (Eng 1988; Eliasson, Sahlgren et al. 1999). Both vimentin and GFAP are enhanced in reactive gliosis and after seizures (Lin and Cai 2004; Pekny and Nilsson 2005). Our gene profile data revealed a major up-regulation of *Vim* and *Gfap* at 15 days in all areas which persisted at 6 months near the injection site. We also detected *Vim* up-regulation at 6 hrs in both dorsal and ventral injected hippocampus. Astrocyte, or radial glial cell, activation in the hippocampus also contributes to neurogenesis (Doetsch and Scharff 2001; Song, Stevens et al. 2002; Doetsch 2003; Berninger, Costa et al. 2007) and synaptic activity (Porter and McCarthy 1996; Porter and McCarthy 1997; Kang, Jiang et al. 1998; Araque, Martin et al. 2002).

Fig. 9 shows immuno-staining experiments to explore the identity of elements expressing *Vim* and *Gfap* in hippocampal tissue from KA-treated animals at 15 days after injection. The neuronal marker NeuN let us identify changes in neuronal architecture including the loss of CA1 and hilar cells as well as the dispersion of dentate granule cells.

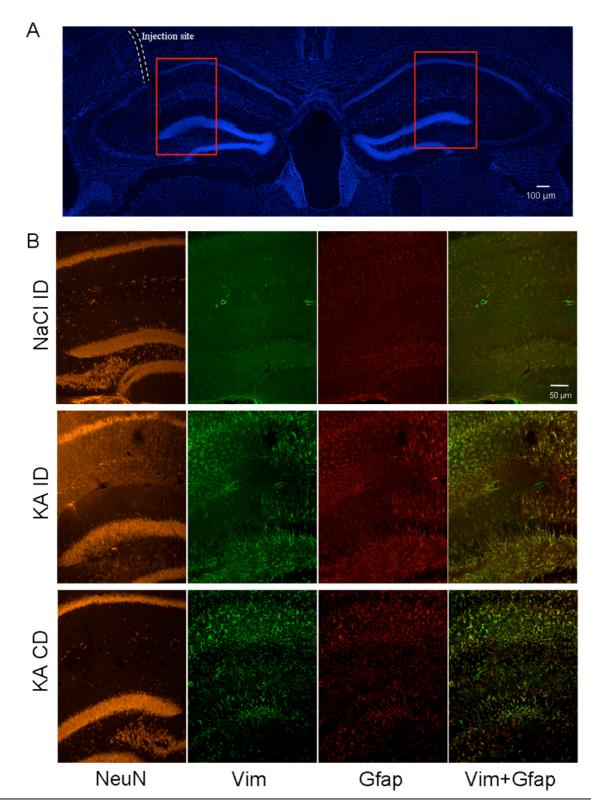


Fig. 9: IMMUNOSTAINING FOR PROTEINS ASSOCIATED WITH EARLY AND MATURE ASTROCYTES. A shows DAPI staining of both ipsilateral and contralateral hippocampi at 15 days after KA-injection. The injection site is shown and red squares indicate regions shown at greater magnification in B. B, shows stains for NeuN (orange) to indicate neurons, Vim (green), and Gfap (red) and the final overlay column (Vim + Gfap) shows their co-expression. The rows show tissue from the Ipsilateral Dorsal of NaCl-injected (first row) and KA-treated animals (second row) and from the contralateral site of the KA-treated animal (third row).

Immuno-staining for Vimentin and GFAP proteins revealed that KA-treatment induced a consistent increase in cells expressing Vim alone or both Vimentin and GFAP. The increase was larger in injected than in contralateral site of the hippocampus. It was most evident in the dentate, but also in the stratum radiatum of the CA1 region. Neither Vimentin nor GFAP staining was detected with NeuN in neuronal somatic layers. Comparison of dorsal and ventral regions of injected and contralateral hippocampus revealed differential staining patterns.

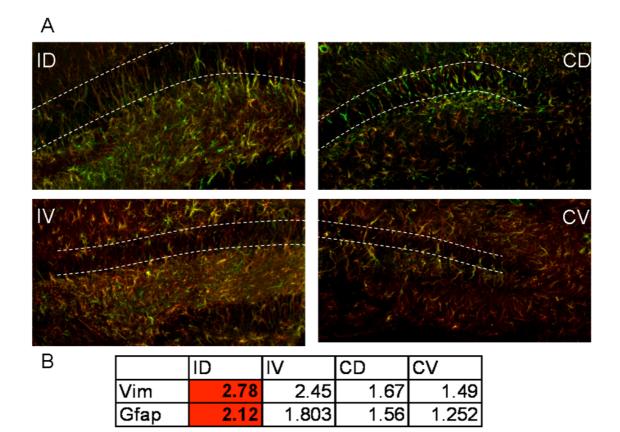


Fig. 10: VIM+ and GFAP+ CO-EXPRESSION IN THE DENTATE REGION OF KA-TREATED MICE. A shows immunofluorescence for Vimentin (green) and GFAP" (red) in the Dentate Gyrus at 15 days after KA-injection for tissue from ipsilateral dorsal, ID, contralateral dorsal, CD, ipsilateral ventral, IV and contralateral ventral CV regions. The granule cell layer is outlined with white dots. B shows log fold-changes from the array work for *Vim* and *Gfap* at 15 days. Red highlights the zone of maximal upregulation.

The highest density of Vim+ cells was detected in the dentate region of ipsilateral dorsal hippocampus with a significant co-localization with Gfap+ elements. Staining levels were lowest in tissue from contralateral ventral hippocampus, but colocalization of Vim+ and Gfap+ elements was consistently higher in ventral rather than in dorsal regions.

There was also a consistent difference in the localization of differentially immuno-positive elements (see Fig. 10). Vim+ cells were typically detected in the hilus, especially of dorsal injected hippocampus where most of them were Vim+/Gfap- while Vim+/Gfap+ elements tended to increase in ventral injected hippocampus. In contralateral hippocampus however Vim+ cells were strictly confined to the granular and subgranular zones of the dentate gyrus, regions classically associated with neuronal progenitor cells.

Discussion

The data on the identity of genes that change expression after KA-treatment shows some similarities to previous gene-chip work on epilepsy models. Our protocol based on intrahippocampal KA injection permitted comparison of tissue from both injected and noninjected hippocampus. In this way we aimed to dissect relations between the genetic changes involved in epileptogenesis and the distinct stimuli, including the initial status epilepticus, cell death and the ensuing deafferentation as well as gliosis. Our data provided evidence for changes in a large number of genes (n=1563, see Figs 4 and *Supplementary Table*). The major classes of genes changed were involved in immune responses and inflammation, in cell death and cell growth. Many distinct spatio-temporal patterns of up- and down regulation were evident in our data, but a clear temporal sequence of changes in gene expression was evident:

- Early changes, at 6hrs after KA-treatment, included several transcription and growth factors.
- The largest numbers of altered genes involved with immune and inflammatory responses were detected at 15 days
- There was a limited number of persistent changes in genes coding for proteins that control cellular excitability and neuronal communication. However, most persistent changes were limited to tissue near to the KA-injection site and also concerned genes linked to inflammatory and immune responses.

Technical points:

To perform our study we used a common, well annotated array (mouse 430A2.0 from Affymetrix) containing thousands of genes, although not the entire transcriptome. Analyses were performed separately on four different areas: dorsal and ventral regions of injected and contralateral hippocampus for three time points each.

The number of animals used could have been larger, but we are encouraged that our results were similar to previous studies (Tang, Lu et al. 2002; Lukasiuk, Kontula et al. 2003; Gorter,

van Vliet et al. 2006). Furthermore, they were confirmed by measurements on some of the same genes using q-PCR (Fig. 5) and on their protein products using immunohistochemistry (Figs. 9 and 10). EEG records made from a larger animal sample could also have permitted correlation of genetic changes with the time from the most recent seizure (Gorter, van Vliet et al. 2006).

Our relatively large tissue samples yielded good quantities of genetic material but dictated a coarse spatial resolution. More detailed studies comparing tissue from smaller regions such as the sclerotic CA1 region and the non-sclerotic dentate gyrus should give more precise information. An increased number of time points might permit a better temporal mapping of genetic processes during the progression towards an epileptic brain. It would specifically permit verification of genes whose expression was altered at a single site and single timepoint (178 genes for contralateral ventral tissue at 6 hrs and 545 genes from ipsilateral dorsal tissue at 15 days). While our immunohistochemical work begins to link changed genes to specific cell types (Vim and Gfap in Figs. 9 and 10), micro-array analysis does not provide such data. Cell specificity may be especially important in the epilepsies since neuronal death and glial proliferation implies that the cellular provenance of the material studied can change. The size of this shift in cell numbers has been derived from the CA1 region of patients with temporal lobe epilepsy (Lee, Dziema et al. 2007). In sclerotic tissue 95% of CA1 cells were of glial origin, while only 56 % of CA1 cells were glial in non-sclerotic tissue. Such a 'neuronal dilution' effect might bias data towards an upregulation of genes associated with glial cells. Our data and other studies (Hendriksen, Datson et al. 2001; Tang, Lu et al. 2002; Lukasiuk, Kontula et al. 2003) report an upregulation of such genes, but we noted no systematic artefactual down-regulation of genes associated with neurons.

Differential changes in gene expression resulting from focal KA-injection:

We defined some of the stimuli contributing to the development of chronic epileptiform activities with EEG records and anatomy. All regions participated in the status epilepticus at the first 6 hr time point used in array analysis (Fig. 1). The strongest activity was recorded from ventral regions of contralateral and injected hippocampus. Slice work (Le Duigou, Wittner et al. 2005) suggests that at this time, some cells near the KA-injection site are depolarized to potentials where they no longer discharge. Nissl and Fink Heimer stains made at 8 days after KA-injection (Fig. 3A) let us define the extent of cell death and fibre

degeneration before the second time point at 15 days. Cell death was maximal in the ipsilateral dorsal region, moderate in ipsilateral ventral regions and effectively absent in contralateral hippocampus. Fibre degeneration was detected in dorsal contralateral hippocampus as well as in both regions from the injected hippocampus. Slice records from hippocampal tissue obtained from KA-treated animals at latencies corresponding to the 6 month chronic time point reveal that interictal-like activity is preserved *in vitro* and occurs spontaneously in slices from both the ipsilateral and the controlateral side after KA-injection (Le Duigou, Bouilleret et al. 2008). Seizure-like activity could be induced by tetanic stimulation in both ipsilateral and contralateral hippocampus. Spontaneous interictal activity was rarely detected and tetanic stimuli rarely induced seizures in the region of maximal sclerosis in dorsal ipsilateral hippocampus.

There is a very good correlation between kainite-induced changes in gene expression and electrical and anatomical modifications. Genes up- and down-regulated in the ipsilateral dorsal cluster at 6 hours presumably correspond to those activated in early stages of neuronal death and to those involved in inflammatory and immune responses. In contrast those genes changed in the contralateral ventral cluster at 6 hours (largely moderate changes) may correspond more closely to changes induced by the epileptiform activity and exclude genes involved in neuronal death. The largest gene cluster centred on the ipsilateral dorsal hippocampus at the 15 day time point included those coding for proteins associated with the inflammatory and immune responses. There was little evidence for a cluster centred on dorsal contralateral hippocampus at 15 days where relatively pure responses to de-afferentation might have been expected, however genes induced by de-afferentation seem likely to also have been strongly activated in ipsilateral hippocampus. At this time point genes associated with the growth of neuronal processes and with neurogenesis were activated in tissue from both injected and non-injected hippocampus. At six months a single gene cluster was apparent in dorsal injected hippocampus with a few isolated genes still active in other regions. This cluster, with a strong down-regulated component, consisted of genes that were also detected at earlier time points together with some novel transcripts. There was a significant contribution of genes related to inflammation as noted in previous gene profile analyses of the epilepsies (Lukasiuk, Kontula et al. 2003; de Lanerolle and Lee 2005; Hunsberger, Bennett et al. 2005; Gorter, van Vliet et al. 2006). These may be related to the persistence of a glial scar (Crespel, Coubes et al. 2002) as well as other secondary inflammatory responses.

As already mentioned, the gene profile approach does not allow to link altered gene expressions with particular cell types. We are completing an immunohisto-chemical approach to this question as shown in Figs. 9 and 10 data on *Vim* and *Gfap*. Even so, several of the processes that change according to Gene Ontology associations can be linked to specific cell types.

Inflammatory processes and immune responses, are strongly upregulated in seizure-evoked animal models of hippocampal epilepsies as well as in epileptic patients, (Billiau, Wouters et al. 2005; Vezzani and Granata 2005; Gorter, van Vliet et al. 2006; van Gassen, de Wit et al. 2008). They involve microglial cells. After seizures these cells are activated which involves changes in cell number, morphology and gene expression (Niquet, Ben-Ari et al. 1994; Represa, Niquet et al. 1995). When activated, microglia secrete modulators of inflammation including cytokines and chemokines (Giulian 1993; Chao, Hu et al. 1995) which contribute to the induction of apoptosis (Margerison and Corsellis 1966; Magloczky and Freund 1993; Pollard, Charriaut-Marlangue et al. 1994; Fujikawa, Shinmei et al. 2000; Ben-Ari 2001).

We obtained evidence for a global up-regulation of genes associated with microglial signalling in both injected and contralateral hippocampus during the latent period. However at the time point corresponding to the emergence of chronic seizures, changes in expression of these genes became restricted to the injection site. This restriction may result from specific chemokines and trophic factors that maintain immune cells at this site in an active state.

Astrocyte proliferation, neurogenesis and growth.

Astrocytes are also activated in epileptic brain (Ernfors, Bengzon et al. 1991) and can be linked to a distinct set of Gene Ontology terms that we found were altered. They are involved in precursor cell proliferation and differentiation and secrete trophic factors that encourage cell growth (Song, Stevens et al. 2002). We detected an upregulation of genes coding for markers of precursor and mature astrocytes (Vimentin and GFAP, Figs 9 and 10) as well as secreted growth factors including members of the *Bdnf*, *Gmfa*, *Fgf* and *Tgf*'s families. Some of these factors, including *bdnf*, are known to modify neuronal excitability (Bariohay, Tardivel et al. 2008). Astrocytes may act as a third modulatory element at synapses involving

several neuro-transmitters (Porter and McCarthy 1996; Porter and McCarthy 1997; Kang, Jiang et al. 1998; Araque, Martin et al. 2002) and can also themselves release neurotransmitters in some conditions (Bezzi, Carmignoto et al. 1998; Araque, Li et al. 2000; Pasti, Zonta et al. 2001; D'Ascenzo, Fellin et al. 2007; Fellin, D'Ascenzo et al. 2007).

Our immunofluorescence data (Figs. 9 and 10) verified the Affymetrix data suggesting an upregulation of the genes *Vim* and *Gfap* also providing an insight into the cellular and regional specificity of their protein products. Vimentin is a marker for precursor cells while mature astrocytes express both Vimentin and GFAP. We found an increase in precursor radial glial-like elements (Gfap-/Vim+) in dorsal regions of both injected and contralateral hippocampus. Contralaterally, *Vim* and *Gfap* were confined to the subgranular zone of the dentate region, the traditional site for neurogenesis, but in injected hippocampus these cells were much more widely expressed.

The question of an increased neurogenesis in an epileptic brain remains controversial (Parent, Yu et al. 1997; Scharfman, Goodman et al. 2000; Fahrner, Kann et al. 2007). Our data suggest that hippocampal neuronal precursor cells receive distinct stimuli, but it remains unclear whether they favour production of stable new neurons. Some data suggests that newly generated elements mostly differentiate into astrocytes near the injection site but that the rate of neurogenesis is higher contralaterally (Kralic, Ledergerber et al. 2005; Ledergerber, Fritschy et al. 2006). Other work suggests daughter elements of radial glial cells can differentiate into neurons (Berninger, Costa et al. 2007). Probably precise patterns of precursor production depend on distinct niche conditions and different stimuli operating in the various environments. Our immuno-staining data supports this possibility suggesting that precursor proliferation and differentiation may even vary at distant sites of the same area in the same hippocampus.

Comparison with gene profile studies on animal models and human epileptic tissue

Genomic approaches based on a microarray analysis of epileptic tissue from MTLE patients are confined to the chronic phase of the pathology and often to sclerotic tissue (Becker, Chen et al. 2002; de Lanerolle and Lee 2005; Arion, Sabatini et al. 2006; Jamali, Bartolomei et al. 2006; Ozbas-Gerceker, Redeker et al. 2006). Several features of these results are consistent with our data. There is a consensus on changes in genes associated with glial cells, including

gfap, as well as inflammatory and immune responses, especially activation of the complement system and interleukins (de Lanerolle and Lee 2005; Jamali, Bartolomei et al. 2006). The predominance of changes in genes associated with glial cells led de Lanerolle and colleagues to emphasize an active astrocytic role in icto-genesis. They suggested this might emerge from a loss of K^+ buffering capacity due to down regulation of aquaporins. We found that *Aq4* was downregulated at 6hrs and became progressively more so with time. Changes in expression of genes coding for receptor and voltage-operated channels tended to be related to GABAergic transmission and to K^+ conductances (Arion, Sabatini et al. 2006; de Lanerolle and Lee 2005; Jamali, Bartolomei et al. 2006). We were also able to detect changes in K-channel subunits (Fig. 8) and a differential regulation, but in the opposite direction, of *Gabrb3* and *Gabrg2* subunits as in sclerotic human temporal lobe (Arion, Sabatini et al. 2006).

The use of animal models of epilepsy based either on convulsant treatment inducing a status epilepticus or on kindling stimulation has permitted to follow gene profile changes to the chronically epileptic state. The first studies identified changes in genes coding for structural and especially inflammatory processes at early time points (Elliott, Khademi et al. 2001; Matzilevich, Rall et al. 2002; Tang, Lu et al. 2002; Long, Zou et al. 2003). Elliott and colleagues focussing on transcription factors described a down-regulation of Hes5, a gene that we detected and that is involved in neurogenesis. As in the present case, pooling data from ipsilateral and contralateral hippocampis, Lukasiuk and colleagues (Lukasiuk, Kontula et al. 2003) provided evidence for activation of genes coding for transcription factors, cytokines structural proteins and immune processes. Gorter and colleagues (Gorter, van Vliet et al. 2006) performed possibly the most complete gene expression study on a kindling model of epilepsy analyzing tissue from CA3 hippocampal region, entorhinal cortex and cerebellum at acute, latent and chronic phases of the progression of this model toward recurrent seizures. Our derivation of Gene Ontology terms associated with the three time points reveals several similarities, although our data describes a lower level of changes in voltage-gated channels during the chronic phase and we did not detect a down-regulation of terms associated with synaptic transmission during the acute phase.

Genes associated with chronic epileptiform activity.

At six months after KA-injection, few genes were altered at sites distant from the original injection and few of them are involved in synaptic transmission or membrane excitability. The most intriguing of them was the GABA receptor subunit Gabra6 which was found to be upregulated exclusively at 6 months after KA-injection. Immunostaining is needed to determine which cells express this subunit which was previously thought to be present only in the cerebellum (Kato 1990; Luddens, Pritchett et al. 1990).

What does our data mean for the contribution of long-term genetic alterations to the chronic epileptic state? Possibly seizures are generated exclusively from the sclerotic region. This seems to contradict our slice work suggesting that seizures could be initiated by tetanic stimuli applied to both ipsilateral and contralateral sites. Furthermore interictal-like activity was generated by slices from both injected and non-injected hippocampus. Alternatively, changes in genes controlling neuronal electrical activity and synaptic transmission were diluted by tissue volume or glial proliferation to levels below our detection criteria. Finally, it may be that the genetic changes needed to produce an epileptic brain are terminated at the 6 month time point. This could be the case, if for example, circuit reconfiguration that involves the establishment of aberrant synaptic connections depends on the activation of genetic pathways for axonal and dendritic growth and synapse formation during a limited period. Our data show that genes associated with these processes were activated in regions other than dorsal ipsilateral hippocampus at the 15 day time point.

Conclusions and Perspectives

In the work done for this thesis, I used a genomic approach consisting of expression profile analysis with microarray technology to study genetic differences between a defined set of hippocampal interneurons and CA1 pyramidal cells and also to examine the time course of genetic changes involved in the emergence of an epileptic brain after intra-hippocampal injection of the convulsant kainic acid.

Gene profiling studies on interneuron diversity.

A two channel microarray technology was used to examine gene expression of EGFP-positive hippocampal interneurons from the GIN strain of mice (Oliva, Jiang et al. 2000) which correspond to the O-LM inhibitory cells containing somatostatin and sending an axon to innervate distal dendrites of CA1 pyramidal cells. We compare gene expression of EGFP-positive cells and CA1 pyramidal cells after sorting using on the basis of fluorescence or of a modified fast-Nissl stain combined with laser capture technology.

Comparison of expression levels for more than 10 000 transcripts represented on these arrays revealed specific differences between EGFP+ cells and pyramidal cells. A group of 443 transcripts was differentially expressed between the two different cell types; 260 of them at higher levels in the O-LM interneurons and 183 significantly more highly expressed in CA1 pyramidal cells. The Gene Ontology notation suggested that many of the genes with differential expression were involved in the processes of *signal transduction* and *transport*. Some genes coding for neurotransmitter receptors and ion channels were also differentially expressed and these genes together with those involved in signal transduction and transport may contribute to the neurophysiological difference between these different cell types.

Further experiments using qPCR experiments or immuno-histochemistry are needed to confirm the identity of differentially regulated transcripts. Either a conclusive identification of genes specific to this subset of Somatostatin-containing O-LM cells or just differentially expressed between hippocampal interneurons and pyramidal cells would be of interest. A complete characterization of the genetic profile of different sets of hippocampal GABAergic

neurons will be extremely useful to progress with the question of the complexity and diversity of this cell population (Ascoli, Alonso-Nanclares et al. 2008).

More precisely targeted experimental work would be useful to pursue the functional effects of some of the proteins found to be differentially expressed by SOM interneurons and CA1 pyramidal cells. For instance how does the differential expression of the *Rab3b* protein contribute to the differences in physiological properties of the two cell types? One possibility would be to use selective intrabodies (Zita, Marchionni et al. 2007) as molecular tools to suppress function of this gene *in vivo*. Alternatively, *Rab3b* might be targeted with RNA interference techniques (RNAi) at the level of mRNA degradation and subsequent inhibition of protein synthesis (Ramos, Bai et al. 2006). Further tests of electrical activity of perhaps and synaptic transmission may help identifying how *Rab3b* contributes to distinct functions of the two cell types.

We also noted with interest that a number of transcription factors were differentially expressed in the two cell types. None of these regulatory elements have previously been linked with specification of interneurons or pyramidal cells. Possibly knock-out or RNAi experiments might help define a differential role for these molecules during neuronal development.

A conclusive validation of the gene array technology might have been provided if it showed a differential expression of genes coding for proteins known to be differentially expressed by the two cell types. Unfortunately neither the gene coding for somatostatin nor for the *a* splice variant of mGluR1 (Oliva, Jiang et al. 2000) were present in the arrays used in this work. However it seems clear that the combined use of laser capture technology and gene profile analysis can reveal sensitive differences in gene expression by distinct interneuron cell populations and principal cells of hippocampus and cortex (Sugino, Hempel et al. 2006).

A necessary further step in this work will be to compare profiles of differentially expressed genes with anatomical, immunostaining and especially electrophysiological data. It may even be possible eventually to perform expression profile experiments on single neurones (Subkhankulova and Livesey 2006; Yano, Subkhankulova et al. 2006), in conjunction with patch clamp recording. Such studies might provide data on the variability of genetic properties of different cells within an identified interneurone population. Physiological studies suggest that O-LM interneurons have diverse excitable properties (Minneci, Janahmadi et al.

2007). So are Somatostatin containing Interneurons part of a unique class? Single cell gene expression profiles from these cells could highlight differences and similarities between the neurons and clarify whether they form a genomically homogeneous population.

Gene profiling studies on dynamic changes in a model of an epileptic syndrome.

In the second part of the work, I used the well characterized Affymetrix GeneChip technology.(430A 2.0 chip, ~14 000 transcripts) to analyse gene expression changes occurring at 6 hours, 15 days and 6 months after KA-injection into the hippocampus. These time points correspond to the initial status epilepticus, the latent phase, and the stable expression of spontaneous recurrent seizures in this mouse model of temporal lobe epilepsy. I identified large numbers of transcripts that were differentially regulated in a number of different patterns over the three different time points. As expected, the profiles of differentially expressed genes suggested multiple processes were activated during the progression towards an epileptic brain including immune and inflammatory responses, as well as cell growth and neurogenesis were activated during the progression towards an epileptic brain. Changes detected with the array studies were concordant with controls using qPCR and immunohistochemistry to measure changes in expression of gene and of coded proteins.

Inflammatory processes were still engaged, exclusively at sites near KA-injection, even after a delay of six months. The role of these persistent changes remains unclear but they are consistent with recent findings in both animal models of epilepsy and in tissue obtained from epileptic patients (de Lanerolle and Lee 2005; Ozbas-Gerceker, Redeker et al. 2006; Aronica and Gorter 2007). Further studies are needed to ask whether this persistent inflammation is an epi-phenomenon related to the cell death of hippocampal sclerosis, or a crucial factor in the emergence of recurrent seizures. Interestingly, inflammation-associated genes are activated after convulsant-induced status epilepticus and ischemia-induced neuronal loss (Simon, Cho et al. 1991; Stoll, Jander et al. 1998; Lee, Grabb et al. 2000) which may not lead to an epileptic brain. A careful comparison of gene expression changes in epileptic and ischemic tissue may permit identification of similarities and difference in the activation of the immune system by the two stimuli.

It would be especially useful to compare in ischemic and epileptic animals the degree of activation of the complement cascade (Jamali, Bartolomei et al. 2006; Aronica, Boer et al.

2007). Furthermore, injection of complement factors induces cell death and seizures in the rat (Xiong, Qian et al. 2003). Further studies using KO or RNAi techniques may help identifying the roles of specific components of the immune system in the generation of the epileptic network (Einav, Pozdnyakova et al. 2002).

My gene array analysis identified many transcripts associated with microglia and astrocytes as well as large numbers of genes that could not be definitively attributed to a specific cell type. Immunostaining work (i.e. for Vimentin and GFAP) may help clarify the cell-type and regional distribution of gene changes. An alternative approach to this question might be to pursue gene profile studies on purified cell populations obtained from epileptic animals at different time points. In this sense the FACS technology used to separate EGFP+ hippocampal interneurons, together with astrocyte or microglial-specific fluorescent markers could prove useful. It might permit to detect neuron-specific changes more sensitively than from whole-tissue homogenates by avoiding fractional changes in cell types resulting from 'glial dilution'.

The effects of KA-injection on gene expression by EGFP+ neurons from GIN mice could be followed with this technique. In fact this cell group seems to be particularly vulnerable to excitotoxic insults (Oliva, Lam et al. 2002) and they are among the first cells to die during the development of the epileptic network (Dinocourt, Petanjek et al. 2003). Studies on EGFP+ cells may permit a clarification of genes and pathways activated in KA-induced cell death.

Epilepsy is a disease of aberrant and hypersynchronous neuronal electrical activity. I identified a set of genes, in the contralateral ventral region, that were probably activated by epileptiform activity during the status epilepticus and were not related to neuronal death. At the 15 days time point, changes were detected in many transcripts related to glial cell activation. During the persistent phase of recurrent seizure expression, there were few changes in neuron-associated genes outside the initial injection site. Are seizures initiated exclusively from sites of profound neuronal death? Or might seizures arise from changes in neuronal connectivity due to genes controlling growth processes activated at the intermediate time point? Gene profile analysis at more intermediate time points might better define growth processes. Further EEG studies on sites for seizure initiation would also be useful to define sites for a more precise gene profile analysis to improve understanding on the links between changes at these sites and the initiation of recurrent seizures.

References

- Akbar, M. T., M. Rattray, et al. (1996). "Altered expression of group I metabotropic glutamate receptors in the hippocampus of amygdala-kindled rats." <u>Brain Res Mol</u> <u>Brain Res</u> 43(1-2): 105-16.
- Alcamo, E. A., L. Chirivella, et al. (2008). "Satb2 regulates callosal projection neuron identity in the developing cerebral cortex." <u>Neuron</u> **57**(3): 364-77.
- Ali, A. B. and A. M. Thomson (1998). "Facilitating pyramid to horizontal oriens-alveus interneurone inputs: dual intracellular recordings in slices of rat hippocampus." J <u>Physiol</u> 507 (Pt 1): 185-99.
- Aloisi, F. (2001). "Immune function of microglia." Glia 36(2): 165-79.
- Altman, J. and G. D. Das (1965). "Autoradiographic and histological evidence of postnatal hippocampal neurogenesis in rats." J Comp Neurol **124**(3): 319-35.
- Amaral, D. G. and M. P. Witter (1989). "The three-dimensional organization of the hippocampal formation: a review of anatomical data." <u>Neuroscience</u> **31**(3): 571-91.
- Andersen, P., T. V. Bliss, et al. (1971). "Unit analysis of hippocampal polulation spikes." <u>Exp</u> <u>Brain Res</u> 13(2): 208-21.
- Anderson, S. A., D. D. Eisenstat, et al. (1997). "Interneuron migration from basal forebrain to neocortex: dependence on Dlx genes." <u>Science</u> 278(5337): 474-6.
- Andersson, P. B., V. H. Perry, et al. (1991). "The CNS acute inflammatory response to excitotoxic neuronal cell death." Immunol Lett **30**(2): 177-81.
- Annegers, J. F., W. A. Hauser, et al. (1988). "The risk of unprovoked seizures after encephalitis and meningitis." <u>Neurology</u> **38**(9): 1407-10.
- Annegers, J. F., W. A. Hauser, et al. (1998). "A population-based study of seizures after traumatic brain injuries." <u>N Engl J Med</u> **338**(1): 20-4.
- Arabadzisz, D., K. Antal, et al. (2005). "Epileptogenesis and chronic seizures in a mouse model of temporal lobe epilepsy are associated with distinct EEG patterns and selective neurochemical alterations in the contralateral hippocampus." <u>Exp Neurol</u> 194(1): 76-90.
- Aradi, I., V. Santhakumar, et al. (2002). "Postsynaptic effects of GABAergic synaptic diversity: regulation of neuronal excitability by changes in IPSC variance." <u>Neuropharmacology</u> 43(4): 511-22.
- Araque, A., N. Li, et al. (2000). "SNARE protein-dependent glutamate release from astrocytes." J Neurosci **20**(2): 666-73.

- Araque, A., E. D. Martin, et al. (2002). "Synaptically released acetylcholine evokes Ca2+ elevations in astrocytes in hippocampal slices." J Neurosci **22**(7): 2443-50.
- Arellano, J. I., A. Munoz, et al. (2004). "Histopathology and reorganization of chandelier cells in the human epileptic sclerotic hippocampus." <u>Brain</u> **127**(Pt 1): 45-64.
- Arion, D., M. Sabatini, et al. (2006). "Correlation of transcriptome profile with electrical activity in temporal lobe epilepsy." <u>Neurobiol Dis</u> 22(2): 374-87.
- Arlotta, P., B. J. Molyneaux, et al. (2005). "Neuronal subtype-specific genes that control corticospinal motor neuron development in vivo." <u>Neuron</u> 45(2): 207-21.
- Aronica, E., K. Boer, et al. (2007). "Complement activation in experimental and human temporal lobe epilepsy." <u>Neurobiol Dis</u> 26(3): 497-511.
- Aronica, E. and J. A. Gorter (2007). "Gene expression profile in temporal lobe epilepsy." <u>Neuroscientist</u> **13**(2): 100-8.
- Ascher, P. and L. Nowak (1986). "A patch-clamp study of excitatory amino acid activated channels." Adv Exp Med Biol 203: 507-11.
- Ascoli, G. A., L. Alonso-Nanclares, et al. (2008). "Petilla terminology: nomenclature of features of GABAergic interneurons of the cerebral cortex." <u>Nat Rev Neurosci</u> 9(7): 557-68.
- Babb, T. L., J. P. Lieb, et al. (1984). "Distribution of pyramidal cell density and hyperexcitability in the epileptic human hippocampal formation." Epilepsia 25(6): 721-8.
- Babb, T. L., G. W. Mathern, et al. (1996). "Glutamate AMPA receptors in the fascia dentata of human and kainate rat hippocampal epilepsy." <u>Epilepsy Res</u> 26(1): 193-205.
- Ballabriga, J., E. Pozas, et al. (1997). "bFGF and FGFR-3 immunoreactivity in the rat brain following systemic kainic acid administration at convulsant doses: localization of bFGF and FGFR-3 in reactive astrocytes, and FGFR-3 in reactive microglia." <u>Brain</u> <u>Res</u> 752(1-2): 315-8.
- Ballarin, M., P. Ernfors, et al. (1991). "Hippocampal damage and kainic acid injection induce a rapid increase in mRNA for BDNF and NGF in the rat brain." <u>Exp Neurol</u> **114**(1): 35-43.
- Bancaud, J. (1987). "[Clinical symptomatology of epileptic seizures of temporal origin]." <u>Rev</u> <u>Neurol (Paris)</u> **143**(5): 392-400.
- Baraban, S. C. and M. K. Tallent (2004). "Interneuron Diversity series: Interneuronal neuropeptides--endogenous regulators of neuronal excitability." <u>Trends Neurosci</u> 27(3): 135-42.
- Baram, T. Z., M. Eghbal-Ahmadi, et al. (2002). "Is neuronal death required for seizureinduced epileptogenesis in the immature brain?" Prog Brain Res 135: 365-75.

- Baram, T. Z., A. Gerth, et al. (1997). "Febrile seizures: an appropriate-aged model suitable for long-term studies." <u>Brain Res Dev Brain Res</u> **98**(2): 265-70.
- Bariohay, B., C. Tardivel, et al. (2008). "BDNF/TrkB signalling interacts with GABAergic system to inhibit rhythmic swallowing in the rat." <u>Am J Physiol Regul Integr Comp Physiol</u>.
- Barkovich, A. J., R. Guerrini, et al. (1994). "Band heterotopia: correlation of outcome with magnetic resonance imaging parameters." <u>Ann Neurol</u> **36**(4): 609-17.
- Barkovich, A. J., R. I. Kuzniecky, et al. (2001). "Classification system for malformations of cortical development: update 2001." <u>Neurology</u> 57(12): 2168-78.
- Basilico, C. and D. Moscatelli (1992). "The FGF family of growth factors and oncogenes." Adv Cancer Res **59**: 115-65.
- Baulac, S., G. Huberfeld, et al. (2001). "First genetic evidence of GABA(A) receptor dysfunction in epilepsy: a mutation in the gamma2-subunit gene." <u>Nat Genet</u> 28(1): 46-8.
- Becker, A. J., J. Chen, et al. (2002). "Transcriptional profiling in human epilepsy: expression array and single cell real-time qRT-PCR analysis reveal distinct cellular gene regulation." <u>Neuroreport</u> **13**(10): 1327-33.
- Becker, A. J., J. Chen, et al. (2003). "Correlated stage- and subfield-associated hippocampal gene expression patterns in experimental and human temporal lobe epilepsy." <u>Eur J</u> <u>Neurosci</u> **18**(10): 2792-802.
- Ben-Ari, Y. (1985). "Limbic seizure and brain damage produced by kainic acid: mechanisms and relevance to human temporal lobe epilepsy." <u>Neuroscience</u> 14(2): 375-403.
- Ben-Ari, Y. (2001). "Cell death and synaptic reorganizations produced by seizures." <u>Epilepsia</u> 42 Suppl 3: 5-7.
- Ben-Ari, Y. and R. Cossart (2000). "Kainate, a double agent that generates seizures: two decades of progress." <u>Trends Neurosci</u> 23(11): 580-7.
- Ben-Ari, Y. and J. Lagowska (1978). "[Epileptogenic action of intra-amygdaloid injection of kainic acid]." <u>C R Acad Sci Hebd Seances Acad Sci D</u> 287(8): 813-6.
- Ben-Ari, Y., J. Lagowska, et al. (1979). "A new model of focal status epilepticus: intraamygdaloid application of kainic acid elicits repetitive secondarily generalized convulsive seizures." <u>Brain Res</u> 163(1): 176-9.
- Ben-Ari, Y., E. Tremblay, et al. (1981). "Electrographic, clinical and pathological alterations following systemic administration of kainic acid, bicuculline or pentetrazole: metabolic mapping using the deoxyglucose method with special reference to the pathology of epilepsy." <u>Neuroscience</u> 6(7): 1361-91.
- Bender, R. A., C. Dube, et al. (2003). "Mossy fiber plasticity and enhanced hippocampal excitability, without hippocampal cell loss or altered neurogenesis, in an animal model of prolonged febrile seizures." <u>Hippocampus</u> **13**(3): 399-412.

- Benlounis, A., R. Nabbout, et al. (2001). "Genetic predisposition to severe myoclonic epilepsy in infancy." Epilepsia 42(2): 204-9.
- Berg, A. T., J. Langfitt, et al. (2003). "How long does it take for partial epilepsy to become intractable?" <u>Neurology</u> **60**(2): 186-90.
- Bergamasco, B., P. Benna, et al. (1984). "Neonatal hypoxia and epileptic risk: a clinical prospective study." <u>Epilepsia</u> **25**(2): 131-6.
- Bernard, C., A. Anderson, et al. (2004). "Acquired dendritic channelopathy in temporal lobe epilepsy." <u>Science</u> **305**(5683): 532-5.
- Berninger, B., M. R. Costa, et al. (2007). "Functional properties of neurons derived from in vitro reprogrammed postnatal astroglia." J Neurosci 27(32): 8654-64.
- Bertram, E. H. (1997). "Functional anatomy of spontaneous seizures in a rat model of limbic epilepsy." <u>Epilepsia</u> **38**(1): 95-105.
- Bezzi, P., G. Carmignoto, et al. (1998). "Prostaglandins stimulate calcium-dependent glutamate release in astrocytes." <u>Nature</u> **391**(6664): 281-5.
- Billiau, A. D., C. H. Wouters, et al. (2005). "Epilepsy and the immune system: is there a link?" Eur J Paediatr Neurol 9(1): 29-42.
- Blatow, M., A. Rozov, et al. (2003). "A novel network of multipolar bursting interneurons generates theta frequency oscillations in neocortex." <u>Neuron</u> **38**(5): 805-17.
- Bocti, C., Y. Robitaille, et al. (2003). "The pathological basis of temporal lobe epilepsy in childhood." <u>Neurology</u> **60**(2): 191-5.
- Borges, K., D. McDermott, et al. (2006). "Degeneration and proliferation of astrocytes in the mouse dentate gyrus after pilocarpine-induced status epilepticus." Exp Neurol 201(2): 416-27.
- Bormann, J., O. P. Hamill, et al. (1987). "Mechanism of anion permeation through channels gated by glycine and gamma-aminobutyric acid in mouse cultured spinal neurones." J <u>Physiol</u> **385**: 243-86.
- Bouilleret, V., F. Loup, et al. (2000). "Early loss of interneurons and delayed subunit-specific changes in GABA(A)-receptor expression in a mouse model of mesial temporal lobe epilepsy." <u>Hippocampus</u> **10**(3): 305-24.
- Bouilleret, V., V. Ridoux, et al. (1999). "Recurrent seizures and hippocampal sclerosis following intrahippocampal kainate injection in adult mice: electroencephalography, histopathology and synaptic reorganization similar to mesial temporal lobe epilepsy." <u>Neuroscience</u> **89**(3): 717-29.
- Bragin, A., J. Engel, Jr., et al. (1999). "Electrophysiologic analysis of a chronic seizure model after unilateral hippocampal KA injection." <u>Epilepsia</u> **40**(9): 1210-21.

- Bragin, A., C. L. Wilson, et al. (2000). "Chronic epileptogenesis requires development of a network of pathologically interconnected neuron clusters: a hypothesis." <u>Epilepsia</u> 41 Suppl 6: S144-52.
- Brewster, A., R. A. Bender, et al. (2002). "Developmental febrile seizures modulate hippocampal gene expression of hyperpolarization-activated channels in an isoform-and cell-specific manner." J Neurosci 22(11): 4591-9.
- Britschgi, A., E. Trinh, et al. (2008). "DAPK2 is a novel E2F1/KLF6 target gene involved in their proapoptotic function." <u>Oncogene</u>.
- Bruce, A. J., W. Boling, et al. (1996). "Altered neuronal and microglial responses to excitotoxic and ischemic brain injury in mice lacking TNF receptors." <u>Nat Med</u> 2(7): 788-94.
- Brusa, R., F. Zimmermann, et al. (1995). "Early-onset epilepsy and postnatal lethality associated with an editing-deficient GluR-B allele in mice." <u>Science</u> **270**(5242): 1677-80.
- Bruton, C. (1988). "The neuropathology of temporal lobe epilepsy." <u>New York: Oxford</u> <u>University Press</u>.
- Buckmaster, P. S. and F. E. Dudek (1997). "Neuron loss, granule cell axon reorganization, and functional changes in the dentate gyrus of epileptic kainate-treated rats." J Comp <u>Neurol</u> **385**(3): 385-404.
- Buckmaster, P. S. and A. L. Jongen-Relo (1999). "Highly specific neuron loss preserves lateral inhibitory circuits in the dentate gyrus of kainate-induced epileptic rats." J <u>Neurosci</u> **19**(21): 9519-29.
- Buckmaster, P. S., G. F. Zhang, et al. (2002). "Axon sprouting in a model of temporal lobe epilepsy creates a predominantly excitatory feedback circuit." J Neurosci 22(15): 6650-8.
- Bugra, K., H. Pollard, et al. (1994). "aFGF, bFGF and flg mRNAs show distinct patterns of induction in the hippocampus following kainate-induced seizures." <u>Eur J Neurosci</u> 6(1): 58-66.
- Buhl, D. L., K. D. Harris, et al. (2003). "Selective impairment of hippocampal gamma oscillations in connexin-36 knock-out mouse in vivo." J Neurosci 23(3): 1013-8.
- Buhl, E. H., K. Halasy, et al. (1994). "Diverse sources of hippocampal unitary inhibitory postsynaptic potentials and the number of synaptic release sites." <u>Nature</u> 368(6474): 823-8.
- Bunge, R. P. (1968). "Glial cells and the central myelin sheath." Physiol Rev 48(1): 197-251.
- Burgess, D. L. and J. L. Noebels (1999). "Voltage-dependent calcium channel mutations in neurological disease." <u>Ann N Y Acad Sci</u> 868: 199-212.
- Burgess, N., E. A. Maguire, et al. (2002). "The human hippocampus and spatial and episodic memory." <u>Neuron</u> 35(4): 625-41.

- Buzsaki, G. (2001). "Hippocampal GABAergic interneurons: a physiological perspective." <u>Neurochem Res</u> 26(8-9): 899-905.
- Cameron, H. A., C. S. Woolley, et al. (1993). "Differentiation of newly born neurons and glia in the dentate gyrus of the adult rat." <u>Neuroscience</u> **56**(2): 337-44.
- Camfield, P. and C. Camfield (2002). "Epileptic syndromes in childhood: clinical features, outcomes, and treatment." <u>Epilepsia</u> **43** Suppl **3**: 27-32.
- Cascino, G. D. (1990). "Epilepsy and brain tumors: implications for treatment." <u>Epilepsia</u> **31 Suppl 3**: S37-44.
- Cauli, B., E. Audinat, et al. (1997). "Molecular and physiological diversity of cortical nonpyramidal cells." J Neurosci 17(10): 3894-906.
- Cavalheiro, E. A. (1995). "The pilocarpine model of epilepsy." <u>Ital J Neurol Sci</u> 16(1-2): 33-7.
- Cavalheiro, E. A., J. P. Leite, et al. (1991). "Long-term effects of pilocarpine in rats: structural damage of the brain triggers kindling and spontaneous recurrent seizures." <u>Epilepsia</u> 32(6): 778-82.
- Cavazos, J. E., G. Golarai, et al. (1991). "Mossy fiber synaptic reorganization induced by kindling: time course of development, progression, and permanence." J Neurosci 11(9): 2795-803.
- Cavazos, J. E., G. Golarai, et al. (1992). "Septotemporal variation of the supragranular projection of the mossy fiber pathway in the dentate gyrus of normal and kindled rats." <u>Hippocampus</u> **2**(4): 363-72.
- Cavazos, J. E., S. M. Jones, et al. (2004). "Sprouting and synaptic reorganization in the subiculum and CA1 region of the hippocampus in acute and chronic models of partial-onset epilepsy." Neuroscience **126**(3): 677-88.
- Cavazos, J. E., P. Zhang, et al. (2003). "Ultrastructural features of sprouted mossy fiber synapses in kindled and kainic acid-treated rats." J Comp Neurol **458**(3): 272-92.
- Chao, C. C., S. Hu, et al. (1995). "Glia, cytokines, and neurotoxicity." <u>Crit Rev Neurobiol</u> 9(2-3): 189-205.
- Charlier, C., N. A. Singh, et al. (1998). "A pore mutation in a novel KQT-like potassium channel gene in an idiopathic epilepsy family." <u>Nat Genet</u> **18**(1): 53-5.
- Chattopadhyaya, B., G. Di Cristo, et al. (2004). "Experience and activity-dependent maturation of perisomatic GABAergic innervation in primary visual cortex during a postnatal critical period." J Neurosci 24(43): 9598-611.
- Chen, K., I. Aradi, et al. (2001). "Persistently modified h-channels after complex febrile seizures convert the seizure-induced enhancement of inhibition to hyperexcitability." <u>Nat Med</u> 7(3): 331-7.

- Chen, K., T. Z. Baram, et al. (1999). "Febrile seizures in the developing brain result in persistent modification of neuronal excitability in limbic circuits." <u>Nat Med</u> **5**(8): 888-94.
- Chen, K., A. Ratzliff, et al. (2003). "Long-term plasticity of endocannabinoid signaling induced by developmental febrile seizures." <u>Neuron</u> **39**(4): 599-611.
- Chen, Y., J. Lu, et al. (2003). "Association between genetic variation of CACNA1H and childhood absence epilepsy." <u>Ann Neurol</u> **54**(2): 239-43.
- Choi, D. W., M. Maulucci-Gedde, et al. (1987). "Glutamate neurotoxicity in cortical cell culture." J Neurosci 7(2): 357-68.
- Claes, L., J. Del-Favero, et al. (2001). "De novo mutations in the sodium-channel gene SCN1A cause severe myoclonic epilepsy of infancy." <u>Am J Hum Genet</u> **68**(6): 1327-32.
- Cobos, I., U. Borello, et al. (2007). "Dlx transcription factors promote migration through repression of axon and dendrite growth." <u>Neuron</u> **54**(6): 873-88.
- Cobos, I., M. E. Calcagnotto, et al. (2005). "Mice lacking Dlx1 show subtype-specific loss of interneurons, reduced inhibition and epilepsy." <u>Nat Neurosci</u> **8**(8): 1059-68.
- Cooper, E. C., E. Harrington, et al. (2001). "M channel KCNQ2 subunits are localized to key sites for control of neuronal network oscillations and synchronization in mouse brain." J Neurosci 21(24): 9529-40.
- Cossart, R., C. Dinocourt, et al. (2001). "Dendritic but not somatic GABAergic inhibition is decreased in experimental epilepsy." <u>Nat Neurosci</u> 4(1): 52-62.
- Cossart, R., J. Epsztein, et al. (2002). "Quantal release of glutamate generates pure kainate and mixed AMPA/kainate EPSCs in hippocampal neurons." <u>Neuron</u> **35**(1): 147-59.
- Cossart, R., M. Esclapez, et al. (1998). "GluR5 kainate receptor activation in interneurons increases tonic inhibition of pyramidal cells." <u>Nat Neurosci</u> 1(6): 470-8.
- Cossette, P., L. Liu, et al. (2002). "Mutation of GABRA1 in an autosomal dominant form of juvenile myoclonic epilepsy." <u>Nat Genet</u> **31**(2): 184-9.
- Cossette, P., A. Loukas, et al. (2003). "Functional characterization of the D188V mutation in neuronal voltage-gated sodium channel causing generalized epilepsy with febrile seizures plus (GEFS)." <u>Epilepsy Res</u> **53**(1-2): 107-17.
- Covolan, L., L. T. Ribeiro, et al. (2000). "Cell damage and neurogenesis in the dentate granule cell layer of adult rats after pilocarpine- or kainate-induced status epilepticus." <u>Hippocampus</u> **10**(2): 169-80.
- Crespel, A., P. Coubes, et al. (2002). "Immature-like astrocytes are associated with dentate granule cell migration in human temporal lobe epilepsy." <u>Neurosci Lett</u> **330**(1): 114-8.
- Crespel, A., P. Coubes, et al. (2002). "Inflammatory reactions in human medial temporal lobe epilepsy with hippocampal sclerosis." <u>Brain Res</u> **952**(2): 159-69.

- Crespel, A., V. Rigau, et al. (2005). "Increased number of neural progenitors in human temporal lobe epilepsy." <u>Neurobiol Dis</u> **19**(3): 436-50.
- Crunelli, V. and N. Leresche (2002). "Childhood absence epilepsy: genes, channels, neurons and networks." <u>Nat Rev Neurosci</u> **3**(5): 371-82.
- Cuevas, P. and G. Gimenez-Gallego (1996). "Antiepileptic effects of acidic fibroblast growth factor examined in kainic acid-mediated seizures in the rat." <u>Neurosci Lett</u> **203**(1): 66-8.
- Cuevas, P., C. Revilla, et al. (1994). "Neuroprotective effect of acidic fibroblast growth factor on seizure-associated brain damage." <u>Neurol Res</u> **16**(5): 365-9.
- D'Ascenzo, M., T. Fellin, et al. (2007). "mGluR5 stimulates gliotransmission in the nucleus accumbens." Proc Natl Acad Sci U S A 104(6): 1995-2000.
- Darchen, F. and B. Goud (2000). "Multiple aspects of Rab protein action in the secretory pathway: focus on Rab3 and Rab6." <u>Biochimie</u> **82**(4): 375-84.
- Davoust, N., C. Vuaillat, et al. (2008). "From bone marrow to microglia: barriers and avenues." <u>Trends Immunol</u> **29**(5): 227-34.
- De Fusco, M., A. Becchetti, et al. (2000). "The nicotinic receptor beta 2 subunit is mutant in nocturnal frontal lobe epilepsy." <u>Nat Genet</u> **26**(3): 275-6.
- de Lanerolle, N. C., M. L. Brines, et al. (1992). "Neurochemical remodelling of the hippocampus in human temporal lobe epilepsy." <u>Epilepsy Res Suppl</u> 9: 205-19; discussion 220.
- de Lanerolle, N. C., J. H. Kim, et al. (1989). "Hippocampal interneuron loss and plasticity in human temporal lobe epilepsy." <u>Brain Res</u> **495**(2): 387-95.
- de Lanerolle, N. C. and T. S. Lee (2005). "New facets of the neuropathology and molecular profile of human temporal lobe epilepsy." <u>Epilepsy Behav</u> 7(2): 190-203.
- De Sarro, G., D. Rotiroti, et al. (1994). "Effects of interleukin-2 on various models of experimental epilepsy in DBA/2 mice." <u>Neuroimmunomodulation</u> 1(6): 361-9.
- De Simoni, M. G., C. Perego, et al. (2000). "Inflammatory cytokines and related genes are induced in the rat hippocampus by limbic status epilepticus." <u>Eur J Neurosci</u> 12(7): 2623-33.
- Deans, M. R., J. R. Gibson, et al. (2001). "Synchronous activity of inhibitory networks in neocortex requires electrical synapses containing connexin36." <u>Neuron</u> **31**(3): 477-85.
- Delgado, R., A. Carlin, et al. (1998). "Melanocortin peptides inhibit production of proinflammatory cytokines and nitric oxide by activated microglia." J Leukoc Biol 63(6): 740-5.
- Deneka, M., M. Neeft, et al. (2003). "Regulation of membrane transport by rab GTPases." <u>Crit Rev Biochem Mol Biol</u> **38**(2): 121-42.

- Dennis, G., Jr., B. T. Sherman, et al. (2003). "DAVID: Database for Annotation, Visualization, and Integrated Discovery." <u>Genome Biol</u> 4(5): P3.
- des Portes, V., J. M. Pinard, et al. (1998). "A novel CNS gene required for neuronal migration and involved in X-linked subcortical laminar heterotopia and lissencephaly syndrome." <u>Cell</u> **92**(1): 51-61.
- Deuchars, J. and A. M. Thomson (1996). "CA1 pyramid-pyramid connections in rat hippocampus in vitro: dual intracellular recordings with biocytin filling." <u>Neuroscience</u> 74(4): 1009-18.
- Dickson, D. W., P. Davies, et al. (1994). "Hippocampal sclerosis: a common pathological feature of dementia in very old (> or = 80 years of age) humans." <u>Acta Neuropathol</u> **88**(3): 212-21.
- Dinocourt, C., Z. Petanjek, et al. (2003). "Loss of interneurons innervating pyramidal cell dendrites and axon initial segments in the CA1 region of the hippocampus following pilocarpine-induced seizures." J Comp Neurol **459**(4): 407-25.
- Doetsch, F. (2003). "The glial identity of neural stem cells." <u>Nat Neurosci</u> 6(11): 1127-34.
- Doetsch, F. and C. Scharff (2001). "Challenges for brain repair: insights from adult neurogenesis in birds and mammals." <u>Brain Behav Evol</u> **58**(5): 306-22.
- Draguhn, A., R. D. Traub, et al. (1998). "Electrical coupling underlies high-frequency oscillations in the hippocampus in vitro." <u>Nature</u> **394**(6689): 189-92.
- Dube, C., C. Richichi, et al. (2006). "Temporal lobe epilepsy after experimental prolonged febrile seizures: prospective analysis." <u>Brain</u> **129**(Pt 4): 911-22.
- Dube, C., H. Yu, et al. (2004). "Serial MRI after experimental febrile seizures: altered T2 signal without neuronal death." <u>Ann Neurol</u> **56**(5): 709-14.
- Eberwine, J., H. Yeh, et al. (1992). "Analysis of gene expression in single live neurons." Proc Natl Acad Sci U S A **89**(7): 3010-4.
- Eccles, J. C. (1964). "The Physiology of Synapse."
- Eichenbaum, H., P. Dudchenko, et al. (1999). "The hippocampus, memory, and place cells: is it spatial memory or a memory space?" <u>Neuron</u> 23(2): 209-26.
- Einav, S., O. O. Pozdnyakova, et al. (2002). "Complement C4 is protective for lupus disease independent of C3." J Immunol **168**(3): 1036-41.
- Eisen, M. B., P. T. Spellman, et al. (1998). "Cluster analysis and display of genome-wide expression patterns." Proc Natl Acad Sci U S A **95**(25): 14863-8.
- Eliasson, C., C. Sahlgren, et al. (1999). "Intermediate filament protein partnership in astrocytes." J Biol Chem 274(34): 23996-4006.

- Ellerkmann, R. K., S. Remy, et al. (2003). "Molecular and functional changes in voltagedependent Na(+) channels following pilocarpine-induced status epilepticus in rat dentate granule cells." <u>Neuroscience</u> **119**(2): 323-33.
- Elliott, R. C., S. Khademi, et al. (2001). "Differential regulation of basic helix-loop-helix mRNAs in the dentate gyrus following status epilepticus." <u>Neuroscience</u> **106**(1): 79-88.
- Emmert-Buck, M. R., R. F. Bonner, et al. (1996). "Laser capture microdissection." <u>Science</u> 274(5289): 998-1001.
- Eng, L. F. (1988). "Regulation of glial intermediate filaments in astrogliosis." <u>In M.D.</u> <u>Norenberg, L. Hertz and A. Schousboe (Eds), The biochemical pathology of</u> <u>astrocytes, Liss, New York.</u>: 79-90.
- Engel, J., Jr. (1992). "Update on surgical treatment of the epilepsies." <u>Clin Exp Neurol</u> **29**: 32-48.
- Engel, J. J., P. Williamson, et al. (1997). "Mesial Temporal Lobe Epilepsy." <u>In: A</u> <u>comprehensive textbook (Engel J and Pedley TA, eds); Philadelphia, Raven Press</u>: 2417-2426.
- Engel, T., B. M. Murphy, et al. (2007). "Elevated p53 and lower MDM2 expression in hippocampus from patients with intractable temporal lobe epilepsy." <u>Epilepsy Res</u> 77(2-3): 151-6.
- Epsztein, J., A. Represa, et al. (2005). "Recurrent mossy fibers establish aberrant kainate receptor-operated synapses on granule cells from epileptic rats." J Neurosci 25(36): 8229-39.
- Ernfors, P., J. Bengzon, et al. (1991). "Increased levels of messenger RNAs for neurotrophic factors in the brain during kindling epileptogenesis." <u>Neuron</u> 7(1): 165-76.
- Escayg, A., M. De Waard, et al. (2000). "Coding and noncoding variation of the human calcium-channel beta4-subunit gene CACNB4 in patients with idiopathic generalized epilepsy and episodic ataxia." <u>Am J Hum Genet</u> **66**(5): 1531-9.
- Escayg, A., A. Heils, et al. (2001). "A novel SCN1A mutation associated with generalized epilepsy with febrile seizures plus--and prevalence of variants in patients with epilepsy." <u>Am J Hum Genet</u> **68**(4): 866-73.
- Escayg, A., B. T. MacDonald, et al. (2000). "Mutations of SCN1A, encoding a neuronal sodium channel, in two families with GEFS+2." <u>Nat Genet</u> 24(4): 343-5.
- Esclapez, M., J. C. Hirsch, et al. (1999). "Newly formed excitatory pathways provide a substrate for hyperexcitability in experimental temporal lobe epilepsy." J Comp <u>Neurol</u> **408**(4): 449-60.
- Eum, S. Y., I. E. Andras, et al. (2008). "Pcbs and Tight Junction Expression." <u>Environ</u> <u>Toxicol Pharmacol</u> 25(2): 234-240.

- Eunson, L. H., R. Rea, et al. (2000). "Clinical, genetic, and expression studies of mutations in the potassium channel gene KCNA1 reveal new phenotypic variability." <u>Ann Neurol</u> 48(4): 647-56.
- Fahrner, A., G. Kann, et al. (2007). "Granule cell dispersion is not accompanied by enhanced neurogenesis in temporal lobe epilepsy patients." <u>Exp Neurol</u> **203**(2): 320-32.
- Fassbender, K., S. Rossol, et al. (1994). "Proinflammatory cytokines in serum of patients with acute cerebral ischemia: kinetics of secretion and relation to the extent of brain damage and outcome of disease." J Neurol Sci 122(2): 135-9.
- Fellin, T., M. D'Ascenzo, et al. (2007). "Astrocytes control neuronal excitability in the nucleus accumbens." <u>ScientificWorldJournal</u> 7: 89-97.
- Feng, G., R. H. Mellor, et al. (2000). "Imaging neuronal subsets in transgenic mice expressing multiple spectral variants of GFP." <u>Neuron</u> 28(1): 41-51.
- Fielding, C. A., R. M. McLoughlin, et al. (2008). "IL-6 regulates neutrophil trafficking during acute inflammation via STAT3." J Immunol **181**(3): 2189-95.
- Fink, R. P. and L. Heimer (1967). "Two methods for selective silver impregnation of degenerating axons and their synaptic endings in the central nervous system." <u>Brain</u> <u>Res</u> 4(4): 369-74.
- Finnerty, G. T. and J. G. Jefferys (2002). "Investigation of the neuronal aggregate generating seizures in the rat tetanus toxin model of epilepsy." J Neurophysiol 88(6): 2919-27.
- Flugel, A., M. Bradl, et al. (2001). "Transformation of donor-derived bone marrow precursors into host microglia during autoimmune CNS inflammation and during the retrograde response to axotomy." J Neurosci Res **66**(1): 74-82.
- Foldy, C., I. Aradi, et al. (2004). "Diversity beyond variance: modulation of firing rates and network coherence by GABAergic subpopulations." <u>Eur J Neurosci</u> **19**(1): 119-30.
- Follesa, P., J. R. Wrathall, et al. (1994). "Increased basic fibroblast growth factor mRNA following contusive spinal cord injury." <u>Brain Res Mol Brain Res</u> 22(1-4): 1-8.
- Forsgren, L., E. Beghi, et al. (2005). "The epidemiology of epilepsy in Europe a systematic review." Eur J Neurol 12(4): 245-53.
- Francis, J. S., M. Dragunow, et al. (2004). "Over expression of ATF-3 protects rat hippocampal neurons from in vivo injection of kainic acid." <u>Brain Res Mol Brain Res</u> **124**(2): 199-203.
- Frerking, M., R. C. Malenka, et al. (1998). "Synaptic activation of kainate receptors on hippocampal interneurons." Nat Neurosci 1(6): 479-86.
- Freund, T. F. (2003). "Interneuron Diversity series: Rhythm and mood in perisomatic inhibition." <u>Trends Neurosci</u> 26(9): 489-95.
- Freund, T. F. and G. Buzsaki (1996). "Interneurons of the hippocampus." <u>Hippocampus</u> **6**(4): 347-470.

- Fritschy, J. M., T. Kiener, et al. (1999). "GABAergic neurons and GABA(A)-receptors in temporal lobe epilepsy." <u>Neurochem Int</u> **34**(5): 435-45.
- Frotscher, M. and J. Zimmer (1983). "Lesion-induced mossy fibers to the molecular layer of the rat fascia dentata: identification of postsynaptic granule cells by the Golgi-EM technique." J Comp Neurol **215**(3): 299-311.
- Fujikawa, D. G., S. S. Shinmei, et al. (2000). "Seizure-induced neuronal necrosis: implications for programmed cell death mechanisms." Epilepsia **41 Suppl 6**: S9-13.
- Fujiwara, T. (2006). "Clinical spectrum of mutations in SCN1A gene: severe myoclonic epilepsy in infancy and related epilepsies." <u>Epilepsy Res</u> **70 Suppl 1**: S223-30.
- Fukuda, T. and T. Kosaka (2000). "Gap junctions linking the dendritic network of GABAergic interneurons in the hippocampus." J Neurosci 20(4): 1519-28.
- Gage, P. W. (1992). "Activation and modulation of neuronal K+ channels by GABA." <u>Trends</u> <u>Neurosci</u> **15**(2): 46-51.
- Gambardella, A., I. Manna, et al. (2003). "GABA(B) receptor 1 polymorphism (G1465A) is associated with temporal lobe epilepsy." <u>Neurology</u> **60**(4): 560-3.
- Gambardella, A., I. Manna, et al. (2003). "Prodynorphin gene promoter polymorphism and temporal lobe epilepsy." <u>Epilepsia</u> 44(9): 1255-6.
- Gautier L, C. L., Bolstad BM, Irizarry RA (2004). "affy--analysis of Affymetrix GeneChip data at the probe level." <u>Bioinformatics</u> **20**(3): 307-15.
- Gehrmann, J., Y. Matsumoto, et al. (1995). "Microglia: intrinsic immuneffector cell of the brain." <u>Brain Res Brain Res Rev</u> **20**(3): 269-87.
- Gehrmann, J., G. Mies, et al. (1993). "Microglial reaction in the rat cerebral cortex induced by cortical spreading depression." <u>Brain Pathol</u> **3**(1): 11-7.
- George, A. L., Jr. (2004). "Molecular basis of inherited epilepsy." <u>Arch Neurol</u> 61(4): 473-8.
- Geschwind, D. H., J. Ou, et al. (2001). "A genetic analysis of neural progenitor differentiation." <u>Neuron</u> 29(2): 325-39.
- Ghanem, N., M. Yu, et al. (2007). "Distinct cis-regulatory elements from the Dlx1/Dlx2 locus mark different progenitor cell populations in the ganglionic eminences and different subtypes of adult cortical interneurons." J Neurosci 27(19): 5012-22.
- Ginsberg, S. D., S. E. Hemby, et al. (2000). "Expression profile of transcripts in Alzheimer's disease tangle-bearing CA1 neurons." <u>Ann Neurol</u> **48**(1): 77-87.
- Giulian, D. (1993). "Reactive glia as rivals in regulating neuronal survival." <u>Glia</u> 7(1): 102-10.
- Gloor, P. (1991). "Mesial Temporal Lobe epilepsy: historical background and a overview from a modern perspective." In: Epilepsy Surgery: 689-703.

- Goddard, G. V. (1967). "Development of epileptic seizures through brain stimulation at low intensity." <u>Nature</u> **214**(5092): 1020-1.
- Goddard, G. V., D. C. McIntyre, et al. (1969). "A permanent change in brain function resulting from daily electrical stimulation." <u>Exp Neurol</u> **25**(3): 295-330.
- Gomez-Pinilla, F., L. Dao, et al. (1997). "Physical exercise induces FGF-2 and its mRNA in the hippocampus." <u>Brain Res</u> **764**(1-2): 1-8.
- Good, K. L. and S. G. Tangye (2007). "Decreased expression of Kruppel-like factors in memory B cells induces the rapid response typical of secondary antibody responses." <u>Proc Natl Acad Sci U S A</u> 104(33): 13420-5.
- Gorter, J. A., E. A. van Vliet, et al. (2006). "Potential new antiepileptogenic targets indicated by microarray analysis in a rat model for temporal lobe epilepsy." J Neurosci 26(43): 11083-110.
- Green, J. D. (1964). "The Hippocampus." Physiol Rev 44: 561-608.
- Grieco, T. M., F. S. Afshari, et al. (2002). "A role for phosphorylation in the maintenance of resurgent sodium current in cerebellar purkinje neurons." J Neurosci 22(8): 3100-7.
- Gruber, B., S. Greber, et al. (1993). "Kainic acid seizures cause enhanced expression of cholecystokinin-octapeptide in the cortex and hippocampus of the rat." <u>Synapse</u> **15**(3): 221-8.
- Guerrini, R. and R. Carrozzo (2001). "Epilepsy and genetic malformations of the cerebral cortex." <u>Am J Med Genet</u> **106**(2): 160-73.
- Guerrini, R. and R. Carrozzo (2002). "Epileptogenic brain malformations: clinical presentation, malformative patterns and indications for genetic testing." <u>Seizure</u> 11 Suppl A: 532-43; quiz 544-7.
- Guerrini, R., D. Mei, et al. (2004). "Germline and mosaic mutations of FLN1 in men with periventricular heterotopia." <u>Neurology</u> **63**(1): 51-6.
- Gulyas, A. I., M. Megias, et al. (1999). "Total number and ratio of excitatory and inhibitory synapses converging onto single interneurons of different types in the CA1 area of the rat hippocampus." J Neurosci 19(22): 10082-97.
- Gulyas, A. I., R. Miles, et al. (1993). "Precision and variability in postsynaptic target selection of inhibitory cells in the hippocampal CA3 region." Eur J Neurosci 5(12): 1729-51.
- Gustincich, S., M. Contini, et al. (2004). "Gene discovery in genetically labeled single dopaminergic neurons of the retina." Proc Natl Acad Sci U S A 101(14): 5069-74.
- Hakak, Y., J. R. Walker, et al. (2001). "Genome-wide expression analysis reveals dysregulation of myelination-related genes in chronic schizophrenia." <u>Proc Natl Acad Sci U S A</u> 98(8): 4746-51.
- Hassinger, T. D., P. B. Atkinson, et al. (1995). "Evidence for glutamate-mediated activation of hippocampal neurons by glial calcium waves." J Neurobiol **28**(2): 159-70.

- Haug, K., M. Warnstedt, et al. (2003). "Mutations in CLCN2 encoding a voltage-gated chloride channel are associated with idiopathic generalized epilepsies." <u>Nat Genet</u> **33**(4): 527-32.
- Hauser, W. A. (1992). "The natural history of drug resistant epilepsy: epidemiologic considerations." Epilepsy Res Suppl 5: 25-8.
- Hauser, W. A., J. F. Annegers, et al. (1993). "Incidence of epilepsy and unprovoked seizures in Rochester, Minnesota: 1935-1984." Epilepsia **34**(3): 453-68.
- Hawkins, C. A. and J. H. Mellanby (1987). "Limbic epilepsy induced by tetanus toxin: a longitudinal electroencephalographic study." <u>Epilepsia</u> **28**(4): 431-44.
- Heilstedt, H. A., D. L. Burgess, et al. (2001). "Loss of the potassium channel beta-subunit gene, KCNAB2, is associated with epilepsy in patients with 1p36 deletion syndrome." <u>Epilepsia</u> 42(9): 1103-11.
- Hendriksen, H., N. A. Datson, et al. (2001). "Altered hippocampal gene expression prior to the onset of spontaneous seizures in the rat post-status epilepticus model." <u>Eur J</u> <u>Neurosci</u> **14**(9): 1475-84.
- Heron, S. E., H. A. Phillips, et al. (2004). "Genetic variation of CACNA1H in idiopathic generalized epilepsy." <u>Ann Neurol</u> **55**(4): 595-6.
- Herzenberg, L. A., R. G. Sweet, et al. (1976). "Fluorescence-activated cell sorting." <u>Sci Am</u> 234(3): 108-17.
- Hetier, E., J. Ayala, et al. (1991). "Modulation of interleukin-1 and tumor necrosis factor expression by beta-adrenergic agonists in mouse ameboid microglial cells." <u>Exp Brain</u> <u>Res</u> **86**(2): 407-13.
- Hill, D. R. and N. G. Bowery (1981). "3H-baclofen and 3H-GABA bind to bicucullineinsensitive GABA B sites in rat brain." <u>Nature</u> **290**(5802): 149-52.
- Hirose, S., H. Iwata, et al. (1999). "A novel mutation of CHRNA4 responsible for autosomal dominant nocturnal frontal lobe epilepsy." <u>Neurology</u> **53**(8): 1749-53.
- Hoek, R. M., S. R. Ruuls, et al. (2000). "Down-regulation of the macrophage lineage through interaction with OX2 (CD200)." <u>Science</u> **290**(5497): 1768-71.
- Holtzman, D. M. and D. H. Lowenstein (1995). "Selective inhibition of axon outgrowth by antibodies to NGF in a model of temporal lobe epilepsy." J Neurosci 15(11): 7062-70.
- Honchar, M. P., J. W. Olney, et al. (1983). "Systemic cholinergic agents induce seizures and brain damage in lithium-treated rats." <u>Science</u> **220**(4594): 323-5.
- Hormuzdi, S. G., I. Pais, et al. (2001). "Impaired electrical signaling disrupts gamma frequency oscillations in connexin 36-deficient mice." <u>Neuron</u> **31**(3): 487-95.
- Houser, C. R. (1992). "Morphological changes in the dentate gyrus in human temporal lobe epilepsy." <u>Epilepsy Res Suppl</u> 7: 223-34.

- Houser, C. R. and M. Esclapez (1996). "Vulnerability and plasticity of the GABA system in the pilocarpine model of spontaneous recurrent seizures." <u>Epilepsy Res</u> **26**(1): 207-18.
- Houser, C. R., J. E. Miyashiro, et al. (1990). "Altered patterns of dynorphin immunoreactivity suggest mossy fiber reorganization in human hippocampal epilepsy." J Neurosci **10**(1): 267-82.
- Huang, C., R. Ma, et al. (2008). "JAK2-STAT3 signaling pathway mediates thrombin-induced proinflammatory actions of microglia in vitro." J Neuroimmunol.
- Humpel, C., A. Lippoldt, et al. (1993). "Fast and widespread increase of basic fibroblast growth factor messenger RNA and protein in the forebrain after kainate-induced seizures." <u>Neuroscience</u> 57(4): 913-22.
- Hunsberger, J. G., A. H. Bennett, et al. (2005). "Gene profiling the response to kainic acid induced seizures." <u>Brain Res Mol Brain Res</u> 141(1): 95-112.
- Irizarry, R. A., B. Hobbs, et al. (2003). "Exploration, normalization, and summaries of high density oligonucleotide array probe level data." <u>Biostatistics</u> 4(2): 249-64.
- Isackson, P. J., M. M. Huntsman, et al. (1991). "BDNF mRNA expression is increased in adult rat forebrain after limbic seizures: temporal patterns of induction distinct from NGF." <u>Neuron</u> 6(6): 937-48.
- Jallon, P., P. Loiseau, et al. (2001). "Newly diagnosed unprovoked epileptic seizures: presentation at diagnosis in CAROLE study. Coordination Active du Reseau Observatoire Longitudinal de l'Epilepsie." <u>Epilepsia</u> **42**(4): 464-75.
- Jamali, S., F. Bartolomei, et al. (2006). "Large-scale expression study of human mesial temporal lobe epilepsy: evidence for dysregulation of the neurotransmission and complement systems in the entorhinal cortex." <u>Brain</u> **129**(Pt 3): 625-41.
- Jefferys, J. G., C. Borck, et al. (1995). "Chronic focal epilepsy induced by intracerebral tetanus toxin." <u>Ital J Neurol Sci</u> 16(1-2): 27-32.
- Jensen, F. E., C. D. Applegate, et al. (1991). "Epileptogenic effect of hypoxia in the immature rodent brain." <u>Ann Neurol</u> **29**(6): 629-37.
- Jiang, C. H., J. Z. Tsien, et al. (2001). "The effects of aging on gene expression in the hypothalamus and cortex of mice." Proc Natl Acad Sci U S A **98**(4): 1930-4.
- Jourdain, P., L. H. Bergersen, et al. (2007). "Glutamate exocytosis from astrocytes controls synaptic strength." <u>Nat Neurosci</u> **10**(3): 331-9.
- Jouvenceau, A., L. H. Eunson, et al. (2001). "Human epilepsy associated with dysfunction of the brain P/Q-type calcium channel." Lancet **358**(9284): 801-7.
- Kaila, K. (1994). "Ionic basis of GABAA receptor channel function in the nervous system." <u>Prog Neurobiol</u> **42**(4): 489-537.

- Kamatchi, G. L. and M. K. Ticku (1990). "GABAB receptor activation inhibits Ca2(+)activated 86Rb-efflux in cultured spinal cord neurons via G-protein mechanism." <u>Brain Res</u> 506(2): 181-6.
- Kamme, F., R. Salunga, et al. (2003). "Single-cell microarray analysis in hippocampus CA1: demonstration and validation of cellular heterogeneity." J Neurosci 23(9): 3607-15.
- Kandel, E. R. (2001). "The molecular biology of memory storage: a dialogue between genes and synapses." <u>Science</u> **294**(5544): 1030-8.
- Kanemoto, K., J. Kawasaki, et al. (2000). "Interleukin (IL)1beta, IL-1alpha, and IL-1 receptor antagonist gene polymorphisms in patients with temporal lobe epilepsy." <u>Ann Neurol</u> **47**(5): 571-4.
- Kang, J., L. Jiang, et al. (1998). "Astrocyte-mediated potentiation of inhibitory synaptic transmission." <u>Nat Neurosci</u> 1(8): 683-92.
- Karp, C. L., A. Grupe, et al. (2000). "Identification of complement factor 5 as a susceptibility locus for experimental allergic asthma." <u>Nat Immunol</u> 1(3): 221-6.
- Kash, S. F., R. S. Johnson, et al. (1997). "Epilepsy in mice deficient in the 65-kDa isoform of glutamic acid decarboxylase." Proc Natl Acad Sci U S A 94(25): 14060-5.
- Kato, K. (1990). "Novel GABAA receptor alpha subunit is expressed only in cerebellar granule cells." J Mol Biol 214(3): 619-24.
- Katona, I., L. Acsady, et al. (1999). "Postsynaptic targets of somatostatin-immunoreactive interneurons in the rat hippocampus." <u>Neuroscience</u> **88**(1): 37-55.
- Katsumaru, H., T. Kosaka, et al. (1988). "Gap junctions on GABAergic neurons containing the calcium-binding protein parvalbumin in the rat hippocampus (CA1 region)." Exp Brain Res 72(2): 363-70.
- Kaupmann, K., K. Huggel, et al. (1997). "Expression cloning of GABA(B) receptors uncovers similarity to metabotropic glutamate receptors." <u>Nature</u> **386**(6622): 239-46.
- Kawaguchi, Y. and K. Hama (1988). "Physiological heterogeneity of nonpyramidal cells in rat hippocampal CA1 region." Exp Brain Res 72(3): 494-502.
- Kim, J. J. and M. G. Baxter (2001). "Multiple brain-memory systems: the whole does not equal the sum of its parts." <u>Trends Neurosci</u> 24(6): 324-30.
- Klausberger, T., P. J. Magill, et al. (2003). "Brain-state- and cell-type-specific firing of hippocampal interneurons in vivo." <u>Nature</u> **421**(6925): 844-8.
- Knopp, A., A. Kivi, et al. (2005). "Cellular and network properties of the subiculum in the pilocarpine model of temporal lobe epilepsy." J Comp Neurol **483**(4): 476-88.
- Knuesel, I., R. A. Zuellig, et al. (2001). "Alterations in dystrophin and utrophin expression parallel the reorganization of GABAergic synapses in a mouse model of temporal lobe epilepsy." <u>Eur J Neurosci</u> **13**(6): 1113-24.

- Kobayashi, M. and P. S. Buckmaster (2003). "Reduced inhibition of dentate granule cells in a model of temporal lobe epilepsy." J Neurosci 23(6): 2440-52.
- Koh, D. S., J. R. Geiger, et al. (1995). "Ca(2+)-permeable AMPA and NMDA receptor channels in basket cells of rat hippocampal dentate gyrus." J Physiol 485 (Pt 2): 383-402.
- Kohler, C., L. G. Eriksson, et al. (1987). "Co-localization of neuropeptide tyrosine and somatostatin immunoreactivity in neurons of individual subfields of the rat hippocampal region." <u>Neurosci Lett</u> **78**(1): 1-6.
- Kosaka, T. (1983). "Neuronal gap junctions in the polymorph layer of the rat dentate gyrus." <u>Brain Res</u> 277(2): 347-51.
- Kosaka, T. and K. Hama (1985). "Gap junctions between non-pyramidal cell dendrites in the rat hippocampus (CA1 and CA3 regions): a combined Golgi-electron microscopy study." J Comp Neurol **231**(2): 150-61.
- Kosaka, T., H. Katsumaru, et al. (1987). "GABAergic neurons containing the Ca2+-binding protein parvalbumin in the rat hippocampus and dentate gyrus." <u>Brain Res</u> **419**(1-2): 119-30.
- Kozian, D. H. and B. J. Kirschbaum (1999). "Comparative gene-expression analysis." <u>Trends</u> <u>Biotechnol</u> **17**(2): 73-8.
- Kralic, J. E., D. A. Ledergerber, et al. (2005). "Disruption of the neurogenic potential of the dentate gyrus in a mouse model of temporal lobe epilepsy with focal seizures." <u>Eur J</u> <u>Neurosci</u> 22(8): 1916-27.
- Kreutzberg, G. W. (1996). "Microglia: a sensor for pathological events in the CNS." <u>Trends</u> <u>Neurosci</u> **19**(8): 312-8.
- Kuhn, H. G., H. Dickinson-Anson, et al. (1996). "Neurogenesis in the dentate gyrus of the adult rat: age-related decrease of neuronal progenitor proliferation." J Neurosci 16(6): 2027-33.
- Kumar, S. S. and P. S. Buckmaster (2006). "Hyperexcitability, interneurons, and loss of GABAergic synapses in entorhinal cortex in a model of temporal lobe epilepsy." J Neurosci 26(17): 4613-23.
- Kunz, W. S., A. P. Kudin, et al. (2000). "Mitochondrial complex I deficiency in the epileptic focus of patients with temporal lobe epilepsy." <u>Ann Neurol</u> 48(5): 766-73.
- Kurosawa, K., H. Kawame, et al. (2005). "Epilepsy and neurological findings in 11 individuals with 1p36 deletion syndrome." <u>Brain Dev</u> 27(5): 378-82.
- Lacaille, J. C. (1991). "Postsynaptic potentials mediated by excitatory and inhibitory amino acids in interneurons of stratum pyramidale of the CA1 region of rat hippocampal slices in vitro." J Neurophysiol **66**(5): 1441-54.

- Lacaille, J. C., A. L. Mueller, et al. (1987). "Local circuit interactions between oriens/alveus interneurons and CA1 pyramidal cells in hippocampal slices: electrophysiology and morphology." J Neurosci 7(7): 1979-93.
- Lacaille, J. C. and S. Williams (1990). "Membrane properties of interneurons in stratum oriens-alveus of the CA1 region of rat hippocampus in vitro." <u>Neuroscience</u> **36**(2): 349-59.
- Lassmann, H., M. Schmied, et al. (1993). "Bone marrow derived elements and resident microglia in brain inflammation." <u>Glia</u> 7(1): 19-24.
- Lawson, L. J., V. H. Perry, et al. (1990). "Heterogeneity in the distribution and morphology of microglia in the normal adult mouse brain." <u>Neuroscience</u> **39**(1): 151-70.
- Le Duigou, C., V. Bouilleret, et al. (2008). "Epileptiform activities in slices of hippocampus from mice after intra-hippocampal injection of kainic acid." J Physiol (In Press).
- Le Duigou, C., L. Wittner, et al. (2005). "Effects of focal injection of kainic acid into the mouse hippocampus in vitro and ex vivo." J Physiol **569**(Pt 3): 833-47.
- Ledergerber, D., J. M. Fritschy, et al. (2006). "Impairment of dentate gyrus neuronal progenitor cell differentiation in a mouse model of temporal lobe epilepsy." <u>Exp</u> <u>Neurol</u> **199**(1): 130-42.
- Lee, B., H. Dziema, et al. (2007). "CRE-mediated transcription and COX-2 expression in the pilocarpine model of status epilepticus." <u>Neurobiol Dis</u> **25**(1): 80-91.
- Lee, C. K., R. Weindruch, et al. (2000). "Gene-expression profile of the ageing brain in mice." <u>Nat Genet</u> **25**(3): 294-7.
- Lee, J. M., M. C. Grabb, et al. (2000). "Brain tissue responses to ischemia." J Clin Invest 106(6): 723-31.
- Lefebvre d'Hellencourt, C. and G. J. Harry (2005). "Molecular profiles of mRNA levels in laser capture microdissected murine hippocampal regions differentially responsive to TMT-induced cell death." J Neurochem **93**(1): 206-20.
- Leite, J. P., Z. A. Bortolotto, et al. (1990). "Spontaneous recurrent seizures in rats: an experimental model of partial epilepsy." <u>Neurosci Biobehav Rev</u> 14(4): 511-7.
- Leppert, M. and N. Singh (1999). "Benign familial neonatal epilepsy with mutations in two potassium channel genes." <u>Curr Opin Neurol</u> **12**(2): 143-7.
- Leranth, C. and C. E. Ribak (1991). "Calcium-binding proteins are concentrated in the CA2 field of the monkey hippocampus: a possible key to this region's resistance to epileptic damage." <u>Exp Brain Res</u> **85**(1): 129-36.
- Leranth, C., Z. Szeidemann, et al. (1996). "AMPA receptors in the rat and primate hippocampus: a possible absence of GluR2/3 subunits in most interneurons." <u>Neuroscience</u> **70**(3): 631-52.

- Lerner-Natoli, M., P. Montpied, et al. (2000). "Sequential expression of surface antigens and transcription factor NFkappaB by hippocampal cells in excitotoxicity and experimental epilepsy." Epilepsy Res 41(2): 141-54.
- Li, H., N. Li, et al. (2008). "A novel mutation of KCNQ3 gene in a Chinese family with benign familial neonatal convulsions." <u>Epilepsy Res</u> **79**(1): 1-5.
- Lie, A. A., A. Becker, et al. (2000). "Up-regulation of the metabotropic glutamate receptor mGluR4 in hippocampal neurons with reduced seizure vulnerability." <u>Ann Neurol</u> **47**(1): 26-35.
- Lieberman, D. N. and I. Mody (1999). "Casein kinase-II regulates NMDA channel function in hippocampal neurons." <u>Nat Neurosci</u> **2**(2): 125-32.
- Lin, J. and W. Cai (2004). "Effect of vimentin on reactive gliosis: in vitro and in vivo analysis." J Neurotrauma 21(11): 1671-82.
- Ling, E. A. and W. C. Wong (1993). "The origin and nature of ramified and amoeboid microglia: a historical review and current concepts." <u>Glia</u> 7(1): 9-18.
- Liu, Z., P. A. D'Amore, et al. (1993). "Neuroprotective effect of chronic infusion of basic fibroblast growth factor on seizure-associated hippocampal damage." <u>Brain Res</u> 626(1-2): 335-8.
- Liu, Z. and G. L. Holmes (1997). "Basic fibroblast growth factor is highly neuroprotective against seizure-induced long-term behavioural deficits." <u>Neuroscience</u> **76**(4): 1129-38.
- Lock, C., G. Hermans, et al. (2002). "Gene-microarray analysis of multiple sclerosis lesions yields new targets validated in autoimmune encephalomyelitis." <u>Nat Med</u> **8**(5): 500-8.
- Lockhart, D. J., H. Dong, et al. (1996). "Expression monitoring by hybridization to highdensity oligonucleotide arrays." <u>Nat Biotechnol</u> 14(13): 1675-80.
- Loiseau, J., P. Loiseau, et al. (1990). "A survey of epileptic disorders in southwest France: seizures in elderly patients." <u>Ann Neurol</u> 27(3): 232-7.
- Lombardo, A. J., R. Kuzniecky, et al. (1996). "Altered brain sodium channel transcript levels in human epilepsy." <u>Brain Res Mol Brain Res</u> **35**(1-2): 84-90.
- Long, Y., L. Zou, et al. (2003). "Altered expression of randomly selected genes in mouse hippocampus after traumatic brain injury." J Neurosci Res **71**(5): 710-20.
- Lopez-Bendito, G., K. Sturgess, et al. (2004). "Preferential origin and layer destination of GAD65-GFP cortical interneurons." <u>Cereb Cortex</u> 14(10): 1122-33.
- Lorente de Nó, R. (1934). "Studies on the structure of the cerebral cortex II. Continuation of the study of the ammonic system." J. Psychol **46**: 113-177.
- Losonczy, A., L. Zhang, et al. (2002). "Cell type dependence and variability in the short-term plasticity of EPSCs in identified mouse hippocampal interneurones." J Physiol **542**(Pt 1): 193-210.

- Lossin, C., T. H. Rhodes, et al. (2003). "Epilepsy-associated dysfunction in the voltage-gated neuronal sodium channel SCN1A." J Neurosci 23(36): 11289-95.
- Lossin, C., D. W. Wang, et al. (2002). "Molecular basis of an inherited epilepsy." <u>Neuron</u> **34**(6): 877-84.
- Lothman, E. W., E. H. Bertram, et al. (1990). "Recurrent spontaneous hippocampal seizures in the rat as a chronic sequela to limbic status epilepticus." <u>Epilepsy Res</u> 6(2): 110-8.
- Lothman, E. W. and R. C. Collins (1981). "Kainic acid induced limbic seizures: metabolic, behavioral, electroencephalographic and neuropathological correlates." <u>Brain Res</u> **218**(1-2): 299-318.
- Loup, F., H. G. Wieser, et al. (2000). "Selective alterations in GABAA receptor subtypes in human temporal lobe epilepsy." J Neurosci 20(14): 5401-19.
- Lowenstein, D. H. and L. Arsenault (1996). "The effects of growth factors on the survival and differentiation of cultured dentate gyrus neurons." J Neurosci 16(5): 1759-69.
- Lubin, F. D., Y. Ren, et al. (2007). "Nuclear factor-kappa B regulates seizure threshold and gene transcription following convulsant stimulation." J Neurochem **103**(4): 1381-95.
- Luddens, H., D. B. Pritchett, et al. (1990). "Cerebellar GABAA receptor selective for a behavioural alcohol antagonist." <u>Nature</u> **346**(6285): 648-51.
- Lukasiuk, K., L. Kontula, et al. (2003). "cDNA profiling of epileptogenesis in the rat brain." <u>Eur J Neurosci</u> 17(2): 271-9.
- Luo, L., R. C. Salunga, et al. (1999). "Gene expression profiles of laser-captured adjacent neuronal subtypes." <u>Nat Med</u> 5(1): 117-22.
- Lurton, D., L. Sundstrom, et al. (1997). "Possible mechanisms inducing granule cell dispersion in humans with temporal lobe epilepsy." <u>Epilepsy Res</u> 26(2): 351-61.
- Lynch, M. and T. Sutula (2000). "Recurrent excitatory connectivity in the dentate gyrus of kindled and kainic acid-treated rats." J Neurophysiol **83**(2): 693-704.
- Ma, Y., H. Hu, et al. (2006). "Distinct subtypes of somatostatin-containing neocortical interneurons revealed in transgenic mice." J Neurosci 26(19): 5069-82.
- Maccaferri, G. (2005). "Stratum oriens horizontal interneurone diversity and hippocampal network dynamics." J Physiol 562(Pt 1): 73-80.
- Maccaferri, G. and J. C. Lacaille (2003). "Interneuron Diversity series: Hippocampal interneuron classifications--making things as simple as possible, not simpler." <u>Trends</u> <u>Neurosci</u> **26**(10): 564-71.
- Maccaferri, G. and C. J. McBain (1996). "Long-term potentiation in distinct subtypes of hippocampal nonpyramidal neurons." J Neurosci 16(17): 5334-43.

- Maccaferri, G., J. D. Roberts, et al. (2000). "Cell surface domain specific postsynaptic currents evoked by identified GABAergic neurones in rat hippocampus in vitro." J <u>Physiol</u> 524 Pt 1: 91-116.
- Maccaferri, G., K. Toth, et al. (1998). "Target-specific expression of presynaptic mossy fiber plasticity." <u>Science</u> 279(5355): 1368-70.
- MacDonald, B. K., O. C. Cockerell, et al. (2000). "The incidence and lifetime prevalence of neurological disorders in a prospective community-based study in the UK." <u>Brain</u> 123 (Pt 4): 665-76.
- Macdonald, R. L. and R. W. Olsen (1994). "GABAA receptor channels." <u>Annu Rev Neurosci</u> 17: 569-602.
- Magloczky, Z. and T. F. Freund (1993). "Selective neuronal death in the contralateral hippocampus following unilateral kainate injections into the CA3 subfield." <u>Neuroscience</u> 56(2): 317-35.
- Magloczky, Z. and T. F. Freund (1995). "Delayed cell death in the contralateral hippocampus following kainate injection into the CA3 subfield." <u>Neuroscience</u> **66**(4): 847-60.
- Maher, J. and R. S. McLachlan (1995). "Febrile convulsions. Is seizure duration the most important predictor of temporal lobe epilepsy?" <u>Brain</u> **118 (Pt 6)**: 1521-8.
- Margerison, J. H. and J. A. Corsellis (1966). "Epilepsy and the temporal lobes. A clinical, electroencephalographic and neuropathological study of the brain in epilepsy, with particular reference to the temporal lobes." <u>Brain</u> **89**(3): 499-530.
- Markram, H., M. Toledo-Rodriguez, et al. (2004). "Interneurons of the neocortical inhibitory system." <u>Nat Rev Neurosci</u> **5**(10): 793-807.
- Marsh, E. D., J. Minarcik, et al. (2008). "FACS-array gene expression analysis during early development of mouse telencephalic interneurons." Dev Neurobiol **68**(4): 434-45.
- Martin, D., G. Miller, et al. (1995). "Potent inhibitory effects of glial derived neurotrophic factor against kainic acid mediated seizures in the rat." <u>Brain Res</u> **683**(2): 172-8.
- Martina, M., J. H. Schultz, et al. (1998). "Functional and molecular differences between voltage-gated K+ channels of fast-spiking interneurons and pyramidal neurons of rat hippocampus." J Neurosci **18**(20): 8111-25.
- Masukawa, L. M., M. Higashima, et al. (1989). "Epileptiform discharges evoked in hippocampal brain slices from epileptic patients." Brain Res **493**(1): 168-74.
- Mathern, G. W., T. L. Babb, et al. (1996). "The pathogenic and progressive features of chronic human hippocampal epilepsy." <u>Epilepsy Res</u> 26(1): 151-61.
- Mathern, G. W., T. L. Babb, et al. (1997). "Granule cell mRNA levels for BDNF, NGF, and NT-3 correlate with neuron losses or supragranular mossy fiber sprouting in the chronically damaged and epileptic human hippocampus." <u>Mol Chem Neuropathol</u> 30(1-2): 53-76.

- Mathern, G. W., D. Mendoza, et al. (1999). "Hippocampal GABA and glutamate transporter immunoreactivity in patients with temporal lobe epilepsy." <u>Neurology</u> **52**(3): 453-72.
- Mathern, G. W., J. K. Pretorius, et al. (1995). "Influence of the type of initial precipitating injury and at what age it occurs on course and outcome in patients with temporal lobe seizures." J Neurosurg 82(2): 220-7.
- Mathern, G. W., J. K. Pretorius, et al. (1995). "Unilateral hippocampal mossy fiber sprouting and bilateral asymmetric neuron loss with episodic postictal psychosis." <u>J Neurosurg</u> **82**(2): 228-33.
- Mathern, G. W., J. K. Pretorius, et al. (1998). "Hippocampal AMPA and NMDA mRNA levels and subunit immunoreactivity in human temporal lobe epilepsy patients and a rodent model of chronic mesial limbic epilepsy." <u>Epilepsy Res</u> **32**(1-2): 154-71.
- Matsui, Y., A. Kikuchi, et al. (1988). "Nucleotide and deduced amino acid sequences of a GTP-binding protein family with molecular weights of 25,000 from bovine brain." J Biol Chem 263(23): 11071-4.
- Matzilevich, D. A., J. M. Rall, et al. (2002). "High-density microarray analysis of hippocampal gene expression following experimental brain injury." J Neurosci Res **67**(5): 646-63.
- Mazarati, A. M., C. G. Wasterlain, et al. (1998). "Self-sustaining status epilepticus after brief electrical stimulation of the perforant path." <u>Brain Res</u> **801**(1-2): 251-3.
- McBain, C. J., T. J. DiChiara, et al. (1994). "Activation of metabotropic glutamate receptors differentially affects two classes of hippocampal interneurons and potentiates excitatory synaptic transmission." J Neurosci 14(7): 4433-45.
- McBain, C. J. and A. Fisahn (2001). "Interneurons unbound." Nat Rev Neurosci 2(1): 11-23.
- McBain, C. J., T. F. Freund, et al. (1999). "Glutamatergic synapses onto hippocampal interneurons: precision timing without lasting plasticity." <u>Trends Neurosci</u> **22**(5): 228-35.
- McNamara, J. O. (1984). "Kindling: an animal model of complex partial epilepsy." <u>Ann</u> <u>Neurol</u> 16 Suppl: S72-6.
- McNamara, J. O. (1999). "Emerging insights into the genesis of epilepsy." <u>Nature</u> **399**(6738 Suppl): A15-22.
- McNamara, J. O., D. W. Bonhaus, et al. (1985). "The kindling model of epilepsy: a critical review." <u>CRC Crit Rev Clin Neurobiol</u> 1(4): 341-91.
- Medzhitov, R. and C. Janeway, Jr. (2000). "Innate immunity." N Engl J Med 343(5): 338-44.
- Mellanby, J., G. George, et al. (1977). "Epileptiform syndrome in rats produced by injecting tetanus toxin into the hippocampus." J Neurol Neurosurg Psychiatry **40**(4): 404-14.

- Mello, L. E., E. A. Cavalheiro, et al. (1993). "Circuit mechanisms of seizures in the pilocarpine model of chronic epilepsy: cell loss and mossy fiber sprouting." <u>Epilepsia</u> 34(6): 985-95.
- Meyer, A. H., I. Katona, et al. (2002). "In vivo labeling of parvalbumin-positive interneurons and analysis of electrical coupling in identified neurons." J Neurosci 22(16): 7055-64.
- Miles, R. and R. K. Wong (1986). "Excitatory synaptic interactions between CA3 neurones in the guinea-pig hippocampus." J Physiol **373**: 397-418.
- Milner, B., L. R. Squire, et al. (1998). "Cognitive neuroscience and the study of memory." <u>Neuron</u> **20**(3): 445-68.
- Minneci, F., M. Janahmadi, et al. (2007). "Signaling properties of stratum oriens interneurons in the hippocampus of transgenic mice expressing EGFP in a subset of somatostatincontaining cells." <u>Hippocampus</u> 17(7): 538-53.
- Mirnics, K., F. A. Middleton, et al. (2000). "Molecular characterization of schizophrenia viewed by microarray analysis of gene expression in prefrontal cortex." <u>Neuron</u> 28(1): 53-67.
- Misgeld, U., M. Bijak, et al. (1995). "A physiological role for GABAB receptors and the effects of baclofen in the mammalian central nervous system." Prog Neurobiol **46**(4): 423-62.
- Misonou, H., D. P. Mohapatra, et al. (2004). "Regulation of ion channel localization and phosphorylation by neuronal activity." <u>Nat Neurosci</u> 7(7): 711-8.
- Mody, I. (2001). "Distinguishing between GABA(A) receptors responsible for tonic and phasic conductances." <u>Neurochem Res</u> 26(8-9): 907-13.
- Mody, M., Y. Cao, et al. (2001). "Genome-wide gene expression profiles of the developing mouse hippocampus." Proc Natl Acad Sci U S A **98**(15): 8862-7.
- Molle, B., S. Pere, et al. (2004). "Lhx9 and lhx9alpha: differential biochemical properties and effects on neuronal differentiation." DNA Cell Biol 23(11): 761-8.
- Monyer, H. and H. Markram (2004). "Interneuron Diversity series: Molecular and genetic tools to study GABAergic interneuron diversity and function." <u>Trends Neurosci</u> 27(2): 90-7.
- Monyer H, M. H. (2004). "Interneuron Diversity series: Molecular and genetic tools to study GABAergic interneuron diversity and function." <u>Trends Neurosci.</u> **27**(2): 90-7.
- Morin, F., C. Beaulieu, et al. (1996). "Membrane properties and synaptic currents evoked in CA1 interneuron subtypes in rat hippocampal slices." J Neurophysiol **76**(1): 1-16.
- Morin, F., C. Beaulieu, et al. (1999). "Alterations of perisomatic GABA synapses on hippocampal CA1 inhibitory interneurons and pyramidal cells in the kainate model of epilepsy." <u>Neuroscience</u> **93**(2): 457-67.

- Mothet, J. P., L. Pollegioni, et al. (2005). "Glutamate receptor activation triggers a calciumdependent and SNARE protein-dependent release of the gliotransmitter D-serine." <u>Proc Natl Acad Sci U S A</u> **102**(15): 5606-11.
- Mott, D. D. and R. Dingledine (2003). "Interneuron Diversity series: Interneuron research-challenges and strategies." <u>Trends Neurosci.</u> **26**(9): 484-8.
- Mott, D. D. and D. V. Lewis (1994). "The pharmacology and function of central GABAB receptors." Int Rev Neurobiol **36**: 97-223.
- Mott, D. D., D. A. Turner, et al. (1997). "Interneurons of the dentate-hilus border of the rat dentate gyrus: morphological and electrophysiological heterogeneity." J Neurosci **17**(11): 3990-4005.
- Nadler, J. V., B. W. Perry, et al. (1981). "Fate of the hippocampal mossy fiber projection after destruction of its postsynaptic targets with intraventricular kainic acid." J Comp <u>Neurol</u> **196**(4): 549-69.
- Nagerl, U. V., I. Mody, et al. (2000). "Surviving granule cells of the sclerotic human hippocampus have reduced Ca(2+) influx because of a loss of calbindin-D(28k) in temporal lobe epilepsy." J Neurosci **20**(5): 1831-6.
- Nakazawa, K., M. C. Quirk, et al. (2002). "Requirement for hippocampal CA3 NMDA receptors in associative memory recall." <u>Science</u> **297**(5579): 211-8.
- Neumann, H., T. Misgeld, et al. (1998). "Neurotrophins inhibit major histocompatibility class II inducibility of microglia: involvement of the p75 neurotrophin receptor." <u>Proc Natl</u> <u>Acad Sci U S A</u> **95**(10): 5779-84.
- Newman, E. A. (2001). "Propagation of intercellular calcium waves in retinal astrocytes and Muller cells." J Neurosci **21**(7): 2215-23.
- Niquet, J., Y. Ben-Ari, et al. (1994). "Glial reaction after seizure induced hippocampal lesion: immunohistochemical characterization of proliferating glial cells." J Neurocytol 23(10): 641-56.
- Nistico, G. and G. De Sarro (1991). "Behavioral and electrocortical spectrum power effects after microinfusion of lymphokines in several areas of the rat brain." <u>Ann N Y Acad Sci</u> 621: 119-34.
- Noebels, J. L. (2003). "The biology of epilepsy genes." Annu Rev Neurosci 26: 599-625.
- Nonaka, M., E. Kohmura, et al. (1998). "Increased transcription of glutamate-aspartate transporter (GLAST/GluT-1) mRNA following kainic acid-induced limbic seizure." Brain Res Mol Brain Res **55**(1): 54-60.
- O'Connor, E. R., H. Sontheimer, et al. (1998). "Astrocytes from human hippocampal epileptogenic foci exhibit action potential-like responses." Epilepsia **39**(4): 347-54.
- O'Keefe, J. (1983). "Two spatial systems in the rat brain--implications for the neural basis of learning and memory." Prog Brain Res **58**: 453-64.

- Obenaus, A., M. Esclapez, et al. (1993). "Loss of glutamate decarboxylase mRNA-containing neurons in the rat dentate gyrus following pilocarpine-induced seizures." J Neurosci **13**(10): 4470-85.
- Ogiwara, I., H. Miyamoto, et al. (2007). "Na(v)1.1 localizes to axons of parvalbumin-positive inhibitory interneurons: a circuit basis for epileptic seizures in mice carrying an Scn1a gene mutation." J Neurosci 27(22): 5903-14.
- Okazaki, Y., M. Furuno, et al. (2002). "Analysis of the mouse transcriptome based on functional annotation of 60,770 full-length cDNAs." <u>Nature</u> **420**(6915): 563-73.
- Oliva AA Jr, J. M., Lam T, Smith KL, Swann JW (2000). "Novel hippocampal interneuronal subtypes identified using transgenic mice that express green fluorescent protein in GABAergic interneurons." <u>The Journal of Neuroscience</u> **20**: 3354-3368.
- Oliva, A. A., Jr., M. Jiang, et al. (2000). "Novel hippocampal interneuronal subtypes identified using transgenic mice that express green fluorescent protein in GABAergic interneurons." J Neurosci **20**(9): 3354-68.
- Oliva, A. A., Jr., T. T. Lam, et al. (2002). "Distally directed dendrotoxicity induced by kainic Acid in hippocampal interneurons of green fluorescent protein-expressing transgenic mice." J Neurosci 22(18): 8052-62.
- Olney, J. W., R. C. Collins, et al. (1986). "Excitotoxic mechanisms of epileptic brain damage." Adv Neurol 44: 857-77.
- Olney, J. W., T. deGubareff, et al. (1983). ""Epileptic" brain damage in rats induced by sustained electrical stimulation of the perforant path. II. Ultrastructural analysis of acute hippocampal pathology." <u>Brain Res Bull</u> **10**(5): 699-712.
- Ozbas-Gerceker, F., S. Redeker, et al. (2006). "Serial analysis of gene expression in the hippocampus of patients with mesial temporal lobe epilepsy." <u>Neuroscience</u> **138**(2): 457-74.
- Palmini, A., I. Najm, et al. (2004). "Terminology and classification of the cortical dysplasias." <u>Neurology</u> 62(6 Suppl 3): S2-8.
- Panegyres, P. K. and J. Hughes (1998). "The neuroprotective effects of the recombinant interleukin-1 receptor antagonist rhIL-1ra after excitotoxic stimulation with kainic acid and its relationship to the amyloid precursor protein gene." J Neurol Sci 154(2): 123-32.
- Parent, J. M., T. W. Yu, et al. (1997). "Dentate granule cell neurogenesis is increased by seizures and contributes to aberrant network reorganization in the adult rat hippocampus." J Neurosci 17(10): 3727-38.
- Parra, P., A. I. Gulyas, et al. (1998). "How many subtypes of inhibitory cells in the hippocampus?" <u>Neuron</u> 20(5): 983-93.
- Pasti, L., M. Zonta, et al. (2001). "Cytosolic calcium oscillations in astrocytes may regulate exocytotic release of glutamate." J Neurosci 21(2): 477-84.

- Patrylo, P. R. and F. E. Dudek (1998). "Physiological unmasking of new glutamatergic pathways in the dentate gyrus of hippocampal slices from kainate-induced epileptic rats." J Neurophysiol **79**(1): 418-29.
- Pearson, R., J. Fleetwood, et al. (2008). "Kruppel-like transcription factors: A functional family." Int J Biochem Cell Biol **40**(10): 1996-2001.
- Pekny, M. and M. Nilsson (2005). "Astrocyte activation and reactive gliosis." <u>Glia</u> 50(4): 427-34.
- Pellegrini-Giampietro, D. E., J. A. Gorter, et al. (1997). "The GluR2 (GluR-B) hypothesis: Ca(2+)-permeable AMPA receptors in neurological disorders." <u>Trends Neurosci</u> **20**(10): 464-70.
- Perez, Y., F. Morin, et al. (1996). "Axonal sprouting of CA1 pyramidal cells in hyperexcitable hippocampal slices of kainate-treated rats." <u>Eur J Neurosci</u> 8(4): 736-748.
- Pickard, L., J. Noel, et al. (2000). "Developmental changes in synaptic AMPA and NMDA receptor distribution and AMPA receptor subunit composition in living hippocampal neurons." J Neurosci **20**(21): 7922-31.
- Pin, J. P. and R. Duvoisin (1995). "The metabotropic glutamate receptors: structure and functions." <u>Neuropharmacology</u> **34**(1): 1-26.
- Pitkanen, A., J. Nissinen, et al. (2002). "Progression of neuronal damage after status epilepticus and during spontaneous seizures in a rat model of temporal lobe epilepsy." <u>Prog Brain Res</u> 135: 67-83.
- Pitkanen, A., J. Tuunanen, et al. (1998). "Amygdala damage in experimental and human temporal lobe epilepsy." Epilepsy Res 32(1-2): 233-53.
- Poduslo, S. E., R. Huang, et al. (2008). "Genome screen of late-onset Alzheimer's extended pedigrees identifies TRPC4AP by haplotype analysis." <u>Am J Med Genet B Neuropsychiatr Genet</u>.
- Pohlmann-Eden, B. and J. Bruckmeir (1997). "Predictors and dynamics of posttraumatic epilepsy." <u>Acta Neurol Scand</u> **95**(5): 257-62.
- Polenzani, L., R. M. Woodward, et al. (1991). "Expression of mammalian gammaaminobutyric acid receptors with distinct pharmacology in Xenopus oocytes." <u>Proc</u> <u>Natl Acad Sci U S A</u> 88(10): 4318-22.
- Pollard, H., C. Charriaut-Marlangue, et al. (1994). "Kainate-induced apoptotic cell death in hippocampal neurons." <u>Neuroscience</u> **63**(1): 7-18.
- Porter, B. E., I. V. Lund, et al. (2008). "The role of transcription factors cyclic-AMP responsive element modulator (CREM) and inducible cyclic-AMP early repressor (ICER) in epileptogenesis." <u>Neuroscience</u> 152(3): 829-36.
- Porter, J. T. and K. D. McCarthy (1996). "Hippocampal astrocytes in situ respond to glutamate released from synaptic terminals." J Neurosci 16(16): 5073-81.

- Porter, J. T. and K. D. McCarthy (1997). "Astrocytic neurotransmitter receptors in situ and in vivo." <u>Prog Neurobiol</u> 51(4): 439-55.
- Priller, J., A. Flugel, et al. (2001). "Targeting gene-modified hematopoietic cells to the central nervous system: use of green fluorescent protein uncovers microglial engraftment." <u>Nat Med</u> 7(12): 1356-61.
- Probert, L., K. Akassoglou, et al. (1995). "Spontaneous inflammatory demyelinating disease in transgenic mice showing central nervous system-specific expression of tumor necrosis factor alpha." <u>Proc Natl Acad Sci U S A</u> 92(24): 11294-8.
- Racine, R. J., M. Mosher, et al. (1988). "The role of the pyriform cortex in the generation of interictal spikes in the kindled preparation." <u>Brain Res</u> **454**(1-2): 251-63.
- Rakhade, S. N., B. Yao, et al. (2005). "A common pattern of persistent gene activation in human neocortical epileptic foci." <u>Ann Neurol</u> **58**(5): 736-47.
- Ramon y Cajal, S. (1893). "Estructura del asta de Ammon y fascia dentate." <u>Ann. Soc.</u> <u>Esp.Hist. Nat.</u> 22.
- Ramos, R. L., J. Bai, et al. (2006). "Heterotopia formation in rat but not mouse neocortex after RNA interference knockdown of DCX." <u>Cereb Cortex</u> **16**(9): 1323-31.
- Rea, R., A. Spauschus, et al. (2002). "Variable K(+) channel subunit dysfunction in inherited mutations of KCNA1." J Physiol **538**(Pt 1): 5-23.
- Represa, A., J. Niquet, et al. (1995). "Cell death, gliosis, and synaptic remodeling in the hippocampus of epileptic rats." J Neurobiol **26**(3): 413-25.
- Ribak, C. E. (1978). "Aspinous and sparsely-spinous stellate neurons in the visual cortex of rats contain glutamic acid decarboxylase." J Neurocytol 7(4): 461-78.
- Ribak, C. E. and G. M. Peterson (1991). "Intragranular mossy fibers in rats and gerbils form synapses with the somata and proximal dendrites of basket cells in the dentate gyrus." <u>Hippocampus</u> 1(4): 355-64.
- Riban, V., V. Bouilleret, et al. (2002). "Evolution of hippocampal epileptic activity during the development of hippocampal sclerosis in a mouse model of temporal lobe epilepsy." <u>Neuroscience</u> 112(1): 101-11.
- Roberts, P. J., S.-M. J., et al. (1981). "Glutamate Transmission in the Central Nervous System."
- Roberts, P. J. and N. A. Sharif (1981). "Radioreceptor binding studies with glutamate and aspartate." Adv Biochem Psychopharmacol 27: 295-305.
- Rycroft, B. K. and A. J. Gibb (2004). "Regulation of single NMDA receptor channel activity by alpha-actinin and calmodulin in rat hippocampal granule cells." J Physiol **557**(Pt 3): 795-808.
- Sadewa, A. H., T. H. Sasongko, et al. (2008). "Germ-line mutation of KCNQ2, p.R213W, in a Japanese family with benign familial neonatal convulsion." <u>Pediatr Int</u> **50**(2): 167-71.

- Saganich, M. J., E. Machado, et al. (2001). "Differential expression of genes encoding subthreshold-operating voltage-gated K+ channels in brain." <u>J Neurosci</u> 21(13): 4609-24.
- Sanchez, R. M., C. Wang, et al. (2000). "Novel role for the NMDA receptor redox modulatory site in the pathophysiology of seizures." J Neurosci 20(6): 2409-17.
- Sandberg, R., R. Yasuda, et al. (2000). "Regional and strain-specific gene expression mapping in the adult mouse brain." Proc Natl Acad Sci U S A 97(20): 11038-43.
- Sander, J. W. (2003). "The epidemiology of epilepsy revisited." <u>Curr Opin Neurol</u> **16**(2): 165-70.
- Santoro, B. and T. Z. Baram (2003). "The multiple personalities of h-channels." <u>Trends</u> <u>Neurosci</u> **26**(10): 550-4.
- Sater, R. A. and J. V. Nadler (1988). "On the relation between seizures and brain lesions after intracerebroventricular kainic acid." <u>Neurosci Lett</u> **84**(1): 73-8.
- Saukkonen, A., R. Kalviainen, et al. (1994). "Do seizures cause neuronal damage? A MRI study in newly diagnosed and chronic epilepsy." <u>Neuroreport 6(1)</u>: 219-23.
- Savic, N., P. Pedarzani, et al. (2001). "Medium afterhyperpolarization and firing pattern modulation in interneurons of stratum radiatum in the CA3 hippocampal region." J <u>Neurophysiol</u> **85**(5): 1986-97.
- Scanziani, M., B. H. Gahwiler, et al. (1998). "Target cell-specific modulation of transmitter release at terminals from a single axon." <u>Proc Natl Acad Sci U S A</u> **95**(20): 12004-9.
- Scharfman, H. E., J. H. Goodman, et al. (2000). "Granule-like neurons at the hilar/CA3 border after status epilepticus and their synchrony with area CA3 pyramidal cells: functional implications of seizure-induced neurogenesis." J Neurosci 20(16): 6144-58.
- Scheff, S., I. Benardo, et al. (1977). "Progressive brain damage accelerates axon sprouting in the adult rat." <u>Science</u> **197**(4305): 795-7.
- Scheffer, I. E. and S. F. Berkovic (1997). "Generalized epilepsy with febrile seizures plus. A genetic disorder with heterogeneous clinical phenotypes." <u>Brain</u> **120** (**Pt 3**): 479-90.
- Schena, M., D. Shalon, et al. (1995). "Quantitative monitoring of gene expression patterns with a complementary DNA microarray." <u>Science</u> **270**(5235): 467-70.
- Schena, M., D. Shalon, et al. (1996). "Parallel human genome analysis: microarray-based expression monitoring of 1000 genes." Proc Natl Acad Sci U S A **93**(20): 10614-9.
- Schiavo, G., F. Benfenati, et al. (1992). "Tetanus and botulinum-B neurotoxins block neurotransmitter release by proteolytic cleavage of synaptobrevin." <u>Nature</u> **359**(6398): 832-5.
- Schmidtmayer, J., C. Jacobsen, et al. (1994). "Blood monocytes and spleen macrophages differentiate into microglia-like cells on monolayers of astrocytes: membrane currents." <u>Glia</u> 12(4): 259-67.

- Schoepp, D. D. and P. J. Conn (1993). "Metabotropic glutamate receptors in brain function and pathology." <u>Trends Pharmacol Sci</u> 14(1): 13-20.
- Schofield, P. R., M. G. Darlison, et al. (1987). "Sequence and functional expression of the GABA A receptor shows a ligand-gated receptor super-family." <u>Nature</u> 328(6127): 221-7.
- Schwartzkroin, P. A. (1986). "Hippocampal slices in experimental and human epilepsy." <u>Adv</u> <u>Neurol</u> 44: 991-1010.
- Schwarzer, C., K. Tsunashima, et al. (1997). "GABA(A) receptor subunits in the rat hippocampus II: altered distribution in kainic acid-induced temporal lobe epilepsy." <u>Neuroscience</u> 80(4): 1001-17.
- Seifert, G., W. Schroder, et al. (2002). "Changes in flip/flop splicing of astroglial AMPA receptors in human temporal lobe epilepsy." <u>Epilepsia</u> **43 Suppl 5**: 162-7.
- Seki, T. and Y. Arai (1993). "Highly polysialylated neural cell adhesion molecule (NCAM-H) is expressed by newly generated granule cells in the dentate gyrus of the adult rat." J Neurosci **13**(6): 2351-8.
- Semah, F., M. C. Picot, et al. (1998). "Is the underlying cause of epilepsy a major prognostic factor for recurrence?" <u>Neurology</u> **51**(5): 1256-62.
- Semyanov, A., M. C. Walker, et al. (2004). "Tonically active GABA A receptors: modulating gain and maintaining the tone." <u>Trends Neurosci</u> 27(5): 262-9.
- Sepkuty, J. P., A. S. Cohen, et al. (2002). "A neuronal glutamate transporter contributes to neurotransmitter GABA synthesis and epilepsy." J Neurosci 22(15): 6372-9.
- Shah, M. M., A. E. Anderson, et al. (2004). "Seizure-induced plasticity of h channels in entorhinal cortical layer III pyramidal neurons." <u>Neuron</u> **44**(3): 495-508.
- Sheen, V. L., P. H. Dixon, et al. (2001). "Mutations in the X-linked filamin 1 gene cause periventricular nodular heterotopia in males as well as in females." <u>Hum Mol Genet</u> **10**(17): 1775-83.
- Sievers, J., R. Parwaresch, et al. (1994). "Blood monocytes and spleen macrophages differentiate into microglia-like cells on monolayers of astrocytes: morphology." <u>Glia</u> **12**(4): 245-58.
- Sik, A., R. L. Smith, et al. (2000). "Distribution of chloride channel-2-immunoreactive neuronal and astrocytic processes in the hippocampus." <u>Neuroscience</u> **101**(1): 51-65.
- Simantov, R., M. Crispino, et al. (1999). "Changes in expression of neuronal and glial glutamate transporters in rat hippocampus following kainate-induced seizure activity." <u>Brain Res Mol Brain Res</u> **65**(1): 112-23.
- Simon, R. P., H. Cho, et al. (1991). "The temporal profile of 72-kDa heat-shock protein expression following global ischemia." J Neurosci 11(3): 881-9.

- Simonato, M., R. Molteni, et al. (1998). "Different patterns of induction of FGF-2, FGF-1 and BDNF mRNAs during kindling epileptogenesis in the rat." <u>Eur J Neurosci</u> **10**(3): 955-63.
- Singh, N. A., C. Charlier, et al. (1998). "A novel potassium channel gene, KCNQ2, is mutated in an inherited epilepsy of newborns." <u>Nat Genet</u> **18**(1): 25-9.
- Sivilotti, L. and A. Nistri (1991). "GABA receptor mechanisms in the central nervous system." Prog Neurobiol **36**(1): 35-92.
- Sloviter, R. S. (1983). ""Epileptic" brain damage in rats induced by sustained electrical stimulation of the perforant path. I. Acute electrophysiological and light microscopic studies." <u>Brain Res Bull</u> **10**(5): 675-97.
- Sloviter, R. S., E. Dean, et al. (1996). "Apoptosis and necrosis induced in different hippocampal neuron populations by repetitive perforant path stimulation in the rat." J Comp Neurol **366**(3): 516-33.
- Sloviter, R. S., C. A. Zappone, et al. (2003). ""Dormant basket cell" hypothesis revisited: relative vulnerabilities of dentate gyrus mossy cells and inhibitory interneurons after hippocampal status epilepticus in the rat." J Comp Neurol 459(1): 44-76.
- Smith, B. N. and F. E. Dudek (2001). "Short- and long-term changes in CA1 network excitability after kainate treatment in rats." J Neurophysiol **85**(1): 1-9.
- Smith, B. N. and F. E. Dudek (2002). "Network interactions mediated by new excitatory connections between CA1 pyramidal cells in rats with kainate-induced epilepsy." J <u>Neurophysiol</u> 87(3): 1655-8.
- Smith, D. F., J. L. Hutton, et al. (1991). "The prognosis of primary intracerebral tumours presenting with epilepsy: the outcome of medical and surgical management." <u>J Neurol</u> <u>Neurosurg Psychiatry</u> 54(10): 915-20.
- Somogyi, P., A. J. Hodgson, et al. (1984). "Different populations of GABAergic neurons in the visual cortex and hippocampus of cat contain somatostatin- or cholecystokinin-immunoreactive material." J Neurosci 4(10): 2590-603.
- Somogyi, P. and T. Klausberger (2005). "Defined types of cortical interneurone structure space and spike timing in the hippocampus." J Physiol 562(Pt 1): 9-26.
- Song, H., C. F. Stevens, et al. (2002). "Astroglia induce neurogenesis from adult neural stem cells." <u>Nature</u> 417(6884): 39-44.
- Song, H. J., C. F. Stevens, et al. (2002). "Neural stem cells from adult hippocampus develop essential properties of functional CNS neurons." <u>Nat Neurosci</u> 5(5): 438-45.
- Soond, S. M., J. L. Terry, et al. (2003). "TRUSS, a novel tumor necrosis factor receptor 1 scaffolding protein that mediates activation of the transcription factor NF-kappaB." <u>Mol Cell Biol</u> **23**(22): 8334-44.

- Spampanato, J., A. Escayg, et al. (2001). "Functional effects of two voltage-gated sodium channel mutations that cause generalized epilepsy with febrile seizures plus type 2." J <u>Neurosci</u> **21**(19): 7481-90.
- Spampanato, J., A. Escayg, et al. (2003). "Generalized epilepsy with febrile seizures plus type 2 mutation W1204R alters voltage-dependent gating of Na(v)1.1 sodium channels." <u>Neuroscience</u> **116**(1): 37-48.
- Spencer, E. M., K. E. Chandler, et al. (2006). "Regulation and role of REST and REST4 variants in modulation of gene expression in in vivo and in vitro in epilepsy models." <u>Neurobiol Dis</u> **24**(1): 41-52.
- Staley, K. (1994). "The role of an inwardly rectifying chloride conductance in postsynaptic inhibition." J Neurophysiol **72**(1): 273-84.
- Steinlein, O. K., J. C. Mulley, et al. (1995). "A missense mutation in the neuronal nicotinic acetylcholine receptor alpha 4 subunit is associated with autosomal dominant nocturnal frontal lobe epilepsy." <u>Nat Genet</u> 11(2): 201-3.
- Stogmann, E., A. Zimprich, et al. (2002). "A functional polymorphism in the prodynorphin gene promotor is associated with temporal lobe epilepsy." <u>Ann Neurol</u> **51**(2): 260-3.
- Stoll, G., S. Jander, et al. (1998). "Inflammation and glial responses in ischemic brain lesions." <u>Prog Neurobiol</u> 56(2): 149-71.
- Storm-Mathisen, J. (1977). "Localization of transmitter candidates in the brain: the hippocampal formation as a model." Prog Neurobiol **8**(2): 119-81.
- Storm-Mathisen, J., A. K. Leknes, et al. (1983). "First visualization of glutamate and GABA in neurones by immunocytochemistry." <u>Nature</u> **301**(5900): 517-20.
- Straessle, A., F. Loup, et al. (2003). "Rapid and long-term alterations of hippocampal GABAB receptors in a mouse model of temporal lobe epilepsy." <u>Eur J Neurosci</u> 18(8): 2213-26.
- Subkhankulova, T. and F. J. Livesey (2006). "Comparative evaluation of linear and exponential amplification techniques for expression profiling at the single-cell level." <u>Genome Biol</u> 7(3): R18.
- Sugawara, T., Y. Tsurubuchi, et al. (2001). "A missense mutation of the Na+ channel alpha II subunit gene Na(v)1.2 in a patient with febrile and afebrile seizures causes channel dysfunction." <u>Proc Natl Acad Sci U S A</u> **98**(11): 6384-9.
- Sugino, K., C. M. Hempel, et al. (2006). "Molecular taxonomy of major neuronal classes in the adult mouse forebrain." <u>Nat Neurosci</u> 9(1): 99-107.
- Sutula, T., G. Cascino, et al. (1989). "Mossy fiber synaptic reorganization in the epileptic human temporal lobe." <u>Ann Neurol</u> **26**(3): 321-30.
- Sutula, T., X. X. He, et al. (1988). "Synaptic reorganization in the hippocampus induced by abnormal functional activity." <u>Science</u> 239(4844): 1147-50.

- Suzuki, F., M. P. Junier, et al. (1995). "Morphogenetic effect of kainate on adult hippocampal neurons associated with a prolonged expression of brain-derived neurotrophic factor." <u>Neuroscience</u> **64**(3): 665-74.
- Szemes, M., A. Gyorgy, et al. (2006). "Isolation and characterization of SATB2, a novel ATrich DNA binding protein expressed in development- and cell-specific manner in the rat brain." <u>Neurochem Res</u> **31**(2): 237-46.
- Szentagothai, J. (1975). "The 'module-concept' in cerebral cortex architecture." <u>Brain Res</u> **95**(2-3): 475-96.
- Tanaka, K., K. Watase, et al. (1997). "Epilepsy and exacerbation of brain injury in mice lacking the glutamate transporter GLT-1." <u>Science</u> **276**(5319): 1699-702.
- Tang, B., H. Li, et al. (2004). "A novel mutation in KCNQ2 gene causes benign familial neonatal convulsions in a Chinese family." J Neurol Sci 221(1-2): 31-4.
- Tang, F. R. and W. L. Lee (2001). "Expression of the group II and III metabotropic glutamate receptors in the hippocampus of patients with mesial temporal lobe epilepsy." J <u>Neurocytol</u> 30(2): 137-43.
- Tang, F. R., W. L. Lee, et al. (2001). "Expression of the group I metabotropic glutamate receptor in the hippocampus of patients with mesial temporal lobe epilepsy." J <u>Neurocytol</u> 30(5): 403-11.
- Tang, Y., T. A. Glauser, et al. (2004). "Valproic acid blood genomic expression patterns in children with epilepsy a pilot study." <u>Acta Neurol Scand</u> **109**(3): 159-68.
- Tang, Y., A. Lu, et al. (2002). "Genomic responses of the brain to ischemic stroke, intracerebral haemorrhage, kainate seizures, hypoglycemia, and hypoxia." <u>Eur J</u><u>Neurosci</u> **15**(12): 1937-52.
- Tauck, D. L. and J. V. Nadler (1985). "Evidence of functional mossy fiber sprouting in hippocampal formation of kainic acid-treated rats." J Neurosci 5(4): 1016-22.
- Taverna, S., T. Tkatch, et al. (2005). "Differential expression of TASK channels between horizontal interneurons and pyramidal cells of rat hippocampus." <u>J Neurosci</u> 25(40): 9162-70.
- Telfeian, A. E., H. C. Tseng, et al. (2003). "Differential expression of GABA and glutamatereceptor subunits and enzymes involved in GABA metabolism between electrophysiologically identified hippocampal CA1 pyramidal cells and interneurons." <u>Epilepsia</u> 44(2): 143-9.
- Tenchini, M. L., S. Duga, et al. (1999). "SER252PHE and 776INS3 mutations in the CHRNA4 gene are rare in the Italian ADNFLE population." <u>Sleep</u> 22(5): 637-9.
- TFCT-ILAE (1981). "Proposal for revised clinical and electroencephalographic classification of epileptic seizures. From the Commission on Classification and Terminology of the International League Against Epilepsy." <u>Epilepsia</u> **22**(4): 489-501.

- TFCT-ILAE (1989). "Proposal for revised classification of epilepsies and epileptic syndromes. Commission on Classification and Terminology of the International League Against Epilepsy." <u>Epilepsia</u> **30**(4): 389-99.
- Thom, M., S. M. Sisodiya, et al. (2002). "Cytoarchitectural abnormalities in hippocampal sclerosis." J Neuropathol Exp Neurol 61(6): 510-9.
- Toledo-Rodriguez, M., B. Blumenfeld, et al. (2004). "Correlation maps allow neuronal electrical properties to be predicted from single-cell gene expression profiles in rat neocortex." <u>Cereb Cortex</u> 14(12): 1310-27.
- Toledo-Rodriguez, M., P. Goodman, et al. (2005). "Neuropeptide and calcium-binding protein gene expression profiles predict neuronal anatomical type in the juvenile rat." J Physiol 567(Pt 2): 401-13.
- Toth, K. and T. F. Freund (1992). "Calbindin D28k-containing nonpyramidal cells in the rat hippocampus: their immunoreactivity for GABA and projection to the medial septum." <u>Neuroscience</u> **49**(4): 793-805.
- Toth, Z., X. X. Yan, et al. (1998). "Seizure-induced neuronal injury: vulnerability to febrile seizures in an immature rat model." J Neurosci **18**(11): 4285-94.
- Touchot, N., P. Chardin, et al. (1987). "Four additional members of the ras gene superfamily isolated by an oligonucleotide strategy: molecular cloning of YPT-related cDNAs from a rat brain library." Proc Natl Acad Sci U S A **84**(23): 8210-4.
- Traub, R. D., A. Draguhn, et al. (2002). "Axonal gap junctions between principal neurons: a novel source of network oscillations, and perhaps epileptogenesis." <u>Rev Neurosci</u> 13(1): 1-30.
- Traub, R. D. and R. Miles (1991). "Multiple modes of neuronal population activity emerge after modifying specific synapses in a model of the CA3 region of the hippocampus." <u>Ann N Y Acad Sci</u> 627: 277-90.
- Traub, R. D., R. Miles, et al. (1987). "Models of synchronized hippocampal bursts in the presence of inhibition. I. Single population events." J Neurophysiol **58**(4): 739-51.
- Turski, W. A., E. A. Cavalheiro, et al. (1983). "Limbic seizures produced by pilocarpine in rats: behavioural, electroencephalographic and neuropathological study." <u>Behav Brain</u> <u>Res</u> 9(3): 315-35.
- Ulas, J., T. Satou, et al. (2000). "Expression of metabotropic glutamate receptor 5 is increased in astrocytes after kainate-induced epileptic seizures." <u>Glia</u> **30**(4): 352-61.
- van 't Veer, L. J., H. Dai, et al. (2002). "Gene expression profiling predicts clinical outcome of breast cancer." <u>Nature</u> **415**(6871): 530-6.
- Van der Zee, C. E., K. Rashid, et al. (1995). "Intraventricular administration of antibodies to nerve growth factor retards kindling and blocks mossy fiber sprouting in adult rats." J <u>Neurosci</u> 15(7 Pt 2): 5316-23.

- van Gassen, K. L., M. de Wit, et al. (2008). "Possible role of the innate immunity in temporal lobe epilepsy." <u>Epilepsia</u> **49**(6): 1055-65.
- Van Itallie, C. M., J. Holmes, et al. (2008). "The density of small tight junction pores varies among cell types and is increased by expression of claudin-2." <u>J Cell Sci</u> 121(Pt 3): 298-305.
- VanLandingham, K. E., E. R. Heinz, et al. (1998). "Magnetic resonance imaging evidence of hippocampal injury after prolonged focal febrile convulsions." <u>Ann Neurol</u> 43(4): 413-26.
- Venance, L., A. Rozov, et al. (2000). "Connexin expression in electrically coupled postnatal rat brain neurons." <u>Proc Natl Acad Sci U S A</u> 97(18): 10260-5.
- Vezzani, A. and T. Granata (2005). "Brain inflammation in epilepsy: experimental and clinical evidence." <u>Epilepsia</u> **46**(11): 1724-43.
- Vigues, S., M. Gastaldi, et al. (1999). "Regulation of calcium channel alpha(1A) subunit splice variant mRNAs in kainate-induced temporal lobe epilepsy." <u>Neurobiol Dis</u> **6**(4): 288-301.
- Vinet, J. and A. Sik (2006). "Expression pattern of voltage-dependent calcium channel subunits in hippocampal inhibitory neurons in mice." <u>Neuroscience</u> **143**(1): 189-212.
- Vinters, H. V., W. G. Ellis, et al. (2000). "Neuropathologic substrates of ischemic vascular dementia." <u>J Neuropathol Exp Neurol</u> 59(11): 931-45.
- Volpe, J. J. (1994). "Brain injury in the premature infant--current concepts." <u>Prev Med</u> 23(5): 638-45.
- Wallace, R. H., C. Marini, et al. (2001). "Mutant GABA(A) receptor gamma2-subunit in childhood absence epilepsy and febrile seizures." <u>Nat Genet</u> **28**(1): 49-52.
- Wallace, R. H., I. E. Scheffer, et al. (2001). "Neuronal sodium-channel alpha1-subunit mutations in generalized epilepsy with febrile seizures plus." <u>Am J Hum Genet</u> 68(4): 859-65.
- Wallace, R. H., D. W. Wang, et al. (1998). "Febrile seizures and generalized epilepsy associated with a mutation in the Na+-channel beta1 subunit gene SCN1B." <u>Nat Genet</u> **19**(4): 366-70.
- Wang, H. S., Z. Pan, et al. (1998). "KCNQ2 and KCNQ3 potassium channel subunits: molecular correlates of the M-channel." <u>Science</u> 282(5395): 1890-3.
- Wang, X., N. Lou, et al. (2006). "Astrocytic Ca2+ signaling evoked by sensory stimulation in vivo." <u>Nat Neurosci</u> 9(6): 816-23.
- Watson, A., A. Mazumder, et al. (1998). "Technology for microarray analysis of gene expression." Curr Opin Biotechnol 9(6): 609-14.
- Wei, R. and G. M. Jonakait (1999). "Neurotrophins and the anti-inflammatory agents interleukin-4 (IL-4), IL-10, IL-11 and transforming growth factor-beta1 (TGF-beta1)

down-regulate T cell costimulatory molecules B7 and CD40 on cultured rat microglia." J Neuroimmunol **95**(1-2): 8-18.

- Wellmer, J., H. Su, et al. (2002). "Long-lasting modification of intrinsic discharge properties in subicular neurons following status epilepticus." <u>Eur J Neurosci</u> **16**(2): 259-66.
- Westenbroek, R. E., S. B. Bausch, et al. (1998). "Upregulation of L-type Ca2+ channels in reactive astrocytes after brain injury, hypomyelination, and ischemia." J Neurosci **18**(7): 2321-34.
- Wetherington, J., G. Serrano, et al. (2008). "Astrocytes in the epileptic brain." <u>Neuron</u> **58**(2): 168-78.
- Whitney, L. W., K. G. Becker, et al. (1999). "Analysis of gene expression in mutiple sclerosis lesions using cDNA microarrays." <u>Ann Neurol</u> **46**(3): 425-8.
- Whittington, M. A. and J. G. Jefferys (1994). "Epileptic activity outlasts disinhibition after intrahippocampal tetanus toxin in the rat." J Physiol **481 (Pt 3)**: 593-604.
- Wieser, H. G. (1998). "Epilepsy surgery: past, present and future." Seizure 7(3): 173-84.
- Wilkin, G. P., A. L. Hudson, et al. (1981). "Autoradiographic localization of GABAB receptors in rat cerebellum." <u>Nature</u> **294**(5841): 584-7.
- Williams, P. A., J. L. Hellier, et al. (2007). "Development of spontaneous seizures after experimental status epilepticus: implications for understanding epileptogenesis." <u>Epilepsia</u> 48 Suppl 5: 157-63.
- Willmore, L. J. (1992). "Posttraumatic epilepsy." Neurol Clin 10(4): 869-78.
- Winship, I. R., N. Plaa, et al. (2007). "Rapid astrocyte calcium signals correlate with neuronal activity and onset of the hemodynamic response in vivo." J Neurosci 27(23): 6268-72.
- Wittner, L., L. Eross, et al. (2005). "Surviving CA1 pyramidal cells receive intact perisomatic inhibitory input in the human epileptic hippocampus." <u>Brain</u> **128**(Pt 1): 138-52.
- Wittner, L., Z. Magloczky, et al. (2001). "Preservation of perisomatic inhibitory input of granule cells in the epileptic human dentate gyrus." <u>Neuroscience</u> **108**(4): 587-600.
- Wright, G. J., M. J. Puklavec, et al. (2000). "Lymphoid/neuronal cell surface OX2 glycoprotein recognizes a novel receptor on macrophages implicated in the control of their function." <u>Immunity</u> 13(2): 233-42.
- Wuarin, J. P. and F. E. Dudek (1996). "Electrographic seizures and new recurrent excitatory circuits in the dentate gyrus of hippocampal slices from kainate-treated epileptic rats." <u>J Neurosci</u> 16(14): 4438-48.
- Wuarin, J. P. and F. E. Dudek (2001). "Excitatory synaptic input to granule cells increases with time after kainate treatment." J Neurophysiol **85**(3): 1067-77.

- Xiong, Z. Q., W. Qian, et al. (2003). "Formation of complement membrane attack complex in mammalian cerebral cortex evokes seizures and neurodegeneration." J Neurosci 23(3): 955-60.
- Xu, J., P. J. Kausalya, et al. (2008). "Early embryonic lethality of mice lacking ZO-2, but Not ZO-3, reveals critical and nonredundant roles for individual zonula occludens proteins in mammalian development." <u>Mol Cell Biol</u> 28(5): 1669-78.
- Yano, K., T. Subkhankulova, et al. (2006). "Electrophysiological and gene expression profiling of neuronal cell types in mammalian neocortex." J Physiol 575(Pt 2): 361-5.
- Yao, F., F. Yu, et al. (2005). "Microarray analysis of fluoro-gold labeled rat dopamine neurons harvested by laser capture microdissection." J Neurosci Methods 143(2): 95-106.
- Yilmazer-Hanke, D. M., H. K. Wolf, et al. (2000). "Subregional pathology of the amygdala complex and entorhinal region in surgical specimens from patients with pharmacoresistant temporal lobe epilepsy." J Neuropathol Exp Neurol **59**(10): 907-20.
- Yuhas, Y., L. Shulman, et al. (1999). "Involvement of tumor necrosis factor alpha and interleukin-1beta in enhancement of pentylenetetrazole-induced seizures caused by Shigella dysenteriae." Infect Immun **67**(3): 1455-60.
- Zaczek, R. and J. T. Coyle (1982). "Excitatory amino acid analogues: neurotoxicity and seizures." <u>Neuropharmacology</u> **21**(1): 15-26.
- Zafra, F., B. Hengerer, et al. (1990). "Activity dependent regulation of BDNF and NGF mRNAs in the rat hippocampus is mediated by non-NMDA glutamate receptors." <u>Embo J 9(11)</u>: 3545-50.
- Zafra, F., D. Lindholm, et al. (1992). "Regulation of brain-derived neurotrophic factor and nerve growth factor mRNA in primary cultures of hippocampal neurons and astrocytes." J Neurosci 12(12): 4793-9.
- Zahraoui, A., N. Touchot, et al. (1989). "The human Rab genes encode a family of GTPbinding proteins related to yeast YPT1 and SEC4 products involved in secretion." J <u>Biol Chem</u> **264**(21): 12394-401.
- Zhao, X., E. S. Lein, et al. (2001). "Transcriptional profiling reveals strict boundaries between hippocampal subregions." J Comp Neurol 441(3): 187-96.
- Zhao, Y., P. Flandin, et al. (2008). "Distinct molecular pathways for development of telencephalic interneuron subtypes revealed through analysis of Lhx6 mutants." J Comp Neurol **510**(1): 79-99.
- Zirlinger, M. and D. Anderson (2003). "Molecular dissection of the amygdala and its relevance to autism." <u>Genes Brain Behav</u> 2(5): 282-94.
- Zita, M. M., I. Marchionni, et al. (2007). "Post-phosphorylation prolyl isomerisation of gephyrin represents a mechanism to modulate glycine receptors function." <u>Embo J</u> 26(7): 1761-71.

Zuberi, S. M., L. H. Eunson, et al. (1999). "A novel mutation in the human voltage-gated potassium channel gene (Kv1.1) associates with episodic ataxia type 1 and sometimes with partial epilepsy." <u>Brain</u> **122** (**Pt 5**): 817-25.

Supplementary Tables

0.00009	2.045	BCL2-like 13 (apoptosis facilitator)	Bc12113
0.01361	2.052	RIKEN cDNA 2900011008 gene	2900011008Rik
0.00712	2.081	Ribosomal protein L35	Rpl35
0.01651	2.084	Proline rich 8	Prr8
0.00112	2.102	Ribosomal protein S2	Rps2
0.00009	2.138	CKLF-like MARVEL transmembrane domain containing 5	Cmtm5
0.00237	2.152	Predicted gene, EG628161	EG628161
0.00000	2.199	Synaptotagmin I	Syt1
0.00003	2.207	RIKEN cDNA 1810046J19 gene	1810046J19Rik
0.00000	2.353	CAAX box 1 homolog C (human)	Cxx1c
0.00002	2.353	RIKEN cDNA 1700001L19 gene	1700001L19Rik
0.00001	2.359	Transmembrane protein 160	Tmem160
0.00258	2.390	NADH dehydrogenase (ubiquinone) 1 beta subcomplex 8	Ndufb8
0.00020	2.392	Syntaxin 8	Stx8
0.01115	2.394	Ubiquinol-cytochrome c reductase binding protein	Uqerb
0.00256	2.412	Apolipoprotein E	Apoe
0.00002	2.432	Transferrin	Trf
0.00015	2.483	Solute carrier family 25 (mitochondrial carrier, adenine nucleotide translocator), member 4	Slc25a4
0.00066	2.522	WD repeat domain 5	Wdr5
0.00284	2.528	Cytochrome c oxidase subunit IV isoform 1	Cox4i1
0.00102	2.647	Nucleosome assembly protein 1-like 5	Nap115
0.02538	2.820	Prostaglandin D2 synthase (brain)	Ptgds
0.00012	2.898	Rab acceptor 1 (prenylated)	Rabac1
0.00002	2.899	NADH dehydrogenase (ubiquinone) 1 alpha subcomplex, 12	Ndufa12
0.00001	3.084	Aldolase 3, C isoform	Aldoc
0.00012	3.106	RAB3B, member RAS oncogene family	Rab3b
p-value	Fold Change (Log2)	Name	Symbol

population, negative values genes more represented in pyramidal cells. Genes are listed in order of Fold Change (Log2). hippocampus. Fold Changes is expressed in logarithmic scale. Positive values represent genes more represented in the interneuronal Tab.1: Differentially expressed genes between EGFP+ Somatostatin-containing interneurons and pyramidal cells of the

0.01060	1.726	Synaptosomal-associated protein 25	Snan25
0.02605	1.730	Ribosomal protein L28	Rpl28
0.00177	1.741	Gamma-aminobutyric acid (GABA-A) receptor, subunit gamma 2	Gabrg2
0.00008	1.743	Notch-regulated ankyrin repeat protein	Nrarp
0.00002	1.748	Signal peptidase complex subunit 1 homolog (S. cerevisiae)	Spcs1
0.00313	1.750	Dipeptidylpeptidase 10	Dpp10
0.00612	1.752	Growth associated protein 43	Gap43
0.00502	1.756	AlkB, alkylation repair homolog 6 (E. coli)	Alkbh6
0.00632	1.766	Pyrophosphatase (inorganic) 2	Ppa2
0.00662	1.766	IK cytokine	Ik
0.00035	1.797	RIKEN cDNA 2310003F16 gene	2310003F16Rik
0.00051	1.798	LPS-induced TN factor	Litaf
0.00002	1.799	H2-K region expressed gene 2	H2-Ke2
0.00160	1.807	Cysteine-rich C-terminal 1	Crct1
0.00035	1.814	Heat shock protein 1 (chaperonin 10)	Hspe1
0.01028	1.816	N-myc downstream regulated gene 4	Ndrg4
0.00001	1.816	Adaptor protein complex AP-1, mu 2 subunit	Ap1m2
0.00102	1.823	Prepronociceptin	Pnoc
0.00118	1.866	Transmembrane protein 121	Tmem121
0.00304	1.871	Serine (or cysteine) peptidase inhibitor, clade E, member 2	Serpine2
0.01658	1.896	Leucine rich repeat containing 4	Lrrc4
0.00160	1.937	ATP synthase, H+ transporting, mitochondrial F0 complex, subunit c (subunit 9), isoform 3	Atp5g3
0.00007	1.942	Expressed in non-metastatic cells 1, protein	Nme1
0.02387	1.950	Cytochrome c oxidase, subunit Va	Cox5a
0.00002	1.957	DEAD (Asp-Glu-Ala-Asp) box polypeptide 1	Ddx1
0.00066	1.958	Small nuclear ribonucleoprotein D2	Snrpd2
0.00004	1.972	Histidine triad nucleotide binding protein 1	Hint1
0.03275	1.979	Lactate dehydrogenase B	Ldhb
0.00002	1.983	Potassium channel tetramerisation domain containing 20	Kctd20
0.00906	2.000	Polyglutamine binding protein 1	Pqbp1
0.00505	2.020	Vitronectin	Vtn
0.02405	2.025	RIKEN cDNA 1500032D16 gene	1500032D16Rik
0.00073	2.032	Peroxiredoxin 2	Prdx2
0.00038	2.040	Cadherin 13	Cdh13

		Endothelial cell growth factor 1 (nlatelet-derived)	Enef
0.02003	1.475	Acidic (leucine-rich) nuclear phosphoprotein 32 family, member A	Anp32a
0.03905	1.479	GH regulated TBC protein 1	Grtp1
0.03731	1.497	Actin related protein 2/3 complex, subunit 2	Arpc2
0.00557	1.498	Cytochrome c oxidase, subunit VI a, polypeptide 1	Cox6a1
0.01003	1.503	RIKEN cDNA 0610006I08 gene	0610006I08Rik
0.04232	1.504	CDNA sequence BC031853	BC031853
0.03273	1.505	Neurotrimin	Hnt
0.00040	1.508	A kinase (PRKA) anchor protein 13	Akap13
0.00035	1.518	Protein interacting with C kinase 1	Pick1
0.00662	1.521	ATP synthase, H+ transporting mitochondrial F1 complex, beta subunit	Atp5b
0.02277	1.529	RIKEN cDNA B630005N14 gene	B630005N14Rik
0.00502	1.538	Pecanex-like 2 (Drosophila)	Pcnxl2
0.03542	1.541	U7 snRNP-specific Sm-like protein LSM11	Lsm11
0.04443	1.553	Cysteine and glycine-rich protein 1	Csrp1
0.00447	1.555	ADP-ribosylation factor-like 6 interacting protein 5	Arl6ip5
0.02047	1.558	TAF11 RNA polymerase II, TATA box binding protein (TBP)-associated factor	Taf11
0.00065	1.568	Predicted gene, EG328451	EG328451
0.00072	1.575	RIKEN cDNA 1700021F05 gene	1700021F05Rik
0.00012	1.576	SLIT and NTRK-like family, member 5	Slitrk5
0.00062	1.576	Similar to ribosomal protein L35a	LOC100043341
0.02504	1.586	Phosphohistidine phosphatase 1	Phpt1
0.00240	1.594	SHC (Src homology 2 domain containing) family, member 4	Shc4
0.00021	1.599	Potassium channel tetramerisation domain containing 6	Kctd6
0.00041	1.621	Neuron specific gene family member 1	Nsg1
0.00102	1.631	ATP synthase, H+ transporting, mitochondrial F0 complex, subunit b, isoform 1	Atp5f1
0.00014	1.632	Gamma-aminobutyric acid (GABA-A) receptor, subunit delta	Gabrd
0.00030	1.637	Pregnancy-associated plasma protein A	Pappa
0.00001	1.652	Mitochondrial ribosomal protein L36	Mrpl36
0.01527	1.662	N-myc downstream regulated gene 2	Ndrg2
0.00647	1.664	NADH dehydrogenase (ubiquinone) 1 alpha subcomplex, 8	Ndufa8
0.00002	1.688	Zinc finger, CCHC domain containing 12	Zcchc12
0.00020	1.701	Heme oxygenase (decycling) 2	Hmox2
0.00191	1.714	Ubiquitin-activating enzyme E1-domain containing 1	Ube1dc1

0.01424	1.339	Required for meiotic nuclear division 1 homolog (S. cerevisiae)	Rmnd1
0.03731	1.340	CDNA sequence BC003267	BC003267
0.01998	1.342	NEL-like 2 (chicken)	Nell2
0.00447	1.344	Plexin domain containing 2	Plxdc2
0.00095	1.345	Neuron specific gene family member 2	Nsg2
0.00179	1.348	RIKEN cDNA 3321401G04 gene	3321401G04Rik
0.00012	1.348	RIKEN cDNA 1500005A01 gene	1500005A01Rik
0.00355	1.351	Yip1 domain family, member 1	Yipf1
0.04658	1.353	Cell cycle exit and neuronal differentiation 1	Cend1
0.02605	1.361	Purine rich element binding protein A	Pura
0.00001	1.367	Trafficking protein particle complex 4	Trappc4
0.00732	1.367	RIKEN cDNA 2310003H01 gene	2310003H01Rik
0.04063	1.372	NADH dehydrogenase (ubiquinone) 1 alpha subcomplex 11	Ndufa11
0.00418	1.379	Hydroxysteroid dehydrogenase like 1	Hsdl1
0.01569	1.380	RIKEN cDNA 2810487A22 gene	2810487A22Rik
0.00001	1.382	Genetic suppressor element 1	Gse1
0.00294	1.383	RIKEN cDNA 6330577E15 gene	6330577E15Rik
0.03273	1.389	FLYWCH family member 2	Flywch2
0.00662	1.394	Spastin	Spast
0.00031	1.394	Growth arrest specific 6	Gas6
0.00823	1.410	Programmed cell death 6	Pdcd6
0.00194	1.411	Proteasome (prosome, macropain) 26S subunit, non-ATPase, 12	Psmd12
0.04888	1.418	Ribosomal protein S6	Rps6
0.01868	1.419	Megalencephalic leukoencephalopathy with subcortical cysts 1 homolog (human)	Mlc1
0.03058	1.421	Phosphatidylinositol glycan anchor biosynthesis, class C	Pigc
0.00096	1.439	Melanoma antigen, family E, 1	Magee1
0.00021	1.443	Mitochondrial ribosomal protein L46	Mrpl46
0.00001	1.444	RIKEN cDNA 1810035L17 gene	1810035L17Rik
0.04597	1.447	Transmembrane protein 91	Tmem91
0.00765	1.450	NADH dehydrogenase (ubiquinone) 1 alpha subcomplex, 1	Ndufa1
0.00102	1.451	Pancreas specific transcription factor, 1a	Ptf1a
0.01228	1.451	PRA1 domain family 2	Praf2
0.00073	1.453	Glutathione peroxidase 3	Gpx3
0.00643	1.467	Glutamate receptor, ionotropic, kainate I	Griki

0.01926	1.228	Mannoside acetylglucosaminyltransferase 5, isoenzyme B	Mgat5b
0.00347	1.229	Succinate dehydrogenase complex, subunit A, flavoprotein (Fp)	Sdha
0.00882	1.230	CDNA sequence BC049635	BC049635
0.01317	1.235	RIKEN cDNA A930017N06 gene	A930017N06Rik
0.02432	1.237	Regulator of G-protein signaling 16	Rgs16
0.02806	1.239	Tissue inhibitor of metalloproteinase 4	Timp4
0.02996	1.244	Selenoprotein M	Selm
0.00732	1.244	Male enhanced antigen 1	Mea1
0.01497	1.247	Sideroflexin 5	Sfxn5
0.01969	1.253	Polymerase (RNA) II (DNA directed) polypeptide F	Polr2f
0.04574	1.256	Melanoma nuclear protein 13	Mel13
0.01685	1.260	Vesicle-associated membrane protein 8	Vamp8
0.01445	1.262	Ribosomal protein S11	Rps11
0.03275	1.262	GTP binding protein 1	Gtpbp1
0.03201	1.273	RIKEN cDNA 1810021J13 gene	1810021J13Rik
0.03273	1.278	Neuralized-like 2 (Drosophila)	Neurl2
0.02206	1.284	Protein phosphatase 1, regulatory (inhibitor) subunit 11	Ppp1r11
0.00177	1.286	TM2 domain containing 2	Tm2d2
0.00160	1.288	RNA terminal phosphate cyclase domain 1	Rtcd1
0.04489	1.288	NADH dehydrogenase (ubiquinone) 1 beta subcomplex, 5	Ndufb5
0.01541	1.291	Early growth response 1	Egr1
0.00360	1.291	RIKEN cDNA 2810468N07 gene	2810468N07Rik
0.04531	1.295	RIKEN cDNA C330019L16 gene	C330019L16Rik
0.01960	1.299	Hook homolog 2 (Drosophila)	Hook2
0.00293	1.300	Small nuclear ribonucleoprotein N	Snrpn
0.01527	1.300	Succinate dehydrogenase complex, subunit B, iron sulfur (Ip)	Sdhb
0.00921	1.301	Glucose 6 phosphatase, catalytic, 3	G6pc3
0.00692	1.304	Metadherin	Mtdh
0.00008	1.305	DEAD (Asp-Glu-Ala-Asp) box polypeptide 24	Ddx24
0.00847	1.306	Nucleosome binding protein 1	Nsbp1
0.01334	1.309	RIKEN cDNA 1700016H13 gene	1700016H13Rik
0.00026	1.313	Fat mass and obesity associated	Fto
0.00038	1.325	Acyl-CoA synthetase bubblegum family member 1	Acsbg1
0.02515	1.330	RIKEN cDNA 2310014G06 gene	2310014G06Rik

	277 5	Glutamate-overlaine lineace modifier enhunit	Gelm
0.02504	1.148	Mediator of RNA polymerase II transcription, subunit 11 homolog (S. cerevisiae)	Med11
0.00360	1.150	Torsin family 2, member A	Tor2a
0.03875	1.152	Pterin 4 alpha carbinolamine dehydratase/dimerization cofactor of hepatocyte nuclear factor 1 alpha (TCF1) 1	Pcbd1
0.00170	1.155	Polymerase (RNA) II (DNA directed) polypeptide K	Polr2k
0.00447	1.155	Membrane interacting protein of RGS16	Mir16
0.01651	1.155	Endothelial differentiation-related factor 1	Edf1
0.00665	1.155	ARP10 actin-related protein 10 homolog (S. cerevisiae)	Actr10
0.01455	1.165	DEAD (Asp-Glu-Ala-Asp) box polypeptide 54	Ddx54
0.02515	1.168	ADP-ribosylation factor-like 4D	Arl4d
0.01497	1.170	Transmembrane protein 176B	Tmem176b
0.00607	1.170	STT3, subunit of the oligosaccharyltransferase complex, homolog B (S. cerevisiae)	Stt3b
0.00727	1.174	MAP/microtubule affinity-regulating kinase 2	Mark2
0.02382	1.176	Kelch-like 22 (Drosophila)	Klhl22
0.01060	1.177	RIKEN cDNA A230065H16 gene	A230065H16Rik
0.00662	1.178	Protein tyrosine phosphatase, receptor type, K	Ptprk
0.03770	1.183	RIKEN cDNA 2310004L02 gene	2310004L02Rik
0.02873	1.184	Claudin 5	Cldn5
0.00026	1.185	TAF9 RNA polymerase II, TATA box binding protein (TBP)-associated factor	Taf9
0.00256	1.185	ADP-dependent glucokinase	Adpgk
0.00904	1.189	Ribonuclease H2, subunit C	Rnaseh2c
0.00606	1.195	BCL2/adenovirus E1B interacting protein 1, NIP2	Bnip2
0.02084	1.196	RNA binding motif protein, X-linked 2	Rbmx2
0.01876	1.197	RIKEN cDNA 4930520K10 gene	4930520K10Rik
0.01974	1.203	Sin3-associated polypeptide 18	Sap18
0.00329	1.204	UBX domain containing 2	Ubxd2
0.04632	1.204	Gamma-aminobutyric acid (GAB A-A) receptor, subunit alpha 4	Gabra4
0.00038	1.207	Dolichol kinase	Dolk
0.00511	1.210	Thyroid peroxidase	Tpo
0.00626	1.220	Origin recognition complex, subunit 5-like (S. cerevisiae)	Orc51
0.00904	1.223	Valosin containing protein	Vcp
0.00263	1.224	MOB1, Mps One Binder kinase activator-like 1B (yeast)	Mobk11b
0.00329	1.225	Predicted gene, OTTMUSG0000007209	OTTMUSG0000007209
0.00357	1.227	CDNA sequence BC003266	BC003266

Sheh Shnexthmark-Bacharond syndrome baronlog (human) (1.42 (0.117) Syndrome Kirk RKINX CONA 2x01004K14 gave (1.41 (0.0137) Syndrome Kirk Head sock provin 1 (1.41 (0.0137) Mysha Heigh investing provin 2 (1.41 (0.0137) Mysha Heigh investing provin 2 (1.41 (0.0137) Mysha Heigh investing provin 2 (1.41 (0.0138) Mysha Heigh investing provin 2 (1.41 (0.0138) Shand Alle Alley alley interves provin 2 (1.42 (0.0138) Shand Smite hydroxymethyltmostes (1.6164b) (1.42 (0.0138) Shand RKEN CONA ASIGNE provin 1 (1.42 (0.0138) Myshel RKEN CONA ASIGNE provin 1 (1.42 (0.0144) Shand RKEN CONA ASIGNE provin 1 (1.41 (0.0262) <th>0.00662</th> <th>1.074</th> <th>RIKEN cDNA 5430433E21 gene</th> <th>5430433E21Rik</th>	0.00662	1.074	RIKEN cDNA 5430433E21 gene	5430433E21Rik
Shwachmar-Bodiar-Diamond syndrome homolog (human) 1.42 SDRIATAR. RKEN CNNA 261030K14 gene 1.142 Mysian XVIIID Ubquitosaly or,pressed transcript 1.141 4 Han Sock protein 4 1.142 11 Rata Sock protein 18 1.143 12 ALBE .ablydnion repair homolog 2 (E. coh)i 1.143 13 Seriae bydroxymethyltransferae 1 (sohbo) 1.133 14 RKEN CNA 061007.01 gene 1.133 14 RKEN CNA 061007.01 gene 1.134 15 RKEN CNA 061007.01 gene 1.135 16 RKEN CNA 061007.01 gene 1.141 16 RKEN CNA 22006691 gene 1.142 111 Kene Core or gene in thore or gene in the origen in the origen in the origen in the orig	0.02686	1.075	Mitochondrial ribosomal protein L14	Mrp114
Shwachmar-Bodiar-Dianond syndrome homolog (human) 1,12 SURK14Rik RIKGN CA10204K14 gene 1,142 Har RikGN CA10204K14 gene 1,142 Har Ubiquitously expressed transcript 1,142 Har Integral methorage protein 3B 1,140 Dial Integral methorage protein 2B 1,140 NPP Rear shock protein 79 1,140 NPP Rear shock protein 79 1,135 11 Serine bydroxymethyltmanferase 1 (soluble) 1,136 11 Serine bydroxymethyltmanferase 1 (soluble) 1,122 11 Serine bydroxymethyltmanferase 1 (soluble) 1,123 11 Serine bydroxymethyltmanferase 1 (soluble) 1,124 14 Serine bydroxymethyltmanferase 1 (soluble) 1,124 14 NA NA binding moti protein 16 1,124 16 RIKEN CDNA A530456P1 gene 1,116 1,116 16 Riken CDNA A53056P1 gene 1,116 1,116 111 Proteise aber of rox-opymethyltmanferase) 1,116 1,116 111 Proteise	0.03996	1.079	Ubiquitin-conjugating enzyme E2Z (putative)	Ube2z
Synachman: Bodian-Diamond syndrome homolog (human) 1.42 2004(14R)k RKEN CNA 2610204K 14 gene 1.141 18b Mysici XVIIIb 1.141 4 Inegral membrane protein 2B 1.140 b Returbation protein 2B 1.141 b Returbation protein 2B 1.140 b Returbation Symmbyl Tam Series (soluble) 1.152 111 Scrien (or crystein 2) gene 1.152 111 Returbation Symmyl Tam Series mu 4 1.152 111 Returbation Symmyl Protein 16 1.116 111 Returbation protein 16 1.116 111 Returbation Symmyl Tam Series 11 1.116 111 Returbation Symmyl Protein 16 1.116 111 Neurie Graubsein michele 1 1.116 111	0.02013	1.080	RIKEN cDNA 2700078K21 gene	2700078K21Rik
Silvackfunktion Silvackfunktion (1.42 2004(14.Rk) Mysian XUIID 1.142 1 Mysian XUIID 1.142 4 Mysian XUIID 1.142 5 Inegral membrane protein 2B 1.142 4 Inegral membrane protein 2B 1.142 1 Inegral membrane protein 2B 1.142 1 Inegral membrane protein 2B 1.142 1 Inegral membrane protein 79 1.142 1 Status coNA 0610007L01 gene 1.132 1 Status coNA 0610007L01 gene 1.142 1 IdEditabilitas coNA 0610007L01 gene 1.142 1 IdEditabilitas coNA 061007L01 gene 1.142 1 IdEditabilitas coNA 061007L01 gene 1.142 1 IdEditabilitas coNA 061007L01 gene 1.143 1 IdEditabilitas coNA 061007L01 gene 1.142 1 IdEditabilitas coNA 061007L01 gene 1.114 1 IdEditas coNA 061007L01 gene 1.114 1 IdEditas coNA 061007L01 gene 1.114 <	0.03273	1.082	RIKEN cDNA 1810029B16 gene	1810029B16Rik
Shwachman-Bodian-Diamond syndrome homolog (human) 1142 2004(14Rik RIKEN CDNA 2610204K14 gene 1141 18b Myosin XVIIIb 1141 4 Hear shock provin 1 1143 6 Integral membrane protein 2B 1143 11 Serine bydrox yntegraf fransolog 2.G. coli) 1143 112 Serine bydrox yntegraf fransolog 2.G. coli) 1143 112 Serine bydrox yntegraf fransolog 2.G. coli) 1143 112 Serine bydrox yntegraf franse 1 (soluble) 1143 112 Serine bydrox yntegraf franse 1 (soluble) 1123 11 Serine bydrox yntegraf franse 1 (soluble) 1125 115 RIKEN CDNA 6610071.01 gene 1126 0071.01 Rik RIKEN CDNA A610071.01 gene 1114 116 Rike CDNA 6510071.01 gene 1114 116 Rike CDNA 6510071.01 gene 1114 117 Rike CDNA 620056P14 gene 1114 111 Rike CDNA 620056P14 gene 1114 111 Nacesyltransferase 2 (arylamin for ne- Ar Procha 1114 111	0.02651	1.083	Cortistatin	Cort
Shwachman-Bodhan-Dianoral syndrome homolog (human)1142204K14RikRIKEN CDNA 2610204K14 gene1.14218bMyosin XVIIB1.14418bUbiquiously cepressed transcript1.1434Heat shock protein 2B1.1465Integral neurbrane protein 2B1.1461111Retinoblastoma 11.1431131Serme bydroxymethyftransferas I (soluble)1.1351131Retinoblastoma 11.1421141Nasneanbrane protein 791.1351135Retinoblastoma 11.1351144Retinoblastoma 11.1351131Retinoblastoma 11.1361144REEN CDNA 8430415E04 gene1.1361151Reticolay 31.1361164NA1.1361174Reticolay 31.1461174Reticolay 31.1461174Reticolay 31.1471174Reticolay 31.1461174Reticolay 31.1461174Reticolay 31.1461174Reticolay 31.1461174Reticolay 31.1461174Reticolay 31.1461174Reticolay 31.1461175Reticolay 31.1461176Reticolay 31.1461176Reticolay 31.1461176Reticolay 31.1461176Reticolay 31.1461176Reticolay 31.1461176Reticolay 31.1461176Reticolay	0.04715	1.084	Predicted gene, ENSMUSG00000053412	ENSMUSG0000053412
QuAQLARIAKShwachmane Bodiane-Diamond syndrome homolog (human)1.142118bHRIENS cDNA $3610204 KL4$ gene1.140118bHogain XVIIBs1.140118bHogain Average transcript1.1404Inegral membrane protein 781.135121Has akhock protein 41.135121Retinoblastoma 11.132131Serife hydroxymethyltransferase 1 (soluble)1.132131Serife hydroxymethyltransferase 1 (soluble)1.132131Serife hydroxymethyltransferase 1 (soluble)1.132131Retinoblastoma 11.132131Referaberase, regret in a solution 101.132131Serife hydroxymethyltransferase 1 (soluble)1.132131REFEN cDNA 843041504 gene1.132131Referaberase, regret in 101.132141REFEN cDNA 843041504 gene1.132141Referaberase, run 41.132141Referaberase, run 41.132141Referaberase, run 41.132141Referaberase, run 41.142142Referaberase, run 41.142143Serifie (regret in 161.142144Referaberase, run 41.142145Referaberase, run 41.142146Referaberase, run 41.142147Referaberase, run 41.142148Referaberase, run 41.142149Referaberase, run 41.142141Referaberase, run 41.142141R	0.02630	1.084	Expressed sequence AW209491	AW209491
Shwachman-Bodian-Diamond syndrome homolog (human) 1.142 204K14Rik RIKEN CDNA 2610204K14 gene 1.141 18b Miyosin XVIIIb 1.142 114 Miyosin XVIIIb 1.142 115 Miyosin XVIIIb 1.141 116 Hear shock protein 4 1.140 116 Integral membrane protein 2B 1.141 117 Retinoblasiona 1 1.135 118 AlkB, alkylation repair homolog 2 (E. coll) 1.135 119 Transmembrane protein 79 1.135 119 Retinoblasionan 1 1.135 119 Karsmembrane protein 79 1.135 119 Retinoblasionan 1 1.132 119 Retinoblasionan 1 1.132 119 Retinoblasionan 1 1.132 1110 RikEN cDNA 4610007L01 gene 1.132 110 RikEN cDNA 4051007L01 gene 1.116 110 RikEN cDNA 4230056P14 gene 1.116 1110 RikEN cDNA A230056P14 gene 1.114 11111 Neachydras frase 2 (arylamin no	0.00102	1.087	Ras homolog gene family, member J	Rhoj
Shwachman-Bodian-Dianood syndrome homolog (human) 1.142 204K14Rik RIKEN CDNA 2610204K14 gene 1.142 18b Myosin XVIIIb 1.140 11 Myosin XVIIIb 1.140 4 Hear shock preprised transcript 1.140 1 Integral membrane protein 4 1.140 5 Integral membrane protein 2B 1.140 1 Integral membrane protein 2B 1.135 1 Retinoblastoma 1 1.135 1 Retinoblastoma 1 1.132 1 Retinoblastoma 1	0.02405	1.087	Kruppel-like factor 15	Klf15
Shwachman-Bodian-Diamond syndrome homolog (human)1.42204K14RikRUEIN cDNA 2610204K1/4 gene1.14118bNyone Synthesis (transcript1.14111Hear shock protein 41.1425Integral membrane protein 2B1.13516AlkB, alkylation repair homolog 2 (E. coli)1.13411Serine hydroxymethyltransferase 1 (soluble)1.13211Serine hydroxymethyltransferase 1 (soluble)1.13211RUEIN cDNA 43(04)/5E04 gene1.13211RUEIN cDNA 43(04)/5E04 gene1.13211RUEIN cDNA 43(04)/5E04 gene1.13211RUEIN cDNA 64(00071/1) gene1.13216NA1.13417RUEIN cDNA 04(00071/1) gene1.13516NA1.13417RUEIN cDNA 04(00071/1) gene1.13518RUEIN cDNA 04(00071/1) gene1.13519NA binding motif protein 161.13510RUEIN cDNA 04(00071/1) gene1.13511RUEIN cDNA 04(00071/1) gene1.11516RUEIN cDNA 04(00071/1) gene1.11617Ruein on 31.11616RUEIN cDNA 04(00071/1) gene1.11616RUEIN cDNA 04(00071/1) gene1.11617RUEIN cDNA 04(00071/1) gene1.11616RUEIN cDNA 04(00071/1) gene1.11616RUEIN cDNA 04(0007)1.11617RUEIN cDNA 04(0007)1.11618RUEIN cDNA 04(0007)1.11619RUEIN cDNA 04(0007)<	0.02382	1.093	RIKEN cDNA 1300010M03 gene	1300010M03Rik
Shwachman-Bodian-Diamond syndrome homolog (human)1.142204K14RikRIKEN cDNA 2.610204K14 gene1.14118.bMyosin XVIIIb1.14014.4Heat shock protein 41.1404Heat shock protein 2B1.1405Integral membrane protein 2B1.135h2Raisonenbrane protein 2B1.135h2Raisonenbrane protein 2B1.13217Serine hydroxymehyltransferase 1 (soluble)1.13211Serine hydroxymehyltransferase 1 (soluble)1.13211RIKEN CDNA 8430415E04 gene1.12212RIKEN CDNA 8430415E04 gene1.12213RIKEN CDNA 8430415E04 gene1.12214NA1.12616RIKEN CDNA 8430415E04 gene1.12616RIKEN CDNA 8430415E04 gene1.12616RIKEN CDNA 8430415E04 gene1.12616RIKEN CDNA 73005GP14 gene1.11616Rikel CDNA A23005GP14 gene1.11417Reticulon31.112111Nacetyltransferase 2 (aryliname N-265 submit, non-ATPase, 111.108111Nacetyltransferase 2 (aryliname N-265 submit, non-ATPase, 111.008111Nacetyltransferase 2 (aryliname N-265 submit, non-ATPase, 111.008112Nationi centerination fore	0.02402	1.095	Adiponectin receptor 1	Adipor1
Shwachmar-Bodian-Diamond syndrome homolog (human)1.142204K14RikRIKEN cDNA 2610204K14 gene1.14111Myosin XVIIIbMyosin XVIIIb1.14011Ubquitously expressed transcript1.1404Hear shock protein 41.1405Integral membrane protein 2B1.1406Integral membrane protein 2B1.135 12 AikB, alkylation repair homolog 2 (E. coli)1.135 12 Reinoblastom 11.135 11 Serine hydroxymethyltransferase 1 (soluble)1.132 11 Serine hydroxymethyltransferase 1 (soluble)1.122 11 Serine hydroxymethyltransferase 1 (soluble)1.124 11 1.1251.124 11 RIKEN cDNA 061007L01 gene1.124 12 NAGoltod7L01 gene1.126 14 RIKEN cDNA 061007L01 gene1.126 16 RNA binding motif protein 101.141 16 RNA binding motif protein 101.115 16 RNA binding motif protein 101.114 111 Reciulon 31.114 112 1.1141.114 111 Reciulon 31.114 1111 N-acetyltransferase, 11.114 1112 N-acetyltransferase, 2 (arylamine N-acetyltransferase, 111.103 1111 N-acetyltransferase, 2 (arylamine N-acetyltransferase)1.008 10081 Antigenic determinant of rec-A protein1.008	0.01681	1.098	Neural cell adhesion molecule 1	Ncam1
Shwachman-Bodian-Diamond syndrome homolog (human) 1.42 204K14RikRIKEN cDNA 2610204K14 gene 1.141 1Myosin XVIIIb 1.140 18bMyosin XVIIIb 1.140 18bIntegral nembrane protein 2B 1.140 4Heat shock protein 2B 1.140 h^2 AlkB, alkylation repair homolog 2 (E. coli) 1.135 h^2 Transmembrane protein 79 1.134 111Serine bydrosymethyltransferase 1 (soluble) 1.125 1.124 RIKEN cDNA 830415E04 gene 1.126 $415E04Rik$ RIKEN cDNA 830415E04 gene 1.126 1.124 Ritel convasienase, mu 4 1.120 1.146 Ritel cor cysteine 16 1.116 1.116 Ritel cor cysteine 2 (arylamine N-acetyltransferase) 1.112 1.116 Ritel cor cysteine 2 (arylamine 2 (arylamine N-acetyltransferase) 1.103	0.00906	1.098	Antigenic determinant of rec-A protein	Kin
Image: main space in the integration of the integrati	0.01674	1.103	N-acetyltransferase 2 (arylamine N-acetyltransferase)	Nat2
Shwachman-Bodian-Diamond syndrome homolog (human) 1.42 204K14RikRIKEN cDNA 2610204K14 gene 1.141 18bMyosin XVIIIb 1.140 18bUbiquitously expressed transcript 1.140 4Inegral membrane protein 28 1.135 bInegral membrane protein 29 1.135 h2AIRB, alkylation repair homolog 2 (E. coli) 1.136 h2Fransmebrane protein 79 1.135 h2Retinoblastoma 1 1.132 h2Serine hydroxymethyltransferase 1 (soluble) 1.132 11Serine hydroxymethyltransferase 1 (soluble) 1.125 11NANA 1.126 12NA 1.126 16RIKEN cDNA 8430415E04 gene 1.126 16Ruk binding motif protein 16 1.112 16Riciculon 3 1.114 17Reticulon 3 1.114 18NA 1.114 192Serine (or cysteine) peptidase inhibitor, clade B (ovalbunin), member 12 1.112	0.02625	1.108	Proteasome (prosome, macropain) 26S subunit, non-ATPase, 11	Psmd11
Image: Sinvace Imane Bodian-Diamond syndrome homolog (human)1.142204K14RikRIKEN cDNA 2610204K14 gene1.141204K14RikMyosin XVIIIb1.14018bUbiquitously expressed transcript1.1404Heat shock protein 41.1405Integral membrane protein 2B1.145h2AlkB, alkylation repair homolog 2 (E. coli)1.135h2Transmembrane protein 791.134m79Retinoblastoma 11.13211Serine hydroxymethyltransferase 1 (soluble)1.13212NARIKEN cDNA 430415E04 gene1.124141NARIKEN cDNA 061007L01 gene1.126141Glutanhione S-transferase, mu 41.12016RNA binding motif protein 161.11416Reciculon 31.11417Reciculon 31.114	0.03229	1.112	RIKEN cDNA A230056P14 gene	A230056P14Rik
Image: Shwachman-Bodian-Diamond syndrome homolog (human) 1.42 204K14RikRIKEN cDNA 2610204K14 gene 1.141 204K14RikRIKEN cDNA 2610204K14 gene 1.140 18bMyosin XVIIIb 1.140 18bMyosin XVIIIb 1.140 18bUbiquitously expressed transcript 1.140 4Ubiquitously expressed transcript 1.140 4Hear shock protein 4 1.135 bIntegral membrane protein 2B 1.135 h2AlkB, alkylation repair homolog 2 (E. coli) 1.134 n/9Retinoblastoma 1 1.132 1.1504 Retinoblastoma 1 1.125 1Serine hydroxymethyltransferase 1 (soluble) 1.125 1Serine hydroxymethyltransferase 1 (soluble) 1.125 11RIKEN cDNA 843041504 gene 1.126 12NARIKEN cDNA 843041504 gene 1.126 14Glutathione S-transferase, mu 4 1.126 16RNA binding motif protein 16 1.114 17Reticulon 3 1.114	0.03623	1.114	Serine (or cysteine) peptidase inhibitor, clade B (ovalbumin), member 12	Serpinb12
Shwachman-Bodian-Diamond syndrome homolog (human) 1.42 204K14RikRIKEN cDNA 2610204K14 gene 1.410 204K14RikMyosin XVIIIb 1.410 18bMyosin XVIIIb 1.410 18bUbiquitously expressed transcript 1.420 4Heat shock protein 4 1.410 6Integral membrane protein 2B 1.135 h2AlkB, alkylation repair homolog 2 (E. coli) 1.136 n79Transmembrane protein 79 1.132 1.12 Retinoblastoma 1 1.132 1.12 Serine hydroxymethyltransferase 1 (soluble) 1.122 1.12 NANA 1.120 1.121 NANA 1.120 1.121 NARIKEN cDNA 0610007L01 gene 1.120 1.121 RIKEN cDNA 0610007L01 gene 1.120 1.44 RIKEN cDNA 0610007L01 gene 1.116 1.44 RIKEN cDNA 0610007L01 gene 1.116 1.44 RIKA binding motif protein 16 1.115	0.01250	1.114	Reticulon 3	Rtn3
Image: Shwachnan-Bodian-Diamond syndrome homolog (human) 1.42 204K14RikRIKEN cDNA 2610204K14 gene 1.41 204K14RikRIKEN cDNA 2610204K14 gene 1.40 18bMyosin XVIIIb 1.40 1.40 18bMyosin XVIIIb 1.40 1.40 18bUbiquitously expressed transcript 1.40 1.40 4Heat shock protein 4 1.40 1.40 5Integral membrane protein 2B 1.135 1.135 h2AlkB. alkylation repair homolog 2 (E. coli) 1.134 1.134 n79AlkB. alkylation repair homolog 2 (E. coli) 1.134 1.132 117Retinoblastoma 1 1.132 1.132 11Serine hydroxymethyltransferase 1 (soluble) 1.122 1.122 11RIKEN cDNA 8430415E04 gene 1.124 1.124 11RIKEN cDNA 8430415E04 gene 1.124 1.120 11RIKEN cDNA 6010007L01 gene 1.124 1.120 14Glutathione S-transferase, mu 4 1.116 1.116	0.00171	1.115	RNA binding motif protein 16	Rbm16
Shwachman-Bodian-Dianond syndrome homolog (human)1.142204K14RikRIKEN cDNA 2610204K14 gene1.14118bMyosin XVIIIb1.14018bUbiquitously expressed transcript1.1404Heat shock protein 41.1405Integral membrane protein 2B1.135h2AlkB, alkylation repair homolog 2 (E. coli)1.134n79Transmembrane protein 791.13411Serine hydroxymethyltransferase 1 (soluble)1.13212ItKEN cDNA 8430415E04 gene1.124v1c1NANARIKEN cDNA 0610007L01 gene1.18	0.01444	1.115	Glutathione S-transferase, mu 4	Gstm4
Shwachman-Bodian-Diamond syndrome homolog (human)1.142204K14RikRIKEN cDNA 2610204K14 gene1.141204K14RikMyosin XVIIIb1.14018bMyosin XVIIIb1.14018bUbiquitously expressed transcript1.1404Heat shock protein 41.1405Integral membrane protein 2B1.135h2AlkB, alkylation repair homolog 2 (E. coli)1.134n79Transmembrane protein 791.1341.1Retinoblastoma 11.1321.1Serine hydroxymethyltransferase 1 (soluble)1.1251.12RIKEN cDNA 8430415E04 gene1.124NANA1.120	0.01614	1.118	RIKEN cDNA 0610007L01 gene	0610007L01Rik
Shwachman-Bodian-Dianond syndrome homolog (human) 1.142 204K14RikRIKEN cDNA 2610204K14 gene 1.142 204K14RikMyosin XVIIIb 1.141 18bMyosin XVIIIb 1.140 18bUbiquitously expressed transcript 1.140 4Heat shock protein 4 1.140 5bIntegral nembrane protein 2B 1.135 h2AlkB, alkylation repair homolog 2 (E. coli) 1.134 n79Transmembrane protein 79 1.134 11Serine hydroxymethyltransferase 1 (soluble) 1.125 415E04RikRIKEN cDNA 8430415E04 gene 1.124	0.01614	1.120	NA	Atp6v1c1
Shwachman-Bodian-Diamond syndrome homolog (human) 1.142 204K14RikRIKEN cDNA 2610204K14 gene 1.141 18bMyosin XVIIIb 1.140 18bUbiquitously expressed transcript 1.140 4Heat shock protein 4 1.135 bIntegral membrane protein 2B 1.135 h2AlkB, alkylation repair homolog 2 (E. coli) 1.134 n79Transmembrane protein 79 1.134 Retinoblastoma 1 1.132 1.132 11Serine hydroxymethyltransferase 1 (soluble) 1.125	0.01960	1.124	RIKEN cDNA 8430415E04 gene	8430415E04Rik
Image: market diamet	0.00268	1.125	Serine hydroxymethyltransferase 1 (soluble)	Shmt1
Image: market for the second syndrome homolog (human)1.142204K14RikRIKEN cDNA 2610204K14 gene1.14118bMyosin XVIIIb1.14018bUbiquitously expressed transcript1.1404Heat shock protein 41.135bIntegral membrane protein 2B1.135h2AlkB, alkylation repair homolog 2 (E. coli)1.134179Transmembrane protein 791.134	0.03985	1.132	Retinoblastoma 1	Rb1
Image: heat for the strength of the strength	0.01614	1.134	Transmembrane protein 79	Tmem79
Shwachman-Bodian-Diamond syndrome homolog (human) 1.142 204K14RikRIKEN cDNA 2610204K14 gene 1.141 18bMyosin XVIIIb 1.140 LUbiquitously expressed transcript 1.140 4Heat shock protein 4 1.135 bIntegral membrane protein 2B 1.135	0.01880	1.134	(E	Alkbh2
Shwachman-Bodian-Diamond syndrome homolog (human)1.142204K14RikRIKEN cDNA 2610204K14 gene1.14118bMyosin XVIIIb1.140Ubiquitously expressed transcript1.1404Heat shock protein 41.135	0.02382	1.135	Integral membrane protein 2B	Itm2b
Shwachman-Bodian-Diamond syndrome homolog (human) 1.142 204K14Rik RIKEN cDNA 2610204K14 gene 1.141 18b Myosin XVIIIb 1.140 18b Ubiquitously expressed transcript 1.140	0.00923	1.135	Heat shock protein 4	Hspa4
Shwachman-Bodian-Diamond syndrome homolog (human) 1.142 204K14Rik RIKEN cDNA 2610204K14 gene 1.141 18b Myosin XVIIIb 1.140	0.01186	1.140	Ubiquitously expressed transcript	Uxt
Shwachman-Bodian-Diamond syndrome homolog (human)1.142204K14RikRIKEN cDNA 2610204K14 gene1.141	0.02101	1.140	Myosin XVIIIb	Myo18b
Shwachman-Bodian-Diamond syndrome homolog (human) 1.142	0.01334	1.141	RIKEN cDNA 2610204K14 gene	2610204K14Rik
	0.01317	1.142	Shwachman-Bodian-Diamond syndrome homolog (human)	Sbds

0.03024	-1.010	RIKEN cDNA C030048H21 gene	C030048H21Rik
0.01732	-1.006	Solute carrier family 6 (neurotransmitter transporter), member 19	Slc6a19
0.01725	-1.006	Clarin 1	Clrn1
0.01251	-1.004	Stomatin	Stom
0.00500	1.002	Kell blood group	Kel
0.02899	1.008	5'-nucleotidase, cytosolic III-like	Nt5c31
0.01317	1.010	Ubiquitin specific peptidase 4 (proto-oncogene)	Usp4
0.02387	1.010	G protein-coupled receptor 83	Gpr83
0.00662	1.013	Malignant T cell amplified sequence 2	Mcts2
0.01630	1.016	SRY-box containing gene 8	Sox8
0.04051	1.017	Cell division cycle 123 homolog (S. cerevisiae)	Cdc123
0.03717	1.018	GA repeat binding protein, beta 2	Gabpb2
0.03388	1.019	THUMP domain containing 2	Thumpd2
0.02534	1.019	Solute carrier family 2 (facilitated glucose transporter), member 5	Slc2a5
0.04794	1.019	Sidekick homolog 1 (chicken)	Sdk1
0.01042	1.021	Selenophosphate synthetase 1	Sephs1
0.00643	1.021	Phosphatidylinositol glycan anchor biosynthesis, class Y	Pigy
0.03996	1.021	CAMP responsive element binding protein 3	Creb3
0.00287	1.021	Bruno-like 4, RNA binding protein (Drosophila)	Brunol4
0.02155	1.024	RIKEN cDNA C230093N12 gene	C230093N12Rik
0.02286	1.029	Inner membrane protein, mitochondrial	Immt
0.01685	1.035	Transmembrane protein 119	Tmem119
0.02126	1.036	COX11 homolog, cytochrome c oxidase assembly protein (yeast)	Cox11
0.00331	1.037	ERGIC and golgi 2	Ergic2
0.02120	1.040	Thymoma viral proto-oncogene 1 interacting protein	Aktip
0.00330	1.040	RIKEN cDNA 5830471E12 gene	5830471E12Rik
0.02126	1.040	RIKEN cDNA 1110034G24 gene	1110034G24Rik
0.02286	1.044	RUN and FYVE domain containing 3	Rufy3
0.00647	1.046	Mediator of RNA polymerase II transcription, subunit 28 homolog (yeast)	Med28
0.02010	1.058	RIKEN cDNA 2410002F23 gene	2410002F23Rik
0.04117	1.064	Ectonucleotide pyrophosphatase/phosphodiesterase 2	Enpp2
0.00713	1.070	Gamma-aminobutyric acid (GABA(A)) receptor-associated protein-like 1	Gabarap11
0.00662	1.071	Ssu72 RNA polymerase II CTD phosphatase homolog (yeast)	Ssu72
0.01873	1.072	Bicaudal D homolog 1 (Drosophila)	BICUI

SNPS domain family, member 2 -1.012 0.027 Prediced gene, ENSIVISCO00051848 -1.027 0.0261 CA2-related kinase, arginite/senito-fich -1.027 0.0027 Eukerytic translation inhitor factor 41 -1.027 0.0027 Inhibitor of KappaB kinase gamma -1.027 0.0027 Inhibitor of KappaB kinase gamma -1.027 0.0027 Inhibitor of KappaB kinase gamma -1.024 0.00267 Inhibitor of KappaB kinase gamma -1.047 0.00267 Inhibitor of KappaB kinase gamma -1.043 0.00267 Aktrin repeat domain 13 -1.047 0.00267 Aukrin repeat domain 13 -1.045 0.00267 Filzand bomolog 2(Onsophila) -1.050 0.01631 Filzand bomolog 1000 -1.050 0.01637 Filzand bomolog 10000000 </th <th>0.02376</th> <th>-1.115</th> <th>Fibulin 2</th> <th>Fbln2</th>	0.02376	-1.115	Fibulin 2	Fbln2
1.002 1.012 1.002 1.027 1.027 1.027 factor 4H 1.027 1.027 1.028 1.028 1.028 1.038 1.038 1.038 1.038 1.038 1.038 1.038 1.038 1.038 1.043 1.041 1.043 1.041 1.043 1.041 1.043 1.041 1.043 1.041 1.043 1.041 1.043 1.041 1.043 1.043 1.043 1.043 1.043 1.043 1.043 1.043 1.043 1.043 1.043 1.043 1.043 1.043 1.043 1.043 1.043 1.041 1.065 1.051 1.065 1.061 1.065 1.071	0.03514	-1.114	RIKEN cDNA 2210038L17 gene	2210038L17Rik
10051848 1.012 10051848 1.027 1.029 1.023 1.033 1.033 1.044 1.044 1.044 1.045 1.044 1.045 1.045 1.045 1.045 1.045 1.045 1.050 1.045 1.050 1.045 1.050 1.046 1.050 1.045 1.050 1.045 1.057 1.045 1.062 1.050 1.005 1.071	0.02496	-1.113	TNFRSF1A-associated via death domain	Tradd
10051848 -1012 10051848 -1027 10077 -1027 10077 -1027 10077 -1027 10077 -1027 10077 -1027 10077 -1027 10077 -1029 10077 -1029 1007 -1029 1007 -1029 1007 -1038 1009 -1043 1009 -1043 1009 -1043 1009 -1045 1009 -1045 1009 -1045 1009 -1045 1009 -1050 1006 -1050 1006 -1057 1006 -1057 1006 -1056 1006 -1057 1006 -1056 1006 -1056 1006 -1056 1008 -1088 <td>0.01361</td> <td>-1.110</td> <td>Chemokine (C-C motif) receptor 9</td> <td>Ccr9</td>	0.01361	-1.110	Chemokine (C-C motif) receptor 9	Ccr9
	0.00009	-1.106	WD repeat domain containing 82	Wdr82
1012 -1.012 10051848 -1.027 1.027 -1.027 factor $4H$ -1.027 1.027 -1.027 1.027 -1.027 1.027 -1.027 1.027 -1.027 1.027 -1.027 1.027 -1.027 1.027 -1.023 1.029 -1.029 1.029 -1.029 1.029 -1.029 1.029 -1.029 1.029 -1.023 1.029 -1.044 1.044 -1.043 1.044 -1.043 1.044 -1.043 1.044 -1.045 1.044 -1.045 1.050 -1.050 1.050 -1.050 1.051 -1.054 1.052 -1.054 1.051 -1.073 1.061 -1.073 1.08 -1.086	0.00826	-1.104	Ubiquitin specific peptidase 7	Usp7
.0051848 -1.012 .0051848 -1.027 ine-rich -1.027 factor 4H -1.028 ne -1.038 ie -1.038 scor 4H -1.038 na -1.041 na -1.041 polypeptide 21 -1.044 scor evisiae) -1.044 polypeptide 21 -1.045 se doxygenase (proline 4-hydroxylase), alpha 1 polypeptide -1.045 g protein 280) -1.057 ae domain 23 -1.057 se domain 23 -1.0160 alayiti delta polypeptide -1.071 alayiti delta polypeptide -1.073 alayiti delta polypeptide -1.086 alayiti delta polypeptide -1.088 alayiti delta polypeptide -1.088 alayiti delta polypeptide -1.088 a	0.04632	-1.102	DEAD (Asp-Glu-Ala-Asp) box polypeptide 6	Ddx6
NO051848 -1,012 10051848 1,027 inine-rich 1,027 ine 1,029 ine 1,029 ine 1,038 ine 1,039 ine 1,043 ine 1,043 ino 1,043 ino 1,044 polypeptide 21 1,045 ino 1,047 ino 1,045 ino 1,045 g protein 280) 1,050 ise domain 23 1,050 ise domain 23 1,050 ino 1,051 ino 1,052 ino 1,056 ino 1,051 ino 1,052 ino	0.01501	-1.098	Tetraspanin 31	Tspan31
NO051848 -1,012 00051848 -1,027 ine-rich -1,027 iactor 4H -1,023 ie -1,038 ie -1,039 ie -1,039 is. -1,041 ing -1,043 is. -1,043 (S. cerevisiae) -1,043 polypeptide 21 -1,044 polypeptide 21 -1,045 sg protein 280) -1,045 iate 4-dioxygenase (proline 4-hydroxylase), alpha 1 polypeptide -1,050 is gorotein 280 -1,050 is e domain 23 -1,057 is e domain 23 -1,065 ialyric delta polypeptide -1,065 ialyric delta polypeptide -1,084 ialyric delta polypeptide -1,086 ialyric delta polypeptide -1,086 ialyric delta polypeptide -1,086 ialyric delta polypeptide -1,086	0.02886	-1.098	Matrix metallopeptidase 19	Mmp19
Nonstant -1.012 nonstation -1.027 factor 4H -1.027 ne -1.027 na -1.029 ne -1.038 na -1.039 (S. cerevisiae) -1.041 polypeptide 21 -1.043 5 -1.045 5 -1.045 5 -1.045 1.045 -1.045 1.045 -1.045 polypeptide 21 -1.045 5 -1.045 -1.045 5 -1.050 -1.050 3 -1.050 -1.050 ate 4-dioxygenase (proline 4-hydroxylase), alpha 1 polypeptide -1.050 ate 4-dioxygenase (proline 4-hydroxylase), alpha 1 polypeptide -1.050 se domain 23 -1.065 -1.065 se domain 23 -1.065 -1.065 allytic delta polypeptide -1.084 -1.084 allytic delta polypeptide -1.086 -1.086	0.03090	-1.093	CDNA sequence BC005537	BC005537
0.0051848 -1.012 0.0051848 -1.027 1.027 -1.027 factor 4H -1.029 na -1.039 e -1.041 na -1.041 na -1.043 $o. cerevisiae$ -1.043 $polypeptide 21$ -1.044 $polypeptide 21$ -1.045 $a. + 1.050$ -1.045 $a. + 1.050$ -1.045 $g. protein 280$ -1.050 $a. + 4.050$ -1.054 $a. + 1.050$ -1.055 $a. + 0.050$ -1.056 $a. + 0.050$ -1.056 $a. + 0.050$ -1.057 $a. + 0.050$ -1.056 $a. + 0.050$ -1.057 $a. + 0.050$ -1.056 $a. + 0.050$ -1.056 $a. + 0.050$ -1.056 $a. + 0.050$ -1.056 $a. + 0.050$ -1.065 <td>0.02013</td> <td>-1.088</td> <td>Denticleless homolog (Drosophila)</td> <td>Dtl</td>	0.02013	-1.088	Denticleless homolog (Drosophila)	Dtl
0.0051848 -1.012 0.0051848 -1.027 1.027 -1.027 1.027 -1.027 1.027 -1.027 1.027 -1.027 1.027 -1.027 1.027 -1.027 1.027 -1.023 1.029 -1.029 1.029 -1.038 1.029 -1.039 1.029 -1.039 1.029 -1.041 1.039 -1.043 1.041 -1.043 1.041 -1.044 1.041 -1.045 1.041 -1.045 1.041 -1.045 1.041 -1.045 1.041 -1.045 1.041 -1.045 1.050 -1.050 1.050 -1.050 1.050 -1.050 1.051 -1.050 1.052 -1.050 1.052 -1.050 1.052 -1.060 1.062 -1.065 1.071 <td< td=""><td>0.02382</td><td>-1.086</td><td>HLA-B-associated transcript 1A</td><td>Bat1a</td></td<>	0.02382	-1.086	HLA-B-associated transcript 1A	Bat1a
1.012 1.012 1.027 1.029 1.029 1.029 1.029 1.029 1.038 1.029 1.039 1.039 1.039 1.041 1.041 1.041 1.041 1.041 1.043 1.045 1.045 1.045 1.047 1.047 1.047 1.047 1.047 1.047 1.047 1.047 1.050 1.047 1.050 1.050 1.050 1.050 1.051 1.050 1.051 1.051 1.051 <td< td=""><td>0.04084</td><td>-1.084</td><td>RIKEN cDNA 2810408A11 gene</td><td>2810408A11Rik</td></td<>	0.04084	-1.084	RIKEN cDNA 2810408A11 gene	2810408A11Rik
.0051848 -1.012 .0051848 -1.027	0.04113	-1.073	Phosphatidylinositol 3-kinase catalytic delta polypeptide	Pik3cd
.0051848 -1.012 .0051848 -1.027 .ine-rich -1.027 factor 4H -1.029 ne -1.038 .e -1.039 iscor 4H -1.039 .e -1.041 na -1.041 na -1.041 .o -1.041 .o -1.041 polypeptide 21 -1.044 .o -1.047 .o -1.047 .o -1.045 .o -1.050 .a -1.050 .a -1.054 .o -1.054 .o -1.056 .o -1.060	0.00278	-1.071	CCR4-NOT transcription complex, subunit 1	Cnot1
.0051848 -1.012 .0051848 -1.027 ine-rich -1.027 factor 4H -1.029 ne -1.038 e -1.039 ise -1.039 (S. cerevisiae) -1.041 polypeptide 21 -1.043 5 -1.047 3 -1.047 ate 4-dioxygenase (proline 4-hydroxylase), alpha 1 polypeptide -1.050 9 protein 280) -1.054 9 protein 280 -1.054 9 protein 280 -1.050 10.050 -1.054 10.050 -1.054 10.050 -1.054 10.050 -1.050 10.050 -1.050 10.050 -1.050 10.050 -1.050 10.050 -1.050 10.050 -1.050 10.050 -1.050 10.050 -1.050 10.050 -1.050 10.050 -1.050 10.050 -1.050 <t< td=""><td>0.01998</td><td>-1.065</td><td>A disintegrin and metallopeptidase domain 23</td><td>Adam23</td></t<>	0.01998	-1.065	A disintegrin and metallopeptidase domain 23	Adam23
.0051848 -1.012 .0051848 -1.027 rine-rich -1.027 factor 4H -1.029 ne -1.039 e -1.039 (S. cerevisiae) -1.041 polypeptide 21 -1.043 5 -1.045 5 -1.047 3ate 4-dioxygenase (proline 4-hydroxylase), alpha 1 polypeptide -1.050 9 -1.054 9 -1.054 9 -1.054 9 -1.054 9 -1.054 9 -1.055 9 -1.056 10 -1.057 10 -1.054 10.057 -1.057	0.01399	-1.062	CD44 antigen	Cd44
-1.012 00051848 -1.027 -1.027 -1.027 $rine-rich$ -1.027 factor $4H$ -1.029 ne -1.029 ne -1.029 ne -1.039 ne -1.039 ne -1.039 ne -1.039 na -1.041 na -1.041 $polypeptide 21$ -1.043 $polypeptide 21$ -1.045 5 -1.047 -1.047 5 -1.0450 -1.050 na -1.050 -1.050 5 -1.050 -1.050 2 -1.050 -1.050 -1.053 $are 4$ -dioxygenase (proline 4-hydroxylase), alpha 1 polypeptide -1.053 -1.054 -1.054 2 $protein 28$ -1.057 -1.057 -1.057 -1.057	0.04084	-1.060	Expressed sequence BB031773	BB031773
4.012 5 30051848 -1.027 crime-rich -1.027 factor 4H -1.029 ne -1.039 ne -1.039 le -1.041 ma -1.041 na -1.041 polypeptide 21 -1.043 polypeptide 21 -1.045 5 -1.047 3 -1.050 1 -1.050 1 -1.050 1 -1.053	0.01359	-1.057	Lysosomal-associated membrane protein 2	Lamp2
-1.012 00051848 -1.027 ine-rich factor 4H e ne (S. cerevisiae) (S. cerevisiae) (S. cerevisiae) -1.044 polypeptide 21 5 1.027 1.028 -1.029 1.038 1.039 1.039 1.041 na -1.043 5 1.044 1.045 1.047 5 1.047 1.050 1.050 1.050	0.03985	-1.054	Filamin C, gamma (actin binding protein 280)	Flnc
-1.012 -1.012 00051848 -1.027 ine-rich -1.027 factor 4H -1.029 ie -1.039 ic (S. cerevisiae) -1.041 polypeptide 21 -1.045 5 -1.050) -1.050	0.00578	-1.053	Procollagen-proline, 2-oxoglutarate 4-dioxygenase (proline 4-hydroxylase), alpha 1 polypeptide	P4ha1
0051848 -1.012 ne-rich -1.027 factor 4H -1.029 ne -1.039 ne -1.041 na -1.041 (S. cerevisiae) -1.043 polypeptide 21 -1.045 5 -1.050	0.01831	-1.050	Frizzled homolog 2 (Drosophila)	Fzd2
-1.012 00051848 -1.027 ime-rich -1.027 factor 4H -1.029 ne -1.038 le -1.039 kactor 4H -1.041 na -1.043 (S. cerevisiae) -1.043 polypeptide 21 -1.045	0.04593	-1.050	Cytoskeleton associated protein 5	Ckap5
.0051848 -1.012 .0051848 -1.027	0.01651	-1.047	Ankyrin repeat domain 13a	Ankrd13a
0051848 -1.012 0051848 -1.027 rine-rich -1.027 factor 4H -1.029 ne -1.039 ne -1.041 ie -1.041 na -1.043 (5. cerevisiae) -1.044	0.04629	-1.045	DEAD (Asp-Glu-Ala-Asp) box polypeptide 21	Ddx21
-1.012 00051848 -1.027 ine-rich -1.029 factor 4H -1.038 ie -1.039 ia -1.043	0.04880	-1.044	Longevity assurance homolog 4 (S. cerevisiae)	Lass4
-1.012 00051848 -1.027 ine-rich -1.027 factor 4H -1.029 ie -1.038 ie -1.039 ie -1.041	0.02899	-1.043	Inhibitor of kappaB kinase gamma	Ikbkg
-1.012 00051848 -1.027 -1.027 -1.027 rine-rich -1.029 factor 4H -1.038 ne -1.039	0.00505	-1.041	RIKEN cDNA E130116L18 gene	E130116L18Rik
-1.012 00051848 -1.027 -1.027 -1.027 rine-rich -1.029 factor 4H -1.038	0.00355	-1.039	RIKEN cDNA C330006K01 gene	C330006K01Rik
-1.012 00051848 -1.027 -1.027 -1.027 -1.027 -1.027	0.01275	-1.038	Eukaryotic translation initiation factor 4H	Eif4h
-1.012 00051848 -1.027 -1.027	0.03024	-1.029	Cdc2-related kinase, arginine/serine-rich	Crkrs
-1.012 00051848 -1.027	0.00529	-1.027	WD repeat domain 89	Wdr89
-1.012	0.01012	-1.027	Predicted gene, ENSMUSG00000051848	ENSMUSG00000051848
	0.02510	-1.012	SAPS domain family, member 2	Saps2

0.00847	-1.219	Serine hydroxymethyltransferase 2 (mitochondrial)	Shmt2
0.02449	-1.218	HIG1 domain family, member 2A	Higd2a
0.01003	-1.217	SEC16 homolog A (S. cerevisiae)	Sec16a
0.01361	-1.209	Tnf receptor-associated factor 2	Traf2
0.00751	-1.206	Adenylosuccinate lyase 1	Adsl
0.02084	-1.204	Ribonucleotide reductase M2	Rrm2
0.04758	-1.204	Mannan-binding lectin serine peptidase 1	Masp1
0.01680	-1.204	FAT tumor suppressor homolog 1 (Drosophila)	Fat1
0.04627	-1.203	Expressed sequence AI847670	AI847670
0.02390	-1.199	Dynein cytoplasmic 1 intermediate chain 2	Dync1i2
0.00854	-1.197	Leucine rich repeat containing 40	Lrrc40
0.00164	-1.197	Alport syndrome, mental retardation, midface hypoplasia and elliptocytosis chromosomal region gene 1 homolog (human)	Ammecr1
0.02126	-1.196	Embryonic ectoderm development	Eed
0.00854	-1.191	Cyclin-dependent kinase 9 (CDC2-related kinase)	Cdk9
0.04172	-1.190	RIKEN cDNA A630033H20 gene	A630033H20Rik
0.00307	-1.189	RIKEN cDNA 4930423O20 gene	4930423O20Rik
0.01488	-1.188	Shroom family member 2	Shroom2
0.02084	-1.176	Dephospho-CoA kinase domain containing	Dcakd
0.03875	-1.174	Staphylococcal nuclease and tudor domain containing 1	Snd1
0.00768	-1.167	Fatty acid synthase	Fasn
0.01361	-1.158	Lysyl oxidase-like 2	Loxl2
0.01317	-1.157	Phosphodiesterase 4D interacting protein (myomegalin)	Pde4dip
0.01329	-1.156	GTP binding protein 4	Gtpbp4
0.03388	-1.154	RIKEN cDNA 2900005J15 gene	2900005J15Rik
0.04872	-1.153	Cholinergic receptor, nicotinic, alpha polypeptide 1 (muscle)	Chrna1
0.02571	-1.151	Adenosine monophosphate deaminase 2 (isoform L)	Ampd2
0.01518	-1.145	Ubiquitin-conjugating enzyme E2C	Ube2c
0.01651	-1.143	ATP-binding cassette, sub-family C (CFTR/MRP), member 9	Abcc9
0.00076	-1.142	Transient receptor potential cation channel, subfamily C, member 4 associated protein	Trpc4ap
0.01974	-1.130	Stearoyl-Coenzyme A desaturase 2	Scd2
0.00594	-1.129	Polymerase (DNA directed), beta	Polb
0.01764	-1.125	Chaperonin subunit 7 (eta)	Cct7
0.03486	-1.117	Serologically defined colon cancer antigen 3	Sdccag3
0.02758	-1.117	A kinase (PRKA) anchor protein 8	Akap8

0.00076	-1.338	Pyrimidinergic receptor P2Y, G-protein coupled, 4	P2ry4
0.02382	-1.335	RIKEN cDNA D330001F17 gene	D330001F17Rik
0.02899	-1.332	Polypyrimidine tract binding protein 1	Ptbp1
0.01619	-1.331	Hemopexin	Hpx
0.00330	-1.315	Pinin	Pnn
0.00842	-1.315	UDP-GlcNAc:betaGal beta-1,3-N-acetylglucosaminyltransferase-like 1	B3gntl1
0.04489	-1.315	RIKEN cDNA 4833442J19 gene	4833442J19Rik
0.02515	-1.314	RAB, member of RAS oncogene family-like 2A	Rabl2a
0.00505	-1.311	RIKEN cDNA A930005I04 gene	A930005I04Rik
0.00015	-1.310	Serine protease inhibitor, Kunitz type 1	Spint1
0.02842	-1.307	Actinin alpha 4	Actn4
0.04157	-1.306	Predicted gene, EG433144	EG433144
0.01630	-1.305	Phosphatidylserine decarboxylase	Pisd
0.00662	-1.294	RIKEN cDNA 1200009F10 gene	1200009F10Rik
0.00727	-1.287	RAD50 interactor 1	Rint1
0.02158	-1.284	Intraflagellar transport 172 homolog (Chlamydomonas)	Ift172
0.01547	-1.282	Lamin B receptor	Lbr
0.00472	-1.281	RIKEN cDNA 4930550G17 gene	4930550G17Rik
0.02387	-1.280	Riken cDNA C230021P08 gene	C230021P08Rik
0.03655	-1.279	RIKEN cDNA 2010003O18 gene	2010003O18Rik
0.01152	-1.278	Tripartite motif protein 2	Trim2
0.00683	-1.266	Polymerase (DNA directed), epsilon	Pole
0.02651	-1.265	Similar to translation initiation factor eIF-2 gamma subunit	LOC100039419
0.04062	-1.265	Excision repair cross-complementing rodent repair deficiency, complementation group 6	Ercc6
0.00512	-1.256	Transcription factor CP2	Tcfcp2
0.02730	-1.256	NmrA-like family domain containing 1	Nmral1
0.02126	-1.253	Protein tyrosine phosphatase, non-receptor type 7	Ptpn7
0.00447	-1.247	Armadillo repeat containing 7	Armc7
0.00320	-1.242	Cortactin	Cttn
0.00258	-1.227	RIKEN cDNA 2600001M11 gene	2600001M11Rik
0.01596	-1.226	Thiamine triphosphatase	Thtpa
0.02913	-1.222	POU domain, class 2, associating factor 1	Pou2af1
0.02191	-1.220	Suppressor of Ty 7 (S. cerevisiae)-like	Supt71
0.00505	-1.219	Chemokine (C motif) receptor 1	Xcrl

0.00034	-1.610	DEAD (Asp-Glu-Ala-Asp) box polypeptide 46	Ddx46
0.00041	-1.603	Ribosomal protein S6 kinase, polypeptide 2	Rps6kb2
0.01411	-1.601	Lectin, galactose binding, soluble 3	Lgals3
0.02913	-1.599	RIKEN cDNA 2200002D01 gene	2200002D01Rik
0.00028	-1.594	RIKEN cDNA 2900046G09 gene	2900046G09Rik
0.02198	-1.574	RIKEN cDNA 4632417N05 gene	4632417N05Rik
0.03436	-1.573	Myelocytomatosis oncogene	Myc
0.04798	-1.553	RIKEN cDNA A430005L14 gene	A430005L14Rik
0.00027	-1.552	Transcriptional adaptor 3 (NGG1 homolog, yeast)-like	Tada31
0.01361	-1.540	Gamma-aminobutyric acid (GABA-A) receptor, subunit theta	Gabrq
0.00936	-1.537	Cell division cycle 37 homolog (S. cerevisiae)	Cdc37
0.00152	-1.536	GULP, engulfment adaptor PTB domain containing 1	Gulp1
0.02144	-1.525	Predicted gene, ENSMUSG00000051848	ENSMUSG0000051848
0.00491	-1.520	EF hand domain family A1	Efha1
0.03760	-1.515	Adenylosuccinate synthetase, non muscle	Adss
0.04673	-1.510	Similar to ribosomal protein L3	LOC100043000
0.00284	-1.491	Centrosomal protein 135	Cep135
0.02787	-1.487	Lanosterol synthase	Lss
0.01567	-1.472	Threonine synthase-like 1 (bacterial)	Thnsl1
0.01596	-1.452	Transmembrane protein 16F	Tmem16f
0.04573	-1.452	Recombination signal binding protein for immunoglobulin kappa J region	Rbpj
0.01359	-1.451	ATP-binding cassette, sub-family B (MDR/TAP), member 6	Abcb6
0.00447	-1.436	RIKEN cDNA 2210010N04 gene	2210010N04Rik
0.00007	-1.433	5-methyltetrahydrofolate-homocysteine methyltransferase	Mtr
0.00061	-1.422	Guanine nucleotide binding protein-like 2 (nucleolar)	Gnl2
0.01894	-1.401	Neuropeptide Y receptor Y2	Npy2r
0.00305	-1.388	RIKEN cDNA B230340J04 gene	B230340J04Rik
0.04734	-1.376	Alcohol dehydrogenase 4 (class II), pi polypeptide	Adh4
0.00529	-1.375	Histocompatibility 2, blastocyst	H2-BI
0.01314	-1.370	Chemokine (C-C motif) receptor 4	Ccr4
0.00443	-1.366	Slit homolog 3 (Drosophila)	Slit3
0.00337	-1.358	Fer-1-like 3, myoferlin (C. elegans)	Fer113
0.01441	-1.347	Regulator of G-protein signaling 11	Rgs11
0.02473	-1.344	CD300A antigen	Cd300a

0.00026	-2.398	Nucleolin	Ncl
0.00000	-2.311	SH3 and cysteine rich domain 3	Stac3
0.00002	-2.228	FtsJ homolog 3 (E. coli)	Ftsj3
0.01685	-2.215	RNA binding motif protein 10	Rbm10
0.00360	-2.131	Cytochrome b5 reductase 1	Cyb5r1
0.01588	-2.096	Polymerase (RNA) II (DNA directed) polypeptide E	Polr2e
0.00411	-2.071	Phosphoribosylformylglycinamidine synthase (FGAR amidotransferase)	Pfas
0.01187	-2.005	Tyrosine 3-monooxygenase/tryptophan 5-monooxygenase activation protein, eta polypeptide	Ywhah
0.00712	-1.997	JAZF zinc finger 1	Jazf1
0.01301	-1.997	Aminolevulinic acid synthase 2, erythroid	Alas2
0.00364	-1.984	RIKEN cDNA C030019F02 gene	C030019F02Rik
0.00243	-1.964	RIKEN cDNA 9130016M20 gene	9130016M20Rik
0.00665	-1.953	UBX domain containing 5	Ubxd5
0.00022	-1.922	Tubulin-specific chaperone e	Tbce
0.01685	-1.901	RIKEN cDNA 4930435E12 gene	4930435E12Rik
0.00692	-1.818	Sterol O-acyltransferase 1	Soat1
0.00375	-1.817	Serine incorporator 3	Serinc3
0.00004	-1.809	Tetratricopeptide repeat, ankyrin repeat and coiled-coil containing 1	Tanc1
0.00330	-1.805	Laminin B1 subunit 1	Lamb1-1
0.01317	-1.803	THAP domain containing 6	Thap6
0.03775	-1.797	Lymphocyte antigen 6 complex, locus E	Lубе
0.00029	-1.794	Acid phosphatase 6, lysophosphatidic	Асрб
0.01250	-1.786	Spire homolog 1 (Drosophila)	Spire1
0.01366	-1.723	Stromal cell derived factor 2	Sdf2
0.01614	-1.711	Rcd1 (required for cell differentiation) homolog 1 (S. pombe)	Rqcd1
0.02013	-1.709	Dynactin 2	Dctn2
0.00491	-1.687	Ribosomal protein SA	Rpsa
0.00031	-1.672	Hypothetical 9130022E09	9.13E+15
0.04658	-1.665	Protein phosphatase 2 (formerly 2A), regulatory subunit B", alpha	Ppp2r3a
0.00031	-1.660	RIKEN cDNA 6030405A18 gene	6030405A18Rik
0.00031	-1.645	Profilin family, member 4	Pfn4
0.01541	-1.639	Cell division cycle associated 8	Cdca8
0.02651	-1.628	TBC1 domain family, member 5	Tbc1d5
0.00015	-1.619	N-acylsphingosine amidohydrolase (alkaline ceramidase) 3	Asah3

0.00000	-3.245	RIKEN cDNA E430029J22 gene	E430029J22Rik
0.00000	-3.009	RIKEN cDNA A830053021 gene	A830053O21Rik
0.00240	-2.929	Potassium voltage-gated channel, shaker-related subfamily, beta member 1	Kcnab1
0.00239	-2.912	Expressed sequence AI118078	AI118078
0.00066	-2.790	RIKEN cDNA A930016022 gene	A930016O22Rik
0.00078	-2.739	Solute carrier family 38, member 6	Slc38a6
0.00038	-2.614	Transmembrane emp24 protein transport domain containing 9	Tmed9
0.00002	-2.580	Small glutamine-rich tetratricopeptide repeat (TPR)-containing, alpha	Sgta
0.00000	-2.560	Interleukin 13 receptor, alpha 2	II13ra2

present also in the NaCl injected controls, therefore it was not considered in further analysis. Genes are listed in alphabetical order. CD= Contralateral Dorsal, CV= Contralateral Ventral. 6h= 6 hours after the injection, 15d= 15 days after the injection, 6m= 6 months after the fold changes for each area and time point. Fold Changes are in logarithmic scale (base 2). ID= Ipsilateral Dorsal, IV= Ipsilateral Ventral, Tab.2: Differentially expressed genes in mouse hippocampus after focal injection of kainic acid. In the 12 columns on the right are reported the injection. The "-" symbol means that for that area at that time point the specific gene is not showing significant change or that change is

Aff ID	Gene	Gene name	6 G	6h <	6h	6h CV	15d	15d	CD 15d	CV 15d	6m D	6m V	CD 6m	CV 6m
1434719_at	A2m	alpha-2-macroglobulin	•	'	•			2.31	1.55		1.59		'	
1421839_at	Abca1	ATP-binding cassette, sub-family A (ABC1), member 1	•	'	ı	•	1.90	1.2	•	1.17		•	•	
1449588_at	Abca4	ATP-binding cassette, sub-family A (ABC1), member 4	•	'	1	'	-1.5	•	•	•	-2.7	•	•	I
14164-3_at	Abcb1-	ATP-binding cassette, sub-family B (MDR/TAP), member 1-	•	'	'	1.11	•	•	•	1.08	·	•	•	I
1419759_at	Abcb1a	ATP-binding cassette, sub-family B (MDR/TAP), member 1A	•	-1.2	I	ı	•	ı	•		ı	•	•	I
1418872_at	Abcb1b	ATP-binding cassette, sub-family B (MDR/TAP), member 1B	•	'	1	'	1.50	•	•	•		•	•	I
1449818_at	Abcb4	ATP-binding cassette, sub-family B (MDR/TAP), member 4	•	ı	I	ı	1.28	ı	ı		ı	ı	ı	ı
1428988_at	Abcc3	ATP-binding cassette, sub-family C (CFTR/MRP), member 3	•	•	1	'	1.95	1.4	1.01		ı	•	•	1
1419748_at	Abcd2	ATP-binding cassette, sub-family D (ALD), member 2	•	•	•	•	1.53	ı	•	-		•	-	ı
1416315_at	Abhd4	abhydrolase domain containing 4	•	•	ı	·	1.00	ı	•	-	ı	•	•	ı
1416863_at	Abhd8	abhydrolase domain containing 8	•	•	1	•	1.27	ı	•	-	ı	-	ı	ı
1428146_s_at	Acaa2	acetyl-Coenzyme A acyltransferase 2 (mitochondrial 3-oxoacyl-Coenzyme A thiolase)	•	•	'	•	•	•	·	-	-1.5	•	•	ı
1449827_at	Acan	aggrecan	•	•	ı	•	3.06	ı	•	-	1.41	•	•	ı
1417994_a_at Accn1	Accn1	amiloride-sensitive cation channel 1, neuronal (degenerin)	•	•	ı	•	1.25	ı	•	-	ı	•	-	I
1427-34_at	Ace	angiotensin I converting enzyme (peptidyl-dipeptidase A) 1	•	•	•	•	-1.1	ı	•	-	-1.5	•	-	ı
1422715_s_at	Acp1	acid phosphatase 1, soluble	•	•	ı	1.14	'	ı	•	-	ı	•	•	ı
1451828_a_at Acsl4	Acsl4	acyl-CoA synthetase long-chain family member 4	1.2	•	1	1.02	1.58		,		ı	•	•	1
1416871_at	Adam8	a disintegrin and metallopeptidase domain 8	1.89	•	,	'	'		,	-			•	
145-716_at	Adamts1	a disintegrin-like and metallopeptidase (reprolysin type) with thrombospondin type 1 motif, 1	1.09	•	'	•	1.42	•	·	-		•	•	ı
1451932_a_at	Adamts14	ADAMTS-like 4	•	•	ı	•	1.28	ı	•	-	ı	•	-	I
1455462_at	Adcy2	adenylate cyclase 2	•	•	•	•	-1.01	ı	•	-		•	-	ı
14563-7_s_at	Adcy7	adenylate cyclase 7	•	•	-1.1	•	2.42	1.5-5	1.26	-	ı	•	•	ı
1423427_at	Adcyap1	adenylate cyclase activating polypeptide 1	•	•	ı	•	1.89	ı	•	•	1.67	•	•	•
1451914_a_at Add2	Add2	adducin 2 (beta)	•	'	'	1.37	•		•		ı	ı	'	•

1431946_a_at Apba2bp	145-915_at	1425567_a_at Anxa5	1424176_a_at	146-33at	1419-91_a_at	1454736_at	1436998_at	1419421_at	141713s_at	145-717_at	1427-44_a_at	1422573_at	1416835_s_at	1452-16_at	1418266_at	1437728_at	1419115_at	1434987_at	1448789_at	1419136_at	1448894_at	1455151_at	14197-6_a_at	14182-4_s_at	1452217_at	1425576_at	1438651_a_at	1416645_a_at	1422335_at	145-214_at	1448318_at	1426574_a_at Add3
Apba2bp	Ap3b1	Anxa5	Anxa4	Anxa3	Anxa2	Ankrd57	Ankrd43	Ank1	Angptl4	Ang	Amph	Ampd3	Amd1	Alox5ap	Alox12b	Alkbh5	Alg14	Aldh2	Aldh1a3	Akr1c18	Akr1b8	Akap9	Akap12	Aifl	Ahnak	Ahcyl1	Agtrl1	Afp	Adra2c	Adora2b	Adfp	Add3
amyloid beta (A4) precursor protein-binding, family A, member 2 binding protein	adaptor-related protein complex 3, beta 1 subunit	annexin A5	annexin A4	annexin A3	annexin A2	ankyrin repeat domain 57	ankyrin repeat domain 43	ankyrin 1, erythroid	angiopoietin-like 4	angiogenin, ribonuclease, RNase A family, 5	amphiphysin	AMP deaminase 3	S-adenosylmethionine decarboxylase 1	arachidonate 5-lipoxygenase activating protein	arachidonate 12-lipoxygenase, 12R type	alkB, alkylation repair homolog 5 (E. coli)	asparagine-linked glycosylation 14 homolog (yeast)	aldehyde dehydrogenase 2, mitochondrial	aldehyde dehydrogenase family 1, subfamily A3	aldo-keto reductase family 1, member C18	aldo-keto reductase family 1, member B8	A kinase (PRKA) anchor protein (yotiao) 9	A kinase (PRKA) anchor protein (gravin) 12	allograft inflammatory factor 1	AHNAK nucleoprotein (desmoyokin)	S-adenosylhomocysteine hydrolase-like 1	angiotensin receptor-like 1	alpha fetoprotein	adrenergic receptor, alpha 2c	adenosine A2b receptor	adipose differentiation related protein	adducin 3 (gamma)
ı		•	•	•	•	•	•	•	2.78	•	•	•	•	•	-		•	1	•	ı		•	1.73	-		•	•	1.08	•	•	•	1
	•	ı	•	•	1.03	•	•	•	2.55	•	ı	•	1	ı	•	•	•	<u>'</u>	1.09	ı		•	ı	•		1	•	1	•	•	•	ı
	- 1	•	•	•	•	•	•	•	•	•	•	•	- 1	•	'	- 1	•	'	•	'	'	- 1	•	•	'	- 1	•	•	•	•	'	۰
- 1	.63	' -	' 1	- 2	' ->	•	' ¦>	' 	•	- 1	' 	' 1	.07	' -	' -	1.76	'	'	'	' -	- 2	1.15	'	- 3	- 1	.37	' -	' ω	'	- -	•	1.09
1.41	'	.26	.79	.42	1.58 1	•	-2.02	-1.83	•	1.69 1	-1.29	1.25	'	1.58	-1.70	'	•	'	'	-1.86	2.07 1	'	'	3.08 2	1.04	•	1.71 1	3.75 1	•	-0.98	' 1	1
	•	ı	1	1.65	1.03	•	1	1	•	1.35	ı	1	1	ı		1	•	1	•	ı	1.06	1	ı	2.28	•	1	1.02	1.69	1	1	1.07	1
'	ı	•	•	1.29	•	•	•	•	•	•	•	•	•	•	'	'	•	•	'	ı	,	•	1	1.64	,	•	•	1.47	•	•	•	•
ı	ı			•						•								ı		ı			ı			1.54		•	1.01		•	
1.3		•	-	-	1.05	-1.2	-	•	•	-	•	-	-	•	-	•	-	•	-	ı	1.38	-	•	-	•	-	•	•	-	-	•	
1	ı	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
i	ı	ı	ı	•	1	•	•	1	•	•	ı	ı	•	ı	•	•	•	1	•	ı	•	•	ı	•	•	ı	•	1	ı	ı	1	
ı	ı	•		•	•	•	•	•	•		ı	•	•	ı	•	•	-1.6	•	•	ı	•	•	ı	•	•	•	•		•	•	·	ı

ippex ippex <th< th=""><th></th><th></th><th></th><th>,</th><th></th><th>,</th><th></th><th>1.34</th><th>1.17</th><th>•</th><th>,</th><th></th><th>ATPase, Class VI, type 11B</th><th>Atp11b</th><th>1451388_a_at</th></th<>				,		,		1.34	1.17	•	,		ATPase, Class VI, type 11B	Atp11b	1451388_a_at
integration integration <thintegration< th=""> integration</thintegration<>								1.25					ataxia telangiectasia mutated homolog (human)	Atm	14212-5_at
Image: system Image: s							1.34	1.87				3.38	activating transcription factor 3	Atf3	1449363_at
Image: space				•	•	,	ı	1.27				•	aspartate-beta-hydroxylase	Asph	142-959_at
Image: space											-1.6		aspartoacylase (aminoacylase) 2	Aspa	
interpretation interpr				2.15	,	,	ı	2.6	,	,	,		ankyrin repeat and SOCS box-containing protein 11	Asb11	1422153_a_at
Image: state interpretation Image: state interpretation <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>-1.29</td><td></td><td></td><td></td><td></td><td>aristaless related homeobox gene (Drosophila)</td><td>Arx</td><td>14542_at</td></t<>								-1.29					aristaless related homeobox gene (Drosophila)	Arx	14542_at
Image: system Image: s								1.09					type 1 tumor necrosis factor receptor shedding aminopeptidase regulator	Arts 1	1416942_at
Image: description of the set o				2.42				3.07					arrestin 3, retinal	Arr3	1425232_x_at
Image: system is a system is syst				1.60				1.92				2.48	cyclic AMP-regulated phosphoprotein, 21	Arpp21	145128at
Image: constraint of the state of						1.48	1.81	2.74					actin related protein 2/3 complex, subunit 1B	Arpc1b	1416226_at
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $									1.52			1.35	AT rich interactive domain 5B (Mrf1 like)	Arid5b	142-973_at
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $									1.19				AT rich interactive domain 4B (Rbp1 like)	Arid4b	1431-24_a_at
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $						1.17	1.45	2.02					Rho, GDP dissociation inhibitor (GDI) beta	Arhgdib	1426454_at
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $								1.63					Rho GTPase activating protein 9	Arhgap9	1436-97_x_at
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $				•	•	,	ı	-1.4		-1.9		•	Rho GTPase activating protein 6	Arhgap6	1451867_x_at
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$									1.09				Rho GTPase activating protein 5	Arhgap5	1423194_at
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$					1		ı	1.38	1			•	Rho GTPase activating protein 4	Arhgap4	1419296_at
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $			•	•			1		1.02			•	Rho GTPase activating protein 2-	Arhgap2-	1427522_at
Image: synthetic syntheta synthetic synthetic synthetic synthetic synthet		-			•			-1.15	•				Rho GTPase activating protein 12	Arhgap12	1451526_at
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$,	•	,	ı		1.11			•	ADP-ribosylation factor 2	Arf2	1438661_a_at
Image: system in the		-						1.15				1.83	amphiregulin	Areg	1421134_at
Image: Second		-		•	<u>'</u>						•		archain 1	Arcn1	1423743_at
1 1					-1.4		4		•			1.64	activity regulated cytoskeletal-associated protein	Arc	1418687_at
							1.36	2.51	•			,	aquaporin 4	Aqp4	1425382_a_at
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		1			-1.6	•	-1.6	-2.3	•	ı		-1.6	aquaporin 1	Aqp1	14162-3_at
1 1				•	1		1.34	1.95	1			,	apolipoprotein C-II	Apoc2	1418-69_at
			•	•	1	,	ı	1.23	ı	ı	ı	•	apolipoprotein C-I	Apoc1	1417561_at
-1 -1 -1 -1 -1 -1 -1 -1 -1 -1 1.18 -1 -1 -1 -1 -1 -1 -1 1.18 -1 -1 -1 -1 -1 -1 -1 -1 1.18 -1 -1 -1 -1 -1 -1 -1 -1 1.18 -1 -1 -1 -1 -1 -1 -1 -1 -1 1.18 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 <		-			•			1.14	•				apolipoprotein B editing complex 3	Apobec3	141747at
- - - - 1.18 - - - 1.18 - - - 1.18 - - - 1.18 - - - - 1.32 - - - - - - - - - - - - - - - - -				,	•	,	1.25	1.93				•	apolipoprotein B editing complex 1	Apobec1	1451755_a_at
. 		1		1	•	,	ı	1.32	•	ı	ı	•	apolipoprotein B48 receptor	Apob48r	142-382_at
					1		ı	ı	1.18	ı	1	,	apoptosis inhibitor 5	Api5	1439214_a_at Api5
	ũ	1.2		•	1	,	ı	ı	ı	ı	ı	,	adenomatosis polyposis coli	Apc	142-957_at
-1.5												-1.5	androgen-binding protein eta	Apbh	14218-3_at

· · · · · · · · · · · ·		ı		-1.38	,					Camky	14238-2_at
					-			1	CaM kinase-like vesicle-associated	2	
		ı	ı	-1.21			•	1	calcium/calmodulin-dependent protein kinase kinase 1, alpha	Camkk1	1418954_at
	•	ı		2.19		1.3	9	2.39	calcium/calmodulin-dependent protein kinase II, beta	Camk2b	1455869_at
· · · · ·		1	•	-1.44					calcium/calmodulin-dependent protein kinase I gamma	Camk1g	1424633_at
	•	1	•	-1.96					calcium/calmodulin-dependent protein kinase ID	Camk1d	1452-5at
	•	1		1.13					calcium/calmodulin-dependent protein kinase I	Camk1	14176-4_at
	-1.8	1	-1.2				•	-1.3	calmodulin-like 4	Calml4	1424713_at
•	•	ı	ı	-	1.51				caldesmon 1	Cald1	1424768_at
I	•	1	÷						calcitonin-related polypeptide, beta	Calcb	1422639_at
•	•	-1.3							calbindin-28K	Calb1	1448738_at
•	•	1		-2.11	1				Ca2+-dependent activator protein for secretion 2	Cadps2	1451499_at
	•	ı	•	-1.18	•				cell adhesion molecule 3	Cadm3	1418922_at
-	•	I	ı	-	1.56				calcium channel, voltage-dependent, beta 4 subunit	Cacnb4	1452-89_at
•	•	1		ı	1.15				calcium channel, voltage-dependent, alpha2/delta subunit 1	Cacna2d1	1449999_a_at
•	•	ı	ı	2.47	1				calcium channel, voltage-dependent, L type, alpha 1S subunit	Cacna1s	142-442_at
•	•	1	•	-0.99					cache domain containing 1	Cachd1	1436-3at
	ı	I	•	ı	1.01	1	1	1	calcium binding protein 39	Cab39	1418432_at
	•	I	ı	1.31	1		4	1.64	complement component 5a receptor 1	C5ar1	142219at
2.17		1.34	1.91	2.34	•			•	complement component 4B (Childo blood group)	C4b	1418-21_at
	1.56	1.87	2.49	3.59	•		- 7	1.47	complement component 3a receptor 1	C3ar1	1419483_at
1.56	1.16	1.38	3.13	3.58	•		,	-	complement component 3	C3	1423954_at
	ı	ı	•	1.62	1		,	1	complement component 1, r subcomponent	Clr	14179_at
-1.1	•	ı	•	-	1.64	-	1.02	-	C1q-like 3	C1ql3	1425176_at
1.08	1.72	1.84	2.34	3.15	•		,	-	complement component 1, q subcomponent, C chain	C1qc	14494-1_at
1.16	1.55	1.79	2.52	2.93	ı			1	complement component 1, q subcomponent, beta polypeptide	C1qb	1417-63_at
1.06	1.35	1.62	2.17	2.69	ı			1	complement component 1, q subcomponent, alpha polypeptide	Clqa	1417381_at
	1	ı		1.12					core 1 synthase, glycoprotein-N-acetylgalactosamine 3-beta- galactosyltransferase, 1	C1galt1	1422772_at
	1.34	I	,	ı	1.41	ı	ı	ı	basic leucine zipper and W2 domains 1	Bzw1	145-846_at
	I	I	ı	1.50	ı		•	1	budding uninhibited by benzimidazoles 1 homolog (S. cerevisiae)	Bub1	1424-46_at
	ı	ı	1.4	2.20	ı			1	Bruton agammaglobulinemia tyrosine kinase	Btk	1422755_at
-	•	I	•	-1.12	ı		ı		bruno-like 4, RNA binding protein (Drosophila)	Brunol4	145224at
	•	1.28	2.01	2.61	ı			1	bromodomain containing 4	Brd4	1424921_at

141791at Ccna2 cyclin A2	1448898_at Ccl9 chemokin	1419684_at Ccl8 chemokin	1421228_at Ccl7 chemokin	1417266_at Ccl6 chemokin	1418126_at Ccl5 chemokin	1421578_at Ccl4 chemokin	1419561_at Ccl3 chemokin	142-38at Ccl2 chemokin	1419282_at Ccl12 chemokin	1417789_at Cc111 small chei	145477at Cckbr cholecyste	1452332_at Ccdc85a coiled-coi	1424186_at Ccdc8- coiled-coi	1427951_s_at Ccdc28a coiled-coi	1428-66_at Ccdc12- coiled-coi	1418778_at Ccdc1-9b coiled-coi	1423287_at Cbln1 cerebellin	1455886_at Cbl Casitas B-	1449145_a_at Cav1 caveolin,	1424552_at Casp8 caspase 8	1448659_at Casp7 caspase 7	1449591_at Casp4 caspase 4,	1449839_at Casp3 caspase 3	1449297_at Casp12 caspase 12		1422825_at Cartpt CART pre	1427482_a_at Car8 carbonic <i>z</i>	1418-94_s_at Car4 carbonic <i>z</i>	1449434_at Car3 carbonic <i>i</i>	1428485_at Car12 carbonic <i>i</i>	145396a_at Capzb capping p	
	chemokine (C-C motif) ligand 9	chemokine (C-C motif) ligand 8	chemokine (C-C motif) ligand 7	chemokine (C-C motif) ligand 6	chemokine (C-C motif) ligand 5	chemokine (C-C motif) ligand 4	chemokine (C-C motif) ligand 3	chemokine (C-C motif) ligand 2	chemokine (C-C motif) ligand 12	small chemokine (C-C motif) ligand 11	cholecystokinin B receptor	coiled-coil domain containing 85A	coiled-coil domain containing 8-	coiled-coil domain containing 28A	coiled-coil domain containing 12-	coiled-coil domain containing 1-9B	cerebellin 1 precursor protein	Casitas B-lineage lymphoma	caveolin, caveolae protein 1			caspase 4, apoptosis-related cysteine peptidase		2		CART prepropeptide	carbonic anhydrase 8	carbonic anhydrase 4	carbonic anhydrase 3	carbonic anyhydrase 12	capping protein (actin filament) muscle Z-line, beta	
	N		1.56	•	1		3.66	1.85	,	1.35				•		•	•		•	ı	,	,		1		•	•			1		
	5							01	Ņ	-										ı	ı	,		1	1	,	•	•	•	•		
•	2.73 1.4		·	,		1.96	3.36	1	19		-	'	•	•	•		ı	•	•													
				•	•	1.96 1.55	3.36 2.02	1 1	2.19 -		•	•	•	•	•	•	•	•	•					ı	ı	•	•		-1.2			,
	1.4		•					•				•	•		•					•	-	•	- 1.06		•	1		•	-1.2 -	•		•
•	1.4 1.4		•	•	•	1.55	2.02 -		1	•	•	•	•	-	•	-	•	-	1	1.84	1.10	2.88	- 1.06 1.02		,		1.24	1.32				
•	1.4 1.4 -		•		-	1.55 -	2.02 -	1	•	•		•	•		•	-	•	-	-					'	,				•	•	•	•
•	1.4 1.4 - 3.59			3.39	3.86	1.55 -	2.02 - 4.16	1	5.05	•	2.08	1.48	1.55	1.04	1.12	1.58	1.79	- 1.63 -	1.81	1.84		2.88	1.02	- 1.72	- 1.84	4.83		-1.32	1.1	•		•
•	1.4 1.4 - 3.59 2.43			3.39 2.6 1.53	3.86 2.52	1.55 -	2.02 - 4.16 3.51	1	5.05 3.22	•	2.08 -	1.48 -1.1	1.55 -1	1.04 -	1.12 -	1.58 -	1.79 -	- 1.63	1.81 -	1.84 -	1.10 -	2.88 1.33	1.02 -	- 1.72 -	- 1.84 -	4.83 2.56	1.24 -	-1.32 -	1.1 -	•	•	
1.19	1.4 1.4 - 3.59 2.43 2.11	· · · · · · · · · · · · · · · · · · ·		3.39 2.6	3.86 2.52 1.85	1.55 - 1.85	2.02 - 4.16 3.51 -	- 1.21	5.05 3.22 2.42	-	2.08 - 1.1	1.48 -1.1 -	1.55 -1 -	1.04	1.12	1.58	1.79	- 1.63	1.81	1.84	1.10	2.88 1.33 -	1.02	- 1.72	- 1.84	4.83 2.56 -1.2 -	1.24	-1.32	1.1		1	
1.19	1.4 1.4 - 3.59 2.43 2.11 1.6			3.39 2.6 1.53 1.25	3.86 2.52 1.85 -	1.55 - 1.85	2.02 - 4.16 3.51 - 1.76	- 1.21	5.05 3.22 2.42 -		2.08 - 1.1 -	1.48 -1.1	1.55 -1	1.04	1.12	1.58	1.79	- 1.63	1.81	1.84	1.10	2.88 1.33	1.02 1.12	- 1.72	- 1.84	4.83 2.56 -1.2	1.24	-1.32	1.1		1.18	1.01
1.19	1.4 1.4 - 3.59 2.43 2.11 1.6 -	1.51		3.39 2.6 1.53 1.25 -	3.86 2.52 1.85	1.55 - 1.85	2.02 - 4.16 3.51 - 1.76 -	- 1.21	5.05 3.22 2.42	· · · · · · · · · · · · · · · · · · ·	2.08 - 1.1	1.48 -1.1	1.55 -1	1.04	1.12	1.58	1.79	- 1.63	1.81 1.29	1.84	1.10	2.88 1.33	1.02 1.12 -	- 1.72 1.43	- 1.84	4.83 2.56 -1.2 - 1.96	1.24 1.21	-1.32	1.1	1.1	1.18 -	1.01 -

	•				1.02	i	ł			ł		Ì	T
•			-	•	2	1.29					CD93 antigen	Cd93	1419589_at
	•	•	•	•	1.39	1.54					CD9 antigen	Cd9	1416-66_at
·	•	1.04	1.49	2.24	2.0-6	3.65			تن ۱	1.63	CD86 antigen	Cd86	1449858_at
•	•	•	1.48	•	2.77	4.12			•		CD84 antigen	Cd84	1422875_at
•	•	ı	ı	•	I	1.02	•				CD74 antigen (invariant polypeptide of major histocompatibility complex, class II antigen-associated)	t Cd74	1425519_a_at
•	•	•	1	1.34	2.02	3.45					CD72 antigen	t Cd72	1426112_a_at
•	•	•	1	•		1.51				1	CD7- antigen	Cd7-	1449926_at
•	•	1.15	1.8	2.15	2.72	3.89				,	CD68 antigen	Cd68	1449164_at
•	•	•	1.33	1.42	2.44	3.60					CD5 antigen-like	Cd51	1449193_at
•	•	-1.6	ı	,							CD59a antigen	Cd59a	141871at
•	•	•	1	1.44	1.76	2.53				1	CD53 antigen	Cd53	1448617_at
•	•	1.5	2.17	2.38	3.8-6	4.39					CD52 antigen	Cd52	146-218_at
•	•	•	•			1.27				,	CD5 antigen	Cd5	1418353_at
•	•	1.21	•	2.11	2.29	3.85		ı	•	ı	CD48 antigen	Cd48	14273-1_at
•	•	3.11	1.36	2.74	1.84	4.45	•		<u>د</u> ۱	2.31	CD44 antigen	Cd44	142376at
•	•		•	•	•	1.35			•	1	CD3 antigen, gamma polypeptide	Cd3g	1419178_at
•	•	•		'		1.83				1	CD38 antigen	Cd38	145-136_at
•	•	•	1.23	1.44	2.03	2.91	•			,	CD37 antigen	Cd37	14192-6_at
•	•	•	1	•	1.17	1.65					CD33 antigen	Cd33	145-513_at
•	•	•	•	,	1.17	1.77			•	,	CD3 antigen like family member F	Cd3lf	1427994_at
•	•	•	•	1.38	1.84	2.44				,	Cd3D antigen	Cd3d	1428-18_a_at
•		1.15	-	•	•	1.33		,		,	CD274 antigen	Cd274	1419714_at
'	'	•		'		1.35		,		ı	CD244 natural killer cell receptor 2B4	Cd244	1449991_at
•	•	•	-	1	1.42	2.03				,	CD22 antigen	Cd22	1419769_at
'	1	•	-1	1.32	1.81	2.94		1	1	1	CD18- antigen	Cd18-	1421547_at
•		•	-	'		1.26		•		1	CD151 antigen	Cd151	1424-93_x_at
•		•	1.14	1.46	1.89	2.73		1.6	3 2.44	3.23	CD14 antigen	Cd14	1417268_at
•	•	•		•		1.97		•	•	•	CD1-9 antigen	Cd1-9	1425658_at
•	1	1.09	1.3-9	1.78	2.54	3.82		•		1	chemokine (C-C motif) receptor 5	t Ccr5	1422259_a_at
•	1	•	1.11	•	•	•		•		1	cyclin L2	Ccnl2	145374a_at
'	ı	'	ı	'	ı	1.40		ı		ı	cyclin B2	Ccnb2	145-92at
'	'	•		'		1.34		,		ı	rs1 cyclin B1, related sequence 1	Ccnb1-rs1	1416-76_at

,											claudin 1	Cldn1	1437932_a_at Cldn1
	7 -	1.17				1.82					cardiotrophin-like cytokine factor 1	Clcf1	143727a_at
	5	1.05	-		•	2	•				chloride channel calcium activated 2	Clca2	146-259_s_at Clca2
						2.00					chloride channel calcium activated 1	Clca1	1417852_x_at Clca1
						-1.06					CLIP associating protein 2	Clasp2	1429976_at
						1			+	1.34	Cbp/p3interacting transactivator, with Glu/Asp-rich carboxy-terminal domain, 2	Cited2	1421267_a_at
					,	-1.74					cholinergic receptor, nicotinic, alpha polypeptide 5	Chrna5	14274-1_at
	Ŭ '	1.55			,	2.99					cholinergic receptor, nicotinic, alpha polypeptide 1 (muscle)	Chrna1	1418852_at
		-	<u>ـٰ</u>		,		1.53				chimerin (chimaerin) 2	Chn2	1428574_a_at Chn2
					,	'	1.37				cysteine-rich hydrophobic domain 1	Chic1	1427573_at
	4	-1.4				<u>'</u>					chitinase, acidic	Chia	1416456_a_at
						,	•	1.18			chitinase 3-like 3	Chi3l3	1419764_at
	- 100	1.39		-	1.03	2.83					chitinase 3-like 1	Chi3l1	1451537_at
			•		•		2.01			•	chromodomain helicase DNA binding protein 4	Chd4	1436343_at
		-	-	-	2.21	3.50	•			•	cholesterol 25-hydroxylase	Ch25h	1449227_at
		-				•	•	-	2 1.15	1.42	cell growth regulator with EF hand domain 1	Cgref1	1424528_at
	1			,	,	1.05	ı			,	CASP8 and FADD-like apoptosis regulator	Cflar	1449317_at
	1			ı	1	1.82	ı	ı	ı	1	centrosomal protein 55	Cep55	1452242_at
		-	-	-	,		-	-			centrosomal protein 35-	Cep35-	145247at
		-	-		,	1.81	•			•	centaurin, alpha 2	Centa2	1425639_at
					,	1.36	,				centromere protein F	Cenpf	1427161_at
						1.50					centromere protein A	Cenpa	145-842_a_at
		-	-	-	1.51	1.9		1.61	-	1.24	CCAAT/enhancer binding protein (C/EBP), alpha	Cebpa	1418982_at
					,	1.13	ı			,	chromatin licensing and DNA replication factor 1	Cdt1	1424143_a_at Cdt1
	- 8	-1.8	-		,	-1.5	,			,	cyclin-dependent kinase inhibitor 1C (P57)	Cdkn1c	1417649_at
1	1	- 6(8 1.09	4 1.28	1.04	1.59	ı	ı	ı		cyclin-dependent kinase inhibitor 1A (P21)	Cdkn1a	1421679_a_at Cdkn1a
	,	-	-		,	•	-	1.05		,	cyclin-dependent kinase 5, regulatory subunit (p35) 1	Cdk5r1	1421124_at
		-			1	-1.35	•				cadherin 8	Cdh8	1422-52_at
	1			,	1	-0.98	ı			,	Cdc42 GTPase-activating protein	Cdgap	1432-22_at
		-		+	1.64	2.48	•				cell division cycle associated 5	Cdca5	14168-2_a_at
		-				1.44	•				cell division cycle associated 3	Cdca3	1452-4a_at
						,	1.26				cell division cycle 5-like (S. pombe)	Cdc51	1428-92_at
					,	1.71					cell division cycle 2 homolog A (S. pombe)	Cdc2a	1448314_at

			-1.6	,	'		,				,	cytochrome c oxidase subunit VIb polypeptide 2	Cox6b2	1435275_at
		•			•	1.2						coactosin-like 1 (Dictyostelium)	Cotl1	14162_x_at
•	•	•	•	•	•	•	-1.13					cortistatin	Cort	144982at
ı		1		ı	•	•	ı	느				coatomer protein complex, subunit gamma 2, antisense 2	Copg2as2	1427822_a_at
		•	•		•	•	1.00					catechol-O-methyltransferase	Comt	1449183_at
•	-	ı	-1.9	-	ı	•	ı		•		-1.1	procollagen, type IX, alpha 3	Col9a3	146-693_a_at
		ı	-1.9	-1.1	•	4	-1.3					procollagen, type VIII, alpha 1	Col8a1	141844at
			-1.1	ı	ı	•	Ŀ	,				procollagen, type VI, alpha 3	Col6a3	1424131_at
ı			1.37	ı			1.2					procollagen, type VI, alpha 2	Col6a2	145225a_at
	2.25	ı	2.31	ı	1.16		1.29	-1.3				procollagen, type VI, alpha 1	Col6a1	144859at
	•	1			•	•	1.06					procollagen, type V, alpha 2	Col5a2	1422437_at
		1			•	•	1.36					procollagen, type IV, alpha 6	Col4a6	14217_at
ı		1		ı	•	•	1.43					procollagen, type IV, alpha 5	Col4a5	1425476_at
		•	•		<u>'</u>	1.98	1.61					procollagen, type III, alpha 1	Col3a1	1427883_a_at
		1			•		2.49					collagen, type XX, alpha 1	Col2-a1	1425234_at
	•	1		•	1	1.16	ı					procollagen, type I, alpha 1	Collal	1423669_at
ı		ı	•	1	I		-2.72	•	•		ı	procollagen, type XIX, alpha 1	Col19a1	1421698_a_at
		ı	1.14	-	ı	•	1.33	•	•		,	procollagen, type XVI, alpha 1	Col16a1	1427986_a_at Col16a1
•	•	•	2.32	-	ı	•	1.67	•	,		,	procollagen, type XI, alpha 1	Coll1a1	1418599_at
		1	•	•			ı	1.02			,	coagulation factor C homolog (Limulus polyphemus)	Coch	1423285_at
ı	,	ı	ı	ı			-1.88		•		,	contactin associated protein-like 4	Cntnap4	1419-44_at
•		1			•	•	-2.17			•		contactin associated protein-like 2	Cntnap2	1437782_at
		•	•	1	I		I	•	•		1.01	contactin 3	Cntn3	142-739_at
	,	•	•	•			1.31				,	calponin 3, acidic	Cnn3	1426724_at
ı	ı	ı	ı	ı	I	ı	1.26	ı	ı	ı	ı	calponin 1	Cnn1	1417917_at
	•	•	1.5	-			1.31				-	cornichon homolog 3 (Drosophila)	Cnih3	1419517_at
ı	ı	ı	ı	1	ı	1.16	1.88		,	ı	ı	CKLF-like MARVEL transmembrane domain containing 7	Cmtm7	146-253_at
·	ı	ı	I	1	I		1.25	1			ı	CKLF-like MARVEL transmembrane domain containing 6	Cmtm6	1451114_at
	,	•	•	•			1.60					CKLF-like MARVEL transmembrane domain containing 3	Cmtm3	1448316_at
	,	ı	-1.2	ı			I		•		,	chloride intracellular channel 3	Clic3	1429574_at
		ı	•	ı	1.09	1.36	2.06					chloride intracellular channel 1	Clic1	1416656_at
-		•	1.15	2.31	2.82	4.48	5.29	ı				C-type lectin domain family 7, member a	Clec7a	142-699_at
		ı	ı	ı	•	1.09	2.26				ı	C-type lectin domain family 5, member a	Clec5a	1421366_at
		•	-3.4	-1.7	•	-1.4	-2.1	•	•			claudin 2	Cldn2	1417231_at

1448732_at Ctsb	1448128_at Ctsa	142268at Ctr9	143-533_a_at Ctnnb1	1452352_at Ctla2b	1416811_s_at Ctla2a	1416953_at Ctgf	1449-42_at Ctcf	14192-2_at Cst7	1435792_at Csprs	1419-38_a_at Csnk2a1	14188-6_at Csf3r	144936at Csf2rb2	1421326_at Csf2rb	142-7-3_at Csf2ra	1423593_a_at Csf1r	1425155_x_at Csf1	1416776_at Crym	14183-6_at Crybb1	142-686_at Cryba4	1418476_at Crlf1	1425556_at Crkrs	14162-1_at Crk	1423353_at Crispld1	1449-37_at Crem	1415947_at Creg1	1419295_at Creb311	1449921_s_at Cpne6	1456-48_at Cpeb3	1418-18_at Cpd	1417496_at Cp
cathepsin B	cathepsin A	Ctr9, Paf1/RNA polymerase II complex component, homolog (S. cerevisiae)	catenin (cadherin associated protein), beta 1	cytotoxic T lymphocyte-associated protein 2 beta	cytotoxic T lymphocyte-associated protein 2 alpha	connective tissue growth factor	CCCTC-binding factor	cystatin F (leukocystatin)	component of Sp1rs	casein kinase 2, alpha 1 polypeptide	colony stimulating factor 3 receptor (granulocyte)	colony stimulating factor 2 receptor, beta 2, low-affinity (granulocyte- macrophage)	colony stimulating factor 2 receptor, beta, low-affinity (granulocyte- macrophage)	colony stimulating factor 2 receptor, alpha, low-affinity (granulocyte- macrophage)	colony stimulating factor 1 receptor	colony stimulating factor 1 (macrophage)	crystallin, mu	crystallin, beta B1	crystallin, beta A4	cytokine receptor-like factor 1	Cdc2-related kinase, arginine/serine-rich	v-crk sarcoma virus CT1- oncogene homolog (avian)	cysteine-rich secretory protein LCCL domain containing 1	cAMP responsive element modulator	cellular repressor of E1A-stimulated genes 1	cAMP responsive element binding protein 3-like 1	copine VI	cytoplasmic polyadenylation element binding protein 3	carboxypeptidase D	ceruloplasmin
•		•	•	-	3.06 2.	1	•	ı	ı	•	1	•	•	•	1	1	ı	•	ı	•	ı	ı	I	1.83 1	1	•	1	•	•	1
	'			2.15	0 U				•	•	•				ı	ı	ı.	'	ı	'	'	ı	1	1.74	I	•	1	'	•	1.4
				01	.57	-																								
,	ı	- -	•	•	- 7	•	۰ ۱	1	ı	- 1	•				•	1	ı	I	1	ı	- 1	- 1	ı	י ר	•	•	•	•	، د	- 1
,	י י	- 1.01	-		•	- 2	- 1.77	7	۔ 	- 1.62	2	- 2	- 2	· ·	2	1	ı	1	2	۰ ۰	- 1.31	1.15	- - -	1.58	- 1	•	· ·	1	1.93	1.9
	1.52 1	- 1.01 -		3.5	2.07	2.16	- 1.77 -	7.67		-	2.05	2.12	2.97		2.36			1	2.23	1.79	- 1.31 -	_	-1.50	_	1.35	•	1.11	1.08		
,	1.52 1.04	- 1.01	-	3.5 2.53	2.07 1.36		- 1.77	7.67 6.64	۔ 	-			N		2.36 1.5	1	ı	1	2			1.15		1.58	1	•			1.93	1.9
,		- 1.01	- 1.02	3.5	2.07		•	7.67	- 1.27	1.62 -	2.05	2.12	2.97	1.02	2.36	- 1.33	1.01	1	2.23		•	1.15 -	-1.50	1.58 1.58	1.35		-1.11	-1.08	1.93 1.2	1.9 -1
- 1.51 -	1.04		- 1.02 -	3.5 2.53	2.07 1.36		•	7.67 6.64	- 1.27 -	1.62	2.05 1.38	2.12 -1	2.97 1.4	1.02 -	2.36 1.5	- 1.33 -	1.01 -	1.56 -	2.23 1.19	-1.79 -	1	1.15	-1.50 -1	1.58 1.58 -	1.35 -	•	-1.11 -	-1.08 -	1.93 1.2 -	1.9 -1 -
- 1.51	1.04	•	- 1.02	3.5 2.53 1.94	2.07 1.36 1.21	2.16	•	7.67 6.64 4.29	- 1.27	1.62	2.05 1.38 -	2.12 -1 -	2.97 1.4 -	1.02	2.36 1.5 1.25	- 1.33	1.01	1.56	2.23 1.19 -	-1.79		1.15	-1.50 -1 -	1.58 1.58	1.35	•	-1.11	-1.08	1.93 1.2	1.9 -1
- 1.51 1.13	1.04	•	- 1.02 - 1.2	3.5 2.53 1.94 1.69	2.07 1.36 1.21 1.69	2.16	1	7.67 6.64 4.29 3.66	- 1.27	1.62	2.05 1.38	2.12 -1	2.97 1.4	1.02	2.36 1.5 1.25 -	- 1.33	1.01	1.56	2.23 1.19	-1.79		1.15	-1.50 -1	1.58 1.58	1.35	1	-1.11	-1.08	1.93 1.2	1.9 -1
- 1.51 1.13 -	1.04		- 1.02 - 1.2 -	3.5 2.53 1.94 1.69 -	2.07 1.36 1.21 1.69 1.38	2.16 1.76	-	7.67 6.64 4.29 3.66 2.47	- 1.27	1.62	2.05 1.38	2.12 -1	2.97 1.4 1.12	1.02	2.36 1.5 1.25	- 1.33	1.01	1.56	2.23 1.19	-1.79		1.15	-1.50 -1	1.58 1.58	1.35		-1.11	-1.08	1.93 1.2	1.9 -1

1419542_at	142379at	1449823_at	1418944_at	1419-7at	1416-39_x_at	1417-7at	1449316_at	1416613_at	142363at	1422978_at	1454268_a_at	1422185_a_at	1425832_a_at	144871at	1418652_at	1419728_at	1449984_at	1449195_s_at	1417851_at	1417574_at	141893at	14192-9_at	14519_at	1417453_at	1422794_at	14493at	1417869_s_at	1448591_at	145131a_at	1418365_at	1418989_at	1448118_a_at	14_7020141
Dazl	Dap	Dach2	Cysltr1	Cys1	t Cyr61	Cyp4v3	Cyp4f15	Cyp1b1	Cygb	Cybb	ıt Cyba	t Cyb5r3	t Cxcr6	Cxcr4	Cxcl9	Cxcl5	Cxcl2	t Cxcl16	Cxcl13	Cxcl12	Cxcl1-	Cxcl1	Cx3cr1	Cul4b	Cul3	Cttnbp2nl	t Ctsz	Ctss	t Ctsl	Ctsh	Ctse	t Ctsd	Cisc
deleted in azoospermia-like	death-associated protein	dachshund 2 (Drosophila)	cysteinyl leukotriene receptor 1	cystin 1	cysteine rich protein 61	cytochrome P45-, family 4, subfamily v, polypeptide 3	cytochrome P45-, family 4, subfamily f, polypeptide 15	cytochrome P45-, family 1, subfamily b, polypeptide 1	cytoglobin	cytochrome b-245, beta polypeptide	cytochrome b-245, alpha polypeptide	cytochrome b5 reductase 3	chemokine (C-X-C motif) receptor 6	chemokine (C-X-C motif) receptor 4	chemokine (C-X-C motif) ligand 9	chemokine (C-X-C motif) ligand 5	chemokine (C-X-C motif) ligand 2	chemokine (C-X-C motif) ligand 16	chemokine (C-X-C motif) ligand 13	chemokine (C-X-C motif) ligand 12	chemokine (C-X-C motif) ligand 1-	chemokine (C-X-C motif) ligand 1	chemokine (C-X3-C) receptor 1	cullin 4B	cullin 3	CTTNBP2 N-terminal like	cathepsin Z	cathepsin S	cathepsin L	cathepsin H	cathepsin E	cathepsin D	Cutticpoint C
					-1			1									2					3											
·	•	•	•	•	1.51 -	'	'	1.89 1.38	'	'	•	•	· ·	- 1.44	•	•	2.36 1.58	•	-	1.2	•	3.25 -	- 1.46	•		•	•	•	•	•	•	•	
		<u>'</u>				,		- 88						4-		-1.3	-			2 -			- 91		-						1.13		
						,									ı	-			•	ı					•						-		
-1.24	1.31		1.09	-1.85	2.59	1.68	-1.80	1.59	-1.89	1.61	2.78	1.02	1.83		3.40	ı	1	3.21	4.44	ı	5.11		2.49	1	1.11	1.29	2.78	1.54	1.19	2.71	1.13	1.63	
							1				2.16			1.62	1.55	1.57		1.9	2.05		3.09		1.46		•		2.27	1.43		1.96	•	1.35	
							,		,		1.47		,		•	•		1.48	1.3	•	1.98	1.01	1.0-1				1.38			1.56		•	
						,	ı	•			1.07		ı		•	ı		ı		•	1.45	1.28	1.28		•		1.17					ı	
•	•	•	•	•	ı	,	ı	1.21	·	•	ı	•	ı	•	•	ı	•	ı	3.84	•	1.93	•	•	-1.7	•	•	ı	ı	•	•	•	ı	
•	•	•	•	•	•	•	1	•	•	•	•	•	1	•	•	ı	•	ı		•	•	•	•	•	•	•	ı	1	•	•	•	ı	
	•	•	•	•	•	ı	•	'	'	•	•	•	•	•	•	•	•	•	•	•	1	•		1		•	•	•	•	•	•	•	

	•									Dnal (Hand) homolog subfamily C member 2	1418704 c at Durain?
		ı	I	ı	ı	•			1.05	DnaJ (Hsp4-) homolog, subfamily B, member 6	1429777_at Dnajb6
		•		•	•		1.26		1.2-6	DnaJ (Hsp4-) homolog, subfamily B, member 5	1421961_a_at Dnajb5
		•	•	•	•		1.26	•	1.33	DnaJ (Hsp4-) homolog, subfamily B, member 1	1416756_at Dnajb1
			•	•	•	•	1.05		1.04	DnaJ (Hsp4-) homolog, subfamily A, member 4	1418592_at Dnaja4
	-1.6	-	-	•	-2.2	•	-1.1			distal-less homeobox 5	1449863_a_at D1x5
		•	•	•	-1.44					distal-less homeobox 2	1448877_at D1x2
			•	1	-1.40					distal-less homeobox 1, antisense	1419845_at Dlx1as
	-1.7	ı	•	•	-2.2		 			distal-less homeobox 1	144947at Dlx1
		•	ı	•	-1.00					delta-like 1 (Drosophila)	14192-4_at Dll1
ı	ı	ı	ı	ı	,	,	1.14			discs, large homolog 4 (Drosophila)	1419581_at Dlg4
		•	•	•	1.37					dickkopf homolog 2 (Xenopus laevis)	142-512_at Dkk2
		ı		•	•	1.17			1.89	deiodinase, iodothyronine, type II	1418938_at Dio2
•	-	-	-	•	•	1.47				diaphanous homolog 3 (Drosophila)	1422944_a_at Diap3
•		•	•	1.03	2.25					DEXH (Asp-Glu-X-His) box polypeptide 58	1451426_at Dhx58
•		•	ı	•	•	1.33				DEAH (Asp-Glu-Ala-His) box polypeptide 36	1424398_at Dhx36
•	ώ	•	1.0-3	1.0-3	2.21	•				dehydrogenase/reductase (SDR family) member 1	1415677_at Dhrs1
,	-	-	•	•	-0.99		,		,	2-deoxyribose-5-phosphate aldolase homolog (C. elegans)	1424-47_at Dera
		•	•	•	-1.01					DEP domain containing 7	14243-3_at Depdc7
	-	1.18	•	,	-		,		,	diabetic embryopathy 1	14276-2_at Dep1
-1		•	•	•	-2	•			-1.5	defensin beta 11	1452546_x_at Defb11
•		•	•	•	1.07					2,4-dienoyl CoA reductase 1, mitochondrial	1419367_at Decr1
•		ı	•	1	•	1.43				DEAD (Asp-Glu-Ala-Asp) box polypeptide 6	1424598_at Ddx6
		•	•	•	1.04					DEAD/H (Asp-Glu-Ala-Asp/His) box polypeptide 26B	1426832_at Ddx26b
•		•	•	•	1.04					DEAD (Asp-Glu-Ala-Asp) box polypeptide 21	1448271_a_at Ddx21
				,	1.49		,	,	,	discoidin domain receptor family, member 1	1415798_at Ddr1
ı		•	I	,	-1.49			,	ı	doublecortin	1418139_at Dcx
		•		•	ı	1.18		•		DCUNID1 DCN1, defective in cullin neddylation 1, domain containing 1 (S cerevisiae)	1452-79_s_at Dcun1d1
•	•	1	•	•	1.57	1.68			1.5	doublecortin-like kinase 1	1451917_a_at Dclk1
	-	-	-	•	•			-1.4		D site albumin promoter binding protein	1438211_s_at Dbp
		•	•	•	-1.44					dysbindin (dystrobrevin binding protein 1) domain containing 1	14493-7_at Dbndd1
		ı	•	1	ı	•	1.19			drebrin 1	1451734_a_at Dbn1
		•		•	1.23	•			•	dopamine beta hydroxylase	145-67at Dbh

14225_at E	1449852_a_at E	1427683_at E	1418649_at E	145111at E	1419332_at E	1419639_at E	1417-18_at E	146-661_at E	1423695_at E	1424-65_at E	1448613_at E	1422586_at E	1434177_at E	1449222_at E	1452792_at D	1426226_at D	1449928_at D	1419269_at D	145-698_at D	1452594_at D	144883at D	1419223_a_at D	1435494_s_at Dsp	1439476_at D		14228-8_s_at D	142-667_at D	1436862_at D	1427882_at D	1449757_x_at D	1423-65_at D	1452638_s_at Dnm11	14473/2_ai
Eif2ak2	Ehd4	Egr2	Egln3	Egln1	Egfl6	Efnb2	Efemp2	Edg3	Edem2	Edem1	Ecm1	Ecel1	Ece1	Ebi3	Dzip1	Dyrk1a	Dynlt3	Dut	Dusp2	Dusp11	Dusp1	Dtna	ds	Dsg2	Dock8	Dock2	Doc2b	Doc2a	Dnttip2	Dntt	Dnmt3a	nm11	рпајсза
eukaryotic translation initiation factor 2-alpha kinase 2	EH-domain containing 4	early growth response 2	EGL nine homolog 3 (C. elegans)	EGL nine homolog 1 (C. elegans)	EGF-like-domain, multiple 6	ephrin B2	epidermal growth factor-containing fibulin-like extracellular matrix protein 2	endothelial differentiation, sphingolipid G-protein-coupled receptor, 3	ER degradation enhancer, mannosidase alpha-like 2	ER degradation enhancer, mannosidase alpha-like 1	extracellular matrix protein 1	endothelin converting enzyme-like 1	endothelin converting enzyme 1	Epstein-Barr virus induced gene 3	DAZ interacting protein 1	dual-specificity tyrosine-(Y)-phosphorylation regulated kinase 1a	dynein light chain Tctex-type 3	deoxyuridine triphosphatase	dual specificity phosphatase 2	dual specificity phosphatase 11 (RNA/RNP complex 1-interacting)	dual specificity phosphatase 1	dystrobrevin alpha	desmoplakin	desmoglein 2	dedicator of cytokinesis 8	dedicator of cyto-kinesis 2	double C2, beta	double C2, alpha	deoxynucleotidyltransferase, terminal, interacting protein 2	deoxynucleotidyltransferase, terminal	DNA methyltransferase 3A	dynamin 1-like	Dilar (118p4-) iloilloilog, suotatiitty C, illeittoet DA
•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	1.07	•	•	•	•	•	•	•	•	1.25	•	•	
'	•	'	•	•	•	•	•	•	' '	•	•	•	1.7	•	•	•	•	•	•	•	•	•	•	-	•	-	-	-	-	-	•	1	
•				1.04									.7 -			1.07	1.04					1.07		•		•			1.07	•	1.29	,	
1.20	1.53		1.82	4	-1.4	-1.36	1.00	1.17	1.16	3.21	1.51	-1.8	-1.8	2.22	-1.81	7 -	4	-1.34	1.70	1.27		7 1.13	-1.30	-1.09	1.91	2.26	-1.84	-1.29	7 -	•	9	1	C
,	1.04					•			1	2.38				1.05	•			•	•			•	-1.3	•	1.24	1.38	+	-	•	•		,	
					-1.3-9				,	1.68		-1.4												1			ı	•		•		,	
•		 								1.36		ı			ı	1.22		1						ı		•	1		•	1	1	1.06	ŀ
	•	•	•	•	-1.3	•	•	•	•	•	•	1.18	•	•	•	•	•	ı		•	•	•	•	-	•	•	-	-	•	1	ı	•	
		-1.6				•	•	•	ı	•	•		ı	•	ı	•	•	1	•	•	•	•	•	•	•	•	ı	ı	•	ı	•	ı	
	'	0						1	1	1	l I	l	1	l I							1												1
•	•	·	ı		1	•	•	ı	ı	•	ı	ı	1	•	1	•	'	'		'	'	'	'	1	•	1				1	•	ľ	

1419816_s_at Er	1453796_a_at Er	1423333_at Er;	14392x_at Erdr1	1421114_a_at Epyc	1452-87_at Ep	1417843_s_at Ep	145155at Ep	1421527_at Ep	1421929_at Ep	1425575_at Ep	1455628_at Ep	1433491_at Ep	1423326_at En	1415894_at En	1419276_at En	1426541_a_at En	1451161_a_at Emr1	14171-4_at En	1416529_at En	1449581_at En	1415857_at Emb	1424-97_at El	1448797_at Elk3	141754at Elf1	1452894_at Ela	1421883_at Ela	1423693_at Ela1	14346-5_at Ei	1427-37_at Ei	1417562_at Ei	1421985_a_at Ei	143-98a_at Eii	1410001_at Ell
Errfi1	Ergic2	Ergic1	dr1	iyc	Epsti1	Eps812	Ephb3	Epha6	Epha4	Epha3	Epb4.114b	Epb4.112	Entpd1	Enpp2	Enpp1	Endod1	nr1	Emp3	Emp1	Emid 1	ab	Elov17	k3	f1	Elavl4	Elavl2	a1	Eif5b	Eif4g1	Eif4ebp1	Eif4e2	Eif4a1	EII381-
ERBB receptor feedback inhibitor 1	ERGIC and golgi 2	endoplasmic reticulum-golgi intermediate compartment (ERGIC) 1	erythroid differentiation regulator 1	epiph ycan	epithelial stromal interaction 1 (breast)	EPS8-like 2	Eph receptor B3	Eph receptor A6	Eph receptor A4	Eph receptor A3	erythrocyte protein band 4.1-like 4b	erythrocyte protein band 4.1-like 2	ectonucleoside triphosphate diphosphohydrolase 1	ectonucleotide pyrophosphatase/phosphodiesterase 2	ectonucleotide pyrophosphatase/phosphodiesterase 1	endonuclease domain containing 1	EGF-like module containing, mucin-like, hormone receptor-like sequence 1	epithelial membrane protein 3	epithelial membrane protein 1	EMI domain containing 1	embigin	ELOVL family member 7, elongation of long chain fatty acids (yeast)	ELK3, member of ETS oncogene family	E74-like factor 1	ELAV (embryonic lethal, abnormal vision, Drosophila)-like 4 (Hu antigen D)	ELAV (embryonic lethal, abnormal vision, Drosophila)-like 2 (Hu antigen B)	elastase 1, pancreatic	eukaryotic translation initiation factor 5B	eukaryotic translation initiation factor 4, gamma 1	eukaryotic translation initiation factor 4E binding protein 1	eukaryotic translation initiation factor 4E member 2	eukaryotic translation initiation factor 4A1	eukaryotic translation initiation factor 5, subunit 1- (tneta)
1.51	•	•	•	•	•	'	•	•	1	•	•	•	•	•	•	•	•	•	- 1	•	•	•	•	•	•	•	•	•	•	•	•	•	
- 1.32	•	•	•	•		- 1.29	•	'	'	•	'	•	•	•	•	•	•	•	1.05 -	•	•	•	- 1.12	-	•	•	•	•	•	•	-	•	
32 1.42	- 1.15		•	•		29 -			- 1.94	•		•	•	•	•	- 1.48	•	•	•	•	•	- 1.55	12 -	- 1.13	•	•	•	- 1.11	- 1.04	•		- 1.14	
2	ъ ,	1.05	3.02	-1.18	3.32		-0.99	-1.08	4	-1.68	-1.33	1.60	2.17	<u>'</u>	1.86	•	2.67	1.50	2.16	2.48	-1.2	5	1.92	3 1.23	-2.08	-1.60	2.14	-	4 -	1.33	1.25	4 -	
	•		2.55		2 1.93		•					'	1.45				1.75		3 1.21	3 1.22		•	1.34	•	-	-	1.15	•	1	-	-		
,					1.54								,	÷			1.36	•						•			1.01		1		•		
	,		3.11		1.38							1.16	,					,					ı	,				,	•			,	
,	•		•	•										-1.2		•	•	•	1.42	•	-1.4	•	1.3	•	•	•	1.41	•	•	•	•	ı	
ı		•	•			•	•	•		•		•	•	•	•		•			·			ı		•						·	ı	,
ı	•	•	•	•		•	•	•	ı	•	•	•	•	•	•	•	•	•	,	•	•	•	1	•	•	•	•	•	·	,	•	•	
				1	1	1			1																								Ι

1455915_at Galnt4	1423237_at Galnt1	146-668_at Gal	1453851_a_at Gadd45g	145-971_at Gadd45b	1421978_at Gad2	1418177_at Gabrg2	146-4-8_at Gabrg1	142119at Gabrb3	1417121_at Gabra6	142128at Gabra1	1419761_a_at Gabpb1	1422327_s_at G6pd2	1424342_at Fyttd1	1452117_a_at Fyb	1418296_at Fxyd5	1418527_a_at Fusip1	1437544_at Fubp1	1418364_a_at Ft11	1416658_at Frzb	1423465_at Frrs1	145522at Frat2	1435221_at Foxp1	1417487_at Fosl1	1422134_at Fosb	14231at Fos	1451648_a_at Folr2	145-995_at Folr1	1426642_at Fn1	1434739_at Fmr1nb	1426-86_a_at Fmr1	1456-84_x_at Fmod
4	t1		!45g	!45b		g2	g1	b3	a6	al	b1	12	1		5	01	1					1							nb		~
UDP-N-acetyl-alpha-D-galactosamine:polypeptide N- acetylgalactosaminyltransferase 4	UDP-N-acetyl-alpha-D-galactosamine:polypeptide N- acetylgalactosaminyltransferase 1	galanin	growth arrest and DNA-damage-inducible 45 gamma	growth arrest and DNA-damage-inducible 45 beta	glutamic acid decarboxylase 2	gamma-aminobutyric acid (GABA-A) receptor, subunit gamma 2	gamma-aminobutyric acid (GABA-A) receptor, subunit gamma 1	gamma-aminobutyric acid (GABA-A) receptor, subunit beta 3	gamma-aminobutyric acid (GABA-A) receptor, subunit alpha 6	gamma-aminobutyric acid (GABA-A) receptor, subunit alpha 1	GA repeat binding protein, beta 1	glucose-6-phosphate dehydrogenase 2	forty-two-three domain containing 1	FYN binding protein	FXYD domain-containing ion transport regulator 5	FUS interacting protein (serine-arginine rich) 1	far upstream element (FUSE) binding protein 1	ferritin light chain 1	frizzled-related protein	ferric-chelate reductase 1	frequently rearranged in advanced T-cell lymphomas 2	forkhead box P1	fos-like antigen 1	FBJ osteosarcoma oncogene B	FBJ osteosarcoma oncogene	folate receptor 2 (fetal)	folate receptor 1 (adult)	fibronectin 1	fragile X mental retardation 1 neighbor	fragile X mental retardation syndrome 1 homolog	fibromodulin
•	•	•	2.28	1.98	•	•	•	•	•	•	1.11	•		•	•	•	•	•	•	•	•	•	2.15	2.81	1.63	•	•	•	•		•
•	•	•	1.33	1.1	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	2.02	2.51	•	•	•	•	•	1	,
1	1	•	•	1.21	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	1.85	•	•	•	•	•	ı	•
1	1	•	•	'	2.47	•	•	1.58	•	1.27	1.09	•	1.38	•	•	1.34	1.25	•	•	•	•	•	•	•	•	•	•	•	•	1.08	•
1.26	1.05	1.73	1.25	1.25	•	1.18	-1.02	•	•	느	•	1.29	•	3.22	1.30	•	•	1.15	•	1.19	-1.13	-1.65	•	•	•	-0.98	-2.2-9	1.03	•	ı	1.38
•	•	•	•	•	•	•	•	•	•	•	•	•		2.03	•	•	•	•	 	1.07		•	•	•	•	•	-1.6	•	1.15	1	i
•		-	•	·	-1.2	•	•	•	•	•	•	•		1.77	•	•	-	•		•	•		•	•	-	•	•	•	•		
		•		,						1.1-5				1.3			•	•	-1.2								-1.8	•			ı
		1.43							1.74								•										-3.7	1.79			1
•				ı			•			1					ı	•		ı	1			1					ı			ı	ı
				ı			•		1.85						•	ı		ı	ı			ı					ı			ı	ı
	1			ı					1.02			1	ı		ı			ı	ı	1		ı	1		ı					ı	

1435998_at	1424825_a_at	14524-9_at	1421732_at	1428492_at	1424927_at	14162-5_at	1418248_at	1422-42_at	14158-1_at	1454759_at	1427891_at	1424375_s_at	1418483_a_at	145-44at	1418753_at	14265-8_at	1426-63_a_at	142415at	1429-76_a_at	1419-8at	1431645_a_at Gdi2	14247_at	143-826_s_at	143-826_s_at	142-499_at	14518at	143438at	1418392_a_at	141824at	14599_a_at	1421448_at	1425581_s_at Galnt7
Gm288	Glycam1	Gltscr2	Glrp 1	Glipr2	Glipr1	Glb1	Gla	Gje1	Gja1	Git1	Gimap6	Gimap4	Ggtal	Gfra1	Gfpt2	Gfap	Gem	Gdpd5	Gdpd2	Gdnf	Gdi2	Gdf1-	Gent2	Gent2	Gch1	Gcc2	Gbp6	Gbp3	Gbp2	Gba	Garnl1	Galnt/
gene model 288, (NCBI)	glycosylation dependent cell adhesion molecule 1	glioma tumor suppressor candidate region gene 2	glutamine repeat protein 1	GLI pathogenesis-related 2	GLI pathogenesis-related 1 (glioma)	galactosidase, beta 1	galactosidase, alpha	gap junction membrane channel protein epsilon 1	gap junction membrane channel protein alpha 1	G protein-coupled receptor kinase-interactor 1	GTPase, IMAP family member 6	GTPase, IMAP family member 4	glycoprotein galactosyltransferase alpha 1, 3	glial cell line derived neurotrophic factor family receptor alpha 1	glutamine fructose-6-phosphate transaminase 2	glial fibrillary acidic protein	GTP binding protein (gene overexpressed in skeletal muscle)	glycerophosphodiester phosphodiesterase domain containing 5	glycerophosphodiester phosphodiesterase domain containing 2	glial cell line derived neurotrophic factor	guanosine diphosphate (GDP) dissociation inhibitor 2	growth differentiation factor 1-	glucosaminyl (N-acetyl) transferase 2, I-branching enzyme	glucosaminyl (N-acetyl) transferase 2, I-branching enzyme	GTP cyclohydrolase 1	GRIP and coiled-coil domain containing 2	guanylate binding protein 6	guanylate nucleotide binding protein 3	guanylate nucleotide binding protein 2	glucosidase, beta, acid	GTPase activating RANGAP domain-like 1	acetylgalactosaminyltransferase 7
,		1.28		1.42				,						1.06			1.79							1.68	ı	,			1.52		<u>'</u>	
,	-		ı	1.05				ı	ı	ı	ı	ı	ı		•	-	ı	•					-		ı	ı	•	ı				
•	,		ı		•			ı	ı	ı		ı	1		•	,	ı	•	•	•	•	,	•	•	ı	,	•	1	•		,	
ı	-	ı	ı	ı	•	ı	•	1.68	1.48	ı	ı	ı	ı	•	-	-	1.62	-	•	•	•	ı	-	•	ı	2.12	-	ı	•	•	1.35	1.21
ı	3.53	•	1.24	1.84	2.11	1.15	1.05		1.21	-1.07		2.39	2.72	2.71	2.14	2.12	2.21	1.14	1.23	3.45	1.01	-1.94	1.12	1.12	1.33	,	2.15	3.09	3.05	1.26		•
,	2.28				-		•					1.17	1.57	•	1	1.8-3		•	•			•	•	•	,		1.22	1.75	2.12	•	•	
•	1.37									ı		1.06	1.3		-	1.56		-				-	-		ı	ı	-	1.42	1.61		-	,
,								,	2.1-7							1.25						•			,	,			1.01		1.08	
1.72											1.23		1.91	1.87		1.32			•	1.41				•	ı	,	1.69	1.97	2.36			
1.56		•											•	1					•						ı			•		•		
0,																,									ı	,						
1.51	•	'	'	ľ.																												

 5 1.08	8 1.5	## 1.78	- ####	•	Ļ				
		_			•	•	granulin	Grn 8	1448148_at
		- 70	1.07	•	•	•	glutamate receptor, metabotropic 1	Grm1	14257at
		- 28	1.28	•	•	•	glutamate receptor, ionotropic, kainate 1	Grik1	1427676_a_at
		1	1.29 -	' -	•	•	glutamate receptor, ionotropic, AMPA3 (alpha 3)	Gria3	142-563_at
		31 -	1.31	•	•	•	glutamate receptor, ionotropic, AMPA1 (alpha 1)	Gria1 8	1435239_at
		نٽ -	- 1.63	•	•	•	gremlin 2 homolog, cysteine knot superfamily (Xenopus laevis)	Grem2	1418492_at
•		- 14	- 1.14	•	•	•	gene regulated by estrogen in breast cancer protein	Greb1 §	1419593_at
•			•	1.29	•	•	glutathione peroxidase 3	Gpx3	14491-6_at
•	ິ ເ	67 1.25	- 1.67	•	•	•	G-protein signalling modulator 3 (AGS3-like, C. elegans)	Gpsm3	1418396_at
•		35 -	1.85	•	•	•	G protein-coupled receptor 85	Gpr85	1424897_at
03 1.55	6 2.03	77 2.96	- 3.77	•	2.01	2.41 2	G protein-coupled receptor 84	Gpr84	142-591_at
. 1.03	4	32 2.04	- 3.32	•	•	1.2	G-protein coupled receptor 65	Gpr65	1449175_at
	2	42 1.12	- 2.42	-1.9	-2.3	-2.1 -	G protein-coupled receptor 34	Gpr34	1422542_at
			•	•	1.03	•	G-protein coupled receptor 3	Gpr3	146-275_at
•	•	- 17	- 1.17	•	•	•	G protein-coupled receptor 137B, pseudogene	Gpr137b-ps	1429775_a_at
•		- 55	1.55	•	•	•	G-protein coupled receptor 12	Gpr12	1449472_at
18 1.09	-4 1.18)6 2.1-4	- 3.06	•	•	•	G protein-coupled receptor 1-9A	Gpr1-9a	1419721_at
97 1.77	8 1.97	71 2.78	- 3.71	•	1	•	glycoprotein (transmembrane) nmb	0	
•		- 0(- 1.00	'	'	•	glycosylphosphatidylinositol specific phospholipase D1	Gpld1 g	1418-5at
•		- 70	- 1.07	'	'	•	glypican 4	Gpc4	1421-88_at
•	•	20 -	- 1.20	•	•	•	glycerol-3-phosphate acyltransferase, mitochondrial	Gpam	1419499_at
-			•	•	•	•	golgi reassembly stacking protein 2	Gorasp2	146-46a_at
•			1.26 -	۔ ح	•	•	golgi phosphoprotein 3	Golph3 g	1421845_at
•		13 -	- 1.13	•	•	•	guanine nucleotide binding protein (G protein), gamma 12	Gng12 §	1421947_at
•		·	1.35 -1.1	- 1	•	•	guanine nucleotide binding protein, alpha inhibiting 1	Gnai 1	142751at
1.67		•	-	•	'	•	guanine nucleotide binding protein, alpha 15	Gna15	14213-2_a_at
•		57 -	- 1.57	•	•	•	guanine nucleotide binding protein, alpha 14	Gnal4	1449848_at
•		-	1.43 1.11	۰ ح	•	•	guanine nucleotide binding protein, alpha 13	Gnal3	1422556_at
. 1.13	•		•	•	ı	•	guanine nucleotide binding protein, alpha 12	Gna12	1421-26_at
•		33 -	- 1.33	•	•	•	Gem-interacting protein	Gmip (1428784_at
42 -	1 1.42	38 1.81	- 2.38	•	•	•	glia maturation factor, gamma	Gmfg	1419194_s_at
			2.4 -	'	•	•	glia maturation factor, beta		1417-69_a_at Gmfb
. 1.25		- 14	- 1.44	•	'	•	GM2 ganglioside activator protein	Gm2a	1416188_at

14389_at	1424755_at	1448183_a_at	1423319_at	146-18at	1449-24_a_at	1456-1x_at	14247-3_at	1449615_s_at	1435977_at	1418842_at	1449455_at	141835at	1451584_at	142-589_at	142216at	1449556_at	1449875_s_at	1418536_at	1451644_a_at	1419297_at	1421358_at	1451931_x_at H2-L	1424948_x_at H2-K1	144958s_at H2-DMb2	1418638_at	1422527_at	1451683_x_at	1419-6at	1448124_at	1416531_at	1421-4a_at	1415812_at	145-886_at
Hist1h2ae	Hip1	Hifla	Hhex	Hexb	Hexa	Hes5	Hemk1	Hdlbp	Hdgfrp3	Hcls1	Hck	Hbegf	Havcr2	Has3	H2-T24	H2-T23	H2-T1-	H2-Q8	H2-Q1	H2-Oa	H2-M3	H2-L	H2-K1	H2-DMb2	H2-DMb1	H2-DMa	H2-D1	Gzmb	Gusb	Gsto1	Gsta2	Gsn	Usg2
histone cluster 1, H2ae	huntingtin interacting protein 1	hypoxia inducible factor 1, alpha subunit	hematopoietically expressed homeobox	hexosaminidase B	hexosaminidase A	hairy and enhancer of split 5 (Drosophila)	HemK methyltransferase family member 1	high density lipoprotein (HDL) binding protein	hepatoma-derived growth factor, related protein 3	hematopoietic cell specific Lyn substrate 1	hemopoietic cell kinase	heparin-binding EGF-like growth factor	hepatitis A virus cellular receptor 2	hyaluronan synthase 3	histocompatibility 2, T region locus 24	histocompatibility 2, T region locus 23	histocompatibility 2, T region locus 1-	histocompatibility 2, Q region locus 8	histocompatibility 2, Q region locus 1	histocompatibility 2, O region alpha locus	histocompatibility 2, M region locus 3	histocompatibility 2, D region	histocompatibility 2, K1, K region	histocompatibility 2, class II, locus Mb2	histocompatibility 2, class II, locus Mb1	histocompatibility 2, class II, locus DMa	histocompatibility 2, D region locus 1	granzyme B	glucuronidase, beta	glutathione S-transferase omega 1	glutathione S-transferase, alpha 2 (Yc2)	gelsolin	germ cell-specific gene 2
			ı			-1.4						1.4			ı			1		ı			1				ı		ı	ı			
	•	•	•			•			,			1.27			•		•	•	•	•	•		•	•	•	•	•		•		•	•	
	,		•						,			ı			•					•				,					•	ı		ı	
ı	1.25	•	-	•	•	-1.3	•	1.41	ı		•	-	•	•	-	•	•	•	-	-	•	•	-	-	•		•	•	-	•	-1.4	-	•
1.52	-1.3	1.01	1.80	1.75	1.41	- <u>'</u> -1.5	•		-1.05	2.57	2.71	2.47	3.02	-1.31	1.30	2.24	1.32	3.29	1.97	1.96	2.26	2.78	2.61	1.44	####	1.12	3.31	-0.99	2.99	1.17		1.14	1.00
ı			1.21	1.48	1.04				1	1.73	1.73	ı	1.81	-1.1	ı	1.2-5		1.91	ı	1.75	1.09	1.88	1.76	•	1.19		2.04		1.96			1.04	
,	,								,		1.35	ı	1.55			1.25						1.55	1.5	,		,	1.43			,	,	ı	
,										1.03			1.06										1.16				1.16		1.1				
,		•					-1.7				1.07	1.64				1.22		1							•								'
ı		•	ı												ı			•		ı	•				•				ı				
	,		ı						1			•			ı			1		ı							ı		ı			•	
1								i									·	·			·	·			-					لـــــــر			+

1427164_at 113ra1	1449982_at II11	1419455_at II1-rb	1448731_at II1-ra	1417793_at ligp2	1419-42_at ligp1	1417141_at Igtp	14214-8_at Igsf6	14514-7_at Igsf5	1427455_x_at Igk-V1	1452417_x_at Igk-C	1421653_a_at Igh-VJ558	1427329_a_at Igh-6	1425763_x_at Igh	1423584_at Igfbp7	1417933_at Igfbp6	1452-14_a_at Igf1	1448167_at Ifngr1	1451462_a_at Ifnar2	144-865_at Ifitm6	1423754_at Ifitm3	1449-25_at Ifit3	1418293_at Ifit2	145-783_at Ifit1	1426276_at Ifih1	1417292_at Ifi47	1423555_a_at Ifi44	1424617_at Ifi35	1422476_at Ifi3-	1426278_at Ifi27	1452349_x_at Ifi2-5	14196-3_at Ifi2-4	1417612_at ler5
interleukin 13 receptor, alpha 1	interleukin 11	interleukin 1- receptor, beta	interleukin 1- receptor, alpha	interferon inducible GTPase 2	interferon inducible GTPase 1	interferon gamma induced GTPase	immunoglobulin superfamily, member 6	immunoglobulin superfamily, member 5	immunoglobulin kappa chain variable 1 (V1)	immunoglobulin kappa chain, constant region	3 immunoglobulin heavy chain (J558 family)	immunoglobulin heavy chain 6 (heavy chain of IgM)	immunoglobulin heavy chain complex	insulin-like growth factor binding protein 7	insulin-like growth factor binding protein 6	insulin-like growth factor 1	interferon gamma receptor 1	interferon (alpha and beta) receptor 2	interferon induced transmembrane protein 6	interferon induced transmembrane protein 3	interferon-induced protein with tetratricopeptide repeats 3	interferon-induced protein with tetratricopeptide repeats 2	interferon-induced protein with tetratricopeptide repeats 1	interferon induced with helicase C domain 1	interferon gamma inducible protein 47	interferon-induced protein 44	interferon-induced protein 35	interferon gamma inducible protein 3-	interferon, alpha-inducible protein 27	interferon activated gene 2-5	interferon activated gene 2-4	immediate early response 5
	1.13							,	-2.4	-2.6					-		-	-	-	-			-	-		-	-		-	-	-	1.09
	ω ,								4	6 -								•	•				•	•		•			•	1.61		- 6(
	,		•						1.22			•			•	•	•	•	•	•	•		•	•	•	•	•	•	•	-	•	1.22
,									,			,						,	,				,	,		•			•	,		
1.86		1.05	2.02	2.1	3.5	2.36	2.42							1.06	-1.38	2.62	1.31	-0.98	1.22	2.26	3.38	2.48	3.93	2.02	2.24	4.63	2.09	2.53	4.46	3.7	3.36	1.33
1.11				1.39	2.17	1.41	1.36				1.18		1.36			1.67				1.64	2.11	1.21	2.72	1.11		2.93	1.17	1.58	3.22	1.89	2.02	
,					1.3-7	느	1.56								•	1.7	•			1.27	1.7		1.7-6			2.19		1.28	2.32			1
																		•	•				,	•		1.56			•	,		
	'		1	-	2.49	2.07			,			1.47			•		•						1.49		•	1.15				-1.6		1
•		•		1.81	49	ĭ				I	I												1.13									
		•	•	.81 -	49 -	- 7(ı		ı	•	•	ı	ı	•	1	'	•						ω								•	Ľ
•	•				49				•	•	•	•	•	1	•	•	•		•				з -			-			-	•	•	

	ı	ı	ı	1 88		ı	<u>'</u>	1.63	myeloid cell leukemia sequence 1	nt Mc11	1416881 at
		•	•		ı	1.01			melanin-concentrating hormone receptor 1	t Mchr1	1428-31_at
	1.47		1		1.53				myelin basic protein	1_at Mbp	1425263_a_at
			1					<u>'</u>	methyl-CpG binding domain protein 2	_at Mbd2	14258-3_a_at
				1.79					matrilin 4	ut Matn4	1418464_at
	•	•	•	-1.76					matrilin 2	ut Matn2	1419442_at
		•	•	1.06	1				myristoylated alanine rich protein kinase C substrate	ut Marcks	1415972_at
		•	•		1.12				microtubule-associated protein, RP/EB family, member 1	ut Mapre1	1422765_at
			•	1.16		1.03			2 MAP kinase-activated protein kinase 2	ut Mapkapk2	1426648_at
1.27			•	1.67			1		mitogen-activated protein kinase 12	1_at Mapk12	1449283_a_at
		•	•		1.09				mitogen activated protein kinase kinase 4	ut Map2k4	1426233_at
			•	-0.98					mannosidase 2, alpha B2	ut Man2b2	1416584_at
ı	•		•	1.37					mannosidase 2, alpha B1	_at Man2b1	141634a_at
		•	•		1.49				mannosidase 1, alpha	t Man1a	141711at
	1.29		•		1.89			1.45	metastasis associated lung adenocarcinoma transcript 1 (non-coding RNA)	at Malat1	1452378_at
ı	ı		ı	-1.51	ı				mal, T-cell differentiation protein 2	t Mal2	1427-42_at
		•	•		1.19				myelin and lymphocyte protein, T-cell differentiation protein	1_at Mal	1432558_a_at
ı	ı	-1.3	ı	-1.9	ı	-1.2			melanoma antigen, family L, 2	ut Magel2	1417217_at
ı	1.22	1.52	1.39	1.27		,	2.57	2.78	v-maf musculoaponeurotic fibrosarcoma oncogene family, protein F (avian)	ut Maff	1418936_at
	1.35	1.86	2.61	3.56		,	,		lysozyme	ut Lyzs	1423547_at
	ı		•	ı	ı		1.97		lymphatic vessel endothelial hyaluronan receptor 1		1429379_at
		•	•	1.53	1				lysophospholipase 3	_at Lypla3	1422341_s_at
			•	-1.97					Ly6/Plaur domain containing 1	1_at Lypd1	1431569_a_at
	1.25	1.2	1.47	2.54		,	,	,	Yamaguchi sarcoma viral (v-yes-1) oncogene homolog	ı_at Lyn	1425598_a_at
,		1.06	1.32	1.86		,	,		lymphoblastomic leukemia	t Lyl1	141912at
•			•	1.14			,		lymphocyte antigen 96	ut Ly96	1449874_at
1			1.78	2.92		,	,		lymphocyte antigen 9	tt Ly9	1449156_at
	-	1.36	2.06	2.34	ı				lymphocyte antigen 86	t Ly86	14229-3_at
,			•		1.49	,	,		Luc7 homolog (S. cerevisiae)-like	_a_at Luc71	14527-8_a
-1.6	•		1.14	1.16	ı	,	,		leukotriene C4 synthase	1_at Ltc4s	1419692_a_at
		•	•	1.11	ı				lymphotoxin B receptor	ut Ltbr	1416435_at
		•	•	1.55	ı				latent transforming growth factor beta binding protein 1	t Ltbp1	144887at
1			1	1.20					leukocyte specific transcript 1	1_at Lst1	1425548_a_at Lst1
				 - + +	,					r den na	141/Jo_a_at_Lsp1

1418588_at N	1417971_at N	145-946_at N	1431597_a_at	1418469_at N	145-75a_at N	1425-14_at N	1416959_at N	1417489_at N	1419127_at N	144996at N	1435184_at N	1424265_at N	14169-1_at N	1426851_a_at N	1449146_at N	1421965_s_at N	1455556_at N	1438483_at N	1425719_a_at	1422342_at N	1424981_at N	1423249_at N	145-753_at	1423516_a_at	1417996_at N	1448728_a_at	14483-6_at N	1418932_at N	1416543_at N	1426-32_at N	1417621_at N	1418-47_at N
Nrsn1	Nrm	Nrl	Nrip3	Nrip1	Nr4a2	Nr2c2	Nr1d2	Npy2r	Npy	Nptx2	Npr3	Npl	Npc2	Nov	Notch4	Notch3	Notch2	Nos1	Nmi	Nmbr	Nln	Nktr	Nkg7	Nid2	Ngb	Nfkbiz	Nfkbia	Nfil3	Nfe212	Nfatc2	Nfatc1	Neurod6
neurensin 1	nurim (nuclear envelope membrane protein)	neural retina leucine zipper gene	nuclear receptor interacting protein 3	nuclear receptor interacting protein 1	nuclear receptor subfamily 4, group A, member 2	nuclear receptor subfamily 2, group C, member 2	nuclear receptor subfamily 1, group D, member 2	neuropeptide Y receptor Y2	neuropeptide Y	neuronal pentraxin 2	natriuretic peptide receptor 3	N-acetylneuraminate pyruvate lyase	Niemann Pick type C2	nephroblastoma overexpressed gene	Notch gene homolog 4 (Drosophila)	Notch gene homolog 3 (Drosophila)	Notch gene homolog 2 (Drosophila)	nitric oxide synthase 1, neuronal	N-myc (and STAT) interactor	neuromedin B receptor	neurolysin (metallopeptidase M3 family)	natural killer tumor recognition sequence	natural killer cell group 7 sequence	nidogen 2	neuroglobin	nuclear factor of kappa light polypeptide gene enhancer in B-cells inhibitor, zeta	nuclear factor of kappa light chain gene enhancer in B-cells inhibitor, alpha	nuclear factor, interleukin 3, regulated	nuclear factor, erythroid derived 2, like 2	nuclear factor of activated T-cells, cytoplasmic, calcineurin-dependent 2	nuclear factor of activated T-cells, cytoplasmic, calcineurin-dependent 1	neurogenic differentiation 6
•	•	•	•	•	1.69	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	'	1.22	•	2.09	•	•	•	-1.3
•	•	•	•	•	•	•	•	•	•	2.53	•	•	•	•	•	•	,	•	•	•	•	•	•	•	•	•	,	1.51	'	•	•	•
•	'	•	•	' 1	•	•	י ר	1	•	1.64 1	•	•	•	•	•	•	•	•	•	•	•	۰ ۱	•	•	-1.4		•	1.31	'	•	•	1
۱ ۱	' 	1 1	'	1.04	•	1.2	.06	י ג	'	1.62 2	•	'	' ->	'	'	'	·1.1	-	' ->	•	'	1.32	' -	•	•	•	' 1	' 	י ר	-	'	'
-1.27	1.14	-1.03	1.89	•	•	•	•	-3.50 .	1.57	2.49	-2.5		1.53	-2.90	1.12	1.03	'	-2.39	1.16	•	1.12	•	1.26	'	-1.9	•	1.00	1.69	1.21	-1.18	1.14	-2.9
1	•	•	•	•	•	•	•	-1 . 1	•	1.52	1	1.01	1.26	•	•	•	'	'	'	•	•	•	'	'	'	•	'	'	'	•	•	•
1	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	-1.3	•	•	'	'	•	•	•
ı		•		•			1.05	ı			1		•	1		•	-	-	-			1	-	-		-	-	ı			•	ı
	•	ı	•	•	•	•		ı	1.09	1.89	-1.6	1.17	ı	ı	•	•			•	2.61	•	ı	•	-1.3				ı		•	·	-1.3
•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	'	•	•	'	'	•	•	•
1	•	•	•	•	•	•	·	ı	•	•	•	•	•	•	•	•	,	•	•	•	•	•	•	•	'	ı	,	,	'	•	•	ı
				i i	1	i i	1	1	i i	1	I	l I	1	1	1	Î.			1	I	l I	1		1						1 '	l I	Ì

			1			· ·	-1.8	-1.8	-1.8		
		+					1 8 - 1.48	1 8 - 1.48 -		1.48	1.8
			,	,	<u> </u>	,	- 1.21	- 1.21 -	- 1.21	- 1.21	- 1.21
procollagen-proline, 2-oxoglutarate 4-dioxygenase (proline 4-hydroxylase), alpha 1 polypeptide				•		•	· ·	1.24	1.24 -	1.24	1.24 1.5
procollagen-proline, 2-oxoglutarate 4-dioxygenase (proline 4-hydroxylase), alpha 1 polypeptide			•	1.05	1.05 1.56	1.05	1.05 1.56	1.05 1.56 1.29	1.05 1.56 1.29 -	1.05 1.56 1.29	1.05 1.56 1.29 1.52
	ı		•	-	•	3.11	•	3.11	3.11 2.05	3.11 2.05 1.72	3.11 2.05 1.72 1.29
	ı		-2.5	-2.5 -	•	•	•	•	•	•	•
	ı						-	1	1 -	1	1
	ı		•	•	•		•	1.35	1.35 -	1.35	1.35
	ı		ı	-		•	•	-	•	1.08	1.08 -
	ı		ı	-	1.17	1.17 -2.3	1.17	1.17 -2.3	1.17 -2.3 -1.7	1.17 -2.3 -1.7 -1.8	1.17 -2.3 -1.7 -1.8 -
	2.89		2.32	2.32 -	•	3.64	•	3.64	3.64 2.28	3.64 2.28 1.88	3.64 2.28 1.88 1.34
	ı		1	•	•	•	•	•	•	•	1.67
	•		ı	•	•	2.88	•	2.88	2.88 1.91	2.88 1.91 1.48	2.88 1.91 1.48 1.11
	•		I	•	1	ı	1	1	1.16 -	1.16	1.16
	-1.6	0,	•		•	•	•	1.7	1.7 -	1.7	1.7
			ı	-					1.03 -	1.03	1.03
			ı		•	'	•	1.04	1.04 -	1.04	1.04
	1.29		I		•			•			· · · · · ·
	-1.7		I	-		•	•				
	ı			•	•	1	•	4.31	4.31 2.8	4.31 2.8 2.32	4.31 2.8 2.32 1.14
	ı		ı	1	•	2.14	•	2.14	2.14	2.14	2.14 1.19
	ı		'	-	•	•	•	•	•	1.64	1.64
	,		•	-		3.55		3.55	3.55 2.41	3.55 2.41 1.79	3.55 2.41 1.79 1.17
	•		-	-		•			1.77 -	1.77	1.77
				•	-	•	-	-	1.89 -	1.89	1.89
	ı		1	•	-	•	-	2.63	2.63 -	2.63 - 1.25	2.63 - 1.25 -
	•		•	- 1.21	_	1.21	1.21	1.21	1.21	1.21	1.21
	•		•	•		-		1.21	1.21 -	1.21	1.21
	<u>ل</u>		1.34	1.34 -	•	ı	•	3.4	3.4 -	3.41.2	3.41.2 -
	1				1.00						

		!											
		90 C				2.49	,				prodynorphin	Pdyn	1416266_at
	ı	1		,		-1.06	,	,	,	,	pyridoxal (pyridoxine, vitamin B6) phosphatase	Pdxp	141789at
	ı		•		•	1.11	•	•		•	podoplanin	Pdpn	14193-9_at
					1.19	1.21	2.15				PDZ and LIM domain 5	Pdlim5	145-786_x_at
,	ı		•		1.03	1.43			1.05	,	PDZ and LIM domain 4	Pdlim4	1417928_at
						1.50					PDZ and LIM domain 3	Pdlim3	1449178_at
								Ľ		,	platelet derived growth factor receptor, alpha polypeptide	Pdgfra	1421916_at
						1.07				•	platelet-derived growth factor, D polypeptide	Pdgfd	1426319_at
							1.59				phosphodiesterase 4D interacting protein (myomegalin)	Pde4dip	146-426_at
						-2.02				,	phosphodiesterase 2A, cGMP-stimulated	Pde2a	14522-2_at
						-2.33				,	phosphodiesterase 1A, calmodulin-dependent	Pde1a	1449298_a_at
					•		÷			•	phosphodiesterase 1-A	Pde1-a	141939at
			,		•	1.14				,	programmed cell death 1	Pdcd1	1449835_at
						1.31				,	phosphatidylcholine transfer protein	Pctp	142-984_at
					1.11	1.60				•	PCTAIRE-motif protein kinase 2	Pctk2	1435143_at
	ı			,	•	1	•	•	3 1.75	1.53	proprotein convertase subtilisin/kexin type 1	Pcsk1	1421396_at
		-1.1		•			•				procollagen C-endopeptidase enhancer 2	Pcolce2	1451527_at
1	ı	-1.3	ı					,	•	-1.3	procollagen C-endopeptidase enhancer protein	Pcolce	1437165_a_at
ı	ı	ı	I	ı	ı	ı	1.2	'	ı	ı	protein-L-isoaspartate (D-aspartate) O-methyltransferase domain containing 1	Pcmtd1	1435635_at
	1	1		느	÷			•		,	protocadherin beta 12	Pcdhb12	1422877_at
•	ı		-1.38	-1.1	Ŀ	-1.7	•	-1.1		•	protocadherin 21	Pcdh21	14183-4_at
	ı			,	1.07	1.15	•	,		,	pre-B-cell leukemia transcription factor interacting protein 1	Pbxip1	1451132_at
ı	ı	ı	1	,	•	1	1.67	,	ı	ı	pre B-cell leukemia transcription factor 1	Pbx1	1425383_a_at
	ı	ı	ı		1.98	2.44	1	,	1	ı	PDZ binding kinase	Pbk	1448627_s_at
ı	ı		•	1		1.07	1		ı	ı	PRKC, apoptosis, WT1, regulator	Pawr	142691at
			•	•	-	1.19	•	•	•	•	parvin, gamma	Parvg	1416875_at
				1.01	1.52	2.48	•				poly (ADP-ribose) polymerase family, member 9	Parp9	1416897_at
	ı	2.17	1	1.32	1.93	1.91	•	•		•	poly (ADP-ribose) polymerase family, member 3	Parp3	1451969_s_at
ı	ı	ı	ı		1.68	2.96	1	,	,	ı	poly (ADP-ribose) polymerase family, member 14	Parp14	1451564_at
,	ı		•	1		1.46		•		,	poly (ADP-ribose) polymerase family, member 12	Parp12	1426774_at
•	ı	1.12	•		•	1.86		•		,	3'-phosphoadenosine 5'-phosphosulfate synthase 2	Papss2	1421989_s_at Papss2
	ı	1.47	•	•		2.19	•	,		,	pregnancy-associated plasma protein A	Pappa	1427633_a_at Pappa

1417128_at	14182-1_at	1423862_at	1426-13_s_at	1417289_at	1448749_at	1452178_at	1433678_at	1426926_at	1452398_at	1425339_at	14256a_at	145259a_at	1451335_at	1417814_at	1449799_s_at	1421137_a_at Pkib	141928at	145-389_s_at	1435872_at	1427327_at	14227-8_at	1428394_at	1454714_x_at Phgdh	14566-6_a_at	1418329_at	1419249_at	143-634_a_at	1416432_at	1416271_at	1427-38_at
Plekho 1	Plekhg2	Plekhf2	at Plekha4	Plekha2	Plek	Plec1	Pld4	Plcg2	Plce1	Plcb4	t Plcb1	at Plac9	Plac8	Pla2g5	at Pkp2	at Pkib	Pip5k2a	at Pip5k1b	Pim1	Pilra	Pik3cg	Phyhd1	at Phgdh	at Phactr1	Pgpep1	Pftk1	at Pfkp	Pfkfb3	Perp	Penk1
pleckstrin homology domain containing, family O member 1	pleckstrin homology domain containing, family G (with RhoGef domain) member 2	pleckstrin homology domain containing, family F (with FYVE domain) member 2	pleckstrin homology domain containing, family A (phosphoinositide binding specific) member 4	pleckstrin homology domain-containing, family A (phosphoinositide binding specific) member 2	pleckstrin	plectin 1	phospholipase D family, member 4	phospholipase C, gamma 2	phospholipase C, epsilon 1	phospholipase C, beta 4	phospholipase C, beta 1	placenta specific 9	placenta-specific 8	phospholipase A2, group V	plakophilin 2	protein kinase inhibitor beta, cAMP dependent, testis specific	phosphatidylinositol-4-phosphate 5-kinase, type II, alpha	phosphatidylinositol-4-phosphate 5-kinase, type 1 beta	proviral integration site 1	paired immunoglobin-like type 2 receptor alpha	phosphoinositide-3-kinase, catalytic, gamma polypeptide	phytanoyl-CoA dioxygenase domain containing 1	3-phosphoglycerate dehydrogenase	phosphatase and actin regulator 1	pyroglutamyl-peptidase I	PFTAIRE protein kinase 1	phosphofructokinase, platelet	6-phosphofructo-2-kinase/fructose-2,6-biphosphatase 3	PERP, TP53 apoptosis effector	preproenkephalin 1
•	•	•	•	•	1.53	•	•	•	•	•	•	•	•	-1.6	•	•	•	•	1.68 1	•	,	•	•	•	•	•	•	•	1	•
'	•	I	I	I	'	•	'	•	'	'	'	•	•	•	'	י י	•	•	1.49	•	'	•	•	•	'	•	'	'	•	•
-	•	•	'	•	•	•	•	-		- 1.41	- 1.55	-	•	-	•	1.1 -	- 1.4	'	-	-	' 	-	-	•	•	' 1	-	-	-	'
. 1.42	. 1.48	<u> </u>	<u>د</u>	<u> </u>	. 3.69	. 1.64	. 2.66	. 1.79	- 2.04	41 -	- 55	- 1.77	- 1.48		-2.43	-	.4 -	-1.31		- 1.40	. 2.29	. 1.44		-1.32	1	.24 -1.8		1		. 2.7
1 2 -	48 -	.23	.81 -	.31 1.2-6	39 2.24	64 -1	6 2.14	79 1.16	04 1.28		-	- 77	48 1.06		43 -			31 -		40 -	29 1.47	- 14	-	32 -	.91 -	.∞ -	-	.51 -		.78 2.0
-				- 6 -	24 1.91	_	14 1.4	16 -	- 28	-		-	- 90	-		-	-		-		47 -	-	-	-			-	-	-	.05
						-																								
'	•	'	'	י 	1.81	1	1.07	•	- 1	-	•	•	•	י י	•	'	1.22	1	•	1	'	•	- 	•	•	1	1.29	•	- -	' ->
' 	•	I	I	1.46	'	•	'	•	1.19	'	'	•	•	1.7	'	•	•	•	•	•	'	•	-3.2	•	'	•	'	'	-1.3	1.61 1.1
<u> </u>	•	•	•	•	•	•	•	'	'	'	'	•	•	•	'	•	•	•	•	•	'	'	3.	•	'	•	'	'	•	ы
'	•	'	'	'	'	•	'	-	'		'	•	•	•	•	•	•	•	-	•	'	'	З	•	'	•		•	•	'
'	ı	I	I	I	'	ı	'	•	ı	1	ı	1	'	1	·	'	ı	ı	•	ı	ı	•	-3.2	1	'	•	1	1	ı	'

1448556_at	1422847_a_at	1455758_at	1427414_at	1449824_at	1423223_a_at	142-425_at	1452191_at	145-368_a_at	1425631_at	1418-86_at	142533a_at	1416498_at	1452846_at	1424335_at	141848at	146-336_at	1449937_at	14638_at	1419298_at	141819at	1427885_at	1422711_a_at Pnck	1427893_a_at	1417133_at	14182-3_at	145-9-6_at	1418912_at	1448961_at	1425467_a_at	1416687_at	1416289_at
Prlr	Prkcd	Prkcc	Prkar2a	Prg4	Prdx6	Prdm1	Prcp	Ppp3r1	Ppp1r3c	Ppp1r14a	Ppm1b	Ppic	Ppfia4	Ppcdc	Ppbp	Ppargc1a	Pp11r	Pou3f1	Pon3	Pon1	Pold4	Pnck	Pmvk	Pmp22	Pmaip1	Plxnc1	Plxdc2	Plscr2	Plp1	Plod2	Plod1
prolactin receptor	protein kinase C, delta	protein kinase C, gamma	protein kinase, cAMP dependent regulatory, type II alpha	proteoglycan 4 (megakaryocyte stimulating factor, articular superficial zone protein)	peroxiredoxin 6	PR domain containing 1, with ZNF domain	prolylcarboxypeptidase (angiotensinase C)	protein phosphatase 3, regulatory subunit B, alpha isoform (calcineurin B, type I)	protein phosphatase 1, regulatory (inhibitor) subunit 3C	protein phosphatase 1, regulatory (inhibitor) subunit 14A	protein phosphatase 1B, magnesium dependent, beta isoform	peptidylprolyl isomerase C	protein tyrosine phosphatase, receptor type, f polypeptide (PTPRF), interacting protein (liprin), alpha 4	phosphopantothenoylcysteine decarboxylase	pro-platelet basic protein	peroxisome proliferative activated receptor, gamma, coactivator 1 alpha	placental protein 11 related	POU domain, class 3, transcription factor 1	paraoxonase 3	paraoxonase 1	polymerase (DNA-directed), delta 4	pregnancy upregulated non-ubiquitously expressed CaM kinase	phosphomevalonate kinase	peripheral myelin protein	phorbol-12-myristate-13-acetate-induced protein 1	plexin C1	plexin domain containing 2	phospholipid scramblase 2	proteolipid protein (myelin) 1	procollagen lysine, 2-oxoglutarate 5-dioxygenase 2	procollagen-lysine, 2-oxoglutarate 5-dioxygenase 1
	•	•	1.24	•	•	•	•		1.27	•	•	•		•	•	•	•	•	•	•	•	•	1.02	•	•	•	•	•	•	•	•
ı	•	•	•	•	•	'	•	•	•	-'- 5	•	•	•	•	•	•	1.24	•	•	•	'	•	•	•	•	•	•	•	•	•	•
'	1	•	•	•	•	•	•	•	1.21	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
1	•	•	•	•	•	•	•	1.25	•	•	1.09	•	•	•	•	1.16	•	•	•	•	•	•	•	•	•	1.08	•	•	1.17	•	•
-1.3	'	-1.94	•	-1.2	1.12	1.23	1.28	•	1.39	•	•	1.07	1.48	1.11	•	•	2.07	-2.65	1.62	-1.4	1.24	-1.48	•	1.19	1.37	•	2.20	2.81	•	1.37	1.70
•	ı	•	•	•	•	•	•	•	•	•	•	1	•	•	1	•	1.21	·	1.26	•	•	•	•	•	•	•	1.57	1.6	•	•	1.29
ı	ı		-	•		ı	•	ı	•	•		ı	ı	•	1	•	1.29		1	•	-	•			-	-	•	-	-	1	
,				-1.8		,			-					-						-	-			-		-		-	-		,
-1.4	-2			1.34					•						1.03	•	1.17	•	1	-2.3		•			1		•			1	
			•	I			•	ı	ı	•		•	ı	•	•	ı		ı	•	•	•	ı		•	•	•	ı	•	•	•	
,						,			-					-						-	-					-		-	-		
,				-		,						ı		•		•		•		•		•		•	•	•	ı	•	•		,

'										1 00	noliovirus recentor	Pvr	14239-5 at
	•	•	1	•	•	-2.46					parvalbumin	Pvalb	1417653_at
•	•	2.24	1	1.04	1.53	2.01	1.66		2.77	3.08	pentraxin related gene	Ptx3	1418666_at
1	•	•	1		•	-1.14	ı	•		1	protein tyrosine phosphatase, receptor type, U	Ptpru	1416674_at
•	•	1	1	I	•	-1.1	1.59				protein tyrosine phosphatase, receptor type, T	Ptprt	145-174_at
•	•	1.71	1	ı	•	2.13					protein tyrosine phosphatase, receptor type, O	Ptpro	1417676_a_at
•	•	1	1	I	•	1.04	•			•	protein tyrosine phosphatase, receptor type, K	Ptprk	143168a_at
•	•	1	1	I	•	1.03					protein tyrosine phosphatase, receptor type, J	Ptprj	1427629_at
'	'	1.12	1	1.63	2.29	3.28					protein tyrosine phosphatase, receptor type, C	Ptprc	1422124_a_at Ptprc
•	•	•	1	1.66	2.18	3.35	•			•	protein tyrosine phosphatase, non-receptor type 6	Ptpn6	146-188_at
'	'	1.05	1		•	1					protein tyrosine phosphatase, non-receptor type 5	Ptpn5	142513a_at
•	•	•	1		1.7	2.33					protein tyrosine phosphatase, non-receptor type 18	Ptpn18	1419125_at
•	•	1	1	1.18	1.64	2.78	•			•	protein tyrosine phosphatase-like A domain containing 2	Ptplad2	145-967_at
•	•	•	1.2-4	•	•	ı	1.16				protein tyrosine phosphatase-like A domain containing 1	Ptplad1	1452427_s_at Ptplad1
•	•	1	•	-	•	-1.19					PTK2 protein tyrosine kinase 2 beta	Ptk2b	1434653_at
•	•	ı	1	·	•	2.35	ı	•		ı	parathyroid hormone-like peptide	Pthlh	1422324_a_at
'	•	ı	•	•	•	ı	•	•		2.15	prostaglandin-endoperoxide synthase 2	Ptgs2	1417262_at
'	•	ı	1.09	-	1.42	2.21		•		•	prostaglandin-endoperoxide synthase 1	Ptgs1	1436448_a_at Ptgs1
1	'	1.09	I	I	<u>'</u>	2.98	ı	,		ı	prostaglandin E receptor 4 (subtype EP4)	Ptger4	1421-73_a_at Ptger4
'	•	1	1.06	1.11	1.15	2.46					prostaglandin D2 synthase 2, hematopoietic	Ptgds2	1421492_at
•	•	•	•		1.19	2.08					proline-serine-threonine phosphatase-interacting protein 1	Pstpip1	142456at
'	'	1.28	•	1.03		2.46	•		•		proteasome (prosome, macropain) subunit, beta type 9 (large multifunctional peptidase 2)	Psmb9	145-696_at
1	'	1.7	,	1.39	1.81	2.71	I			ı	proteasome (prosome, macropain) subunit, beta type 8 (large multifunctional peptidase 7)	Psmb8	1422962_a_at Psmb8
'	•	1	•	-	•	-1.08					pleckstrin and Sec7 domain containing 3	Psd3	1418749_at
•	•	1	•	-	1.14	1.44					pleckstrin homology, Sec7 and coiled-coil domains, binding protein	Pscdbp	14512-6_s_at
'	'	1		•	,	1.91				•	protease, serine, 23	Prss23	1431-57_a_at
1	1	1.48	ı	I	•	-1.7	ı	ı		ı	protease, serine, 12 neurotrypsin (motopsin)	Prss12	142-388_at
'	•	ı	1	·	•	ı	ı	-1.1		•	paired related homeobox 1	Prrx1	1425528_at
1	1	I	ı	I	•	I	1.91	ı		ı	PRP4- pre-mRNA processing factor 4- homolog A (yeast)	Prpf4-a	142-917_at
'	'	ı	ı	I	•	1.97	ı				prospero-related homeobox 1	Prox1	1421336_at
'	•	1.24	1	·	1.16	2.14	ı	•		1.19	protein S (alpha)	Pros 1	1426246_at
•	•	•	•			1.01				1.25	protein C receptor, endothelial	Procr	142-664_s_at

14512-4_at	14484-4_at	1427-17_at	1421457_a_at	1418131_at	1436172_at	1423-1at	145-826_a_at	1419-75_s_at	145-788_at	1421375_a_at S1a6	1424542_at	146-351_at	1416762_at	145-123_at	1424244_at	1448785_at	1422864_at	14244-2_at	1452631_at	141858at	1455893_at	1449319_at	14219_at	1434437_x_at Rrm2	145-28a_at	1452767_at	1418448_at	1422562_at	1416896_at	1448845_at	1423856_at	1455871_s_at Rp113	1449961_at
Scara5	Scamp2	Satb2	t Samsn1	Samhd1	Samd91	Sacs	Saa3	Saa2	Saal	t S1a6	S1a4	S1a11	S1a1-	Ryr2	Rwdd4a	Runx1t1	Runx1	Rufy3	Rufy2	Rtp4	Rspo2	Rspo1	Rsad2	t Rrm2	Rrh	Rrbp1	Rras	Rrad	Rps6ka1	Rpp25	Rpl17	t Rpl13	Rph3a
scavenger receptor class A, member 5 (putative)	secretory carrier membrane protein 2	special AT-rich sequence binding protein 2	SAM domain, SH3 domain and nuclear localization signals, 1	SAM domain and HD domain, 1	sterile alpha motif domain containing 9-like	sacsin	serum amyloid A 3	serum amyloid A 2	serum amyloid A 1	S1 calcium binding protein A6 (calcyclin)	S1 calcium binding protein A4	S1 calcium binding protein A11 (calgizzarin)	S1 calcium binding protein A1- (calpactin)	ryanodine receptor 2, cardiac	RWD domain containing 4A	runt-related transcription factor 1; translocated to, 1 (cyclin D-related)	runt related transcription factor 1	RUN and FYVE domain containing 3	RUN and FYVE domain-containing 2	receptor transporter protein 4	R-spondin 2 homolog (Xenopus laevis)	R-spondin homolog (Xenopus laevis)	radical S-adenosyl methionine domain containing 2	ribonucleotide reductase M2	retinal pigment epithelium derived rhodopsin homolog	ribosome binding protein 1	Harvey rat sarcoma oncogene, subgroup R	Ras-related associated with diabetes	ribosomal protein S6 kinase polypeptide 1	ribonuclease P 25 subunit (human)	ribosomal protein L17	ribosomal protein L13	rabphilin 3A
	1						1.53	1.16	1.19				1.1				1		1		•												
							•	•	•								ı		ı									1.43					
		•	•	•							-			•	•	•						•	•		-	-		•	•	•			
1.04						1.08									1.18		,	1.09	1.04													ı	1.04
	1.46	-3.34	3.27	1.30	1.87					2.41	3.36	1.89	1.3	-1.27	•	-2.76	2.55			3.09	-1.92	1.02	3.62	2.01	-1.3	1.25	1.10	1.03	1.37	-1.59	-1.45	1.05	
	•		1.93	•	1.11					1.8	1.96	1.09			·	•	1.3	•	ı	2.05			2.21	•	•	1.1		•	·	•			,
			1.77							1.36	1.9-4	1.03					,		ı	1.47			1.16									ı	
	ı		•								-				•		1.51		ı				1.21						•				
-2		•								1.05	1.31						1.42		1		•				-1.8							•	
		•								•							,				•												
			-	-								-	-	-	-	-			ı	-		-	-				-	-	-	-		-	,
ı	,					ı	ı		ı	•	•	ı	ı	•	•	•	ı	ı	ı	I		•	•	ı	•	•		•	•	•	ı	I	

1453724_a_at	1419149_at	141868at	1426318_at	14191at	1424923_at	1456-8a_at	1437513_a_at	142-877_at	142-824_at	14259-6_a_at	142-416_at	1449127_at	14242-2_at	1424926_at	145-823_at	14182-6_at	1424-9at	1448793_a_at	14527_at	1417-12_at	1437279_x_at	142-764_at	1426555_at	1423986_a_at	143-999_a_at	1435767_at	145-12at	1419699_at	145-7-8_at	1415824_at	146-235_at
Serpinf1	Serpine1	Serpind 1	Serpinb 1b	Serpina3n	Serpina3g	Serinc3	Serinc1	Sep6	Sema4d	Sema3e	Sema3a	Selplg	Seh11	Sec63	Sebox	Sdf211	Sdcbp2	Sdc4	Sdc3	Sdc2	Sdc1	Scrg1	Scpep1	Scotin	Scoc	Scn3b	Scn1a	Scgb3a1	Scg2	Scd1	Scarb2
serine (or cysteine) peptidase inhibitor, clade F, member 1	serine (or cysteine) peptidase inhibitor, clade E, member 1	serine (or cysteine) peptidase inhibitor, clade D, member 1	serine (or cysteine) peptidase inhibitor, clade B, member 1b	serine (or cysteine) peptidase inhibitor, clade A, member 3N	serine (or cysteine) peptidase inhibitor, clade A, member 3G	serine incorporator 3	serine incorporator 1	septin 6	sema domain, immunoglobulin domain (Ig), transmembrane domain (TM) and short cytoplasmic domain, (semaphorin) 4D	sema domain, immunoglobulin domain (Ig), short basic domain, secreted, (semaphorin) 3E	sema domain, immunoglobulin domain (Ig), short basic domain, secreted, (semaphorin) 3A	selectin, platelet (p-selectin) ligand	SEH1-like (S. cerevisiae	SEC63-like (S. cerevisiae)	SEBOX homeobox	stromal cell-derived factor 2-like 1	syndecan binding protein (syntenin) 2	syndecan 4	syndecan 3	syndecan 2	syndecan 1	scrapie responsive gene 1	serine carboxypeptidase 1	scotin gene	short coiled-coil protein	sodium channel, voltage-gated, type III, beta	sodium channel, voltage-gated, type I, alpha	secretoglobin, family 3A, member 1	secretogranin II	stearoyl-Coenzyme A desaturase 1	scavenger receptor class B, member 2
'	2.61	•	-1.8	1.86	-	•	•	'	ı	ı	ı	-	•	•	•	•	1.29	1.24	•	•	-	•	•	•	-	•	•	-	-	•	•
	2.04	•	•	1.62	•	1	•	'	ı	ı	I	•	•	ı	ı	•	•	1	•	•	•	•	•	•	•	•	ı	•	<u>'</u>	•	•
'	•	-	•	•	•	•	•	'	1	•	ı	•	•	•	'	•	•	1.15	•	•	•	•	•	•	•	•	•	•	•	•	'
	•	•	•	•	•	•	1.19	'	ı	1.58	I	•	•	1.26	ı	•	•	•	1.65	1.15	•	•	•	•	Ľ	•	1.22	•	•	•	'
3.5	2.24	•	•	3.77	•	•	•	-1.94	1.71	-1- -1	2.24	1.80	1.12	ı	-1.36	1.20	•	1.35	1.06	1.03	•	1.66	1.32	1.11	•	-2.34	-1.1	1.90	1.6	-1.42	1.40
1.56	1.16	•	-	2.76	•	•	•	ı	ı	ı	ı	1.33	ı	ı	ı		-	1.12	ı		1.72	•	•	•	-	•		-	-	•	•
1.32		-		2.11			•		ı		ı	•	-	-			•		•	-		•	•	•				•	•		,
				1.87		1.36	1.14				ı				ı		ı	1.04			·	ı					ı	ı	ı	-1.2	1.03
1.77	1.98		-2.3	2.81							1.98		•		,	,	•	느		•	•							•	1.33		
•					1.31						ı	•					•											•	•		,
			•		•				ı		ı	•	•				•			•	-	•			•			•	•		
															ı	,				-											

serine (or cysteine) peptidase inibitor, clade F, member 2 \sim <th></th> <th></th> <th></th> <th></th> <th>-1.09</th> <th></th> <th></th> <th></th> <th>er -</th> <th>solute carrier family 1 (high affinity aspartate/glutamate transporter), member 6</th> <th>Slc1 a6</th> <th>1418933_at</th>					-1.09				er -	solute carrier family 1 (high affinity aspartate/glutamate transporter), member 6	Slc1 a6	1418933_at
\sim	•		<u> </u>		1.74					solute carrier family 1 (neutral amino acid transporter), member 5	Slc1a5	1416629_at
- $ -$ <td>•</td> <td></td> <td></td> <td></td> <td>1.10</td> <td></td> <td></td> <td></td> <td></td> <td>solute carrier family 1 (glial high affinity glutamate transporter), member 3</td> <td>Slc1a3</td> <td>1426341_at</td>	•				1.10					solute carrier family 1 (glial high affinity glutamate transporter), member 3	Slc1a3	1426341_at
- $ -$ <td>•</td> <td></td> <td></td> <td></td> <td></td> <td>1.08</td> <td></td> <td></td> <td></td> <td>solute carrier family 17 (sodium-dependent inorganic phosphate cotransporter), member 6</td> <td>Slc17a6</td> <td>141861at</td>	•					1.08				solute carrier family 17 (sodium-dependent inorganic phosphate cotransporter), member 6	Slc17a6	141861at
\sim	•				-1.2					solute carrier family 16 (monocarboxylic acid transporters), member 8	Slc16a8	142-445_at
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	- 1.6			з	3.57				1.7:	solute carrier family 15, member 3	Slc15a3	142-697_at
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	1.18 -			1.42	2.63				•	solute carrier family 14 (urea transporter), member 1	Slc14a1	1428114_at
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	•		•			2.42				solute carrier family 12, member 2	Slc12a2	1417623_at
inhibitor, clade F, member 2 \sim	1.43 1.15	1.43		1.61	2.52					solute carrier family 11 (proton-coupled divalent metal ion transporters), member 1	Slc11a1	142-361_at
inhibitor, clade F, member 22.84inhibitor, clade G, member 11.06-2.15inhibitor, clade H, member 11.06-1.16inhibitor, clade I, member 11.06-1.15inhibitor, clade I, member 11.61inhibitor, clade I, member 11.611.51inhibitor, clade I, member 11.611.51ins 11.51ins 11.51ins 1	•							-		solute carrier family 1- (sodium/bile acid cotransporter family), member 6	Slc1-a6	1428776_at
inhibitor, clade F, member 2 \sim	1.39 -	1.39		1.92	2.62					SLAM family member 9	Slamf9	1419315_at
inhibitor, clade F, member 2 \sim	- 1.27	,			1.72					SLAM family member 8	Slamf8	1425294_at
inhibitor, clade F, member 22.84inhibitor, clade G, member 112.15inhibitor, clade H, member 11.06-1.16inhibitor, clade I, member 11.06-1.16inhibitor, clade I, member 11.06-1.16inhibitor, clade I, member 11.06-1.16inhibitor, clade I, member 11.511.611.51ins 11.611.51ins 12.212.21-2.21-2.21-2.21-2.21-2.21-2.21-2.21-2.21-2.212.21-2.21-2.21-2.21-2.212.21-2.21-2.212.21-2.212.21-2.21-2.21-2.21-2.212.21-2.212.21-2.21-2.21-2.21-2.21-2.21-2.21-1.331.22-1.331.22-1.331.22-1.331.22-1.331.22-1.331.221.261	•	ı		ı	1.87		ı	•	1	SLAM family member 6	Slamf6	1425-86_a_at
inhibitor, clade F, member 2 \sim	•	1			2.09	,	ı	,		src-like adaptor	Sla	142-819_at
inhibitor, clade F, member 22.84inhibitor, clade G, member 11.062.15inhibitor, clade I, member 11.06-1.16inhibitor, clade I, member 11.06-1.16inhibitor, clade I, member 11.61-inhibitor, clade I, member 11.61inhibitor, clade I, member 11.61	-				1.05					signal-regulatory protein alpha	Sirpa	1416986_a_at
inhibitor, clade F, member 22.84inhibitor, clade G, member 11.062.15inhibitor, clade H, member 11.06-1.16inhibitor, clade I, member 11.06-1.16inhibitor, clade I, member 11.61-inhibitor, clade I, member 11.61inhibitor, clade I, member 11.611.61-inhibitor, clade I, member 11.611.611.611.611.611.612.212.212.211.61-2.211.002.212.211.001.001.001.001.001.001.001.001.001.001.001.001.001.00-1.00-1.001.001.001.00-1.00-1.001.00 <td< td=""><td>•</td><td>•</td><td></td><td></td><td>1.14</td><td></td><td></td><td></td><td></td><td>signal-induced proliferation associated gene 1</td><td>Sipa1</td><td>14162-6_at</td></td<>	•	•			1.14					signal-induced proliferation associated gene 1	Sipa1	14162-6_at
inhibitor, clade F, member 22.84inhibitor, clade G, member 11.06-2.15inhibitor, clade H, member 11.06-1.16inhibitor, clade I, member 11.06-1.16inhibitor, clade I, member 11.16-inhibitor, clade I, member 11.16-inhibitor, clade I, member 11.16-inhibitor, clade I, member 11.61-inhibitor, clade I, member 11.61-inhibitor, clade I, member 11.61-inhibitor, clade I, member 11.61inhibitor, clade I, member 11.61-inhibitor, clade I, member 11.61-inhibitor, clade I, member 11.00-11.34222 <td></td> <td></td> <td></td> <td>1.57</td> <td>2.50</td> <td></td> <td>ı</td> <td></td> <td>1</td> <td>sialic acid binding Ig-like lectin 5</td> <td>Siglec5</td> <td>1424975_at</td>				1.57	2.50		ı		1	sialic acid binding Ig-like lectin 5	Siglec5	1424975_at
inhibitor, clade F, member 22.84inhibitor, clade G, member 11.06-2.15inhibitor, clade H, member 11.06-1.16inhibitor, clade I, member 11.06-1.16inhibitor, clade I, member 11.16-inhibitor, clade I, member 11.16-inhibitor, clade I, member 11.16-inhibitor, clade I, member 11.61-inhibitor, clade I, member 11.51inhibitor, clade I, member 11.00clade I, member 11.341.34claderich protein1.262.571.261.26-1.26-1.26-1.261.26- </td <td></td> <td>ı</td> <td></td> <td>,</td> <td>-1.13</td> <td></td> <td>ı</td> <td>1</td> <td>1</td> <td>Src homology 2 domain containing F</td> <td>Shf</td> <td>1436167_at</td>		ı		,	-1.13		ı	1	1	Src homology 2 domain containing F	Shf	1436167_at
inhibitor, clade F, member 22.84inhibitor, clade G, member 12.15inhibitor, clade H, member 11.06-1.16inhibitor, clade I, member 11.06-1.51ns 11.61 3 2.21- 3 2.21 3 2.21 3 2.21 3 4 kinase 3-1.38-1.31.22- 4 kinase 31.34 4 kinase 31.34 4 kinase 31.34 4 kinase 31.34 4 kinase 32.57 4 kinase 32.57 4 kinase 3 4 kinase 32.57 4 kinase 3 4 kinase 3 5 kinase 3 5 ki	•	,		ı	1.26	ı	ı	ı	ı	SH3-domain GRB2-like B1 (endophilin)	Sh3glb1	1418-1a_at
inhibitor, clade F, member 22.84inhibitor, clade G, member 12.15inhibitor, clade H, member 11.06-1.16inhibitor, clade I, member 11.06-1.16inhibitor, clade I, member 11.06-1.16inhibitor, clade I, member 11.06-1.51inhibitor, clade I, member 11.61inhibitor, clade I, member 11.61-inhibitor, clade I, member 11.61-inhibitor, clade I, member 11.61-inhibitor, clade I, member 11.61-inhibitor, clade I, member 12.21-inhibitor, clade I, member 11.00inhibitor, clade I, member 11.34inhibitor, clade I, member 12.57inhibitor, clade I, member	- 1.05	ı		,	ı		ı		1	SH3-domain GRB2-like 2	Sh3gl2	1449228_at
inhibitor, clade F, member 22.84inhibitor, clade G, member 11.062.15inhibitor, clade H, member 11.06-1.16inhibitor, clade I, member 11.06-1.16inhibitor, clade I, member 11.21inhibitor, clade I, member 12.21inhibitor, clade I, member 11.30inhibitor, clade I, member 11.34inhibitor, clade I, member 1 </td <td>-</td> <td>,</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>•</td> <td></td> <td>SH3 domain protein D19</td> <td>Sh3d19</td> <td>1449-84_s_at</td>	-	,						•		SH3 domain protein D19	Sh3d19	1449-84_s_at
inhibitor, clade F, member 22.84inhibitor, clade G, member 11.062.15inhibitor, clade H, member 11.06-1.16inhibitor, clade I, member 11.61-inhibitor, clade I, member 11.61-inhibitor, clade I, member 12.21-inhibitor, clade I, member 11.61-inhibitor, clade I, member 11.00inhibitor, clade I, member 11.34-inhibitor, clade I, member 11.00inhibitor, clade I, member 11.34inhibitor, clade I, member 11.00inhibitor, clade I, member 11.00inhibitor, clade I, member 1	1.05 -	1.05		1.52	2.57					SH3-domain binding protein 2	Sh3bp2	1448328_at
inhibitor, clade F, member 2 - - 2.84 inhibitor, clade G, member 1 - - 1.06 - 2.15 inhibitor, clade H, member 1 - - 1.06 - 1.16 inhibitor, clade I, member 1 - - - 1.61 - 1.51 inhibitor, clade I, member 1 - - - 1.61 - - 1.61 - ins 1 - - - - - 1.61 - - 2.21 ins 1 - - - - - 1.61 - - - 2.21 ins 1 - - - - - - 2.21 - - 2.21 - - 1.00 - - - 1.00 - - - 1.02 - - 1.34 - 1.34 - 1.34 - 1.34 - 1.34 - 1.34 - 1.34 - - 1.34 - - - - 1.34 <td>•</td> <td>ı</td> <td></td> <td>,</td> <td>1.00</td> <td></td> <td></td> <td></td> <td></td> <td>SH3-binding domain glutamic acid-rich protein</td> <td>Sh3bgr</td> <td>1422644_at</td>	•	ı		,	1.00					SH3-binding domain glutamic acid-rich protein	Sh3bgr	1422644_at
inhibitor, clade F, member 2 - - - 2.84 inhibitor, clade G, member 1 - - - 2.15 inhibitor, clade H, member 1 - - 1.06 - 1.16 inhibitor, clade H, member 1 - - 1.06 - 1.16 inhibitor, clade I, member 1 - - - 1.16 - inhibitor, clade I, member 1 - - - 1.16 - inhibitor, clade I, member 1 - - - 1.16 - inhibitor, clade I, member 1 - - - 1.61 - inhibitor, clade I, member 1 - - - 1.61 - inhibitor, clade I, member 1 - - - 1.61 - class 1 - - - - 2.21 - class 3 1.38 - 1.3 1.22 -	•	ı	1 I	1	1.34		ı	1	1	sphingosine phosphate lyase 1	Sgpl1	1415893_at
inhibitor, clade F, member 2 - - 2.84 inhibitor, clade G, member 1 - - - 2.15 inhibitor, clade H, member 1 - - 1.06 - 1.16 inhibitor, clade I, member 1 - - 1.06 - 1.16 inhibitor, clade I, member 1 - - - 1.51 inhibitor, clade I, member 1 - - - 1.51 inhibitor, clade I, member 1 - - - 1.61 - ains 1 - - - 1.61 - - - 1.61 - C - <td></td> <td>ı</td> <td></td> <td></td> <td>1</td> <td>1.22</td> <td>1.3</td> <td></td> <td>1.3</td> <td></td> <td>Sgk3</td> <td>142-918_at</td>		ı			1	1.22	1.3		1.3		Sgk3	142-918_at
2 - - 2.84 1 - - - 2.15 1 - - 1.06 - 1.16 - - 1.06 - 1.16 - - - - - - 1.51 - - - 1.61 - - - - - - 2.21 -	•				-1.00	•		•			Sftpc	1418639_at
2 - - 2.84 1 - - - 2.15 1 - - 1.06 - 1.16 1 - - 1.06 - 1.16 - - - - 1.51 - - - - 1.61 - -	•	,		1.3	2.21					SFFV proviral integration 1	Sfpi1	1418747_at
2 - - 2.84 1 - - - 2.15 1 - - 1.06 - 1.16 - - - 1.06 - 1.16 - - - - - - -	•	ı				1.61	ı	,		Scm-like with four mbt domains 1	Sfmbt1	1422894_at
2.84 2.15 - 1.06 - 1.16	•				-1.51					serine (or cysteine) peptidase inhibitor, clade I, member 1	Serpini1	1448443_at
2.84		ī		1.04	1.16		1.06	1	1	serine (or cysteine) peptidase inhibitor, clade H, member 1	Serpinh1	145-843_a_at
2.84	•	ı		1.18	2.15	,	ı	,		serine (or cysteine) peptidase inhibitor, clade G, member 1	Serping1	1416625_at
	•	ı		1.45			ı	•		serine (or cysteine) peptidase inhibitor, clade F, member 2	Serpinf2	1417498_at

1417831_at	1423417_at	14242-7_at	143-526_a_at	1425487_at	1427-86_at	1425277_at	1451655_at	145-165_at	14492-3_at	144-2-1_at	1417392_a_at Slc7a7	14268_a_at	1448596_at	1418395_at	14251-9_at	1428-65_at	1422788_at	1417-61_at	1424675_at	1454622_at	14187-6_at	1452492_a_at	1422756_at	143375at	1455731_at	1416316_at	1419725_at	1426883_at	1417639_at	1438824_at
Smc1a	Smarcc1	Smarca5	ut Smarca2	Slu7	Slit3	Slit1	Slfn8	Slfn2	Slco1a5	Slc8a1	at Slc7a7	t Slc7a2	Slc6a8	Slc47a1	Slc44a3	Slc44a2	Slc43a3	Slc4-a1	Slc39a6	Slc38a5	Slc38a3	at Slc37a2	Slc32a1	Slc31a1	Slc29a3	Slc27a2	Slc26a4	Slc25a45	Slc22a4	Slc2-a1
structural maintenance of chromosomes 1A	SWI/SNF related, matrix associated, actin dependent regulator of chromatin, subfamily c, member 1	SWI/SNF related, matrix associated, actin dependent regulator of chromatin, subfamily a, member 5	SWI/SNF related, matrix associated, actin dependent regulator of chromatin, subfamily a, member 2	SLU7 splicing factor homolog (S. cerevisiae)	slit homolog 3 (Drosophila)	slit homolog 1 (Drosophila)	schlafen 8	schlafen 2	solute carrier organic anion transporter family, member 1a5	solute carrier family 8 (sodium/calcium exchanger), member 1	solute carrier family 7 (cationic amino acid transporter, y+ system), member 7	solute carrier family 7 (cationic amino acid transporter, y+ system), member 2	solute carrier family 6 (neurotransmitter transporter, creatine), member 8	solute carrier family 47, member 1	solute carrier family 44, member 3	solute carrier family 44, member 2	solute carrier family 43, member 3	solute carrier family 4- (iron-regulated transporter), member 1	solute carrier family 39 (metal ion transporter), member 6	solute carrier family 38, member 5	solute carrier family 38, member 3	solute carrier family 37 (glycerol-3-phosphate transporter), member 2	solute carrier family 32 (GABA vesicular transporter), member 1	solute carrier family 31, member 1	solute carrier family 29 (nucleoside transporters), member 3	solute carrier family 27 (fatty acid transporter), member 2	solute carrier family 26, member 4	solute carrier family 25, member 45	solute carrier family 22 (organic cation transporter), member 4	solute carrier family 2-, member 1
•	•	•	•	•	•	•	•	•	ı	,	'	•	1.02	-1.4	1.54	•	•	•	•	•	•	•	•	•	•	•	•	•	ı	1.23
•	•	•	•	•	•	•	•	•	•	•	ı	•	•	•	1.15	•	•	-1.4	•	•	•	•	•	•	•	•	•	•	'	•
י 	، د	·	1	- 1	•	•	•	•	•	ı	ı		•	1.1 -	•		•	<u>'</u>	- 1	•	•	•	'	•	•	•		'	ı	1
1.62	1.01	1.8	، د	1.12	' 	י ל	- 3	- 1	' 1	- -2	- 2	- 1	'	1.6	' ->	- 1	'	•	1.19	' 1	' -	- -C	2.	'	' ->	' ¦>	- -1	- 1	' 	'
1	'	•	-1.09	'	-1.15	-1.40	.51	1.61	1.37	2.22	.36	.54	'	'	1.02	1.00	4 2	•	•	1.27	-0.98	-0.99 1	2.36	'	1.57	-2.57	-1.08	1.18	.47	1
'	'	•	'	•	1	•	2.24	'	•	1	1.41	'	•	1	•	'	2.27	•	•	1	'	1.22	'	•	•	1	'	1	1	•
1	'	•	'	'	'	•	1.6	'	'	1	1.2	'	'	'	•	'	'	•	•	'	'	'	'	'	•	'	'	'	'	•
	•	ı	•	•		•	1.33	•	•	•	I		•		•	•	1.13	•	•	•	•	•	•	•	•		•	ı	ı	
•	•	•	•	•	•	•		•		·	'	•		1.09			1.83	•	•		•	•		-1.7	•	•				•
'	•	·	•	•	•		•	•	•	,	ı		•	•	•	•	•	•	•	•	•		•	•	•	•	•	•	•	
1	,	ı	•	•	·	•	•	•	•	•	ı		•	·	•	•	·	•	•	•	•	•	•	•	•	·	•	•	ı	ı
1	I	I	I	•	·	•	•	•	•		ı	ı	•	·	•	•	·	•	•	•	•	•	•	•	•	·	•	•	ı	ı

1417954_at	1419361_at	145168at	1417426_at	1424588_at	1448168_a_at	1428472_at	1423162_s_at	1449254_at	1424415_s_at Spon1	1449979_a_at Spock3	1452269_at	1419256_at	1438968_x_at	1451596_a_at	1424875_at	1424118_a_at Spc25	1416589_at	14215-4_at	1451821_a_at	143679a_at	144934at	1425111_at	1419358_at	1425826_a_at Sorbs1	142-951_a_at	1416576_at	14185-7_s_at	1417697_at	14293_at	1433675_at	1419766_at	143419at	142291s_at
Sst	Ss18	Srxn1	Srgn	Srgap3	Spt1	Spsb1	Spred1	Spp1	Spon1	Spock3	Spnb3	Spnb2	Spint2	Sphk1	Spg2-	Spc25	Sparc	Sp4	Sp1	Sox11	Sostdc1	Sorcs3	Sorcs2	Sorbs1	Son	Socs3	Socs2	Soat1	Snw1	Snord22	Snf1lk	Sms	Smco
somatostatin	synovial sarcoma translocation, Chromosome 18	sulfiredoxin 1 homolog (S. cerevisiae)	serglycin	SLIT-ROBO Rho GTPase activating protein 3	salivary protein 1	splA/ryanodine receptor domain and SOCS box containing 1	sprouty protein with EVH-1 domain 1, related sequence	secreted phosphoprotein 1	spondin 1, (f-spondin) extracellular matrix protein	sparc/osteonectin, cwcv and kazal-like domains proteoglycan 3	spectrin beta 3	spectrin beta 2	serine protease inhibitor, Kunitz type 2	sphingosine kinase 1	spastic paraplegia 2-, spartin (Troyer syndrome) homolog (human)	SPC25, NDC8- kinetochore complex component, homolog (S. cerevisiae)	secreted acidic cysteine rich glycoprotein	trans-acting transcription factor 4	nuclear antigen Sp1	SRY-box containing gene 11	sclerostin domain containing 1	sortilin-related VPS1- domain containing receptor 3	sortilin-related VPS1- domain containing receptor 2	sorbin and SH3 domain containing 1	Son cell proliferation protein	suppressor of cytokine signaling 3	suppressor of cytokine signaling 2	sterol O-acyltransferase 1	SNW domain containing 1	small nucleolar RNA, C/D box 22	SNF1-like kinase	spermine synthase	structural maintenance of chromosomes o
•	•	1.94	•	•	-1	1.36	•	•	•	•	•	•	ı	1.67	•	•	•		•	1.89	-1.6	•	•	1.01	•	4.07	•	•	•	1.17	•	•	•
1	•	1.29	ı	•	•	·	•	1. .1	·	•	•	•	ı	1.03	•	•	ı	•	•	•	•	•	•	•	•	2.88	•	•	•	•	1.03	ı	'
ı	•	1.27	•	•	'	•	•	•	•	•	•	1	•	•	1	•	•	•	'	1	•	•	'	•	•	1.81	'	'	•	•	•	ı	•
1	•	•	•	•	•	•	1.66	•	•	•	•	1.4	•	•	•	•	•	1.75	•	•	•	•	•	•	1.01	•	•	1.81	1.42	•	•	•	1.00
-2.37	1.25	•	1.48	-1.20	•	'	•	1.8	-1.20	1.46	-1.01	•	1.52	•	-0.98	2.12	1.84	•	1.91	•	-2.2	1.49	1.13	•	•	2.56	-1.21	1.58	•	•	•	-1.10	•
ı	•	•	ı	•	•	느	ı	1.38	ı	ı	ı	•	1.39	ı	•	•	ı	1	ı	•	-'- ω	•	ı	1	•	•	•	1.26	•	•	•	ı	•
	•	•	•	•	•			1.63				•			•	•	•	•	•	•	•	•	•	•	•	•		•	•	•	•	•	
	1.26																				-1.6		•										
	•		•	•		,			,	1.01		•	-1.5		•		<u>ل</u>	•	•	•	-3.2		1.12	•		2.3		•	•	•		•	
			•		-	ı			ı								•		•				-					•	•				
					ı				ı			ı	ı		ı		ı												ı				
'	'																																

	•	•		1 22	ı		•		talin 1	Tln1	10 C_18171
2.28	- 2	•	1.1 .1	4.06					tolloid-like	T111	142-753_at
<u>۱</u>	•	•	•	1.54	•				thymidine kinase 1	Tk1	1416258_at
-1.8	۰ ۱	•	•	•	•				tight junction protein 3	Tjp3	1417896_at
•	•	•	•	•	1.55			1.41	TCDD-inducible poly(ADP-ribose) polymerase	Tiparp	1452161_at
	•	•	•	1.32					tissue inhibitor of metalloproteinase 4	Timp4	145-974_at
	1.22	1.03 1	1.55	2.04					tissue inhibitor of metalloproteinase 2	Timp2	146-287_at
2.61	1.44 2	2.64 1	2.39	4.39		1.62	1.96	2.53	tissue inhibitor of metalloproteinase 1	Timp1	146-227_at
•	•	•	•	1.19					thrombospondin 4	Thbs4	1449388_at
•	•	•	•	1.01	•				thrombospondin 2	Thbs2	1422571_at
2.19	' 2	•	•	2.03	1.05			1.52	thrombospondin 1	Thbs1	1421811_at
'	•	•	•	•	1.59		•		trimethylguanosine synthase homolog (S. cerevisiae)	Tgs1	14219-5_at
2.16	1.35 2	1.87 1	2.87	4.43	•		1.74	1.76	transglutaminase 1, K polypeptide	Tgm1	1451416_a_at
1.15	- 1	•	1.09	2.1	1				TG interacting factor 1	Tgif1	1422286_a_at
1	•	•	1.54	2.01	1	•	•		transforming growth factor, beta receptor II	Tgfbr2	1426397_at
•	•	•	•	1.40	•				transforming growth factor, beta receptor I	Tgfbr1	142-895_at
•	•	•	•	-0.98	•	•			transforming growth factor beta 1 induced transcript 1	Tgfb1i1	1418136_at
'	1.1	1.37	1.98	2.40		•	,	•	transforming growth factor, beta 1	Tgfb1	142-653_at
•	•	•	•	1.03		•	•		tissue factor pathway inhibitor	Tfpi	1452432_at
•	-1.4	-1.5 -	•	-2.3	1	,	1	1.18	tryptophan 2,3-dioxygenase	Tdo2	1419-93_at
•	•	•	•	2.02					teratocarcinoma-derived growth factor	Tdgf1	145-989_at
'	•	•	-	ı	•				transcobalamin 2	Tcn2	14482at
•	'	1	1.32	1.79		1	ı		T-cell, immune regulator 1, ATPase, H+ transporting, lysosomal V- protein A3	Tcirg1	142-635_a_at
-1.7	۰ ۱	•	1	•	1	•	ı	•	transcription factor-like 5 (basic helix-loop-helix)	Tcfl5	1456515_s_at
'	•	•	•	1.25	•				transcription factor CP2-like 1	Tcfcp211	1418-91_at
'	•	•	1.23	1.78	1	•	•		thromboxane A synthase 1, platelet	Tbxas1	1416827_at
1	•	•	ı	1	1.1	•	1	•	TBC1 domain family, member 15	Tbc1d15	1416-62_at
'	•	•		1.18	1	,	•	•	TAP binding protein	Tapbp	1421812_at
1	•	•	•	1.16	1	,	ı	•	transporter 2, ATP-binding cassette, sub-family B (MDR/TAP)	Tap2	1453913_a_at
'	•	•	•	1.49		•	,	•	transporter 1, ATP-binding cassette, sub-family B (MDR/TAP)	Tap1	1416-16_at
-	•	•		1.00	1	•	•	•	T-cell acute lymphocytic leukemia 1	Tal1	1449389_at
1	•	•	느	1.34	•				transgelin 2	Tagln2	14394-7_x_at
'	•	•	,	1.00					n ansgemi	ш ^д ит	וש_נ-ננידאו

1419-83_at	1418-99_at	1417291_at	1423182_at	1418571_at	1438855_x_at	1416342_at	1423-88_at	14227-5_at	1424454_at	1436212_at	1421491_a_at	1449885_at	1423852_at	14311-5_a_at	1435-64_a_at	1451458_at	14184_a_at	14239-9_at	1427911_at	1428-74_at	1424354_at	1451344_at	1425-25_at	1449533_at	142-867_at	1451794_at	14281-8_x_at	142377at	1448-69_at	1422-1at	1418162_at	1419132_at	1449-49_at
Tnfsfl 1	Tnfrsf1b	Tnfrsfla	Tnfrsf13b	Tnfrsf12a	tt Tnfaip2	Tnc	Tmod3	Tmepai	Tmem87a	Tmem71	tt Tmem49	Tmem47	Tmem46	t Tmem33	t Tmem27	Tmem2	Tmem176b	Tmem176a	Tmem173	Tmem158	Tmem14-	Tmem119	Tmem1-6a	Tmem1	Tmed2	Tmcc3	t Tmcc2	Tmc6	Tm4sf1	Tlr7	Tlr4	Tlr2	Tlr1
tumor necrosis factor (ligand) superfamily, member 11	tumor necrosis factor receptor superfamily, member 1b	tumor necrosis factor receptor superfamily, member 1a	tumor necrosis factor receptor superfamily, member 13b	tumor necrosis factor receptor superfamily, member 12a	tumor necrosis factor, alpha-induced protein 2	tenascin C	tropomodulin 3	transmembrane, prostate androgen induced RNA	transmembrane protein 87A	transmembrane protein 71	transmembrane protein 49	transmembrane protein 47	transmembrane protein 46	transmembrane protein 33	transmembrane protein 27	transmembrane protein 2	transmembrane protein 176B		transmembrane protein 173	transmembrane protein 158	transmembrane protein 14-	transmembrane protein 119	transmembrane protein 1-6A	transmembrane protein 1	transmembrane emp24 domain trafficking protein 2	transmembrane and coiled coil domains 3	transmembrane and coiled-coil domains 2	transmembrane channel-like gene family 6	transmembrane 4 superfamily member 1	toll-like receptor 7	toll-like receptor 4	toll-like receptor 2	toll-like receptor 1
				1.												1.														-	-		
•	•	•	•	1.73 1.46	•	•	•	- 1.2	•	•	•	•	•	•	•	1.31 -	•	•	•	•		•	•	•	•	-	•	-	•	•	•	•	•
•				б -				-																		1.16			•				1
		•	•		•				-1.2		1.09	•		1.01	•	•	•	,		•		•	•		1.43	0 1	•		•	•	,	•	,
2.06	1.88	1.39	1.87	2.12	1.69	2.55	1.06	2.42		1.13	-	1.11	-1.48		-1.3		1.02	1.57	1.87	-1.21	1.46	2.19	2.25	2.11	-	-	-1.13		1.26	2.96	1.84	3.56	2.87
	1.02	1.03			1.09	1.63		1.64			•					,	•	,	1.07		,	1.65	1.28			,	•	,	•	1.82	,	2.56	1.79
	•				1.18	1.25		1.36			•					,	•	,	-			1.09	•				•	•	•	1.41	,		,
		•			•			1.27			•	•			-1.1		•						•		1.31				1		1	•	,
1.52					•	1.39		7 1.52			•				-2.7	•							•						•				,
1	•	•				•									•	•	•	•				•			•	•	•	1.1	•	•	,		,
ı																		•										•			,		,
ı	,																•	,											•				

143153a_at Tspan5	1448276_at Tspan4	14516-8_a_at Tspan33	1418398_a_at Tspan32	1432417_a_at Tspan2	1454_at Tslp	1417545_at Trpv4	1456-14_s_at Trpt1	14168-1_at Trpm7	1422-48_at Trpc5	145265at Trim62	1426784_at Trim47	1424857_a_at Trim34	1417961_a_at Trim3-	1425974_a_at Trim25	144894at Trim21	1437432_a_at Trim12	142488at Trib1	1449571_at Trhr	1418756_at Trh	1459994_x_at Trfr2	145-672_a_at Trex1	1421792_s_at Trem2	1451268_at Tram111	1449996_a_at Tpm3	14243-4_at Tpcn2	1423312_at Tpbg	1421998_at Tor3a	1426-84_a_at Tor1aip1	1417754_at Topors	1454694_a_at Top2a	1418726_a_at Tnnt2	1416889_at Tnni2
n5	n4	n33	n32	n2		4	1	n7	5	162	47	134	3-	25	21	12	1			2	1	12	1111	3	12	5	а	aip1	ors	2a	2	2
tetraspanin 5	tetraspanin 4	tetraspanin 33	tetraspanin 32	tetraspanin 2	thymic stromal lymphopoietin	transient receptor potential cation channel, subfamily V, member 4	tRNA phosphotransferase 1	transient receptor potential cation channel, subfamily M, member 7	transient receptor potential cation channel, subfamily C, member 5	tripartite motif-containing 62	tripartite motif protein 47	tripartite motif protein 34	tripartite motif protein 3-	tripartite motif protein 25	tripartite motif protein 21	tripartite motif protein 12	tribbles homolog 1 (Drosophila)	thyrotropin releasing hormone receptor	thyrotropin releasing hormone	transferrin receptor 2	three prime repair exonuclease 1	triggering receptor expressed on myeloid cells 2	translocation associated membrane protein 1-like 1	tropomyosin 3, gamma	two pore segment channel 2	trophoblast glycoprotein	torsin family 3, member A	torsin A interacting protein 1	topoisomerase I binding, arginine/serine-rich	topoisomerase (DNA) II alpha	troponin T2, cardiac	troponin I, skeletal, fast 2
•	•	•	•	•	1.35	느	•	•	•	•	•	•	•	•	•	•	1.35 、	•	•	•	•	•	•	•	•	'	•	•	•	ı	•	,
'	'	'	•	•	•	'	•	•	'	'	•	•	•	•	•	•	1.09	•	•	•	•	•	•	•	•	1.12	•	•	•	•	•	'
' -	'	'	'	- 1.31	•	'	'	' 	' 	' 	'	'	'	•	'	•	•	1.7	'	1.1	•	•	•	'	•	•	'	•	' 1.	•	-	I
1.28 -	- 1.06	'	- 1.17	31 -		·	- 2.71	1.96 -	1.11 -1.1	-1.1 -1.1	' 	- 2.14	- 3.82	- 1.79	- 1.39	- 1.91	•	.7 -1.1	- 4.9	.1 -1.3	- 1.35	- 3.58	0.99	- 1.25	- 1.11	- 1.08	- 2.19	- 1.02	1.33 -	- 2.29		- 1.64
<u> </u>	- 90		17 -				71 1.88				1.23 -	14 1.31	82 2.63	79 1.25	39 -	91 1.19		 -	.9 1.67	ω -	35 -	58 2.7	- 66	- 25	- 11	- 80	19 1.27	- - -		29 1.46		64 1
								- .					-	25					57 .			.7 2.01					-					
'		'	'	' -		'	'	•	'	'	'	'	1.62 1		•	•	' -	'		•				•	•		•		•	•	1.3	1
•	'	'	•	1.14	•	'	•	•	'	'	•	•	1.08 1	•	•	•	1.33	•	- 6	•	•	1.71	•	•	•	•	•	•	•	•	- 2	•
	'	-1.2	'	•	•	-1.7	•	•	'	'	•	'	1.34	•	'	•	'	•	6.42	•	•	•	•	'	•	•	•	•	•	'	2.66	1
			•	•	•	'	•	1	ı	'	1	1	•	•	•	•	•	1	•	•	1	•	•	•	•	•	•	•	•	•	•	I
	'															1	Ι.															
, ,	•	•	ı	•	•	•	•	•	'	'	1	'	'	'	'	•	'			·	-		-					-	·	'	'	-

1415989_at	1422932_a_at	14211-2_a_at	1421863_at	1419277_at	1456-43_at	1418191_at	1423768_at	1449522_at	141581at	1419-64_a_at	1424783_a_at Ugt1a9	1426261_s_at	1421269_at	1448188_at	1426485_at	1416681_at	1424358_at	145548s_at	1452954_at	1426971_at	145-792_at	1415997_at	1448925_at	142-873_at	1416689_at	1416431_at	142-925_at	145158a_at	1416482_at	143213a_at	14486-9_at	146-717_at	1438948_x_at Tspo
Vcam1	t Vav1	t Vamp3	Vamp1	Usp48	Usp22	Usp18	Unc93b1	Unc5c	Uhrf1	t Ugt8a	t Ugt1a9	t Ugt1a6a	Ugcg	Ucp2	Ubxd2	Ube3a	Ube2e2	Ube2d3	Ube2c	Ube11	Tyrobp	Txnip	Twist2	Twf1	Tuft1	Tubb6	Tub	t Ttr	Ttc3	t Ttc14	Tst	Tspyl1	t Tspo
vascular cell adhesion molecule 1	vav 1 oncogene	vesicle-associated membrane protein 3	vesicle-associated membrane protein 1	ubiquitin specific peptidase 48	ubiquitin specific peptidase 22	ubiquitin specific peptidase 18	unc-93 homolog B1 (C. elegans)	unc-5 homolog C (C. elegans)	ubiquitin-like, containing PHD and RING finger domains, 1	UDP galactosyltransferase 8A	UDP glucuronosyltransferase 1 family, polypeptide A9	UDP glucuronosyltransferase 1 family, polypeptide A6A	UDP-glucose ceramide glucosyltransferase	uncoupling protein 2 (mitochondrial, proton carrier)	UBX domain containing 2	ubiquitin protein ligase E3A	ubiquitin-conjugating enzyme E2E 2 (UBC4/5 homolog, yeast)	ubiquitin-conjugating enzyme E2D 3 (UBC4/5 homolog, yeast)	ubiquitin-conjugating enzyme E2C	ubiquitin-activating enzyme E1-like	TYRO protein tyrosine kinase binding protein	thioredoxin interacting protein	twist homolog 2 (Drosophila)	twinfilin, actin-binding protein, homolog 1 (Drosophila)	tuftelin 1	tubulin, beta 6	tubby candidate gene	transthyretin	tetratricopeptide repeat domain 3	tetratricopeptide repeat domain 14	thiosulfate sulfurtransferase, mitochondrial	testis-specific protein, Y-encoded-like 1	translocator protein
	-													-					-			-				2.25							
														•								•		,		5 2.16							
					•					•	•	•		•	•		•			•	•	1.39	,	,		1.32	•	•	•	•		•	
1.02	,		,	1.21						1.17			1.06	•	1.54	1.42		-	,			•	,	1.39	,	ı			1.24	1.06		1.05	
1.46	1.91	1.23	-1.29			4.25	2.02	-1.05	1.46		1.47	1.95		1.12	ı		-1.10		2.06	2.03	2.62		-1.44	1.26	,	2.12	-1.20	-2	-1.3		1.21	ı	1.60
	1.37				ı	2.54	1.27		느		<u>'</u>	1.09		1.06	ı		ı			1.34	2.25	ı	ı	ı	ı	1.46	ı	-1.4	1.09	ı		ı	1.12
					•	1.86	1.08				•	•			ı		•			ı	1.46			ı		1.24	ı		ı			•	•
1.04	,				1.42	1.03				1.06									,		1.36		,	1.29	,	ı	•	-1.3					
						1.62						•					•				•			,	-1.2	1.56		-1.9					
•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	ı	•	•	•	•	•	ı	•
		1	1	1	I		1	1	1	1	I	I	1		I	1	I			I	1		T	ı	ı	ı	I	I	I	I		ı	1
					•										ı					ı			-	ı		ı		·	·			ı	

1417792_at Zfml	142-65at Zfhx3	1452655_at Zdhhc2	141817a_at Zcchc14	142636at Zc3h11a	14593_s_at Zbtb7a	1427638_at Zbtb16	1429947_a_at Zbp1	142-816_at Ywhag	1421-48_a_at Ype11	1427221_at Xtrp3s1	1422842_at Xrn2	1449347_a_at Xlr4b	1422-11_s_at Xlr	14516_at Xdh	1417817_a_at Wwtr1	145-782_at Wnt4	1449425_at Wnt2	146-657_at Wnt1-a	1436746_at Wnk1	1419-15_at Wisp2	1436954_at Wipt1											
zinc finger, matrin-like	zinc finger homeobox 3	zinc finger, DHHC domain containing 2	zinc finger, CCHC domain containing 14	t zinc finger CCCH type containing 11A	zinc finger and BTB domain containing 7a	zinc finger and BTB domain containing 16	Z-DNA binding protein 1	3-monooxygenase/tryptophan 5-monooxygenase activation protein, gamma polypeptide	yippee-like 1 (Drosophila)	X transporter protein 3 similar 1 gene	5'-3' exoribonuclease 2	X-linked lymphocyte-regulated 4B	X-linked lymphocyte-regulated complex	xanthine dehydrogenase	WW domain containing transcription regulator 1	wingless-related MMTV integration site 4	wingless-related MMTV integration site 2	wingless related MMTV integration site 1-a	WNK lysine deficient protein kinase 1	WNT1 inducible signaling pathway protein 2	WAS/WASL interacting protein family, member 1	TYPE A MATER ANT THE PARTY IN THE PARTY IN PARTY IN A PARTY INTA P	WAP four-disulfide core domain 2	wee 1 homolog (S. pombe) WAP four-disulfide core domain 2 wrac wrach in the provide provide the second s	WD repeat domain 26 wee 1 homolog (S. pombe) WAP four-disulfide core domain 2 www.com/act interpreting products formity monther 1	WD repeat domain 1 WD repeat domain 26 wee 1 homolog (S. pombe) WAP four-disulfide core domain 2 WMACMMACT interaction proteins formity monther 1	WAS protein family, member 2 WD repeat domain 1 WD repeat domain 26 wee 1 homolog (S. pombe) WAP four-disulfide core domain 2 WACMAGE interaction metrics family, member 1	WASP family 1 WAS protein family, member 2 WD repeat domain 1 WD repeat domain 26 wee 1 homolog (S. pombe) WAP four-disulfide core domain 2 WASWAGT interpreter states formily, member 1	Wiskott-Aldrich syndrome homolog (human) WASP family 1 WAS protein family, member 2 WD repeat domain 1 WD repeat domain 26 wee 1 homolog (S. pombe) WAS four-disulfide core domain 2 WASWAGUAGT interpreter for family.	von Willebrand factor A domain containing 1 Wiskott-Aldrich syndrome homolog (human) WASP family 1 WAS protein family, member 2 WD repeat domain 1 WD repeat domain 26 wee 1 homolog (S. pombe) WAP four-disulfide core domain 2	vacuolar protein sorting 35 von Willebrand factor A domain containing 1 Wiskott-Aldrich syndrome homolog (human) WASP family 1 WAS protein family, member 2 WD repeat domain 1 WD repeat domain 26 wee 1 homolog (S. pombe) WAP four-disulfide core domain 2	pre-B lymphocyte gene 1 vacuolar protein sorting 35 von Willebrand factor A domain containing 1 Wiskott-Aldrich syndrome homolog (human) WASP family 1 WAS protein family, member 2 WD repeat domain 1 WD repeat domain 26 wee 1 homolog (S. pombe) WAS four-disulfide core domain 2
								nma																								
•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•		•									
'	•	•	'	'	'	•	•	•	•	•	•	•	'	•	'	'	•	•	'	•	'		•	· ·	· · ·							
' 	'	- 1	- 1.	- 2	- 1.	' -	'	•	•	•	' -	•	•	1	-	•	•	•	' 1	•	•		•			4						
1.44	'	1.22	1.61	2.06	1.62	1.12	- 2	1	' 	•	1.15	- 2	- 2	' -	`	' -1	۰ 	'	1.17	' ω	' -		'								ů jů	
•	'	•	•	'	•	•	2.00 1	•	-1.49	•	1	2.68	2.35 1	1.91	1.5	-1.23	-2.5	1.2	•	3.47	1.23		-1.8	-1.19 -1.8	-0.99 -1.19 -1.8	- .19 1.8	-0.98 - -0.99 -1.19 -1.8	-1.16 -0.98 -0.99 -0.99 -1.19 -1.8				
'	.3 1	•	'	'	'	•	1.01	•	•	•	1	2.32	1.42	1	'	'	•	•	•	•	1	•	<u>'</u>	י <u>ב</u>	· · ·	· · · ·	<u></u>	<u></u>	-1	<u>'</u> ' ' ' ' ' <u>:28</u> '	······································	······································
•	•	1	•	•	•	•	•	•	•	•	•	1.96	•	•	•	•	•	•	•	•	•		•									
ı	•		-	-	-			1.32		-1.3	ı		-	ı	-	-	•		•	•	•		-1 4	-1 -	-1	1.13 - -1 4	-1.13	1.13	-1.13 -1.13	1.13	1.11 	-1 4
•			-	-	-								-	1.26	1.17	•	-1.2	1.38		2.07		c i	רי רי	הי יי	-2 -2	-1.2	-1.2	-1.2 -1.2 -3.2	-1.2	······································	-20	-1.7 -1.2 -1.2
•	•	•	•	•	•	•	•	•	•		•	•	•	•	•	•	•	•	•	•	•		•									
	•	1	-	-	-	•	•		•	•	•	4.01	-	•	-	-	•	•	•	•	•											
	Г				-										-																	

1427539_a_at Zwint	1428-46_a_at Zfx	1451-46_at Z	1426326_at Z	1436-26_at Z	1451332_at Z	1451816_at Z	1452519_a_at Zfp36	142281at Z	1425287_at Z	142-944_at Z	14561-8_x_at Zfp179
Zwint	Zfx	Zfpm1	Zfp91	Zfp7-3	Zfp521	Zfp451	Zfp36	Zfp191	Zfp189	Zfp185	2fp179
ZW1- interactor	zinc finger protein X-linked	zinc finger protein, multitype 1	zinc finger protein 91	zinc finger protein 7-3	zinc finger protein 521	zinc finger protein 451	zinc finger protein 36	zinc finger protein 191	zinc finger protein 189	zinc finger protein 185	zinc finger protein 179
1.44	1			•			1.83	•		•	
1.44 -	1 -	•	•	•	•	•	1.83 1.47		•	•	•
1.44	1	•	•		1.1	•	1.83 1.47 -		•	•	•
1.44	1 - 2.44	1	1.2		1.1 -	1.06		1.34		1	· ·
1.44	1 - 2.44 -	1.16	1.2 2.75	1.40	1.1	1.06 -		1.34 -	1.36	1.2	1.29
1.44	1 - 2.44	1.16 -		1.40 -	•	1.06	1.47	1.34	1.36 -		
1.44	1 - 2.44	1.16	2.75		•	1.06	1.47	•		-1.2	-1.29
1.44	1 - 2.44	1.16	2.75 1.88		•	1.06	1.47	•		-1.2	-1.29
1.44	1 - 2.44	1.16	2.75 1.88		•	1.06	1.47	•		-1.2	-1.29
1.44	1 - 2.44	1.16	2.75 1.88		•	1.06	1.47	•		-1.2	-1.29
· · · · · ·	1 - 2.44	1.16	2.75 1.88 1.27				1.47 1.08		1	-1.21.4	-1.29