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Abstract

In vertebrate photoreceptors, light adaptation is mediated by multiple mech-

anisms but the genomic contribution to these mechanisms has never been

studied before. Therefore, we have investigated changes of gene expres-

sion using microarrays and real-time PCR in isolated photoreceptors, in

cultured isolated retinas and in acutely isolated retinas. In all these three

preparations after 2 hours of exposure to a steady light, we observed an up-

regulation of almost two-fold of three genes Sag, Guca1a and Guca1b, cod-

ing for proteins known to play a major role in phototransduction: arrestin

and guanylate cyclase activators 1 and 2. This up-regulation has intensity-

dependent characteristics and leads to an increase in the related protein

content. Indeed, after three hours of light exposure, the protein concentra-

tion of arrestin and GCAPs increases by about 40-50%. The up-regulation

of these proteins in light conditions is expected to reactivate the photocur-

rent and thus to mediate a late phase of light adaptation. Functional in

vivo electroretinographic tests show in fact that a partial recovery of the

dark current occurs 1-2 hours after prolonged illumination with a steady

light that initially causes a substantial suppression of the photoresponse.

These observations demonstrate that a prolonged illumination results in

the up-regulation of genes coding for proteins involved in the phototrans-

duction signaling cascade, possibly underlying a novel component of light

adaptation occurring 1-2 hours after the onset of a steady light.
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Introduction

1.1 The structure of the eye and of the retina

Most of our perception of the world and our memories of it are based on sight and the

eyes are the tools deputed to this function. The vertebrate eye is a complex and very

specialized sense organ and its main components are:

• the cornea, a transparent external surface that is the first and most powerful

lens of the optical system of the eye;

• the crystalline lens, a biconvex transparent structure that allows us, by chang-

ing its shape, to change the focal distance of the eye;

• the pupil, an aperture that allows light to enter the eye;

• the iris, a pigmented circular muscle that controls, by reducing or increasing the

size of the pupil, the amount of light entering the eye;

• the anterior chamber (between cornea and iris), the posterior chamber

(between iris and lens) and the vitreous chamber (between the lens and the

retina). The first two chambers are filled with aqueous humor whereas the vitreous

chamber is filled with a more viscous fluid, the vitreous humor;

• the retina, the light sensitive part inside the inner layer of the eye that receives

light and transforms it into signals which are transmitted through the optic nerve

to the brain;

1



1. INTRODUCTION

• the sclera, which forms part of the supporting wall of the eyeball. The sclera is

continuous with the cornea and with the dura of the central nervous system.

Figure 1.1: The human eye - a schematic representation of eye structure (from
Encyclopædia Britannica)

Although all parts of the eye are important for perceiving light stimuli and forming a

good image, the most crucial element in the visual system is the retina. Understanding

the organization of the vertebrate retina has been the goal of many talented visual

scientists over the past 100 years. Cajal’s (1892) anatomic descriptions of the retinal

cell types, together with an early understanding of photochemistry and psychophysi-

cal studies, were instrumental to understand how the retina might be organized and

functioning.

The retina is part of the central nervous system and is organized as a circuit of neurons

(its name derives from the Latin word Rete: net). In particular, the different types of

neurons present in the retina are:

• photoreceptors, which are the photosensitive cells that are capable of detecting

photons and of converting the light signal in an electrophysiological response;

• horizontal cells, which are the laterally interconnecting neurons that help inte-

grate and regulate the input from multiple photoreceptor cells;

• bipolar cells, that transmit signals from the photoreceptors to the ganglion cells;

2



1.1 The structure of the eye and of the retina

• amacrine cells, which are interneurons that regulate interactions between bipo-

lar and ganglion cells;

• ganglion cells, that collect visual information from the other neurons of the

retina and transmit it to several regions of the thalamus, hypothalamus, and

mesencephalon, or midbrain.

Figure 1.2: Schematics of the retina cellular structure - The figure shows the
different cell types present in the vertebrate retina (from Purves et al., “Neuroscience”,
Sinauer Associates Inc. Publishers)

1.1.1 Photoreceptor cells

The great biological importance of photoreceptors is that they convert light (electro-

magnetic radiation) into the starting point in a chain of biological processes. More

specifically, the photoreceptor absorbs photons, and through a well defined and com-

plex biochemical pathway, known as phototransduction, transforms this signal into a

change in its membrane potential.

3



1. INTRODUCTION

In vertebrates, photoreceptors are divided into two classes: rods and cones and they

are both involved in the image-forming vision. Rods and cones have major functional

differences.

The cone system is devoted to detect colors and is optimized to work in bright light,

whereas the rod system is responsible for the monochromatic vision occuring in low light

ambient. In humans, there are three different types of cones, responding respectively to

short (blue), medium (green) and long (red) light wavelenghts (84), whereas mice have

only two type of cones, one responding in the ultra-violet region of the vision spectrum

and the other sensitive to the green light (43).

Rods and cones are a very specialized class of neurons and they have a peculiar shape,

aimed at performing one main function: catching the photons. The cellular comparti-

ments (see Figure 1.3) can be subdivided into:

• outer segment (OS), located at the distal surface of the retina, containing all

the phototransduction machinery;

• inner segment (IS), where most of the biosynthetic processes take place;

• nuclear body (N), located in the outer nuclear layer, containing the nucleus;

• synaptic terminal (ST), the region of contact with the photoreceptor’s target

cells.

Figure 1.3: Rods and cones share similar structures - (modified from Burns and
Arshavsky, 2005)

4



1.1 The structure of the eye and of the retina

The outer segment is the specialized light-sensing organelle and it is the site where the

phototransduction process takes place. The rod OS consists of a plasma membrane

that encloses a stack of about 1000 closely spaced membranous discs. This arrange-

ment dramatically increases the surface area of the membrane in these cells. OSs are

continuously renewed throughout their lifetime (132). New discs are assembled at the

base of the OS, they mature during migration to the distal tip where aged discs are

shedded and degradated, engulfed by retinal pigment epithelial (RPE) cells. The OS

discs are densely packed with rhodopsin, the proteic light detector.

From an electrophysiological point of view, photoreceptors act in the opposite way

compared to other neurons. As shown in Figure 1.4, they are depolarized when the

phototransduction machinery is not activated (in the dark), whereas they hyperpolarize

as a consequence of photoactivation (in the light). In the dark, two currents predomi-

nate in a photoreceptor. An inward current flows through cGMP-gated channels (CNG

channels), while an outward K+ current flows through non-gated K+-selective channels.

The outward current carried by the K+ channels tends to hyperpolarize the photore-

ceptor towards the equilibrium potential for K+ (about -70 mV). On the contrary, the

inward current tends to depolarize the cell. A steady intracellular concentrations of

Na+ and K+ is maintained by Na+-K+ pumps, which pump Na+ out and pump K+

in.

Figure 1.4: The dark current - The inward current that flows into a photorecep-
tor is supressed by bright light, hyperpolarizing the cell (from www.fz-juelich.de/ind/ind-
1/Photoreception)

5



1. INTRODUCTION

In the dark, the cytoplasmic concentration of cGMP is relatively high, maintaining

in this way the CNG channels in a open state and allowing a steady inward current,

called the dark current. As a result, in the dark the photoreceptor membrane potential

is around -40 mV. When light reduces the level of cGMP, closing the CNG channels,

the inward current that flows through these channels is reduced and the cell becomes

hyperpolarized (52).

A detailed description of the biochemical pathways underlying these events will be

given in the following chapters.

1.1.2 Horizontal cells

A second type of neurons in the retina are the horizontal cells (HC). They span across

cones and summate inputs from them to control the amount of GABA released back

onto the photoreceptor cells, which hyperpolarizes them (105). Basically, when light is

detected by a photoreceptor, the photoreceptor hyperpolarizes and reduces the release

of glutamate. When this happens, HCs reduce the release of GABA, which leads to a

depolarization of the photoreceptors (33). Their arrangement, together with the bipolar

cells that receive input from the photoreceptors, constitutes a form of lateral inhibition,

reducing redundancy in optic nerve signals and represents an important first step in

scene analysis. Regions of spatially uniform illumination, which are highly redundant,

evoke relatively little response, whereas regions containing contrast, which typically

delineate the edges of objects in the enviroment, evoke strong responses (10).

Figure 1.5: Horizontal cell types in human retina - (from webvision.med.utah.edu)

6



1.1 The structure of the eye and of the retina

All mammalian retinas have at least two types of horizontal cells that function as

the laterally interconnecting neurons in the outer plexiform layer (OPL), as shown in

Figure 1.2. The cat retina organization has been studied extensively and the two types,

known as A-type and B-type, have been well characterized (59). In the primate retina,

instead, a third type has been identified (60). The HC types in the primate retina are

known as HI, HII and HIII (see Figure 1.5).

HI is the classic horizontal cell of the primate retina. It is composed of a small dendritic

tree (15-80 µm) that connects with cone pedicles and an axon that ends on rod spherule.

HII has a more intricate dendritic field than the other two types (61) and a short axon

(100-200 µm). Both dendrites and axon are in connection with cone pedicles.

HIII cells are similar in appearence to HI cells, but bigger and asymmetrical in shape.

The nature of the photoreceptor types that their axon contacts is still unclear.

1.1.3 Bipolar cells

Bipolar cells convey information from rods and cones to ganglion cells (see Figure 1.6).

They receive synapses either from rods or cones and are classified as rod or cone bipolar

cells respectively. There are roughly 10 distinct forms of cone bipolar cells and only one

rod bipolar cell. Cone bipolar cells can be classified into two different groups, ON and

OFF, based on how they react to glutamate released by photoreceptor cells. When light

hits a photoreceptor, it hyperpolarizes, and releases less glutamate. An ON bipolar cell

will react to this change, through a metabotropic glutamate receptor, by depolarizing

its membrane. On the contrary, an OFF bipolar cell will react, through a ionotropic

glutamate receptor, by hyperpolarization. On light stimulation, the photoreceptor

reacts with a hyperpolarization, transmitter release ceases but the postsynaptic bipolar

cells respond with either hyperpolarization or depolarization of their membranes (118).

1.1.4 Amacrine cells

While photoreceptors, horizontal and bipolar cells respond only with slow, graded

changes in membrane potential, ganglion cells and some amacrine cells can generate

spikes. Amacrine cells of the vertebrate retina are interneurons that interact at the

second synaptic level of the vertically direct pathways consisting of the photoreceptor-

bipolar-ganglion cell chain. They are synaptically active in the inner plexiform layer

(IPL) (see Figure 1.2) and serve to integrate and modulate the visual message presented

7



1. INTRODUCTION

Figure 1.6: Bipolar cells connect photoreceptors and ganglion cells - Bipolar
cells are indicated in red (from Santiago Ramòn y Cajal, 1911)

to the ganglion cell. Amacrine cells are so called because they are nerve cells initially

thought to lack an axon as described by Cajal in 1892. Today we know that certain

large field amacrine cells of the vertebrate retina can have long “axon-like” processes

which probably function as true axons in the sense that they work as output fibers

of the cell. Amacrine cells come in all shapes, sizes and stratification patterns and

more subtypes are still being discovered with the Golgi staining method, intracellular

recordings and immunocytochemical staining. Thus, at present, amacrine cells can be

classified into about 40 different morphological subtypes. They are grouped on the

basis of the width of their field of connection, the layer of the stratum in the IPL they

are in, and the neurotransmitter type. Most of them are inhibitory using either GABA

or glycine as neurotransmitters.

Relatively little is known about the functional roles of amacrine cells. Amacrine cells

with extensive dendritic trees are thought to contribute to inhibitory surrounds by

feedback at both the bipolar cell and ganglion cell levels, supplementing the action of

the horizontal cells. Other types of amacrine cells are likely to be playing modulatory

roles, allowing adjustment of sensitivity for photopic and scotopic vision. The AII

amacrine cell (also known as the rod amacrine cell) is a mediator of signals from rod

cells under scotopic conditions (58; 73; 77; 111; 113).

1.1.5 Ganglion cells

Ganglion cells are the final output neurons of the vertebrate retina. The ganglion

cell collects the electrical messages concerning the visual signal from the two layers of

8



1.1 The structure of the eye and of the retina

nerve cells preceding it in the retinal wiring scheme. A great deal of preprocessing

is accomplished by the neurons of the vertical pathways (photoreceptor to bipolar to

ganglion cell chain), and by the lateral pathways (photoreceptor to horizontal cell to

bipolar to amacrine to ganglion cell chain) before presentation to the ganglion cell

which represents the ultimate signalling component of retinal information to the brain.

On average, ganglion cells are larger than most preceding retinal interneurons and have

large diameter axons capable of passing the electrical signal, in the form of transient

spike trains, to the retinal recipient areas of the brain many millimeters or centimeters

distant from the retina. The optic nerve collects all the axons of the ganglion cells and

this bundle of more than a million fibers then convey information to the next relay

station in the brain for sorting and integrating into further brain processing pathways.

There are about 1.2 to 1.5 million retinal ganglion cells in the human retina. With about

105 million photoreceptors per retina, on average each retinal ganglion cell receives

inputs from about 100 rods and cones. However, these number vary greatly among

individuals and as a function of retinal location. In the fovea (center of the retina),

a single photoreceptor will communicate with as many as five ganglion cells. In the

extreme periphery (ends of the retina), a single ganglion cell will receive information

from many thousands of photoreceptors. Retinal ganglion cells spontaneously fire action

potentials at a basal rate while at rest. Excitation of retinal ganglion cells results in an

increased firing rate while inhibition results in a depressed firing rate (32; 53; 56; 77;

85; 129).

Based on their projections and functions, there are at least five main classes of retinal

ganglion cells:

• Midget ganglion cells that project to the parvocellular layers of the lateral

geniculate nucleus. They are characterized by slow conduction velocity and re-

sponse to changes in color but they respond only weakly to changes in contrast.

About 80% of retinal ganglion cells are midget cells.

• Parasol ganglion cells that project to the magnocellular layers of the lateral

geniculate nucleus. They have fast conduction velocity, and can respond to low-

contrast stimuli, but are not very sensitive to changes in color. About 10% of

retinal ganglion cells are parasol cells.

9



1. INTRODUCTION

• Bistratified ganglion cells that project to the koniocellular layers of the lat-

eral geniculate nucleus. They are very small in size and have moderate spatial

resolution, moderate conduction velocity, and can respond to moderate-contrast

stimuli. About 10% of retinal ganglion cells are bistratified cells.

• Other ganglion cells projecting to the superior colliculus to control the

pupillary light reflex and eye movements.

• Photosensitive ganglion cells that contain their own photopigment, melanopsin,

which makes them respond directly to light even in the absence of rods and cones.

They project to the suprachiasmatic nucleus (SCN) via the retinohypothalamic

tract and are necessary to set and maintain circadian rhythms.

1.2 Phototransduction

Phototransduction is the process by which a photon of light generates an electrical re-

sponse in a photoreceptor cell. This sophisticated and elegantly organized biochemical

pathway has been intensely investigated for many decades and nowadays represents

one of the best-characterized G-protein coupled signaling pathways. The first discov-

ery in the field was done by Wilhelm Kuhne in 1879, who identified rhodopsin, the

first G-protein coupled receptor (GPCR) (68; 69). The milestones in unraveling the

phototransduction mechanisms were the discoveries of rhodopsin light-dependent phos-

phorylation (17; 67) and of the first arrestin protein and its relation with phosphory-

lated rhodospin (66; 126), the identification of the first cyclic nucleotide-gated channel

(38) and in 2000, the rhodopsin crystal model, the first crystallographic structure of a

GPCR (93).

The major steps of the phototransduction cascade (see Figure 1.7 for a schematic

overview) are the following:

• Rhodopsin photoisomerization: the first step of the signalling cascade is the

chromophore isomerization by a captured photon.

• Transducin activation: the activated rhodopsin interacts with the transducin

complex, activating the α-subunit by triggering the GDP-GTP exchange.
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1.2 Phototransduction

• Phosphodiesterase activation: the Gαt-GTP stimulates the activity of the

cGMP phosphodiesterase (PDE) by binding to its inhibitory subunit.

• cGMP-channel closure: Activation of the PDE results in a reduction of the

intracellular level of cGMP thus causing the closure of the cGMP-gated channels

(CNG channels). Closure of these channels results in the hyperpolarization of the

photoreceptor.

• Cascade inactivation: Transducin activation ends when rhodopsin is multi-

phosphorylated by rhodopsin kinase (RK). This event allows arrestin to bind to

rhodopsin, which causes the final inactivation of the cascade.

This events will be extensively discussed in the following chapters.

Figure 1.7: Schematic of the phototransduction cascade - The upper disc illlus-
trates inactive rhodopsin (R), transducin (Gα, Gβ and Gγ subunits) and PDE (α, β and γ
subunits) in the dark. The reactions in the middle disc illustrate light-induced transducin
and PDE activation. The reactions in the lower disc represent R∗ inactivation via phospho-
rylation by rhodopsin kinase (RK) followed by arrestin (Arr) binding and transducin/PDE
inactivation by RGS9-Gβ5-R9AP complex. (from Burns and Arshavsky, 2005 (20))
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1.2.1 Rhodopsin photoisomerization

Vision begins when a photon is captured by a chromophore molecule, inducing its

chemical isomerization. The cromophore is a vitamin A derivative, the retinal that lies

in a pocket formed by the seven transmembrane α-helical domains of an opsin molecule.

In humans, there are four different types of opsin involved in the visual process: one in

the rods, three in the cones. Depending on their aminoacid sequences, the opsins tune

the chromophore spectral sensitivity. Rhodopsin has its peak of sensitivity for light of

498 nm of wavelength.

Figure 1.8: The rhodopsin - the figure shows the trans-membrane structure of the
rhodopsin and the localization of the 11-cis-retinal (from Stryer, L. “Biochemistry”, 4th

edition, USA, Freeman and Company, 1999)

In the quiescent state, the retinal molecule, in its 11-cis form, is bound to a lysine

via a protonated Schiff-base bond. The capturing of a photon causes the photoiso-

merization of the retinal from its bent conformation to the straight all-trans form (as

shown in Figure 1.9A). This event triggers some conformational changes that lead to

the activation of the rhodopsin via four short-lived intermediates (see Figure 1.9B). The

metarhodopsin II (or R∗) is capable of activating the transducin, starting therefore the

biochemical pathway. This is the first step of signal amplification, because a single
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1.2 Phototransduction

R∗ activates many transducin molecules in the course of its lifetime that ends once it

binds arrestin. Subsequently, all-trans retinal detaches and diffuses away. The retinal

molecules in all-trans form is recovered by the retinal pigment epithelium (RPE) cells

in which they can be reconstitued in the 11-cis form. The resynthetized 11-cis retinal is

transported to the photoreceptor, where it can bind an opsin, forming a new molecule

of rhodopsin. This process is known as pigment regeneration.

Figure 1.9: Intermediate states of rhodopsin - A: chemical isomerization of the
retinal molecule; B: the five intermediate states during the activation of the rhodopsin
(from www.fz-juelich.de/ind/ind-1/Photoreception)

1.2.2 Transducin activation

The second important step of the signaling cascade is the transducin activation by

activated rhodopsin. Transducin belongs to the G protein family (guanine nucleotide-

binding proteins), proteins involved in second messenger cascade. G proteins, discov-

ered by Gilman and Rodbell (29; 76), function as “molecular switches”, alternating

between an inactive GDP- and an active GTP-bound state. G proteins are formed by

two distinct families of proteins. Heterotrimeric G proteins, sometimes referred to as

13



1. INTRODUCTION

the “large” G proteins, are activated by G protein-coupled receptors and made up of α,

β and γ subunits. There are also “small” G proteins (20-25kDa) that belong to the Ras

superfamily of small GTPases. These proteins are homologous to the α subunit found

in heterotrimers, and are in fact monomeric. However, they also bind GTP and GDP

and are involved in signal transduction. Transducin belongs to the “large” G protein

family and shares common features with its “relatives” such as activation in response

to a conformation change in the G protein-coupled receptor, exchange of GTP for GDP

and dissociation in order to activate further proteins in the signal transduction pathway

(see Figure 1.10).

Figure 1.10: Generic G protein signal cascade and in vertebrate phototrans-
duction - A. The cascade comprises three protein, a G protein-coupled receptor (R), a G
protein (G), and an effector protein (E), which are activated in three steps. In the first
step, the receptor R is activated to R∗, and in most cases this is brought about by the
binding of a ligand. In the second step, R∗ activates a specific G protein by catalyzing the
release of GDP from the inactive form (G-GDP), and thereby permitting the binding of
GTP, to create the active form G∗ (G-GTP) . A single R∗ can activate many molecules
of G proteins, because it is released unaltered after the interaction. In the third step, the
usual mechanism is that the G∗ binds to the effector protein E, causing it to switch state to
an activate form E∗. B. The G protein transduction cascade of vertebrate photoreceptors
follows the general pattern shown in A, except that activation of R to R∗ is caused by the
photoisomerization of a ligand, 11-cis retinal, that is already attached covalently to the
receptor protein. (from Pugh and Lamb, 2000 (101))
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1.2 Phototransduction

In vertebrate phototransduction, the transducin complex is composed of one α-subunit,

one β-subunit and one γ-subunit and is anchored to the disc membrane. This adhesion

is mediated by post-translational modifications of the subunits of the protein complex.

Indeed, the α-subunit is lauroylated and myristoylated on its N-terminal, while the γ-

subunit is farnesylated on its C-terminal (40; 57). This anchoring limits the localization

of transducin on the disc surface, facilitating the interaction between rhodopsin and its

G protein.

Once activated by light, R∗ is able to interact with and bind to a transducin in its

inactive form (G-GDP). This interaction leads to a conformational change in the α-

subunit structure, causing the dissociation of the GDP molecule. After loss of GDP,

the transducin complex is free to encounter and bind a GTP molecule and this binding

triggers a conformational change that leads to the dissociation of the activated Gα-GTP

(also indicated as G∗) subunit from both R∗ and βγ complex (see Figure 1.11). After

dissociation, R∗ remains unaltered and is still able to activate hundreds of transducin

molecules before its deactivation: this is a crucial step for the signal amplification

through the signaling cascade (19; 51; 101).

Activated Gα-GTP binds to the inhibitory γ-subunit of the cGMP phosphodiesterase

(PDE).

1.2.3 cGMP phosphodiesterase activation

The third element of the cascade is the cGMP-specific phosphodiesterase (PDE) that

de facto is the “effector protein” (see Figures 1.10 and 1.11). PDE is composed of two

catalytic subunits (PDEα and PDEβ) and two identical inhibitory subunits (PDEγ).

Since the rhodopsin is an integral membrane protein and transducin and PDE are

anchored to the membrane, given that the C-terminals of the PDE α- and β-subunits

are isoprenylated and carboxymethylated (24; 25), all the interactions between these

proteins are limited to the membrane surface.

The inhibitory PDEγ-subunit is the site of interaction with activated transducin. The

Gα-GTP activates PDE by releasing the inhibitory activity of one of the PDEγ subunits

(131). It takes two Gα-GTP molecules to fully activate the holoenzyme. The activated

PDEα- and PDEβ-subunits hydrolyze cGMP to 5’-GMP, causing a decrease in the

cGMP intracytoplasmic concentration and leading to the closure of the cGMP-gated

channel (19; 51; 101).
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1. INTRODUCTION

Figure 1.11: The cycle of G protein activation and inactivation in phototrans-
duction - (from Arshavsky et al., 2002 (3))
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1.2 Phototransduction

1.2.4 cGMP-channel closure

The central molecule in phototransduction is the second messenger cGMP. All aspects

of visual signaling are dictated by the balance between its synthesis and degradation in

the cytoplasm of the photoreceptor outer segment: cGMP is synthetized by guanylate

cyclase, whereas cGMP hydrolysis is performed by cGMP phosphodiesterase, activated

by the process described above. In the dark-adapted photoreceptor, the balance be-

tween cGMP synthesis and hydrolysis produces a steady-state level of cGMP concen-

tration. The free cGMP concentration is constantly monitored by cGMP-gated cation

channels located in the outer segment plasma membrane. The inward current through

these relatively non-specific cation channels keeps the cell partially depolarized. In

the presence of light, cGMP levels decline as a result of PDE activation. The cGMP

channels can sense the cGMP concentration and the low cytoplasmatic cGMP level

prevents the channel opening. The channel closure causes the hyperpolarization of the

cell and reduces the neurotransmitter release from the synaptic terminal, thus signaling

the presence of light to the secondary neurons in the retina (20; 101).

1.2.5 Cascade inactivation

The shut-off of the phototransduction cascade requires the inactivation of the three

activated intermediates, rhodopsin, transducin and phosphodiesterase.

1.2.5.1 Rhodopsin inactivation

The lifetime of activated rhodopsin (R∗) determines the gain of the first step of the

phototransduction cascade and the quencing of R∗ is the first necessary process in

shutting off the cascade. R∗ shut-off is a two step mechanism that begins with the

phosphorylation of the C-terminus of R∗ by rhodopsin kinase (RK) and ends with the

binding of a 48 kDa accessory protein called arrestin (Figure 1.12).

The importance of the rhodopsin C-terminus for rhodopsin shut-off in vivo has been

demonstrated. Transgenic mouse that express C-terminus truncated rhodopsin showed

a prolonged and increased sensitivity to light responses, consistent with distrupted R∗

shut-off by RK phosphorylation (28). The crucial role of RK has been demonstrated

by inactivating both alleles of the RK gene in a transgenic mouse. The elimination of

the light-dependent phosphorylation of rhodopsin caused the single-photon response to
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Figure 1.12: Inactivation of photoexcited rhodopsin during the photoresponse
by multiple phosphorylation and arrestin binding. - (from Arshavsky, 2002 (2))

become larger and to last longer than normal (26). R∗ is phosphorylated on different

sites (Ser334, Ser338 and Ser343) and this modifications are critical for rhodopsin shut-off

(78; 89; 125).

Rhodopsin phosphorylation by rhodopsin kinase is the first step in R∗ shut-off. Rhodopsin

kinase belongs to a family of serine/threonine protein kinases, called G protein-coupled

receptor kinases (GRKs) (91). Six GRKs have been identified so far and they are ex-

pressed in a wide variety of mammalian tissues. Rhodopsin kinase is a 63 kDa protein

found exclusively in rods, cones and, in low levels, in the pineal gland. It is a cytosolic

enzyme that translocates to the membrane upon receptor activation (55). The asso-

ciation of RK with the membrane is mediated by a post-translational modification in

which an isoprenoid farnesyl is attached to the C-terminal cysteine residue (50).

RK is likely to be regulated by a 23 kDa calcium-binding protein called recoverin.

The direct inhibition of rhodopsin kinase by recoverin is calcium-dependent (22; 27),

suggesting that RK is inhibited in the dark when the intracellular calcium level is high

and becomes disinhibited by the fall in calcium concentration during the light response.

The second step in R∗ inactivation is thought to be arrestin binding to phosphorylated

rhodopsin (2; 125; 126). Arrestin binds to phosphorylated R∗ and prevents further

activation of transducin by steric hindrance (65). In 1997, Xu et al. analyzed the

photoresponse in rods from transgenic mice in which arrestin expression was either

absent or reduced by half. Photoresponse recovery was found to be normal when ex-

pression was halved, indicating that arrestin binding is not rate-limiting for recovery
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1.2 Phototransduction

of the flash response. Photoresponse from rods completely lacking arrestin showed an

initial partial recovery followed by a prolonged final phase, suggesting that there are

both arrestin independent and dependent mechanisms involved in rhodopsin inactiva-

tion (128). Moreover, a frameshift mutation in the human arrestin gene causes Oguchi’s

disease, which is characterized by slowed dark adaptation (39).

Arrestin belongs to the family of the arrestins (37; 90), a large family of proteins found

in both vertebrates and invertebrates, including distinct classes of visual arrestin, rod

specific (45; 106; 107; 121), cone specific (1; 30; 31) and invertebrate specific (108; 130),

and β-arrestins, which are involved in regulating responses to hormones (5). Visual

arrestin (48 kDa) is expressed in photoreceptor cells and the pineal gland (14; 18).

The expression pattern of visual arrestins is restricted to a few cell types, mainly in

photoreceptors and pinealocytes (62). The onset of rod arrestin gene transcription

in the mouse occurs before rod outer segment formation (16), whereas in the bovine

retina, arrestin expression is concurrent with the espression of other genes involved

in phototransduction (119). Arrestin protein is transcribed by the Sag gene (retinal

S-antigen) (121).

There is also a 44 kDa splice variant of arrestin that binds to both phosphorylated

and non-phosphorylated rhodopsin (109). The splice variant is truncated at the C-

terminus and is membrane-associated suggesting that the C-terminal region of arrestin

is responsible for its solubility (92; 102).

1.2.5.2 Transducin inactivation

The second step in shutting off the phototransduction cascade is the turning off of the

activated Gα-GTP (see Figure 1.7 and 1.13). Like the α-subunit of all heterotrimeric

G proteins, activated Gα-GTP has an intrinsic GTPase activity and turns itself off

by hydrolyzing GTP to GDP. Gα-GDP is unable to stimulate PDE and reassociates

with Gβγ ending the Gβγ lifetime as well. Although Gα-GTP is able to hydrolyze

bound GTP by itself, the intrinsic rate of this GTPase activity is very slow compared

to the time course of photoresponse. This slow GTPase rate is significantly accelerated

by a multi-protein complex with GAP-like (GTPase activacting protein) properties,

containing member 9 of the regulators of G protein signaling protein family (RGS9)(44),

bound to its obligatory Gβ5 subunit (75) and membrane anchor R9AP (49). Patients

with mutations in RGS9 or R9AP show slow photoreceptor deactivation and have
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difficulty in adjusting to changes in light levels, as well as in seeing low-contrast, moving

objects (88).

Figure 1.13: Activation and Inactivation of transducin - In the rod class of pho-
toreceptors, the pigment-containing protein rhodopsin absorbs light (a) and activates trans-
ducin (b) by causing it to release GDP and bind GTP. GTP-bound transducin binds to
and activates a phosphodiesterase (PDE), which converts cGMP to GMP (c). The con-
centration of cGMP decreases below what is required to open cGMP-gated ion channels,
reducing the flow of ions across the cellular membrane. RGS9 bound to R9AP turns off the
light-induced response by accelerating the rate of GTP hydrolysis by transducin, releasing
phosphate, P (d). Other proteins that regulate the phototransduction cascade have been
omitted for clarity. (from Blumer, 2004 (15))

1.2.5.3 Phosphodiesterase inactivation and cGMP resynthesis

The final step in photoresponse shut-off is quenching of activated PDE. The reassoci-

ation of the inhibitory PDEγ subunit with PDEα and β catalytic subunits, when Gα

hydrolizes GTP to GDP, prevents further cGMP hydrolysis. The PDEγ binding has

been localized in the catalytic sites of PDEα and β subunits (4).

Complete recovery of the photoresponse requires not only inactivation of cascade com-

ponents, but also the restoration of cytoplasmic cGMP to the dark level. This is ac-

complished by two isoforms of guanylate cyclase, GC1 (or GC-E) and GC2 (or GC-F)

(6; 99). However, the decrease in cGMP concentration caused by PDEis not sufficient

to induce sufficiently rapid resynthesis of cGMP by the cyclase. The enzymatic rate

of cyclases is increased indirectly through changes in intracellular Ca2+ concentration.
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Light causes a decline in the outer segment Ca2+ because Ca2+ continues to be ex-

truded from the cell via the Ca2+K+/Na+ exchanger, while its entry through the CNG

channels is reduced (46; 83). The fall in intracellular Ca2+ is sensed by Ca2+ binding

proteins called guanylate cyclase activating proteins (GCAPs), which rapidly stimulate

cGMP synthesis by guanylate cyclase (34; 95; 96).

GCAPs are Ca2+-binding proteins, belonging to the calmodulin gene superfamily but

in contrast to calmodulin, which is active in the Ca2+-bound form, GCAPs stimulate

GCs in the Ca2+-free form and inhibit GCs upon Ca2+ binding. The human and mouse

GCAP1 and GCAP2 genes (Guca1a and Guca1b) are organized in a tail-to-tail array

(genes arranged on opposite strands) separated by relatively short intergenic regions

containing polyadenylation sites for transcript termination (47; 117).

Figure 1.14: The negative feedback loop that regulates cGMP concentration
in rod cells - A change in the cGMP concentration changes the number of open channels
and the size of the inward current, part of which consists of Ca2+ influx. The alteration in
Ca2+ influx changes the internal Ca2+, which in turn changes the rate of cGMP synthesis
in the direction that opposes the initial change. Deletion of GCAPs expression opens the
feedback loop (GCAPs−/−). (from Burns et al., 2002 (21))

The Ca2+/GCAP-dependent regulation of guanylate cyclase activity forms a powerful

feedback mechanism (see Figure 1.14) in which the rate of cGMP synthesis increases

as Ca2+ concentration drops during photoresponse. The abolishment of Ca2+ feedback

by knocking out GCAPs results in photoresponses that are much larger than normal

and somewhat prolonged (79). In addition, loss of GCAPs leads to a dramatic increase
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in the fluctuations in cGMP concentration in the dark (21), which arises primarly

from spontaneous rhodopsin and PDE activation (11). Consequently, Ca2+ feedback

to the cyclase activity sets the photoresponse amplitude, enhances temporal response

properties and improves the signal-to-noise characteristics of the rod.

1.3 Light adaptation mechanisms

Light adaptation refers to the ability of photoreceptors to adapt their sensitivity as

the level of ambient illumination changes; the range of light intensities could span

over more than ten orders of magnitude. Light adaptation causes mainly two effects

on the photoresponse. It decreases the response amplitude to incremental changes

in illumination and speeds response kinetics. In doing so, it rescues the cell from

saturation that would otherwise occur at relatively low light intesities. Light adaptation

is mediated by many mechanisms, some of them will be discussed in this chapter.

1.3.1 Calcium-dependent adaptation

Ca2+ plays the lead role in light adaptation, several mechanism are dependent by intra-

cellular level of Ca2+. Bownds first proposed that steady light might produce a decrease

in intracellular level of Ca2+ (13) and subsequently a role for Ca2+ in light adaptation

was indicated by the experiments of Torre et al. on salamander photoreceptors (120).

Nowadays, it is well-known how Ca2+ acts and three Ca2+-dependent mechanisms

have been characterized: (a) regulation of guanylate cyclase activity, (b) regulation of

rhodopsin kinase activity via recoverin and (c) regulation of the CNG channel sensitivity

to cGMP.

The first mechanism occurs via GCAPs. As described above, the activity of these

proteins are Ca2+-regulated, therefore the fall of intracellular Ca2+ activates the GCAP-

regulation of the guanylate cyclase consequently speeding the rate of cGMP synthesis.

In doing so, the cytoplasimc level of cGMP is maintained despite the high light-activated

PDE activity (96).

A second Ca2+-dependent mechanism consists in the regulation of rhodopsin kinase

(RK) activity by recoverin. Recoverin is a Ca2+ binding protein and interacts with RK

in Ca2+ bound state, inhibiting its ability to phosphorylate rhodopsin (27; 54). Light-

dependent reduction in intracellular Ca2+ relieves this inhibition and leads to a more
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rapid R∗ inactivation and ultimately to a lower level of PDE activity (63). Experiments

on recoverin knockout mice indicate that this regulation has its major effect on bright

light responses and responses in steady light (74).

The third mechanism mediated by Ca2+ is the modulation of the sensitivity of the

CNG channels by calmodulin (9; 48). In the dark, Ca2+ bound calmodulin is associated

with an intracytoplasmic domain of the channel. The light-dependent Ca2+ fall causes

the calmodulin dissociation to increase the channel’s sensitivity to cGMP. This allows

channels to report small changes in cGMP when cGMP concentration becomes very

low. However, the overall effect of this sensitivity modulation in rods is thought to be

relatively small.

1.3.2 Other forms of adaptation

The light-dependent increase in steady-state PDE activity underlies a Ca2+-indipendent

and very powerful mechanism that adjusts photoreceptor sensitivity and it is simply

a direct consequence of phototransduction. In the dark, when the PDE activity is

low, few photons produce a large change in the cGMP concentration and therefore

a measurable electrical response. On the contrary, in the light, the same amount of

photons produces a smaller relative increase in PDE activity and a smaller cGMP

decrease. Experiments conducted on rod salamander showed that the rate constant of

cGMP hydrolysis increases ∼20 times from dark to light-adapted value (86; 87).

Most studies addressing the mechanisms of light adaptation have been performed under

conditions where light of relatively low intensity has been applied for relatively short

times. In 2002, Calvert et al. described two distinct temporal phases in bullfrog rods.

The fast phase, that operates within seconds after the onset of illumination, is consistent

with the well characterized Ca2+-dependent feedback mechanisms and can desensitize

the rods as much as 80-fold. The slow phase occurs instead after tens of seconds of

continuous illumination and only at light intensities that suppressed more than half of

the dark current. This second mechanism provides an additional sensitivity loss of up

to 40-fold before the rod saturates. Thus, rods can achieve a total degree of adaptation

of ∼3000-fold. Nevertheless, the molecular mechanism underlying the slow phase is

still unclear (23).
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1.3.2.1 Light-induced protein translocation

Another possible mechanism contributing to light adaptation may be the light-driven

redistribution of some protein components of the cGMP cascade of the visual trans-

duction between the outer and the inner segment (see Figure 1.15).

Figure 1.15: Light-dependent translocation of arrestin and rod α-transducin
- Immunocytochemical localizations of arrestin and rod α-transducin in dark and light

adapted albino mouse retinas were conducted. In the dark, arrestin (red) is localized
in the RIS, ONL, and OPL whereas α-transducin (green) is localized in the ROS. The
localizations are reversed in the light adapted retinas with the arrestin localized to the
ROS and α-transducin being in the RIS, ONL, and OPL. Cone inner segments show up
as red streaks (arrow heads) in the region of the RIS in the light adapted retina and the
cone terminals appear as red spots (arrows) in the OPL. Nuclei are stained with DAPI.
The rod outer segment is indicated by ROS, the rod inner segment is indicated by RIS,
the outer nuclear layer is indicated by ONL, and the outer plexiform layer is indicated by
OPL. The scale bar represents 15 µm. (from Elias et al., 2004 (35))

First evidence of this was given by Philp et al. in 1987; their studies showed as the

immunocytochemical localization of transducin and arrestin (but not PDE phosphodi-

esterase) changed according to light conditions. In particular, transducin was concen-

trated in the outer segments of photoreceptor cells in dark conditions while in the light

transducin was seen in the inner segments and in the outer nuclear layer. On the con-

trary, arrestin had the opposite distribution, appearing in the inner segment and outer
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nuclear layer in dark conditions and in the ROS under light conditions (98). These

movements appear to be initiated directly by the absortion of light by rhodopsin (124).

The hypothesis of an adaptive role for the light-dependent translocation of transducin

and arrestin was proposed by Sokolov et al. that also quantified the rate of transducin

translocation by serial tangential sectioning of light- or dark-exposed retinas (110).

Subsequent studies were conducted to characterize the nature of the biological mech-

anism. Experiments conducted in ATP-depleted photoreceptors indicate that the dis-

tribution of arrestin in rods is controlled by its dynamic interactions with rhodopsin in

the OS and microtubules in the IS and its movement is an energy-indipendent process

and occurs by simple diffusion (82). The translocation temporal kinetics for the two

proteins were found to be slightly different. In fact, transducin translocates in less than

two minutes from the onset of light whereas the translocation of the majority of arrestin

requires at least five to six minutes. Translocation in the opposite direction, from light

to dark, occurs more slowly for both proteins with arrestin requiring almost 30 minutes

and transducin needing more than 200 minutes to complete its journey (35).

Figure 1.16: Light-dependency threshold of arrestin translocation - Arrestin
distribution in the rods of anesthetized mice kept in the dark or after 30 min of steady
illumination at various intensities was analyzed by serial sectioning/Western blotting. Con-
tinuous light producing up to ∼580 R∗/rod/s (bleaching up to 1.5% rhodopsin during the
entire illumination period) did not cause any detectable arrestin translocation. However,
just by doubling the light intensity to produce ∼1160 R∗/rod/s (bleaching 3% rhodopsin
during the experiment) triggered the translocation of ∼36% of the total arrestin pool.
(from Strissel et al., 2006 (115))
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Successively, it was found that arrestin translocation is triggered when the light in-

tensity approaches a critical threshold corresponding to the upper limits of the normal

range of rod responsiveness, and that the amount of arrestin entering the rod outer seg-

ments under these conditions is superstoichiometric to the amount of photoactivated

rhodopsin, as shown in Figure 1.16 (115).

The possible translocation of other proteins was also studied: recoverin was found

to undergo light-dependent localization in the same directions of transducin while no

translocation of rhodopsin kinase or GCAPs was identified (114).

Even if Sokolov et al. reported that the transducin translocation from outer segment

correlates with a reduction in cascade amplification with a nearly 10-fold effect occur-

ring in saturating light (110), the contribution of arrestin and recoverin translocation

in light adaptation still has to be determined.
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Materials & methods

2.1 Microarray on isolated photoreceptors

2.1.1 Harvesting of isolated photoreceptors from mouse retinas

Dark-adapted C57/Bl6 mice were sacrificed under an infrared light source and photore-

ceptors were isolated enzymatically and mechanically using a buffer containing papain

0.1%, DNAse 400U, NaCl 150 mM, KCl 3.5 mM, CaCl2 1 mM, MgCl2 2.4 mM, HEPES

5 mM, D-Glucose 10 mM, incubating for 3 min at 37◦C. After dissociation, samples

were plated in two different dishes and positioned on two distinct set-ups: one always

in the dark under infrared light and the other under 10 lux light. Small aggregates

of isolated photoreceptors were harvested every 5 min with suction pipettes. The har-

vested cell aggregates were expelled into 50 µl of Trizol (Invitrogen) on ice and stored

at -80◦C.

2.1.2 Global polyadenylation PCR amplification (GA)

Total RNA from each sample was isolated from Trizol (Invitrogen) following the ad-

dition of 100 ng of polyinositol. RNA recovery by precipitation in isopropanol was

optimized by using linear polyacrylamide (Ambion) as a carrier. All of the harvested

RNA was resuspended in 4.5 µl of ice-cold cell reverse transcription mixture contain-

ing: 47 µl lysis buffer (100 µl 10x PCR buffer (Roche), 60 µl 25 mM MgCl2 (Roche),

5 µl of NP-40 (American Bioanalytical), 50 µl of 0.1 DTT (Gibco/Invitrogen), 725 µl

of DEPC-treated water), 1 µl RNAse inhibitors mix (1:1 prime RNA inhibitor (Ep-

pendorf) and RNAguardTM Ribonuclease Inhibitor (Porcine)), 1 µl anchor T primer
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(final concentration 200ng/ml), 1 µl 2.5 mM dNTP (LA Takara). Total RNA was

reverse transcribed to cDNA, tailed with poly-A and amplified for 30 cycles of PCR

as described by Subkhankulova and Livesey (116). PCR products were purified with

the CyScribe GFX Purification kit (Amersham Biosciences) and directly labelled for

microarray hybridization with dCTP-Cy3/Cy5 (Amersham) with the BioPrime DNA

labelling system (Invitrogen).

2.1.3 Microarray hybridization and data analysis

Expression microarrays containing 23232 65-mer oligonucleotides (Sigma-Genosys) were

printed on Codelink slides (Amersham). Hybridized arrays were scanned in an Axon mi-

croarray scanner at a resolution of 10 µm at maximum laser power and photomultiplier

tube voltage of 60-80%. Image and feature analysis were performed with GenePix Pro

4.0 (Axon Instruments, Inc.). Statistical analysis of microarray data was conducted in

the R environment using the R package “Statistics for Microarray Analysis”. Data nor-

malization was performed using scaled loess normalization (Limma package) (123). Dif-

ferentially expressed genes were selected and clustered using Maanova package, accord-

ing to their temporal expression pattern (http://www.jax.org/staff/churchill/labsite/).

2.2 Real-time PCR

2.2.1 Animals

All mouse and rat experiments were carried out according to the Italian and Euro-

pean guidelines for animal care (d.l.116/92; 86/609/C.E.). C57/Bl6 mice and Long

Evans rats were bred and maintained under a 12 hour light/dark cycle (7AM:7PM).

For lighting environment changes, two groups of overnight dark-adapted animals were

maintained in either a darkened or a lighted cage. A 60W bulb was used as an ad-

justable light source. For each time point at least six animals were sacrificed by cervical

dislocation, the eyes enucleated, the lenses removed and the retinas collected in Trizol

(Invitrogen).

2.2.2 Cultured retinas

The retina culture system was established according to the experimental procedures

previously published by Reidel and colleagues in 2006 (103). In brief, intact eyes of
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2.2 Real-time PCR

postnatal day 21 C57/Bl6 mice were immediately removed from sacrificed animals and

incubated with 1.2 mg/ml Proteinase K (Sigma-Aldrich) for 15 min at 37◦C. Proteinase

K activity was stopped by transferring the eyes to the culture medium containing 10%

fetal calf serum for 5 min. After rinsing the eyes four times in serum-free culture

medium for Proteinase K removal, retinas were dissected in basal culture medium

after removal of the sclera, ocular tissue and the hyaloid vessel under preservation

of the pigmented epithelium as described in Figure 2.1. Retinas were spread with

the retinal pigmented epithelial cells facing down on ME 25/31 culture membranes

(Schleicher and Schuell, Germany), cultured in Dulbeccos Modified Eagles Medium with

F12 supplement (DMEM-F12) and 10% fetal calf serum, penicillin and streptomycin

(Sigma-Aldrich) and maintained at 37◦C with 5% CO2. They were cultured for 2

days in 12L:12D cycle (λ=520 nm) before light/dark experiments. After light or dark

exposure, cultivated retinas were collected in Trizol (Invitrogen).

For the acute rat retina experiments, retinas were isolated under dim red light from

adult Long Evans rats and prepared for culturing as described for the mouse organotypic

culture. Retinas were dark adapted for two hours and than exposed to the same light

intensities used during ERG experiments equivalent to 410 and 2000 Rh∗/r/s.

2.2.3 Real-time PCR protocol

Total RNA from retinas was extracted according to the manufacturers instructions (In-

vitrogen). In brief, retinas were homogenized in 1 ml of Trizol by passing several times

through a glass pipette. After adding 0.2 ml of chloroform, samples were centrifuged

at 14000 rpm at 4◦C for 20 min. After centrifugation, RNA containing acqueus phase

was collected in a fresh tube. Subsequently, RNA was precipitated by adding 0.5 ml of

isopropyl alcohol overnight at -20◦C. RNA was then pelleted by centrifuging at 14000

rpm at 4◦C and washed with 70% ethanol in DEPC-treated water (14000 rpm at 4◦C

for 20 min). RNA pellets were resuspended in 10 µl RNAse-free water (Qiagen). RNA

was further purified using an RNeasy column (Qiagen) and quantified using an ND-

1000 Nanodrop spectrophotometer (Nanodrop Technologies). Total RNA (500 ng) was

treated with DNAse I (Invitrogen) to remove any genomic DNA contamination and

converted to cDNA using Superscript II reverse transcriptase (Invitrogen).

Twenty microliter PCR reaction mixtures contained cDNA, SYBR green master mix

(Bio-Rad), H2O and custom primers designed for each gene of interest. The PCR
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2. MATERIALS & METHODS

Figure 2.1: Dissection and preparation of organotypic retina culture - A: Eyeball
with optic nerve prepared from a sacrificed mouse. B: Cutting off the optic nerve under
slight tension with forceps. C: Incision of sclera by gently inserting scissors between the
retinal pigmented epithelium and the sclera. D: Complete incision of sclera around eyeball
to each side reaching the cornea. E: Incisions in the retinal cup, previously removed from
sclera, cornea, lens, vitreous, iris, and hyaloid vessel. F: Flattening of spread retina on
culture membrane attached to nylon spacer. G: Differential interference contrast picture
of a retinal cryosection indicating the orientation of retinal explant with pigmented epithe-
lium attached to the culture membrane. H: Schematic representation of retina and cell
organization. I: Schematic representation of vertebrate photoreceptor cell. Scale bar, 13.2
µm (from Reidel et al., 2006)(103).
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2.2 Real-time PCR

reactions were performed in an iQ5 thermocycler (Bio-Rad). Each reaction was per-

formed at least in duplicate, and threshold cycles (CT) were calculated using the second

derivative of the reaction. The CT of each gene was normalized against that of the

control reference transcript Gapdh. Fold changes were determined using the -∆∆CT

method, using the average of dark control set to zero (71; 97; 133). RNA controls were

performed to ensure that amplification of products did not come from genomic DNA

contamination.

Primers used for Real-Time PCR:

Gapdh mouse for: GCTGCCCAGAACATCATCCC

Gapdh mouse rew: ATGCCTGCTTCACCACCTTC

Sag mouse for: TTACAAGCCTTCCAACCTCTGAC

Sag mouse rew: ACCAGCACAACACCATCTACAG

Pde6b mouse for: TGCTGACTGTGAGGAGGATGAG

Pde6b mouse rew: GGGAATCTGGAACTTTCGGACTAC

Guca1a mouse for: CCCTCAGCCAGCCAGTATGTG

Guca1a mouse rew: ACTTCTGTTCCACTTTGCCCTTG

Gapdh rat for: CAAGTTCAACGGCACAGTCAAGG

Gapdh rat rew: ACATACTCAGCACCAGCATCACC

Sag rat for: GTGTCATACCATATCAAAGTGAAGC

Sag rat rew: GGAACGGCACCTCAGTAGC

Guca1a rat for: CAACGGGGATGGGGAACTG

Guca1a rat rew: GGTCAAGTCCAGGCTTCGG

Guca1b rat for: GCTTCTTCAAGGTCACTGGTAATG

Guca1b rat rew: GTAGATTGCCTCCACGATGTCC

Sag intron rat for: CCCTTGCCCTGTGAGGTTATCTG

Sag intron rat rew: ACCTTGTAATTTGTCACCGAAGTCAG

Guca1a intron rat for: CCCTCAGCCAGCCAGTATGTG

Guca1a intron rat rew: CTTCCCATCCCTCCCGTCCTC

Guca1b intron rat for: TTCTTCAAGGTCACTGGTAATG

Guca1b intron rat rew: GATGGAAAGGTCACTCAATGG
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2.3 Immunohistochemistry

2.3.1 Arrestin translocation detection

Enucleated eyes were prefixed in PFA 4% in PBS for 30 minutes. Successively, eyecups

obtained after lens and sclera removals were fixed in PFA 4% overnight. The lens

removal allows fixative to penetrate the tissue diffusely. After fixation, samples were

cryoprotected with scalar dilution of sucrose (10%, 20% and 30%), embedded in O.C.T.

(Sakura Tissue-Tek OCT Compound) and cryosectioned at 16 µm at -20◦C.

Immunolabeling was performed by standard protocols using anti-arrestin PA1-731 (Affin-

ity BioReagents, Golden, CO) as primary antibody and DAPI (Boehringer Mannheim

GmbH, Germany) for nuclear staining.

2.3.2 TUNEL assay

Terminal Transferase dUTP Nick End Labeling (TUNEL) Assay is a method used to

detect DNA degradation in apoptotic cells because one of the hallmarks of late stage

apoptosis is the fragmentation of nuclear chromatin which results in a multitude of 3-

hydroxyl termini of DNA ends. This property can be used to identify apoptotic cells by

labeling the DNA breaks with fluorescent-tagged deoxyuridine triphosphate nucleotides

(F-dUTP).

Retinal cryosections, processed as described in the previous section, were rinsed in PBS

1× and permeabilized with 0.1% Triton X-100 and 0.1% Sodium Citrate for 2 minutes

at 4◦C. Subsequently, 100 µl of TUNEL reaction mixture (Chemicon) were added to

each slide and kept for 60 minutes at 37◦C in a humid chamber. After washing in

PBS, 100 µl of 1:1000 DAPI (Boehringer Mannheim GmbH, Germany) were applied

for 5 minutes at room temperature for nuclear staining. Slides were mounted with

Vectashield (Vector Laboratories Inc., Burlingame, CA) for microscopy analysis. The

positive control was treated, after permeabilization, with DNase I solution (100 µl

of 200 µg/ml) for 10 minutes at room temperature. In the negative control reaction

mixture, terminal transferase enzyme was omitted.
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2.4 Western blotting

Retinas, dissected from light or dark-exposed mice, were homogenized in Lysis buffer

(50 mM Tris pH 7.5; 150 mM NaCl; 1% Triton X-100; 10 mM MgCl2) in ice. The total

amount of protein was determined using BCA protein assay kit (Pierce Biotechnology).

The homogenate was diluted with sample buffer, subjected to scalar dilutions, run

on SDS-PAGE and Western blotted using the following antibodies: rabbit anti-visual

arrestin (PA1-731, Affinity Bioreagents, Golden, CO), mouse anti-GCAP1 (MA1-724,

Affinity BioReagents, Golden, CO), rat anti-HSC70 (SPA-815, StressGen) and rabbit

anti-β-tubulin III (Sigma-Aldrich, Italy). HSC70, heat-shock cognate protein 70, and

β-tubulin III are constitutively expressed proteins and were used as control of protein

loading. Signals were detected analyzing the optical density of the spots.

2.5 Electroretinogram

2.5.1 Animal preparation for ERG recording

All animals were dark-adapted overnight. Anaesthesia was induced by intraperitoneal

injection of urethane 120mg/100g (Sigma-Aldrich) (12; 41; 80). This was sufficient to

maintain the animal deeply anesthetized throughout the entire experimental session,

as verified by the absence of corneal reflexes. The general conditions were continu-

ously monitored by recording the electrocardiogram (ECG). Body temperature was

maintained at 37◦C with an electric blanket. Pupils were dilated with 1% tropicamide

(Sigma-Aldrich). A thin layer of methylcellulose solution (Lacrinorm, Farmigea) pro-

tected the cornea.

2.5.2 Optical stimulation

Full field illumination of the eyes was obtained via a Ganzfeld sphere (30 cm diameter),

the interior surface of which was coated with a highly reflective white paint. An elec-

tronic flash unit (SUNPAK B3600 DX) generated a stimulus and its energy decayed

in time (τ=1.7 ms). Saturating a-wave responses were obtained by delivering flashes

of white light, the scotopic efficacy of which was evaluated according to Lyubarsky

and Pugh (72). The estimated retinal illuminance was 1.4 × 105 Rh∗/rod/flash. A

steady background was obtained by illuminating the Ganzfeld sphere with 4 green
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light emitting diodes (LEDs) with a λ = 520 nm (Opto Diode Corp.). Fluctuations

of the background light intensity were less than 13% during the entire lenght of the

experiments.

2.5.3 ERG recording

ERGs were recorded in a completely darkened room via coiled gold electrodes making

electrical contact with the moist cornea. A small gold plate placed in the mouth was

used as reference. Responses were amplified differentially, band-pass filtered at 0.3-500

Hz, digitized at 0.078 ms intervals by a PC interface (National instruments LabVIEW

6.1, Italy). Responses to flashes were averaged with an interstimulus interval of 60 s

and measured at fixed intervals after background exposure up to 240 minutes. Since a

typical experimental session spanned over a relative long period of time (4 to 5 hours),

special care was paid to perform recordings at the same time of the day (starting at

midday), in order to minimize the influence of circadian rhythms on ERG measurements

(7; 8; 112).

2.5.4 Measurements of the pupil size

The pupil size was estimated by measuring its radius at the beginning and at the end

of the ERG recording session. A digital camera was used in the red eye removal mode

and the pupil radius measured by an image analysis software (GIMP 2.4.2). In control

experiments, we measured the diameter of the pupil (as shown in Figure 2.2A). In these

experiments, changes of pupil area were within 25% of their initial value, measured

at the beginning of the experiment. Collected data from 7 experiments show that the

pupil diameter is not significantly changed from start to end of the experimental session

lasting at least 4 hours (as shown in Figure 2.2B).

2.6 Light estimation

2.6.1 Light intensities and equations

In the freely moving animal experiments, the light intensities were measured using an

Illuminometer (mod. 5200, Kyoritsu Electrical Instruments Works, LTD). Since the

animals were free to move and their pupils were not dilated by any pharmacological
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2.6 Light estimation

Figure 2.2: Change of pupils diameter and area during long ERG sessions -
A: time course of pupil diameter (filled circle) and area (open circle) for a representative
experiment. Pupil was dilated with 1% tropicamide. B: changes of pupils diameter in 7
experiments from start to end (4-5 hours later) of the ERG recording sessions. Averaged
pupil diameter (filled circles) in mm±SEM: initial: 3.34±0.06; final: 3.35±0.14 (n=7;
paired t-test: p = 0.97, not significant).
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treatment, only an estimation of the cage illumination in lux (stated as ambient light)

was given.

For ERG and organotypic cultures experiments, the light intensities were measured

using a Radiometric probe (Model 818-ST, Newport corp., Irvine, CA) connected to a

Optical Power Meter (Model 1815-C, Newport corp., Irvine, CA).

The number of photoisomerizations in a single rod per second Φ/∆t was estimated

using the equations 2.1, 2.2 and 2.3.

F (λ) =
I

Ephoton
=

I

h cλ
(2.1)

where: F (λ) is the photon density [photons m−2 sec−1], I is the measured irradiance

[W m−2], h is the Planck constant (6.626 × 10−34 J sec−1), c is the speed of light in a

vacuum (2.99792 × 108 m sec−1) and λ is the light wavelength [m];

Φ
∆t

= F (λ) · τ(λ) · ac(λ)
Spupil
Sretina

(2.2)

where: Φ/∆t is the estimated Photoisomerization per rod per second, τ(λ) is the

transmission of the pre-photoreceptor ocular media (estimated as 1 in cultures and 0.7

in ERG), ac(λ) is the “end-on collecting area” of the photoreceptor [m2] (0.20 µm2 in

P21 mouse cultures and 1.3 µm2 in ERG and in rat acute retinas) and Spupil, Sretina
are the areas of the pupil and the retina, respectively [m2] (Spupil/Sretina = 1 in culture

and 7.1/55 in ERG);

ac(λ) = f
πd2

4
[1− 10−∆D(λ)L]γ (2.3)

where: f is the funneling factor (1.3), d is the outer segment diameter (estimated 1 µm

for the P21 photoreceptor), ∆D(λ) is the specific axial density of rhodopsin (0.019 o.d.

units µm2), L is the lenght of outer segment (estimated 8 µm for the P21 photoreceptor)

and γ is the quantum efficiency of photoisomerization (2/3).

2.6.2 Bleaching levels

In white mice and rats, pigment regeneration has been reported to occur with a time

constant of around 30 min, about 4× slower than in humans (70). It is known that many

general anesthetics can cause even further lowering of the regeneration rate but there

are no evidences in literature about the effect of urethane on pigment regeneration.
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2.6 Light estimation

Table 2.1: Estimation of the bleaching levels in ERG experiments

Light Intensity % of bleaching after 4h % of bleaching after 4h
(Rh∗/r/s) (τfast = 30min) (τslow = 120min)

2000 3.60% 12.45%
410 0.73% 2.55%
60 0.11% 0.37%

We have estimated the level of bleaching for our ERG experiments, when the pigment

regeneration is considerably slowed by anesthesia (τslow = 120 min) and in the case in

which it is fast (τfast = 30 min) (see table 2.1).
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Results

In my studies, I addressed the issue of whether illumination could influence the rate of

transcription of genes involved in phototransduction and how these changes could be

involved in physiological processes.

Therefore, changes in gene expression were investigated in different light/dark condi-

tions in several preparations: small aggregates of isolated photoreceptors, in cultivated

intact retinas and in retinas acutely isolated from freely moving mice and rats. How-

ever, rods dissociated from mice and rats retinas are extremely fragile and usually

degenerate after 2 hours of intense light exposure. Retinas extracted from intact an-

imals are in better physiological conditions, but the extracted mRNAs derives from

all retinal neurons, although the rodent retina is composed of approximately 70% rod

photoreceptors (81).

3.1 Microarray analysis in isolated photoreceptors

Photoreceptors from dark-adapted retinas were isolated under infrared light, subjected

to presence or absence of light and harvested at different time points. Single rod pho-

toreceptors isolated from rodent retinas are fragile and often show clear signs of loss

of morphological integrity after 2 hours of light exposure. Therefore, harvesting was

restricted to small groups of photoreceptors and not to isolated rods and was not per-

formed after 120 minutes. Moreover, they are easy to identify because of rods peculiar

shape and for this reason contamination from other cell types can be easily avoided.

Small aggregates of isolated photoreceptors were positioned on the perfusion chamber
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of two distinct set-ups: one set-up was kept in complete darkness and mechanical ma-

nipulations were performed in infrared light; the other set-up was kept in a constant

light of 10 lux (see Figure 3.1 for a schematical representation of the experimental

protocol).

Rod photoreceptors were harvested from both set-ups in a time interval of up to 2 hours

and grouped in three categories: those exposed to a short period of light (harvesting

time from 0 to 40 minutes, n=14 bunches of rods), those exposed to an intermediate

period of light (from 40 to 80 minutes, n=22) and those exposed to a long period of

light (from 80 minutes up to 2 hours, n=16). The mRNA extracted from isolated

photoreceptors predominantly came from rods.

Figure 3.1: Microarray analysis in isolated photoreceptors: scheme of har-
vesting procedure - Dark-adapted retinas were dissociated under infrared illumination.
Small bunches of rods were harvested simultaneously every 5 minutes in both dark and
light conditions. Rods were grouped into three different categories for early (from 0 to 40
minutes; n=14), medium (from 40 to 80 minutes; n=22) and late (from 80 minutes up to 2
hours; n=16) changes of gene expression. The light intensity impinging on the set-up used
for harvesting light adapted rods was approximately 10 Lux.
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After harvesting, mRNA obtained from groups of rods was amplified by global polyadeny-

lation PCR amplification technique (GA). This technique is the approach of choice to

obtain the largest possible number of the differentially expressed genes, starting from

a very low amount of RNA (116) . The scheme of amplification is represented in Fig.

3.2.

The gene expression was profiled using custom-made two-channel oligonucleotide arrays

representing over 22000 genes. Each light-exposed sample was amplified and hybridized

with a proper reference sample (dark) and each hybridization was repeated twice, in-

verting the Cy3/Cy5 dyes. The results were obtained analyzing 26 sample gene profiles

from 52 microarray slides.

Figure 3.2: Global polyadenylation PCR amplification (GA) - Each RNA sample
was retrotranscribed and subsequently amplified following the scheme

1933 genes exhibited significant changes of gene expression and were grouped in 10

different clusters, according to their temporal expression pattern (Maanova Package)

(Figure 3.3). One cluster (termed cluster 10) had 74 genes up-regulated by more than

two-fold, specifically for the long light exposure period and contained several genes
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coding for proteins involved in phototransduction (Figure 3.4).

Figure 3.3: Microarray analysis in isolated photoreceptors: clustering - Time
course of changes in gene expression in the ten cluster after a short, intermediate and long
light exposure; cluster centroid indicated in red.

In this cluster, 7 genes known to be part of the phototransduction machinery were

found: arrestin (Sag), the beta subunit of phoshodiesterase (Pde6b), the guanylate cy-

clase activator 1a (Guca1a), the guanine nucleotide binding protein, alpha transducing

1 (Gnat1 ), opsin-1 cone pigment (Op1sw), Unc-119 homolog C. elegans (Unc119 ) and

the rod outer segment membrane protein 1 (Rom1 ). This cluster also contained 7 genes

coding for crystallins (gamma S, gamma B, beta A4, beta B2, alpha A, gamma D and

beta A1 ). As shown in Figure 3.4, this cluster contained also genes coding for pro-

tein transport (5), protein modification (4), protein translation (4), mRNA processing

(4), apoptosis (3) and other functions (15). The remaining 25 genes had an unknown

function.
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3.1 Microarray analysis in isolated photoreceptors

Figure 3.4: Microarray analysis in isolated photoreceptors: gene ontology -
Gene Ontology analysis of genes in Cluster 10.
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3.2 Real-time PCR analysis for selected genes in retinas

from intact mice

Three of the up-regulated genes reported in Figure 3.4 are particularly relevant for

phototransduction: Sag, Guca1a and Pde6b. Indeed up-regulation of genes activating

guanylate cyclase, such as Guca1a and Guca1b, would be expected to elevate the cGMP

level, while up-regulation of Sag would be expected to reduce the ability of photo-

isomerized rhodopsin to close cGMP gated channel. As a consequence, up-regulation of

Guca1a, Guca1b and Sag is likely to reactivate the photocurrent and thus to contribute

to light adaptation.

Figure 3.5: Scheme of protocol for the Real time PCR analysis experiment in
freely moving mice - For each time point, two cohorts of mice, normally held in 12
hours light/12 hours dark cycle, were taken in different light conditions. After sacrifice,
time course of changes in expression induced by light was performed in harvested retinas.

Therefore, the changes in expression of Sag, Guca1a, Guca1b, Pde6b and Gnat1 were

analyzed with real-time PCR in retinas extracted from freely moving mice kept in com-

plete darkness and mice exposed to a continuous light (see Fig. 3.5). Since these genes

are known to be expressed exclusively or primarily in rod photoreceptors, changes in

their expression detected in whole retinas are due to changes occurring in rod pho-

toreceptors (42; 96). Under these conditions, long light exposures can be used without

photoreceptor deterioration (see below in Fig. 3.12), unlike in dissociated rod photore-

ceptors.
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Changes in gene expression at each time point were obtained using at least 6 pairs

of retinas from mice kept in 1000 lux ambient light (test condition) and 6 pairs of

retinas from mice kept in darkness (control condition). The ratio in log2 units of

observed changes are shown in Figure 3.6. After 2 hours of light exposure, the level of

mRNA for Sag, Guca1a and Guca1b increased approximately by 1.75-fold from the dark

level. Sag, Guca1a and Guca1b transcripts remained elevated at longer times, up to

6-12 hours. Changes in Pde6b transcript levels were statistically significant (p<0.05),

but were smaller in magnitude, whereas the changes in Gnat1 expression were not

statistically significant (p>0.1).

Figure 3.6: Real time PCR analysis in retinas from freely moving mice - Time
course of changes in expression (relative to the control level in dark conditions) induced
by light of Sag, Guca1a, Guca1b, Pde6b and Gnat1 genes in retinas harvested from freely
moving mice exposed to an ambient light of 1000 lux. Light exposures varied from 1 to 12
hours. Each point is the average obtained from at least 6 pairs of retinas (mean±SEM).

Having established that light elevated the rate of transcription of genes coding for Sag,

Guca1a and Guca1b we asked whether the elevated mRNA levels were maintained upon

returning to darkness and, if so, for how long. In order to do this, we exposed mice

to a steady light for 2 hours followed by complete darkness for 2 hours. After this

treatment, transcripts for Sag, Guca1a and Guca1b were still elevated but to a lesser
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extent (Figure 3.7A). These results indicate that the light-dependent up-regulation of

Sag, Guca1a and Guca1b persisted transiently returning to darkness, decaying with a

time constant of approximately 2 hours.

We also analyzed the dependence of up-regulation of Sag, Guca1a and Guca1b expres-

sion on light intensity. As shown in Figure 3.7B, 2 hours exposure to an ambient light

between 250 lux and 500 lux produced an half maximal gene up-regulation for the three

studied genes.

Figure 3.7: Real time PCR analysis in retinas from freely moving mice and
in cultured retinas - (A) Changes in gene expression observed in retinas extracted from
freely moving mice exposed to 1000 lux ambient light for 2 hours followed by 2 hours of
darkness compared to retinas from mice kept for 4 hours in the same light. As a control,
a group of mice were kept for 4 hours in the dark. Each point is the average of at least 3
experiments (mean±SEM). (B) Relation between changes in gene expression and ambient
light intensity in freely moving mice exposed at 250, 500 and 1000 lux after 2 hours of
illumination. Each point is the average from at least 6 pairs of retinas (mean±SEM).
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Figure 3.8: Arrestin translocation in retinas from freely moving mice - IF
images of light-dependent arrestin translocation, following 2 hours of illumination in retinas
extracted from freely moving mice. Arrestin migration occurs from the outer nuclear layer
(ONL) and rod inner segments (RIS) (in the dark), to rod outer segments (ROS) when
mice are kept in a bright ambient light of 1000 lux. A partial migration is observed when
the ambient light was decreased to 250 lux. Columns from left to right show bright field
images (BF), nuclear localization with DAPI staining in blue and arrestin labeling in red
(ARR).
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As arrestin is known to migrate from the cell body and inner segment towards the outer

segment upon light exposure, we correlated the level of up-regulation of expression with

arrestin migration towards rods outer segments. Freely moving mice were exposed

to different ambient lights for 2 hours and control animals were kept in the dark.

After dissection, half of these retinas were used to quantify gene expression by real-

time PCR and the remaining retinas were used to determine arrestin migration by

immunofluorescence staining. As shown in immunofluorescence images (Figure 3.8),

arrestin migrates completely towards the outer segment in the brightest light conditions

for which maximal gene up-regulation was observed. At a lower light (250 Lux), a

partial migration of arrestin towards the outer segments was observed and transcripts

coding for Sag, Guca1a and Guca1b were up-regulated to a sub-maximal level (n=6).

Therefore, light-dependent gene up-regulation and arrestin translocation (115) occured

in the same range of light intensity.

3.3 Western blot analysis for proteins coded by selected

genes

In order to verify whether up-regulation of Sag, Guca1a and Guca1b genes resulted in

an increased level of related protein, the expression level of arrestin and GCAP1 was

determined by quantitative Western blotting (Figure 3.9) from retinas of freely moving

mice. We were not able to quantify expression level of GCAP2 due to lack of a reliable

commercial antibody against that specific mouse protein.

For the quantitative Western blot analysis, different lines with scaled concentrations

of retinal homogenates were selected, in order to carry out analyses in dark adapted

conditions and in retinas exposed to a steady bright light equivalent to 1000 Lux for 3

hours. Western blot analysis showed that the concentration of both forms of arrestin,

the full-length with a molecular weight of 48kDa and its splice variant with a molecular

weight of 44kDa (92; 102), increased by approximately 57% (Figure 3.9C) and GCAP1

by 36% (Figure 3.9D) after 3 hours of light exposure. This proved, as expected, that

gene up-regulation leads to an increase in protein synthesis.
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Figure 3.9: Western blot analysis in retinas from freely moving mice - (A)
Representative Western Blot quantifying the expression of the two isoforms of arrestin
protein (48kDa and 44kDa) in retinal homogenates of light (3 hours of exposure) or dark-
exposed mice retinas. For each line, 30, 20 and 10 µg of the total protein was loaded.
HSC70 was used as housekeeping gene control. (B) The relative increase of arrestin in
light-exposed mice, calculated as the ratio of the slopes of light and dark-exposed (filled and
open symbols respectively) mice, was 1.57-fold (n=3; mean±SEM). (C) Same conditions
as described above, representative Western Blot quantifying the expression of GCAP1 in
retinal homogenates. For each line, 75, 50 and 25 µg of the total protein was loaded.
β-tubulin III was used as housekeeping gene control. (D) The relative increase of GCAP1
in light-exposed mice was 1.36-fold (n=1).
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3.4 Real-time PCR analysis for selected genes in other

systems

3.4.1 Real-time PCR analysis in retinas from freely moving rats

In order to extend the observation to another species we repeated similar experiments

in rats, where electroretinographic tests (ERG) are easier to perform over long periods

of time (see next section). As in mice, up-regulation of Sag, Guca1a and Guca1b

expression in the rat retina was observed 2 hours after onset of light exposure (p<0.05;

Figure 3.10A).

The increased levels of mRNAs described in Figure 3.3 and Figure 3.6 could be due to

an increased rate of transcription or to a decrease of the degradation of those mRNAs.

To distinguish between these two possibilities, we quantified the levels of unspliced

transcripts of Sag, Guca1a and Guca1b as an estimate of new RNA synthesis. As

shown in Figure 3.10B, the levels of these transcripts containing intron 1 of each gene

increased by approximately 1.4-fold after 2 hours of light exposure, indicating that the

observed increases in mRNA are caused by higher rates of transcription.

Figure 3.10: Real time PCR analysis in retinas from freely moving rats -
(A) Time course of changes in expression (relative to the control level in dark conditions)
induced by light of Sag, Guca1a and Guca1b genes in retinas from freely moving rats
exposed to an ambient light of 1000 lux (n=6; mean±SEM). (B) Changes of unspliced Sag,
Guca1a and Guca1b transcripts in rats after a 2-hour light exposure, detected by primers
matching the intron 1 region (n=5; mean±SEM).
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3.5 Viability test

3.4.2 Real-time PCR analysis in organotypic mouse culture and in

acute rat retina system

Having established the up-regulation of Sag, Guca1a and Guca1b expression following

light exposure in freely moving mice and rats, we decided to confirm these observations

in more controlled light intensity conditions. Therefore, we cultured mouse retinas

as described by Reidel et al., 2006 (103). Retinas from P21 mice were explanted and

cultured for two days. The left retina from each mouse was kept in the dark and used as

control, whereas the right retina was exposed to a steady monochromatic light (λ=520

nm) with an intensity estimated (104; 115) to correspond to 5 × 103, 2.5 × 104 and

1 × 105 Rh∗/sec/rod. As shown in Figure 3.11, after 2 hours of illumination, a clear

and statistically significant up-regulation (p<0.05) of Sag, Guca1a and Guca1b was

observed.

Later on, we extended the intensity-dependence relation using the same strain and age

of animals used for ERG recordings. These retinas were isolated from adult Long Evans

rats under dim red light and prepared for culturing as described for the mouse organ-

otypic culture. Retinas were dark-adapted for two hours and than exposed to the same

light intensities used during ERG experiments, equivalent to 410 and 2000 Rh∗/sec/rod.

The light intensity causing approximately half maximal gene up-regulation was about

5× 103 Rh∗/sec/rod (see figure 3.11).

This level of light is whitin the range of light intensities initiating arrestin translocation

from the inner to the outer segment (115).

3.5 Viability test

To confirm the good health condition of our retinal culture system and to avoid noise

from light-induced photoreceptor degeneration, we performed TUNEL assay on organ-

otypic culture. After 2 days of culturing at 1 × 105 Rh∗/rod/sec light intensity, the

assay detected very few apoptotic nuclei (less than 5%) as shown in Fig. 3.12
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3. RESULTS

Figure 3.11: Real time PCR analysis in mouse organotypic culture and acute
rat retinas: - Up-regulation of Sag, Guca1a and Guca1b after two hours of exposure to
a steady light equivalent to 410 and 2000 Rh∗/sec/rod in acute rat retinas and 5000, 25000
and 100000 Rh∗/sec/rod in organotypic mouse retinas (n=3; mean±SEM).
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3.5 Viability test

Figure 3.12: TUNEL assay on retinas harvested from freely moving mice and
on retinal cultures - A: Negative control; B: Positive control, treated with DNase to
create nicks in the genomic DNA; C: Apoptotic cells in retinas harvested from freely moving
mice after 2 hours of 1200 lux illumination; D: Apoptotic cells in retinal culture, after 2
days of culturing at 1× 105 Rh∗/rod/sec light intensity
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3.6 Analysis of late light adaptation in intact rats by ERG

The previously presented results show that exposure to a steady light equivalent to

about 104-105 Rh∗/rod/sec causes a two-fold up-regulation of expression of genes coding

for arrestin and for the two activators of guanylate cyclase and the protein concentration

of arrestin and GCAP1 increases by about 40-50% (Figures 3.11 and 3.9). The up-

regulation of these proteins is expected to reactivate the photocurrent and consequently

to mediate a late phase of light adaptation. Therefore, we investigated the possible

reactivation of the photocurrent in vivo by electroretinographic tests (ERG), following

a long exposure to a steady light with a time course that was consistent with the

changes in gene expression observed in Figures 3.6 and 3.10A.

Figure 3.13: a-wave suppression recorded increasing background light intensity
in a calibration experiment - After the recording of a dark-adapted response (black
trace), background lights with an increasing intensity were applied. Each background was
held for 10 minutes before the recording of the flash photoresponse (coloured traces). The
recorded ERG have been superimposed starting from 0 µV.
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3.6 Analysis of late light adaptation in intact rats by ERG

Initial results from ERG recordings on mice were encouraging but it was very difficult

to keep the animal alive throughout experiments lasting for more that five hours. For

this reason, we decided to use rats as they tolerate these experimental conditions better.

This is possible because gene up-regulation occuring after prolonged illumination was

also observed in rats as described in the previous section (see Figures 3.10 and 3.11).

The relation between steady light intensity measured in Rh∗/rod/sec and fractional

suppressed photocurrent in rat rods was obtained from ERG recordings in which the

amplitude of the a-wave evoked by a bright flash of light (equivalent to 1.4 × 105

Rh∗/rod/sec) was measured in the presence of steady lights of increasing intensity.

From these experiments we derived the relation between fractional suppressed rod pho-

tocurrent and steady light intensity (see Figure 3.13). This relation was used to deter-

mine the range of light intensity where to study light adaptation in rods, which falls

between 20 and 2000 Rh∗/rod/sec.

After prolonged illumination, an increased translation of arrestin and of proteins acti-

vating guanylate cyclase would be expected to result in a detectable reactivation of the

circulating photocurrent. Indeed, when both eyes of a rat were exposed to steady lights

equivalent to 60, 410 and 2000 Rh∗/sec/rod, the amplitude of the a-wave of the ERG

to a test flash delivering approximately 1.4 × 105 Rh∗/rod was initially suppressed by

∼30%, ∼70% and ∼90% respectively. However, a substantial recovery was observed

over the next 2-4 hours, as described in the reported representative experiments in

Figures 3.15, 3.16, 3.17, 3.18 and 3.19.

The amplitude of the a-wave in dark adapted conditions (data from 5 animals), slightly

decreased during experimental sessions lasting longer than 4 hours up to 80±8% of its

initial value, as shown in Figure 3.14 with square symbols. In contrast, in the presence

of a steady background lights, the amplitude of the a-wave, after its initial decrease,

progressively increased during the experiment, as shown in Figure 3.14 and in table

3.1.

ERG recordings lasted several hours and therefore we analyzed the stability of the sev-

eral components of the recording system. Fluctuations of the light intensity emitted by

the diodes illuminating the rat eyes during the entire experiment were less than 13%.

We also verified that modifications of the measured circulating photocurrent were not

caused by changes in the electrical contacts of the recording electrodes and that the
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3. RESULTS

Table 3.1: Averaged peak amplitude in ERG experiments

light intensity initial a-wave peak final a-wave peak fold change
(Rh∗/r/s) (%) (%) (final/initial)

no background 100% 80±8% 0.8±0.08
60 66±3% 77±5% 1.17±0.08
410 32±6% 50±5% 1.56±0.16
2000 8±2% 19±3% 2.38±0.38

pupil size did not change during the experiments. Therefore, the recovery of the am-

plitude of the a-wave cannot be ascribed to changes of the background light intensity

falling onto rod photoreceptors. Therefore, following a steady light that initially de-

creased the circulating photocurrent by ∼30%, ∼70% and ∼90%, a partial recovery in

the photocurrent was observed after 1-2 hours.

Figure 3.14: ERG recordings in rats - Averaged peak amplitude of a-wave as a
function of time without any background (squares, n=5) or with backgrounds of light
corresponding to 60 Rh∗/rod/sec (circles, n=5), to 410 Rh∗/rod/sec (triangles, n=5) and
to 2000 Rh∗/rod/sec (inverted triangles, n=6). For values see table 3.1
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3.6 Analysis of late light adaptation in intact rats by ERG

Figure 3.15: ERG recordings in rats - ERG in dark adapted conditions in response
to a bright flash of light delivering 1.4×105 Rh∗/rod (dotted curve), immediately after the
onset of a steady light corresponding to 60 Rh∗/rod/sec (black curve) and at later times
(shaded grey curves). The amplitude of the a-wave, which was 346 µV in dark-adapted
conditions, immediately decreased to 213 µV (61% of the dark-adapted response) upon the
onset of the background light. While the background light was maintained, the amplitude
of the a-wave slowly recovered, so that after 240 minutes it was approximately 261 µV,
about 75% of its value in the dark-adapted conditions. The inset reproduces the ERG
responses in the dotted box.
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3. RESULTS

Figure 3.16: ERG recordings in rats - ERG in dark adapted conditions in response
to a bright flash of light delivering 1.4×105 Rh∗/rod (dotted curve), immediately after the
onset of a steady light corresponding to 410 Rh∗/rod/sec (black curve) and at later times
(shaded grey curves). The amplitude of the a-wave, which was 463 µV in dark-adapted
conditions, immediately decreased to 124 µV (27% of the dark-adapted response) upon the
onset of the background light. While the background light was maintained, the amplitude
of the a-wave slowly recovered, so that after 240 minutes it was approximately 212 µV,
about 46% of its value in the dark-adapted conditions. The inset reproduces the ERG
responses in the dotted box.
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3.6 Analysis of late light adaptation in intact rats by ERG

Figure 3.17: ERG recordings in rats - ERG in dark adapted conditions in response
to a bright flash of light delivering 1.4×105 Rh∗/rod (dotted curve), immediately after the
onset of a steady light corresponding to 2000 Rh∗/rod/sec (black curve) and at later times
(shaded grey curves). The amplitude of the a-wave, which was 628 µV in dark-adapted
conditions, immediately decreased to 38 µV (6% of the dark-adapted response) upon the
onset of the background light. While the background light was maintained, the amplitude
of the a-wave slowly recovered, so that after 240 minutes it was approximately 91 µV,
about 15% of its value in the dark-adapted conditions. The inset reproduces the ERG
responses in the dotted box.
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Figure 3.18: ERG recordings in rats - ERG in dark adapted conditions in response
to a bright flash of light delivering 1.4×105 Rh∗/rod (dotted curve), immediately after the
onset of a steady light corresponding to 2000 Rh∗/rod/sec (black curve) and at later times
(shaded grey curves). The amplitude of the a-wave, which was 553 µV in dark-adapted
conditions, immediately decreased to 26 µV (about 5% of the dark-adapted response)
upon the onset of the background light. While the background light was maintained, the
amplitude of the a-wave slowly recovered, so that after 240 minutes it was approximately
92 µV, about 17% of its value in the dark-adapted conditions. The inset reproduces the
ERG responses in the dotted box.
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3.6 Analysis of late light adaptation in intact rats by ERG

Figure 3.19: ERG recordings in rats - ERG in dark adapted conditions in response
to a bright flash of light delivering 1.4×105 Rh∗/rod (dotted curve), immediately after the
onset of a steady light corresponding to 2000 Rh∗/rod/sec (black curve) and at later times
(shaded grey curves). The amplitude of the a-wave, which was 970 µV in dark-adapted
conditions, immediately decreased to 125 µV (about 13% of the dark-adapted response)
upon the onset of the background light. While the background light was maintained, the
amplitude of the a-wave slowly recovered, so that after 240 minutes it was approximately
360 µV, nearly 38% of its value in the dark-adapted conditions. The inset reproduces the
ERG responses in the dotted box.
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Discussion

The range of light intensity that we encounter daily spans more than ten orders of

magnitude and this requires the photoreceptor system to constantly optimize their

sensitivity through a process known as light adaptation. Light adaptation is mediated

by many mechanisms, some of them depend on the intracellular fall of Ca2+ (9; 13;

27; 48; 54; 63; 74; 96; 120), others are related to the modification of enzyme efficiency

(23; 86; 87) or to protein translocation (110). Even if this topic has been a matter

of study for more than two decades, the genomic contribution to light adaptation

mechanisms has never been studied before.

For this reason, I investigated on whether light could influence and regulate the expres-

sion of genes involved in phototransduction and whether this regulation could influence

the photoresponse.

The work done for this thesis provides experimental evidence for a role of changes

in gene expression in light adaptation following exposures to steady light for longer

than 1-2 hours with an intensity corresponding to a range between 4 × 102 and 105

Rh∗/rod/sec. An up-regulation of genes coding for arrestin and the two activators of

guanylate cyclase was observed in three different rodent preparations. In vivo ERG

recordings from rats indicate that following a prolonged exposure to steady lights, that

initially suppressed ∼30%, ∼70% and ∼90% of the circulating photocurrent, a partial

recovery of this photocurrent is observed after 1-2 hours. These results identify a novel

component of light adaptation possibly associated to changes of gene expression.

Up-regulation of Sag and Guca1a expression was initially observed in groups of rod

photoreceptors dissociated from mouse retinas (Figures 3.1, 3.3 and 3.4) by microarray
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4. DISCUSSION

screening. As dissociated photoreceptors usually exhibit signs of degeneration following

a prolonged steady light, we could not investigate the effect of light exposure for longer

than 2 hours. In order to study this effect over a longer period, we decided to perform

the experiments on freely moving mice and rats. Retinas from these animals did not

show any sign of photoreceptor deterioration (Figure 3.12) and the initial observation

of a significant up-regulation of Sag, Guca1a and Guca1b expression was also found in

these preparations (Figures 3.6 and 3.10). Sag, Guca1a and Guca1b genes were found

to be up-regulated by nearly two-fold in mice exposed to light for a time period longer

than 2 hours and remained high for 12 hours. Moreover, this up-regulation showed

intensity-dependent characteristics (Figures 3.7 and 3.11). The health and integrity

of retinas in freely moving mice and rats is normal for the range of the ambient light

used, but under those conditions, it is not possible to accurately control the flux of light

impinging on rod photoreceptors. Therefore, we studied whether the light-dependent

gene expression changes observed in vivo also took place in explanted retinas. These

retinas generally survive for several days and exhibit the typical physiological arrestin

and transducin migration (103). Up-regulation of Sag, Guca1a and Guca1b expression

was also observed in explanted retinal cultures in the presence of steady lights in a

range between 4 × 102 and 105 Rh∗/rod/sec (Figures 3.7 and 3.11).

To verify whether up-regulation of Sag, Guca1a and Guca1b genes leads to an increased

translation of proteins, we analyzed the levels of arrestin and GCAP1 by Western Blot

assay. Unfortunately, we were not able to analyze the GCAP2 levels due to the lack

of a reliable commercial antibody. Western blot analysis determined that the quantity

of arrestin, extracted from retinal homogenates, increased by 57% and the quantity of

GCAP1 by 36% after 3 hours of 1000 lux ambient light exposure (Figure 3.9).

Arrestin is a cytosolic protein, known to block the interaction between rhodopsin and

transducin (66; 122; 128) playing a key role on the two-step process for activated

rhodopsin shut-off. Activated rhodopsin is multi-phosphorilated by rhodopsin kinase

and this allows arrestin to bind with rhodopsin, preventing further activation of trans-

ducin by steric hindrance. In experiments with knock-out mice for arrestin (128), the

kinetics of the photoresponse is almost unchanged in +/- heterozygous mice, suggesting

that a decrease of the concentration of arrestin by 1/2 does not affect the kinetics of

photoresponses. Indeed the kinetics of photoresponses to brief light flashes is primarily

controlled by Regulators of G protein signaling (64) and not by arrestin. However,
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in w.t. mice, the ratio between rhodopsin and arrestin molecules is 8 to 1 (70) and

when prolonged bright lights activate a considerable number of rhodopsin molecules,

an higher level of arrestin protein is expected to lead to a more effective shutting-off of

activated Rh* and therefore to a partial reactivation of the photocurrent.

GCAPs are Ca2+-binding proteins, known to stimulate guanyl cyclases in the Ca2+-free

form and inhibit GCs upon Ca2+ binding (79; 94). The Ca2+/GCAP-dependent regu-

lation of guanylate cyclase activity forms a powerful feedback mechanism in which the

rate of cGMP synthesis increases as Ca2+ concentration drops during photoresponse.

In vitro studies show that GC activity depends on the GCAP1 concentration (127)

and it has been calculated that EC50 for GCAP1 to be around 1 µM and for GCAP2

to be around 6 µM (99), while the GC density in mammalian rod membrane is 50

µm−2, corresponding to 2 × 105 GC molecules per rod (101). Similarly, the estimated

number of GCAP1 and GCAP2 molecules per rod is in the range of 2 × 104 and 1 ×

105, respectively. Therefore GC molecules are not completely covered by GCAPs and

consequently an increase in GCAPs concentration is expected to lead to GC activita-

tion. Moreover, GCAPs +/- mice that express approximately half the normal levels

of GCAP1 and GCAP2 show a delayed kinetics of phototesponses: an intermediate

state between knockout and wild-type rods (79). According to these considerations, a

change in the cytoplasmic concentration of the GCAP1 (coded by Guca1a) and GCAP2

(coded by Guca1b) proteins is expected to lead to a modification in the GC activity

and consequently to a partial reactivation of the circulating photocurrent.

Therefore, up-regulation expression of Sag, Guca1a and Guca1b could be a novel form

of light adaptation occurring over a time scale of several hours, possibly underlying the

recovery of the a-wave amplitude observed in vivo.

The in vivo ERG recordings from rats show that the circulating photocurrent, initially

suppressed by the background light, reactivates significantly after 1-2 hours (Fig. 3.14).

The amplitude of the a-wave was initially suppressed by ∼30%, ∼70% and ∼90% in the

presence of different steady backgrounds of light but showed subsequently a recovery

of 1.17±0.08-fold, 1.56±0.16-fold and 2.38±0.38-fold, respectively. The possibility that

the observed reactivation of the photocurrent may be due to a progressive closure of the

animal pupil, leading to a decrease of the amount of light impinging on photoreceptors,

was ruled out by pupil size measurements that found no significant changes over the

65



4. DISCUSSION

entire experimental session. Therefore, we conclude that the observed reactivation of

the photocurrent is a genuine effect.

The signaling pathway by which light regulates transcription of these genes in rod

photoreceptors is currently unknown. The decrease of intracellular Ca2+ occurring

during light adaptation (19; 20; 36; 63; 100; 120) is a potential part of this signaling

pathway, but the combination of different experimental techniques will be required to

unravel this new pathway of phototransduction.

Our experimental results show that the effect of light in visual photoreceptors is not

limited to events occurring in the cytoplasm, but acts also in the nucleus by regulating

transcription. Finally, it can be concluded that the transcriptional control of visual

transduction in rods and cones is a novel finding and describes a previously unappreci-

ated level of control of this process.
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