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Introduction

This work is devoted to the study of models of fractures growth in brittle elastic materials;
it collects the results obtained during my Ph.D., that are contained in [77, 76, 78]. We consider
quasi-static rate-independent models, as well as rate-dependent ones and the case in which the
�rst ones are limits of the second ones when certain physical parameters vanish. The term quasi-
static means that, at each instant, the system is assumed to be in equilibrium with respect to its
time-dependent data; this setting is typical of systems whose internal time scale is much smaller
than that of the loadings. By rate-independent system we mean that, if the time-dependent data
are rescaled by a strictly monotone increasing function, then the system reacts by rescaling the
solutions in the same manner.

We mainly settle our discussion in the framework of the celebrated Gri�th's theory [50],
developed almost a century ago. The fundamental idea is that the crack growth is the result of the
competition between the elastic energy released in the process of crack opening and the energy
dissipated to create new portions of crack. The involved energy functional can be written as

W(u,Γ ) +K(u,Γ ) , (1)

where W(u,Γ ) and K(u,Γ ) represent the bulk elastic energy and the dissipated surface energy,
respectively, associated to an elastic deformation u and a crack Γ . In an isotropic homogeneous
material, the latter energy is usually proportional to the fracture surface, thus accounting for
the number of broken atomic bonds along the crack, and the proportionality constant is the
so-called fracture toughness, which depends on the material.

At the core of Gri�th's criterion is the notion of energy release rate, corresponding to the
derivative of the bulk energy with respect to the variation in length of the fracture. More
precisely, let Ω ⊂ R2 be a bounded open domain, corresponding to an uncracked elastic body,
and let γ : [0, L]→ Ω be a curve parametrized by arc-length. Consider the family Γ (l) of cracks
of the form Γ (l) = γ([0, l]) . Given a boundary loading w , at equilibrium the elastic bulk energy
of the unfractured part Ω \ Γ (l) of the material is

Eel(l) = min {W(u,Γ (l)) : u = w on ∂Ω} .
Then, for l ∈ (0, L) , the energy release rate is (formally) de�ned as

G(l) := −dEel(l)
dl

. (2)

Assume the crack energy K(u,Γ (l)) to be proportional to the length of the fracture, i.e.
K(u,Γ (l)) = κ l , and the boundary datum w to be time-dependent. Consequently the bulk
energy and the energy release rate are dependent both on l and t , that is, Eel(l, t) and G(l, t) .
The aim is to predict the law of the fracture growth, that in this framework corresponds to
describe the time evolution of the crack length l(t) . Then in Gri�th's theory the following
conditions need to be satis�ed by l(t) :

(g1) irreversibility: l̇(t) ≥ 0 ;
(g2) stability: G(l(t), t) ≤ κ ;
(g3) activation law:

(
− G(l(t), t) + κ

)
l̇(t) = 0 ,
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where the dot denotes the derivative with respect to the time variable.
A more recent approach has been developed by Francfort & Marigo [48], who introduced

a new formulation of the quasi-static problem, based on the notion of quasi-static variational
evolution and on two principal assumptions (in addition to the irreversibility of the fracture
process):

(GS) global stability : at each instant, the system minimizes the energy (1) among all other
admissible con�gurations at that instant;

(E) energy-dissipation balance: the increment of internal energy plus the dissipated energy
equals the work of the external forces acting on the body.

The main di�erence between the two formulations is the following: while in Gri�th's ap-
proach the system satis�es a �rst order minimality condition, in Francfort & Marigo theory
it is requested to ful�ll a global minimality condition. As already noticed in the seminal pa-
per [48], (GS) is not justi�ed by any known thermodynamical argument and induces unnatural
time discontinuities in the crack growth process. However, on the other hand, the point of view
of Francfort & Marigo allows to overcome some restrictions of Gri�th's theory, mainly of being
a two-dimensional model and of requiring the crack path to be known in advance. The current
research is trying to conjugate the positive aspects of both approaches; in the discussion below
and in following chapters, as long as the models are treated more in detail, we will provide a
deeper description and a list of references (which is not meant to be complete, it is mainly a
selection based on the author personal interests and knowledge).

The model presented in Chapter 2 �ts in the Gri�th's framework, the one in Chapter 3 in
the variational formulation of Francfort & Marigo, while the one in Chapter 4 can be seen as �in
between� the two formulations.

In general, we consider the two-dimensional antiplane shear case in the framework of linear
elasticity (in Chapters 3 and 4 we extend the results to other settings, like the two-dimensional
linearized or nonlinear planar elasticity). The elastic body is represented by a cylinder, whose
cross section is a bounded connected open set Ω ⊂ R2 . It undergoes a deformation of the form

(x, z) 7→ (x, z + u(x)) x ∈ Ω, z ∈ R ,

where u : Ω → R is the out-of-plane displacement. The crack section on Ω corresponds to
a one-dimensional set Γ ⊂ Ω . For a brittle isotropic solid the linear elastic energy and the
dissipated energy are of the form

W(u,Γ ) =
1

2

∫
Ω\Γ
|∇u|2dx and K(u,Γ ) =

∫
Γ

κ(x) dH1(x) , (3)

respectively, where H1 is the one-dimensional Hausdor� measure and κ > 0 .
The system is driven by a time-dependent boundary displacement t 7→ w(t) , with w(t) :

∂DΩ → R de�ned on a subset ∂DΩ of the boundary ∂Ω . That is, we look for an evolution
(u(t),Γ (t)) of the displacement and of the crack such that, in addition to some energetic condi-
tions, at each instant it satis�es the constraint u(t) = w(t) on ∂DΩ\Γ (t) . We do not address the
issue about crack initiation, which is a critical aspect of Gri�th's theory (see, for example, the
discussions in [48, 28]), and we always suppose Γ (0) 6= Ø . We also assume that neither body
nor surface forces act on the elastic body. Then the quasi-static stability condition corresponds
to the fact that the following problem is satis�ed at any instant:

∆u(t) = 0 in Ω \ Γ (t)

u(t) = w(t) on ∂DΩ \ Γ (t)
∂u(t)
∂ν = 0 on Γ (t) ∪ ∂Ω \ ∂DΩ

(4)
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where ν is the normal vector to ∂Ω and Γ (t) .
Each model is characterized by the aforementioned energetic conditions that the evolution

has to ful�ll. Hence we need to analyze one by one the cases described in this thesis, since
they present very di�erent features. However they share the strategy for proving the existence
of an evolution t 7→ (u(t),Γ (t)) , based on a time discretization approach: the continuous-time
evolution is approximated by discrete-time evolutions obtained by solving incremental minimum
problems (see the general strategy described in Section 1.6).

The �rst part of this work is related to the perplexities that the assumption (GS) in the
variational formulation raises from the physical point of view, as already observed by the authors
in [48]. Without concerns about this issue, the �rst result about existence of a quasi-static
variational evolution in the spirit of Francfort & Marigo has been obtained by Dal Maso &
Toader [38]; in a second paper [37] the same authors suggest to replace (GS) with a sort of local
stability condition, physically more appropriate. The mathematical idea in order to obtain it is
to introduce a penalizing term at the level of the discrete-time incremental problems, in order
to penalize large variations of the elastic and/or fracture energy.

In [22, 37] a penalizing term on the elastic energy, related to viscosity, is added. In [58,
82, 63] a dissipation on the crack tip is considered. In both approaches �rst the authors prove
the existence of a rate-dependent evolution, depending also on the viscosity or dissipation. Then
a quasi-static variational evolution is obtained as limit of rate-dependent evolutions when the
e�ect of the viscosity or of the dissipation vanishes. The limit evolution is shown to be di�erent
by the one obtained in [38] with the (GS) assumption, and to satisfy an energy balance and
a sort of local stability condition, de�ned in terms of the energy release rate. Thus Gri�th's
criterion appears again.

In Chapter 2, we investigate the interaction between the dissipation in the fracture energy
and the viscoelastic term in the elastic energy, when they coexist in the rate-dependent evolution.
We assume the crack path to be prescribed a priori, with an injective arc-length parametrization
γ : [0, L]→ Ω of class C1,1 (the regularity of γ is related to the existence of the energy release
rate G , as explained in Section 1.5); the cracks are of the form Γ (l) := γ([0, l]) . In accordance
with (3), for each l ∈ [0, L] the elastic energy is given by

W(u,Γ (l)) =
a

2

∫
Ω\Γ(l)

|∇u|2 dx, (5)

where a > 0 is the Young modulus, while the fracture energy is assumed to be proportional to
the crack length

K(u,Γ (l)) = κH1(Γ (l)) = κ l .

Let us �x the coe�cient of viscosity, b > 0 , and the dissipation constant at the crack tip, d > 0 .
As in the previously cited papers, given a boundary loading t 7→ w(t) by means of a time-
discretization approach we �rst prove the existence of a continuous-time rate-dependent evolution
t 7→ (lb,d(t), ub,d(t)) satisfying (in a weak sense) the problem


a∆ub,d(t) + b∆u̇b,d(t) = 0 in Ω \ Γ (lb,d(t))

a∂ub,d(t)

∂ν
+

b∂u̇b,d(t)

∂ν
= 0 on Γ (lb,d(t)) ∪ ∂Ω \ ∂DΩ

ub,d(t) = w(t) on ∂DΩ \ Γ (lb,d(t))
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under proper initial conditions lb,d(0) = l0 and ub,d(0) = u0 , and the Gri�th-type stability
condition, expressed in terms of the energy release rate G ,

l̇b,d(t) ≥ 0

− G
(
lb,d(t), aw(t) + bẇ(t)

)
+ κlb,d(t) + dl̇b,d(t) ≥ 0[

−G
(
lb,d(t), aw(t) + bẇ(t)

)
+ κlb,d(t) + dl̇b,d(t)

]
l̇b,d(t) = 0 .

Here G(l, g) is the energy release rate relative to the crack Γ (l) and to a boundary datum g .
The next step consists in describing the limit behaviour of the sequence of evolutions

(lb,d, ub,d) when b and d vanish. It converges (in proper functional spaces) to a rate-independent
evolution (l, u) , called vanishing viscosity evolution, which satis�es the stability condition (4)
and the Gri�th's criterion (g1)-(g2)-(g3). We remark that an evolution ful�lling these conditions
is not necessarily unique.

At this point our �rst interest lies in understanding the e�ect of the mutual interaction
between the parameters b and d during the limiting process. We are able to give a complete
answer assuming su�cient regularity for the energy release rate G . It turns out unexpectedly
that the leading actor in the selection of the evolution (l, u) is the dissipation at the crack tip;
the viscosity coe�cient b does not in�uence the limit. Indeed the function lb,d satis�es a Cauchy
problem {

l̇b,d(t) = VG(b, d, t, lb,d(t))
lb,d(0) = l0 ,

with the �eld VG de�ned in terms of G . For regular G , the perturbation induced by b does not
a�ect too much neither the �eld VG nor the solution.

The second interesting fact is shown by means of an example. Under the same smoothness
assumptions on G as above, exploiting a discussion in [82] we prove that the vanishing viscosity
evolution (l(t), u(t)) does not satisfy the global stability condition (GS), but it really evolves
according to a local stability principle.

In the e�ort of widening the range of application of the energetic theory suggested by Grif-
�th for fracture evolutions, and then renewed by Francfort & Marigo with the de�nition of
variational evolutions, in Chapter 3 we describe a crack growth process taking place in brittle
materials with extremely fragile parts, which allow the fracture to grow along highly irregular
paths. As it happens in many situations, the reason for investigating this particular setting
comes from experimental observations. Di�erent materials, like ceramics, present highly irreg-
ular crack surfaces, as reported in several experimental papers, see, e.g., [13, 75]; the fracture
shows roughness characteristics suggesting that the appropriate model for it might be given by
a fractional Hausdor� dimensional set, rather than by a �smooth� surface. Furthermore in the
analysis of real cracks di�erent scales seem to play a role, and patterns of various dimension
emerge [15]. Theoretical aspects of fracture mechanics in this framework have been developed,
for example, by [12, 14, 23, 84], among many others.

In order to understand our contribution, we brie�y recall some existing results in the con-
text of variational evolutions. As already said, the �rst complete mathematical analysis of a
continuous-time formulation of a variational model in the case of two-dimensional antiplane lin-
ear elasticity was given in [38] under the assumption that the cracks are compact connected
one-dimensional sets of �nite length, then extended to plane elasticity by Chambolle [24]. The
general case of variational evolutions in Rn is treated by means of the theory of SBV functions,
�rst in [47], then in [36, 34] for the case of �nite elasticity; in the last cited paper, a suitable
notion of convergence of sets, called σp -convergence, is introduced. An important feature of all
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these models is that the path followed by the crack during its evolution is not prescribed, it is
instead the result of the energy minimization.

We emphasize that the key tools for [38, 24] are Blaschke Compactness Theorem 1.7.1 and
Goª�ab Lower Semicontinuity Theorem 1.7.2. For the other cited papers, the main tools are
the SBV compactness and lower semicontinuity theorems by Ambrosio [3, 4] and variants of
them (see [34] for the σp -convergence). However these results are not available in the setting we
consider in Chapter 3, as we will see in few lines, so that we are led to introduce some constraints
on the admissible cracks.

We study a model in the framework of quasi-static evolutions, so that we can neglect any
inertial and viscous e�ect, and of Gri�th's theory, in the sense that the crack advance is con-
trolled by the competition between the elastic energy released due to the crack opening and the
energy dissipated by the new crack. The novelty consists in the fact that, instead of a surface
dissipation as the one in (3), we consider

K̃(u,Γ ) =

∫
Γ

κ̃(x) dHd(x) , (6)

where Hd is the d -dimensional Hausdor� measure, with d > 1 , and κ̃ > 0 . We assume that
the set

Γ ∗ := {x ∈ Ω : κ̃(x) < +∞}
is a pre-assigned curve with 0 < Hd(Γ ∗) < +∞ (and some further property). For instance, Γ ∗

might be the well-known von Koch curve (see Section 3.7), for which d = log 4/ log 3 .
The admissible cracks are compact sets Γ ⊂ Γ ∗ with an a priori bounded number of

connected components.
It is worth to notice that, in agreement with Gri�th's principle, the dissipated energy

K̃(u,Γ ) is still proportional to the number of molecular bonds which are broken to get the
fracture.

Under these assumptions, in the energetic framework for rate-independent processes intro-
duced by Mielke (see, e.g., [66]) the main result of the chapter (Theorem 3.2.3) states the
existence of a quasi-static evolution in this class of fractures with fractional dimension; more
precisely, given a time-dependent boundary loading t 7→ w(t) , we show that there exists an
irreversible crack evolution satisfying proper initial data, the global stability condition (GS): at
each instant t

W(u(t),Γ (t)) + K̃(u(t),Γ (t)) ≤ W(v,Γ ) + K̃(v,Γ )

for every Γ ⊃ Γ (t),Γ ⊂ Γ ∗ , v = w(t) on ∂Ω \ Γ , and the energy balance condition (E): for
every 0 ≤ s < t ≤ T

W(u(t),Γ (t)) + K̃(u(t),Γ (t)) =W(u(s),Γ (s)) + K̃(u(s),Γ (s)) +

∫ t

s

〈∂ξW (∇u(τ)),∇ẇ(τ)〉dτ ,

where the last summand represents the power of the force exerted on the boundary to obtain
the displacement w(t) on ∂Ω \ Γ (t) (see Remark 1.4.2), W being the energy density for W .

Actually we prove the result in a more general setting. We consider a �nite number of curves
Γ ∗1 , . . . ,Γ

∗
M which do not need to have the same Hausdor� dimension, and may also intersect

each other, provided that the dimension of the intersection is strictly smaller than the dimension
of any of the involved curves. The admissible cracks are compact sets Γ ⊂ Γ ∗1 ∪. . .∪Γ ∗M with an a
priori bounded number of connected components (see Subsection 3.1.1 for the precise de�nition
of the class C of admissible cracks). We are then able to recover a lower semicontinuity result
for the crack energy K̃ with respect to the Hausdor� convergence of sets in the class C , and to
extend to our case, after a careful topological study of the admissible cracks of the class C , a
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continuity result (Theorem 3.4.1) for the convergence of gradients of solutions to elliptic problems
in varying domains.

We remark that the appearance of d -dimensional Hausdor� measures with d > 1 has two
main consequences. From the point of view of the mathematical setting of the problem, it
suggests that the SBV approach is not omnicomprehensive, since jump sets of SBV or GSBV
functions de�ned in domains of R2 are always 1 -recti�able. The second issue is related to the
lower semicontinuity of the Hausdor� measures Hd : as is known, Goª�ab Lower Semicontinuity
Theorem is not valid when d > 1 ; furthermore, as just said, we also cannot use any lower
semicontinuity result related to SBV functions.

With an euristic discussion, let us explain the ideas in the background of the above model.
So far Gri�th's theory has mainly been studied assuming the material toughness κ in (3) to be
bounded both from above and from below:

0 < β1 ≤ κ(x) ≤ β2 < +∞ (7)

at every point x of the body. By (7), K(u,Γ ) in (3) amounts to consider as admissible cracks
only sets of �nite one-dimensional Hausdor� measure. In [38] the admissible cracks are compact
sets having an a priori bounded number of connected components and �nite length, and the
displacements are Sobolev functions out of the crack, while in [47, 34, 36] the displacements
belong to suitable spaces of SBV -type and the cracks are recti�able sets related to the jump
sets of the displacements.

In order to validate Gri�th's model in a wider range of possibilities, one should be able to
treat cases in which (7) is violated. In the context of homogenization, the extremal case when
the material toughness is in�nite in some parts of the material was investigated, e.g., in [39, 10].
These authors consider materials with a periodic structure, with purely brittle parts separated by
unbreakable �bers (where, ideally, κ(x) = +∞), and they show that the homogenized material
exhibits di�erent behaviours (elastic, cohesive or brittle), depending on the ratio between the
width of the brittle parts and of the �bers. In our work, instead, we are interested in the case
when the material has extremely fragile parts, represented by the fact that the bound from below
in (7) is not guaranteed anymore. Ideally, the crack tends to develop in the most fragile zone,
where κ is �small�, since it is energetically convenient. The low toughness coe�cient allows the
crack to grow quite a lot in length, without paying so much in terms of dissipated energy; the
consequence is a very irregular crack, concentrated in the fragile zone.

By means of a Γ -convergence approach, we rigorously justify our model with crack energy (6)
instead of (3) as a natural extension of the Gri�th's setting, in case of a single preassigned crack
path Γ ∗ as above. Indeed our energy functional can be obtained as Γ -limit of energies involving
small toughness coe�cients and the H1 -measure restricted to polygonal approximations Γε of
the cracks Γ ⊂ Γ ∗ with fractional Hausdor� dimension:

Kε(u,Γε) =

∫
Γε

κε(x) dH1(x) ,

with κε(x)→ 0 for x belonging to Γε , as ε vanishes.
The model described above, that for simplicity is discussed in the two-dimensional antiplane

shear case in the framework of linear elasticity, is valid even in the planar linearized and nonlinear
elasticity cases, while the �nite elasticity setting is still di�cult to tackle. To our knowledge,
the present work is the �rst attempt to extend the variational approach to fracture evolution in
order to encompass fractional dimensional cracks.

The �nal chapter of the thesis addresses a critical aspect of the mathematical modelling of
fractures: branching and kinking of cracks. In case of plane elasticity, as analyzed in [26, 27] and
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the references therein, the debate concerns two di�erent criteria: the principle of local symmetry
and the principle of maximal energy release rate. However, already in the simpler situation of
antiplane shears, Gri�th's theory �nds a mathematical obstacle in absence of su�cient regularity
of the cracks. Indeed, so far the existence of the energy release rate (2) has been proved in case
of C1,1 curves by Toader & Lazzaroni [62], and for piecewise-C1,1 curves by Negri [71]. The
last result is already in the direction of considering models of crack evolutions with kinking
phenomena. By a Γ -convergence approach, the energy release rate is showed to depend on the
kinking angle in an implicit way. Despite the importance of the result, the implicit description
is di�cult to handle even in simple situations.

In Chapter 4 we address the issue about branching and kinking from a di�erent perspective.
The idea is to introduce some general assumptions on the structure of the admissible cracks
which allow us to extend Gri�th's theory to the case where branching and kinking are admitted
and, at the same time, to de�ne the front of the fracture and its velocity. For the de�nition of
the last two concepts we have been inspired by [61], where they are introduced by means of a
distributional approach and appear in an energy dissipation term.

The class S of admissible cracks (De�nition 4.1.6) contains sets which are �nite unions
of C1,1 curves, with some topological restrictions in order to satisfy good compactness and
length continuity properties, and to control the phenomena of branching and kinking during
the evolution of the system. In particular we require that branching and kinking points do not
accumulate, and that at most a (a priori bounded) �nite number of branches springs out of each
branching point.

The model we study is rate-dependent and contains a dissipative term penalizing the velocity
of crack growth at its front. The fracture path is not preassigned, but cracks are only required
to belong to the class S of admissible cracks; we can view this idea as �in between� the standard
Gri�th's theory, where the crack path is completely pre-assigned, and the variational formulation
of Francfort & Marigo, where it is free.

As a standard procedure, given a time-dependent boundary loading w(t) the existence of an
evolution (u(t),Γ (t)) , t ∈ [0, T ] , is achieved by a time-discretization approach. The evolution
satis�es an energy inequality of the form

W(u(b),Γ (b)) +H1(Γ (b)) +

∫ b

a

∑
x∈F (t)

v(x, t)2 dt

≤ W(u(a),Γ (a)) +H1(Γ (a)) +

∫ b

a

∫
Ω\Γ(t)

∇u(t) · ∇ẇ(t) dx dt,

(8)

for any two instants 0 ≤ a < b ≤ T , where F (t) and v(x, t) represent the front of the fracture
at time t and its velocity at x ∈ F (t) , respectively.

Inequality (8) is not su�cient to fully characterize the evolution (u(t),Γ (t)) . Furthermore,
the presence of the dissipative term ∫ b

a

∑
x∈F (t)

v(x, t)2 dt

prevents the possibility of achieving an energy balance (E) and even a unilateral minimality
condition (GS) in the spirit of Francfort & Marigo. We then look for a �rst order stability
condition in the framework of Gri�th's theory, in terms of the energy release rate.

So far, the discussion of the model is valid in any elastic regime: linear, linearized, or
nonlinear two-dimensional elasticity. However, in order to state the mentioned stability condition
we need an explicit formula for the energy release rate, which is available only in the antiplane
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shear case of linear elasticity (see the very brief survey in Section 1.5); therefore we restrict the
discussion to a bulk energy of the form (3).

Di�erently than in the models discussed earlier, now the cracks might have several front
points. Hence the energy release rate is a functional G(w,Γ , x) dependent on the boundary
datum w , on the crack Γ and on the point x of the front of Γ . The Gri�th stability criterion
for the continuous-time evolution (u(t),Γ (t)) is achieved, locally in space and time, as long as
the crack grows at one point of its front. More precisely, if v(x0, t0) > 0 at an instant t0 ∈ (0, T )
and for a tip x0 ∈ F (t0) , then there exist ε > 0 and r > 0 such that for every t ∈ (t0 − ε, t0] it
is F (t) ∩Br(x0) = {x(t)} , and for a.e. t ∈ (t0 − ε, t0) the following conditions hold

v(x(t), t) ≥ 0

G(w(t),Γ (t), x(t)) ≤ 1 + v(x(t), t)

[−G(w(t),Γ (t), x(t)) + 1 + v(x(t), t)] v(x(t), t) = 0 .

Unfortunately we are not able to characterize the evolution in the entire time interval [0, T ]
and in correspondence of static front tips. The main sources of di�culty are the presence of
several branches of the fracture and the approximation procedure by the discrete-time evolutions.
Indeed, a careful control of the behaviour of each point of the front is necessary in order to avoid
interactions among them that are not physically justi�ed. It is not a simple task to introduce
further restrictions on our class of admissible cracks, without considering geometrical settings
already discussed in the literature; on the other hand, some work is still necessary in order to
remove some of our mathematical constraints not due to mechanics. Anyway, to our knowledge
this represents a �rst attempt to describe a model encompassing branching and kinking, without
assuming the crack path to be known a priori.



CHAPTER 1

Preliminaries

In this chapter we discuss the mechanical and physical assumptions for the models that we
study in this thesis. We brie�y review the fundamental contributions to the mathematical theory
of fracture in elastic materials: Gri�th's theory [50], introduced in the '20s of the past century,
and the variational formulation of the problem, proposed by Francfort & Marigo [48] in the '90s.
They represent two cornerstones for the subsequent mathematical results on this topics.

The remaining of the chapter deals with other important, and more technical, issues: the
existence, in di�erent physical settings, of the functional called energy release rate, which plays
an important role in the description of fracture growth processes in the framework of Gri�th's
theory; the general technique to prove the existence of evolutions of cracks in brittle elastic
materials, as it will be applied in the following chapters.

Finally we prove some technical results and introduce the main notation used in the thesis.

1.1. Mechanical and physical assumptions

In the thesis, we consider models of growth of fractures in elastic materials. A body is said
elastic if it deforms when subject to an external loading, and it goes back to the original con-
�guration when unloaded. If Ω is the space domain occupied by the body at rest (unloaded),
usually called the reference con�guration, the new static equilibrium in the loaded state is de-
scribed by a map ϕ : Ω → R3 , the deformation, and the deformed con�guration is given by
ϕ(Ω) . In general, the map ϕ is supposed to satisfy some regular and physical assumptions, in
order to properly de�ne the mathematical setting and to describe a physically acceptable model.
For example, ϕ has to be orientation preserving and, since interpenetration of matter should be
avoided, injective.

We brie�y recall few basics from the classical theory of elasticity, adopting the notation
used in [30]. Assume that the body in the deformed con�guration occupies the domain ϕ(Ω)
and is subject to a boundary loading and to a body force with densities gϕ : Γϕ → R3 and
fϕ : ϕ(Ω) → R3 , respectively, where Γϕ ⊂ ϕ(∂Ω) . The key axiom of continuum mechanics is
the following, as stated in [30].

Axiom 1.1.1 (Cauchy axiom). There exists a vector �eld

sϕ : ϕ(Ω)× S2 → R3 ,

where S2 = {ν ∈ R3 : |ν| = 1} , such that

(1) for any subdomain A ⊂ ϕ(Ω) and any x ∈ Γϕ ∩ ∂A where the unit inner normal ν to
Γϕ ∩ ∂A exists, it holds

sϕ(x, ν) = gϕ(x) ,

(2) axiom of force balance: for any subdomain A ⊂ ϕ(Ω)∫
A

fϕ(x) dx+

∫
∂A

sϕ(x, ν) dσ = 0 ,
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(3) axiom of momentum balance: for any subdomain A ⊂ ϕ(Ω)∫
A

0x ∧ fϕ(x) dx+

∫
∂A

0x ∧ sϕ(x, ν) dσ = 0

where 0x is the vector connecting the origin 0 to the point x ∈ A .

The vector �eld sϕ is called Cauchy stress vector and, for any subdomain A ⊂ ϕ(Ω) , it
respresents the force per unit deformed area caused by ϕ(Ω) \ A acting on A . Indeed Cauchy
axiom expresses the idea that along the boundaries of any subsdomain A ⊂ ϕ(Ω) there exist
surface forces sϕ(x, ν) dσ , such that at static equilibrium they counterbalance the e�ects of the
given boundary force gϕ(x) dσ and body force fϕ(x) dx .

From Cauchy axiom we deduce the equations that the (unknown) deformation ϕ must satisfy
when the body is at static equilibrium with respect to the applied forces fϕ and gϕ . It is more
convenient to describe the equations with respect to the reference con�guration Ω , rather than
to the unknown deformed one. For this, we introduce the �rst Piola-Kirchho� stress tensor
T : Ω→M3×3 , where M3×3 is the set of 3× 3 real matrices. The tensor �eld T measures the
force per unit undeformed area and is related to the Cauchy stress vector sϕ by

T (x)ν = (det∇ϕ(x)) sϕ
(
ϕ(x), (∇ϕ(x))−tν

)
for every ν ∈ S2, x ∈ Ω .

Then, under proper regularity assumptions, the equilibrium equations over Ω are −div T (x) = f(x) for x ∈ Ω
∇ϕ(x)T (x)t = T (x)∇ϕ(x)t for x ∈ Ω
T (x)ν = g(x) for x ∈ ∂Ω ,

(1.1)

where ν ∈ S2 is the unit outer normal to ∂Ω , g : ∂Ω → R3 is the density of the surface force
per unit area, while f : Ω → R3 is the density of body forces per unit volume, both related to
gϕ and fϕ through a change of variables.

Notice that the system (1.1) is undetermined since it contains nine unknown functions (three
components of the deformatin ϕ and the components of the �rst Piola-Kirchho� stress tensor,
which are six due to symmetry reasons, by the second equation in (1.1)), but only three equations.
In order to reduce the indeterminacy it is necessary to introduce some constitutive relations,
dependent on the material under consideration (gas, solid, liquid, elastic, plastic...). In case of
elastic materials, they are given by

T (x) = T̂ (x,∇ϕ(x))

for some tensor �eld T̂ : Ω ×M3×3
+ → M3×3 (M3×3

+ is the set of 3 × 3 matrices with pos-
itive determinant). This provides the six missing equations in order to be able to solve the
system (1.1). The boundary value problem for the 3 -dimensional elasticity is then the following:
given a domain Ω ⊂ R3 , with ∂Ω = Γ0 ∪ Γ1 , a tensor �eld T̂ : Ω ×M3×3

+ → M3×3 , the loads
f : Ω → R3 and g : Γ1 → R3 , and a boundary deformation ϕ0 : Γ0 → R3 , �nd a deformation
ϕ : Ω→ R3 orientation preserving and injective, such that it solves the problem −div T̂ (x,∇ϕ) = f in Ω

T̂ (x,∇ϕ) νΓ1
= g on Γ1

ϕ = ϕ0 on Γ0 ,

(1.2)

where νΓ1
is the outer normal to Γ1 .

The problem can be formulated in a variational setting. Here we describe the so-called
hyperelastic materials, i.e. materials for which there exists an elastic energy density W : Ω ×
M3×3

+ → R such that the �rst Piola-Kirchho� stress tensor is given by

T̂ (x, ξ) = ∂ξW (x, ξ) for every x ∈ Ω, ξ ∈M3×3
+ .
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In general W is requested to satisfy assumptions that describe physical properties, as frame-
indi�erence, material properties, as homogeneity or isotropy (see [30, 53, 9, 64]), and also
proper regularity and boundedness conditions.

For hyperelastic materials the system (1.2) takes the form −div ∂ξW (x,∇ϕ) = f in Ω
∂ξW (x,∇ϕ) νΓ1 = g on Γ1

ϕ = ϕ0 on Γ0

(1.3)

and it formally corresponds to the Euler-Lagrange equations for the following minimum problem

min
ϕ=ϕ0 on Γ0

{∫
Ω

W (x,∇ϕ) dx−
∫

Ω

f · ϕ dx−
∫
Γ1

g · ϕ dσ
}
,

with ϕ also orientation preserving and injective.

In this thesis, we will consider two particular settings of the 3 -dimensional elasticity theory
described above:

• Antiplane elasticity : the body is ideally assumed to be an in�nite 3 -dimensional cylin-
der Ω × R , where the cross section Ω is a bounded connected open subset of R2 . In
this case we consider deformations ϕ : Ω× R→ R3 of the form

ϕ(x1, x2, x3) = (x1, x2, x3 + u(x1, x2))

for (x1, x2, x3) ∈ Ω × R . The problem of �nding the deformation ϕ when external
loads are applied is reduced to determine the out-of-plane displacement u : Ω → R .
Therefore we are led to consider a 2 -dimensional scalar problem.
• Plane elasticity, both in the nonlinear and linearized case. In this situation, the elastic
body is represented by a 2 -dimensional bounded connected open set Ω ⊂ R2 , and it
undergoes a deformation ϕ : Ω→ R2 .

Remark 1.1.2. In the antiplane case the incompenetration of matter is automatically satis�ed,
being the deformations orthogonal to the domain Ω .

In order to introduce the fracture problem, we assume that the possible defects of the
elastic body are concentrated in a crack Γ ⊂ Ω (notice that, in the antiplane case, the actual
crack is Γ × R). The set Ω \ Γ represents the unfractured part of the body, in the reference
con�guration, which still behaves elastically. The crack Γ can also be seen as the discontinuity
set of the deformation ϕ .

Mathematical models for fracture associate a dissipation energy Ed(Γ , ϕ) to the set Γ . It
represents the energy spent to break the atomic bonds of the elastic body Ω in order to create
the crack Γ . The expression for Ed also depends on the material properties of the body; a quite
general classi�cation divides materials in ductile ones and brittle ones:

• ductile materials undergo large strains and yielding before failure. Hence they can
absorb quite a lot of energy and they exhibit extensive plastic deformations ahead of
the crack. Examples of ductile materials are steel and aluminium;
• brittle materials fail at lower strains than ductile ones. They absorb little strain energy
and show almost no plastic deformation prior to fracture by the catastrophic propaga-
tion of a crack. Example are given by glass, ceramics, cast iron.

Note that the physical response of materials can change if surrounding conditions do: for exam-
ple, steel, usually behaving as a ductile material, may have a brittle response at low temperatures.
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Moreover, it is important to point out that not all materials can be easily classi�ed in the above
categories.

We will only consider models for brittle materials, and the expression for Ed is described
more in detail in the following sections and chapters.

1.2. Quasi-static evolutions

Consider a body which in the reference con�guration occupies a domain Ω in R3 . We
assume that the material defects correspond to a crack set Γ ⊂ Ω , while the complementary
part Ω \ Γ behaves as an elastic body.

Let ∂Ω = ∂DΩ ∪ ∂NΩ and suppose that the body is subject to a boundary loading process,
that is, a continuous map t 7→ ϕ0(t) from a time interval [0, T ] into a functional space X
containing ϕ0(t) , with ϕ0(t) : ∂DΩ → R3 for every t . At any instant the uncracked body
Ω \ Γ undergoes a boundary displacement ϕ0(t) : ∂DΩ → R3 . Usually, we will consider X =
H1(Ω;R3) and the map t 7→ ϕ0(t) will belong to H1(0, T ;H1(Ω;R3)) , in particular it will be
continuous as a function of time. We will also assume that neither body nor surface forces act
on the material, i.e. f + 0 and g = 0 in (1.2) and (1.3).

Under these conditions, a deformation process or evolution is a map t 7→ (ϕ(t),Γ (t)) , where
Γ (t) ⊂ Ω represents the crack set in the reference con�guration, while ϕ(t) : Ω \ Γ (t) → R3

is an elastic deformation consistent with the imposed boundary loading process at time t , i.e.
ϕ(t) = ϕ0(t) on ∂DΩ \ Γ (t) .

Notice that in the above de�nition we did not take into account any equilibrium or stability
condition. Any map t 7→ (ϕ(t),Γ (t)) satisfying the above requests is addressed to as a deforma-
tion process. The concept of equilibrium and stability are crucial assumptions for the models of
crack growth we discuss in the sequel.

Assumption 1.2.1. We will always suppose the loading process t 7→ ϕ0(t) to be su�ciently
slow so that rate e�ects, such as inertia and viscous dissipations, can be neglected.

Under Assumption 1.2.1, when at each instant t the con�guration (ϕ(t),Γ (t)) is at static
(stable) elastic equilibrium with respect to the load ϕ0(t) , i.e. it solves the system (1.3) in
Ω \ Γ (t) instead of Ω ,  −div ∂ξW (x,∇ϕ(t)) = 0 in Ω \ Γ (t)

∂ξW (x,∇ϕ(t)) νΓ1
= 0 on ∂NΩ ∪ Γ (t)

ϕ(t) = ϕ0(t) on ∂DΩ \ Γ (t) ,

we speak of equilibrium process or, as it is usually called, quasi-static evolution. This can often
be seen as a minimality condition of the total energy of the system with respect to all other
kinematically admissible con�gurations for the load ϕ0(t) (see Condition 1.4.1.(ii) in Section 1.4).

Finally, a system is said rate independent if it has not an intrinsic time scale: if the time-
dependent data are reparametrized by a strictly monotone function, then the system reacts
by reparametrizing its solutions in exactly the same way (see [66, De�nition 1.1] for a precise
de�nition).

We conclude with some remarks.

Remark 1.2.2. The scope of the study of fracture mechanics is to predict the evolution of the
crack Γ (t) and of the deformation ϕ(t) of an elastic body Ω , when it is subject to a given
time-dependent boundary loading process t 7→ ϕ0(t) .

Remark 1.2.3. The parameter t need not be identi�ed with the physical time: it is a real
ordered positive parameter. Nevertheless, we will always refer to it as time.
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Remark 1.2.4. Often we will describe the evolution in terms of the displacement u(t) : Ω→ R3 ,
de�ned by

ϕ(t, x) = x+ u(t, x)

for every x ∈ Ω .

Remark 1.2.5. The models we present in Chapter 2 and Chapter 3 describe quasi-static evolu-
tions, while in the one discussed in Chapter 4 a viscous dissipation is present. In any case, inertial
e�ects are always neglected; an investigation of the dynamical problem in fracture mechanics is
carried out in [35].

1.3. Gri�th's theory

Failure of materials is of great importance for material science and for engineering reasons,
as for example the problems su�ered by the Liberty Ships in the 1940s show. The theories
at the beginning of the 20th century were not capable to give a satisfactory solution of the
intricacies of materials failure. The light came back with the celebrated work by Gri�th [50],
which completely changed the point of view about materials failure, introducing a criterion based
on the energies exchanged during a crack growth process.

It is fair to say immediately that Gri�th's theory is not omnicomprehensive and is plagued
with some important issues, as we will discuss later. Anyway, it provides a �rst interesting
description of quasi-static evolutions of fractures in brittle materials with a pre-existing crack.
Moreover, taking o� from this new theory, subsequent important contributions have improved
the understanding of the topic.

We describe Gri�th's model in a 2-dimensional setting. The elastic body in the reference
con�guration is given by a bounded connected open set Ω ⊂ R2 , whose boundary ∂Ω is divided
in the Dirichlet part ∂DΩ and in the Neumann part ∂NΩ := ∂Ω \ ∂DΩ . A loading process
t 7→ ϕ0(t) is imposed on ∂DΩ .

We assume the crack path to be known a priori, consisting of a pre-assigned 1 -dimensional
simple curve Γ ⊂ Ω , with arc-length parametrization γ : [0, L] → Ω ⊂ R2 . In addition, we
suppose that the crack is a closed connected subset of Γ containing γ(0) , i.e. it is of the
form Γ (`) := γ([0, `]) for some ` ∈ (0, L] . Notice that under these assumptions the fracture is
completely determined by the arc-length value ` of its tip.

Quoting Gri�th [50], the energy dissipated by the crack creation represents the �work [that]
must be done against the cohesive forces of the molecules on either side of the crack�. It is
then an increasing function of the fracture length; in particular it is supposed to have a linear
dependence of the form

Ed(Γ (`)) = κH1(Γ (`)) = κ ` ,

where κ , called material toughness, is a constant dependent on the material. Note that the
width of the deformation discontinuity between the two lips of the crack is not considered: in
Gri�th's theory the cohesive forces across the crack, which could be expressed as a function of
the jump discontinuity of the deformation �eld ϕ across Γ (`) , are neglected; only the measure
of the discontinuity set of the deformation is relevant. This assumption, which is certainly not
omnicomprehensive, is reasonable for certain conditions and materials, like the brittle ones. Sub-
sequent works by Barenblatt [11], Dugdale [42], and many other authors, introduce a cohesive
type of surface energy on the crack, dependent on the deformation discontinuity between the
lips of Γ (`) .
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The elastic strain energy of a deformation ϕ : Ω\Γ (`)→ R2 of the unfractured part Ω\Γ (`)
of the material is given by

E(`, ϕ) :=

∫
Ω\Γ(`)

W (x,∇ϕ) dx ,

where W : Ω × R2×2 → R is the stored-energy density. Given a boundary loading process
t 7→ ϕ0(t) , ϕ0(t) : ∂DΩ→ R2 , the bulk energy of the body Ω \ Γ (`) at equilibrium is given by

Eel(t, `) := min
{
E(`, ϕ) : ϕ : Ω \ Γ (`)→ R2, ϕ = ϕ0(t) on ∂DΩ \ Γ (`)

}
. (1.4)

Under proper assumptions on the domain Ω\Γ and on the bulk energy density W , the minimum
problem (1.4) admits a solution ϕ(t, `) . In accord to the assumption of quasi-static growth, at
any instant t the deformation ϕ(t, `) is in static equilibrium with respect to the load ϕ0(t) .
Note that the minimizer ϕ(t, `) of Eel(t, `) is a solution (in some weak sense) of the system

−div ∂ξW (x,∇ϕ(t, `)) = 0 in Ω \ Γ (`)

ϕ(t, `) = ϕ0(t) on ∂DΩ \ Γ (`)

∂ξW (x,∇ϕ(t, `))ν = 0 on Ω ∩ Γ (`) and ∂NΩ

(1.5)

where ν is the normal vector to ∂NΩ or Γ . Since ϕ(t, `) may be discontinuous along the
crack, in the second equation it makes no sense to prescribe the boundary deformation also on
∂DΩ ∩ Γ (`) . The third equation states that the faces of the crack Γ (`) are traction free, being
the material brittle.

The total energy of the system is given by

E(t, `) := Eel(t, `) + Ed(Γ (`)) . (1.6)

It is not di�cult to see that
• for �xed t , the elastic energy Eel is monotonic decreasing in ` ;
• the dissipative term Ed is monotonic increasing in ` .

Hence the two summands in (1.6) have an opposite behaviour when we minimize E with respect
to ` : while Eel favors crack growth, the dissipative term Ed penalizes it.

In order to give meaning to the predictive model, we need to determine the actual crack
length `(t) . Gri�th's principle steps in as a selection rule among all possible evolution maps
t 7→ ˜̀(t) . It consists of three conditions:

(G1) the irreversibility of the fracture process;
(G2) a stability condition;
(G3) an activation principle for the crack growth.

The irreversibility re�ects the physical idea that a fractured brittle material will never heal.
Mathematically, this is a requirement about monotonicity of the function t 7→ `(t) describing
the time evolution of the crack tip.

We highlight an important implicit consequence: roughly speaking, at each instant the
system keeps �memory� of the whole preceding process. We mean the following: let ϕ(t, `(t))+(x)
and ϕ(t, `(t))−(x) be the traces of the elastic deformation ϕ(t, `(t)) on the two sides of the crack
Γ (`(t)) at x ∈ Γ (`(t)) . At a �xed instant t , it might happen that, even though the material
is fractured along Γ (l(t)) , the deformation ϕ(t, `(t)) is not necessarily discontinuous along all
of it, that is, ϕ(t, `(t))+(x) = ϕ(t, `(t))−(x) for some x ∈ Γ (`(t)) . Under the irreversibility
assumption, the crack should always be seen as

Γ (`(t)) =
⋃
τ≤t

{
x ∈ Γ : ϕ(τ, `(τ))+(x) 6= ϕ(τ, `(τ))−(x)

}
,
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i.e. it is the union of all past discontinuity sets of the elastic deformation ϕ(·, `(·)) .

The stability criterion can be introduced quoting Gri�th again [50, p. 166]: �a general
theorem which may be stated thus: In an elastic solid body deformed by speci�ed forces applied
at its surface, the sum of the potential energy of the applied forces and the strain energy of the
body is diminished or unaltered by the introduction of a crack whose surfaces are traction-free.
[...] the total decrease in potential energy due to the formation of a crack is equal to the increase
in strain energy less the increase in surface energy. The theorem proved above shows that the
former quantity must be positive.�

To formally express this sentence, the key ingredient is the energy release rate. It represents
the amount of elastic energy (called strain energy in Gri�th's words) dissipated by an in�nites-
imal crack increase. The energy release rate for the crack Γ (`) and the boundary loading ϕ0(t)
is formally de�ned as

G(t, `) := − lim
h→0+

Eel(t, `+ h)− Eel(t, `)
h

. (1.7)

Of course the de�nition does not garantee that this functional is well de�ned, or even exists. Some
regularity assumptions on the a priori given crack path Γ have to be introduced in order to give
mathematical meaning to the formal limit (1.7). In Section 1.5 we summarize the known results
on the existence and properties of the energy release rate; they will be useful for the analysis of
the models considered in the following chapters. Note that, being Eel(t, ` + h) ≤ Eel(t, `) for
h > 0 , then G(t, `) ≥ 0 .

The quoted Gri�th's sentence then translates as

G(t, `)− κ ≤ 0, (1.8)

being κ = dEd(Γ(`))
d` the surface energy rate. This inequality states the stationarity of the crack,

introducing an upper bound for the release of elastic energy during a crack growth process.

Finally, the activation principle couples with (1.8) in order to describe the conditions that
allow the fracture to grow. Assuming su�cient regularity of the function t 7→ `(t) , it reads as

˙̀(t) > 0 ⇒ G(t, `(t))− κ ≥ 0 .

That is, the crack growth is possible only if the released elastic energy is larger than the surface
energy dissipated due to the new crack.

Gri�th's principle is therefore summarized by the following Kuhn-Tucker conditions:

˙̀(t) ≥ 0
G(t, `(t)) ≤ κ(
G(t, `(t))− κ

)
˙̀(t) = 0 ,

(1.9)

where the dot denotes the derivative with respect to the time variable.
At this point, a number of comments of di�erent kind is due.

Remark 1.3.1. (i) The system (1.9) provides a �rst order optimality condition for the couple(
ϕ(t, `(t)), `(t)

)
and the energy E(t, ·) , in some proper topology. In Section 1.4 we describe a

global minimization approach to the fracture problem, introduced by Francfort & Marigo [48],
and some local variants, in order to tackle some di�culties and �defects� in Gri�th's theory.

(ii) In (1.9) it is implicitly assumed that ` is di�erentiable everywhere and that the three
conditions hold at any instant t . Unfortunately this is not always the case, and in the literature
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some weaker forms of (1.9) are present. We report here, and will use in Chapter 2, the de�nition
of solution introduced in [72]:

De�nition 1.3.2. A non-decreasing function ` : [0, T ] → [`0, L] is a weak solution of (1.9) if
`(0) = `0 , and if it satis�es

G(t, `(t)) ≤ κ

and the following weak activation criterion:

`(t+ τ)− `(t− τ) > 0 for all small τ > 0 ⇒ G(t, l) ≥ κ for all l ∈ [`(t−), `(t+)] \ {L} .

The weak activation criterion states that, if the crack performs an instantaneous elongation,
then the system must pass through unstable states, i.e. G(t, l) ≥ κ .

Note that if a weak solution t 7→ `(t) is regular enough then it satis�es (1.9).

(iii) Uniqueness of the evolution
(
ϕ(t, `(t)), `(t)

)
satisfying (1.9) is not guaranteed. Indeed,

as we will see, the strategy of proof of existence of an evolution makes use of compactness
arguments; generally it is not even possible to recover uniqueness a posteriori.

(iv) Gri�th's theory is a�ected by some defects. First of all, the crack path has to be pre-
assigned: otherwise we would have too many degrees of freedom for a possible crack path and
only one equation to determine it.

A second problematic issue is that, in some conditions, crack initiation is impossible, that
is, according to Gri�th's principle an unfractured material would never crack, whatever the
boundary loading (see [46]). In this thesis we do not address the issue about crack initiation (an
investigation is carried out in [28]); we always assume the body to be cracked at the beginning,
i.e. `(0) = `0 for some `0 ∈ (0, L) .

In the next section we describe a new formulation of the fracture problem, proposed by
Francfort & Marigo [48], which removes some of the defects just mentioned.

1.4. Variational evolutions

The variational model of quasi-static crack growth is relatively recent, proposed by Francfort
& Marigo [48] in 1998. It represents a variant to Gri�th's model, more than an equivalent
formulation. Making use of modern mathematical theories, it allows to solve some issues in
Gri�th's model, like nucleation of cracks and a priori knowledge of the fracture path, and it can
be generalized to any dimension (as we will do in this brief description). The price to pay for
this is to introduce a selection criterion for the evolution based on global minimization, rather
than on local minimization (remember that, as pointed out in Remark 1.3.1.(i), Gri�th's model
provides a �rst order optimality condition).

Let Ω be a bounded open set in RN , N ≥ 2 , with Lipschitz boundary ∂Ω = ∂DΩ ∪ ∂NΩ ;
Ω represents an unfractured elastic body. The crack can be any (HN−1, N − 1) -recti�able set
Γ contained in Ω , with HN−1(Γ ) < +∞ .

Since the crack path is not pre-assigned, the deformation u is de�ned almost everywhere
in Ω with values in RN , and might be discontinuous along an (N − 1) -dimensional set. In the
literature, the deformations u belong to suitable spaces X of SBV -type, for which good notions
of jump (or discontinuity) set J(u) and of gradient ∇u are de�ned.

Given a boundary loading w : ∂DΩ→ RN , the set AC(w) of admissible con�gurations is

AC(w) := {(u,Γ ) : Γ recti�able, u ∈ X with u = w on ∂DΩ \ Γ and J(u) ⊂ Γ} . (1.10)



1.4 Variational evolutions 9

The total energy associated to an admissible con�guration (u,Γ ) is given by the sum of the
elastic bulk energy and of the dissipated energy

E(u,Γ ) = Eel(u,Γ ) + Ed(Γ ) . (1.11)

The �rst summand is of the form

Eel(u,Γ ) =

∫
Ω\Γ

W (x,∇u) dx (1.12)

with the energy density W (x, ξ) : Ω×RN×N → R satisfying suitable regularity assumptions and
growth conditions, depending on the model. Instead, the surface crack energy is the functional

Ed(Γ ) =

∫
Γ\∂NΩ

κ(x, ν(x)) dHN−1(x) ,

where, similarly to the Gri�th case, κ is the fracture toughness and ν is the unit normal to Γ .
For a boundary loading process t 7→ w(t) , the selection criterion for a variational evolution

is based on two postulates, as indicated in [48]: irreversibility and global energy minimization.

De�nition 1.4.1. Given a boundary loading process t 7→ w(t) , a couple deformation-crack
(u(t),Γ (t)) is an irreversible variational evolution if (u(t),Γ (t)) ∈ AC(w(t)) and the following
conditions are satis�ed:

(i) irreversibility: Γ (t1) ⊂ Γ (t2) for every 0 ≤ t1 < t2 ;
(ii) one-sided minimality: at any instant t and for every (v,Γ ) ∈ AC(w(t)) such that

Γ ⊃ Γ (t) , it is
E(u(t),Γ (t)) ≤ E(v,Γ ) ;

(iii) non-dissipativity: the function t 7→ E(u(t),Γ (t)) is absolutely continuous and satis�es

d

dt
E(u(t),Γ (t)) =

∫
Ω\Γ(t)

∂ξW (x,∇u(t)) : ∇ẇ(t) dx .

Remark 1.4.2. In Condition 1.4.1.(iii) the right-hand side represents the power of the force
exerted on the boundary to obtain the displacement w(t) on ∂DΩ \Γ (t) . This fact can be seen
by integrating by parts the right-hand side in Condition 1.4.1.(iii), when ∂DΩ is su�ciently
smooth.

Moreover Condition 1.4.1.(iii) is equivalent to the following integral form: for every 0 ≤ s < t

E(u(t),Γ (t)) = E(u(s),Γ (s)) +

∫ t

s

(∫
Ω\Γ(τ)

∂ξW (x,∇u(τ)) : ∇ẇ(τ) dx
)
dτ . (1.13)

Remark 1.4.3. Condition 1.4.1.(iii) states the continuity of the map t 7→ E(u(t),Γ (t)) ; however
the function t 7→ Eel(u(t),Γ (t)) and t 7→ Ed(u(t),Γ (t)) may be discontinuous. It seems that
numerical simulations con�rm this fact (see, for example, [16] and references therein).

As announced, the variational formulation solves some of the criticalities in Gri�th's model.
First of all, the crack path has not to be pre-assigned. Moreover crack initiation is automatically
triggered in �nite time, thanks to the global minimality postulate 1.4.1.(ii) in De�nition 1.4.1;
an example is discussed in [48] in case of monotonically increasing boundary loadings, and see
also [16, Proposition 4.1].

The �rst existence result for a variational evolution was proved by Dal Maso & Toader in [38]
for the 2 -dimensional antiplane case, assuming the crack to have an a priori bounded number
of connected components. Chambolle [24] then extended it to the plane case, while Francfort
& Larsen [47] obtained the result in the generalized antiplane setting, without restricting the
number of connected components of the crack, by proving the important result known as jump
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transfer theorem [47, Theorem 2.1]. Concerning the vectorial case, the �rst existence proof is
given in [34], considering a quasi-convex energy density W . The list is not complete at all,
since many other contributions then followed, also taking into account the non-interpenetration
condition (e.g. [36, 45]).

The drawback of the variational formulation is related to mechanics: due to global mini-
mization, jump discontinuities in the functions t 7→ Eel(u(t),Γ (t)) and t 7→ Ed(u(t),Γ (t)) (see
Remark 1.4.2) tend to happen earlier than expected. The euristic idea is the following. Consider
a non-convex energy with several minimum wells, that can be distinguished in global and local
minimum wells. Let (u0,Γ0) be a starting con�guration dwelling in a global energy well at time
t = 0 . As the time increases, the well deformes; assume that at an instant t1 > 0 it becomes a
local minimum well for the energy. Then two possibilities appear:

• according to the global minimality Condition 1.4.1.(ii), the con�guration (u(t),Γ (t)) is
forced to jump in a con�guration lying on a global minimum well of the energy, without
taking into account the potential barriers between the wells;

• according to local minimization, the con�guration (u(t),Γ (t)) stays in the deformed
local energy well as long as, at an instant t2 > t1 , the well might disappear. Only
at instant t2 the solution has to jump instantaneously into a new well and it shows a
discontinuity, i.e. (u(t2−),Γ (t2−)) 6= (u(t2+),Γ (t2+)) . Note that in this case there
are no potential barriers to be overcome.

To recover local minimization in the variational approach, it has been proposed to introduce
penalizing or regularizing terms in the energy, and to obtain the quasi-static evolution as limit
of evolutions globally minimizing these perturbed energies. That is, for every ε > 0 consider
an energy Eε(u,Γ ) , which is a perturbation of the original energy E , and construct globally
minimizing evolutions (uε(t),Γε(t)) for Eε . By using compactness arguments, the goal is to
obtain an evolution (u(t),Γ (t)) as limit of (uε(t),Γε(t)) when ε→ 0 , with (u(t),Γ (t)) evolving
along local minimum wells of the original energy E .

This method is often referred to as viscosity or vanishing viscosity approach, the parameter
ε being the so-called viscosity. It has been adopted in di�erent settings, as discussed in [67];
concerning fracture mechanics, we recall for example [37, 58, 82, 22, 77]. This idea will
be clari�ed in Section 1.6, where we discuss the strategy for proving existence of quasi-static
evolutions; there, we will show some examples of penalization. In addition, the entire Chapter 2
is dedicated to a model of crack growth with penalizations both on the crack dissipation energy
and on the bulk energy.

The local approach presents some di�culties as well. First of all, the notion of locality
requires the de�nition of a distance, which is not really clear in this context. Furthermore, often
one only recovers an energy inequality instead of the non-dissipativity equality (1.13), thus it is
necessary to complete the description of the process by means of further conditions.

1.4.1. Energetic formulation. Variational rate-independent evolutions of brittle frac-
tures can be described in the language of the energetic formulation. The last consists in an
abstract approach to the description of rate-independent systems, providing a derivative-free
form of the evolution problem which can be adapted to a wide range of models in continuum
mechanics. For a complete discussion, we refer to the survey [66] and to the references therein.
Evolution problem. Let Y be the state space, F : [0, T ] × Y → R ∪ {+∞} the energy and
Φ : Y → [0,+∞] the dissipation potential. Given y0 ∈ Y , �nd y : [0, T ] → Y with y(0) = y0

and such that for every t ∈ [0, T ] the following conditions hold:
(S) stability: for every z ∈ Y

F(t, y(t)) ≤ F(t, z) + Φ(z − y(t));
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(E) energy balance:

F(t, y(t)) + DissΦ(y; 0, t) = F(0, y0) +

∫ t

0

∂tF(τ, y(τ)) dτ ,

where DissΦ(y; s, t) :=
∫ t
s

Φ(ẏ(τ)) dτ .

In the case of brittle fractures, the state space Y is given by the couples deformation-crack
y = (u,Γ ) , while the dissipation potential Φ can be expressed in terms of a non-symmetric
distance function: Φ(Γ1 \ Γ0) = D(Γ0,Γ1) , where

D(Γ0,Γ1) :=

{
κHN−1(Γ1 \ Γ0) if Γ0 ⊂ Γ1

+∞ otherwise.

Note that by setting

F(t, (u,Γ )) = Eel(t,Γ ) D(Γ0,Γ1) = Ed(Γ1 \ Γ0)

with κ(x, ν) ≡ κ , then (S) and (E) correspond to Conditions 1.4.1.(ii) and 1.4.1.(iii), respectively;
the irreversibility Condition 1.4.1.(i) is automatically satis�ed thanks to the energy balance
equation and to the non-symmetric distance D .

1.5. Energy release rate

The discussion in Section 1.3 shed light on a main character of Gri�th's theory: the energy
release rate. In this section we recall the principal results concerning it, without any ambition
of completeness, focusing in particular on those that will be applied in the following chapters.
The analysis can be subdivided into two main streams: the proofs of the existence of the energy
release rate for di�erent geometries of the crack sets and for di�erent elasticity settings, and the
investigation about its continuity properties and its dependence on the fracture growth direction.

From now on we restrict to the 2-dimensional setting, both in the antiplane and the in-plane
case. In Section 1.3 we formally de�ned the energy release rate through formula (1.7) for a pre-
assigned crack path γ : [0, L]→ Ω and a boundary loading process t 7→ ϕ0(t) . Anyway, for the
following discussion we restrict to the static case, eventually letting the crack Γ to vary freely
(i.e. the crack path will not be given a priori) in a certain class of sets. Adopting a notation
similar to Section 1.3, for a crack Γ ⊂ Ω with 0 < H1(Γ ) < +∞ , and for a deformation or
displacement u : Ω \ Γ → R2 in the plane case, or u : Ω \ Γ → R in the antiplane case, the
elastic energy is

Eel(u,Γ ) =

∫
Ω\Γ

W (x, u(x)) dx .

Given a boundary loading w : ∂DΩ → R2 , or w : ∂DΩ → R , the energy of the body at
equilibrium is given by

Eel(w,Γ ) := min
{
Eel(u,Γ ) : u = w on ∂DΩ \ Γ

}
.

Analogously to (1.7), we formally de�ne the energy release rate as

G(w,Γ ) := − lim
Γ̃→Γ
Γ̃⊃Γ

Eel(w, Γ̃ )− Eel(w,Γ )

H1(Γ̃ \ Γ )
. (1.14)

We now discuss rigorous results concerning the existence of G and its properties, with a
precise description of the geometrical and functional settings.



12 Preliminaries

1.5.1. Two-dimensional antiplane linear elasticity. The general strategy to prove that
G is well de�ned (i.e. the limit (1.14) exists) relies in the domain di�erentiation method, as
explained below.

Let Ω be a bounded open simply connected set in R2 with Dirichlet boundary ∂Ω . Let
∂DΩ be a relatively open subset of ∂Ω with H1(∂DΩ) > 0 , and ∂NΩ := ∂Ω \ ∂DΩ .

For the time being, the crack path is pre-assigned: let Γ be a compact non-degenerate
simple curve with arc-length parametrization γ : [0, L]→ Ω , where L = H1(Γ ) . Assume that

(i) Γ ∩ ∂Ω = {γ(0), γ(L)} ;
(ii) Ω \ Γ has two connected components, Ω1 and Ω2 , both with Lipschitz boundary;
(iii) ∂DΩ ∩ ∂Ω1 6= Ø 6= ∂DΩ ∩ ∂Ω2 .

For ` ∈ [0, L] , we set
Γ (`) := γ([0, `]) and Ω` := Ω \ Γ (`) . (1.15)

Let u : Ω→ R be the out-of-plane displacement related to a deformation ϕ : Ω× R→ R3 :

ϕ(x, z) = (x, z + u(x)) x ∈ Ω, z ∈ R .
We assume the body Ω` to have a linear elastic response when subject to a given boundary
displacement w ∈ H1/2(∂DΩ) , i.e. the elastic energy is given by

Eel(w, `) := inf
{1

2

∫
Ω`

|∇u|2 dx : u ∈ H1(Ω`), u = w on ∂DΩ
}
, (1.16)

where the equality u = w on ∂DΩ is in the sense of traces. By the Direct Method of the Calculus
of Variations, there exists a solution u` to (1.16), and it satis�es in a weak sense the elliptic
problem 

∆u` = 0 in Ω`
u` = w on ∂DΩ
∂u`
∂ν = 0 on ∂NΩ ∪ Γ (`) ,

(1.17)

where ν is the normal vector to Γ and ∂NΩ . That is,∫
Ω`

∇u` · ∇v dx = 0 for all v ∈ H1(Ω`), v = 0 on ∂DΩ .

Fixed ¯̀∈ (0, L) , the limit (1.14) de�ning G corresponds to

− lim
`→¯̀

1
2‖∇u`‖

2
L2 − 1

2‖∇u¯̀‖2L2

|`− ¯̀|
. (1.18)

Note that for ` 6= ¯̀ the functions u` and u¯̀ are de�ned on di�erent domains: Ω` and Ω¯̀,
respectively. The domain di�erentiation methods consists in de�ning a �ow of di�eomorphisms
Ψ` : R2 → R2 such that

• Ψ` coincides with the identity in a neighbourhood of ∂Ω ,
• Ψ` maps Ω` into Ω¯̀ for |`− ¯̀| small.

Then the function u` ◦ Ψ−1
` ∈ H1(Ω¯̀) . In order to keep the uniform ellipticity of the pro-

blem (1.17), the vector �elds Ψ` need to have su�cient regularity and to be chosen appropriately,
depending on the geometric properties of the curve Γ .

Before investigating (1.18) for di�erent regularity assumptions about Γ , we make a couple
of remarks.

• Without loss of generality, we assume w to correspond to the trace of a H1 function
de�ned in Ω . Hence in the following we consider the boundary datum w ∈ H1(Ω) ,
and the equality u = w on ∂DΩ is understood in the sense of traces.
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• By the regularity theory for elliptic problems, the solution u` to (1.17) is more regular
in the interior of the uncracked region. More precisely, given any two open sets U, V
such that γ(`) ∈ U ⊂ V ⊂⊂ Ω , the solution u` belongs to H2

(
V \ (U ∪ Γ (`))

)
.

Moreover, the singularity of u` in a neighbourhood of γ(`) can be described fairly
well, as explained below (see formula (1.19) and (1.21)).

Of course the easiest situation is represented by a straight crack, i.e. up to a change of
variables we assume Γ = [0, L]× {0} , still satisfying (i), (ii), (iii) described at the beginning of
this subsection. In this case, �xed ¯̀∈ (0, L) , the family (Ψ`)` of di�eomorphisms between Ω`
and Ω¯̀ can be chosen as

Ψ`(x1, x2) = (x1 − (`− ¯̀)ψ(x1, x2), x2) (x1, x2) ∈ R2

with ψ : Ω → R Lipschitz continuous, supp ψ ⊂ Ω and ψ ≡ 1 in a neighbourhood of γ(¯̀) .
Notice that Ψ` is a perturbation of the identity map by a vector �eld V (x) = (ψ(x), 0) with
compact support in Ω and tangent to Γ in a neighbourhood of γ(¯̀) : Ψ` = id+ (`− ¯̀)V .

The key result for proving the existence of (1.18) is based on the analysis carried out by
Destuynder & Djaoua [41] and Grisvard [51, 52] about the singularities of solutions to elliptic
problems in polygonal domains. With the current hypotheses on Γ , the solution u¯̀ can be
written in the form

u¯̀ = K r1/2 sin
θ

2
+ uR (1.19)

where uR ∈ H2(ω \ Γ (¯̀)) for every ω ⊂⊂ Ω , K > 0 , and (r, θ) are polar coordinate around
γ(¯̀) = (¯̀, 0) . More precisely, given x ∈ Ω \ γ([0, ¯̀]) = Ω \

(
[0, ¯̀] × {0}

)
it is r = |x − γ(¯̀)| ,

and θ is the angle between x− γ(¯̀) and the x1 -axis. Hence the solution u¯̀ splits in a regular
part uR ∈ H2(ω \ Γ (¯̀)) and a singular part K r1/2 sin θ

2 ∈ H
1(ω \ Γ (¯̀)) \ H2(ω \ Γ (¯̀)) . The

coe�cient K is called stress intensity factor ; it is a constant dependent on the material, which
describes the relation between stress and strain (in case of linear elastic deformations, stress and
strain are proportional to each other).

By means of Grisvard theory [52], in case of a straight crack the energy release rate is proved
to exist. Moreover it can be expressed in terms of the stress intensity factor K , through the
Irwin formula

G(w, ¯̀) =
π

4
K2 , (1.20)

as observed by Irwin [56] and in [52, Theorem 6.4.1].

The approach for straight cracks can be adopted in a straightforward way for any pre-
assigned crack path Γ of class C2 . Indeed, if Γ = γ([0, L]) with arc-length parametrization
γ ∈ C2([0, L]; Ω) , �xed ¯̀∈ (0, L) it is possible to write a �ow of vector �elds Ψ` : Ω→ Ω such
that

• Ψ` is the identity close to the boundary ∂Ω ,
• Ψ`(Ω`) = Ω` for |`− ¯̀| small,
• Ψ` is tangent to Γ in a neighbourhood of γ(¯̀) : Ψ`(γ(`)) = γ̇(`) for |`− ¯̀| small.

An explicit form for Ψ` can be found in [60, 58]. We stress that, in order to prove the existence
of the energy release rate by directly applying the domain di�erentiation method, the existence
of the second derivative of γ is essential.

If the crack set is less regular, the best result up to date has been proved by Lazzaroni &
Toader [62]. They give proof of the existence of the energy release rate for C1,1 cracks. The
analysis is much more subtle then in the regular case (cracks of class C2 ) and the application
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of the domain di�erentiation strategy requires a careful construction of the �ow of vector �elds
that map the varying domains into a �xed one.

The main idea in their proof is to perform a nonlinear change of variables such that, in
the modi�ed geometry, the crack is straight in a neighbourhood of the tip and problem (1.17)
at ` = ¯̀ transforms in a new one which is still uniformly elliptic. More precisely, assumed
the notation in (1.15) with γ of class C1,1 , exploiting the C1,1 regularity of the preassigned
crack path Γ and the elliptic nature of the problem (1.17) Lazzaroni & Toader construct a C1,1

di�eomorphism Ψ : Ω→ Ω (with further properties) such that

• the set Γ̃ (¯̀) = Ψ−1(Γ (¯̀)) is straight in a neighbourhood of the tip Ψ−1(γ(¯̀)) ,
• set g = w ◦Ψ and v¯̀ = u¯̀ ◦Ψ , the problem (1.17) becomes Bv¯̀ = 0 in Ω \ Γ̃ (¯̀)

v¯̀ = g on ∂DΩ
∂v¯̀

∂ν = 0 on ∂NΩ ∪ Γ̃ (¯̀) ,

with B still a uniformly elliptic operator.

Then they can apply the results by Grisvard [52] for rectilinear fractures and elliptic operators
(before we only described the case of the Laplacian operator, but the analysis for C2 cracks
holds true for more general elliptic operators), obtaining a result similar to (1.19) for v¯̀; in
terms of the original problem (1.17), the singularity of the solution u¯̀ is described by

u¯̀−K r1/2 sin
θ

2
∈ H2(ω \ Γ (¯̀)) (1.21)

for every ω ⊂⊂ Ω . Here, for x ∈ Ω \ Γ (¯̀) , it is r = |x − γ(¯̀)| , while θ is the angle between
the vector x − γ(¯̀) and the tangent vector γ̇(¯̀) . Finally, Lazzaroni & Toader [62] prove that
a relation like (1.20) holds even in this situation; the computation needs some care, due to the
less regularity assumption.

Remark 1.5.1. We have to highlight some facts contained in [62], that will also be useful in
the following chapters.

(i) The results in [62] are valid for uniformly elliptic operators, and not just for the Lapla-
cian problem (1.17).

(ii) In the previous discussion we supposed the crack path Γ to be given a priori and we
computed the energy release rate G(w, ¯̀) for the set Γ (¯̀) strictly contained in Γ . As
observed in [62, Remark 2.3], the value G(w, ¯̀) depends only on Γ (¯̀) and not on the
C1,1 extension of Γ (¯̀) used to compute it. This will appear evident by the integral
formula reported below.

Hence we are no longer restricted to assume the crack path to be known in advance,
as long as the fracture set belongs to a suitable class of admissible cracks. Indeed, given
any curve Γ0 of class C1,1 , in order to compute the energy release rate G(w,Γ0) at its
tip we are free to choose any C1,1 extension Γ of Γ0 .

(iii) The energy release rate G(w, ¯̀) for the energy (1.16) can be expressed as a volume
integral dependent on the displacement gradient ∇u¯̀ of the minimizer u¯̀. By [62,
Proposition 2.4 and Remark 2.5], we have that

G(w, ¯̀) =

∫
Ω¯̀

[ (D1u¯̀)2 − (D2u¯̀)2

2
(D1V

1 −D2V
2) +D1u¯̀D2u¯̀(D2V

1 +D1V
2)
]
dx

=− 1

2

∫
Ω¯̀

|∇u¯̀|2 div V dx+

∫
Ω¯̀

∇V ∇u¯̀ · ∇u¯̀dx ,
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where V = (V 1, V 2) : Ω → R2 is any vector �eld of class C0,1 with compact support
in Ω , such that V (γ(`)) = ζ(γ(`)) γ̇(`) for some cut-o� function ζ equal to one in a
neighbourhood of γ(¯̀) .

In our short review of existing results about the energy release rate, we keep weakening the
regularity assumptions on the crack Γ by dropping the C1 regularity of the crack. At this stage
we do not discuss the physical, mechanical or modeling issues related to kinking of cracks and
that appear in the settings considered in few lines, and we postpone any comment to Chapter 4,
where a model for crack growth allowing for branching and kinking to occur is studied. In
Subsection 1.5.2 we brie�y comment on the known results for the plane shear elasticity with this
same geometry of cracks.

In [29], Chambolle & Lemenant study the case of crack sets Γ which are merely closed and
connected, and asymptotic to a half-line at small scales. This property is described by a blow-up
condition, requesting that the density of Γ at a point x0 is 1

2 :

lim sup
r→0

H1(Γ ∩Br(x0))

2r
=

1

2
.

Under the above assumption, Chambolle & Lemenant prove that, up to suitable rescalings and
rotations, the minimizer of the elastic energy Eel(w,Γ ) still has an asymptotic expansion of the
form (1.21) around x0 . However, it has not yet been proved that an equality of the form (1.20)
holds true in such a general setting.

Keeping away from regularity, Negri [71] proves the existence of the energy release rate in
the case of kinking. The crack set Γ is a piecewise C1,1 curve; more precisely, we can assume
to parametrize it by means of a function f : [−1, 1] → R such that f |[−1,0], f |[0,1] ∈ C1,1 and
f ′−(0) 6= f ′+(0) , where f ′− and f ′+ are the left and right derivative of f at 0 , respectively. Set
Γ (s) = {(s′, f(s′)) : −1 ≤ s′ ≤ s} , Negri [71] studies the limit

G(w,Γ (0)) = lim
h→0+

1
2‖∇u0‖2L2 − 1

2‖∇uh‖
2
L2

H1(Γ (h) \ Γ (0))
,

where for 0 ≤ h ≤ 1 the function uh ∈ H1(Ω \ Γ (h)) minimizes

1

2

∫
Ω\Γ(h)

|∇u|2 dx

among all u ∈ H1(Ω\Γ (h)) with u = w on ∂DΩ . We remark that, as already proved in [62, 52]
and said previously, the minimizer u0 splits in regular and singular part like (1.21).

By means of a Γ -convergence approach, in [71, Theorem 8.4 and Theorem 9.1] the energy
release rate G(w,Γ (0)) is shown to exist, to have an integral representation, and to depend on
u0 only through the stress intensity factor K of the singular part in (1.21). Furthermore, as
one might expect, G(w,Γ (0)) also depends on the kinking angle, i.e. on the values f ′−(0) and
f ′+(0) ; unfortunately from the point of view of applications of this interesting result, the last
dependence is not explicit, hence di�cult to handle.

1.5.2. Other elasticity settings. For completeness, we brie�y recall a couple of results
concerning the cases of nonlinear elastic energies and of plane-shear linearized elasticity.

As it emerges from the previous subsection, the understanding of the energy release rate
in the linear antiplane elastic models has already produced interesting results. The literature
about the nonlinear case is less �ourishing, due to the intricacies of this setting, mainly caused
by the absence of unique minimizers of the stored elastic energy. Without a detailed description
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of the model, here we report the main results and remarks pointed out in [57] in the case of
polyconvex energy densities W .

Knees & Mielke [57] consider a two-dimensional bounded open set Ω ⊂ R2 , with an a priori
given straight crack path of the form [a, b]×{0} ⊂ Ω , with a < 0 < b and (a, b]×{0} ⊂ Ω . Let
w : Ω → R2 be a �xed boundary deformation. For ` ∈ (a, b) , set Ω` := Ω \ ([a, l] × {0}) and
consider the energy

Eel(`, u) =

∫
Ω`

W (∇u) dx , u : Ω` → R2 ,

where the energy density W : M2×2 → [0,+∞] is such that:
• W is polyconvex : there exists a convex continuous function g : R5 → [0,+∞] such
that W (A) = g(A,detA) for every matrix A ∈M2×2 ;

• W veri�es some regularity and p -growth assumptions in order to guarantee the exis-
tence of solutions to the minimum problem

Eelnl(`) := min
{
Eel(`, u) : u ∈W 1,p(Ω`), u = w on ∂DΩ

}
.

Here nl stands for �nonlinear�. Furthermore, since w is �xed, we do not explicit the dependence
of the functional on it.

Knees & Mielke investigate the existence of the limit

Gnl(0) := − lim
`→0+

Eelnl(`)− Eelnl(0)

`
. (1.22)

Their main result is the following theorem.

Theorem 1.5.2. [57, Theorem 3.3] Under proper regularity and growth conditions for W , if
Eelnl(0) <∞ , then the limit (1.22) exists, is �nite, and is given by the formula

Gnl(0) = max
{
Gnl(ū, 0) : ū is a minimizer of Eelnl(0)

}
,

where

Gnl(ū, 0) = − lim
`→0+

Eel(`, ū)− Eel(0, ū)

`
. (1.23)

Some comments are due:
• Gnl(0) and Gnl(ū, 0) are a �global� and a �local� version of the energy release rate,
respectively. As noticed in [57], it is not known if G(ū1, 0) = G(ū2, 0) for di�erent
minimizers ū1 and ū2 of Eelnl(0) .

• The proof of the existence of the limits (1.22) and (1.23) is achieved by a domain
di�erentiation method, as in the antiplane case previously described.

For further interesting remarks, we refer the reader to the original paper [57] and also to [59].

Motivated by a debate on kinking criteria, Chambolle, Francfort & Marigo revisited the
results on the energy release rate in plane shear elasticity in a couple of papers [26, 27]. Their
interest in concentrated on non-smooth (because of kinking) elongations of a straight crack.
Without introducing any mathematical object, that would require a quite long description, we
underline that in the non-smooth setting considered in [27] the authors introduce a generalized
notion of energy release rate, which is proved to depend on the growth direction of the crack, i.e.
on the kinking angle. The existence of this generalized energy release rate is obtained rigorously
and is valid for both isotropic and anisotropic models of linearized elasticity.

Furthermore, the proof strategy is very di�erent from the previous one: it does not rely on a
domain di�erentiation method, due to the absence of regularity of the cracks; instead, by means
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of a blow up argument the authors transfer the problem in the initial bounded domain into a
new one de�ned on an in�nite domain.

With this discussion, we conclude the brief drift away from the antiplane shear model.

1.5.3. Continuity of the ERR in the antiplane case. In the framework of antiplane
linear elasticity, it is possible to prove the continuity of the energy release rate with respect to
the convergence of sets and of boundary loadings; the result is true up to requiring su�cient
regularity for the cracks, which, in order to assure the existence of the energy release rate, have
to be at least C1,1 curves, as seen in Subsection 1.5.1. The continuity property is useful when
dealing with approximation procedures in problems of fracture mechanics, and we will use it in
Chapters 2 and 4. The next results are mainly proved in [62].

We consider the setting introduced in Subsection 1.5.1, with more general assumptions on
the cracks, that, mainly thanks to Remark 1.5.1.(ii), need not be prescribed a priori. Let Ω
be a bounded open simply connected set in R2 with Dirichlet boundary ∂Ω . Let ∂DΩ be a
relatively open subset of ∂Ω with H1(∂DΩ) > 0 , and ∂NΩ := ∂Ω \ ∂DΩ . For any boundary
loading w ∈ H1(Ω) and any C1,1 compact curve Γ ⊂ Ω , in analogy to (1.16) let

Eel(w,Γ ) := min
{1

2

∫
Ω\Γ
|∇u|2 dx : u ∈ H1(Ω \ Γ ), u = w on ∂DΩ

}
.

The above minimum problem is equivalent to the boundary value problem
∆u = 0 in Ω \ Γ
u = w on ∂DΩ \ Γ
∂u
∂ν = 0 on ∂NΩ ∪ Γ ,

(1.24)

which has to be understood in the following variational way:
u ∈ H1(Ω \ Γ ), u = w on ∂DΩ \ Γ∫

Ω\Γ
∇u · ∇v dx = 0 for all v ∈ H1(Ω \ Γ ), v = 0 on ∂DΩ \ Γ .

Existence and uniqueness of a solution u are assured by the Lax-Milgram lemma in those
components of Ω \Γ whose boundaries intersect ∂DΩ \Γ . Note that the solution is not unique
if there exists a connected component whose boundary does not intersect ∂DΩ \Γ ; however ∇u
is always unique.

In [62] the following class of sets is introduced.

De�nition 1.5.3. Let Γ0 ⊂ Ω be a compact nondegenerate curve of class C1,1 . For η > 0 , Rη
is the class of compact curves Γ of class C1,1 contained in Ω such that

(i) Γ0 ⊂ Γ and Γ \ Γ0 ⊂⊂ Ω ;
(ii) for every x ∈ Γ there exists two open balls B1, B2 ⊂ Ω of radius η such that

(B1 ∪B2) ∩ (Γ ∪ ∂Ω) = Ø and B1 ∩B2 = {x} .

The class Rη turns out to be sequentially compact with respect to convergence of sets in the
Hausdor� metric, whose de�nition is recalled in Section 1.7. Indeed, one can apply compactness
arguments using the fact that Condition 1.5.3.(ii) provides a uniform W 2,∞ bound for the arc-
length parametrization γ of any curve Γ ∈ Rη (see [62, Proposition 2.9]).

The continuity of the energy release rate is proved in [62, Theorem 2.12]; here we rewrite
the theorem with a slight generalization.

Theorem 1.5.4. Let Γn be a sequence in Rη converging to Γ ∈ Rη in the Hausdor� metric
and let wn be a sequence in H1(Ω) converging to w in H1(Ω) . Then G(wn,Γn)→ G(w,Γ ) .
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For the proof we refer to [62] and to Lemma 4.4.7 in Chapter 4, where it is reported with
minor changes, adapted to the setting therein. The main ingredients are

• the W 2,∞ regularity of the sets Γn,Γ ∈ Rη ;
• the integral formula in Remark 1.5.1.(iii) for the energy release rate (with Ω \ Γn and

Ω \Γ instead of Ω¯̀) in terms of the solutions un and u to the elliptic boundary value
problems (1.24) with data Γn ,wn and Γ , w , respectively;

• a convergence result proven in [38, Theorem 5.1] (and reported below as Theorem 1.7.6)
stating that, under the hypotheses in Theorem 1.5.4, the sequence ∇un converges to
∇u strongly in L2(Ω;R2) , where un and u are as above.

With this we conclude our brief review on the energy release rate, containing the results of
major interest for this thesis.

1.6. Existence of quasi-static evolutions by time-discretization

We describe the general strategy adopted to prove the existence of a quasi-static evolution
for a given boundary loading t 7→ w(t) and a given initial datum (u0,Γ0) . The existence is
usually achieved by a time discretization approach, using a general scheme introduced by De
Giorgi under the name of minimizing movements method (see [5]).

Let the total energy of the system be

E(u,Γ ) = Eel(u,Γ ) + Ed(Γ ) ,

and assume that both Eel and Ed are sequentially lower semicontinuous: if un → u and
Γn → Γ , then

Eel(u,Γ ) ≤ lim inf
n→+∞

Eel(un,Γn) and Ed(Γ ) ≤ lim inf
n→+∞

Ed(Γn) . (1.25)

Remark 1.6.1. The notions of convergence un → u and Γn → Γ depend on the setting of
the model. The choice is done in order to guarantee the sequential lower semicontinuity of
the functionals Eel and Ed , and the sequential compactness of the minimizing sequences. In
particular for Γn → Γ , one has to prove a result that generalizes the Helly's Theorem 1.7.9 for
monotone functions.

In Chapters 2 and 4, the cracks Γ are compact sets with H1(Γ ) < ∞ and �nitely many
connected components, and Ed(Γ ) = κH1(Γ ) . By Γn → Γ we mean that the sequence (Γn)n
converges to Γ in the Hausdor� metric (whose de�nition is recalled in Subsection 1.7.1): in-
deed, by Goª�ab's Theorem 1.7.2 the H1 -measure is lower semicontinuous with respect to it, if
the sets Γn have an a priori bounded number of connected components; moreover, Blaschke
Theorem 1.7.1 assures the sequential compactness of the minimizing sequences. Concerning the
displacements, since we consider the bulk energy

Eel(u,Γ ) :=
1

2

∫
Ω\Γ
|∇u|2 dx u ∈ H1(Ω \ Γ ) ,

by un → u we mean that un → u in L2(Ω) and ∇un → ∇u in L2(Ω;R2) , so that Eel is lower
semicontinuous; the compactness properties for the displacements are consequence of a priori
extimates on the sequence (un)n . Notice that un ∈ H1(Ω \ Γn) while u ∈ H1(Ω \ Γ ) ; however,
since L2(Γn) = L2(Γ ) = 0 , we can see un, u and ∇un,∇u as functions in L2(Ω) and L2(Ω;R2) ,
respectively.

In more general settings, di�erent functional spaces and notions of convergence have been
introduced. For example, if the displacements belong to a set of SBV or GSBV type, the



1.6 Existence of quasi-static evolutions by time-discretization 19

convergence un → u is given by

un(x)→ u(x) for a.e. x ∈ Ω

∇un → ∇u weakly in Lp(Ω;RN×N )

lim sup
n
HN−1(J(un)) < +∞ ,

with proper assumptions on the energy density W in (1.12) for Eel to be lower semicontinuous.
Concerning the cracks, a notion of convergence related to the jump set of SBV functions, called
σp -convergence, has been introduced. See [34, 49, 47].

The strategy for proving the existence of quasi-static evolutions contains few main steps.
We �rst describe the case of globally minimizing variational evolutions (see De�nition 1.4.1);
then we consider a variant in the procedure, in order to obtain a crack growth along trajectories
of local minimizers of the total energy, as we discussed in Section 1.4.
Step 1: incremental problem. For any n ∈ N let (tin) be an increasing sequence such that

0 = t0n < t1n < . . . < tin < . . . < tnn = T < +∞ or 0 = t0n < t1n < . . . < tin
i→+∞−−−−→ +∞

and
lim

n→+∞
sup
i

(tin − ti−1
n )→ 0 .

We de�ne
• u0

n := u0 , Γ 0
n := Γ0

• recursively, for i ≥ 1 let (uin,Γ
i
n) be a minimizer of the incremental minimum problem

min
{
E(u,Γ ) : (u,Γ ) ∈ AC(w(tin)),Γ ⊃ Γ i−1

n

}
, (1.26)

where AC(w) is de�ned in (1.10).
Suppose that, under proper growth and regularity assumptions on the functionals, the minimum
problem (1.26) admits a solution for every i . Note that if the set AC(w) is sequentially compact
with respect to the chosen notions of convergence, then the lower semicontinuity of Eel and Ed

assures the existence of a minimizer of (1.26).
We de�ne the piecewise-constant interpolations in the interval [0, T ] (or [0,+∞)) as

un(t) := uin, Γn(t) := Γ in for tin ≤ t < ti+1
n .

Step 2: compactness argument. Using the above iterative scheme, we obtain some estimates on
the functions un(t) and Γn(t) , which allow to apply compactness arguments. Thus we extract a
subsequence of (un(·),Γn(·)) , independent of t , not relabelled, that converges at any instant t :

un(t)→ u(t) and Γn(t)→ Γ (t) .

It remains to prove that the limit evolution t 7→ (u(t),Γ (t)) is a variational evolution according
to De�nition 1.4.1.
Step 3: irreversibility, minimality and non-dissipativity. The irreversibility Condition 1.4.1.(i)
is a consequence of the fact that, by construction, Γn(t1) ⊂ Γn(t2) for 0 ≤ t1 ≤ t2 , and of the
convergence Γn(t)→ Γ (t) , which preserves the inclusions.

In order to check the one-sided minimality Condition 1.4.1.(ii), it is useful to have at your
disposal a result like the so-called jump transfer theorem, proved by Francfort & Larsen [47],
then adapted to other settings. The idea is described in the following �qualitative� lemma.

Lemma 1.6.2. Let wn → w . Let (u,Γ ), (û, Γ̂ ) ∈ AC(w) , with Γ̂ ⊃ Γ . Let Γn → Γ . Then

there exists a sequence (ûn, Γ̂n) ∈ AC(wn) such that Γ̂n ⊃ Γn for every n , Ed(Γ̂n) → Ed(Γ̂ ) ,

and lim supnE
el(ûn, Γ̂n) ≤ Eel(û, Γ̂ ) .
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Combining this lemma and the lower semicontinuity (1.25) of the functionals, we recover the
minimality condition in De�nition 1.4.1 by the minimality of the discrete-time approximating
evolutions. Indeed, �x t ∈ [0, T ] and (v,Γ ) ∈ AC(w(t)) . For every n let i := i(n, t) be such
that tin ≤ t < ti+1

n ; by Lemma 1.6.2 there exists a sequence (vn,Γn) ∈ AC(w(tin)) such that
Γn ⊃ Γn(t) for every n , Ed(Γn)→ Ed(Γ ) and lim supnE

el(vn,Γn) ≤ Eel(v,Γ ) . Then

E(u(t),Γ (t)) =Eel(u(t),Γ (t)) + Ed(Γ (t)) ≤ lim inf
n→+∞

Eel(un(t),Γn(t)) + Ed(Γn(t))

≤ lim inf
n→+∞

Eel(vn,Γn) + Ed(Γn) ≤ Eel(v,Γ ) + Ed(Γ ) = E(v,Γ ) ,

where the �rst inequality is due to (1.25) and the second one to the minimality of (un(t),Γn(t))
in (1.26).

Finally, the non-dissipativity Condition 1.4.1.(iii) is consequence of the one-sided minimality
and of energy inequalities proved for the piecewise-constant interpolations.

As pointed out in Section 1.4, it would be more desirable to obtain quasi-static variational
evolutions of local minimizer. A strategy is to penalize, at the level of the discrete-time approx-
imations, the distance between approximating solutions at two consecutive times tin and ti+1

n .
Instead of (1.26), in the current literature the iterative problem has been replaced, for example,
by the following ones: in [37, 22]

min
{
E(u,Γ ) +

ε

τ
‖u− ui−1

n ‖2L2 : (u,Γ ) ∈ AC(w(tin)),Γ ⊃ Γ i−1
n

}
, (1.27)

while in [58]

min
{
E(u,Γ ) +

ε

τ
Ed(Γ \ Γ i−1

n )2 : (u,Γ ) ∈ AC(w(tin)),Γ ⊃ Γ i−1
n

}
. (1.28)

The positive parameter ε is called viscosity or friction constant. The idea is that, at �xed ε > 0 ,
for τ small the ratio ε/τ is large, thus local minimizers (close to ui−1

n and Γ i−1
n ) are preferred

to global ones.
Applying the time discretization approach at �xed ε , one obtains a variational evolution

(uε(t),Γε(t)) with an extra-term Pε in the energy balance, accounting for the penalization: for
0 ≤ s < t ≤ T

E(uε(t),Γε(t)) = E(uε(s),Γε(s)) +

∫ t

s

(∫
Ω\Γε(τ)

DξW (x,∇uε(τ)) : ∇ġ(τ) dx
)
dτ

+Pε(uε,Γε; s, t) ,
(1.29)

where Pε(uε,Γε; s, t)→ 0 as ε→ 0 .
Exploiting again compactness arguments, this time for the evolutions (uε(·),Γε(·)) , the

variational evolution (u(·),Γ (·)) is obtained as limit when ε vanishes. In some particular set-
tings [58, 82, 77], this evolution has been shown to perform a jump in the con�guration space
strictly later than the evolution of global minimizers previously constructed, as discussed in
Section 1.4. Hence the penalization does really play a role in keeping the con�guration in a local
energy well as long as possible.

We remark that the evolutions (uε(·),Γε(·)) might be rate-dependent, even if the limit
evolution (u(·),Γ (·)) is not. In this case, usually the rate-dependence is present in the extra-
term Pε in the energy balance (1.29).

In Chapter 2 we discuss a model with a penalization both for the displacements and the
cracks.
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1.7. Technical results

1.7.1. Hausdor� measures and Hausdor� convergence. Both notions can be de�ned
in any metric space X , and the results reported below are valid under further assumptions on X ;
as a reference, see for example [8]. Since in the following chapters we consider the 2 -dimensional
real space, we assume here x = RN for N ≥ 2 .

For every d > 0 , the d-dimensional Hausdor� (outer) measure Hd of a set A ⊂ RN is
de�ned as

Hd(A) = m(d) sup
δ>0

inf
{∑
i∈I

(diamAi)
d : Ai are measurable sets, A ⊂ ∪iAi,diamAi ≤ δ

}
,

where m(d) = 2−dΓ( 1
2 )d/Γ(d2 + 1) , with Γ denoting here the Euler function. For d ∈ N the

value m(d) corresponds to the volume of the d-dimensional unit sphere.

Let Ω be a bounded open subset of RN . Given any two compact subsets K1,K2 ⊂ Ω , the
Hausdor� distance between them is de�ned as

distH(K1,K2) := max

{
sup
x∈K1

dist(x,K2), sup
y∈K2

dist(y,K1)

}
,

with the convention that dist(x,Ø) = diam Ω and sup Ø = 0 .
Given a sequence Kn of compact sets, we say that it converges to a set K in the Hausdor�

metric if distH(Kn,K)→ 0 as n→ +∞ .
The following compactness result holds:

Theorem 1.7.1 (Blaschke Theorem). Let Kn be a sequence of compact sets contained in Ω .
Then there exists a subsequence Knk and a compact set K ⊂ Ω such that Knk converges to K
in the Hausdor� metric, as k → +∞ .

Concerning the lower semicontinuity of the measure Hd with respect to the Hausdor� con-
vergence of compact connected sets, for d > 1 it is usually not true, unless further strong
hypotheses are considered; this will be the case in the model of Chapter 3. The situation is
di�erent for d = 1 in case of connected sets:

Theorem 1.7.2 (Goª�ab Theorem). Let Kn be a sequence of compact connected sets converging
to K in the Hausdor� metric. Then K is connected and

H1(K) ≤ lim inf
n→+∞

H1(Kn) .

1.7.2. Deny-Lions spaces. They were introduced in [40]. For any open set A ⊂ RN the
Deny-Lions space L1,2(A) is de�ned as

L1,2(A) := {u ∈ L2
loc(A) : ∇u ∈ L2(A;RN )} ,

where ∇u is the distributional gradient of u .
The following facts are proved in [65, Section 1.1.13] and [65, Corollary 1.1.11], respectively:

Proposition 1.7.3. The set

{∇u : u ∈ L1,2(A)}
is closed in L2(A;RN ) .

If A is an open set with Lipschitz boundary, then L1,2(A) = H1(A) .
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To give a precise mathematical meaning to the fact that the boundary values of the displace-
ment are imposed, we need to use �ne properties of functions in the Deny-Lions space related
to the notion of capacity, for which we refer to [43, 54, 86]. Let us only recall that if A is a
bounded open set in RN , the capacity of an arbitrary subset E of A is de�ned as

cap(E,A) := inf
u∈UAE

∫
A

|∇u|2 dx ,

where UAE is the set of all functions u ∈ H1
0 (A) such that u ≥ 1 a.e. in a neighbourhood of E .

In the sequel we shall use the expression quasi-everywhere on E , abbreviated as q.e. on E ,
to indicate that a property holds on a set E except a subset of capacity zero, while we shall use
the abbreviation a.e. on E when referring to the Lebesgue measure.

De�nition 1.7.4. A function u : A → R is called quasi-continuous if for every ε > 0 there
exists a set Eε ⊂ A such that cap(Eε, A) < ε and u|A\Eε is continuous in A \ Eε .

Any function u ∈ L1,2(A) admits a quasi-continuous representative ũ (see, e.g., [43, 54, 86])
that can be extended up to the Lipschitz part ∂LA of the boundary of A ; it is characterized by
the fact that

lim
ρ→0+

1

|Bρ(x) ∩A|

∫
Bρ(x)∩A

|u(y)− u(x)| dy = 0 for q.e. x ∈ A ∪ ∂LA .

Moreover, if un → u strongly in H1(A) , then a subsequence of (ũn) converges to ũ q.e.
in A ∪ ∂LA . We shall always identify each function u ∈ L1,2(A) with its quasi-continuous
representative ũ .

Remark 1.7.5. Let Ω be an open set in RN . Throughout the thesis, given a function u ∈
L1,2(Ω \ K) for some K of null LN measure, we always extend ∇u to Ω by setting ∇u = 0
a.e. on K . We stress that, however, ∇u is the distributional gradient of u only in Ω \K and,
in general, it does not coincide in Ω with the gradient of an extension of u .

1.7.3. Convergence of minimizers of elliptic problems. In the next chapters we are
going to solve elliptic problems in varying 2 -dimensional domains. We will need stability results
assuring the strong convergence of gradients of minimizers of these problems. The following one
has been proved in [38, Theorem 5.1]:

Theorem 1.7.6. Let Ω be a bounded open subsets in R2 with Lipschitz boundary; let ∂Ω =
∂DΩ ∪ ∂NΩ , with ∂DΩ relatively open and H1(∂DΩ) > 0 . Let wn be a sequence in H1(Ω)
converging to w in H1(Ω) . Let Γn be a sequence of compact sets contained in Ω , converging to
Γ in the Hausdor� metric, and such that

• they have a uniformly bounded number of connected components,
• supnH1(Γn) < +∞ .

Let un ∈ L1,2(Ω \ Γn) and u ∈ L1,2(Ω \ Γ ) be solutions to the minimum problems

min
{∫

Ω\Γn
|∇v|2 dx : v ∈ L1,2(Ω \ Γn), v = wn q.e. on ∂DΩ \ Γn

}
(1.30)

and

min
{∫

Ω\Γ
|∇v|2 dx : v ∈ L1,2(Ω \ Γ ), v = w q.e. on ∂DΩ \ Γ

}
, (1.31)

respectively. Then ∇un → ∇u strongly in L2(Ω;R2) .
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A minimizer of (1.30) (or, similarly, of (1.31)) solves the elliptic problem with mixed bound-
ary conditions 

∆un = 0 in Ω \ Γn
∂un
∂ν = 0 on Γn ∪ ∂NΩ
un = wn on ∂DΩ \ Γn ,

that is, ∫
Ω\Γn

∇un · ∇v dx = 0 for all v ∈ L1,2(Ω \ Γn), v = 0 on ∂DΩ \ Γn .

In Chapter 3 we adapt Theorem 1.7.6 to a particular class of compact sets with Hausdor�
dimension between one and two (see Section 3.1.1 for the class of sets, and Theorem 3.4.1).

Remark 1.7.7. Results similar to Theorem 1.7.6 have been proved in di�erent settings: �verak
[80] considered Dirichlet problems, while Bucur & Varchon treated the Neumann case in a series
of papers [20, 19, 21]. Some of them are based on the so-called Mosco convergence of spaces
(see [18, De�nition 2.1]):

De�nition 1.7.8. Let H be a Hilbert space, and {Gn}n , G subsets of H . The sequence Gn
converges to G in the sense of Mosco if the following conditions are satis�ed:

(M1) for every u ∈ G there exists a sequence un such that un ∈ Gn and un
H−→ u ;

(M2) if uk ∈ Gnk is such that uk
H−→ u , then u ∈ G .

We will use a Mosco convergence result in Chapter 3 in order to justify the model described
therein.

1.7.4. Monotone functions. We recall a classical result, whose generalizations will be
used in the following chapters.

Theorem 1.7.9 (Helly's Theorem). Let I be a (�nite or in�nite) interval in R . Let fn : I →
[0, 1] be a sequence of monotone non-decreasing functions. Then there exist a subsequence fnk
and a function f : I → [0, 1] such that fnk(t) → f(t) for every t ∈ I . Furthermore, if f is
continuous then fnk → f uniformly on compact sets contained in I .

We will also need the following fact:

Lemma 1.7.10. Let f, fn : [0, T ]→ R be monotone non-decreasing functions such that fn(t)→
f(t) for every t ∈ [0, T ] . Let f be continuous at t̄ ∈ [0, T ] . Then for every tn → t̄ it is
fn(tn)→ f(t̄) .

Proof. Fix α > 0 . By continuity, there exists θ > 0 such that |f(t)− f(t̄)| < α for every
|t− t̄| < 2θ , t ∈ [0, T ] .

Being tn → t̄ , there exists n0 such that |tn − t̄| < θ for every n > n0 , so that

|f(tn)− f(t̄)| < α

for every n > n0 . By monotonicity, f(t̄− θ) ≤ f(tn) ≤ f(t̄+ θ) for every n > n0 .
Pointwise convergence implies that there exists n1 ≥ n0 such that

|fn(t̄− θ)− f(t̄− θ)| < α and |fn(t̄+ θ)− f(t̄+ θ)| < α

for every n > n1 .
By continuity of f and the choice of θ , |f(t̄) − f(t̄ ± θ)| < α . Then by monotonicity and

by the above inequalities we obtain

f(t̄)− 2α < f(t̄− θ)− α < fn(t̄− θ) ≤ fn(tn) ≤ fn(t̄+ θ) < f(t̄+ θ) + α < f(t̄) + 2α

for every n > n1 . Being α arbitrary, the thesis follows. �
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1.8. Notation

• By the notation 〈·, ·〉 and ‖ · ‖ we understand the scalar product and the norm in the
Hilbert spaces L2(Ω) or L2(Ω;R2) , or L2(Ω \ Γ ) or L2(Ω \ Γ ;R2) when L2(Γ ) = 0 .
In any other case or for the sake of clarity, we will specify the space the norm refers to,
for example ‖ · ‖H1(Ω\Γ) .

• Given a sequence of compact set Γk that converges to a set Γ in the Hausdor� topology
as k → +∞ , we will write

Γ = H- lim
k→+∞

Γk or Γk
H−→ Γ .

• Let A be a subset of RN . We denote by dimH(A) the Hausdor� measure of A , which
is de�ned by

dimH(A) := inf{d ≥ 0 : Hd(A) = 0} .
• Given an open interval I ⊂ R and a function f : I → R , for every t ∈ I we denote

f(t−) := lim sup
τ→t−

f(τ) f(t+) := lim inf
τ→t+

f(τ).

• Given a set X and a real-valued function g : X → R , for every x ∈ X we denote
g(x)+ := sup{g(x), 0} .

• We denote any constant by C . The constant C may vary also within the same proof
and is independent of all the parameters, unless we explicitly write the dependence. It
might happen that C is a dimensional constant.



CHAPTER 2

A viscosity-driven crack evolution

In this chapter we present a model of crack growth in brittle materials which couples dissipa-
tive e�ects on the crack tip and viscous e�ects. We consider the two-dimensional antiplane case in
a bounded open domain Ω ⊂ R2 . The crack path is assigned a priori, with an injective arc-length
parametrization γ : [0, L]→ Ω of class C1,1 , and the cracks are of the form Γ (σ) = γ([0, σ]) .

Fixed the Young modulus a > 0 , the coe�cient of viscosity b > 0 , the material tough-
ness c > 0 , and the dissipation constant d > 0 , by means of the time-discretization approach dis-
cussed in Section 1.6 we �rst prove the existence of a rate-dependent evolution (sb,d(t), ub,d(t)) ,
with t ∈ [0, T ] , where sb,d(t) and ub,d(t) are the crack tip position and the out-of-plane elastic
displacement, respectively, driven by a time-dependent boundary loading w(t) (i.e. we im-
pose ub,d(t) = w(t) on a subset ∂DΩ of the boundary ∂Ω). At every instant t ∈ [0, T ] the
evolution satis�es the problem

a∆ub,d(t) + b∆u̇b,d(t) = 0 in Ω \ Γ (sb,d(t))

a∂ub,d(t)

∂n
+

b∂u̇b,d(t)

∂n
= 0 on Γ (sb,d(t)) ∪ ∂Ω \ ∂DΩ

ub,d(t) = w(t) on ∂DΩ

(2.1)

and the Gri�th's conditions
ṡb,d(t) ≥ 0

−G(sb,d(t), aw(t) + bẇ(t)) + csb,d(t) + dṡb,d(t) ≥ 0[
−G(sb,d(t), aw(t) + bẇ(t)) + csb,d(t) + dṡb,d(t)

]
ṡb,d(t) = 0 ,

under proper initial data sb,d(0) = s0 and ub,d(0) = u0 , where G(σ, ψ) is the energy release
rate at the tip γ(σ) of the crack Γ (σ) , for a boundary loading ψ .

We are then interested in describing the rate-independent evolution obtained as limit of the
rate-dependent ones when the dissipative and viscous e�ects vanish, i.e. we let b, d → 0 . This
rate-independent evolution, called vanishing viscosity evolution, is characterized by the stability
condition 

a∆u(t) = 0 in Ω \ Γ (s(t))

∂u(t)

∂n
= 0 on Γ (s(t)) ∪ ∂Ω \ ∂DΩ

u(t) = w(t) on ∂DΩ

and by a Gri�th's criterion described in terms of a weak activation criterion as in De�nition 1.3.2;
moreover, in general, the vanishing viscosity evolution does not ful�ll any global minimality
condition like the one in De�nition 1.4.1.(ii). We remark that, while the fracture in the rate-
dependent evolutions grows continuously with respect to time, i.e. the functions sb,d(·) are
continuous, in the rate-independent limit it may exhibit jump discontinuities. Furthermore, in
case of monotone increasing boundary loadings w(t) = tw0 , the vanishing viscosity evolution
corresponds to the one found in [58, 82].
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In Section 2.7, under suitable regularity assumptions for the energy release rate G , we discuss
the role of the penalizing terms (those containing b and d) in the selection of the vanishing
viscosity evolution: we discover that the dissipation on the crack tip is the real responsible of
the process, while the viscous e�ect plays a non-in�uential role. Under the same conditions,
the crack growth of the vanishing viscosity evolution is described by solving a �nite-dimensional
problem with an �algorithmic� procedure.

Finally, by means of an example we explicitly show that, under some regularity assumptions,
the crack growth process of the vanishing viscosity evolution does not follow the trajectory of
the globally minimizing variational evolutions, which instead satisfy the one-sided minimality
condition in De�nition 1.4.1.(ii).

The results of this chapter have been published in [77].

2.1. The geometrical setting

Let Ω ⊂ R2 be a bounded connected open set with Lipschitz boundary ∂Ω . Let Γ be a
C1,1 simple curve and γ : [0, L] → Ω be its parametrization by arc length, where L := H1(Γ ) .
We assume the following geometrical landscape (see Figure 1):

• Γ ∩ ∂Ω = {γ(0), γ(L)} ;
• Ω \Γ = Ω1 ∪Ω2 , where Ω1 and Ω2 are non-empty connected open sets with Lipschitz
boundary, and Ω1 ∩ Ω2 = Ø ;

• ∂Ω = ∂DΩ ∪ ∂NΩ , where ∂DΩ ∩ ∂NΩ = Ø , ∂DΩ is relatively open in ∂Ω with
H1(∂DΩ) > 0 , and H1(∂DΩ ∩ ∂Ω1) 6= 0 6= H1(∂DΩ ∩ ∂Ω2) .

In other words, we assume Γ to split the domain in two connected subdomains, with the Dirichlet
boundary laid on the boundary of both subdomains.

Γ(σ)

∂DΩ

Ω∂DΩ

1

Figure 1. The domain Ω and the pre-assigned crack path Γ .

For every σ ∈ (0, L] , we set

Γ (σ) := γ([0, σ]) and Ωσ := Ω \ Γ (σ) .

By the regularity hypotheses on Ω,Ω1 and Ω2 , the trace operators tr : H1(Ω)→ H1/2(∂Ω)
and tri : H1(Ωi)→ H1/2(∂Ωi) , i = 1, 2 , are well de�ned. In particular, for every v ∈ H1(Ω \ Γ )
we de�ne its jump function across Γ , [v] ∈ H1/2(Γ ) , as

[v] = tr1(v)|Γ − tr2(v)|Γ .
Then the functional space H1(Ωσ) corresponds to the set{

u ∈ H1(Ω \ Γ ) : [u] = 0 on Γ \ Γ (σ)
}
.

This fact allows us to work in the �xed Hilbert space H1(Ω \ Γ ) , and to check the condition
on the jump [u] to establish if u ∈ H1(Ω \ Γ ) belongs to one of the smaller spaces H1(Ωσ) ⊂
H1(Ω \ Γ ) .
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We will write u instead of tr(u) whenever from the context it is clear that we are referring
to the trace of the function u .

Fix s0 ∈ (0, L) . For any boundary loading ψ ∈ H1(Ωs0) and any crack Γ (σ) , σ ∈ [0, L] ,
the set of admissible displacements is given by

AD(ψ, σ) :=
{
v ∈ H1(Ωσ) : v = ψ on ∂DΩ

}
,

where the last equality is in the sense of traces.
We study the evolution process in a �xed time interval [0, T ] . When dealing with an element

u ∈ H1(0, T ;H1(Ω \ Γ )) , we always assume u to be the continuous representative (with respect
to the time variable) of its class. Therefore it makes sense to consider the pointwise value u(t)
for every t ∈ [0, T ] . On the Dirichlet part of the boundary, ∂DΩ , we prescribe a time-dependent
boundary displacement which, at each instant t ∈ [0, T ] , is given by the value of (the trace of)
a function w ∈ C2([0, T ];H1(Ωs0)) at t .

The initial con�guration is the couple (u0, s0) , where the initial out-of-plane displacement
u0 ∈ H1(Ωs0) is the (weak) solution to

a∆u0 = 0 in Ωs0
∂u0

∂n = 0 on Γ (s0) ∪ ∂NΩ
u0 = w(0) on ∂DΩ.

(2.2)

In our computations we will need to de�ne homeomorphisms between the domains Ωσ+θ and
Ωσ , for |θ| small, such that ∂Ω is kept �xed; roughly speaking, we have to slightly �move� the
crack tip forward or backward along Γ . This can be done thanks to the regularity assumptions
on Γ : �xed σ ∈ (0, L) , it is possible to construct a neighbourhood ω ⊂⊂ Ω of γ(σ) and a C1,1

vector �eld ηθ : R2 → R2 , with θ ∈ R , such that ηθ is the identity map in R2 \ ω , ηθ(Γ ) ⊂ Γ
and

ηθ(Γ (σ)) = Γ (σ + θ) (2.3)

for |θ| su�ciently small. Even though ηθ depends on σ , there is no need to make it explicit
since it will be clear from the context which �xed σ it refers to.

2.2. The incremental problem

This section is devoted to the study of the incremental problems for the rate-dependent
evolutions. We are going to minimize a functional that is a combination of (1.27) and (1.28),
containing penalizing terms for both the elastic bulk energy and the fracture energy. We also
establish a priori estimates in order to obtain solutions to the problem (2.1) by means of com-
pactness arguments.

The positive dimensional parameters a, b, c, d are �xed throughout the chapter; as already
said, they correspond to the Young modulus, the coe�cient of viscosity, the material toughness,
and the dissipation constant, respectively.

Fixed a time-step τ ∈ (0, T ) , for any u, v ∈ H1(Ω \ Γ ) we de�ne the functionals (dependent
on τ )

E(u, v) :=
1

2
a‖∇u‖2 +

b

2τ
‖∇u−∇v‖2

and

E(u, v) :=
1

2a
‖a∇u+

b

τ
(∇u−∇v)‖2.
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By a simple computation it can be seen that, for any �xed v ∈ H1(Ω \ Γ ) , the functionals
E(·, v), E(·, v) : H1(Ω \ Γ ) → R have the same Fréchet di�erential up to a multiplicative con-
stant. Actually it is

E(u, v) =
1

a

(
a +

b

τ

)
E(u, v)− b

2τ
‖∇v‖2. (2.4)

Consequently, for any �xed σ ∈ [s0, L) , v ∈ H1(Ωσ) , ψ ∈ H1(Ωs0) and τ ∈ (0, T ) , the following
relation holds true

U = argmin{E(u, v) : u ∈ AD(ψ, σ)} ⇔ U = argmin{E(u, v) : u ∈ AD(ψ, σ)}. (2.5)

The functional E represents a discretized version of the stored elastic energy plus a vis-
coplastic friction term, energy which should have the form

a‖∇u(t)‖2 + b

∫ t

0

‖∇u̇(ξ)‖2 dξ

for an evolution u ∈ H1(0, T ;H1(Ω \ Γ )) of the displacement �eld. Fixed σ and v , when we
minimize E(·, v) (or, equivalently, E(·, v)) we penalize the L2 distance of the gradients of the
two functions u and v , i.e. in the discrete-time evolution below we penalize large variations of
the displacement gradient with respect to time.

By the algebraic equivalence (2.4), the functional E provides an equivalent way to select
minima, even though it does not have a proper interpretation as energy. Nevertheless, it plays
an important part in �nding estimates.

According to Gri�th's model, the energy dissipated by the crack creation is proportional
to the crack length; in our model, we add one more term taking into account the rate of crack
increase. As for the viscoelastic part, in the incremental problem below the fracture energy shows
two dimensional positive constants c and d and, for any �xed σ̄ ∈ [s0, L) and every σ ∈ [σ̄, L] ,
it has the form

a

(
a +

b

τ

)−1(
cσ +

d

2τ
(σ − σ̄)2

)
.

In order to avoid a trivial solution, we really have to consider the adimensional quantity, depen-
dent on the time-step,

a

(
a +

b

τ

)−1

= a
τ

aτ + b
.

The value
τb :=

τ

aτ + b
can be interpreted as a characteristic time of the viscoelastic material; in Section 2.5 we describe
the consequences of neglecting the parameter aτb in the crack energy. Let us observe that, if it
were b = 0 , then aτ0 = 1 .

We de�ne the incremental problem with time-step τ ∈ (0, T ) in the following way: let
Nτ ∈ N be such that T − τ < τNτ ≤ T . Set

• uτ0 := u0 , sτ0 := s0 ;
• for any 1 ≤ i ≤ Nτ and σ ≥ s0 , let u

τ,σ
i be the unique solution to

min
{
E(u, uτi−1) : u ∈ AD(w(iτ), σ)

}
(2.6)

and

sτi ∈ argmin

{
E(uτ,σi , uτi−1) + a

(
a +

b

τ

)−1(
cσ +

d

2τ
(σ − sτi−1)2

)
: sτi−1 ≤ σ ≤ L

}
; (2.7)
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we set uτi := u
τ,sτi
i .

Remark 2.2.1. Existence and uniqueness of the solution to (2.6) is assured by the direct
method of the calculus of variations. In order to prove the existence of a solution to (2.7) it is
enough to exploit the compactness of the interval [sτi−1, L] and the convergence result stated in
Theorem 1.7.6.

We introduce the piecewise-constant and piecewise-a�ne interpolants for both the uτi and sτi :

• uτ , ũτ : [0, T ]→ H1(Ω \ Γ ) as

uτ (t) := uτi

ũτ (t) := uτi +
t− iτ
τ

(uτi+1 − uτi )

for iτ ≤ t < (i+ 1)τ, i = 0, . . . , Nτ − 1 , and uτ (t) = ũτ (t) := uτNτ for τNτ ≤ t ≤ T ;
• sτ , s̃τ : [0, T ]→ [s0, L] as

sτ (t) := sτi

s̃τ (t) := sτi +
t− iτ
τ

(sτi+1 − sτi )

for iτ ≤ t < (i+ 1)τ , i = 0, . . . , Nτ − 1 , and sτ (t) = s̃τ (t) := sτNτ for τNτ ≤ t ≤ T .
By de�nition through (2.6), uτ and ũτ satisfy the variational equation

a〈∇uτ (t),∇ϕ〉+ b〈∇ ˙̃uτ (t− τ),∇ϕ〉 = 0 (2.8)

for every ϕ ∈ H1
(
Ωsτ (t)

)
with ϕ = 0 on ∂DΩ , and t ∈ [τ,Nττ ] .

Remark 2.2.2. By the equivalence (2.5), the minimum problems (2.6)-(2.7) are equivalent to
the following ones:

• uτ0 := u0 , sτ0 := s0 ;
• for any 1 ≤ i ≤ Nτ and σ ≥ s0 , let u

τ,σ
i be the unique solution to

min
{
E(u, uτi−1) : u ∈ AD(wτi , σ)

}
and

sτi ∈ argmin
{
E(uτ,σi , uτi−1) + cσ +

d

2τ
(σ − sτi−1)2 : sτi−1 ≤ σ ≤ L

}
;

then set uτi := u
τ,sτi
i .

For convenience in the discussions below, consider the discretized version of the boundary
loading: for every τ ∈ (0, T ) and i = 0, . . . , Nτ , set wτi := w(iτ) and let wτ be the piecewise-
constant interpolant of the wτi . Then, being w ∈ C2([0, T ];H1(Ωs0)) , it is

wτi+1 − wτi =

∫ (i+1)τ

iτ

ẇ(ξ) dξ

∇wτi+1 −∇wτi =

∫ (i+1)τ

iτ

∇ẇ(ξ) dξ,

where the integrals are Bochner integrals (see [2]).
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2.2.1. A priori estimates. The following lemmas establish some estimates for the families
of the displacements {uτ} and of the crack tips {sτ} . These results will be useful in order to
apply compactness arguments.

Lemma 2.2.3. There exists a non-negative function ρ(τ) → 0 as τ → 0+ such that for every
0 ≤ i < j ≤ Nτ

1

2
a‖∇uτj ‖2 +

b

2τ

j−1∑
h=i

‖∇uτh+1 −∇uτh‖2 + a

(
a +

b

τ

)−1
(
csτj +

d

2τ

j−1∑
h=i

|sτh+1 − sτh|2
)

≤1

2
a‖∇uτi ‖2 + a

(
a +

b

τ

)−1

csτi + a

∫ jτ

iτ

〈∇uτ (ξ),∇ẇ(ξ)〉 dξ

+
b

2

∫ jτ

iτ

‖∇ẇ(ξ)‖2 dξ + ρ(τ).

Proof. Taking ϕ = uτh + wτh+1 − wτh ∈ AD(wτh+1, s
τ
h) as test function in (2.7) (with i =

h+ 1), we have

1

2
a‖∇uτh+1‖2 +

b

2τ
‖∇uτh+1 −∇uτh‖2 + a

(
a +

b

τ

)−1(
csτh+1 +

d

2τ
|sτh+1 − sτh|2

)
≤1

2
a‖∇uτh +∇wτh+1 −∇wτh‖2 +

b

2τ
‖∇wτh+1 −∇wτh‖2 + a

(
a +

b

τ

)−1

csτh

≤1

2
a‖∇uτh‖2 + a

∫ (h+1)τ

hτ

〈∇uτ (ξ),∇ẇ(ξ)〉 dξ +
1

2
a‖∇wτh+1 −∇wτh‖2

+
b

2τ

(∫ (h+1)τ

hτ

‖∇ẇ(ξ)‖ dξ

)2

+ a

(
a +

b

τ

)−1

csτh

≤1

2
a‖∇uτh‖2 + a

∫ (h+1)τ

hτ

〈∇uτ (ξ),∇ẇ(ξ)〉 dξ

+
1

2
a

(
max

0≤k<Nτ

∫ (k+1)τ

kτ

‖∇ẇ(ξ)‖ dξ

)∫ (h+1)τ

hτ

‖∇ẇ(ξ)‖ dξ

+
b

2

∫ (h+1)τ

hτ

‖∇ẇ(ξ)‖2 dξ + a

(
a +

b

τ

)−1

csτh.

Iterating over h = i, . . . , j − 1 and de�ning

ρ(τ) :=
1

2
aTτ

(
max

0≤ξ≤T
‖∇ẇ(ξ)‖

)2

the proof is complete. �
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Lemma 2.2.4. There exists a constant C > 0 , independent of b, d, τ, t , such that the following
estimates hold true for every τ ∈ (0, T ) , t ∈ [0, T ] , j = 1, . . . , Nτ :

‖uτ (t)‖H1(Ω\Γ) ≤ C (2.9)

‖ũτ (t)‖H1(Ω\Γ) ≤ C (2.10)

b

∫ jτ

0

‖∇ ˙̃uτ (ξ)‖2 dξ =
b

τ

j−1∑
h=0

‖∇uτh−1 −∇uτh‖2 ≤ C (2.11)

‖ũτ‖L2(0,T ;H1(Ω\Γ)) ≤ CT 1/2 (2.12)

b‖ ˙̃uτ‖2L2(0,T ;H1(Ω\Γ)) ≤ C. (2.13)

Proof. Fix t ∈ [0, T ] and let j := j(t) ∈ 0, . . . , Nτ − 1 be such that it satis�es jτ ≤ t <
(j + 1)τ . By the inequality in Lemma 2.2.3 for i = 0 we obtain

1

2
a‖∇uτj ‖2 +

b

2

∫ jτ

0

‖∇ ˙̃uτ (ξ)‖2 dξ (2.14)

≤1

2
a‖∇u0‖2 + a

∫ jτ

0

〈∇uτ (ξ),∇ẇ(ξ)〉 dξ +
b

2

∫ jτ

0

‖∇ẇ(ξ)‖2 dξ + ρ(τ).

Hölder's inequality and (2.14) imply

a‖∇uτ (t)‖2 ≤ C + 2b

(∫ t

0

‖∇uτ (ξ)‖2 dξ
)1/2(∫ t

0

‖∇ẇ(ξ)‖2 dξ
)1/2

,

where C > 0 is independent of b, d, τ, t . By a re�ned version of the Gronwall lemma (see [7,
Lemma 4.1.8]), we deduce that for every t ∈ [0, T ](∫ t

0

‖∇uτ (ξ)‖2 dξ
)1/2

≤ (TC)1/2 + 2T‖∇ẇ‖L2(0,T ;L2(Ωs0 ;R2)).

The last two inequalities imply that ∇uτ (t) is bounded in L2(Ω \ Γ ;R2) uniformly with respect
to b, d, τ, t . Using the Poincaré inequality we obtain (2.9) and (2.10). Then, considering (2.14),
the estimates (2.11) and (2.12) follow. Finally, using the Poincaré inequality for ˙̃u

‖ ˙̃u‖L2(0,T ;L2(Ω\Γ)) ≤ C
(
‖∇ ˙̃u‖L2(0,T ;L2(Ω\Γ ;R2)) + ‖w‖C2([0,T ];H1(Ωs0 ))

)
and (2.11), we obtain (2.13). �

Set
zτ0 := aw(0) + bẇ(0)

zτi := awτi +
b

τ

(
wτi − wτi−1

)
for 1 ≤ i ≤ Nτ

and call ũ0 the solution to 
∆ũ0 = 0 in Ωs0
ũ0 = ẇ(0) on ∂DΩ
∂ũ0

∂n = 0 on Γ (s0) ∪ ∂NΩ .

For τ ∈ (0, T ) de�ne the incremental problem

• vτ0 := au0 + bũ0 , στ0 := s0 ;
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• for any 1 ≤ i ≤ Nτ and σ ≥ s0 , let v
τ,σ
i be the unique solution to

min
{
‖∇v‖2 : v ∈ AD(zτi , σ)

}
(2.15)

and

στi ∈ argmin
{

1

a
‖∇v‖2 + cσ +

d

2τ
(σ − sτi−1)2 : στi−1 ≤ σ ≤ L

}
, (2.16)

and set vτi := v
τ,στi
i .

It is easy to check that for i = 1 it is

vτ,σ1 := auτ,σ1 +
b

τ
(uτ,σ1 − uτ0)

and

E(uτ,σ1 , uτ0) =
1

2a
‖∇vτ,σ1 ‖2

for every σ ∈ [s0, L] , so that we can assume στ1 = sτ1 . Iterating this argument, we suppose
στi = sτi for 1 ≤ i ≤ Nτ and, consequently,

vτ0 = au0 + bũ0

vτi = auτi + b
τ

(
uτi − uτi−1

)
for 1 ≤ i ≤ Nτ

(2.17)

so that (2.6)-(2.7) and (2.15)-(2.16) provide the same evolution (up to the relation (2.17) between
uτi and vτi ), and in addition

E(uτ,σi , uτi−1) =
1

2a
‖∇vτ,σi ‖

2 (2.18)

holds for every 1 ≤ i ≤ Nτ and σ ≥ sτi−1 .
By the minimality of vτi , we obtain estimates for the crack tip evolution sτ (·) as well:

Lemma 2.2.5. There exists a non-negative function ρ̃(τ) → 0 as τ → 0+ such that for every
0 ≤ i < j ≤ Nτ

1

2a
‖vτj ‖2 + csτj +

d

2
τ

j−1∑
h=i

(
sτh+1 − sτh

τ

)2

≤ 1

2a
‖vτi ‖2 + csτi +

1

a

j−1∑
h=i

〈∇vτh,∇zτh+1 −∇zτh〉+ ρ̃(τ).

(2.19)

Proof. Taking ϕ = vτh−1 + zτh − zτh−1 ∈ AD(zτh, s
τ
h−1) as test function in (2.16), it is

1

2a
‖∇vτh‖2 + csτh +

d

2τ
(sτh − sτh−1) ≤ 1

2a
‖∇vτh−1 +∇zτh −∇zτh−1‖2 + csτh−1

≤ 1

2a
‖∇vτh−1‖2 +

1

a
〈∇vτh−1,∇zτh −∇zτh−1〉+

1

2a
‖∇zτh −∇zτh−1‖2 + csτh−1.

Using the assumption w ∈ C2([0, T ];H1(Ωs0)) and arguing as in the proof of Lemma 2.2.3, it is

Nτ∑
h=1

‖∇zτh −∇zτh−1‖2 ≤ ρ̃(τ)→ 0 as τ → 0

with ρ̃ dependent only on a , τ and ‖w‖C2([0,T ];H1(Ωs0 )) .
Iterating the inequality above for i ≤ h ≤ j − 1 , we obtain the thesis. �
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Note that the term
j∑
h=i

〈∇vτh−1,∇zτh −∇zτh−1〉

in (2.19) has the explicit form

a

∫ jτ

iτ

〈∇vτ (ξ),∇ẇ(ξ)〉 dξ + b

∫ jτ

iτ

〈∇vτ (ξ),
∇wτ (ξ)− 2∇wτ (ξ − τ) +∇wτ (ξ − 2τ)

τ2
〉 dξ ,

where we call vτ the piecewise-constant interpolant of the vτi and, with abuse of notations,
wτ (0) − wτ (−τ) := ẇ(0) in case i = 0 . As w ∈ C2([0, T ];H1(Ωs0)) , for every t ∈ (0, T ) the
di�erence quotient

∇wτ (t)− 2∇wτ (t− τ) +∇wτ (t− 2τ)

τ2

converges strongly in L2(Ωs0 ;R2) to ∇ẅ(t) as τ → 0 , uniformly with respect to t .

Lemma 2.2.6. There exists a constant C > 0 , independent of b, d, τ, t , such that for every
τ ∈ (0, T ) and t ∈ [0, T ] the following estimates are satis�ed:

‖vτ (t)‖H1(Ω\Γ) ≤ C (2.20)

d‖ ˙̃sτ‖2L2(0,T ) ≤ C. (2.21)

Proof. Taking i = 0 in Lemma 2.2.5 and using Hölder's inequality, it is

1

2a
‖∇vτ (t)‖2 + csτ (t) +

1

2
d

∫ t

0

| ˙̃sτ (ξ)|2 dξ

≤ 1

2a
‖∇v0‖2 + cs0 +

(
‖ẇ‖L∞ +

b

a
‖ẅ‖L∞

)(∫ t

0

‖∇vτ (ξ)‖2 dξ
)1/2

+ ρ̃(τ).

(2.22)

Arguing as in Lemma 2.2.4, we obtain

‖∇vτ (t)‖ ≤ C

for every t . Using the Poincaré inequality, since vτi = zτi on ∂DΩ , estimate (2.20) follows.
Then (2.21) is consequence of (2.22) and (2.20). �

2.3. Gri�th's conditions for (sτ , uτ )

In order to achieve a complete description of the evolution of the system, we look for a
di�erential characterization for the evolution t 7→ s(t) of the crack tip, that will be obtained in
Sections 2.4 and 2.6 by means of the energy release rate, in the spirit of Gri�th's theory.

First of all we introduce a functional playing the role of the energy release rate at the level
of the discrete-time solutions (sτ , uτ ) de�ned in Section 2.2, in order to establish a sort of
discrete-time version of the Gri�th's criterion (1.9).

For every σ ∈ [s0, L] and g ∈ H1/2(∂DΩ) , let v(σ, g) ∈ H1(Ωσ) be the solution to the
problem 

∆v = 0 in Ωσ
v = g on ∂DΩ
∂v
∂n = 0 on Γ (σ) ∪ ∂NΩ ,

(2.23)

and set

F(σ, g) :=
1

2
‖∇v(σ, g)‖2. (2.24)
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As already seen in Section 1.5.1, in particular through formula (1.18), the energy release rate G
is de�ned as the derivative of F with respect to its �geometric� variable σ (see (2.25) below).
The following result states the regularity properties of the functionals F and G .

Proposition 2.3.1. The functional F is continuous from [s0, L]×H1/2(∂DΩ) to R . For any

�xed g ∈ H1/2(∂DΩ) , the map σ 7→ F(σ, g) is di�erentiable at every σ ∈ [s0, L) . The energy
release rate

G(σ, g) := −∂F(σ, g)

∂σ
(2.25)

is continuous in [s0, L)×H1/2(∂DΩ) .

We do not prove the above proposition since, as discussed in Section 1.5, it is a well known
result. The key tools for its proof are Theorem 1.7.6, which moves the issue of the convergence
of ∇v(σ, g) to check the convergence of the boundary datum and of the crack variable, and the
integral formula for G in Remark 1.5.1.(iii), which in the current notation reads as

G(σ, g) = −1

2
〈∇v(σ, g), div(λσ)∇v(σ, g)〉+ 〈∇v(σ, g),∇λσ ∇v(σ, g)〉 , (2.26)

where v(σ, g) is de�ned through (2.23), and λσ is a Lipschitz continuous vector �eld such that
supp(λσ) ⊂ Ω , λσ(γ(σ̄)) = ζσ(γ(σ̄))γ̇(σ̄) for every σ̄ ∈ [0, L] , with ζσ a cut-o� function, equal
to one in a neighbourhood of γ(σ) .

Remark 2.3.2. If we �x s1 ∈ (s0, L) , then we can assume λσ to be the same for any σ ∈ [s0, s1] :
it is λσ = λ for every σ ∈ [s0, s1] , where λ is a Lipschitz continuous vector �eld such that
supp(λ) ⊂ Ω and λ(γ(σ̄)) = ζ(γ(σ̄))γ̇(σ̄) for every σ̄ ∈ [0, L] , with ζ a cut-o� function, equal
to one in a neighbourhood of γ([s0, s1]) .

In the following, exploiting the continuity of the trace operator we consider the space
H1(Ωs0) instead of H1/2(∂DΩ) : we assume F to be de�ned on [s0, L]×H1(Ωs0) and, with abuse
of notation, we identify every g ∈ H1(Ωs0) with its trace on ∂DΩ , so that Proposition 2.3.3 still
holds true for the functional F : [s0, L]×H1(Ωs0)→ R .

Proposition 2.3.3. Let s1 ∈ (s0, L) be �xed. Then G(σ, ·) : H1(Ωs0)→ R is Lipschitz contin-
uous, uniformly in σ ∈ [s0, s1] .

Proof. Fix σ ∈ [s0, s1] . For j = 1, 2 , let gj ∈ H1(Ωs0) and let v(σ, gj) ∈ H1(Ωσ) be the
solution to (2.23) with g = tr(gj) , and write

v(σ, gj) = ṽ(σ, gj) + gj .

Then, for every ϕ ∈ H1(Ωσ) with ϕ = 0 on ∂DΩ , it is

0 = 〈∇v(σ, gj),∇ϕ〉 = 〈∇ṽ(σ, gj),∇ϕ〉+ 〈∇gj ,∇ϕ〉,

i.e.

〈∇ṽ(σ, gj),∇ϕ〉 = −〈∇gj ,∇ϕ〉 (2.27)

for any ϕ as before.
In particular ṽ(σ, gj) ∈ H1(Ωσ) with ṽ(σ, gj) = 0 on ∂DΩ . Thus, considering (2.27) and

applying Hölder's inequality, it is

‖∇ṽ(σ, g1)−∇ṽ(σ, g2)‖2 =〈∇ṽ(σ, g1)−∇ṽ(σ, g2),∇ṽ(σ, g1)−∇ṽ(σ, g2)〉
=− 〈∇g1 −∇g2,∇ṽ(σ, g1)−∇ṽ(σ, g2)〉
≤ ‖∇g1 −∇g2‖ ‖∇ṽ(σ, g1)−∇ṽ(σ, g2)‖ ,
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so that ‖∇ṽ(σ, g1)−∇ṽ(σ, g2)‖ ≤ ‖∇g1 −∇g2‖ . Therefore
‖∇v(σ, g1)−∇v(σ, g2)‖ ≤ ‖∇ṽ(σ, g1)−∇ṽ(σ, g2)‖+ ‖∇g1 −∇g2‖ ≤ 2 ‖∇g1 −∇g2‖ .
By Remark 2.3.2, in the expression (2.26) for G we can assume λσ = λ for every σ ∈ [s0, s1] .

Then, by (2.26) and the above inequality, we obtain

|G(σ, g1)− G(σ, g1)| ≤ C ‖∇g1 −∇g2‖ ≤ C ‖g1 − g2‖H1(Ωs0 )

with C ≥ Lip(λ) , where Lip(λ) is the Lipschitz constant of λ . �

We want to characterize the discrete-time evolution t 7→ (sτ (t), uτ (t)) in terms of Gri�th's
theory, with the goal of obtaining a law like (1.9) for the continuous-time evolution by taking
the limit τ → 0 in the conditions for (sτ , uτ ) .

By construction, the maps sτ and s̃τ are non-decreasing; in particular
˙̃sτ (t) ≥ 0 (2.28)

for every t ∈ [0, T ] .
In order to obtain conditions (G2) and (G3) described in Section 1.3, we argue in the

following way. By de�nition (2.15), for every i ∈ {0, . . . , Nτ} the function vτ,σi satis�es the
problem 

∆vτ,σi = 0 in Ωσ
vτ,σi = zτi on ∂DΩ
∂vτ,σi
∂n = 0 on Γ (σ)∂NΩ .

Having in mind the equality (2.18) and applying Proposition 2.3.1 with g = zτi , the function

σ ∈ [sτi−1, L] 7→ E(uτ,σi , uτi−1) = F(σ, zτi )

is di�erentiable at every σ ∈ [sτi−1, L) . For every τ ∈ (0, T ) and t ∈ [0, T ] such that sτ (t) < L
we de�ne

G(τ, t) := G(sτ (t), zτ (t)) = −
[
d

dσ
E(uτ,σiτ , u

τ (t− τ))

]
σ=sτ (t)

, (2.29)

with iτ := iτ (t) such that iττ ≤ t < (iτ + 1)τ .
At this point we use the minimality properties of (sτi , u

τ
i ) : it is

E(uτi , u
τ
i−1) + csτi +

d

2τ
(sτi − sτi−1) ≤ E(uτ,σi , uτ,σi−1) + cσ +

d

2τ
(σ − sτi−1)

for every σ ∈ [sτi−1, L] . If sτi < L , then for every σ ∈ (sτi , L] we have

−
E(uτi , u

τ
i−1)− E(uτ,σi , uτ,σi−1)

σ − sτi
≤ c +

d

2τ
(σ + sτi − 2sτi−1);

if in addition sτi > sτi−1 , then for every σ ∈ [sτi−1, s
τ
i ) we also have

−
E(uτi , u

τ
i−1)− E(uτ,σi , uτ,σi−1)

σ − sτi
≥ c +

d

2τ
(σ + sτi − 2sτi−1).

By the above inequalities and by the de�nition of G through the derivative (2.29), we obtain
the following two conditions: for every τ ∈ (0, T ) and every 1 ≤ i ≤ Nτ such that sτi < L it
holds:

G(τ, iτ) ≤ c + d

(
sτi − sτi−1

τ

)
[
−G(τ, iτ) + c + d

(
sτi − sτi−1

τ

)] (
sτi − sτi−1

)
= 0.
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Before collecting (2.28) and the above result, we introduce the concept of failure time,
important from now on.

De�nition 2.3.4. Let s : [0, T ] → [s0, L] be a non-decreasing function with s(0) = s0 . The
instant

Tf (s) := sup{t ∈ [0, T ] : s(t) < L}
is called failure time for s .

Thus in the previous analysis we have proved the following fact:

Proposition 2.3.5 (Discrete-time Gri�th's criterion). For every τ ∈ (0, T ) and every t ∈
[0, Tf (s̃τ )) the following conditions hold true:

˙̃sτ (t) ≥ 0 (2.30)

G(τ, t) ≤ c + d ˙̃sτ (t) (2.31)[
−G(τ, t) + c + d ˙̃sτ (t)

]
˙̃sτ (t) = 0. (2.32)

2.4. The irreversible viscoelastic evolution

The goal of the section is to describe the rate-dependent fracture problem with continuous-
time variable. We investigate the behaviour of the sequence of discrete-time solutions (sτ , uτ )
as the time-step τ decreases to 0 .

De�nition 2.4.1. For any s0 ∈ (0, L) , w ∈ C2([0, T ];H1(Ωs0)) and u0 satisfying (2.2), an
irreversible viscoelastic evolution is a couple

(s, u) : [0, T ]→ [s0, L]×H1(Ω \ Γ )

such that (s(0), u(0)) = (s0, u0) , s ∈ H1(0, T ) is non-decreasing and

(i) u ∈ H1(0, T ;H1(Ω \ Γ )) and u(t) ∈ H1(Ωs(t)) for every t ∈ [0, T ] ;
(ii) u(t) = w(t) on ∂DΩ for every t ∈ [0, T ] ;
(iii) for a.e. t ∈ (0, T ) , for every ϕ ∈ H1(Ωs(t)) with ϕ = 0 on ∂DΩ ,

a〈∇u(t),∇ϕ〉+ b〈∇u̇(t),∇ϕ〉 = 0;

(iv) Gri�th's criterion: for every t ∈ [0, Tf (s)) the following conditions hold true:

ṡ(t) ≥ 0 (2.33)

G(s(t), aw(t) + bẇ(t)) ≤ c + dṡ(t) (2.34)

[−G(s(t), aw(t) + bẇ(t)) + c + dṡ(t)] ṡ(t) = 0. (2.35)

The requirements in the de�nition above can be rephrased in physical terms. The mono-
tonicity of s means that the crack does not heal, while Condition 2.4.1.(i) a�rmes that the jump
set of the displacement u(t) is contained in Γ (s(t)) . Conditions 2.4.1.(i)-2.4.1.(iii) tell us that u
is a weak solution to the problem

a∆u(t) + b∆u̇(t) = 0 in Ωs(t)
a∂u(t)

∂n + b∂u̇(t)
∂n = 0 on Γ (s(t)) ∪ ∂NΩ

u(t) = w(t) on ∂DΩ
u(0) = u0

s(0) = s0.
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Roughly speaking, the uncracked domain Ωs(t) behaves almost as an elastic body (except for the
viscous term b∆u̇). Finally, Condition 2.4.1.(iv) expresses a further relation between u and s ,
and provides an energetic criterion for the crack growth.

The main result of the section is the following existence theorem, which will be proven
combining several lemmas.

Theorem 2.4.2. For any s0 ∈ (0, L) , w ∈ C2([0, T ];H1(Ωs0)) and u0 satisfying (2.2), there
exists an irreversible viscoelastic evolution.

Consider the discrete-time evolutions (sτ , uτ ) , for τ ∈ (0, T ) , obtained in Section 2.2. The
estimates (2.12) and (2.13) assure the existence of a map u ∈ H1(0, T ;H1(Ω \ Γ )) such that

ũτ ⇀ u (2.36)

weakly in H1(0, T,H1(Ω \ Γ )) as τ → 0+ along a suitable subsequence.

Remark 2.4.3. When we write τ → 0 we refer to the subsequence selected in (2.36), or to a
further subsequence of it.

Concerning the crack tip evolution, by monotonicity of sτ and Helly's Theorem 1.7.9, we
�nd a further subsequence of (sτ )τ∈(0,T ) and a function s : [0, T ]→ [s0, L] such that

sτ (t)→ s(t) (2.37)

for every t ∈ [0, T ] , as τ → 0+ . The function s is non-decreasing, since by pointwise convergence
it inherites the monotonicity property of the functions sτ .

Below we investigate how u and s are mutually related, since so far we do not have any
information about the jump set of u . Furthermore, we obtain a regularity estimate for s , since
by (2.21) and the fact that ‖sτ‖∞ < L we expect it to belong to H1(0, T ) as well.

Lemma 2.4.4. There exists a subsequence of uτ , not relabelled, such that uτ (t) ⇀ u(t) weakly
in H1(Ω \ Γ ) for every t ∈ [0, T ] .

Proof. The set

BC :=
{
v ∈ H1(Ω \ Γ ) : ‖v‖H1(Ω\Γ) ≤ C

}
is a compact subset of L2(Ω) . The estimate (2.10) implies that ũτ (t) ∈ BC for every t ∈ [0, t] ,
while by (2.13) it is

‖ũτ (t1)− ũτ (t2)‖ ≤ C(b)
√
|t1 − t2|

for every t1, t2 ∈ [0, T ] , where C(b) only depends on b .
By a re�ned version of the Ascoli-Arzelà theorem (see [7, Proposition 3.3.1]), there exists

û : [0, T ]→ BC continuous such that, up to subsequences, for every t ∈ [0, T ]

ũτ (t)→ û(t) (2.38)

strongly in L2(Ω \ Γ ) when τ → 0+ ; since (2.36) holds, û(t) = u(t) for a.e. t . In particular the
equality is true for every t ∈ [0, T ] , since we are considering the continuous representative of u
in H1(0, T ;H1(Ω \ Γ )) , and also û is continuous.

Fix t ∈ [0, T ] . For every τ , set 0 ≤ i ≤ Nτ such that iτ ≤ t < (i+ 1)τ . We have

‖ũτ (t)− uτ (t)‖H1(Ω\Γ) =

(
t− iτ
τ

)
‖uτi+1 − uτi ‖H1(Ω\Γ) ≤ ‖uτi+1 − uτi ‖H1(Ω\Γ). (2.39)
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By the properties of the trace operator and the regularity of w , we obtain

‖tr(wτi+1 − wτi )‖L2(∂DΩ) ≤C‖wτi+1 − wτi ‖H1(Ωs0 ) = C

∥∥∥∥∥
∫ (i+1)τ

iτ

ẇ(ξ) dξ

∥∥∥∥∥
H1(Ωs0 )

≤
∫ (i+1)τ

iτ

‖ẇ(ξ)‖H1(Ωs0 ) dξ ≤ CMτ

with M := maxξ∈[0,T ] ‖ẇ(ξ)‖H1(Ωs0 ) . This estimate, together with the Poincaré inequality
and (2.11), implies

‖uτi+1 − uτi ‖ ≤C
(
‖∇uτi+1 −∇uτi ‖+ ‖tr(uτi+1 − uτi )‖

)
=C

(
‖∇uτi+1 −∇uτi ‖+ ‖tr(wτi+1 − wτi )‖

)
≤ Cτ,

so that by (2.39) and (2.11) we deduce

‖ũτ (t)− uτ (t)‖H1(Ω\Γ) ≤ ‖uτi+1 − uτi ‖H1(Ω\Γ) ≤ Cτ

for the �xed t , with C dependent on b but not on t . Therefore

sup
t∈[0,T ]

‖ũτ (t)− uτ (t)‖H1(Ω\Γ) → 0 (2.40)

as τ → 0 . Since uτ (t) ∈ BC , we conclude by means of (2.38) and (2.40). �

Lemma 2.4.5. It results u(t) ∈ H1(Ωs(t)) for every t ∈ [0, T ] .

Proof. Fix t ∈ [0, T ] . If s(t) = L , then the claim is automatically satis�ed since u(t) ∈
H1(Ω \ Γ ) for every t .

Let assume s(t) < L and let α ∈ (0, L − s(t)) . By de�nition of s through (2.37) and
continuity of γ , it is Γ (sτ (t)) ⊂ Γ (s(t) + α) for τ su�ciently small. Since uτ (t) ∈ H1(Ωsτ (t))
for every t , we have [uτ (t)] = 0 on Γ \ Γ (s(t) + α) for τ small enough. By Lemma 2.4.4 and
the compactness of the trace operator, up to a subsequence uτ (t)→ u(t) H1 -a.e. on Γ , so that
[u(t)] = 0 on Γ \Γ (s(t) +α) . Being α arbitrary, [u(t)] = 0 on Γ \Γ (s(t)) , i.e. the thesis holds
true. �

Lemma 2.4.6. The sequence (s̃τ ) converges to s weakly in H1(0, T ) and pointwise for every
t ∈ [0, T ] . Moreover, d‖ṡ‖2L2(0,T ) ≤ C .

Proof. By the estimate (2.21), it is supτ∈(0,T ) ‖sτ‖H1(0,T ) < C(d) for some constant C(d)

dependent only on d . We deduce the existence of ŝ ∈ H1(0, T ) such that (up to subsequences)
s̃τ ⇀ ŝ weakly in H1(0, T ) . Let us show that ŝ = s .

Fix t and for every τ set 0 ≤ i ≤ Nτ such that iτ ≤ t < (i+ 1)τ . Then

0 ≤ s̃τ (t)− sτ (t) =
t− iτ
τ

(
sτi+1 − sτi

)
≤ τ ˙̃sτ (t)

=

∫ (i+1)τ

iτ

˙̃sτ (ξ) dξ ≤ τ1/2

(∫ (i+1)τ

iτ

(
˙̃sτ (ξ)

)2
dξ

)1/2

≤ τ1/2C(d) ,

where the last inequality is due to (2.21). Then, considering (2.37), s̃τ (t) → s(t) as τ → 0 for
every t and necessarily ŝ = s , so that s ∈ H1(0, T ) .

Finally, the estimate for ṡ is a consequence of the weak convergence s̃τ ⇀ s in H1(0, T )
and (2.21). �
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Note that by (2.37) we only deduce that s is monotone, while Lemma 2.4.6 provides the
additional information that it is continuous as well: the crack really grows continuously, without
the non-physical behaviour of jumps of the fracture set. The responsible of the regular growth
is the dissipation at the crack tip.

At this point we would like to de�ne a Gri�th's criterion for the couple (s, u) , exploiting
the one for the discrete-time solutions obtained in Proposition 2.3.5.

Lemma 2.4.7. It results s ∈ C1((0, Tf (s)) ∪ (Tf (s), T )) and (2.33)-(2.35) hold true for every
t ∈ [0, Tf (s)) .

Proof. First of all, we show that G(τ, t) converges to G(s(t), aw(t) + bẇ(t)) for every
t ∈ [0, Tf (s)) when τ vanishes. Fix t ∈ [0, Tf (s)) ; for τ small enough it is sτ (t) < L , so that
it is meaningful to consider G(τ, t) . Since sτ (t)→ s(t) by (2.37) and zτ (t)→ aw(t) + bẇ(t) in
H1(Ωs0) , the continuity of G stated in Proposition 2.3.1 implies

G(τ, t) = G(sτ (t), zτ (t))→ G(s(t), aw(t) + bẇ(t))

as τ → 0 .
Next we show that (2.33)-(2.35) hold for a.e. t ∈ [0, Tf (s)) . It is su�cient to prove that (at

least for a subsequence of s̃τ ) ˙̃sτ (t)→ ṡ(t) for a.e. t and then to pass to the limit in (2.30)-(2.32).
Let t ∈ [0, Tf (s)) be such that ṡ(t) exists and consider the sequence s̃τ approximating s .

By (2.30), only two situations are possible:

(i) ˙̃sτ (t) > 0 for any element of the sequence;
(ii) for a subsequence s̃τj it is ˙̃sτj (t) = 0 for every j .

If (i) is the case, then (2.32) forces the equality d ˙̃sτ (t) = G(τ, t) − c to be satis�ed. Since the
right-hand side converges (by what proved at the beginning), we obtain that ˙̃sτ (t) → ϑ(t) =
1
d [G(s(t), aw(t) + bẇ(t))− c] .

If we assume (ii), then by (2.31) it is G(τ, t) ≤ c and, as τ vanishes, we get

G(s(t), aw(t) + bẇ(t)) ≤ c. (2.41)

Call s̃τk the elements in the (at most countable) set {s̃τ} \ {s̃τj} . If there are �nitely many
s̃τk , then lim ˙̃sτ (t) = lim ˙̃sτj = 0 . If there are in�nitely many s̃τk , let us show that ˙̃sτk → 0 .
Repeating the same argument as for (i), ˙̃sτk → ϑ(t) ≥ 0 . Then

0 ≤ dϑ(t) = d lim
τk→0

˙̃sτk = lim
τk→0

G(τk, t)− c = G(s(t), aw(t) + bẇ(t))− c ≤ 0 ,

where the last inequality is due to (2.41). Therefore, if (ii) is the case, then ˙̃sτ (t)→ 0 .
The previous analysis shows that a function ϑ : [0, T ] → R is de�ned such that ˙̃sτ (t)

converges to ϑ(t) as τ → 0 , for every t ∈ [0, T ] . Furthermore ϑ satis�es the following two
relations at every t ∈ [0, T ] :

G(s(t), aw(t) + bẇ(t)) ≤ c + dϑ(t)

[−G(s(t), aw(t) + bẇ(t)) + c + dϑ(t)]ϑ(t) = 0.

In order to prove (2.34) and (2.35) a.e. in [0, T ] , it is enough to consider the above relations
and to observe that, since sτ ⇀ s weakly in H1(0, T ) , necessarily it has to be ṡ(t) = ϑ(t) for
a.e. t ∈ [0, T ] . Instead (2.33) is true a.e. in [0, T ] by monotonicity of s .

In order to conclude the proof, observe that (2.34) and (2.35) imply that s solves a.e. in
[0, Tf (s)) the di�erential relation

dṡ(t) = [G(s(t), aw(t) + bẇ(t))− c]
+
. (2.42)
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Since s is continuous in [0, T ] and w ∈ C2([0, T ];H1(Ωs0)) , the right-hand side in (2.42) is
continuous. Then, being s absolutely continuous, it is

s(t) = s0 +

∫ t

0

ṡ(ξ)dξ = s0 +

∫ t

0

1

d
[G(s(ξ), aw(ξ) + bẇ(ξ))− c]

+
dξ

for every t ∈ [0, Tf (s)) . The right-hand side a C1 function, thus we conclude that s ∈
C1([0, Tf (s))) as well; hence (2.33)-(2.35) are satis�ed everywhere in [0, Tf (s)) . Finally, if
Tf (s) < T , then we have s ≡ L in [Tf (s), T ] , so that s ∈ C1(Tf (s), L) . �

Collecting together the above lemmas, we deduce the main result of the section.

Proof of Theorem 2.4.2. Consider u and s obtained by means of the compactness ar-
guments in (2.36) and (2.37), respectively, as limits of uτ and sτ as τ decreases to 0 .

By construction, we have uτ (0) = u0 and sτ (0) = s0 . Lemma 2.4.4 implies that uτ (0) ⇀
u(0) in H1(Ω \ Γ ) , so that u(0) = u0 ; concerning s , we obtain s(0) = s0 by the pointwise
convergence (2.37). Hence the initial conditions are satis�ed.

Lemma 2.4.6 assures the regularity for s , which by construction through Helly's Theorem
is non-decreasing since the functions sτ are.

Condition 2.4.1.(i) is satis�ed considering (2.36) and Lemma 2.4.5.
Fix t ∈ [0, T ] . It is uτ (t) = wτi on ∂DΩ , where iτ ≤ t < (i + 1)τ for every τ . Combining

together Lemma 2.4.4, the compactness of the trace operator and the fact that wτi → w(t)
strongly in H1(Ωs0) , we obtain that u(t) = w(t) on ∂DΩ , i.e. Condition 2.4.1.(ii) is veri�ed.

Gri�th's criterion 2.4.1.(iv) is established in Lemma 2.4.7.
We are left to prove Condition 2.4.1.(iii). Let t ∈ (0, T ) be a Lebesgue point for u̇ and

ϕ ∈ H1(Ωs(t)) with ϕ = 0 on ∂DΩ . If s(t) < L , consider the �ow ηθ described in (2.3), with
θ > 0 , and de�ne ϕθ(·) := ϕ(ηθ(·)) . If s(t) = L , we assume ϕθ ≡ ϕ . By the properties of
ηθ , ϕθ ∈ H1(Ωs(t)−θ) and ϕθ = 0 on ∂DΩ . By the pointwise convergence in (2.37), for τ
su�ciently small it is sτ (t) > s(t) − θ ; therefore ϕθ ∈ H1(Ωsτ (t)) and, since sτ are monotone,
we get ϕθ ∈ H1(Ωsτ (ξ)) for every ξ ≥ t .

Fix δ ∈ (0, T − t) . For any ξ ∈ [t, T ] the equality (2.8) holds with ϕθ , and integrating it
over [t, t+ δ] we get ∫ t+δ

t

(
a〈∇uτ (ξ),∇ϕθ〉+ b〈∇ ˙̃uτ (ξ − τ),∇ϕθ〉

)
dξ = 0. (2.43)

Lemma 2.4.4 assures that
〈∇uτ (ξ),∇ϕθ〉 → 〈∇u(ξ),∇ϕθ〉

for every ξ ∈ [t, t+ δ] , while considering (2.9) we deduce the estimate

|〈∇uτ (ξ),∇ϕθ〉| ≤ ‖∇uτ (ξ)‖‖ϕθ‖ ≤ C‖ϕθ‖.
Then, by the Dominated Convergence Theorem,∫ t+δ

t

〈∇uτ (ξ),∇ϕθ〉 dξ →
∫ t+δ

t

〈∇u(ξ),∇ϕθ〉 dξ.

Concerning the other term in (2.43), by (2.36)∫ t+δ

t

〈∇ ˙̃uτ (ξ − τ),∇ϕθ〉 dξ →
∫ t+δ

t

〈∇u̇(ξ),∇ϕθ〉 dξ.

Collecting together the two limits above and (2.43), it is

1

δ

∫ t+δ

t

(a〈∇u(ξ),∇ϕθ〉+ b〈∇u̇(ξ),∇ϕθ〉) dξ = 0.
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Since ϕθ ⇀ ϕ in H1(Ω \ Γ ) and t is a Lebesgue point for u̇ , we obtain Condition 2.4.1.(iii) by
considering the limits as θ → 0+ and δ → 0+ , in this order. �

Remark 2.4.8. Consider the inequality in Lemma 2.2.3 with i = 0 :

1

2
a‖∇uτ (t)‖2 +

b

2

∫ t

0

‖∇ ˙̃uτ (ξ)‖2 dξ + a

(
a +

b

τ

)−1(
csτ (t) +

d

2

∫ t

0

‖∇ ˙̃sτ (ξ)‖2 dξ
)

≤1

2
a‖∇u0‖2 + a

(
a +

b

τ

)−1

csτ (t1) + a

∫ t

0

〈∇uτ (ξ),∇ẇ(ξ)〉 dξ

+
b

2

∫ t

0

‖∇ẇ(ξ)‖2 dξ + ρ.

As τ vanishes, the value
(
a + b

τ

)−1
vanishes as well, while all the other terms converge, so that

we �nd the inequality:

1

2
a‖∇u(t)‖2 +

b

2

∫ t

0

‖∇u̇(ξ)‖2 dξ ≤ 1

2
a‖∇u0‖2 + a

∫ t

0

〈∇u(ξ),∇ẇ(ξ)〉 dξ +
b

2

∫ t

0

‖∇ẇ(ξ)‖2 dξ.

In the energy balance above there is no longer trace of the crack energy. Without giving an
interpretation at this stage, we underline the analogy of this fact with what proved in [35] in
the damped case. We only point out that the absence of the fracture term is probably related
to the presence of the viscoelastic term, as the analysis in Section 2.5 seems to suggest.

We conclude the section with some estimates on the irreversible viscoelastic evolution.

Lemma 2.4.9. Let (s, u) be given by Theorem 2.4.2. Then there exists a constant C > 0 ,
independent of b, d > 0 (�xed at the beginning) and t , such that for every t ∈ [0, T ] the following
estimates hold:

‖u(t)‖H1(Ω\Γ) ≤ C (2.44)

‖u‖L2(0,T ;H1(Ω\Γ)) ≤ C (2.45)

b‖∇u̇‖2L2(0,T ;L2(Ω\Γ ;R2)) ≤ C (2.46)

d‖ṡ‖2L2(0,T ) ≤ C . (2.47)

The proof is a straightforward consequence of Lemma 2.2.3 and (2.36) for what concerns u ,
and of Lemmas 2.2.5 and 2.4.6 for s .

2.5. A comment on the role of τb

We make clear the role of the parameter

aτb = a

(
a +

b

τ

)−1

introduced in Section 2.2, in order to justify its presence in front of the fracture energy. We do
not prove again every statement, since generally the proofs are similar to those in Section 2.2.

Consider the following discrete-time evolution: for every τ ∈ (0, T ) , let uτ0 , s
τ
0 and uτ,σi be

de�ned as in (2.6); for the crack tip sτi , instead of (2.7) we choose

sτi ∈ argmin
{
E(uτ,σi , uτi−1) + cσ +

d

2τ
(σ − sτi−1)2 : sτi−1 ≤ σ ≤ L

}
. (2.48)

As before, set uτi := u
τ,sτi
i and de�ne the interpolant functions uτ , ũτ , sτ , s̃τ .
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Arguing as in Lemma 2.2.3, for every 0 ≤ i < j ≤ Nτ

1

2
a‖∇uτj ‖2 +

b

2τ

j−1∑
h=i

‖∇uτh+1 −∇uτh‖2 + csτj +
d

2τ

j−1∑
h=i

|sτh+1 − sτh|2

≤1

2
a‖∇uτi ‖2 + csτi + a

∫ jτ

iτ

〈∇uτ (ξ),∇ẇ(ξ)〉 dξ

+
b

2

∫ jτ

iτ

‖∇ẇ(ξ)‖2 dξ + ρ.

Then Lemma 2.2.4 holds true, since in its proof we do not take into account the fracture term.
The main di�erence is that in the current situation the inequality above provides an L2 estimate
for ˙̃sτ too:

d‖ ˙̃sτ‖L2(0,T ) ≤ C
for any τ ∈ (0, T ) .

Following the steps of Sections 2.3 and 2.4, by the Helly's Theorem 1.7.9 there exists s :
[0, T ]→ [s0, L] pointwise limit of a subsequence of the family {sτ}τ∈(0,T ) , and it satis�es

s̃τ ⇀ s

weakly in H1(0, T ) as τ → 0+ , as in Lemma 2.4.6.
In the current framework, the Gri�th's criterion equivalent to (2.30)-(2.32) is

˙̃sτ (t) ≥ 0

G(τ, t) ≤ 1

a

(
a +

b

τ

)(
c + d ˙̃sτ (t)

)
[
−G(τ, t) +

1

a

(
a +

b

τ

)(
c + d ˙̃sτ (t)

)]
˙̃sτ (t) = 0. (2.49)

Fix any t ∈ [0, Tf (s)) . Since sτ (t)→ s(t) < L , we can assume t ∈ [0, Tf (sτ )) for τ su�ciently
small, so that it makes sense to speak of G(τ, t) for those τ .

Assume that s is not constant in [0, T ] . Since s ∈ H1(0, T ) , there exists t ∈ (0, T ) such
that ṡ(t) exists and ṡ(t) > 0 . Hence we can �nd two sequences t1j < t < t2j converging to t with
s(t1j ) < s(t2j ) . By construction of s , there exists τj converging to 0 with sτj (t1j ) < sτj (t2j ) for
every j , so that ˙̃sτj (tj) > 0 for some tj ∈ (t1j , t

2
j ) . By construction, tj → t , while Lemma 1.7.10

implies sτj (tj)→ s(t) . Therefore, by continuity of G , it is

G(τj , tj)→ G(s(t), aw(t) + bẇ(t)).

Being ˙̃sτj (tj) > 0 , equality (2.49) gives

G(τj , tj) =
1

a

(
a +

b

τj

)(
c + d ˙̃sτj (tj)

)
>

1

a

(
a +

b

τj

)
c.

As τj → 0 the two relations above imply

G(s(t), aw(t) + bẇ(t)) = lim
j→+∞

G(τj , tj) = +∞,

which is impossible. We have to conclude that s is necessarily constant. In particular s ≡ s0

and, being continuous in [0, T ] , Tf (s) = T .
The above argument shows that, if we consider (2.48) instead of (2.7), then a real crack

evolution does not take place since the crack tip stays still, independently of the boundary
loading.
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2.6. The rate-independent evolution

In the previous sections we never made explicit the dependence of the discrete-time evolutions
and of the irreversible viscoelastic evolutions on the parameters b and d . Now we replace b
and d in the previous analysis by εb and νd , for positive adimensional parameters ε and ν . As
discussed in general at the end of Section 1.6, we are interested in investigating the behaviour of
the fracture term and of the viscoelastic term as the viscosity coe�cient ε and the dissipation
coe�cient ν vanish.

Unlike for the irreversible viscoelastic evolution, where the fracture has a continuous growth,
when ν �disappears� the crack might perform instantaneous increments, even though the bound-
ary loading varies smoothly in time. Despite this fact, we can recover a weaker Gri�th's criterion
describing the process. We interpret the sudden changes of the fracture as a limit behaviour of
fast moving �dissipated� cracks.

From now on, for any ε ≥ 0 and ν > 0 we use the notation (sε,ν,τ , uε,ν,τ ) for the discrete-
time evolutions de�ned in Section 2.2, and (sε,ν , uε,ν) for the irreversible viscoelastic evolutions
obtained in Section 2.4 as limits of (sε,ν,τ , uε,ν,τ ) when τ → 0 .

The main result of the section is Theorem 2.6.5, which states the existence of a particular
class of rate-independent evolutions, de�ned below.

De�nition 2.6.1. Let σ : [0, T ] → [s0, L] . We say that t ∈ [0, T ] is a non-constancy instant
for σ if for every neighbourhood U of t there exist t1, t2 ∈ [0, T ] ∩ U such that σ(t1) 6= σ(t2) .
We say that t ∈ [0, T ] is a jump instant for σ if σ(t−) 6= σ(t+) .

De�nition 2.6.2. Let s0 ∈ (0, L) , w ∈ C2([0, T ];H1(Ωs0)) and u0 satisfy (2.2). We call
rate-independent evolution with initial condition (s0, u0) and boundary loading w , a map

(s, u) : [0, T ]→ [s0, L]×H1(Ω \ Γ )

such that (s(0), u(0)) = (s0, u0) , s is left-continuous and the following conditions hold true:
(i) u ∈ L2(0, T ;H1(Ω \ Γ )) and u(t) ∈ H1(Ωs(t)) for a.e. t ∈ [0, T ] ;
(ii) u(t) = w(t) on ∂DΩ for a.e. t ∈ [0, T ] ;
(iii) for a.e. t ∈ (0, T ) , for every ϕ ∈ H1(Ωs(t)) with ϕ = 0 on ∂DΩ ,

a〈∇u(t),∇ϕ〉 = 0;

(iv) Gri�th's criterion:
• s is non-decreasing;
• for every t ∈ [0, Tf (s))

G(s(t), aw(t)) ≤ c; (2.50)

• weak activation criterion: if t ∈ [0, Tf (s)) is a non-constancy instant for s , then

G(s(t±), aw(t)) = c; (2.51)

if t ∈ [0, Tf (s)) is a jump instant for s , then

G(σ, aw(t)) ≥ c (2.52)

for every σ ∈ [s(t−), s(t+)] ;
• if t ∈ [0, Tf (s)) and G(s(t), aw(t)) < c , then s is di�erentiable at t and ṡ(t) = 0 ;

(v) the function t 7→ G(s(t), aw(t)) is continuous in [0, Tf (s)] .

As discussed in Remark 1.3.1.(ii) (see De�nition 1.3.2), the weak activation criterion has
been suggested in [72] in order to relax the di�erential formulation (1.9) of Gri�th's criterion.
We stress the fact that it is important to have a criterion valid at every instant in [0, T ] . Indeed a
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di�erential criterion valid only on [0, T ]\N , with L1(N ) = 0 , might make it totally meaningless,
since the jump points of s are at most countable and so they might concentrate on N .

Theorem 2.6.3. For any s0 ∈ (0, L) , w ∈ C2([0, T ];H1(Ωs0)) and u0 satisfying (2.2), there
exists a rate-independent evolution (s, u) .

Theorem 2.6.3 is consequence of the result that we will state and prove below. We �rst
introduce another class of evolutions that turn out to be rate-independent evolutions.

De�nition 2.6.4. Let s0 ∈ (0, L) , w ∈ C2([0, T ];H1(Ωs0)) and u0 satisfy (2.2). We call
vanishing viscosity evolution with initial condition (s0, u0) and boundary loading w , a map

(s, u) : [0, T ]→ [s0, L]×H1(Ω \ Γ )

for which there exists a sequence (sε,ν , uε,ν)ε,ν of irreversible viscoelastic evolutions satisfying
the same initial and boundary data, and such that

uε,ν ⇀ u

weakly in L2(0, T ;H1(Ω \ Γ )) and
sε,ν(t)→ s(t)

for every t ∈ [0, T ] as ε→ 0 and ν → 0 .

Theorem 2.6.5. For any s0 ∈ (0, L) , w ∈ C2([0, T ];H1(Ωs0)) and u0 satisfying (2.2), there
exists a vanishing viscosity evolution (s, u) .

Furthermore, any vanishing viscosity evolution is a rate-independent evolution.

Remark 2.6.6. It is clear that Theorem 2.6.3 is proved as soon as Theorem 2.6.5 is. The last
is achieved combining together a number of lemmas.

We will always write ε → 0 even in case ε = 0 . In this situation, it is understood that we
are considering the constant null sequence.

We start identifying a couple (s, u) candidate to satisfy De�nition 2.6.4; similarly to Sec-
tion 2.4, we use a compactness argument. For every ν > 0 and ε ≥ 0 , consider an irre-
versible viscoelastic evolution whose existence is assured by Theorem 2.4.2. By the estimates in
Lemma 2.4.9, the sequence (uε,ν)ε≥0,ν>0 is uniformly bounded in L2(0, T ;H1(Ω \ Γ )) . There-
fore there exists u ∈ L2(0, T ;H1(Ω \ Γ )) such that

uε,ν ⇀ u (2.53)

weakly in L2(0, T ;H1(Ω \ Γ )) as ε→ 0 and ν → 0 along suitable sequences.
Concerning the crack tip, Theorem 2.4.2 assures that the functions sε,ν are monotone non-

decreasing. Applying Helly's Theorem 1.7.9, there exist a further subsequence of the indices ε, ν
found in (2.53), and a function s ∈ BV ([0, T ]) , such that

sε,ν(t)→ s(t) (2.54)

for every t ∈ [0, T ] . The function s is non-decreasing since the functions sε,ν are, and by
pointwise convergence s(t) ∈ [s0, L] for every t ∈ [0, T ] . We can describe more in detail the
convergence:

Lemma 2.6.7. The sequence (sε,ν) is monotonically non-increasing with respect to ν , i.e.
sε,ν1(t) ≥ sε,ν2(t) for every t ∈ [0, T ] if 0 < ν1 < ν2 .

As a consequence, s is left-continuous.



2.6 The rate-independent evolution 45

Proof. Being s ∈ C1((0, Tf (s) ∪ (Tf (s), T )) , equality (2.42) holds true for every t ∈ [0, T ]
and not only a.e.; thereby sε,ν solves the Cauchy problem{

ṡε,ν(t) =
1

νd
[G(sε,ν(t), aw(t) + εbẇ(t))− c]

+

sε,ν(0) = s0.

If ν1 < ν2 , then sε,ν1 veri�es the di�erential inequality

ṡε,ν1(t) =
1

ν1d
[G(sε,ν1(t), aw(t) + εbẇ(t))− c]

+ ≥ 1

ν2d
[G(sε,ν1(t), aw(t) + εbẇ(t))− c]

+
.

By comparison results for di�erential equations (see [83, Theorem X.8]), we obtain sε,ν1(t) ≥
sε,ν2(t) .

The �rst part implies that s(t) ≥ sε,ν(t) for every t ∈ [0, T ] and every ε ≥ 0, ν > 0 . Assume
s(t) − s(t−) > α for some t ∈ (0, T ] and α > 0 ; then s(t) − s(τ) > α for τ < t . For any ε
and ν su�ciently small, s(t) − sε,ν(t) < α

2 , so that sε,ν(t) − sε,ν(τ) ≥ α
2 for any τ < t , in

contradiction to the continuity of sε,ν . �

Lemma 2.6.8. Up to subsequences, for a.e. t ∈ (0, T ) it is νṡε,ν(t)→ 0 as ν → 0 .

Proof. Lemma 2.4.6 for the functions sε,ν reads as νd‖ṡε,ν‖2L2(0,T ) ≤ C with C inde-
pendent of ν , so that νṡε,ν → 0 strongly in L2(0, T ) as ν → 0 . Then, up to a subsequence,
νṡε,ν(t)→ 0 for a.e. t ∈ (0, T ) . �

Lemma 2.6.9. Let t ∈ (0, T ) be a jump instant for s . Then there exist subsequences (not
relabelled) ε, ν → 0 and tε,ν ∈ (0, T ) such that

(1) tε,ν → t ;
(2) sε,ν(tε,ν)→ s(t−) ;
(3) G(sε,ν(tε,ν), aw(tε,ν) + εbẇ(tε,ν)) = c + νdṡε,ν(tε,ν) .

Similarly, there exists t̂ε,ν ∈ (0, T ) such that (1),(3) and
(2') sε,ν(t̂ε,ν)→ s(t+)

are satis�ed.

Proof. Let us discuss only the case s(t−) ; for the other, s(t+) , it is su�cient to argue
analogously.

We initially consider the case ε > 0 .
Claim: for every m ∈ N there exists ε(m), ν(m) > 0 such that for every 0 < ε ≤ ε(m), 0 <

ν ≤ ν(m) there exists tε,νm satisfying
(i) |tε,νm − t| < 1

m ;
(ii) |sε,ν(tε,νm )− s(t−)| < 1

m ;
(iii) G(sε,ν(tε,νm ), aw(tε,νm ) + εbẇ(tε,νm )) = c + νdṡε,ν(tε,νm ) .
If the claim holds true, then the lemma is proved. Indeed, without loss of generality we can

assume ε(m+ 1) < ε(m), ν(m+ 1) < ν(m) . If we set

tε,ν := tε,νm ⇐⇒ ε(m+ 1) < ε ≤ ε(m), ν(m+ 1) < ν ≤ ν(m)

then (1), (2), (3) are consequence of (i),(ii),(iii), respectively.
Proof of the claim. Fix m ∈ N such that 1

m < T − t . There exists α ∈ (0, 1
m ) such that

|s(t−) − s(τ)| < 1
3m for every t − α < τ < t . Fixed t̂ ∈ (t − α

2 , t) , there exist strictly positive
constants ε0(m), ν0(m) such that

|sε,ν(t̂)− s(t̂)| < 1

3m
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for every ε ≤ ε0(m), ν ≤ ν0(m) . De�ne

t̂ε,νm := sup{ξ ≥ t̂ : sε,ν(ξ) = sε,ν(t̂)}.

It is t̂ε,νm ≥ t̂ > t̂− α
2 > t− 1

m .
By contradiction, assume that there exists a subsequence (tj)j of (t̂ε,νm ) such that tj ≥ t+ 1

m .
Then sεj ,νj (ξ) = sεj ,νj (t̂) for every ξ ∈ [t̂, t+ 1

m ) ; in particular, sεj ,νj (t+ 1
2m ) = sεj ,νj (t̂) . Taking

the limit as εj , νj → 0 , we obtain

s(t+) ≤ s
(
t+

1

2m

)
= s(t̂) ≤ s(t−) < s(t+),

which is a contradiction. Hence there exists 0 < ε(m) ≤ ε0(m), 0 < ν(m) ≤ ν0(m) such that

t− 1

m
< t̂ε,νm < t+

1

m
(2.55)

for every ε ≤ ε(m), ν ≤ ν(m) .
By de�nition of t̂ε,νm , (2.55) and continuity of sε,ν , for every ε ≤ ε(m), ν ≤ ν(m) there exists

βε,ν > 0 such that

t̂ε,νm + βε,ν < t+
1

m
and 0 < sε,ν(t̂ε,νm + βε,ν)− sε,ν(t̂ε,νm ) <

1

3m
.

Being sε,ν ∈ C1((0, Tf (sε,ν)) ∪ (Tf (sε,ν), T )) , necessarily it holds ṡε,ν(tε,νm ) > 0 for some tε,νm ∈
(t̂ε,νm , t̂ε,νm + βε,ν) .

By choice of tε,νm , (i) is satis�ed.
By continuity of sε,ν , it is sε,ν(t̂ε,νm ) = sε,ν(t̂) and we have the chain of inequalities

|sε,ν(tε,νm )− s(t−)| ≤|sε,ν(tε,νm )− s(t̂)|+ |s(t̂)− s(t−)|

≤sε,ν(tε,νm )− sε,ν(t̂ε,νm ) + |sε,ν(t̂)− s(t̂)|+ 1

3m

≤ 1

3m
+

1

3m
+

1

3m
=

1

m

and (ii) is achieved.
Finally, since ṡε,ν(tε,νm ) > 0 , (iii) is a consequence of (2.35).

In case ε = 0 , the previous proof holds true by setting ε(m) = 0 for every m and t0,ν := t0,νm
if and only if ν(m+ 1) < ν ≤ ν(m) . �

Lemma 2.6.10. For every t ∈ [0, Tf (s)) it is G(s(t), aw(t)) ≤ c . If t ∈ (0, Tf (s)) is a non-
constancy instant for s , then G(s(t±), aw(t)) = c .

Proof. Without loss of generality, when t ∈ [0, Tf (s)) is �xed we can assume that t ∈
[0, Tf (sε,ν)) for ε, ν small enough, since sε,ν(t)→ s(t) < L .

As already noticed in the proof of Lemma 2.6.7, conditions (2.33)-(2.35) imply that the
irreversible viscoelastic evolutions are solutions to the ordinary di�erential equation

νdṡε,ν(t) = [G(sε,ν(t), aw(t) + εbẇ(t))− c]
+ (2.56)

for t ∈ [0, Tf (sε,ν)) . Fix t ∈ [0, Tf (s)) such that νṡε,ν(t)→ 0 when ε and ν vanish. Considering
the pointwise convergence (2.54) and the continuity properties of w (by assumption) and G (see
Proposition 2.3.1), from (2.56) we obtain

0 = [G(s(t), aw(t))− c]
+
. (2.57)
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Lemma 2.6.8 implies that (2.57) holds for a.e. t ∈ [0, Tf (s)) ; by left continuity of s , the equality
is veri�ed everywhere in [0, Tf (s)) . Finally, (2.57) is equivalent to (2.50), and the �rst part of
the statement is proved.

We point out that the inequality (2.50) and the continuity of G imply that

G(s(t+), aw(t)) ≤ c

for every t ∈ [0, Tf (s)) .
Let now t ∈ (0, Tf (s)) be a non-constancy instant for s . Assume �rst that t is a jump

instant for s and consider the sequence tε,ν de�ned in Lemma 2.6.9. Let us prove that

νṡε,ν(tε,ν)→ 0. (2.58)

By contradiction, assume that νṡε,ν(tε,ν) → α > 0 . By regularity of w and continuity of G
(Proposition 2.3.1),

0 = −G(sε,ν(tε,ν), aw(tε,ν) + εbẇ(tε,ν)) + c + νdṡε,ν(tε,ν)→ −G(s(t−), aw(t)) + c + dα,

so that G(s(t−), aw(t)) > c , in contradiction to (2.50) proved above. The regularity of w , the
continuity of G (Proposition 2.3.1) and (2.58) allow to conclude

0 = −G(sε,ν(tε,ν), aw(tε,ν) + εbẇ(tε,ν)) + c + νdṡε,ν(tε,ν)→ −G(s(t), aw(t)) + c,

i.e. we obtain the thesis, since s(t) = s(t−) by left continuity of s (Lemma 2.6.7).
Similarly for s(t+) , we have

νṡε,ν(t̂ε,ν)→ 0

and we deduce that

0 = −G(sε,ν(t̂ε,ν), aw(t̂ε,ν) + εbẇ(t̂ε,ν)) + c + νdṡε,ν(t̂ε,ν)→ −G(s(t+), aw(t)) + c.

Assume now that s is continuous at t and �x a neighbourhood U of t . Since s is not constant in
U , for ε, ν small enough sε,ν is not constant in U as well, so that ṡε,ν(tε,ν) > 0 for some tε,ν ∈
U ∩ (0, Tf (sε,ν)) . Considering a decreasing sequence of neighbourhoods of t converging to t , we
�nd a sequence tε,ν → t with ṡε,ν(tε,ν) > 0 . Since s is continuous at t , Lemma 1.7.10 implies
that sε,ν(tε,ν)→ s(t) . Arguing as in the previous case, we deduce that νṡε,ν(tε,ν)→ 0 . Thanks
to the regularity assumption on w , the continuity of G (Proposition 2.3.1) and Lemma 2.6.8, as
before we conclude that

0 = −G(sε,ν(tε,ν), aw(tε,ν) + εbẇ(tε,ν)) + c + νdṡε,ν(tε,ν)→ −G(s(t), aw(t)) + c ,

and the thesis is proved since s(t±) = s(t) . �

Lemma 2.6.11. Let t ∈ [0, Tf (s)) be such that

G(s(t), aw(t)) < c. (2.59)

Then s is di�erentiable at t and ṡ(t) = 0 .

Proof. By continuity of G and w , there exist η, δ0 > 0 such that G(σ, aw(τ)) < c for
σ ∈ [s(t) − 2η, s(t) + 2η] and τ ∈ [t − δ0, t + δ0] ∩ [0, T ] . Lemma 2.6.10 and (2.59) imply that
s is continuous at t , so that s(τ) ∈ [s(t) − η, s(t) + η] for τ ∈ [t − δ1, t + δ1] ∩ [0, T ] , for some
0 < δ1 ≤ δ0 .

By (2.54), it is sε,ν(t− δ1) ≥ s(t− δ1)− η and sε,ν(t+ δ1) ≤ s(t+ δ1) + η for every ε and
ν su�ciently small, say 0 ≤ ε < ε0 and 0 < ν < ν0 . Thus we have the chain of inequalities

s(t)− 2η ≤ s(t− δ1)− η ≤ sε,ν(t− δ1) ≤ sε,ν(τ) ≤ sε,ν(t+ δ1) ≤ s(t+ δ1) + η ≤ s(t) + 2η

for every τ ∈ [t− δ1, t+ δ1] ∩ [0, T ] . Consequently

G(sε,ν(τ), aw(τ)) < c
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for every τ ∈ [t− δ1, t+ δ1]∩ [0, T ] , 0 ≤ ε < ε0 and 0 < ν < ν0 . By the regularity of w and G ,
we further obtain that, for some 0 < ε1 ≤ ε0 ,

G(sε,ν(τ), aw(τ) + εbẇ(τ)) < c

for every τ ∈ [t− δ1, t+ δ1] ∩ [0, T ] , 0 ≤ ε < ε1 and 0 < ν < ν0 . Then (2.35) implies that

sε,ν(τ) = cε,ν ∈ [s0, L]

for every τ ∈ [t−δ1, t+δ1]∩[0, T ] . We deduce that the limit s is constant on [t−δ1, t+δ1]∩[0, T ] ,
so that it is di�erentiable at t and ṡ(t) = 0 . �

Lemma 2.6.12. It results uε,ν(t) ⇀ u(t) weakly in H1(Ω \ Γ ) for a.e. t ∈ [0, T ] . In addition,
u(t) ∈ H1(Ωs(t)) for a.e. t ∈ [0, T ] .

Proof. By the estimate (2.44), for every t ∈ [0, T ] there exists û(t) ∈ H1(Ω \ Γ ) such that
uε,ν(t) ⇀ û(t) as ε and ν vanish. Then, since (2.53) holds true, it has to be û(t) = u(t) for a.e.
t ∈ [0, T ] .

The second part of the statement can be proved arguing as in Lemma 2.4.5 at any t for
which the weak convergence uε,ν(t) ⇀ u(t) is satis�ed. �

Proof of Theorem 2.6.5. Consider the limit (s, u) de�ned by (2.54) and (2.53), respec-
tively. The couple (s, u) is then a vanishing viscosity evolution with initial condition (s0, u0)
and boundary loading w . The existence part of the theorem is proved.

Consider now any vanishing viscosity evolution with initial condition (s0, u0) and bound-
ary loading w , and let (sε,ν , uε,ν) be the correspondent approximating sequence of irreversible
viscoelastic evolutions. By Theorem 2.4.2, it is (sε,ν(0), uε,ν(0)) = (s0, u0) for every ε, ν , so
that the pointwise convergence (2.54) implies s(0) = s0 . Lemma 2.6.7 assures the left-continuity
for s .

The function u satis�es the boundary condition at a.e. instant since the functions uε,ν do
and Lemma 2.6.12 holds true. Therefore Condition 2.6.2.(ii) is proved.

In order to obtain Condition 2.6.2.(iii), argue as in Theorem 2.4.2 and use the fact that
ε∇u̇ε,ν converges strongly to 0 in L2(0, T ;L2(Ω \ Γ ;R2)) , because of (2.46).

Let now prove the weak version 2.6.2.(iv) of Gri�th's criterion. By construction, the func-
tion s is non-decreasing since the sε,ν are. Inequality (2.50) and the weak activation crite-
rion (2.51) are proved in Lemma 2.6.10. The condition (2.52) on the jump instant can be proved
as in [58, Theorem 5.1]. The last requirement has been obtained in Lemma 2.6.11.

Finally, to show Condition 2.6.2.(v) observe that if s is continuous at t , then G(s(·), aw(·))
is continuous at t too. If t is a jump instant for s , then

lim
τ→t
τ<t

G(s(τ), aw(τ)) = G(s(t−), aw(t)) = c = G(s(t+), aw(t)) = lim
τ→t
τ>t

G(s(τ), aw(τ))

where the equalities in the middle are due to (2.51). Therefore G(s(·), aw(·)) is continuous at
the jump instant of s as well. �

2.7. One-dimensional analysis

Inspired by the analyses proposed in [58, 70], we describe the evolution of the crack tip of
the vanishing viscosity evolutions (De�nition 2.6.4), highlighting the di�erent behaviour between
them and a general rate-independent evolution (De�nition 2.6.2). Indeed, the fact of being
approximated by irreversible viscoelastic evolutions provides interesting properties. We obtain a
one-dimensional analysis of a problem that in principle is in�nite dimensional, in the sense that
it is initially set in in�nite dimensional Sobolev spaces.
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In Subsection 2.7.1 an example shows the di�erent behaviour of the globally stable irre-
versible evolutions introduced in [48] and the vanishing viscosity ones.

First of all observe that, as suggested by Condition 2.6.2.(iv) in De�nition 2.6.2, the c-level
set of the energy release rate G plays an important role. For convenience, we introduce the
function V : [s0, L)× [0, T ]→ R de�ned as

V(σ, t) := G(σ, aw(t))− c (2.60)

and the sets

A0 := {(t, σ) ∈ [0, T ]× [s0, L) : V(σ, t) = 0}
= {(t, σ) ∈ [0, T ]× [s0, L) : G(σ, aw(t))− c = 0}

A+ := {(t, σ) ∈ [0, T ]× [s0, L) : V(σ, t) > 0}
= {(t, σ) ∈ [0, T ]× [s0, L) : G(σ, aw(t))− c > 0}

A− := {(t, σ) ∈ [0, T ]× [s0, L) : V(σ, t) < 0}
= {(t, σ) ∈ [0, T ]× [s0, L) : G(σ, aw(t))− c < 0} .

T0 t
s0

L

σ

A−

A−

A+

Figure 2. The sets A− , A+ and A0 for a su�ciently smooth energy release
rate G . A0 corresponds to the black line separating the gray region A− and
the white region A+ .

By De�nition 2.6.2, the properties of the crack tip function t 7→ s(t) of a rate-independent
evolution, translated in terms of the sets above, are:

• s is non-decreasing and left continuous, with s(0) = s0 ;
• (t, s(t)) ∈ A− ∪ A0 for every t ∈ [0, T ] ;
• if t is a non-constancy instant for s , then (t, s(t±)) ∈ A0 ;
• if t is a jump instant for s , then (t, σ) ∈ A0 ∪ A+ for every σ ∈ [s(t), s(t+)] ;
• the function t 7→ G(s(t), aw(t)) is continuous.

A priori a function with this behaviour is not unique, thus we really need to characterize the
class of vanishing viscosity evolutions.

It remains open the question whether sε,ν and s0,ν always converge to the same limit for
any reasonable G , when ε and ν vanish; the issue arises already at the level of the incremental
problems. However, if we assume su�cient regularity for the energy release rate G , we are able
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to give an answer. Let G be Lipschitz continuous with respect to both its variables. We already
obtained a partial result in Proposition 2.3.3; in order to prove the Lipschitz continuity with
respect to the fracture variable σ , we should assume more regularity for the boundary data and
for the pre-assigned crack path Γ . Proper assumptions can be deduced by comparison with the
result in [72, Appendix A.3]. In the following we will consider only the evolutions s0,ν , and not
the sε,ν with ε > 0 , since for a Lipschitz continuous G they both converge to the same limit
when ε, ν → 0 . Indeed, �rst of all we recall that sε,ν and s0,ν are solutions to the Cauchy
problems {

ṡε,ν(t) =
1

νd
[G(sε,ν(t), aw(t) + εbẇ(t))− c]

+

sε,ν(0) = s0

and {
ṡ0,ν(t) =

1

νd
V(s0,ν(t), t)+

s0,ν(0) = s0

(2.61)

respectively, where in (2.61) we used the de�nition (2.60). Being the function σ ∈ R 7→ σ+ =
sup{σ, 0} Lipschitz continuous with constant 1 and denoting by K the Lipschitz constant of G ,
we have

|sε,ν(t)− s0,ν(t)| ≤
∫ t

0

∣∣∣[G(sε,ν(τ), aw(τ) + εbẇ(τ))− c]
+ −

[
G(s0,ν(τ), aw(τ))− c

]+∣∣∣ dτ
≤
∫ t

0

∣∣G(sε,ν(τ), aw(τ) + εbẇ(τ))− G(s0,ν(τ), aw(τ))
∣∣ dτ

≤
∫ t

0

|G(sε,ν(τ), aw(τ) + εbẇ(τ))− G(sε,ν(τ), aw(τ))| dτ

+

∫ t

0

∣∣G(sε,ν(τ), aw(τ))− G(s0,ν(τ), aw(τ))
∣∣ dτ

≤εbK
∫ t

0

|ẇ(τ)| dτ +K

∫ t

0

∣∣sε,ν(τ)− s0,ν(τ)
∣∣ dτ

≤εbCTK +K

∫ t

0

∣∣sε,ν(τ)− s0,ν(τ)
∣∣ dτ.

Gronwall Lemma provides the inequality

|sε,ν(t)− s0,ν(t)| ≤ εbCKTeKt ≤ εbCKTeKT

uniformly in t and ν , so that the claim is proved.
We now describe all the possible behaviours of the crack tip function s of a vanishing

viscosity evolution at the initial instant. The propositions below can be seen as di�erent steps in
an algorithmic procedure. Since we need a bit of regularity, we assume A0 to be a C1 manifold
of dimension 1 .

Proposition 2.7.1. If there exists t ∈ (0, T ] such that [0, t)× {s0} ⊂ A− ∪A0 , then s(t) = s0

for t ∈ [0, t0] , where t0 := sup
{
t ∈ (0, T ] : [0, t)× {s0} ⊂ A− ∪ A0

}
.

Proof. By the regularity assumptions on G , the solution to (2.61) is unique. Since the
constant function s̄ ≡ s0 solves (2.61) in [0, t0) for every ν , then it results s0,ν(t) = s0 for
t ∈ [0, t0) . Being s pointwise limit of the s0,ν and left-continuous, we have the thesis. �
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Proposition 2.7.2. Assume there exist ζ > 0 and a continuous function σ̄ : [0, tσ̄] → [s0, L]
such that σ̄ is increasing, σ̄(0) = s0 and

{(t, σ̄(t)) : 0 < t < tσ̄} ⊂ A0 (2.62)

{(t, σ) : 0 < t < tσ̄, σ̄(t)− ζ < σ < σ̄(t)} ⊂ A+ (2.63)

{(t, σ) : 0 < t < tσ̄, σ̄(t) < σ < σ̄(t) + ζ} ⊂ A−. (2.64)

Then s(t) = σ̄(t) for every t ∈ [0, tσ̄] .

Remark 2.7.3. If G is regular enough, then (2.62)-(2.64) imply that

∂σG(σ̄(t), aw(t)) < 0

for every t ∈ (0, tσ̄) . Therefore the elastic bulk energy F (de�ned in Section 2.3 and corre-
sponding also to Eel in (1.16)) is convex along σ̄ , and the proposition states that the crack of
the vanishing viscosity evolution grows continuously where F is convex with respect to σ .

Proof. First we prove that s0,ν(t) ≤ σ̄(t) for every ν > 0 and t ∈ [0, tσ̄) , so that, by
pointwise convergence, s(t) ≤ σ̄(t) for every t ∈ [0, tσ̄] .

By contradiction, assume that for some ν0 there exists t ∈ (0, tσ̄) with s0,ν0(t) > σ̄(t) ,
and de�ne t0 := inf

{
t ∈ (0, tσ̄) : s0,ν0(t) > σ̄(t)

}
. There exists t1 ≥ t0 and δ > 0 such that

s0,ν0(t1) = σ̄(t1) , s0,ν0(t) > σ̄(t) and (t, s0,ν0(t)) ∈ A− for every t ∈ (t1, t1 + δ) (here we
used (2.64))). Then, for t ∈ (t1, t1 + δ) , we have

0 < σ̄(t)− σ̄(t1) < s0,ν0(t)− s0,ν0(t1) =
1

νd

∫ t

t1

V
(
s0,ν0(τ), τ

)+
dτ = 0,

which is a contradiction.
So far, we have obtained that s(t) ≤ σ̄(t) for every t ∈ [0, tσ̄] . De�ned

t̄ := sup {t ∈ [0, tσ̄] : s(τ) = σ̄(τ) for every 0 ≤ τ ≤ t} ,

the proof is complete if we show that t̄ = tσ̄ .
By contradiction, assume that t̄ < tσ̄ . The de�nition of t̄ implies the existence of t̃ ∈ (t̄, t̄+δ)

such that σ̄(t̃)− ζ < s(t̃) < σ̄(t̃) . Being s left continuous, for some δ̃ > 0 so that t̃− δ̃ > t̄ and
some 0 < η < ζ , the set

D :=
{

(t, σ) ∈ [0, tσ̄]× [s0, L) : t̃− δ̃ ≤ t ≤ t̃, s(t̃− δ̃)− η ≤ σ ≤ s(t)
}

satis�es D ⊂⊂ A+ . Therefore there exists C > 0 such that V ≥ C on D .
By pointwise convergence, there exists ν0 > 0 with s0,ν0(t̃ − δ̃) > s(t̃ − δ̃) − η . Since the

convergence of the s0,ν to s is monotone with respect to ν , the chain of inequalities

s(t̃− δ̃)− η < s0,ν0(t̃− δ̃) ≤ s0,ν(t̃− δ̃) ≤ s0,ν(t) ≤ s(t)

shows that (t, s0,ν(t)) ∈ D for every t ∈ [t̃− δ̃, t̃] and 0 < ν < ν0 . Then

s(t̃)− s(t̃− δ̃) + η > s0,ν(t̃)− s0,ν(t̃− δ̃) =
1

νd

∫ t̃

t̃−δ̃
V(s0,ν(τ), τ)+ dτ ≥ 1

νd
δ̃C → +∞

as ν → 0 , which is impossible.
Since the contradiction is due to the assumption t̄ < tσ̄ , it must be t̄ = tσ̄ , i.e. s(t) = σ̄(t)

for every t ∈ [0, tσ̄] . �

In the next proposition, we set min Ø = +∞ .
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Proposition 2.7.4. Assume there exists t ∈ (0, T ] such that (0, t)× {s0} ⊂ A+ and de�ne

s̄ := min
{
L,min

{
σ ∈ [s0, L] : (0, σ) ∈ A0

}}
.

Then

(1) if s̄ = s0 , then there exists a continuous increasing function

σ̄ : [0, tσ̄] ⊂ [0, T ]→ [s0, L]

with σ̄(0) = s0 , such that s = σ̄ for t ∈ [0, tσ̄] ;
(2) if s0 < s̄ < L , let

σ̄ : [0, tσ̄] ⊂ [0, T ]→ [s0, L]

be a monotone continuous function such that σ̄(0) = s̄ and (t, σ̄(t)) ∈ A0 for every
t ∈ [0, tσ̄] .
• If σ̄ is increasing, then s(t) = σ̄(t) for t ∈ (0, tσ̄) and s(0+) = σ̄(0) .
• If σ̄ is strictly decreasing, then s(t) = σ̄(0) for every t ∈ (0, t0) , where

t0 := sup
{
t ∈ (0, T ) : (0, t)× {σ̄(0)} ⊂ A− ∪ A0

}
,

and s(0+) = σ̄(0) = s̄ ;
(3) if s̄ = L , then s(t) = L for every t ∈ (0, T ] and, consequently, s(0+) = L .

Proof. Case (1): being s̄ = s0 and (0, t)× {s0} ⊂ A+ , the regularity of A0 implies the
existence of a branch σ̄ : [0, tσ̄] ⊂ [0, T ]→ [s0, L] of A0 such that σ̄(0) = s0 and σ̄ is increasing.
Then the proof is the same as for Proposition 2.7.2, since the geometry around σ̄ is described
by (2.62)-(2.63)-(2.64).

Case (2): �rst of all observe that, around σ̄ , conditions (2.62)-(2.63)-(2.64) hold true for
some ζ > 0 and there exists t̂ ≤ tσ̄ such that

B :=
{

(t, σ) : 0 ≤ t ≤ t̂, s0 ≤ σ < σ̄(t)
}
⊂ A+.

Assume �rst that σ̄ is strictly increasing. Arguing similarly to the �rst part of Proposi-
tion 2.7.2, we obtain that s0,ν(t) ≤ σ̄(t) for every t ∈ [0, tσ̄] , so that also s ≤ σ̄ in the same
interval. We now want to prove that the equality holds true.

By contradiction, assume there exists t̃ ∈ (0, tσ̄) with s(t̃) < σ̄(t̃) . Suppose �rst that t̃ < t̂ .
By left continuity of s (see Lemma 2.6.7) and σ̄ , there exists a small δ > 0 such that the set

D :=
{

(t, σ) : t ∈ [t̃− δ, t̃], s0 ≤ σ ≤ s(t)
}
⊂⊂ A+,

and consequently V ≥ C on D for some constant C > 0 . Since (t, s0,ν(t)) ∈ D for every
t ∈ [t̃− δ, t̃] and ν > 0 , it is

s(t̃)− s0 > s0,ν(t̃)− s0,ν(t̃− δ) =
1

νd

∫ t̃

t̃−δ
V(s0,ν(τ), τ)+ dτ ≥ 1

νd
Cδ → +∞

as ν → 0 . This is a contradiction; therefore s(t) = σ̄(t) for t ∈ (0, t̂) and t̃ ∈ [t̂, tσ̄) . Arguing
as in the second part of Proposition 2.7.2, we obtain again a contradiction. Hence we conclude
that it is s(t) = σ̄(t) for every t ∈ (0, tσ̄) and s(0+) = σ̄(0) .

If σ̄ is strictly decreasing, �rst of all we show the following facts:

(2.i) there exists ν0 such that for every 0 < ν < ν0 there exists tν ∈ (0, t̂) with s0,ν(tν) =
σ̄(tν) ;

(2.ii) the sequence tν is monotonically converging to 0 as ν ↘ 0 .
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By contradiction, assume that for every ν > 0 there exists a smaller index 0 < ν̃ < ν such
that for every t ∈ (0, t̂) it is s0,ν̃(t) < σ̄(t) . (Observe that s0,ν̃ cannot be larger than σ̄ in the
interval (0, t̂) , otherwise by continuity they would coincide at some instant since s0,ν̃(0) = s0 <
σ̄(0)). Therefore we obtain s(t) ≤ σ̄(t) for t ∈ (0, t̂) . Being s non-decreasing and σ̄ strictly
decreasing, it is s(t) < σ̄(t) for t ∈ [0, t̂ − δ] for some small δ > 0 . Consequently, for every
t ∈ [0, t̂− δ] and 0 < ν < ν0 it is

(t, s0,ν(t)) ∈ R :=
{

(t, σ) : 0 ≤ t ≤ t̂− δ, s0 ≤ σ ≤ s(t̂− δ)
}
⊂⊂ A+.

Since V ≥ C > 0 on R for some constant C , we obtain the contradiction

s(t̂− δ) ≥ s0,ν(t̂− δ) = s0 +
1

νd

∫ t̂−δ

0

V(s0,ν(τ), τ)+ dτ ≥ s0 +
1

νd
(t̂− δ)C → +∞

as ν → 0 . Hence (2.i) is proved.
Concerning (2.ii), �rstly we show that, if ν1 < ν2 , then tν1

≤ tν2
. Indeed, if it were tν1

> tν2
,

then we would have

σ̄(tν1
) = s0,ν1(tν1

) ≥ s0,ν1(tν2
) ≥ s0,ν2(tν2

) = σ̄(tν2
) > σ̄(tν1

),

where the �rst inequality is due to the monotonicity of the s0,ν and the second one to the fact
that s0,ν1 ≥ s0,ν2 .

Now we prove that tν ↘ 0 as ν ↘ 0 . By contradiction, assume that tν ↘ t̃ > 0 . For every
0 < ν < ν0 (ν0 selected at step (2.i)) it is

s0,ν(t̃) ≤ s0,ν(tν) = σ̄(tν)

and, taking the limit as ν → 0 , we get s(t̃) ≤ σ̄(t̃) . Then, by monotonicity of both s and σ̄ ,
s(t̃/2) < σ̄(t̃/2) . Being 0 < t̃ ≤ t̂ , for some C > 0 it is V(σ, t) ≥ C for every t ∈ [0, t̃/2] and
σ ∈ [s0, s(t̃/2)] . Repeating the same argument as before,

s(t̃/2) ≥ s0,ν(t̃/2) = s0 +
1

νd

∫ t̃/2

0

V(s0,ν(τ), τ)+ dτ ≥ s0 +
1

νd

t̃

2
C → +∞

as ν → 0 , which is a contradiction. Therefore tν ↘ 0 as ν ↘ 0 , so that (2.ii) is proved as well.
To prove the claim in case (2), observe that the geometry of A− in a neighbourhood of

(0, σ̄(0)) is the following: there exists τ̃ > 0 such that

B := {(t, σ) : 0 < t < τ̃ , σ̄(t) < σ < σ̄(0)} ⊂ A−.
For ν su�ciently small, tν < τ̃ and s0,ν has the form

s0,ν(t) =

 s0 +
1

νd

∫ t

0

V(s0,ν(τ), τ)+ dτ for t ∈ [0, tν)

s0,ν(tν) for t ∈ [tν , t0].

Indeed, with an argument similar to that in Proposition 2.7.1, the unique solution to the Cauchy
problem {

ϕ̇(t) =
1

νd
V(ϕ(t), t)+

ϕ(tν) = s0,ν(tν)

is ϕ ≡ s0,ν(tν) in [tν , t0] . Consider t < t0 and, by contradiction, let s(t) < σ̄(0) , so that
also s0,ν(t) < σ̄(0) for every ν . By (2.ii), tν → 0 and s0,ν(tν) = σ̄(tν) → σ̄(0) . Hence for ν
su�ciently small it is

tν < t and s0,ν(tν) > s0,ν(t),

which contradicts the monotonicity of s0,ν .
Hence s(t) = σ̄(t) for any 0 < t < t0 and, by consequence, s(0+) = σ̄(0) .
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Case (3): assuming that s̄ = L , there are two possibilities:

(3.i) A0 ∩ ({0} × [s0, L]) = Ø .
(3.ii) A0 ∩ ({0} × [s0, L]) = {(0, L)} .
If (3.i) is the case, the set A0 ∩ ([0, T ]× (s0, L)) is far away from the σ -axis, so that there

exists t̃ > 0 such that for any 0 < δ < t̃ the set [δ, t̃] × [s0, L) ⊂ A+ . Fix t ∈ (0, t̃) . By
contradiction, assume that s(t) < L . Since [t/2, t]× [s0, s(t)] ⊂⊂ A+ , by continuity of V there
exists C := C(t) > 0 such that V(σ, τ) ≥ C for every τ ∈ [t/2, t] and σ ∈ [s0, s(t)] . Then, since
s0 ≤ s0,ν(t) ≤ s(t) for every ν > 0 , we obtain

L− s0 > s(t)− s0 ≥ s0,ν(t)− s0,ν(t/2) =
1

νd

∫ t

t/2

V(s0,ν(τ), τ)+ dτ ≥ 1

νd
C
t

2
→ +∞

as ν → 0 , which is a contradiction. We proved that s(t) = L for every t ∈ (0, t̃) . Then s(t) = L
for every t ∈ (0, T ] and s(0+) = L .

In case (3.ii), there exists a monotone function σ̄ : [0, T ]→ [s0, L] with σ̄(0) = L . If σ̄ ≡ L ,
then the proof is the same as for (2) in case of an increasing function; if σ̄ is strictly decreasing,
argue as in (2) in case of a decreasing function. �

Remark 2.7.5. The above propositions provide a description of the evolution of the crack tip s
up to a time t̃ ∈ (0, T ] . If t̃ = T , then the function s is completely determined over [0, T ] ,
otherwise we have to proceed with the analysis. We are not going to prove any further result
since, up to modifying slightly the statements and the proofs of Propositions 2.7.1, 2.7.2, 2.7.4,
the behaviour of the solution has similar characterizations taking (t̃, s(t̃)) as starting point
instead of (0, s0) .

Remark 2.7.6. The approximation of the vanishing viscosity evolutions by irreversible vis-
coelastic evolutions plays a key role in the proofs of all the above propositions. In general, the
previous characterization is not achievable for a generic rate-independent evolution.

Let us assume more regularity for the c-level set of G , A0 . In addition to being a C1

manifold of dimension 1 , we require that

• ∇V(σ, t) 6= 0 for every (t, σ) ∈ A0 ;
• the singular set

S := {(t, σ) ∈ [0, T ]× [s0, L) : ∂σV(σ, t) = 0 or ∂tV(σ, t) = 0} ∩ A0

is �nite.

Applying the Implicit Function Theorem, there exist �nitely many curves

σi : (ti,1, ti,2) ⊂ (0, T )→ [0, L], i = 1, . . . , k,

such that

• for every i , σi is continuous and strictly monotone;
• for every i , the limits

σi(ti,1) := lim
t→(ti,1)+

σi(t) and σi(ti,2) := lim
t→(ti,2)−

σi(t)

exist and are �nite;
• set

A0
i := {(t, σi(t)) : t ∈ (ti,1, ti,2)}

the graph of σi , it is A0 = ∪ki=1A0
i , or, equivalently, A0 \ S = ∪ki=1A0

i .
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In addition, every σi veri�es one of the following inequalities for every t ∈ (ti,1, ti,2) :

∂σG(σi(t), aw(t)) < 0 or ∂σG(σi(t), aw(t)) > 0.

We are describing a geometry similar to the one in Figure 3.

T0 t

s0

L

σ

σ1

σ2

σ3
σ4

σ5

Figure 3. Plot of the c -level set of G , A0 , assuming that it is a C1 manifold
of dimension 1 with �nite singular set S .

As said, Propositions 2.7.1, 2.7.2 and 2.7.4 provide an �algorithmic� procedure. They can
be quickly adapted to the geometry described above, providing a description of the evolution
of t 7→ s(t) of the crack tip of a vanishing viscosity evolution up to an instant t̃ ∈ (0, T ] .
While Proposition 2.7.1 is still valid, the new statements for Propositions 2.7.2 and 2.7.4 are the
following ones.

Proposition 2.7.7. Assume there exists i ∈ {1, . . . , k} such that σi is strictly increasing,
ti,1 = 0 , σi(0) = s0 and ∂σG(σi(t), aw(t)) < 0 for every t . Then s(t) = σi(t) for every
t ∈ [0, ti,2] .

Proposition 2.7.8. Assume there exists t ∈ (0, T ] such that (0, t)× {s0} ⊂ A+ and de�ne

s̄ := min {L,min {σi(0) : 1 ≤ i ≤ k such that ti,1 = 0, σi(0) ≥ s0, ∂σG(σi(t), aw(t)) < 0}} .

Then

(1) if s̄ = s0 , then s(t) = σi(t) for every t ∈ (0, ti,2) , where i ∈ {1 . . . , k} is such
that σi(0) = s0 and ∂σG(σi(t), aw(t)) < 0 ;

(2) if s0 < s̄ < L , set

i0 := min {1 ≤ i ≤ k : ti,1 = 0 and σi(0) > s0} .

If σi0 is strictly increasing, then s(t) = σi0(t) for t ∈ (0, ti0,2) and s(0+) = σi0(0) .
If σi0 is strictly decreasing, then s(t) = σi0(0) for every t ∈ (0, t0) , where

t0 := sup
{
t ∈ (0, T ) : (0, t)× {σi0(0)} ⊂ A− ∪ A0

}
,

and s(0+) = σi0(0) ;
(3) if s̄ = L , then s(t) = L for every t ∈ (0, T ] and, consequently, s(0+) = L .
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2.7.1. An example. We present a geometrical setting in which the fracture evolution
selected by means of the vanishing viscosity construction jumps later than the globally stable
evolution obtained in [48]. We recall and use the example in [82, Section 7]. Toader & Zanini
deal with the antiplane 2-dimensional case with pre-assigned crack path Γ = γ([−L,L]) and
a monotone increasing loading w(t, x) = tψ(x) de�ned on the boundary ∂Ω of a bounded
connected open set Ω ⊂ R2 . When considering the case of linearized elasticity and monotone
increasing loadings w(t, x) = tψ(x) , the bulk energy F(σ,w(t)) in (2.24) has the special form

F(σ,w(t)) = t2E(σ) , (2.65)

where

E(σ) := min
{
‖∇u‖2 : u ∈ H1(Ω \ Γ (σ)), u = ψ on ∂DΩ

}
is the energy associated to the boundary loading w(1, x) = ψ(x) and the crack Γ (σ) =
γ([−L, σ]) . The quadratic dependence of F on t is due to the linear nature of the problem.
The total energy is then given by

t2E(σ) + σ , (2.66)

where Ed(σ) = σ is the crack energy (for convenience of exposition, we set the material toughness
c equal to 1).

In [82] Toader & Zanini construct a boundary loading ψ and a domain Ω in such a way
that the elastic energy functional

E : [s0, L] ⊂ [−L,L]→ R

is concave on some subinterval of [s0, L] . In particular, for any η > 0 they consider the domain

Ωη = B−2 ∪ T η ∪B2,

where B−2 and B2 are the balls of radius 1 and center in (−2, 0) and (2, 0) respectively,
T η = (−2 + cos η, 2− cos η)× (− sin η, sin η) , and a proper boundary loading ψη on ∂Ωη . The
crack path is Γ = [−3, 3]×{0} . The body is assumed to be fractured at time t = 0 , with initial
crack [−3,−2]× {0} , and for σ ∈ [−2, 3) set

Eη(σ) := min
{
‖∇u‖2 : u ∈ H1 (Ωη \ ([−3, σ]× 0)) , u = ψη on ∂Ωη

}
.

In this setting (see the discussion for (2.65)-(2.66)), the total energy at time t > 0 for the crack
[−3, σ]× {0} is

t2Eη(σ) + σ

and the function

σ ∈ [−2, 3) 7→ Eη(σ) ∈ R

is C2 . The sets A0,A−,A+ , de�ned at the beginning of the section, now take the form

A0
η =

{
(t, σ) ∈ [0, T ]× [−2, 3] : −t2E′η(σ) = 1

}
A−η =

{
(t, σ) ∈ [0, T ]× [−2, 3] : −t2E′η(σ) < 1

}
A+
η =

{
(t, σ) ∈ [0, T ]× [−2, 3] : −t2E′η(σ) > 1

}
.

In [82] the result on the concavity of Eη is achieved by showing the following three facts:

(i) lim supη→0+ Eη(2) is �nite;
(ii) lim infη→0+ Eη(−2) =∞ ;
(iii) lim supη→0+ E′η(−2) is �nite.
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Consequently, along a suitable sequence ηk → 0+ , it is

Eηk(−2) + E′ηk(−2)4 > Eηk(2),

proving that Eηk is necessarily concave in some subinterval of [−2, 2] .

ηΓ (σ)

−2 −1 0 1 2

Figure 4. The domain Ωη .

Let us call E0(σ) the elastic energy related to the case where Ω = B−2 , the crack set
is [−3, σ] × {0} for σ ∈ (−3,−1] and the boundary loading is sin(θ/2) , θ being the angular
coordinate between the x -axis and the center (−2, 0) of B−2 . In [82], using �rstly Irwin's
formula (1.20) relating the energy release rate and the stress intensity factor, and then an
integral characterization for the last, it is showed that for σ ∈ [−5/2,−3/2] we have

lim sup
η→0+

E′η(σ) = E′0(σ). (2.67)

In order to make clear that [−3,−2] × {0} is the initial crack, below we write s0 = −2 . Con-
sidering (i),(ii) and (2.67), take η0 > 0 such that for any 0 < η < η0 (belonging to a proper
subsequence)

Eη(s0) + (E′0(s0)− 1)(2− s0) > Eη(2) (2.68)∣∣E′η(s0)− E′0(s0)
∣∣ < 1

2
. (2.69)

By (2.69) and continuity of E′η and E′0 , for any η there exists sη > s0 such that

∣∣E′η(σ)− E′0(σ)
∣∣ < 1

2
(2.70)

for σ ∈ [s0, sη] .
As proved in [81], E0 is convex in an interval [s0, s1] ⊂ [s0, L] . Without loss of generality,

we can assume sη ≤ s1 . From (2.70) and convexity of E0 , we deduce

E′η(σ) > E′0(σ)− 1

2
≥ E′0(s0)− 1

2

for σ ∈ [s0, sη] , so that Lagrange Theorem implies

Eη(σ)− Eη(s0) = E′η(ξ)(σ − s0) ≥
(
E′0(s0)− 1

2

)
(σ − s0),
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Eη(σ)

Eη(−2)

Eη(2)

−2 σ2

1

(a)

Eη(σ)

Eη(−2)

Eη(2)

−2 σ2

1

(b)

Figure 5. Plot of two di�erent cases of the function Eη discussed in the ex-
ample: in the �gure (A), Eη is convex in a neighbouhood of −2 , while in (B) it
is concave. In principle, we do not know which is the situation, nevertheless for
η small enough the request (2.68) is satis�ed. The dotted line corresponds to
the slope E′0(−2)− 1

2 , while the dashed one is the tangent to Eη at −2 , whose
slope is larger than E′0(−2)− 1

2 , according to (2.69).

where the last inequality is due to the fact that ξ ∈ [s0, σ] . Considering (2.68) too, we obtain

Eη(σ) +

(
1

2
− E′0(s0)

)
σ ≥Eη(s0) +

(
1

2
− E′0(s0)

)
s0

>Eη(2) + (1− E′0(s0)) (2− s0) +

(
1

2
− E′0(s0)

)
s0

=Eη(2) +

(
1

2
− E′0(s0)

)
2 +

1

2
(2− s0).

De�ned t0 > 0 by
1

t20
=

1

2
− E′0(s0),

the above inequality becomes

Eη(σ) +
σ

t20
> Eη(2) +

2

t20
+

1

2
(2− s0) = Eη(2) +

2

t20
+ 2 (2.71)

for σ ∈ [s0, sη] . The map

(t, σ) 7→ Eη(σ) +
σ

t2
− Eη(2)− 2

t2

is continuous in a neighbourhood of {t0} × [s0, L) , thus by (2.71) we obtain

Eη(σ) +
σ

t2
> Eη(2) +

2

t2

for every t ∈ [tη, t0] and σ ∈ [s0, sη] , for some tη < t0 .
Let sG : [0, T ] → [s0, 3] be the globally stable quasi-static evolution. Since at each instant

it has to satisfy the global minimality condition

t2Eη(sG(t)) + sG(t) ≤ t2Eη(σ) + σ

for every σ ≥ sup0≤t′<t sG(t′) , the discussion above shows that sG(t) > sη for t ∈ [tη, T ] .
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Consider now η < η0 such that

E′η(s0) > E′0(s0)− 1

4
.

By choice of η0 , what we achieved above still holds true, in particular the result about the
globally stable quasi-static evolution sG . By continuity of E′η , there exists s0 < s̄η ≤ sη for
which

E′η(σ) > E′0(s0)− 1

2
for σ ∈ [s0, s̄η] . Then, when σ belongs to this interval and t ∈ (0, t0] , it is

−E′η(σ) <
1

2
− E′0(s0) =

1

t20
≤ 1

t2
.

In the formalism previously introduced, it is

[0, t0]× [s0, s̄η] ⊂ A−η .
Denoted by sV the vanishing viscosity evolution, the analysis at the beginning of the section
(Proposition 2.7.1) implies that sV (t) = s0 for t ∈ [0, t0] .

Summarizing, we have shown the existence of a domain Ωη and a boundary loading ψη
for which the globally stable quasi-static evolution performs a jump in the crack length strictly
before the vanishing viscosity evolution. Indeed, given the initial crack, [−3,−2] × {0} ⊂ Ωη ,
there exist sη ∈ (−2, L) , and 0 < tη < t0 < T such that

• the globally stable quasi-static evolution sG belongs to [−2, sη] for t ∈ [0, tη) and
jumps over sη at tη , i.e. sG(t) ∈ [−2, sη] for t ∈ [0, tη) and sG(t) > sη for t ∈ [tη, L]
• any vanishing viscosity evolution sV is constant on [0, t0] , with sV (t) = −2 .

Hence the results in this chapter are a contribution in the search for models of growth of
fractures in elastic bodies based on local minimization criteria, as discussed in Section 1.4.





CHAPTER 3

A variational model for the quasi-static growth

of fractional dimensional brittle fractures

The goal of this chapter is to prove the existence of variational evolutions of fractures with
fractional Hausdor� dimension, in the framework of two-dimensional brittle elasticity. The idea
is to model the growth of fractures in brittle materials that contain extremely fragile parts, which
allow the crack to develop along highly irregular paths.

The interest for this study lies mainly in two reasons. From the point of view of the ma-
thematical setting, the irregularity of cracks of fractional Hausdor� dimension suggests that the
approach to fracture mechanics by means of the theory of SBV functions is not omnicompre-
hensive. Indeed, if the displacements belong to suitable spaces of SBV -type and the fractures
are related to the jump sets of the displacements (see, e.g., [47, 34, 36]), then the cracks are
1 -recti�able, hence they cannot be too irregular. From the point of view of the modeling as-
sumptions, we aim at widening the range of validity of Gri�th energetic theory. Indeed, so far
the fracture energy of a crack K has been taken of the form∫

K

κ(x) dH1(x) , (3.1)

with the material toughness κ bounded both from above and from below:

0 < β1 ≤ κ(x) ≤ β2 < +∞ . (3.2)

The idea is to violate the lower bound in (3.2).
In this chapter we assume the cracks K to be subsets of a priori given curves K1, . . . ,KM ,

with Hausdor� dimension
dimH(Ki) = di > 1 ,

and, for a set K ⊂ K1 ∪ . . . ∪ KM , we consider a fracture dissipation energy of the form

L(K) = Hd1(K ∩ K1) + . . .+HdM (K ∩ KM ) .

By a time-discretization approach we prove (Theorem 3.2.3) the existence of a variational evo-
lution in the spirit of Francfort & Marigo. Then, by means of Γ -convergence, in Section 3.5 we
show, in case of a single curve K , how the crack energy L can be seen as limit of energies of the
form (3.1) when the lower bound in (3.2) is violated.

The results in this chapter are strictly related to the model studied in [38]. They have been
obtained in collaboration with Rodica Toader, and are contained in [78].

3.1. Admissible cracks and displacements

In this section we introduce the class of admissible fractional dimensional cracks and the
precise functional setting for the displacements.

Let Ω be a bounded connected open subset of R2 with Lipschitz boundary; it represents the
reference con�guration of a brittle elastic body in the antiplane shear case. We �x a relatively
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open (nonempty) subset ∂DΩ of ∂Ω , on which we will impose a Dirichlet boundary condition.
We set ∂NΩ = ∂Ω \ ∂DΩ ; on it a homogeneous Neumann boundary condition will be assumed
(in a weak sense).

3.1.1. Admissible cracks. We consider as admissible cracks compact subsets of curves of
non-integer Hausdor� dimension having an a priori bounded number of connected components.

The curves we have in mind are of the following type: given d ∈ (1, 2) , let γ : [0, 1] → R2

be a continuous curve such that for some constants c, L > 0 it holds

1

c
|a− b|1/d ≤ |γ(a)− γ(b)| ≤ c|a− b|1/d (3.3)

and

Hd(γ(a, b)) = L(b− a) (3.4)

for any 0 ≤ a < b ≤ 1 .
If K := γ([0, 1]) , then 0 < Hd(K) < +∞ .
As an explicit example of a set K of the above form, in Section 3.7 we construct a natural

parametrization for the von Koch curve, for which d = log 4/ log 3 .

Remark 3.1.1. By (3.3), the function γ : [0, 1] → K is invertible with continuous inverse.
Hence, if K is a compact connected subset of K there exist a, b ∈ [0, 1] such that K = γ([a, b]) .

We �x a �nite number of sets K1 , . . . ,KM contained in Ω with the property that, for each
m ∈ {1, . . . ,M} , there exists dm ∈ [1, 2[ such that Km is parametrized by a continuous function
γm : [0, 1]→ Km satisfying (3.3) with d = dm and some positive constants cm , Lm , and

Hdm(γm([a, b])) = Lm(b− a) ∀a, b ∈ [0, 1], a ≤ b . (3.5)

Moreover we assume that

dimH(Km1
∩ Km2

) < min{dimH(Km1
) ,dimH(Km2

)} ∀m1 6= m2 . (3.6)

The class Cp of admissible cracks is

Cp :=
{
K ⊂

M⋃
m=1

Km : K nonempty compact set with at most p connected components
}
.

Note that each connected component of an admissible crack K may contain �pieces" of di�erent
Hausdor� dimension.

On this class we will consider the convergence with respect to the Hausdor� distance, recalled
in Subsection 1.7.1.

We de�ne the set function

L(K) := Hd1(K ∩ K1) + . . .+HdM (K ∩ KM ) , (3.7)

that will correspond to the fracture dissipation energy. Notice that, by (3.6),

Hdm(K ∩ Km) = Hdm
(
K \

⋃
n 6=m
Kn
)

for any subset K and m = 1, . . . ,M .
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3.1.2. Admissible displacements. In the antiplane shear case the body undergoes a
deformation of the form

(x, z) ∈ Ω× R 7→ (x, z + u(x))

so that we are led to consider only the out-of-plane component of the displacement, the scalar
function u : Ω→ R . In this situation, if on ∂DΩ we impose a bounded displacement g ∈ H1(Ω)∩
L∞(Ω) , by a truncation argument we may deduce that the minimizers of the elastic energy
W(u,K) =

∫
Ω\K |∇u|

2dx belong to the Sobolev space H1(Ω \K) . However, in our setting the
cracks K ∈ Cp are so irregular that, even if they do not disconnect the domain, the H1 regularity
of the boundary datum is not necessarily inherited by the admissible displacements. Therefore
we will consider g ∈ H1(Ω) (not necessarily bounded) and we will use for the displacements the
Deny-Lions space introduced in [40], de�ned, for any open set A ⊂ R2 , by

L1,2(A) := {u ∈ L2
loc(A) : ∇u ∈ L2(A;R2)} .

The main properties of the space L1,2(A) are recalled in Subsection 1.7.2.
See Subsection 1.7.2 also for the notion of capacity and the notation q.e., abbreviation of

quasi everywhere.

3.2. Irreversible quasi-static evolution

For every compact set K ∈ Cp and every g ∈ H1(Ω) we consider the minimum elastic energy
of the unfractured part of the body, given by

E(g,K) := min
v∈V(g,K)

∫
Ω\K
|∇v|2dx , (3.8)

where
V(g,K) := {v ∈ L1,2(Ω \K) : v = g q.e. on ∂DΩ } . (3.9)

According to Gri�th's theory, the dissipation energy is proportional to the �length� of the crack,
i.e. to the number of broken atomic bonds; in our setting it is given by the functional L de�ned
in (3.7). Consequently, the total energy of the system is

E(g,K) := E(g,K) + L(K) . (3.10)

Remark 3.2.1. The minimum problem (3.8) admits a solution u ∈ V(g,K) . Indeed, by stan-
dard arguments on the minimization of quadratic forms it is easy to see that u is a solution of
(3.8) if and only if it solves the problem

∆u = 0 in Ω \K
u = g on ∂DΩ

∂u
∂ν = 0 on K ∪ ∂NΩ .

(3.11)

Due to the irregularity of K it is clear that the Neumann boundary condition cannot be satis�ed
in the classical sense. By a solution of (3.11) we mean a function u which satis�es the following
conditions: {

u ∈ L1,2(Ω \K) , u = g q.e. on ∂DΩ ,

〈∇u,∇z〉 = 0 ∀z ∈ L1,2(Ω \K) , z = 0 q.e. on ∂DΩ .
(3.12)

The existence of a solution is assured by the Lax-Milgram lemma. We underline that uniqueness
is guaranteed only in the connected components of Ω\K whose boundary intersects ∂DΩ ; in the
connected components for which this is not the case, the solution can be any arbitrary constant,
therefore uniqueness is lost. However, ∇u is always unique.
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Moreover, the map g 7→ ∇u is linear from H1(Ω) into L2(Ω \ K;R2) and satis�es the
estimate ∫

Ω\K
|∇u|2 dx ≤

∫
Ω

|∇g|2 dx .

Given a time-dependent boundary displacement t 7→ g(t) , we consider quasi-static evolutions
of global minimizers, similar to those introduced in De�nition 1.4.1, for which an irreversibility
condition and an energy balance condition hold.

De�nition 3.2.2. Given T > 0 and g ∈ AC([0, T ];H1(Ω)) , we say that a map K : [0, T ]→ Cp
is an irreversible quasi-static evolution on [0, T ] with imposed boundary condition g if it satis�es
the following conditions:

(I) irreversibility: K(s) ⊆ K(t) for 0 ≤ s ≤ t ≤ T ,
(GS) global stability: for every t ∈ [0, T ]

E(g(t),K(t)) ≤ E(g(t),K)

for every K ∈ Cp , K ⊇ K(t) ,
(EB) energy balance: for every s, t with 0 ≤ s < t ≤ T

E(g(t),K(t)) = E(g(s),K(s)) + 2

∫ t

s

〈∇u(τ),∇ġ(τ)〉 dτ ,

where u(τ) is a solution of the minimum problem (3.8) which de�nes E(g(τ),K(τ)) .

This derivative-free form of the problem is an energetic formulation in the sense of Mielke
[66], in which the irreversibility condition can be enclosed in the description of the process by
means of the so-called dissipation distance (see Subsection 1.4.1).

We now state the main result of the paper.

Theorem 3.2.3. Let T > 0 and g ∈ AC([0, T ];H1(Ω)) . Let p ≥ 1 and K0 ∈ Cp . Then there
exists an irreversible quasi-static evolution K : [0, T ]→ Cp such that K0 ⊆ K(0) and

E(g(0),K(0)) ≤ E(g(0),K) (3.13)

for every K ∈ Cp with K ⊇ K0 .

3.3. Properties of sets in Cp and lower semicontinuity of L

In this section we prove some geometrical, topological and metric properties for the class Cp ,
the lower semicontinuity of the functional L , and an approximation result for sets in Cp that will
play an important role in the proof of the global minimality conditions (GS) in De�nition 3.2.2
and of (3.13). We begin by showing the (sequential) compactness of the class Cp .

Proposition 3.3.1. If (Kn) is a sequence in Cp , then there exists a subsequence which converges
to a set K ∈ Cp in the Hausdor� distance.

Proof. By Blaschke Selection Theorem 1.7.1, there exists a subsequence (not relabelled)
converging to a nonempty compact set K . As all Kn are contained in the union K1 ∪ . . .∪KM ,
also the limit K is. A simple contradiction argument is enough to prove that the number of
connected components of K is at most p . �

We now establish some results on the lower semicontinuity of the Hausdor� measures Hd
(and of the functional L) with respect to the Hausdor� convergence in Cp .
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Proposition 3.3.2. Let (Kn) be a sequence of closed connected nonempty subsets of K1 con-
verging to K in the Hausdor� metric. Then for every open set U ⊂ Ω it holds

Hd1(K ∩ U) ≤ lim inf
n→+∞

Hd1(Kn ∩ U). (3.14)

Proof. The set K1 ∩ U is made of at most countable many connected components K̂i , of
the form

K̂i = γ1(Ii)

with Ii ⊂ [0, 1] an interval, and Ii ∩ Ij = Ø for i 6= j .
Let Kn = γ1([an, bn]) and K = γ1([a, b]) . Then Kn ∩ K̂i = γ1([an, bn] ∩ Ii) and K ∩ K̂i =

γ1([a, b] ∩ Ii) . By the Hausdor� convergence and (3.3) (with d = d1 ) we have an → a and
bn → b .

For every i ∈ N , by (3.5) it holds

Hd1(K ∩ K̂i) = lim
n→+∞

Hd1(Kn ∩ K̂i).

Therefore for every N ∈ N we have

Hd1(K ∩
N⋃
i=1

K̂i) =

N∑
i=1

Hd1(K ∩ K̂i) =

N∑
i=1

lim
n→+∞

Hd1(Kn ∩ K̂i)

= lim
n→+∞

Hd1(Kn ∩
N⋃
i=1

K̂i)

≤ lim inf
n→+∞

Hd1(Kn ∩ U).

As N →∞ , we obtain (3.14). �

Proposition 3.3.3. Let (Kn) be a sequence in C1 converging to K in the Hausdor� metric.
Then

L(K) ≤ lim inf
n→+∞

L(Kn) .

Proof. For simplicity, we consider the case M = 2 . We have to prove that

Hd1(K ∩ K1) +Hd2(K ∩ K2) ≤ lim inf
n→+∞

(
Hd1(Kn ∩ K1) +Hd2(Kn ∩ K2)

)
.

If either Kn ⊂ K1 for all n large enough, or Kn ⊂ K2 , the result follows by Proposition 3.3.2
with U = Ω .

Assume now that Kn \ K1 6= Ø 6= Kn \ K2 for all n large. We �rst prove that

Hd1(K \ K2) ≤ lim inf
n→+∞

Hd1(Kn \ K2) . (3.15)

For every ε > 0 , consider the open set

Uε := {x ∈ R2 : dist(x,K2) < ε} .

Let V be an open set with V ⊂⊂ R2 \ Uε , and de�ne δ := dist(V, ∂Uε) . We claim that the
number of connected components C of Kn \ Uε that intersect V is uniformly bounded with
respect to n . Indeed, if C ∩ ∂Uε 6= Ø , then by (3.3) and the fact that C ⊂ K1 it is

L1

c1
δd1 ≤ Hd1(C) ≤ L1.

Hence the number of these connected components is at most c1/δd1 . If C ∩ ∂Uε = Ø , then
C ⊂ K1 \ K2 and it is a connected component of Kn , so that actually C = Kn .
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Let F 1
n , . . . , F

Nn
n be the connected components of Kn \Uε which intersect V . Up to subse-

quences, we can assume that Nn = N ≤ 1 + c1/δ
d1 for every n and F in → F i in the Hausdor�

metric, for i = 1, . . . , N . Notice that

K ∩ V ⊂ F 1 ∪ . . . ∪ FN .

Indeed, if x ∈ K ∩ V there exists xn ∈ Kn converging to x . For n large enough, xn ∈ V , so
that xn ∈ F inn for some i ∈ {1, . . . , N} . Therefore, there exists i such that in = i for in�nitely
many n , hence x ∈ F i .

By the fact that F in and F i verify the hypotheses of Proposition 3.3.2, and for any �xed n
the curves F in are pairwise disjoint, we have

Hd1(K ∩ V ) ≤
N∑
i=1

Hd1(F i) ≤
N∑
i=1

lim inf
n→+∞

Hd1(F in)

≤ lim inf
n→+∞

Hd1(F 1
n ∪ . . . ∪ FNn ) ≤ lim inf

n→+∞
Hd1(Kn \ Uε)

≤ lim inf
n→+∞

Hd1(Kn \ K2) .

As V ↗ R2 \ K2 , we obtain (3.15).
Of course, in an analogous way we can prove that

Hd2(K \ K1) ≤ lim inf
n→+∞

Hd2(Kn \ K1) .

Being Hdj (K1 ∩ K2) = 0 for j = 1, 2 by (3.6), we can conclude that

Hd1(K ∩ K1) +Hd2(K ∩ K2) =Hd1(K \ K2) +Hd2(K \ K1)

≤ lim inf
n→+∞

Hd1(Kn \ K2) + lim inf
n→+∞

Hd2(Kn \ K1)

≤ lim inf
n→+∞

(
Hd1(Kn \ K2) +Hd2(Kn \ K1)

)
= lim inf
n→+∞

(
Hd1(Kn ∩ K1) +Hd2(Kn ∩ K2)

)
.

The general case can be proved similarly. �

Corollary 3.3.4. Let (Kn) be a sequence in Cp that converges in the Hausdor� metric to a set
K , and let U ⊂ Ω be an open set. Then

L(K ∩ U) ≤ lim inf
n→+∞

L(Kn ∩ U) . (3.16)

Proof. For simplicity we consider the case when M = 2 and the sets Kn are connected.
We have to show that for every open set U ⊂ Ω it holds

Hd1(K∩ K1∩ U)+Hd2(K∩ K2∩ U) ≤ lim inf
n→+∞

(Hd1(Kn∩ K1∩ U)+Hd2(Kn∩ K2∩ U)) . (3.17)

Consider V1 and V2 open sets, such that V1 ⊂⊂ V2 ⊂⊂ U . Arguing as in the proof of Proposi-
tion 3.3.3, the number of connected components F 1

n , . . . , F
Nn
n of Kn ∩ V2 which intersect V1 is

uniformly bounded. As before, we can assume that Nn = N and

K ∩ V1 ⊂ F 1 ∪ . . . ∪ FN , ,
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where F i is the limit of F in in the Hausdor� metric as n → +∞ , for i = 1, . . . , N . Observe
that the sequences (F in) satisfy the hypotheses of Proposition 3.3.3. Then we have

Hd1(K ∩ K1 ∩ V1) +Hd2(K∩K2 ∩ V1) ≤
N∑
i=1

Hd1(F i ∩ K1) +Hd2(F i ∩ K2)

≤
N∑
i=1

lim inf
n→+∞

(
Hd1(F in ∩ K1) +Hd2(F in ∩ K2)

)
≤ lim inf
n→+∞

(
Hd1

( N⋃
i=1

F in ∩ K1

)
+Hd2

( N⋃
i=1

F in ∩ K2

))
≤ lim inf
n→+∞

(
Hd1(Kn ∩ K1 ∩ U) +Hd2(Kn ∩ K2 ∩ U)

)
.

As V1 ↗ U , we obtain (3.17). �

Corollary 3.3.5. Let (Kn) be a sequence in Cp converging to K in the Hausdor� metric. Let
(Hn) be a sequence of compact sets converging to H in the Hausdor� metric. Then

L(K \H) ≤ lim inf
n→+∞

L(Kn \Hn) .

Proof. For every ε > 0 , let Uε := {x ∈ R2 : dist(x,H) < ε} . Since, for n large, Hn ⊂ Uε ,
it is Kn \ Uε ⊂ Kn \Hn . By Corollary 3.3.4 with U = R2 \ Uε , we have

L(K \ Uε) ≤ lim inf
n→+∞

L(Kn \ Uε) ≤ lim inf
n→+∞

L(Kn \Hn).

The thesis follows letting ε→ 0 . �

We need to establish a connection between some topological and measure properties of
elements in Cp , which will be useful in the proof of Theorem 3.4.1 on the continuity of minimizers
of (3.8) as K varies in Cp .

Lemma 3.3.6. Let K ∈ C1 with L(K) = 0 . Then K = {x} .

Proof. For simplicity, assume M = 2 . If K ⊂ K1 or K ⊂ K2 the conclusion follows from
Remark 3.1.1 and (3.5).

Assume now that
K \ K1 6= Ø 6= K \ K2 (3.18)

and let
Uε := {x ∈ R2 : dist(x,K2) < ε} .

Notice that there exists ε > 0 such that K \ Uε 6= Ø . Indeed, otherwise K ⊂
⋂
ε>0 Uε = K2

which contradicts K \ K2 6= Ø . As K ∩ K2 6= Ø we have also K ∩ Uε/2 6= Ø . Since K is
connected we deduce that there exists a connected subset C of K which intersects both ∂Uε
and ∂Uε/2 (otherwise K would have at least two connected components). Then C ⊂ K1 and
diamC > ε/2 . By (3.5) we have Hd1(C) > 0 , in contradiction with L(K) = 0 . This shows
that (3.18) cannot happen, therefore either K \ K1 = Ø or K \ K2 = Ø , which is the situation
considered at the beginning of the proof. �

Lemma 3.3.7. For every l > 0 there exists a constant Cl > 0 such that, if K ∈ C1 with
diamK > l , then L(K) > Cl .
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Proof. By contradiction, assume that there exists l > 0 such that, for every n ∈ N , there
exists Kn ∈ C1 , with diamKn > l and L(Kn) ≤ 1/n .

Up to subsequences, by Proposition 3.3.1 we can assume that (Kn) converges to a set K ∈ C1
in the Hausdor� metric. By the lower semicontinuity of L (Proposition 3.3.3), we have

L(K) ≤ lim inf
n→+∞

L(Kn) = 0 .

Then Lemma 3.3.6 implies that K is a singleton: K = {z} .
On the other hand, since diamKn > l there exists xn, yn ∈ Kn with

|xn − yn| > l . (3.19)

By Hausdor� convergence it is xn, yn → z , which is clearly a contradiction to (3.19). �

In [73, �2.2] the following de�nition is given.

De�nition 3.3.8. A closed set A ⊂ R2 is locally connected if for every ε > 0 there exists δ > 0
such that, for any two points x, y ∈ A with |x− y| < δ we can �nd a continuum (i.e. compact
connected set) B with x, y ∈ B ⊂ A , diamB < ε .

Lemma 3.3.9. If K ∈ Cp then K is locally connected.

Proof. We follow the proof of [25, Lemma 1]. It is enough to prove the result for a single
connected component of K , since we can choose δ in De�nition 3.3.8 smaller than the distance
between two connected components. Assume by contradiction that K is not locally connected;
hence there exists ε > 0 such that for every n ∈ N there exist xn , yn ∈ K with |xn − yn| < 1

n
with the property that any continuum B ⊂ K connecting xn to yn must have diamB > ε .
Note that such an ε is necessarily less than diamK . Up to subsequences, we may assume that
limn xn = limn yn = z ∈ K , xn ∈ Km1

, and yn ∈ Km2
. Then z ∈ Km1

∩ Km2
.

For n large enough xn, yn ∈ B(z, ε2 ) . Let X̃n be the connected component of K ∩B(z, ε2 )

that contains xn and Ỹn the one containing yn . Then X̃n ∩ Ỹn = Ø (otherwise X̃n ∪ Ỹn would
be a continuum connecting xn and yn of diameter less than ε), therefore either z /∈ X̃n or
z /∈ Ỹn . Assume z /∈ X̃n for in�nitely many indices n . As K is connected and diamK > ε ,
X̃n ∩ ∂B(z, ε2 ) 6= Ø . Since xn → z , for n large enough X̃n ∩B(z, ε4 ) 6= Ø . Thus diam X̃n > ε/4

and by Lemma 3.3.7, we have L(X̃n) > Cε > 0 for every n . Since, except for a �nite number,
the sets X̃n are pairwise disjoint, we deduce that L(K) = +∞ , which is impossible since
K ∈ Cp . �

The following approximation results for sets in Cp are in the spirit of [38, Lemmas 3.5-3.8].
In case their proof is only slightly di�erent, we remark the di�erences and refer to [38] for the
core of it.

Lemma 3.3.10. Let p, q ≥ 1 . Let (Hn) be a sequence in Cp converging to H in the Hausdor�
metric, and let K ∈ Cq be such that H ⊂ K . Then there exists a sequence (Kn) in Cq such
that it converges to K in the Hausdor� metric, Hn ⊂ Kn and L(Kn \Hn)→ L(K \H) .

Its proof is a direct consequence of Lemma 3.3.14 below, for which we need some prelimi-
naries.

Lemma 3.3.11. Let (Hn) be a sequence in Cp converging to H in the Hausdor� metric, with

H ∈ C1 . Then there exist a sequence (Ĥn) in C1 such that Hn ⊂ Ĥn , Ĥn → H in the Hausdor�

metric and L(Ĥn \Hn)→ 0 .
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Proof. Without loss of generality, we may assume that all the sets Hn have exactly q ≤ p
connected components H1

n, . . . H
q
n with Hi

n converging to H̃i in the Hausdor� metric, for i =

1, . . . , q , with H̃i ∈ C1 ; of course, H = H̃1 ∪ . . . ∪ H̃q .
Being H connected, there exists a �nite set of indices (σi)1≤i≤l such that {σ1, . . . , σl} =

{1, . . . , q} and H̃σi ∩ H̃σi+1 6= Ø for every i = 1, . . . , l − 1 . Fixed a point xi ∈ H̃σi ∩ H̃σi+1 for
every i = 1, . . . , l − 1 , consider xin ∈ Hσi

n and yin ∈ H
σi+1
n with xin, y

i
n → xi as n→ +∞ .

Fix i ∈ {1, . . . , l} . For every m = 1, . . . ,M , let

Im := {n ∈ N : xin ∈ Km}.
For m with Im in�nite, it is xi ∈ Km . For such indices m and for every n ∈ Im consider
the arc Xi

n ⊂ Km connecting xin and xi . Then, by (3.4) and (3.3), we have that Hdm(Xi
n) ≤

cm|xin − xi|dm , with cm independent of i and n . Hence Hdm(Xi
n)→ 0 as n→ +∞ .

Similarly, de�ned Jm for the points yin , we choose the sets Y
i
n . Finally we set

Ĥn := Hn ∪
l−1⋃
i=1

Xi
n ∪

l−1⋃
i=1

Y in .

By Lemma 3.3.7 we obtain that Xi
n and Y in converge to {xi} in the Hausdor� metric, so that

Ĥn → H ; in addition L(Ĥn \Hn)→ 0 . Finally, being

Ĥn = Hσ1
n ∪X1

n ∪ Y 1
n ∪Hσ2

n ∪ . . . ∪Hσl−1
n ∪X l−1

n ∪ Y l−1
n ∪Hσl

n ,

the sets Ĥn are connected and contained in
⋃
m=1,...,M Km , i.e Ĥn ∈ C1 . �

Lemma 3.3.12. If C is a connected subset of K1 ∪ . . . ∪ KM , then L(C) = L(C) .

Proof. For simplicity, we assume M = 2 . If C ⊂ K1 , then by Remark 3.1.1 C = γ1(I) ,
where I ⊂ [0, 1] is an interval of the form (a, b) , [a, b) , (a, b] or [a, b] . By (3.4), the thesis
follows. The case C ⊂ K2 is analogous.

For every ε > 0 let Uε := {x ∈ Ω : dist(x,K2) < ε} . Arguing as in the proof of Proposi-
tion 3.3.3, the number of connected components F of C \K2 such that F ∩K2 6= Ø 6= F \Uε is
�nite, say Nε . Note that C \Uε ⊂

⋃Nε
i=1 F i . In addition, by construction Fi ⊂ K1 , Fi ∩Fj = Ø

for i 6= j , and Hd1(F i) = Hd1(Fi) by the previous part. Then we have

Hd1(C \ Uε) ≤
Nε∑
i=1

Hd1(F i) =

Nε∑
i=1

Hd1(Fi) ≤ Hd1(C \ K2) .

As ε→ 0 , we obtain Hd1(C \ K2) ≤ Hd1(C \ K2) ; hence the equality holds.
Similarly, we have Hd2(C \K1) ≤ Hd2(C \K1) . Recalling the de�nition (3.7) of L , and (3.6),

the thesis follows. �

Lemma 3.3.13. Let K ∈ C1 and H ⊂ K be a compact set with p ≥ 2 connected components
H1, . . . ,Hp . Then there exists a family of indices (σj)0≤j≤l , with {σ0, . . . , σl} = {1, . . . , p} ,
and a family (Γj)0≤j≤l of connected components of K \H , such that Γj connects Hσj−1 with
Hσj for 1 ≤ j ≤ l .

Proof. It is enough to argue as in [38, Lemma 3.7], noticing that: by Lemma 3.3.9 the set
K is locally connected; by Lemma 3.3.12 it is L(Cn) = L(Cn) , where Cn are de�ned in the
cited result. �

Lemma 3.3.14. Let (Hn) be a sequence in Cp converging to H in the Hausdor� metric, and
let K ∈ C1 be such that H ⊂ K . Then there exists a sequence (Kn) in C1 such that (Kn)
converges to K in the Hausdor� metric, Hn ⊂ Kn and L(Kn \Hn)→ L(K \H) .
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Proof. Following the strategy of [38, Lemma 3.8], apply Lemma 3.3.13, Lemma 3.3.11,
Lemma 3.3.12 and Corollary 3.3.5 instead of Lemma 3.7, Lemma 3.6, Proposition 2.5 and Corol-
lary 3.4 in [38], respectively. In the construction of the sets corresponding to Xj

n , Y
j
n and Zin

in [38], it is enough to argue as in Lemma 3.3.11. �

3.4. Proof of the main result

In this section we prove the existence of a quasi-static evolution for cracks in Cp , satisfying
the global minimality condition and the energy balance (Theorem 3.2.3), by the usual time
discretization procedure described in Section 1.6. We follow the steps of [38].

We shall need the following result on the convergence of the minimum points of prob-
lems (3.8) corresponding to converging sequences in Cp . The statement is completely analogous
to that of Theorem 1.7.6, but we cannot directly apply the cited result since it is valid in case
of sets of Hausdor� dimension 1 ; however, considering the properties of Cp proved in Section
3.3, the proof follows the same steps as for Theorem 1.7.6 (or [38, Theorem 5.1]), as explained
below.

Theorem 3.4.1. Let (Kn) be a sequence in Cp converging to K in the Hausdor� distance, and
let (gn) be a sequence in H1(Ω) which converges to g strongly in H1(Ω) . Let un be a solution
of the minimum problem

E(gn,Kn) = min
v∈V(gn,Kn)

∫
Ω\Kn

|∇v|2 dx ,

and let u be a solution of the minimum problem (3.8)

E(g,K) = min
v∈V(g,K)

∫
Ω\K
|∇v|2 dx ,

where V(gn,Kn) and V(g,K) are de�ned by (3.9). Then ∇un → ∇u strongly in L2(Ω;R2) .

Proof. The proof can be done in the same manner as for [38, Theorem 5.1], as long as
we check that the key facts therein are satis�ed. The �rst one lies in the application of [38,
Theorem 4.3], for which the set K needs to be locally connected; in our case this is assured by
Lemma 3.3.9.

The second important step is the following: given any x ∈ Ω , an open rectangle V con-
taining x and an open set U ⊂⊂ V , we need to bound uniformly the number of connected
components of V ∩Kn which meet U . We can argue in the following way. Let l = dist(U, ∂V )
and let C be a connected component of V ∩Kn which meets U . If C∩∂V 6= Ø , then diamC ≥ l
and by Lemma 3.3.7 there exists a constant Cl such that L(C) ≥ Cl . Being L(Kn) ≤ λ , the
number of those connected components is smaller than λ/Cl . If C ∩ ∂V = Ø , then C is a
connected component of Kn , and there are at most p of them.

Having established these two key issues, the proof carries on as in the cited result, based on
the construction of a harmonic conjugate for u . �

Given τ > 0 , we denote by Nτ the largest integer such that τNτ ≤ T ; for 0 ≤ i ≤ Nτ , let
tτi := iτ and gτi := g(tτi ) . The sets Kτ

i are de�ned inductively as a solution to the following
minimization problem

min
K

{
E(gτi ,K) : K ∈ Cp , K ⊇ Kτ

i−1

}
, (3.20)

where we set Kτ
−1 := K0 .

Lemma 3.4.2. There exists a solution of the minimum problem (3.20).
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Proof. Assume by induction that Kτ
i−1 ∈ Cp . Consider a minimizing sequence (Kn) of

problem (3.20). By Proposition 3.3.1, we may assume that (up to a subsequence) (Kn) converges
in the Hausdor� distance to some compact set K ∈ Cp which contains Kτ

i−1 . For every n let
un be a solution of the minimum problem (3.8) which de�nes E(gτi ,Kn) .

By Theorem 3.4.1 the sequence (∇un) converges strongly in L2(Ω;R2) to ∇u , where u is
a solution of the minimum problem (3.8) which de�nes E(gτi ,K) . As by Corollary 3.3.4

L(K) ≤ lim inf
n
L(Kn) ,

we conclude that E(gτi ,K) ≤ lim infn E(gτi ,Kn) . Since (Kn) is a minimizing sequence, this
proves that K is a solution of the minimum problem (3.20). �

We de�ne now the piecewise constant functions gτ , Kτ , and uτ on [0, T ] by setting gτ (t) :=
gτi = g(tτi ) , Kτ (t) := Kτ

i , and uτ (t) := uτi for tτi ≤ t < tτi+1 , where uτi is a solution of the
minimum problem (3.8) which de�nes E(gτi ,K

τ
i ) .

Lemma 3.4.3. There exists a positive function ρ(τ) , converging to zero as τ → 0 , such that

‖∇uτj ‖2 + L(Kτ
j ) ≤ ‖∇uτi ‖2 + L(Kτ

i ) + 2

∫ tτj

tτi

〈∇uτ (t),∇ġ(t)〉 dt+ ρ(τ) (3.21)

for 0 ≤ i < j ≤ Nτ .

Proof. Let us �x an integer r with i ≤ r < j . From the absolute continuity of g we have

gτr+1 − gτr =

∫ tτr+1

tτr

ġ(t) dt ,

where the integral is a Bochner integral for functions with values in H1(Ω) . This implies that

∇gτr+1 −∇gτr =

∫ tτr+1

tτr

∇ġ(t) dt , (3.22)

where the integral is a Bochner integral for functions with values in L2(Ω;R2) .
As uτr + gτr+1 − gτr ∈ L1,2(Ω\Kτ

r ) and uτr + gτr+1 − gτr = gτr+1 q.e. on ∂DΩ\Kτ
r , we have

E(gτr+1,K
τ
r ) ≤ ‖∇uτr +∇gτr+1 −∇gτr ‖2 + L(Kτ

r ) . (3.23)

By the minimality of uτr+1 and by (3.20) it is

‖∇uτr+1‖2 + L(Kτ
r+1) = E(gτr+1,K

τ
r+1) ≤ E(gτr+1,K

τ
r ) . (3.24)

From (3.22), (3.23), and (3.24) we obtain

‖∇uτr+1‖2 + L(Kτ
r+1) ≤ ‖∇uτr +∇gτr+1 −∇gτr ‖2 + L(Kτ

r )

≤ ‖∇uτr‖2 + L(Kτ
r ) + 2

∫ tτr+1

tτr

〈∇uτr ,∇ġ(t)〉 dt+
(∫ tτr+1

tτr

‖∇ġ(t)‖ dt
)2

≤ ‖∇uτr‖2 + L(Kτ
r ) + 2

∫ tτr+1

tτr

〈∇uτ (t),∇ġ(t)〉 dt+ σ(τ)

∫ tτr+1

tτr

‖∇ġ(t)‖ dt ,

where

σ(τ) := max
0≤r<Nτ

∫ tτr+1

tτr

‖∇ġ(t)‖ dt −→ 0

by the absolute continuity of the integral. Iterating this inequality for i ≤ r < j we get (3.21)
with ρ(τ) := σ(τ)

∫ T
0
‖∇ġ(t)‖ dt . �
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Lemma 3.4.4. There exists a constant λ , depending only on g and K0 , such that

‖∇uτi ‖ ≤ λ and

M∑
m=1

Hdm(Kτ
i ∩ Km) ≤ λ (3.25)

for every τ > 0 and for every 0 ≤ i ≤ Nτ .

Proof. As gτi is admissible for the problem (3.8) which de�nes E(gτi ,K
τ
i ) , by the mini-

mality of uτi we have ‖∇uτi ‖ ≤ ‖∇gτi ‖ , hence ‖∇uτ (t)‖ ≤ ‖∇gτ (t)‖ for every t ∈ [0, T ] . As
t 7→ g(t) is absolutely continuous with values in H1(Ω) the function t 7→ ‖∇ġ(t)‖ is integrable
on [0, T ] and there exists a constant C > 0 such that ‖∇g(t)‖ ≤ C for every t ∈ [0, T ] . This
implies the �rst bound in (3.25).

The latter inequality follows now from Lemma 3.4.3 and from the inequality ‖∇uτ0‖2 +
L(Kτ

0 ) ≤ ‖∇g(0)‖2 + L(K(0)) , which is an obvious consequence of (3.20) for i = 0 . �

At this point we have all the elements to obtain a continuous-time evolution as limit of
discrete-time ones when the time step τ vanishes.

By a generalization of Helly's Theorem (see, e.g., [38]), there exists a subsequence of Kτ ,
not relabelled, and an increasing function K : [0, T ]→ Cp such that

Kτ (t)→ K(t)

in the Hausdor� metric for every t ∈ [0, T ] .
In the rest of this section, when we write τ → 0 , we always refer to the sequence given above

by Helly's Theorem.
For every t ∈ [0, T ] let u(t) be a solution of the minimum problem (3.8) which de�nes

E(g(t),K(t)) . Then
E(g(t),K(t)) = ‖∇u(t)‖2 + L(K(t)) .

Lemma 3.4.5. For every t ∈ [0, T ] we have ∇uτ (t)→ ∇u(t) strongly in L2(Ω;R2) .

Proof. As uτ (t) is a solution of the minimum problem (3.8) which de�nes E(gτ (t),Kτ (t)) ,
and gτ (t)→ g(t) strongly in H1(Ω) , the conclusion follows from Theorem 3.4.1. �

Lemma 3.4.6. For every t ∈ [0, T ] we have

E(g(t),K(t)) ≤ E(g(t),K) ∀K ∈ Cp , K ⊃ K(t) . (3.26)

Moreover

E(g(0),K(0)) ≤ E(g(0),K) ∀K ∈ Cp , K ⊃ K0 . (3.27)

Proof. Fix t ∈ [0, T ] . By construction, K(t) is the limit of the sequence (Kτ (t)) in the
Hausdor� metric as τ vanishes. Fix K ∈ Cp with K ⊃ K(t) . Applying Lemma 3.3.10 we �nd
a sequence (Kτ ) in Cp with Kτ ⊃ Kτ (t) , such that Kτ → K in the Hausdor� metric and
L(Kτ \Kτ (t))→ L(K\K(t)) .

Consider the minimizers vτ and v of the elastic energies corresponding to E(gτ (t),Kτ ) and
E(g(t),K) , respectively. By Theorem 3.4.1 we have that ∇vτ → ∇v strongly in L2(Ω;R2) . By
the choice of Kτ (t) as minimizers of (3.20), it is E(gτ (t),Kτ (t)) ≤ E(gτ (t),Kτ ) , which implies
‖∇uτ (t)‖2 ≤ ‖∇vτ‖2 +L(Kτ\Kτ (t)) . By Lemma 3.4.5 and the properties of the sequence (Kτ ) ,
we obtain ‖∇u(t)‖2 ≤ ‖∇v‖2 + L(K\K(t)) . To get (3.26) it is now enough to add L(K(t)) to
both sides of the last inequality.

The proof for (3.27) is similar, exploiting the minimality of Kτ (0) in (3.20) with respect to
all sets K ∈ Cp containing K0 , and applying Corollary 3.3.5 for the functional L . �
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The previous lemma proves the global minimality conditions (GS) in De�nition 3.2.2 and
also (3.13).

Finally, after a technical result, we will deal with the energy balance (EB), the only missing
property in Theorem 3.2.3.

Lemma 3.4.7. For every K ∈ Cp the function E(·,K) : H1(Ω) → R is of class C1 , and for
every g, h ∈ H1(Ω) it is

∂gE(g,K)[h] = 2〈∇u(g,K),∇h〉 , (3.28)

where u(g,K) is the solution to the minimum problem (3.8).

Proof. Being K �xed, for simplicity of notation we write ug := u(g,K) . By linearity, for
every η ∈ R it is ug+ηh = ug + ηuh a.e. in Ω . Then

E(g + ηh,K)− E(g,K) = ‖∇ug+ηh‖2 − ‖∇ug‖2

= 2η 〈∇ug,∇uh〉+ η2‖∇uh‖2 = 2η 〈∇ug,∇h〉+ η2‖∇uh‖2,

where the last equality is obtained by (3.12) with z = uh − h , since uh − h ∈ L1,2(Ω \K) and
uh − h = 0 q.e. on ∂DΩ . Dividing by η 6= 0 and letting η vanish, we get (3.28). Finally, the
C1 -regularity is consequence of the continuity of the map g 7→ ∇u(g,K) (see Theorem 3.4.1). �

Lemma 3.4.8. For every s, t with 0 ≤ s < t ≤ T

E(g(t),K(t)) = E(g(s),K(s)) + 2

∫ t

s

〈∇u(r),∇ġ(r)〉 dr . (3.29)

Proof. The strategy is to show that the map t 7→ E(g(t),K(t)) is absolutely continuous
on [0, T ] , with pointwise derivative 2〈∇u(t),∇ġ(t)〉 for a.e. t ∈ [0, T ] .

Let us �x s, t with 0 ≤ s < t ≤ T , and τ > 0 . Applying Lemma 3.4.3 we obtain

‖∇uτ (t)‖2 + L(Kτ (t)\Kτ (s)) ≤ ‖∇uτ (s)‖2 + 2

∫ tτ

sτ

〈∇uτ (r),∇ġ(r)〉 dr + ρ(τ) , (3.30)

with ρ(τ) converging to zero as τ → 0 , where sτ , tτ are the discrete times such that sτ ≤ s <
sτ + τ , tτ ≤ t < tτ + τ . For every r ∈ [0, T ] we have, by Lemma 3.4.5, that ∇uτ (r) → ∇u(r)
strongly in L2(Ω;R2) as τ → 0 , and, by Lemma 3.4.4, that ‖∇uτ (r)‖ ≤ λ . Moreover, by
Corollary 3.3.5 we get

L(K(t)\K(s)) ≤ lim inf
τ→0

L(Kτ (t)\Kτ (s)) ,

so that, passing to the limit in (3.30) as τ → 0 , we obtain

E(g(t),K(t)) ≤ E(g(s),K(s)) + 2

∫ t

s

〈∇u(r),∇ġ(r)〉 dr . (3.31)

To prove the opposite inequality note that, by the global stability (GS) of De�nition 3.2.2
we have E(g(s),K(s)) ≤ E(g(s),K(t)) , and by Lemma 3.4.7

E(g(t),K(t))− E(g(s),K(t)) = 2

∫ t

s

〈∇u(r, t),∇ġ(r)〉 dr ,

where u(r, t) is a solution of the minimum problem (3.8) which de�nes E(g(r),K(t)) . Therefore

E(g(t),K(t))− E(g(s),K(s)) ≥ 2

∫ t

s

〈∇u(r, t),∇ġ(r)〉 dr . (3.32)
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Since for s ≤ r ≤ t the uniform bounds ‖∇u(r)‖ ≤ ‖∇g(r)‖ ≤ C and ‖∇u(r, t)‖ ≤ ‖∇g(r)‖ ≤ C
hold, from (3.31) and (3.32) we obtain∣∣E(g(t),K(t))− E(g(s),K(s))

∣∣ ≤ 2C

∫ t

s

‖∇ġ(r)‖ dr ,

which proves the absolute continuity of the map t 7→ E(g(t),K(t)) .
Observe that by Theorem 3.4.1 ∇u(r, t)→ ∇u(t) strongly in L2(Ω;R2) as r → t . Dividing

now both (3.31) and (3.32) by t− s and letting s→ t− , we get

lim
s→t−

E(g(t),K(t))− E(g(s),K(s))

t− s
= 2 〈∇u(t),∇ġ(t)〉

for a.e. t ∈ [0, T ] , and thus the proof is concluded. �

3.5. Fractional dimensional crack evolution as limit of one-dimensional ones

In this section we show that the energy functional considered in the previous sections arises
as a natural extension of the Gri�th's setting; indeed, it can be obtained as Γ -limit of energies
involving small toughness coe�cients and the H1 -measure restricted to polygonal approxima-
tions of the curves with fractional Hausdor� dimension. We illustrate this idea in the case of a
single curve K .

Let K be a curve of the form K = γ([0, 1]) with γ satisfying (3.3) and (3.4), and d ∈ (1, 2) .
For n ∈ N we construct a sequence of polygonal approximations Kn in the following way: de�ne
γn : [0, 1]→ R2 as

γn(s) := γ(i/n) + (ns− i)(γ((i+ 1)/n)− γ(i/n))

for i/n ≤ s < (i+ 1)/n and i = 0, . . . , n− 1 , and set Kn := γn([0, 1]) . By (3.3), it is

Kn → K (3.33)

in the Hausdor� metric, as n→ +∞ .
We de�ne the �toughness coe�cients�

κin =
L

n |γ((i+ 1)/n)− γ(i/n)|
,

for i = 0, . . . , n− 1 , where L = Hd(K) , and set κn(x) = κin if x ∈ γn([i/n, (i+ 1)/n)) . Finally,
we introduce the set-function

Ln(K) :=

∫
K∩Kn

κn(x) dH1(x) .

Lemma 3.5.1. Let (Kn) be a sequence of compact connected sets such that Kn ⊂ Kn for every
n . Assume that (Kn) converges to K in the Hausdor� metric. Then K is a compact connected
set, contained in K , and

Ln(Kn)→ Hd(K) .

Proof. The set K is compact, connected and contained in K by the properties of the
Hausdor� convergence (and (3.33)). For every n , it is Kn = γn([an, bn]) for some an, bn ∈ [0, 1] ,
and K = γ([a, b]) for a, b ∈ [0, 1] . It is not di�cult to verify that an → a and bn → b . Set
in, jn ∈ {0, . . . , 1/n} such that in/n ≤ an < (in + 1)/n and jn/n ≤ bn < (jn + 1)/n , we have

Ln(Kn) = L(jn − (in + 1)) + κinn
∣∣γ((in + 1)/n)− γ(an)

∣∣+ κjnn
∣∣γ(bn)− γ(jn/n)

∣∣ ,
which converges to L(b − a) as n → +∞ . Being Hd(K) = L(b − a) by (3.4), the lemma is
proved. �
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On the other hand, given a compact connected set K ⊂ K , there exists a sequence Kn of
compact connected sets such that Kn ⊂ Kn , Kn → K in the Hausdor� distance and

Ln(Kn)→ Hd(K) . (3.34)

Indeed, being K = γ([a, b]) , it is enough to take

Kn := γn([a, b]) . (3.35)

Then Lemma 3.5.1 provides (3.34).

Remark 3.5.2. The length of the approximating polygonals Kn in the previous lemma tends
to in�nity:

H1(Kn) ≥
jn∑

h=in+1

|γ(h/n)− γ((h+ 1)/n)|

≥ c−1

jn∑
h=in+1

(1/n)1/d = c−1 L

b− a
n1−1/d + o(1)→ +∞ .

Conversely, the toughness coe�cients κn vanish, so that the lower bound in (3.2) (or (7) in the
Introduction) is violated: indeed

sup
i
κin = sup

i

L

n |γ((i+ 1)/n)− γ(i/n)|
≤ c n−(1−1/d) → 0

as n→ +∞ , being d > 1 .

We consider the functionals

F (u, g,K) :=


∫

Ω\K
|∇u|2 dx+Hd(K) if K ⊂ K, g ∈ H1(Ω) and u ∈ V(g,K)

+∞ otherwise

and

Fn(u, g,K) :=


∫

Ω\K
|∇u|2 dx+ Ln(K) if K ⊂ Kn, g ∈ H1(Ω) and u ∈ V(g,K)

+∞ otherwise ,

where V(g,K) is de�ned in (3.9) for K ⊂ K and similarly when K ⊂ Kn . The two functionals
are related in the following way.

Theorem 3.5.3. Let (Kn) be a sequence of compact sets with at most p connected components
and Kn ⊂ Kn , and assume it converges to K in the Hausdor� metric. Let (gn) be a sequence
converging to g in H1(Ω) . Then Fn(·, gn,Kn) Γ-converges to F (·, g,K) with respect to the
weak convergence in L2 of the gradients.

The proof of the above theorem will be a consequence of the result below, proved in [33,
Theorem 6.3], and that we rewrite for the ease of the reader. Similar results, concerning Dirichlet
and Neumann boundary data, were proved, e.g., in [80] and [20, 19, 25], respectively.

Theorem 3.5.4. Let (gn) be a sequence in H1(Ω) converging to g in H1(Ω) , and let (Kn)
be a sequence of compact subsets of Ω converging to K in the Hausdor� metric. Assume that
|Kn| converges to |K| and that Kn have a uniformly bounded number of connected components.
Then the space

Hn :=
{
∇u 1Ω\Kn : u ∈ L1,2(Ω \Kn), u = gn on ∂DΩ

}
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converges to
H :=

{
∇u 1Ω\K : u ∈ L1,2(Ω \K), u = g on ∂DΩ

}
in the sense of Mosco [68], i.e. the following two conditions hold:

(M1) for every u ∈ L1,2(Ω \K) with u = g on ∂DΩ there exists a sequence un ∈ L1,2(Ω \
Kn) with u = gn on ∂DΩ , such that ∇un 1Ω\Kn converges strongly to ∇u 1Ω\K in

L2(Ω;R2) ;
(M2) if (hn) is a sequence of indices that tends to +∞ , and (un) is a sequence such that

un ∈ L1,2(Ω \ Khn) with un = ghn on ∂DΩ for every n and ∇un 1Ω\Khn converges

weakly in L2(Ω;R2) to ψ , then there exists a function u ∈ L1,2(Ω \K) with u = g on
∂DΩ and ψ = ∇u 1Ω\K .

Proof of Theorem 3.5.3. Let us observe immediately that the hypotheses on the Kn

and K in Theorem 3.5.4 are satis�ed: indeed the Kn have at most p connected components
and, since Ln(Kn) <∞ and Hd(K) <∞ , it is |Kn| = |K| = 0 . Below we apply Theorem 3.5.4
with Hn = {∇u : u ∈ V(gn,Kn)} and H = {∇u : u ∈ V(g,K)} .

Γ − lim inf inequality. Let u ∈ V(g,K) and let (un) be a sequence such that ∇un⇀∇u
weakly in L2(Ω;R2) . We may assume that

Fn(un, gn,Kn) ≤ C (3.36)

for some C > 0 for every n (otherwise the Γ − lim inf inequality is trivially satis�ed); hence
un ∈ V(gn,Kn) for every n . By Lemma 3.5.1 it is

Hd(K) = lim
n→+∞

Ln(Kn) .

Since ∫
Ω\K
|∇u|2 dx ≤ lim inf

n→+∞

∫
Ω\Kn

|∇un|2 dx ,

we get
F (u, g,K) ≤ lim inf

n→+∞
Fn(un, gn,Kn) .

Γ − lim sup inequality. Consider a function u ∈ V(g,K) and the sequence un ∈ V(gn,Kn)
provided by (M1) in Theorem 3.5.4. Then ∇un converges to ∇u strongly in L2(Ω;R2) and

F (u, g,K) =

∫
Ω\K
|∇u|2 dx+Hd(K)

= lim
n→+∞

∫
Ω\Kn

|∇un|2 dx+ Ln(Kn) = lim
n→+∞

Fn(un, gn,Kn) . �

At this point we want to prove that the evolutions described in Theorem 3.2.3 are indeed
limits of irreversible quasi-static crack evolutions t 7→ (un(t),Kn(t)) (of global minimizers) whose
crack set Kn(t) is 1 -dimensional and contained in Kn , with fracture dissipation energy given
by

Ln(Kn(t)) =

∫
Kn(t)

κn(x) dH1(x) .

In analogy to Sections 3.1 and 3.2, we de�ne the set

Cnp :=
{
K ⊂ Kn : K nonempty compact set with at most p connected components

}
and the energy functional

En(g,K) := min
u∈V(g,K)

∫
Ω\K
|∇u|2dx+ Ln(K) .
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The results in [38] (in particular [38, Theorem 7.1]) guarantee the existence of irreversible
quasi-static crack evolutions t 7→ (un(t),Kn(t)) for the total energy En ,with the constraint
Kn(t) ⊂ Kn , Kn(t) having at most p connected components (with p prescribed a priori), and
satisfying conditions analogous to those in Theorem 3.2.3. More precisely, for every n , given
K0
n ⊂ Kn and g ∈ AC([0, T ];H1(Ω)) , there exists an evolution t ∈ [0, T ] 7→ Kn(t) ⊂ Kn

ful�lling the following conditions:

(In ) K0
n ⊆ Kn(τ) ⊆ Kn(t) for 0 ≤ τ ≤ t ≤ T ;

(GSn ) En(g(0),Kn(0)) ≤ En(g(0),K) ∀K ∈ Cnp , K ⊇ K0
n , and for 0 ≤ t ≤ T

En(g(t),Kn(t)) ≤ En(g(t),K) ∀K ∈ Cnp , K ⊇ Kn(t) ;

(EBn ) for every s, t with 0 ≤ s < t ≤ T

En(g(t),Kn(t)) = En(g(s),Kn(s)) + 2

∫ t

s

〈∇un(τ),∇ġ(τ)〉 dτ ,

where un(t) is the unique solution of the minimum problem de�ning En(g(t),Kn(t)) .

Theorem 3.5.5. For every n ∈ N , let t → Kn(t) be an irreversible quasi-static evolution
satisfying (In ) - (GSn ) - (EBn ) and such that Kn(t) ⊂ Kn for every t ∈ [0, T ] . Then there
exist a subsequence, not relabelled, and an evolution t 7→ K(t) , such that it satis�es the conditions
in Theorem 3.2.3 and Kn(t) converges to K(t) in the Hausdor� metric for every t ∈ [0, T ] .

Proof. Monotonicity of the maps t 7→ Kn(t) due to (In ), and Helly's Theorem [38, The-
orem 6.3], guarantee the existence of a subsequence (not relabelled) and of an increasing set-
function t 7→ K(t) such that, for every t ∈ [0, T ] , Kn(t) converges to K(t) in the Hausdor�
metric. Since (Kn) converges to K in the Hausdor� metric and Kn(t) ⊂ Kn , it is K(t) ⊂ K .
Moreover K(t) has at most p connected components, so that K(t) ∈ Cp for every t . Hence
condition (I) in Theorem 3.2.3 is satis�ed.

We have to check the global unilateral minimality conditions (3.13) and (GS) at any instant t .
Fix t ∈ [0, T ] and K ∈ Cp with K ⊃ K(t) for t > 0 , and with K ⊃ K0 if t = 0 .

We claim that there exists a sequence (Kn) converging to K in the Hausdor� metric and
such that, for every n , Kn has at most p connected components and Kn(t) ⊂ Kn ⊂ Kn .

By the minimality of Kn(t) , corresponding to (GSn ), we have

En(g(t),Kn(t)) ≤ En(g(t),Kn) ,

where Kn is the sequence provided by the claim above. By Theorem 3.5.3 and the proper-
ties of Γ -convergence (the functionals Fn(·, g(t),Kn) and Fn(·, g(t),Kn(t)) are asymptotically
sequentially coercive; see [31, Chapter 7]) we get the convergence of the minima:

En(g(t),Kn) = min
u∈V(g(t),Kn)

Fn(u, g(t),Kn)→ E(g(t),K) = min
u∈V(g(t),K)

F (u, g(t),K)

and, analogously,
En(g(t),Kn(t))→ E(g(t),K(t)) . (3.37)

The three relations above prove conditions (GS) and (3.13).
The conservation of the energy (EB) follows by (EBn ) and (3.37).

Proof of the claim.
We now illustrate how to construct the sets Kn ; the main issue is to ful�l the condition on

the maximum number of connected components. Let t ∈ [0, T ] be �xed. Assume that

K(t) = γ([a1, b1]) ∪ . . . ∪ γ([aq, bq])
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for some q ≤ p , with bi < ai+1 for i = 1, . . . , q − 1 . Without loss of generality, we can assume
that the sets Kn(t) have r connected components for every n , more precisely they are of the
form

Kn(t) = γn([an1 , b
n
1 ]) ∪ . . . ∪ γn([anr , b

n
r ])

with bnj < anj+1 for j = 1, . . . , r − 1 .
In general, r ≥ q . If r > q we want to substitute the set Kn(t) with a set K̃n(t) having

exactly q connected components, containing Kn(t) and still converging to K(t) in the Hausdor�
metric. The construction can be done in the following way. We �rstly observe that

γn([anin , b
n
in ] ∪ . . . ∪ [anhn , b

n
hn ])→ γ([ai, bi])

in the Hausdor� metric if and only if

anin → ai bnhn → bi anl − bnl−1 → 0

for l = in + 1, . . . , hn .
Let η > 0 be such that ai+1 − bi > 3η for all i = 1, . . . , q − 1 . Set αn1 := an1 and βn1 := bnj

with the index j satisfying
bnj < a2 − η ≤ anj+1 ,

and βnq = bnr . For i = 2, . . . , q − 1 we de�ne the intervals [αni , β
n
i ] = [anj , b

n
h] , where the

indices j, h are such that

bnj−1 < ai − η ≤ anj < bnh ≤ bi + η < anh+1 .

Set
K̃n(t) := γn([αn1 , β

n
1 ]) ∪ . . . ∪ γn([αnq , β

n
q ]) .

By construction, Kn(t) ⊂ K̃n(t) ⊂ Kn and K̃n(t) has q connected components; by the previous
observation, K̃n(t) converges to K(t) in the Hausdor� metric.

Let K ∈ Cp with K ⊃ K(t) . It is of the form

K = γ([c1, d1]) ∪ . . . ∪ γ([cs, ds])

for some s ≤ p . Notice that, by inclusion, every interval [ai, bi] is contained in an interval
[cj , dj ] . It is not di�cult to verify that the set

Kn := γn([c1, d1]) ∪ . . . ∪ γn([cs, ds]) ∪ K̃n(t)

ful�ls the requests of the claim: it has the same number of connected components as K (hence
less then p), contains Kn(t) , is a subset of Kn , and converges to K in the Hausdor� metric. �

The result above is consistent with the justi�cation of the model, as discussed in the Intro-
duction, when the lower bound in (3.2) (or (7) in the Introduction) is violated (see Remark 3.5.2).
Indeed, where the material becomes more and more fragile the H1 measure of the crack is no
longer appropriate for the dissipative term, and it is necessary to introduce fractional Hausdor�
measures in order to take into account the increased roughness of the fracture in the fragile area.

3.6. The linearized and nonlinear cases

The results of the previous sections, which for simplicity have been proved in the antiplane
linear setting, can be extended to more general frameworks, in particular to the vectorial 2 -
dimensional setting, corresponding to the mode I and mode II fracture models, both in the
nonlinear and linearized case.
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3.6.1. Nonlinear elasticity. Our setting can be extended to the case of hyperelastic ma-
terials, under suitable assumptions on the nonlinear energy density that guarantee the existence
of global minimizers. We consider both the antiplane case and the plane case. We brie�y discuss
the main steps.

The bulk energy for a deformation v of the unfractured part of the body Ω \K is given by
the functional ∫

Ω\K
W (x,∇v(x)) dx ,

where W : Ω×RN×2 → R is a given energy density, dependent on the material. Here N = 1 in
the antiplane case, with v describing an out-of-plane vertical deformation; N = 2 if v describes
an in-plane deformation.

We assume W to satisfy the following properties:

• W is a Carathéodory function;
• for every x ∈ Ω the function ξ 7→ W (x, ξ) is C1 and quasiconvex, i.e. for every
ξ ∈ RN×2 and for every φ ∈ C1

c (Ω;RN )

1

|Ω|

∫
Ω

W (x, ξ +∇φ(y)) dy ≥W (ξ) ;

• for some constants a0, a1 > 0 and a non-negative function b ∈ L1(Ω) it is

a0|ξ|2 ≤W (x, ξ) ≤ a1|ξ|2 + b(x) (3.38)

for every x ∈ Ω and ξ ∈ RN×2.

Note that for N = 1 quasiconvexity and convexity coincide.
Similarly to (3.9), for every g ∈ H1(Ω;RN ) and K ∈ Cp we de�ne the set

VN (g,K) := {w ∈ L1,2(Ω\K;RN ) : w = g q.e. on ∂DΩ}

and we consider the functional

W(g,K, v) :=


∫

Ω\K
W (x,∇v(x)) dx if v ∈ VN (g,K)

+∞ otherwise .

Proposition 3.6.1. Let (gn) be a sequence converging to g in H1(Ω;RN ) . Let (Kn) be a
sequence in Cp converging to K in the Hausdor� metric. Let vn ∈ V(gn,Kn) be such that
(∇vn) converges to ψ weakly in L2(Ω;RN×2) . Then ψ = ∇v for some v ∈ V(g,K) , and

W(g,K, v) ≤ lim inf
n→+∞

W(gn,Kn, vn) . (3.39)

Proof. The existence of v ∈ V(g,K) with ψ = ∇v is consequence of Theorem 3.5.4 (when
N = 2 , hence vn(x) = (v1

n(x), v2
n(x)) , it is enough to apply it to each component v1

n , v
2
n ).

Consider a subsequence (vnm) of (vn) such that

lim inf
n→+∞

W(gn,Kn, vn) = lim
m→+∞

W(gnm ,Knm , vnm).

Consider a Lipschitz open set ω ⊂⊂ (Ω \ K) ∪ ∂DΩ with H1(∂ω ∩ ∂DΩ) > 0 . By Hausdor�
convergence, Kn ∩ ω = Ø for n su�ciently large. As ω has a Lipschitz boundary, vn ∈
H1(ω;RN ) for every n . By Rellich Theorem and the convergence in H1(Ω;RN ) of (gn) to g ,
there exists a subsequence (not relabelled) of (vnm) that converges to v strongly in L2(ω;RN ) .
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Therefore (vnm) converges to v weakly in H1(ω;RN ) and we can apply the semicontinuity
result [1, Theorem II.4] to obtain∫

ω

W (x,∇v(x)) dx ≤ lim inf
m→+∞

∫
ω

W (x,∇vnm(x)) dx

≤ lim inf
m→+∞

∫
Ω\Knm

W (x,∇vnm(x)) dx

= lim
m→+∞

W(gnm ,Knm , vnm) = lim inf
n→+∞

W(gn,Kn, vn) ,

where the last inequality is due to the fact that W ≥ 0 and ω ⊂ Ω \ Knm for m large. As
ω ↗ Ω \K we obtain

W(g,K, v) ≤ lim inf
n→+∞

W(gn,Kn, vn) . �

Corollary 3.6.2. For every g,K , the minimum problem

min
w∈VN (g,K)

W(g,K,w) (3.40)

has a solution.

The following result is the counterpart of Theorem 3.4.1 in the nonlinear setting.

Proposition 3.6.3. Let (Kn) be a sequence in Cp converging to K in the Hausdor� metric,
and let (gn) be a sequence converging to g in H1(Ω;RN ) . For every n let vn ∈ VN (gn,Kn) be
a minimizer of W(gn,Kn, ·) , and assume that

sup
n
W(gn,Kn, vn) < +∞ . (3.41)

Then, up to subsequences, ∇vn converges to ∇v weakly in L2(Ω;RN×2) , with v ∈ VN (g,K)
which minimizes W(g,K, ·) .

Proof. By (3.41) and (3.38), it results that supn ‖∇vn‖ < +∞ . Hence, up to subsequences,
(∇vn) converges to a function ψ weakly in L2(Ω;RN×2) . Theorem 3.5.4 guarantees the existence
of a function v ∈ VN (g,K) with ∇v = ψ (as before, when N = 2 , i.e. vn(x) = (v1

n(x), v2
n(x)) ,

it is enough to apply it to each component v1
n , v

2
n ).

It remains to show that v minimizes W(g,K, ·) in VN (g,K) . Let w ∈ VN (g,K) ; by (M1 )
in Theorem 3.5.4, there exists a sequence (wn) with wn ∈ VN (gn,Kn) and ∇wn converging to
∇w strongly in L2(Ω;RN×2) . Up to subsequences, we can assume that ∇wn(x) → ∇w(x) for
a.e. x ∈ Ω , so that W (x,∇wn(x)) → W (x,∇w(x)) for a.e. x ∈ Ω ; by the growth assumption
(3.38) and the Generalized Dominated Convergence Theorem, we obtain∫

Ω

W (x,∇wn(x)) dx→
∫

Ω

W (x,∇w(x)) dx .

Finally, by the lower semicontinuity result in Proposition 3.6.1 and by the minimality of the vn
it follows

W(g,K, v) ≤ lim inf
n→+∞

W(gn,Kn, vn) ≤ lim inf
n→+∞

W(gn,Kn, wn) =W(g,K,w) ,

which proves that v is a minimizer of W(g,K, ·) in VN (g,K) . �

For g ∈ H1(Ω;RN ) and K ∈ Cp we de�ne

Enl(g,K) := inf
w∈VN (g,K)

W(g,K,w) + L(K) .

At this point, considering Proposition 3.6.1, Proposition 3.6.3 and the lower semicontinuity of
the functional L (see Corollary 3.3.4), in order to show the existence of a quasi-static crack
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evolution in the context of nonlinear elasticity it is su�cient to argue as for Theorem 3.2.3. In
other words, we can prove the following result:

Theorem 3.6.4. Let T > 0 and g ∈ AC([0, T ];H1(Ω;RN )) , with N = 1, 2 . Let p ≥ 1 and
K0 ∈ Cp . Then there exists a function K : [0, T ]→ Cp such that

(Inl ) K0 ⊆ K(s) ⊆ K(t) for 0 ≤ s ≤ t ≤ T ,
(GSnl ) for every 0 ≤ t ≤ T

Enl(g(t),K(t)) ≤ Enl(g(t),K)

for all K ∈ Cp with K ⊇ K(t) .
Moreover, Enl(g(0),K(0)) ≤ Enl(g(0),K) for all K ∈ Cp with K ⊇ K0 ,

(EBnl ) for every s, t with 0 ≤ s < t ≤ T

Enl(g(t),K(t)) = Enl(g(s),K(s)) +

∫ t

s

〈DξW (x,∇v(τ)),∇ġ(τ)〉 dτ ,

where v(τ) is a solution of the minimum problem (3.40) with g(τ) and K(τ) .

3.6.2. Linearized elasticity. The extension of our model of crack growth to the linearized
case cannot be done in a straightforward way by means of Korn's inequality: indeed, due to
the irregularity of the crack sets, it cannot be applied. Instead, the key role is played by the
approximation result proved by Chambolle [24, Theorem 1] (see also [18]), which can be used
similarly to Theorem 3.4.1 in the proof of existence of minimizers for the energy Esym introduced
below. Roughly speaking, [24, Theorem 1] states that if R2 \Ω has a �nite number of connected
components then H1(Ω;R2) is dense in {u ∈ L2

loc(Ω;R2) : e(u) ∈ L2(Ω;R2×2
sym)} . Here

e(u) :=
∇u+ (∇u)T

2

is the symmetrized gradient of u , and R2×2
sym is the space of 2× 2 symmetric matrices.

Let A be a positive de�nite quadratic form on the space of symmetric matrices, i.e., Aξ : ξ ≥
C|ξ|2 for every ξ ∈ R2×2

sym , where �:� denotes the scalar product between matrices, and C > 0 .
Combining together [38, Theorem 7.1], [24, Theorem 1] and Theorem 3.2.3, we can state that
Theorem 3.2.3 holds true for the energy

Esym(g,K) := min
v∈Vsym(g,K)

∫
Ω\K

Ae(v) : e(v) dx+

M∑
m=1

Hdm(K ∩ Km) , (3.42)

where

Vsym(g,K) := {v ∈ L2
loc(Ω \K;R2) : e(v) ∈ L2(Ω \K;R2×2

sym), v = g q.e. on ∂DΩ} .

Indeed, the approximation theorem [24, Theorem 1], together with the metric and topological
properties shown in Section 3.3 and used to extend the results in [38], can be applied in order
to prove the lower semicontinuity of Esym(·, ·) with respect to the convergence of functions gn
to g in H1(Ω) and of sets Kn ∈ Cp to K in the Hausdor� metric, and to construct appropriate
recovery sequences in order to obtain (GS) and (3.13) in Theorem 3.2.3 with Esym instead of E ,
and e(u), e(g) instead of ∇u,∇g in the condition (EB).
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3.7. The von Koch curve

The von Koch curve, denoted in this subsection by K , represents a signi�cative example for
the class of admissible fractal cracks considered in this paper. Therefore, let us describe now
the constructive iterative process that de�nes this self-similar fractal starting from the segment
[0, 1]× {0} ⊂ R2 , and provides a parametrization which satis�es (3.3) and (3.4).

With reference to Figure 1, for i = 1, . . . , 4 let Si : R2 → R2 be the unique similitude that
maps the segment [0, 1] × {0} ⊂ R2 into the segment li1 (with length 1/3) and has positive
determinant. It results (see for example [55]) that the von Koch curve is the unique compact
set K such that

K =

4⋃
i=1

Si(K) .

We now construct iteratively a parametrization for the von Koch curve.
Let γ0 : [0, 1]→ R2 be such that γ0([0, s]) = [0, s]× {0} .
Let γ1 : [0, 1]→ R2 be a continuous parametrization of the set K̃1 as in Figure 1, such that

γ1(0) = 0 ∈ R2 and H1(γ1([0, s])) = 4
3s . It results that γ1([(i− 1)/4, i/4]) = li1 for i = 1, . . . , 4 .

1
4

1
2

3
4

10

γ1 l11

l31l21

l41K̃1

1
4

1
2

3
4

10

γ2
K̃2

1

Figure 1. The �rst and second iterations in the construction of the natural
parametrization γ of the von Koch curve.

Iteratively construct the set K̃2 =
⋃
i=1,...,4 Si(K̃1) and its continuous parametrization γ2 :

[0, 1]→ R2 such that γ2(0) = 0 ∈ R2 , H1(γ2([0, s])) =
(

4
3

)2
s and γ2([(i− 1)/42, i/42]) = li2 for

i = 1, . . . , 42 .
It results that for any n ∈ N it is

‖γn − γn+1‖∞ =
1

3n+1

√
3

2
and, as consequence, for any n, j ∈ N we have

‖γn − γn+j‖∞ ≤
1

3n
3
√

3

4
.

Therefore the sequence γn is a Cauchy sequence in (C([0, 1];R2), ‖ · ‖∞) , and there exists a
continuous function γ : [0, 1]→ R2 such that

γn → γ (3.43)

uniformly on [0, 1] .
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The sequence of compact sets K̃n converges in the Hausdor� metric to the von Koch curve
K . This fact, together with the uniform convergence (3.43), implies that γ([0, 1]) = K .

It can be proved that K has Hausdor� dimension

d :=
log 4

log 3

and 0 < Hd(K) < +∞ .
The map γ we just obtained corresponds to the one that in [74] is called natural parametriza-

tion. The following result shows that γ ful�ls (3.3) and (3.4).

Proposition 3.7.1. There exists a constant c > 0 such that for any a, b ∈ [0, 1] the natural
parametrization γ satis�es

1

c
|a− b|1/d ≤ |γ(a)− γ(b)| ≤ c|a− b|1/d (3.44)

and, for a < b ,

Hd(γ(a, b)) = (b− a)Hd(K) .

Proof. The �rst statement is proved in [74, Theorem 1].
Concerning the second fact, �rstly note that, by construction, the von Koch curve K and

the parametrization γ have the following self-similarity property: for every n ∈ N and j =
1, . . . , 4n − 1 there exists an a�ne isometry Φjn : R2 → R2 such that

Φjn

(
γ
( j

4n
,
j + 1

4n

))
= γ

(
0,

1

4n

)
.

For any s, h ∈ [0, 1] let isn, i
h
n ∈ {1, . . . , 4n} be such that

isn
4n
≤ s < isn + 1

4n
and

ihn
4n
≤ h < ihn + 1

4n
.

For n su�ciently large (so that ihn ≥ 2) it is

(s, s+ h) = (s, (isn + 1)/4n) ∪ [(isn + 1)/4n, (isn + ihn)/4n] ∪ ((isn + ihn)/4n, s+ h) .

Then, being the Φjn Lipschitz continuous maps with Lipschitz constant equal to 1 , we have

Hd(γ(s, s+ h)) =Hd
(
γ
(
s,
isn + 1

4n

))
+

isn+ihn−1∑
j=isn+1

Hd
(
γ
( j

4n
,
j + 1

4n

))
+Hd

(
γ
( isn + ihn

4n
, s+ h

))
=Hd

(
γ
(
s,
isn + 1

4n

))
+

isn+ihn−1∑
j=isn+1

Hd
(

Φjn

(
γ
( j

4n
,
j + 1

4n

)))
+Hd

(
γ
( isn + ihn

4n
, s+ h

))
=Hd

(
γ
(
s,
isn + 1

4n

))
+

isn+ihn−1∑
j=isn+1

Hd
(
γ
(

0,
1

4n

))
+Hd

(
γ
( isn + ihn

4n
, s+ h

))
=Hd

(
γ
(
s,
isn + 1

4n

))
+ (ihn − 2)Hd

(
γ
(

0,
1

4n

))
+Hd

(
γ
( isn + ihn

4n
, s+ h

))
.
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Since γ is (1/d) -Hölder continuous by (3.44), it holds that

Hd
(
γ
(
s,
isn + 1

4n

))
≤ C(d)

(
isn + 1

4n
− s
)
≤ C(d)

1

4n
→ 0

and

Hd
(
γ
( isn + ihn

4n
, s+ h

))
≤ C(d)

(
s+ h−

iisn +Nh
n

4n

)
≤ 2C(d)

1

4n
→ 0

as n→ +∞ , with C(d) independent of t and h . Hence we obtain

Hd(γ(s, s+ h)) = lim
n→+∞

(ihn − 2)Hd
(
γ
(

0,
1

4n

))
= lim
n→+∞

(1hn − 2)
1

4n
Hd (γ(0, 1)) = hHd(K),

where, in the second equality, we used the self-similiarity property of K , that is, K = γ([0, 1])
contains exactly 4n distinct copies of γ([0, 1/4n]) .

Consider now 0 ≤ a < b ≤ 1 . Set s = a and h = b − a in the above argument, the thesis
follows. �



CHAPTER 4

A model for crack growth with branching and kinking

In the mathematical description of fracture mechanics, at present the phenomena of branch-
ing and kinking of cracks are still tricky matters. In this chapter we propose an evolution model
where both phenomena are admitted, and the crack path is not assigned a priori. In order
to overcome some of the mathematical di�culties, we introduce some geometrical constraints
on the admissible cracks, so that accumulation of branching points and kinking points, and
micro-cracking around the tips are avoided.

We discuss the problem in the framework of linear elasticity in the two-dimensional antiplane
shear case. The results up to Subsection 4.4.1 can be treated in more general settings, like
linearized and nonlinear planar elasticity, appealing to the stability results in [24, 18] and [33]
instead of Theorem 1.7.6 on the convergence of minimizers of elliptic problems, similarly to what
we have done in Section 3.6. However, in Subsection 4.4.2 we will need an explicit formula for
the energy release rate: in the antiplane case it is proved in [62] (see Remark 1.5.1.(iii)), while
it is lacking in the other regimes for our geometric setting (see [57, 59] in case of polyconvex
elastic energy densities and a preassigned crack path, and [27] for the linearized case).

As a standard procedure, we �rst consider a discrete-time approximation t 7→ (Γτ (t), uτ (t))
driven by a boundary datum wτ (t) , where τ is the incremental step, while Γτ (t) and uτ (t) are
the crack and the displacement, respectively. At each incremental step, the minimum problem
that selects the proper approximation takes into account terms related to the discrete velocity
of the front (see (4.32)).

As τ → 0 , we recover a continuous-time rate-dependent evolution (Γ (t), u(t)) with boundary
datum w(t) (where wτ (t)→ w(t)) as limit of the sequence (Γτ (t), uτ (t)) , such that
• the crack growth is irreversible, i.e. Γ (t′) ⊂ Γ (t) for any t′ < t ;
• it satis�es an energy inequality containing the term∫ b

a

∑
p∈F (t)

v(p, t)2 dt .

It represents the energy dissipated at the crack front F (t) of the crack Γ (t) due to the speed
v(p, t) of crack growth at the tip p ∈ F (t) ;

• a Gri�th's principle holds, as long as the front advances: if at an instant t0 the velocity
v(p(t0), t0) of a point p(t0) of the front F (t0) is strictly positive, then for a.e. t < t0 and
close to t0 the following conditions are satis�ed

v(t, p(t)) ≥ 0

G(w(t),Γ (t), p(t)) ≤ 1 + v(t, p(t)) (4.1)

[−G(w(t),Γ (t), p(t)) + 1 + v(t, p(t))] v(t, p(t)) = 0,

where p(t) belongs to the front F (t) of Γ (t) and p(t) → p(t0) as t ↗ t0 . In (4.1), the
function G(w,Γ , p) is the energy release rate relative to a time-dependent loading w , a crack
Γ and a tip p of Γ .
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The notion of velocity of the crack front is described with two di�erent approaches, one
of which, obtained by means of a distributional argument, reminds that by Larsen, Ortiz &
Richardson in [61].

Unfortunately if a branch of the crack does not grow, we cannot prove a stability condition
like (4.1). The main di�culty dwells on the approximation procedure by the discrete-time evo-
lutions. Indeed, the stationarity of a branch of the continuous-time evolution does not garantee
a similar behaviour of the approximating discrete-time sequence, which could present several
di�erent growth conditions, as explained at the end of the chapter.

To our knowledge, this is a �rst attempt to describe a model with branching and kinking of
fractures without assuming the crack path to be assigned a priori ; furthermore, also the rate of
growth of the cracks at many tips is taken into account. Nevertheless, since the description of
the process is not complete, the investigation needs to go on.

The results of this chapter will appear in [76].

4.1. Geometrical setting and admissible cracks

In this section we introduce the geometrical setting of the model. We describe the class of
admissible cracks and prove its compactness with respect to the Hausdor� convergence of sets.
Throughout the section, we comment on the meaning of some mathematical and geometrical
constraints necessary to obtain this result.

Let Ω be a bounded connected open subset of R2 , with Lipschitz boundary ∂Ω . Let
∂DΩ ⊂ ∂Ω be relatively open, with H1(∂DΩ) > 0 ; we refer to ∂DΩ as the Dirichlet part of the
boundary.

We consider a slight modi�cation of the family of curves Rη introduced in [62, 63] and
reported in De�nition 1.5.3; we replace Condition 1.5.3.(i) by Condition 4.1.1.(i) below.

De�nition 4.1.1. For any η > 0 , Rη denotes the set of compact curves Γ of class C1,1 in Ω
such that

(i) H1(Γ ) > 0 and Γ ⊂⊂ Ω ;
(ii) for every point x ∈ Γ there exist two open balls B1, B2 of radius η , such that (B1 ∪

B2) ∩ (Γ ∪ ∂Ω) = Ø and B1 ∩B2 = {x} .

Proposition 4.1.2. The following facts hold:

(i) every curve Γ ∈ Rη is simple.
(ii) Fix Γ0 ∈ Rη . Then the set

{Γ ∈ Rη : Γ0 ⊂ Γ}

is compact with respect to the Hausdor� convergence.
(iii) Consider Γ ∈ Rη and its arc-length parametrization γ . Then, set LΓ = H1(Γ ) , it is

γ ∈W 2,∞((0, LΓ );R2) . Furthermore there exists a constant C > 0 such that

‖γ‖W 2,∞((0,LΓ );R2) ≤ C

for any Γ ∈ Rη .
(iv) Let (Γk)k ⊂ Rη be such that Γk

H−→ Γ . Then H1(Γk)→ H1(Γ ) .

(v) Let (Γk)k ⊂ Rη be such that Γk
H−→ Γ , with L = H1(Γ ) > 0 . Let Lk = H1(Γk) , and

γk, γ be the arc-length parametrizations of Γk and Γ , respectively. De�ne γ̃k(s) :=
γk
(
Lk
L s
)
. Then γ̃k ∈W 2,∞((0, L);R2) and

γ̃k ⇀ γ
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weakly in W 2,∞((0, L);R2) . In particular, by the fundamental theorem of calculus, it
holds that

γ̃k → γ pointwise (4.2)
˙̃γk → γ̇ pointwise. (4.3)

Proof. Properties 4.1.2.(i), 4.1.2.(ii), 4.1.2.(iii) and 4.1.2.(v) are already proved in [62].
Concerning Property 4.1.2.(iv), if H1(Γ ) > 0 , then the conclusion follows by applying

Property 4.1.2.(iii) and (4.3) in the formula for the length of a C1 curve.
If H1(Γ ) = 0 , then Γ = {x} since it is connected and nonempty. For any r > 0 , it is

Γk ⊂ Br(x) for k su�ciently large. Then the bound on the curvature for Γk ∈ Rη (assured by
the W 2,∞ -bound in 4.1.2.(iii)) implies that H1(Γk) ≤ Cr for a constant C independent of r ,
so that H1(Γk)→ 0 as k → +∞ . �

In the following, we call endpoints of Γ ∈ Rη the points γ(0) and γ(L) , where γ is the
arc-length parametrization of Γ and L = H1(Γ ) .

The admissible crack sets will be �nite unions of elements in Rη , satisfying some topological
restrictions in order to control the phenomena of branching and kinking. To de�ne a proper class
of cracks, for any curve in Rη we introduce two kinds of neighbourhoods, called 1-sided pencil-
like neighbourhood and 2-sided pencil-like neighbourhood, which depend on two parameters that
will not change along the paper:

β ∈ (0, η) and θ ∈ (0, π/2).

Fixed Γ ∈ Rη , set L := H1(Γ ) and let γ : [0, L] → R2 be the arc-length parametrization
of Γ . Considered the rectangle

R = (0, L)× (−β, β)

and the extended one
Re = (0, L+ β)× (−β, β) ,

we de�ne the maps Φ : R→ R2 and Φe : Re → R2 as

Φ(s, z) := γ(s) + zγ̇(s)⊥ if (s, z) ∈ R
and

Φe(s, z) :=

{
γ(s) + zγ̇(s)⊥ if (s, z) ∈ R
γ(L) + (s− L)γ̇(L) + zγ̇(L)⊥ if (s, z) ∈ [L,L+ β)× (−β, β).

By the regularity of γ (see Proposition 4.1.2), the maps Φ and Φe are homeomorphisms from
R into Φ(R) and from Re into Φe(Re) , respectively.

We consider the subset of R

P2 := {(s, z) ∈ R : 0 < s < L, |z| < min{s tan θ, β, (L− s) tan θ}}
and de�ne the 2-sided pencil-like neighbourhood of Γ (see Fig. 1) as

P2(Γ ) := Φ(P2).

In coordinates, it is

P2(Γ ) =
{
γ(s) + zγ̇(s)⊥ : 0 < s < L, |z| < min{s tan θ, β, (L− s) tan θ}

}
.

We consider the subset of Re

P1 := {(s, z) ∈ R : 0 < s ≤ L, |z| < min{s tan θ, β}}

∪
{

(s, z) ∈ Re : L ≤ s < L+ β, |z| < min{s tan θ,
√
β2 − (s− L)2}

}
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Figure 1. The 2-sided pencil-like neighbourhood P2(Γ ) for a curve Γ ∈ Rη .

and de�ne the 1-sided pencil-like neighbourhood of Γ (see Fig. 2) as

P1(Γ , p) := Φe(P1)

with p = γ(0) . In coordinates, it is

P1(Γ , p) =
{
γ(s) + zγ̇(s)⊥ : 0 < s ≤ L, |z| < min{s tan θ, β}

}
∪
{
γ(L) + (s− L)γ̇(L) + zγ̇(L)⊥ : L ≤ s < L+ β

and |z| < min{s tan θ,
√
β2 − (s− L)2}

}
.

θ

−β
−η

β

η

0
L

P1

Φe
Γ

P1(Γ , p)p

1

Figure 2. The 1-sided pencil-like neighbourhood P1(Γ , p) for a curve Γ ∈ Rη .

Remark 4.1.3. With abuse of terminology, we use the name neighbourhood for the open sets
P1 and P2 . They are not neighbourhoods of Γ , but only of Γ \ {p0, p1} in case of P2(Γ )
and of Γ \ {p0} in case of P1(Γ , p0) , where p0, p1 are the endpoints of Γ . In particular, the
following holds: if P2(Γ1) ∩ Γ2 = Ø and Γ1 ∩ Γ2 6= Ø , then they intersect in (one of or both)
their endpoints. Similarly, if P1(Γ1, p0) ∩ Γ2 = Ø and Γ1 ∩ Γ2 6= Ø , then they intersect in p0 .

We consider �nite unions of curves in Rη satisfying the following properties:

K =

m⋃
j=1

K̃j (4.4)

such that
(i) K is connected;
(ii) K̃j ∈ Rη for any j ;
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(iii) if K̃j ∩ K̃l 6= Ø for j 6= l , then they intersect in (one of or both) their endpoints;
(iv) if K̃i ∪ K̃j ∈ Rη , then there exists K̃l , l 6= i, j , such that K̃i ∩ K̃j ∩ K̃l 6= Ø ;
(v) let p0, p1 be the endpoints of K̃j . Assume that p0 ∈ K̃j ∩ K̃l0 and p1 ∈ K̃j ∩ K̃l1 for

some l0, l1 6= j . Then
P2(K̃j) ∩ K̃l = Ø

for every l 6= j ;
(vi) let p0, p1 be the endpoints of K̃j . Assume that p0 ∈ K̃j ∩ K̃l0 for some l0 6= j and

p1 /∈ K̃l for any l 6= j . Then

P1(K̃j , p0) ∩ K̃l = Ø

for every l 6= j .

Each K̃j is called a branch of K .

De�nition 4.1.4. We divide the points of a set K as in (4.4) in three groups:
• the set TK of crack tip points: x ∈ K belongs to TK if there exists r > 0 such that
K ∩Br(x) is an element of Rη with endpoint x .

• The set SK of singular points: x ∈ K belongs to SK if there exist two unit vectors v1, v2 ∈
R2 tangent to K at x such that v1 · v2 6= ±1 .
• The set RK of regular points: x ∈ K belongs to RK if there exists r > 0 such that
K ∩Br(x) is an element of Rη and x in the relative interior of K .

Remark 4.1.5. Conditions (4.4).(iii) and (4.4).(iv) represent a sort of �maximality� condition
of each branch in the class Rη with respect to inclusion.

Conditions (4.4).(v) and (4.4).(vi) are mathematical restrictions, which will be necessary to
prove compactness of a suitable class of crack sets. We require that each branch is surrounded
by an o�-limit zone for the other branches; it is represented by the pencil-like neighbourhoods.
Around one of (both) the tips, the 1-sided (2-sided) pencil-like neighbourhoods have the shape
of a curvilinear triangle with vertex at the tip and vertex angle of 2θ . The triangular shape
is necessary in order to permit the branching phenomenon at the tip; the condition on the
angle bounds the number of branches that can develop from each singular point, as proved in
Lemma 4.1.9 below.

For any K of this form we can de�ne the sets I1(K) and I2(K) such that

K̃j ∈ I1(K) if and only if K̃j satis�es the assumption in (4.4).(vi)
K̃l ∈ I2(K) if and only if K̃l satis�es the assumption in (4.4).(v).

(4.5)

It holds that:
• TΓ is the set of endpoints p1 of K̃j , for some j ∈ I1(Kl) ;
• SΓ is the set of endpoints p0, p1 of K̃j , for some j ∈ I2(Kl) ;
• RΓ is the set Γ \ (TΓ ∪ SΓ ) .

De�nition 4.1.6. Let δ, λ be positive constants, with

δ ≥ β
( 2

tan θ
+ 1
)

and λ ≥ β

tan θ
. (4.6)

We de�ne the class S of admissible cracks as the set of curves Γ of the form

Γ =

N⋃
j=1

Kj (4.7)

such that N ∈ N and
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(i) each Kj is of the form (4.4) and veri�es Conditions (4.4).(i)-(4.4).(vi);
(ii) it is

Kj ∩ P1(K̃l, p0) = Ø for every K̃l ∈ I1(Km) and m 6= j

Kj ∩ P2(K̃l) = Ø for every K̃l ∈ I2(Km) and m 6= j;

(iii) H1(Kj) ≥ λ for every j ;
(iv) de�ned SΓ :=

⋃N
j=1 SKj , for every x1, x2 ∈ SΓ with x1 6= x2 it is

|x1 − x2| ≥ δ. (4.8)

An example of an element Γ ∈ S is showed in Fig. 3.

K3

K5

Γ

Ω

θ

θ

K4
K2

K1

Ki

θ

v1

v2 ∂DΩ

1

Figure 3. A domain Ω ⊂ R2 with a crack Γ ∈ S . The unit vectors v1, v2 ∈ R2

are tangent to Γ at a singular point; note that v1 · v2 6= ±1 . The red triangles
give an idea of the meaning of the one- and two-sided pencil-like neighbourhoods.

Remark 4.1.7. We brie�y comment the assumptions (4.6). Notice that, if K̃ ∈ Rη , γ is its
arc-length parametrization and H1(K̃) ≥ β(1 + 1/ tan θ) , then for every s ≥ β(1 + 1/ tan θ) it is

Bβ(γ(s)) ⊂ P1(K̃, γ(0)).

If H1(K̃) ≥ δ , then there exists x ∈ ∂P2(K̃) with dist(x, K̃) = β . Indeed, this is true for

x = γ(s) + zγ̇(s)⊥

with β/ tan θ ≤ s ≤ β/ tan θ + β , for which z = ±β .
The constraint (4.6) on λ and Condition 4.1.6.(iii) assure that, if a connected component

K contains only one branch, i.e. K ∈ Rη , then at each tip of K the 1-sided pencil-like
neighbourhood contains a half-ball of radius β .

The class S is endowed with the topology induced by the Hausdor� metric de�ned on sets
(see Subsection 1.7.1). The main result of the section is the following theorem, whose proof is
achieved after several lemmas which will clarify the geometric meaning of the parameters and of
the objects introduced for the de�nition of the class S .

Theorem 4.1.8. The class S is compact with respect to the Hausdor� convergence.

Lemma 4.1.9. There exists a constant M ∈ N such that every Γ ∈ S has at most M branches.
In addition, also the number of singular points and tip points is uniformly bounded.
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Proof. By (4.8), in Ω there can be at most

1
√

3
4 δ

2
|Ω|

singular points, where
√

3 δ2/4 is the area of an equilateral triangle of side δ . By Condi-
tions (4.4).(v) and (4.4).(vi) on the 1-sided and 2-sided pencil-like neighbourhoods, from each
singular point at most 2π/θ branches can develop. Therefore, 2π

θ

√
3

4δ2 |Ω| is the maximum number
of branches for an element Γ ∈ S .

The �nal statement is an easy consequence of the previous part: the number of singular
points and tip points is bounded by the number of equilateral triangles of side δ and by the
number of branches, respectively. �

Lemma 4.1.10. There exists a positive constant C such that H1(Γ ) ≤ C for every Γ ∈ S .

Proof. Apply Proposition 4.1.2.(iii) and Lemma 4.1.9. �

Lemma 4.1.11. There exists an increasing function ρ : (0,+∞)→ (0, β] satisfying the following
property: if K ∈ Rη and γ is its arc-length parametrization, then

Bρ(s)(γ(s)) ⊂ P1(K, γ(0)),

for every s ∈ (0,H1(K)] .

Proof. By elementary geometrical arguments, it is not di�cult to observe that the bound
on the curvature in the class Rη implies that

ρ(s) =
tan θ

2
s

satis�es the above property. �

Lemma 4.1.12. Let (Γk)k ⊂ Rη be such that Γk
H−→ Γ and H1(Γ ) > 0 . Then

∂P2(Γk)
H−→ ∂P2(Γ ) and P2(Γk)

H−→ P2(Γ ).

If p0
k → p0 , then

∂P1(Γk, p
0
k)
H−→ ∂P1(Γ , p0) and P1(Γk, p0

k)
H−→ P1(Γ , p0).

Proof. By the compactness property for Rη , Γ belongs to Rη . We now adopt the notation
of Proposition 4.1.2.

We consider �rst the case of ∂P2 . In terms of the parametrization γ̃k , it is

P2(Γk) =

{
γ̃k(s) +

L

Lk
z ˙̃γk(s)⊥ : 0 < s < L, |z| < min

{
Lk
L
s tan θ, β,

Lk
L

(L− s) tan θ

}}
.

To obtain the claim, we verify the Kuratowski convergence, which in our setting is equivalent
to the Hausdor� convergence (see for example [8]).
• First we show that, given a sequence yj ∈ ∂P2(Γkj ) with yj → y as j → +∞ , then y ∈
∂P2(Γ ) . By de�nition of P2 ,

yj = γ̃kj (sj) +
L

Lkj
zj ˙̃γkj (sj).

Up to subsequences, sj → s ∈ [0, L] . By the bound ‖γ̃kj‖W 2,∞((0,L);R2) ≤ C , (4.2), and (4.3),
we have

γ̃kj (sj)→ γ(s) and ˙̃γkj (sj)→ γ̇(s). (4.9)
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In order to conclude, we should consider di�erent scenarios:

β < min{s tan θ, (L− s) tan θ}
s tan θ ≤ β ≤ (L− s) tan θ
(L− s) tan θ ≤ β ≤ s tan θ.

We only discuss the �rst case, for the others it is enough to argue similarly. Since Lkj/L→ 1 and

sj → s , it is β < min
{
Lkj
L sj tan θ,

Lkj
L (L− sj) tan θ

}
for j su�ciently large, so that zj = β .

Then, by (4.9), we obtain that y = γ(s) + β γ̇(s) , which belongs to ∂P2(Γ ) .
• Given y = γ(s) + zγ̇(s) ∈ ∂P2(Γ ) , we have to construct a sequence yk ∈ ∂P2(Γk) converging
to y . De�ne

yk := γ̃k(s) +
L

Lk
zk ˙̃γk(s) ∈ ∂P2(Γk)

where, for k large, we set
∗ if β < min

{
Lk
L s tan θ, LkL (L− s) tan θ

}
, then zk = β ;

∗ if Lk
L s tan θ ≤ β ≤ Lk

L (L− s) tan θ , then zk = min
{
β, LkL s tan θ

}
;

∗ if Lk
L (L− s) tan θ ≤ β ≤ Lk

L s tan θ , then zk = min
{
β, LkL (L− s) tan θ

}
.

Using the pointwise convergence of γ̃k and ˙̃γk , it is easy to verify that yk → y .

For the case of ∂P1 , in terms of γ̃k , with γ̃k(0) = p0
k , the set P1(Γk, p

0
k) is

P1(Γk, pk) =

{
γ̃k(s) +

L

Lk
z ˙̃γk(s)⊥ : 0 < s < L, |z| < min{Lk

L
s tan θ, β}

}
∪
{
γ̃k(L) + (s− L) ˙̃γk(L) +

L

Lk
z ˙̃γk(L)⊥ : L < s < L+

L

Lk
β

and |z| < min

{
Lk
L
s tan θ,

√
β2 −

L2
k

L2
(s− L)2

}}
.

The proof follows the steps of the previous one, with the following di�erences.
• Let yj ∈ ∂P1(Γ , p0

kj
) be such that yj → y . It is yj = γkj (sj) + xj and, up to subsequences,

sj → s , where
∗ if 0 ≤ s < L , then for j large

xj =
L

Lkj
zj ˙̃γkj (sj)

⊥; (4.10)

∗ if L < s ≤ L+ β , then for j large

xj = (sj − L) ˙̃γkj (L) +
L

Lkj
zj ˙̃γkj (L)⊥; (4.11)

∗ if s = L , then there exists a further subsequence such that either (4.10) or (4.11) hold
for every term of the subsequence.

• Given y ∈ ∂P1(Γ , p0) , we write y = γ(s) + x , with

x = zγ̇(s)⊥ if 0 ≤ s ≤ L
x = (s− L)γ̇(L) + zγ̇(L)⊥ if L ≤ s ≤ L+ β.

Then one de�nes yk ∈ ∂P1(Γk, p
0
k) by considering γ̃k(s) , ˙̃γk(s) and arguing similarly as for P2

in order to choose zk appropriately.

Similar arguments hold for the closed sets P2(Γk) and P1(Γk, p0
k) . �
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Lemma 4.1.13. Let (Γ 1
k )k, (Γ

2
k )k ⊂ Rη be two sequences such that

Γ 1
k
H−→ Γ 1 and Γ 2

k
H−→ Γ 2 , (4.12)

and assume that H1(Γ 1) > 0 . The following properties hold:

• if for every k

P1(Γ 1
k , pk) ∩ Γ 2

k = Ø (4.13)

pk → p with pk ∈ TΓ1
k
,

then p ∈ TΓ1 and P1(Γ 1, p) ∩ Γ 2 = Ø ;
• if P2(Γ 1

k ) ∩ Γ 2
k = Ø for every k , then P2(Γ 1) ∩ Γ 2 = Ø .

Proof. Being pk ∈ TΓ1
k
, it is pk = γ̃k(0) for the arc-length parametrization γk . Since

γ̃k(0)→ γ(0) by Proposition 4.1.2, it is p ∈ TΓ1 .
By contradiction, assume that there exists x ∈ P1(Γ 1, p1) ∩ Γ 2 . Let r > 0 be such that

dist(x, ∂P1(Γ 1, p1)) = 4r . By (4.12), there exists a sequence xk ∈ Γ 2
k converging to x ; in

particular xk ∈ Br(x) for k large. By Lemma 4.1.12, for k large enough we have Br(x) ⊂
P1(Γ 1

k , p
1
k) , so that

xk ∈ Γ 2
k ∩Br(x) ⊂ Γ 2

k ∩ P1(Γ 1
k , p

1
k),

in contradiction to (4.13).
The second property can be proved in a similar manner. �

Lemma 4.1.14. Let Γk ∈ S be a sequence converging to Γ in the Hausdor� metric. Then
H1(Γk)→ H1(Γ ) .

Proof. Without loss of generality, we can assume that

Γk =

N⋃
i=1

K̃i
k (4.14)

with K̃i
k branches of Γk and

K̃i
k
H−→ K̂i, (4.15)

for some N ≤ M (M given in Lemma 4.1.9). Indeed, if this is not the case, for every N ≤ M
we consider the subsequence ΓN,k of elements having N branches and, up to relabelling, we can
assume that (4.15) holds.

First notice that, having Γk a uniformly bounded number of connected components, by
Goª�ab's Theorem 1.7.2 we obtain immediately

H1(Γ ) ≤ lim inf
k→+∞

H1(Γk). (4.16)

If H1(K̂i) = 0 , then K̂i = {xi} . We argue as in the proof of 4.1.2.(iv) of Proposition 4.1.2:
the bound on the curvature for K̃i

k ∈ Rη and (4.15) imply that H1(K̃i
k)→ 0 .

If for i 6= l it is H1(K̂i),H1(K̂l) > 0 , then Lemma 4.1.13 and Remark 4.1.3 imply that

K̂i ∩ K̂l ⊂ {pi0, pi1}

with pi0, p
i
1 endpoints of K̂i . Hence H1(K̂i ∪ K̂l) = H1(K̂i) + H1(K̂l) . Applying Proposi-

tion 4.1.2.(iv),

H1(K̂i) = lim
k→+∞

H1(K̃i
k), (4.17)
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for every i . Considering (4.16), we have

H1(Γ ) ≤ lim inf
k→+∞

H1(Γk) = lim inf
k→+∞

N∑
i=1

H1(K̂i)=0

H1(K̃i
k) =

N∑
i=1

H1(K̂i) = H1(Γ ).

Since (4.17) holds, in the above relation all lim inf are actually limits, so that we obtain the
thesis. �

Proof of Theorem 4.1.8. Let (Γk)k be a sequence in S .
We assume that for each k the set Γk is connected; the general case can be obtained with

similar arguments. Hence Γk has the form (4.4):

Γk =

Nk⋃
j=1

K̃j
k.

Being Nk ≤ M for every k (see Lemma 4.1.9), without loss of generality we can assume that

Nk = N ′ for all k . By Blaschke compactness Theorem 1.7.1, up to subsequences Γk
H−→ Γ for

a compact connected set Γ . It remains to prove that Γ ∈ S .
Lemma 4.1.14 and Condition 4.1.6.(iii) for Γk imply that H1(Γk) → H1(Γ ) ; therefore

λ ≤ H1(Γ ) < +∞ , i.e. Condition 4.1.6.(iii) for Γ .

Applying again Blaschke's Theorem 1.7.1, up to relabelling the K̃j
k , we can assume K̃j

k
H−→

K̂j for some compact set K̂j , for j = 1, . . . , N ′ ; of course, Γ = K̂1 ∪ . . . ∪ K̂N ′ . By Proposi-
tion 4.1.2.(iv)

H1(K̂j) = lim
k→+∞

H1(K̃j
k)

and we relabel the sets K̂j so that H1(K̂j) > 0 for j = 1, . . . , N ′′ for some N ′′ ≤ N ′ and
H1(K̂j) = 0 for j = N ′′ + 1, . . . , N ′ (in this case K̂j = {xj}). Proposition 4.1.2 implies also
that

K̂j ∈ Rη (4.18)

for j = 1, . . . , N ′′ . Being Γ and K̂j connected,

Γ =

N ′′⋃
j=1

K̂j . (4.19)

Thanks to (4.18) and (4.19), Γ can be described as a �nite union of C1,1 curves in Rη . We
write

Γ =

N⋃
i=1

K̃i

is such a way that Conditions (4.4).(i)-(4.4).(iv) in (4.4) are satis�ed. We are left to check
Conditions (4.4).(v) and (4.4).(vi). Firstly we remark that, by Lemma 4.1.13 and Remark 4.1.3,
if K̂j ∩ K̂l 6= Ø , then they intersect at most in their endpoints. Hence for every i = 1, . . . , N it
is

K̃i =
⋃
j∈Ii

K̂j

for a set of indices Ii ⊂ {1, . . . , N ′} .
Assume that K̃1 satis�es the assumptions in (4.4).(v). If K̃1 = K̂j for some j , then

Lemma 4.1.13 implies that P2(K̃1) ∩ K̂l = P2(K̂j) ∩ K̂l = Ø for every l 6= j . Therefore
P2(K̃1) ∩ K̃h = Ø for all h = 2, . . . N , which is exactly condition (4.4).(v).
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Assume now that, up to relabel the K̂j , it is

K̃1 = K̂1 ∪ . . . ∪ K̂l

with K̂j ∩ K̂j+1 = {yj} , and that for the remaining K̂j it is

N ′′⋃
j=l+1

K̂j =

N⋃
i=2

K̃i.

Necessarily, for every k large enough the set K̃1
k ∪ . . .∪ K̃l

k is connected and K̃j
k ∩ K̃

j+1
k = {yjk} ,

with
K̃1
k , . . . , K̃

l
k ∈ I2(Γk), (4.20)

and I2(Γk) de�ned in (4.5). This claim is consequence of Lemma 4.1.11 and the fact that
H1(K̃j

k) ≥ 1
2H

1(K̂j) > 0 for k large: by contradiction, if one of the K̃j
k belongs to I1(Γk) ,

then Lemma 4.1.11 implies that a tip remains at a positive distance (independent of k ) from all
the other branches, so that the same holds for its Hausdor� limit; as a consequence, K̃1 cannot
belong to I2(Γ ) .

Call y0 the endpoint of K̂1 not belonging to K̂2 , and yl the endpoint of K̂l not belonging
to K̂l−1 . We have H1(K̂j) ≥ |yj−1 − yj | ≥ δ for j = 1, . . . , l , since yik → yi and |yik − yhk | ≥ δ
for 0 ≤ i < h ≤ l . This remark on the lengths, the assumption (4.6) on δ and the comments in
Remark 4.1.7 imply

P2(K̃1) = P1(K̂1, y0) ∪ (K̂2)β ∪ . . . (K̂l−1)β ∪ P1(K̂l, yl) , (4.21)

where (K̂j)β = {x ∈ Ω : dist(x, K̂j) < β} . In particular P2(K̃1) ⊃ P2(K̂1) ∪ . . . ∪ P2(K̂l) .
To prove Condition (4.4).(v) we argue by contradiction. Assume that P2(K̃1) ∩ K̃i 6= Ø

for some i ∈ {2, . . . , N} ; since by Lemma 4.1.13 and (4.20) it is P2(K̂h) ∩ K̂m = Ø for all
h = 1, . . . l and m 6= l , there exists

x ∈ K̃i ∩ P2(K̃1) \
(
P2(K̂1) ∪ . . . ∪ P2(K̂l)

)
.

More precisely,
x ∈ (K̂j)β \ P2(K̂j) (4.22)

for some j ∈ {1 . . . , l} and x ∈ K̂m for some m > l , with K̂m having endpoints ym−1, ym . Let
γj be the arc-length parametrization of K̂j ; then

x = γj(s) + zγ̇j(s)⊥ (4.23)

for some |z| < β and, because of (4.22),

either s ∈ [0, β/ tan θ) or s ∈ (H1(K̂j)− β/ tan θ,H1(K̂j)]. (4.24)

Assume (4.24)1 and remember that ym−1 = γj(0) and yj = γj(H1(Γ̂ j)) . Then

min
{
|x− ym−1|, |x− ym|

}
≥min

{
|ym−1 − yj−1|, |ym − yj−1|

}
− |yj−1 − x|

= min
{
|ym−1 − yj−1|, |ym − yj−1|

}
− |γj(0)− γj(s) + zγ̇j(s)⊥|

≥δ − (|z|+ s) ≥ δ − β − β

tan θ

≥β
( 2

tan θ
− 1
)
− β − β

tan θ
=

β

tan θ
.
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If (4.24)2 holds, then by substituting yj−1 with yj in the above chain of inequalities we get

min
{
|x− ym−1|, |x− ym|

}
≥ β

tan θ
.

Hence x = γm(s) with s ∈ [β/ tan θ,H1(Γ̂m)−β/ tan θ] ; then, by choice of δ (see Remark 4.1.7),
this condition implies that dist(x, K̂i) ≥ β for every i 6= m , in contradiction to (4.23), since
|z| < β .

Condition (4.4).(v) is now proved.

In order to check Condition (4.4).(vi) one argues similarly. Instead of (4.21), one has to
observe that

P1(K̃1, y0) = P1(K̂1, y0) ∪ (K̂2)β ∪ . . . ∪ (K̂l)β .

This concludes the proof when the sets Γk are connected. �

In conclusion, we prove some further geometrical results which will be useful in the following
sections.

Lemma 4.1.15. Let Γk,Γ ∈ S and Γk
H−→ Γ . Then for every p ∈ TΓ there exists a sequence

(pk)k , with pk ∈ TΓk , such that pk → p .

Proof. By contradiction, assume that there exist r > 0 and a subsequence of Γk , not
relabelled, such that

dist(p, TΓk) ≥ r (4.25)
for every k . Without loss of generality, we can assume that r ∈ (0, η) and r satis�es the
properties de�ning a crack tip (see De�nition 4.1.4). De�ne K := Γ ∩ Br(p) ∈ Rη and notice
that K ∩ ∂Br(p) = {y} .

Two cases are possible: either
dist(p, SΓk) ≥ r (4.26)

for every k (possibly by replacing the previous r with a smaller one), or there exists a sequence
xk ∈ SΓk such that

xk → p. (4.27)
If (4.26) holds, by Hausdor� convergence there exists xk → p with xk ∈ Γk \ (SΓk ∪ TΓk) .

Let Kk be the branch of Γk containing xk ; Kk ∈ Rη . Set K̃k := Kk ∩ Br(p) , then K̃k ∈
Rη . Fix ε ∈ (0, η/2) ; by Hausdor� convergence, for k su�ciently large K̃k := Kk ∩ Br(p) ⊂
(K)ε := {x ∈ Ω : dist(x,K) < ε} , hence Condition 4.1.1.(ii) in De�nition 4.1.1 is not satis�ed,
in contradiction to the fact that K̃k ∈ Rη .

If (4.27) is the case, then there exist at least two branches K1
k and K2

k of Γk containing xk
and such that Ki

k \ Br(p) 6= Ø (because we are assuming (4.25)); let yik ∈ Ki
k ∩ ∂Br(p) . For k

su�ciently large we can assume that |xk − p| < r/2 , so that

H1
(
Ki
k ∩ ∂Br(p)

)
≥ |xk − yik| ≥ r/2.

By Lemma 4.1.11, it must be
|y1
k − y2

k| ≥ ρ(r/2). (4.28)
Taken ε < 1

2 min{ρ(r/2), r/2} , by Hausdor� convergence we have

Ki
k ∩Br(p) ⊂ (K)ε and |yik − y| < ε,

which imply that |y1
k − y2

k| < 2ε < ρ(r/2) , in contradiction to (4.28). �

Lemma 4.1.16. Let Γ ,Γk ∈ S and Γk
H−→ Γ . Assume that for a tip p ∈ TΓ there exist

p1
k, p

2
k ∈ TΓk , p1

k 6= p2
k , converging to p . Then there exists yk ∈ SΓk converging to p .
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Proof. We argue by contradiction. Assume that

dist(p, SΓk) ≥ r

for some r > 0 . As in Lemma 4.1.15, without loss of generality, we can assume that r ∈ (0, η)

and r satis�es the properties de�ning a crack tip. De�ne K := Γ ∩Br(p) ∈ Rη .
For k su�ciently large, |pik − p| < r/2 , so that the connected components Ki

k containing
pik , for i = 1, 2 , satisfy the bound from below

H1(Ki
k) ≥ r/2.

Then, by Lemma 4.1.11, it has to be |p1
k − p2

k| ≥ ρ(r/2) , in contradiction to the fact that p1
k

and p2
k converge both to p . �

4.2. The incremental problem

This section is devoted to the study of the discrete-time approximation of the continuous-
time evolution. At each incremental step, the fracture is permitted to grow simultaneously at
many tips and to develop new branches. In order to avoid non-physical interactions between
them, we need to perform a sort of localization argument to treat each tip separately. This is
obtained by keeping trace of the fracture increments at each step in the discrete-time approach.
At the end of the section, we establish some a priori estimates and properties of the discrete-time
evolutions.

We study the evolution problem in the �xed time interval [0, 1] . On ∂DΩ we prescribe a
time-dependent boundary displacement which, at each instant t ∈ [0, 1] , is given by the value
w(t) of (the trace of) a function

w ∈ H1(0, 1;H1(Ω))

at t .
The initial con�guration is the couple (u0,Γ0) where u0 ∈ H1(Ω \ Γ0) is solution to

∆u0 = 0 in Ω \ Γ0
∂u0

∂n = 0 on Γ0 ∪ ∂Ω \ ∂DΩ
u0 = w(0) on ∂DΩ

(4.29)

and Γ0 belongs to the class S of admissible cracks. By solution to (4.29) we mean that∫
Ω\Γ0

∇u0 · ∇v dx = 0 for every v ∈ H1(Ω \ Γ0), v = 0 on ∂DΩ .

Given Γ1,Γ2 ∈ S with Γ1 ⊂ Γ2 , let

C(Γ1,Γ2)

be the set of connected components of Γ2 \ Γ1 . Notice that every element c ∈ C(Γ1,Γ2) is a
�nite union of C1,1 curves. In particular, c satis�es Conditions (4.4).(i)-(4.4).(vi) in (4.4) and

c = c \ Γ1. (4.30)

In addition, if c′ ∩ c′′ 6= Ø for two distinct components c′, c′′ ∈ C(Γ1,Γ2) , then

c′ ∩ c′′ ⊂ SΓ2
∩ Γ1. (4.31)

We now construct the discrete-time evolution with incremental time step τ > 0 and initial
datum (u0,Γ0) satisfying (4.29). De�ne

• u0
τ := u0 and Γ 0

τ := Γ0 ;
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• recursively uiτ and Γ iτ as minimizers of

‖∇u‖2 +H1(Γ ) +
1

τ

∑
c∈C(Γ i−1

τ ,Γ)

(
H1(c)

)2
(4.32)

under the constraints Γ ∈ S , Γ i−1
τ ⊂ Γ , u ∈ H1(Ω \ Γ ) and u = w(iτ) on ∂DΩ .

c2

c1

c4

c3 ∈ C(Γi−1
τ , Γiτ )

Γi−1
τ ⊂ Γiτ

1

Figure 4. At each incremental step the fracture is permitted to grow simulta-
neously at many tips and to develop new branches.

Proposition 4.2.1. The minimum problem (4.32) has a solution.

For its proof we need the following lower semicontinuity result, together with Theorem 1.7.6
about the convergence of gradients of solutions to elliptic problems in varying domains.

Lemma 4.2.2. Consider Γ̂ ,Γ ∈ S and a sequence (Γk)k ⊂ S such that

Γ̂ ⊂ Γk for any k and Γk
H−→ Γ . (4.33)

Then Γ̂ ⊂ Γ and ∑
c∈C(Γ̂ ,Γ)

(
H1(c)

)2 ≤ lim inf
k→+∞

∑
c∈C(Γ̂ ,Γk)

(
H1(c)

)2
.

Proof. The fact that Γ̂ ⊂ Γ is a direct consequence of (4.33).

We claim that for every c ∈ C(Γ̂ ,Γ ) there exists a sequence ck ∈ C(Γ̂ ,Γk) such that ck
H−→ c .

By contradiction, assume that the claim does not hold for some c ∈ C(Γ̂ ,Γ ) . By (4.33), there
exist c1k, c

2
k ∈ C(Γ̂ ,Γk) such that

c1k
H−→ c1 c2k

H−→ c2

with H1(c1) > 0 , H1(c2) > 0 , c1 ∪ c2 ⊂ c and c1 ∪ c2 connected. The set c1 ∩ c2 contains
�nitely many points. Notice that, being c1 ∪ c2 connected and

(
c1 ∪ c2

)
∩ Γ̂ = Ø , there exists

x ∈
(
c1 ∩ c2

)
\ Γ̂ . In particular, by (4.30) it is x ∈ c1 ∩ c2 .

By Hausdor� convergence, there exist x1
k ∈ c1k , x

2
k ∈ c2k with

x1
k, x

2
k → x. (4.34)

By assumption (4.8) for the singular points of sets in S , up to subsequences we can assume that
either

x1
k ∈ Γk \ SΓk (4.35)

for every k and there exists C > 0 such that

dist(x1
k, SΓk ∩ c1k) ≥ C, (4.36)

or the analogous properties hold true for x2
k and c2k . Indeed,
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• if both x1
k, x

2
k ∈ SΓk , then (4.8) is contradicted, because x1

k 6= x2
k and |x1

k − x2
k| → 0 .

• If both

dist(x1
k, SΓk ∩ c1k),dist(x2

k, SΓk ∩ c2k)→ 0,

let y1
k ∈ SΓk ∩ c

1
k with |x1

k − y1
k| = dist(x1

k, SΓk ∩ c
1
k) , and the same for y2

k . Notice that
y1
k, y

2
k → x .
If y1

k = y2
k =: yk , then yk ∈ c1k ∩ c2k and, by (4.31) with Γ1 = Γ̂ , it is yk ∈ Γ̂ .

Hence x ∈ Γ̂ , in contradiction to the choice of x .
If y1

k 6= y2
k , then (4.8) is contradicted by the fact that |y1

k − y2
k| → 0 .

Assume (4.35) and (4.36). Let K̃k be the branch in Γk containing x1
k and γk its arc-length

parametrization. Then x1
k = γk(sk) for some sk ∈ (0,H1(K̃k)) ; by (4.36), necessarily sk ≥ C .

Hence Lemma 4.1.11 implies that

dist(x1
k, K̃

′
k) ≥ ρ(C)

for all branches K̃ ′k di�erent than K̃k . In particular,

|x1
k − x2

k| ≥ ρ(C)

for every k , in contradiction to (4.34).

To conclude, let C(Γ̂ ,Γ ) =
{
c1, . . . , cm

}
and consider cik ∈ C(Γ̂ ,Γk) such that cik

H−→ ci ,
which exist for what we just proved. Then, by the fact that H1(ci) = H1(ci) , H1(cik) = H1(cik)

and all components ci, cik satisfy Conditions (4.4).(i)-(4.4).(vi), we can apply Lemma 4.1.14 to
get H1(cik)→ H1(ci) for i = 1, . . . ,m . Finally

∑
c∈C(Γ̂ ,Γ)

(
H1(c)

)2
=

m∑
i=1

(
H1(ci)

)2
= lim
k→+∞

m∑
i=1

(
H1(cik)

)2
≤ lim inf
k→+∞

∑
c∈C(Γ̂ ,Γk)

(
H1(c)

)2
. �

Proof of Proposition 4.2.1. Fix i ∈ {1, . . . , Nτ} . For any Γ ∈ S let uΓ be the mini-
mizer of

min
{
‖∇v‖2 : v ∈ H1(Ω \ Γ ) with v = w(iτ) on ∂DΩ

}
.

Consider a minimizing sequence Γk ∈ S for (4.32). By compactness of the class S , there exist a
subsequence, not relabelled, and an element Γ̃ ∈ S such that Γk

H−→ Γ̃ . Lemma 4.1.14 implies
that

H1(Γk)→ H1(Γ̃ ) . (4.37)

Since Γ i−1
τ ⊂ Γk for every k and Lemma 4.2.2 holds, it follows that Γ i−1

τ ⊂ Γ̃ and∑
c∈C(Γ i−1

τ ,Γ̃)

(
H1(c)

)2 ≤ lim inf
k→+∞

∑
c∈C(Γ i−1

τ ,Γk)

(
H1(c)

)2
. (4.38)

Applying Theorem 1.7.6 we obtain that ∇uΓk → ∇uΓ̃ strongly in L2(Ω;R2) .
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Collecting together (4.37), (4.38) and the last fact, we obtain

‖∇uΓ̃‖
2 +H1(Γ̃ ) +

1

τ

∑
c∈C(Γ i−1

τ ,Γ̃)

(
H1(c)

)2
≤ lim
k→+∞

(
‖∇uΓk‖2 +H1(Γk)

)
+

1

τ
lim inf
k→+∞

∑
c∈C(Γ i−1

τ ,Γk)

(
H1(c)

)2

≤ inf

‖∇u‖2 +H1(Γ ) +
1

τ

∑
c∈C(Γ i−1

τ ,Γ)

(
H1(c)

)2 ,

i.e. the couple (uΓ̃ , Γ̃ ) minimizes (4.32) (notice that, by de�nition of uΓ̃ , it is uΓ̃ = w(iτ) on
∂DΩ). �

We introduce the following functions:
• the piecewise-constant interpolant for the displacement uτ : [0, 1]→ L2(Ω) as

uτ (t) := uiτ

for iτ ≤ t < (i+ 1)τ, i = 0, . . . , Nτ − 1 , and uτ (t) := uNττ for τNτ ≤ t ≤ 1 ;
• the piecewise-constant interpolant for the crack set Γτ : [0, 1]→ S as

Γτ (t) := Γ iτ

for iτ ≤ t < (i+ 1)τ, i = 0, . . . , Nτ , and Γτ (t) := ΓNττ for τNτ ≤ t ≤ 1 ;
• the piecewise-constant and piecewise-a�ne interpolants of the fracture length `τ , ˜̀

τ :
[0, 1]→ R as

`τ (t) := H1(Γ iτ ) and ˜̀
τ (t) := H1(Γ iτ ) +

t− iτ
τ
H1(Γ i+1

τ \ Γ iτ )

for iτ ≤ t < (i+ 1)τ, i = 0, . . . , Nτ , and `τ (t) = ˜̀
τ (t) := H1(ΓNττ ) for τNτ ≤ t ≤ 1 .

Notice that uτ (t) solves the problem
∆uτ (t) = 0 in Ω \ Γτ (t)
∂uτ (t)
∂ν = 0 on Γτ (t) ∪ ∂Ω \ ∂DΩ

uτ (t) = wτ (t) on ∂DΩ

(4.39)

with wτ (t) := w(iτ) for iτ ≤ t < (i+ 1)τ , and also that

˜̀
τ (t) := H1(Γ iτ ) +

t− iτ
τ

∑
c∈C(Γ iτ ,Γ i+1

τ )

H1(c) .

Remark 4.2.3. To be precise, by construction uτ (t) ∈ H1(Ω \ Γτ (t)) . Since L2(Γτ (t)) =
0 , sometimes we will consider uτ as a map taking values in L2(Ω) . Similarly, we will write
∇uτ (t) ∈ L2(Ω;R2) ; notice that ∇uτ (t) is the distributional gradient of uτ (t) only in Ω \Γτ (t)
but, in general, it does not coincide in Ω with the gradient of an extension of uτ (t) .

Since w ∈ H1(0, 1;H1(Ω)) , for any 0 ≤ a < b ≤ 1 it is

w(b)− w(a) =

∫ b

a

ẇ(t) dt and ∇w(b)−∇w(a) =

∫ b

a

∇ẇ(t) dt ,

where the integrals are Bochner integrals (see [2]). It is also true that

‖
∫ b

a

ẇ(t) dt ‖ ≤
∫ b

a

‖ẇ(t)‖ dt and ‖
∫ b

a

∇ẇ(t) dt ‖ ≤
∫ b

a

‖∇ẇ(t)‖ dt ,
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which will be used below.

Proposition 4.2.4. There exists a bounded non-negative function $ : (0, 1) → [0,+∞) such
that $(τ)→ 0 as τ → 0 and for any 0 ≤ i < j ≤ Nτ the following inequality holds:

‖∇ujτ‖2 +H1(Γ jτ ) +
1

τ

j−1∑
h=i

∑
c∈C(Γhτ ,Γh+1

τ )

(
H1(c)

)2
≤ ‖∇uiτ‖2 +H1(Γ iτ ) + 2

∫ jτ

iτ

〈∇uτ (t),∇ẇ(t)〉 dt+$(τ).

(4.40)

Proof. Consider the function u = uhτ + w((h + 1)τ) − w(hτ) . Since u ∈ H1(Ω \ Γhτ ) and
u = w((h + 1)τ) on ∂DΩ , the couple (u,Γhτ ) can be used as competitor in (4.32) at the h + 1
step. Then

‖∇uh+1
τ ‖2 +H1(Γh+1

τ ) +
1

τ

∑
c∈C(Γhτ ,Γh+1

τ )

(
H1(c)

)2
≤‖∇uhτ +∇w((h+ 1)τ)−∇w(hτ)‖2 +H1(Γhτ )

=‖∇uhτ‖2 + 2〈∇uτ (t),∇w((h+ 1)τ)−∇w(hτ)〉

+ ‖∇w((h+ 1)τ)−∇w(hτ)‖2 +H1(Γhτ )

≤‖∇uhτ‖2 +H1(Γhτ ) + 2

∫ (h+1)τ

hτ

〈∇uτ (t),∇ẇ(t)〉 dt

+

(
max

0≤n<Nτ

∫ (n+1)τ

nτ

‖∇ẇ(t)‖ dt

)∫ (h+1)τ

hτ

‖∇ẇ(t)‖ dt.

Iterating over h = i, . . . , j − 1 and de�ning

$(τ) :=

(
max

0≤n<Nτ

∫ (n+1)τ

nτ

‖∇ẇ(t)‖ dt

)∫ 1

0

‖∇ẇ(t)‖ dt,

we obtain the thesis. �

Lemma 4.2.5. There exists a constant C > 0 , independent of τ and t , such that the following
estimates hold true for every τ ∈ (0, 1) and t ∈ [0, 1] :

‖∇uτ (t)‖ ≤ C (4.41)

1

τ

Nτ−1∑
i=0

∑
c∈C(Γ iτ ,Γ i+1

τ )

(
H1(c)

)2 ≤ C (4.42)

H1(Γτ (t)) ≤ C. (4.43)

Proof. Fix t ∈ [0, 1] and let j = j(t) ∈ 0, . . . , Nτ − 1 be such that it satis�es jτ ≤ t <
(j + 1)τ . By the inequality in Proposition 4.2.4 for i = 0 , we obtain

‖∇ujτ‖2 +
1

τ

j−1∑
i=0

∑
c∈C(Γ iτ ,Γ i+1

τ )

(
H1(c)

)2 ≤ ‖∇u0‖2 +

∫ jτ

0

〈∇uτ (ξ),∇ẇ(ξ)〉 dξ +$(τ). (4.44)

Hölder's inequality and (4.44) imply

1

τ

j∑
i=0

∑
c∈C(Γ iτ ,Γ i+1

τ )

(
H1(c)

)2 ≤ C +

(∫ t

0

‖∇uτ (ξ)‖2 dξ
)1/2(∫ t

0

‖∇ẇ(ξ)‖2 dξ
)1/2

(4.45)
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and

‖∇uτ (t)‖2 ≤ C +

(∫ t

0

‖∇uτ (ξ)‖2 dξ
)1/2(∫ t

0

‖∇ẇ(ξ)‖2 dξ
)1/2

,

where C > 0 is independent of τ and t .
By a re�ned version of the Gronwall lemma (see [7, Lemma 4.1.8]), we deduce that for every

t ∈ [0, 1] (∫ t

0

‖∇uτ (ξ)‖2 dξ
)1/2

≤ C
(
1 + ‖∇ẇ‖L2(0,1;L2(Ω;R2))

)
The last two inequalities imply that ∇uτ (t) is bounded in L2(Ω;R2) uniformly with respect to
τ, t , i.e. (4.41). Then, considering (4.45) and (4.41), the estimate (4.42) follows.

Finally, Lemma 4.1.10 implies (4.43). �

Lemma 4.2.6. It is ˜̀
τ ∈ H1(0, 1) and

‖˜̀τ‖H1(0,1) ≤ C

for every τ , with C independent of τ .

Proof. By Lemma 4.1.10, H1(Γ ) ≤ C for any Γ ∈ S . Then

0 ≤ ˜̀
τ (t) ≤ H1(Γ iτ ) +H1(Γ i+1

τ ) ≤ 2C

for any t and τ .
Observe that Lemma 4.1.9 implies that at each step the set C(Γ iτ ,Γ i+1

τ ) contains at most
M elements. Then ∫ 1

0

| ˙̃`τ (t)|2 dt =

Nτ−1∑
i=0

∫ (i+1)τ

iτ

|1
τ

∑
c∈C(Γ iτ ,Γ i+1

τ )

H1(c)|2 dt

≤2M
Nτ−1∑
i=0

1

τ

∑
c∈C(Γ iτ ,Γ i+1

τ )

(
H1(c)

)2 ≤ 2MC ,

where the last inequality is consequence of (4.42). �

4.3. The continuous-time evolution

In this section we select a continuous-time evolution t 7→ (u(t),Γ (t)) as limit of discrete-time
ones, esploiting the a priori estimates of the previous section and compactness results. Among
all evolutions t 7→ (ũ(t), Γ̃ (t)) ∈ L2(Ω) × S with t 7→ Γ̃ (t) monotone and ũ(t) ∈ H1(Ω \ Γ̃ (t))
in static equilibrium with respect to the boundary datum w(t) , the above selection provides the
evolution t 7→ (u(t),Γ (t)) with additional properties, as explained in Section 4.4.

By construction, the set functions Γτ : [0, 1]→ S are monotone increasing (with respect to
the inclusion ordering). Considering the version of the Helly's Theorem proved in [38, Theorem
6.3], there exists a subsequence (not relabelled) Γτ and a map Γ : [0, 1]→ 2Ω such that

Γτ (t)
H−→ Γ (t) (4.46)

for every t ∈ [0, 1] . By the compactness result in Theorem 4.1.8, it is Γ : [0, 1]→ S .
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Concerning the displacements uτ , the following convergence result holds. Let u(t) ∈ H1(Ω\
Γ (t)) be the solution to 

∆u(t) = 0 in Ω \ Γ (t)
∂u(t)
∂ν = 0 on Γ (t) ∪ ∂Ω \ ∂DΩ
u(t) = w(t) on ∂DΩ .

(4.47)

Since Γτ (t)
H−→ Γ (t) , wτ (t)→ w(t) strongly in H1(Ω) , and (4.39) and (4.47) hold, by applying

Theorem 1.7.6 we conclude that
∇uτ (t)→ ∇u(t) (4.48)

strongly in L2(Ω;R2) for every t . Furthermore the bound (4.41) implies

‖∇u(t)‖ ≤ C , (4.49)

with C independent of t .

Now we analyze the approximation process, in order to obtain the growth properties of the
evolution t 7→ (u(t),Γ (t)) announced at the beginning of the section.

Applying the classical Helly's Theorem 1.7.9, there exists a subsequence (not relabelled) `τ
and a function ` : [0, 1]→ R such that

`τ (t)→ `(t) (4.50)

for every t ∈ [0, 1] . By Lemma 4.1.14 and (4.46), it is `(t) = H1(Γ (t)) .

Proposition 4.3.1. The function ` obtained in (4.50) belongs to H1(0, 1) . In particular,
˜̀
τ (t)→ `(t) for t ∈ [0, 1] and ˜̀

τ ⇀ ` weakly in H1(0, 1) .

Proof. By the uniform bound proved in Lemma 4.2.6, up to subsequences it is
˜̀
τ ⇀ ˜̀ (4.51)

weakly in H1(0, 1) for some ˜̀∈ H1(0, 1) , and

‖˜̀‖H1(0,1) ≤ lim inf
τ→0

‖˜̀τ‖H1(0,1) ≤ C.

By de�nition of ˜̀
τ and `τ , we have

0 ≤ ˜̀
τ (t)− `τ (t) =

t− iτ
τ
H1(Γ i+1

τ \ Γ iτ ) ≤ τ ˙̃
`τ (t)

=

∫ (i+1)τ

iτ

˙̃
`τ (ξ) dξ ≤ τ1/2

(∫ (i+1)τ

iτ

| ˙̃`τ (ξ)|2 dξ

)1/2

≤ τ1/2C,

where i is such that iτ ≤ t < (i + 1)τ , and the last inequality is due to Lemma 4.2.6. Then,
considering (4.50), as τ → 0 we obtain that ˜̀

τ (t) → `(t) for t ∈ [0, 1] . Finally, by uniqueness
of the limit, it is ˜̀= ` a.e. in [0, 1] , so that by (4.51) we conclude. �

Corollary 4.3.2. The set function Γ : [0, 1] → S is continuous with respect to the Hausdor�
convergence.

Proof. For any t ∈ (0, 1) we de�ne the left- and right-limit of Γ (·) at t as

Γ−(t) :=
⋃
t′<t

Γ (t′) and Γ+(t) :=
⋂
t′>t

Γ (t′).

By compactness of S , both limits belong to S and it is easy to check that Γ−(t) ⊂ Γ+(t) . Let
t′n < t < t′′n be sequences converging to t ; then, by monotonicity of Γ (·) , we have

0 ≤ H1(Γ+(t) \ Γ−(t)) ≤ H1(Γ (t′′n) \ Γ (t′n)) = `(t′′n)− `(t′n)→ 0,
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where the last limit is due to the continuity of ` , as consequence of Proposition 4.3.1.
If, by contradiction, it is Γ−(t) 6= Γ+(t) , the above discussion implies that

Γ+(t) = Γ−(t) ∪A(t)

with H1(A(t)) = 0 . This contradicts the fact that each connected component of Γ+(t) has
length at least λ (as requested by De�nition 4.1.6.(iii)). �

We analyze the approximation process in correspondence of the tips of the crack Γ (t) ; the
presence of several branches makes the scenario rich.

For simplicity of notation, set

T (t) := TΓ(t) and S(t) := SΓ(t)

and
Tτ (t) := TΓτ (t) and Sτ (t) := SΓτ (t).

For every t ∈ (0, 1] we de�ne
MT (t) := Γ (t) \

⋃
t′<t

Γ (t′) ;

by Corollary 4.3.2 and the geometric properties of the class S , it is not di�cult to prove that

MT (t) = T (t) \
⋃
t′<t

T (t′) ,

motivating the notation MT which stands for �moving tips�. We call

A0 := {t ∈ (0, 1] : MT (t) 6= Ø} (4.52)

the set of instants when the fracture has really grown, at least at one tip.
We cannot exclude a priori that a tip of the continuous-time evolution is the limit point

of (�nitely) many tips of the approximating discrete-time evolutions. If this happens, we have
some di�culties in characterizing the exact behaviour of the continuous-time process (see the
comments at the end of Subsection 4.4.2). Hence below we introduce and describe the properties
of a subset A of A0 , containing the instants t such that every moving tip at t ∈ A is approxi-
mated exactly by one tip of each discrete-time evolution. The set A will play an important role
later, in the description of a stability criterion for the continuous-time evolution.

Lemma 4.3.3. Let A be the set of instants t ∈ A0 such that for every p ∈MT (t) there exist a
neighbourhood U of p and a value ν(t, p) > 0 such that for every τ ≤ ν(t, p) the following two
conditions hold:

• Tτ (t) ∩ U contains one and only one element, denoted pτ (t) ;
• Sτ (t) ∩ U = Ø .

Then A0 \ A is �nite.

Proof. By de�nition of the class S and Lemma 4.1.9, the cardinality of Sτ (1) is uniformly
bounded with respect to τ . Up to considering a subsequence, we can assume that

Sτ (1) = {x1
τ , . . . , x

M
τ }

and xjτ → xj as τ → 0 , for j = 1, . . . ,M . Notice that |xj − xl| ≥ δ if j 6= l , since the same
holds for xjτ and xlτ (see Condition 4.1.6.(iv)).

By Proposition 4.1.15 and since T (t) contains �nitely many points (see again Lemma 4.1.9),
for every t ∈ [0, 1] and r > 0 there exists ν̃(t, r) > 0 such that

Br(p) ∩ Tτ (t) 6= Ø
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for every p ∈ T (t) and τ < ν̃(t, r) .
Let t ∈ A0 \ A . Then there exists p ∈ MT (t) such that for every r > 0 and every

ν ∈ (0, ν̃(t, r)) there exists τν < ν such that Tτν (t) ∩ Br(p) has at least two elements or
Sτν (t) ∩Br(p) 6= Ø .

In the �rst case, by Lemma 4.1.16 there exists yτν ∈ Sτν (t) such that yτν → p as ν → 0
(so τν → 0). Being Sτν (t) ⊂ Sτν (1) , then yτν = xjντν for some jν ∈ {1, . . . ,M} ; it follows that
p = xj for some j .

Similarly, if Sτν (t) ∩Br(p) 6= Ø then p = xj for some j .
Since p(= xj) /∈ MT (t′) for every t′ ∈ A0 \ {t} (being MT (t′) 6= MT (t′′) for any distinct

t′, t′′ ∈ A0 ) and the points xj are a �nite number, then also A0 \ A is �nite. �

By de�nition of crack tip, for any �xed t̂ ∈ (0, 1] there exists r1(t̂) ∈ (0, η) such that

Br1(t̂)(p) ∩ Γ (t̂)

is a curve in Rη for every p ∈ T (t̂) . In addition, r1(t̂) can be chosen so that

∂Br1(t̂)(p) ∩ Γ (t̂) = {x(t̂, p)}

H1(Br1(t̂)(p) ∩ Γ (t̂)) ≤ λ (4.53)

Br1(t̂)(p) ∩ S(t̂) = Ø.

It results that the points p and x(t̂, p) belong to the same branch of Γ (t̂) and x(t̂, p) /∈ S(t̂) .
Since the function Γ : [0, 1] → S is monotone and continuous with respect to the Hausdor�
convergence (see Corollary 4.3.2), and (4.53) holds, for instants t in a left neighbourhood of t̂
and for each p ∈ T (t̂) the set Br1(t̂)(p) ∩ T (t) has exactly one element, labelled p(t) , i.e.

Br1(t̂)(p) ∩ T (t) = {p(t)}, (4.54)

and
T (t) =

{
p(t) : p ∈ T (t̂)

}
. (4.55)

We are able to estimate the size of the left neighbourhood of t̂ in which the above conditions
hold. Indeed, de�ne

α1(t̂, p) := inf
{
t ∈ [0, t̂) : x(t̂, p) ∈ Γ (t)

}
,

where x(t̂, p) has been introduced in (4.53). Then we have

r1(t̂) ≤H1(Br1(t̂)(p) ∩ Γ (t̂)) ≤
∫ t̂

α1(t̂,p)

˙̀(t) dt

≤
(
t̂− α1(t̂, p)

)1/2(∫ t̂

α1(t̂,p)

| ˙̀(t)|2 dt

)1/2

≤ C
(
t̂− α1(t̂, p)

)1/2
,

so that
t̂− α1(t̂, p) ≥ C r1(t̂)2

with C independent of t̂ and p .
Since T (t̂) contains �nitely many points, if we set

α1(t̂) := max{α1(t̂, p) : p ∈ T (t̂)}, (4.56)

then (4.54) and (4.55) hold for every t ∈ (α1(t̂), t̂] .
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Remark 4.3.4. Notice that we cannot infer anything about the local behaviour of Γ (·) at the
instants after t̂ , since new branches might spring out at some tip p ∈ T (t̂) .

Lemma 4.3.5. For every t̂ ∈ (0, 1] \A0 there exists α(t̂) ∈ [α1(t̂), t̂) such that Γ (t) = Γ (t̂) for
every t ∈ (α(t̂), t̂] . In particular T (t) = T (t̂) for every t ∈ (α(t̂), t̂] .

Proof. It is a straightforward consequence of the de�nition of MT and A0 . �

By de�nition of A , at instants t ∈ A each crack tip is locally approximated by exactly
one tip, while singular points of the approximating sequence remain �distant� (see Fig. 5). The
following lemma shows that these properties are preserved locally in a left neighbourhood of
every instant in A . The importance of this result lies in the fact that this left neighbourhood is
not necessarily entirely contained in A .

p1τ (t0)

p2τ (t0)

p2(t0)

p2(t)

p1(t0)

Γ(t0)

Γτ (t0)

p1(t)

1

Figure 5. The crack set Γ (t0) and, dotted, a discrete-time approximat-
ing crack set Γτ (t0) at an instant t0 ∈ A , in correspondence of two tips
p1(t0), p2(t0) ∈MT (t0) .

Lemma 4.3.6. Let t̂ ∈ A . Then there exist α(t̂) ∈ [α1(t̂), t̂) , ν(t̂) > 0 and r(t̂) ∈ (0, η) such
that the following facts hold for every t ∈ (α(t̂), t̂] :

(i) if p ∈ T (t̂) \MT (t̂) , then p ∈ T (t) ;
(ii) if p ∈MT (t̂) , then for every τ < ν(t̂) the set Br(t̂)(p)∩Tτ (t) has exactly one element,

that we label pτ (t) .

Proof. If p ∈ T (t̂) \MT (t̂) , then argue as in Lemma 4.3.5 and call β1(t̂) what therein
is α(t̂) .

Consider now p ∈MT (t̂) . By de�nition of A , there exist r(t̂) > 0 and ν1(t̂) > 0 such that

Tτ (t̂) ∩Br(t̂)(p) = {pτ (t̂)} and Sτ (t̂) ∩Br(t̂)(p) = Ø (4.57)

for every p ∈MT (t̂) . In particular, we can choose r(t̂) ∈ (0, r1(t̂)] , where r1(t̂) was introduced
in (4.53), and such that

sup
{
H1(K) : K ∈ Rη,K ⊂ Br(t̂)(0)

}
< λ. (4.58)

The above conditions on r(t̂) imply that

Γτ (t̂) ∩Br(t̂)(p) ∈ Rη

and every connected component of Γτ (t̂) is not completely contained in Br(t̂)(p) , because
of (4.58) and of the constraint given by Condition 4.1.6.(iii).
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For simplicity of notation, in the remaining of the proof we write

r = r(t̂) and ν1 = ν1(t̂).

Fix p ∈MT (t̂) . Let ν = ν(t̂) ∈ (0, ν1) be such that pτ (t̂) ∈ Br/2(p) for every τ < ν (such ν
exists since, by Proposition 4.1.15, it is pτ (t̂)→ p as τ → 0); if necessary, later we will replace ν
with a smaller one. By (4.57) and (4.58), it follows that

H1(Γτ (t̂) ∩Br(p)) ≥
r

2
(4.59)

for every τ < ν .
De�ne

tτ := inf{t ∈ [0, t̂) : Γτ (t′) ∩Br(p) 6= Ø for every t′ ∈ (t, t̂)}.

If tτ = 0 for any τ < ν , set β2(t̂) := α1(t̂) , where α1(t̂) was de�ned in (4.56). If tτ > 0 for
some τ < ν , we argue in the following way: for any τ let iτ , jτ ∈ N be such that

iτ ≤ tτ < (iτ + 1)τ and jτ ≤ t̂ < (jτ + 1)τ.

By (4.59), Lemma 4.2.6 and Hölder inequality, we have

r

2
≤H1(Γτ (t̂) \ Γτ (tτ )) =

jτ∑
h=iτ

∑
C∈C(Γhτ ,Γh+1

τ )

H1(C) =

∫ (jτ+1)τ

iττ

˙̃
`τ (t) dt (4.60)

≤
∫ t̂+τ

tτ−τ

˙̃
`τ (t) dt ≤ (t̂− tτ + 2τ)1/2

(∫ 1

0

| ˙̃`τ (t)|2 dt
)1/2

≤ C(t̂− tτ + 2τ)1/2

with C > 0 independent of τ and t̂ . De�ne

β2(t̂) := max

{
α1(t̂), t̂+ ν(t̂)− r2

4C2

}
and choose ν(t̂) such that, in addition to being smaller than ν1 , it sati�es

ν(t̂) ≤ 1

4

r2

4C2
.

Then β2(t̂) < t̂ and, taking into account (4.60), for every τ < ν(t̂) it is

tτ ≤ t̂+ τ − r2

4C2
≤ t̂+ ν(t̂)− r2

4C2
≤ β2(t̂).

Summarizing, we have shown that for every τ < ν(t̂) and t ∈ (β2(t̂), t̂]

Γτ (t) ∩Br(t̂)(p) 6= Ø and Γτ (t) ∩Br(t̂)(p) ∈ Rη.

Then we can conclude that Tτ (t) ∩Br(t̂)(p) has only one element, denoted by pτ (t) .
Since MT (t̂) contains �nitely many points, we can choose r(t̂) , β2(t̂) and ν(t̂) such that

the above property holds for every p ∈MT (t̂) .

Finally, de�ne α(t̂) := max{β1(t̂), β2(t̂)} , so that both (i) and (ii) are valid for any instant
t ∈ (α(t̂), t̂] . �
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4.3.1. Velocity of the crack tips. In this subsection we introduce the notion of velocity
of the front T (t) of the fracture. It will play a role in the dissipative term of the energy and for
a Gri�th-like stability criterion for the crack growth. We provide two equivalent descriptions,
both interesting for di�erent reasons. We �rst introduce the velocity by means of a distributional
approach, based on the theory of absolutely continuous maps with values in the space of bounded
measures. This point of view gives a picture of the situation in the whole of Ω , and it somehow
reminds the approach suggested in [61]. Instead, the second description is local and is based on
the parametrization of the branches of the crack.

At the very beginning, we summarize what we know so far about the crack growth t 7→ Γ (t) .
As observed in Corollary 4.3.2, the set function Γ (·) : [0, 1] → S is continuous with respect to
the Hausdor� topology in S . By construction of the class S , it is card(S(1)) ≤ M for some
M ∈ N . Since the map t 7→ S(t) is monotone increasing with respect to inclusion, there exists
a partition of the interval [0, 1]

0 = a0 < a1 < . . . < an = 1 (4.61)

such that
• S(t) = S(t′) for every t, t′ ∈ (ai, ai+1] ;
• card(S(t)) < card(S(t′)) for any t ≤ ai < t′ .

In the time intervals (ai, ai+1] new branches of the fracture can appear; being S(·) constant,
they necessarily originate at some point in S(t) , for t ∈ (ai, ai+1] . Together with any new
branch, also a new tip appears; by monotonicity of Γ (·) , for any t, t′ ∈ (ai, ai+1] with t′ < t , it
has to be card(T (t′)) ≤ card(T (t)) .

We can again establish a sort of stability from the left: as seen in the discussion in Section 4.3,
for every t ∈ (ai, ai+1] there exists α1(t) < t (de�ned in (4.56)) such that (4.55) holds, i.e.

card(T (t)) = card(T (t′)) (4.62)

for every t′ ∈ (α1(t), t] ; by (4.55), notice that α1(t) ≥ ai . Hence we can further subdivide each
interval (ai, ai+1] with a partition ai = b0i < b1i < . . . < bnii = ai+1 such that

• card(T (t)) = card(T (t′)) if t, t′ ∈ (bki , b
k+1
i ] ;

• card(T (t)) < card(T (t′)) if ai < t ≤ bki < t′ < ai+1 .
Actually, above we have proved the following fact.

Lemma 4.3.7. There exists a partition

0 = t0 < t1 < . . . < tN+1 = 1

of the interval [0, 1] such that one of the following alternatives holds:

(i) if t, t′ ∈ (ti, ti+1] , then S(t) = S(t′) and card(T (t)) = card(T (t′)) ;
(ii) if t ≤ ti < t′ , then either S(t) = S(t′) and card(T (t)) < card(T (t′)) , or S(t) 6= S(t′) .

Lemma 4.3.8. Consider a sequence (Γk)k ⊂ S such that Γk
H−→ Γ̂ . Then for every ψ ∈ Cb(Ω)∫

Γk

ψ dH1 →
∫
Γ̂

ψ dH1. (4.63)

In other words, the sequence of measures µk := H1xΓk converges to µ̂ := H1xΓ̂ weakly∗

in Mb(Ω) .

Proof. It is enough to use the regularity of the curves in Rη , in particular the parametriza-
tion provided by Proposition 4.1.2.(v). �
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Let µ : [0, 1]→Mb(Ω) be the map de�ned as

µ(t) := H1xΓ (t). (4.64)

Proposition 4.3.9. The map µ : [0, 1]→Mb(Ω) belongs to the space AC([0, 1];Mb(Ω)) .

Proof. By de�nition of µ , it results that

|µ(t)|(Ω) = H1(Γ (t)) = `(t),

where ` was introduced in (4.50) and ` ∈ H1(0, 1) by Proposition 4.3.1.
Let ψ ∈ C0(Ω) . Then for every 0 ≤ a < b ≤ 1 it is

|〈ψ, µ(b)− µ(a)〉| =
∣∣∣∣∫

Ω

ψ d(µ(b)− µ(a))

∣∣∣∣ =

∣∣∣∣∣
∫
Γ(b)\Γ(a)

ψ dH1

∣∣∣∣∣
≤‖ψ‖∞ H1(Γ (b) \ Γ (a)) = ‖ψ‖∞

(
H1(Γ (b))−H1(Γ (a))

)
=‖ψ‖∞

∫ b

a

˙̀(ξ) dξ.

Taking the supremum over all ψ ∈ C0(Ω) with ‖ψ‖∞ ≤ 1 , we obtain

|µ(b)− µ(a)|(Ω) ≤
∫ b

a

˙̀(t) dt.

Since ` ∈ H1(0, 1) , by the absolute continuity of the integral with respect to the integration
domain we obtain the thesis. �

In accordance with the results in [32, Appendix], for a.e. t ∈ [0, 1] there exists

µ̇(t) := w∗ − lim
s→t

µ(s)− µ(t)

s− t
,

and µ̇(t) ∈Mb(Ω) . We mean that for a.e. t ∈ [0, 1] there exists a Radon measure µ̇(t) ∈Mb(Ω)
such that

〈ψ, µ̇(t)〉 = lim
s→t
〈ψ, µ(s)− µ(t)

s− t
〉

for every ψ ∈ C0(Ω) .
We describe the �structure� of these measures, in order to introduce a distributional notion

of velocity.

Proposition 4.3.10. For a.e. t ∈ [0, 1]

supp µ̇(t) ⊂ T (t).

Proof. Consider t̂ ∈ [0, 1] \ {t1, . . . , tN} for which µ̇(t̂) exists, where t1, . . . , tN are given
in Lemma 4.3.7. Fix ψ ∈ C0(Ω) such that suppψ ⊂ Ω\T (t̂) . Taken r1(t̂) and α1(t̂) as in (4.53)
and (4.56) respectively, for every t ∈ (α1(t̂), t̂] it is

Γ (t) \
⋃

p∈T (t̂)

Br1(t̂)(p) = Γ (t̂) \
⋃

p∈T (t̂)

Br1(t̂)(p) .

Let r ∈ (0, r1(t̂)) be such that

supp ψ ⊂ Ω \
⋃

p∈T (t̂)

Br(p) .
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By continuity of the set function Γ (·) with respect to the Hausdor� converge (see Corol-
lary 4.3.2), if we repeat for r the discussion done for r1(t̂) and α1(t̂) , we obtain that there
exists tr < t̂ such that

Γ (t) \
⋃

p∈T (t̂)

Br(p) = Γ (t̂) \
⋃

p∈T (t̂)

Br(p)

for every t ∈ (tr, t̂] . Therefore

〈ψ, µ(t)− µ(t̂)

t− t̂
〉 =

1

t̂− t

∫
Γ(t̂)\Γ(t)

ψ dx = 0

for every t ∈ (tr, t̂) . Taking the limit as t→ t̂− , since µ̇(t̂) exists we get 〈ψ, µ̇(t̂)〉 = 0 .
We have shown that, for every t ∈ (0, 1) for which µ̇(t) exists, if ψ ∈ C0(Ω) with suppψ ⊂

Ω \ T (t) then 〈ψ, µ̇(t)〉 = 0 . Therefore supp µ̇(t) ⊂ T (t) . �

As a consequence of Proposition 4.3.10, for a.e. t ∈ (0, 1)

µ̇(t)� H0xT (t).

De�nition 4.3.11. We call (distributional) velocity of the crack tip p ∈ T (t) the value v(t, p) ,
where

µ̇(t) =
∑
p∈T (t)

v(t, p) δp (4.65)

and δx is the Dirac measure concentrated at x ∈ R2 .

Now we pass to the second approach for the description of the front velocity, which will lead
to an equivalent de�nition.

Consider t̂ ∈ (ti, ti+1) , with ti introduced in Lemma 4.3.7, and r1(t̂) , α1(t̂) as in (4.53)
and (4.56). Fixed p ∈ T (t̂) , we can describe the curve

Γ (t̂) ∩Br1(t̂)(p) ∈ Rη

by means of an arc-length parametrization γ : [0, Lt̂,p]→ R2 (here Lt̂,p := H1(Γ (t̂)∩Br1(t̂)(p)))

and an increasing function σ : [α1(t̂), t̂]→ [0, Lt̂,p] such that for every t ∈ (α1(t̂), t̂] it is

σ(t) = H1(Γ (t) ∩Br1(t̂)(p)) and γ(σ(t)) = p(t) ,

where p(t) is the unique element in T (t)∩Br1(t̂)(p) (see (4.54)). Since the curves in Rη belong
to W 2,∞ and `(·) = H1(Γ (·)) is in H1(0, 1) , it results that γ ∈ W 2,∞ and σ ∈ H1(α1(t̂), t̂) ,
hence

γ(σ(·)) ∈ H1((α1(t̂), t̂);R2).

Then, for a.e. t ∈ (α1(t̂), t̂) , we de�ne the velocity of the crack tip p(t) as

v(t, p(t)) := σ̇(t) γ̇(σ(t))

and
ṽ(t, p(t)) := |v(t, p(t))| = σ̇(t). (4.66)

It is not di�cult to see that the two notions (4.65) and (4.66) coincide, i.e.

v(t, p(t)) = ṽ(t, p(t)) (4.67)
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for a.e. t ∈ [0, 1] . Indeed, assume that µ̇(t) and σ̇(t) exist for some t ∈ [0, 1] \ {t1, . . . , tN} ,
with ti as in Lemma 4.3.7. For s ∈ (α1(t), t) it is Γ (t) \ Γ (s) = γ(σ((s, t])) . Fixed p(t) ∈ T (t) ,
for ψ ∈ Cb(Ω) with supp ψ ⊂ Br1(t)(p(t)) and ψ(p(t)) = 1 it is

1

t− s

∫
Γ(t)\Γ(s)

ψ dH1 =
1

t− s

∫ t

s

ψ(γ(σ(ξ))) | d
dξ

(γ(σ(ξ))) | dξ

=
1

t− s

∫ t

s

ψ(γ(σ(ξ))) σ̇(ξ) dξ.

As s↗ t , the left-hand side converges to

〈ψ, µ̇(t)〉 = 〈ψ,
∑
p∈T (t)

v(t, p)δp〉 = ψ(p(t)) v(t, p(t)) = v(t, p(t)), (4.68)

while the right-hand side to

ψ(γ(σ(t))) σ̇(t) = ψ(p(t)) ṽ(t, p(t)) = ṽ(t, p(t)).

Hence (4.67) is proved.

Similarly to the map µ : [0, 1]→Mb(Ω) de�ned in (4.64), we introduce µτ : [0, 1]→Mb(Ω)
as

µτ (t) := H1xΓτ (t) .

Lemma 4.3.8 and (4.46) imply that
µτ (t) ⇀ µ(t) (4.69)

weakly∗ in Mb(Ω) , for every t ∈ [0, 1] . Observe that if r ∈ (0, η) , then for every x ∈ Ω

µ(t)(∂Br(x)) = 0. (4.70)

Indeed, being r < η , the constraint on the curvature of the curves K ∈ Rη implies that the set
K∩∂Br(x) contains �nitely many points, and consequently the same holds for the set Γ∩∂Br(x)
for every Γ ∈ S . Then, by (4.69) and (4.70), we obtain that

µτ (t)(Br(x))→ µ(t)(Br(x))

for every r ∈ (0, η) and x ∈ Ω .

Lemma 4.3.12. Let t̂ ∈ A , r(t̂) given by Lemma 4.3.6 and p ∈MT (t̂) . For every t ∈ (α(t̂), t̂)
and τ such that t+ τ ∈ (α(t̂), t̂] , the set

(Γτ (t+ τ) \ Γτ (t)) ∩Br(t̂)(p) (4.71)

is either empty or connected.

Proof. Assume that the set is not empty. By choice of t̂ , it is Γτ (t̂) ∩ Br(t̂)(p) ∈ Rη and
Tτ (t̂) ∩ Br(t̂)(p) = {pτ (t̂)} . If for some t and τ the set in (4.71) has two or more connected
components, then they must be separated by points or arcs of curve contained in Γτ (t) : there
exists c connected component of Γτ (t) with c strictly contained in Br(t̂)(p) and c ∈ Rη (because

c ⊂ Γτ (t̂) ∩ Br(t̂)(p) ∈ Rη ). By the fact that (4.58) is veri�ed for our choice of r(t̂) , it is
H1(c) < λ . However this is impossible, since Γτ (t) ∈ S and all its connected components must
have length at least λ . �

Hence by the previous lemma we conclude that, for τ su�ciently small and t ∈ (α(t̂), t̂] ,
it is

(Γτ (t+ τ) \ Γτ (t)) ∩Br(t̂)(p) = cpτ (t)
τ
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for the connected component c
pτ (t)
τ ∈ C(Γτ (t),Γτ (t+ τ)) with pτ (t) ∈ c

pτ (t)
τ .

We introduce the following notion of discrete velocity. For any p ∈ TΓτ (t+τ) \ TΓτ (t) we set

vτ (t, p) :=
1

τ
H1(cpτ ) (4.72)

where, as above, cpτ is the connected component in C(Γτ (t),Γτ (t + τ)) containing p . If p ∈
TΓτ (t+τ) ∩ TΓτ (t) , we simply set vτ (t, p) := 0 .

Remark 4.3.13. Let us underline once more that the connected components cpτ above might
not be C1,1 arcs of curve, but they might kink or contain several branches.

In conclusion of the section, we establish a result which relates vτ and v in small time
intervals.

Proposition 4.3.14. For every t̂ ∈ [0, 1] \ (A0 \ A) let α(t̂) be as in Lemmas 4.3.5 or 4.3.6.
Then for every interval (a, b) ⊂ (α(t̂), t̂) it holds∫ b

a

v(t, p(t))2 dt ≤ lim inf
τ→0

∫ b

a

vτ (t, pτ (t))2 dt,

where, if t ∈ A , then p(t) and pτ (t) are as in Lemma 4.3.6.

Proof. Fixed t̂ ∈ [0, 1] \ (A0 \A) , consider p ∈ T (t̂) \MT (t̂) (if this set is not empty). Let
α(t̂) be as in Lemma 4.3.5 or in Lemma 4.3.6:

Γ (t) ∩Br1(t̂)(p) = Γ (t̂) ∩Br1(t̂)(p)

for all t ∈ (α(t̂), t̂] . Using the de�nition (4.66) of ṽ and the notation introduced therein, it
results that ṽ(t, p(t)) = ṽ(t, p) = 0 . Since (4.67) holds true, it is

v(t, p(t)) = ṽ(t, p(t)) = 0

for a.e. t ∈ (α(t̂), t̂] . Therefore for any (a, b) ⊂ (α(t̂), t̂) we have

0 =

∫ b

a

v(t, p(t))2 dt ≤
∫ b

a

vτ (t, pτ (t))2 dt. (4.73)

If t̂ ∈ A and p ∈ MT (t̂) , let α(t̂) , ν(t̂) , r(t̂) , p(t) , pτ (t) be as in Lemma 4.3.6. For
t ∈ (α(t̂), t̂) , by Lemma 4.3.6 and Lemma 4.3.12 it results that it is either vτ (t, pτ (t)) = 0

or vτ (t, pτ (t)) = 1
τ H

1(c
pτ (t)
τ ) , where c

pτ (t)
τ is the connected component in C(Γτ (t),Γτ (t + τ))

containing pτ (t) . Set

˜̀p,r(t̂)
τ (t) := H1

(
Γτ (t) ∩Br(t̂)(p)

)
+
t− iτ
τ
H1
(
(Γτ (t+ τ) \ Γτ (t)) ∩Br(t̂)(p)

)
`p,r(t̂)(t) := H1

(
Γ (t) ∩Br(t̂)(p)

)
= µ(t)

(
Br(t̂)(p)

)
.

Arguing as in Proposition 4.3.1, it results that `p,r(t̂) ∈ H1(0, 1) and

˜̀p,r(t̂)
τ (·) ⇀ `p,r(t̂)(·) (4.74)

weakly in H1(0, 1) .
For τ small enough c

pτ (t)
τ ⊂ Br(t̂)(p) , so that

˙̃
`p,r(t̂)τ (t) =

1

τ
H1
(
cpτ (t)
τ ∩Br(t̂)(p)

)
=

1

τ
H1
(
cpτ (t)
τ

)
= vτ (t, pτ (t)) .
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By de�nition of `p,r(t̂) , for a.e. t ∈ (α(t̂), t̂) we have

˙̀p,r(t̂)(t) = µ̇(t)(Br(t̂)p) =
∑
q∈T (t)

v(t, q) δq
(
Br(t̂)(p)

)
= v(t, p(t)) ,

where the last equality is due to the fact that T (t) ∩ Br(t̂)(p) = {p(t)} for t ∈ (α(t), t) (see
Lemma 4.3.6). By (4.74), in particular it is

vτ (·, pτ (·)) ⇀ v(·, p(·)) (4.75)

weakly in L2(α(t̂), t̂) . Hence, by (4.74) for every (a, b) ⊂ (α(t̂), t̂) we have∫ b

a

v(t, p(t))2 dt =

∫ b

a

| ˙̀p,r(t)|2 dt ≤ lim inf
τ→0

∫ b

a

| ˙̃`p,rτ (t)|2 dt

= lim inf
τ→0

∫ b

a

vτ (t, pτ (t))2 dt ,

and this concludes the proof. �

4.4. Properties of the continuous-time evolution

In this section we give a characterization of the evolution t 7→ (u(t),Γ (t)) selected in Sec-
tion 4.3. Indeed, the approximation by means of the discrete-time evolutions obtained in Sec-
tion 4.2 provides (u(t),Γ (t)) with further interesting properties.

In the following, Γ (t) is the family of sets obtained in (4.46) and u(t) is the solution to the
problem (4.47).

4.4.1. Energy inequality. We want to obtain an energy inequality for the continuous-
time evolution (see Proposition 4.4.4). The presence of several branches of the fracture requires
a careful control of the approximation process by the discrete-time evolutions, in order to obtain
the proper dissipation energy due to the crack increase rate.

Rewritten with the notation introduced in Section 4.3, inequality (4.40) has the form

‖∇uτ (b)‖2 +H1(Γτ (b)) +

∫ kτ

iτ

∑
p∈Tτ (t)

vτ (t, p)2 dt

≤ ‖∇uτ (a)‖2 +H1(Γτ (a)) + 2

∫ kτ

iτ

〈∇uτ (t),∇ẇ(t)〉 dt+$(τ),

(4.76)

where a < b , 0 ≤ iτ ≤ a < (i + 1)τ and kτ ≤ b < (k + 1)τ ≤ T for some i, k ∈ {0, . . . , Nτ} ,
i ≤ k .

Lemma 4.4.1. For every t ∈ [0, 1) it is Γτ (t+ τ)
H−→ Γ (t) as τ → 0 .

Proof. Fix t ∈ [0, 1) and let i ∈ {0, . . . , Nτ} be such that iτ ≤ t < (i+ 1)τ . Set

Γ̃ (t) := H− lim
τ→0

Γτ (t+ τ), (4.77)

which exists (up to subsequences) and belongs to the family S by compactness of this class (see
Theorem 4.1.8).

By contradiction, assume Γ̃ (t) \ Γ (t) 6= Ø . Being Γτ (t) ⊂ Γτ (t + τ) , the limit sets verify
the same inclusion, i.e. Γ (t) ⊂ Γ̃ (t) . By continuity (with respect to the Hausdor� convergence)
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of the measure H1 restricted to sets in S (see Lemma 4.1.14), we have

0 ≤H1(Γ̃ (t) \ Γ (t)) = H1(Γ̃ (t))−H1 (Γ (t))

= lim
τ→0
H1 (Γτ (t+ τ))− lim

τ→0
H1 (Γτ (t)) = lim

τ→0
H1 (Γτ (t+ τ) \ Γτ (t))

= lim
τ→0
H1
(
Γ i+1
τ \ Γ iτ

)
= lim
τ→0

∑
c∈C(Γ iτ ,Γ i+1

τ )

H1(c) = lim
τ→0

∫ (i+1)τ

iτ

˙̃
`τ (ξ) dξ

≤ lim
τ→0

τ1/2

(∫ (i+1)τ

iτ

| ˙̃`τ (ξ)|2 dξ

)1/2

≤ C lim
τ→0

τ1/2 = 0,

where the last inequality is due to Lemma 4.2.6.
Hence the set Γ̃ (t) \ Γ (t) is composed by isolated points, which contradicts the fact that

Γ̃ (t) ∈ S (Condition 4.1.6.(iii) is not satis�ed). Therefore Γ̃ (t) = Γ (t) , which, taking into
account (4.77), concludes the proof. �

Lemma 4.4.2. For any t ∈ [0, 1) the functions ∇uτ (t) and ∇uτ (t + τ) converge to ∇u(t)
strongly in L2(Ω;R2) as τ → 0 .

Proof. Fix t ∈ [0, 1) and for every τ let i ∈ {0, . . . , Nτ} be such that iτ ≤ t < (i + 1)τ .
We already proved in (4.48) that ∇uτ (t)→ ∇u(t) strongly in L2(Ω;R2) .

Concerning the other claim, we argue as for (4.48): u(t+ τ) is solution to the problem
∆v = 0 in Ω \ Γ i+1

τ

v = w((i+ 1)τ) on ∂DΩ
∂v
∂ν = 0 on Γ i+1

τ .

Then, in order to apply again Theorem 1.7.6, we notice that w((i + 1)τ) → w(t) strongly in

H1(Ω) and, by Lemma 4.4.1, Γ i+1
τ = Γτ (t+ τ)

H−→ Γ (t) . �

The only remaining term to analyze is the dissipation energy due to the crack growth rate.
Then we will have all the tiles to recompose the mosaic. In the following we apply the results
at the end of Subsection 4.3.1.

Let ti be de�ned as in Lemma 4.3.7. The set

F := {t0, · · · , tN} ∪ (A0 \ A)

is �nite (see Lemma 4.3.3). We write F = {t′0, . . . , t′N1
} with t′i < t′i+1 and for t ∈ (t′i, t

′
i+1) we

de�ne

I(t) = (α(t), t] ∩ (t′i, t
′
i+1) ,

where α(t) is given by Lemma 4.3.5 if t /∈ A0 and by Lemma 4.3.6 if t ∈ A . The following fact
holds:

Lemma 4.4.3. For every t̃ ∈ (t′i, t
′
i+1) there exists a countable set A(t̃) ⊂ (t′i, t

′
i+1) such that

(t′i, t̃] =
⋃

t∈A(t̃)

I(t)

and I(t) ∩ I(t′) = Ø for every t, t′ ∈ A(t̃) , t 6= t′ .
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Proof. Fix t̃ ∈ (t′i, t
′
i+1) and de�ne

ιt̃ := inf
{
t ∈ [t′i, t̃] : (t, t̃] can be covered by countably many disjoint I(·)

}
. (4.78)

Of course ιt̃ < t̃ since it is enough to consider I(t̃) to obtain that ιt̃ ≤ inf I(t̃) .
By contradiction, assume that ιt̃ > t′i . Then the set I(ιt̃) ∪ (ιt̃, t̃] is an interval of the form

(a, t̃] , is covered by (at most) countably many disjoint intervals I(t) and

inf
(
I(ιt̃) ∪ (ιt̃, t̃]

)
= inf I(ιt̃) < ιt̃,

in contradiction to the de�nition (4.78). Therefore ιt̃ = t′i . �

We want to establish the following lower semicontinuity result about the dissipation at the
crack front: for (a, b) ⊂ (0, 1)∫ b

a

∑
p∈T (t)

v(t, p)2 dt ≤ lim inf
τ→0

∫ b

a

∑
p∈Tτ (t)

vτ (t, p)2 dt . (4.79)

We �rst prove it in a time interval (a, b) ⊂ I(t̂) for any t̂ ∈ (0, 1) \ F , then we extend it to the
case (a, b) ⊂ (t′i, t

′
i+1) and �nally to (a, b) ⊂ (0, 1) .

If t̂ ∈ (0, 1) \ A0 , then Proposition 4.3.14, and in particular (4.73), provides the inequality
in I(t̂) ∩ (a, b) :

0 =

∫
I(t̂)∩(a,b)

∑
p∈T (t)

v(t, p)2 dt ≤
∫
I(t̂)∩(a,b)

∑
p∈Tτ (t)

vτ (t, p)2 dt.

If t̂ ∈ A , then applying again Proposition 4.3.14 we obtain:∫
I(t̂)∩(a,b)

∑
p∈T (t)

v(t, p)2 dt =

∫
I(t̂)∩(a,b)

∑
p∈MT (t)

v(t, p)2 dt

+

∫
I(t̂)∩(a,b)

∑
p∈T (t)\MT (t)

v(t, p)2 dt

=

∫
I(t̂)∩(a,b)

∑
p∈MT (t̂)

v(t, p(t))2 dt

+

∫
I(t̂)∩(a,b)

∑
p∈T (t̂)\MT (t̂)

v(t, p(t))2 dt

=
∑

p∈MT (t̂)

∫
I(t̂)∩(a,b)

v(t, p(t))2 dt+ 0

≤
∑

p∈MT (t̂)

lim inf
τ→0

∫
I(t̂)∩(a,b)

vτ (t, pτ (t))2 dt

≤ lim inf
τ→0

∑
p∈MT (t̂)

∫
I(t̂)∩(a,b)

vτ (t, pτ (t))2 dt

≤ lim inf
τ→0

∫
I(t̂)∩(a,b)

∑
p∈Tτ (t)

vτ (t, p)2 dt.
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Assume now that (a, b) ⊂ (t′i, t
′
i+1) and consider a sequence t̂k ↗ b . Using the two inequal-

ities above, the countable additivity of the integral and Lemma 4.4.3, we have∫ t̂k

a

∑
p∈T (t)

v(t, p)2 dt =
∑

t̂∈A(t̂k)

∫
I(t̂)∩(a,b)

∑
p∈T (t)

v(t, p)2 dt

≤
∑

t̂∈A(t̂k)

lim inf
τ→0

∫
I(t̂)∩(a,b)

∑
p∈Tτ (t)

vτ (t, p)2 dt


≤ lim inf

τ→0

 ∑
t̂∈A(t̂k)

∫
I(t̂)∩(a,b)

∑
p∈Tτ (t)

vτ (t, p)2 dt


= lim inf

τ→0

∫ t̂k

a

∑
p∈Tτ (t)

vτ (t, p)2 dt

≤ lim inf
τ→0

∫ b

a

∑
p∈Tτ (t)

vτ (t, p)2 dt.

As k → +∞ , we get (4.79) when (a, b) ⊂ (t′i, t
′
i+1) .

Finally, if (a, b) ⊂ (0, 1) , then it is enough to argue as above in (a, b) ∩ (t′i, t
′
i+1) and then

sum over i , in order to obtain that (4.79) holds.

Proposition 4.4.4. For all 0 ≤ a < b ≤ 1 , the couple (u,Γ ) de�ned by (4.46) and (4.47)
satis�es the following energy inequality:

‖∇u(b)‖2 +H1(Γ (b)) +

∫ b

a

∑
p∈T (t)

v(t, p)2 dt

≤ ‖∇u(a)‖2 +H1(Γ (a)) + 2

∫ b

a

〈∇u(t),∇ẇ(t)〉 dt.

Proof. We choose i and k as in (4.76). In the following series of inequalities, we apply
in sequence: Lemma 4.4.2 and Lemma 4.4.1, together with Lemma 4.1.14 and the inequal-
ity (4.79); the inequality (4.76) (or, equivalently, (4.40) with j = k+ 1); again Lemma 4.4.2 and
Lemma 4.1.14. Hence we have

‖∇u(b)‖2 +H1(Γ (b)) +

∫ b

a

∑
p∈T (t)

v(t, p)2 dt

≤ lim inf
τ→0

‖∇uτ (b+ τ)‖2 +H1(Γτ (b+ τ)) +

∫ b

a

∑
p∈Tτ (t)

vτ (t, p)2 dt


≤ lim inf

τ→0

‖∇uτ (b+ τ)‖2 +H1(Γτ (b+ τ)) +

∫ (k+1)τ

iτ

∑
p∈Tτ (t)

vτ (t, p)2 dt


≤ lim inf

τ→0

(
‖∇uτ (a)‖2 +H1(Γτ (a)) + 2

∫ (k+1)τ

iτ

〈∇uτ (t),∇ẇ(t)〉 dt+$(τ)

)

= ‖∇u(a)‖2 +H1(Γ (a)) + 2

∫ b

a

〈∇u(t),∇ẇ(t)〉 dt. �
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Remark 4.4.5. The discussion described so far can be obtained also in the linearized and
nonlinear planar cases, applying the results in [24, 18, 33] as done in Section 3.6. However,
from now on we have to restrict to the linear antiplane shear case, in order to exploit the integral
representation of the energy release rate provided in [62] (see Section 1.5 and Remark 1.5.1.(iii)).

4.4.2. Energy release rate and Gri�th's principle. In order to complete the charac-
terization of the evolution process (u(t),Γ (t)) , we aim at obtaining a description in terms of
Gri�th's theory. In our framework we are able to achieve this goal as long as the crack set
does not change direction abruptly, does not bifurcate and does not stay still (see Theorem 4.4.9
below). In those situations it is not even clear what would be the proper choice for predicting
the direction in which the fracture is more likely to grow (see the discussion in [27, 26]).

The key functional is the energy release rate, whose de�nition and properties in case of a
single curve are treated in Section 1.5; since in the current situation the crack might have several
branches, the discussion needs a local argument.

For any Γ ∈ S and any function g ∈ H1(Ω) , we consider the elastic energy related to the
body Ω \ Γ and the boundary displacement g , given by

Eel(g,Γ ) := inf
{
‖∇u‖2 : u ∈ H1(Ω \ Γ ), u = g on ∂DΩ

}
. (4.80)

For a tip p ∈ TΓ , we say that Γ̃ is an extension of Γ at p if Γ ⊂ Γ̃ , Γ̃ \Γ is connected and there
exists r > 0 as in De�nition 4.1.4 of crack tip such that Γ̃ \ Γ ⊂⊂ Br(p) and Γ̃ ∩Br(p) ∈ Rη .

Remark 4.4.6. Notice that any extension Γ̃ belongs to S , at least when H1(Γ̃ \ Γ ) is small.

In order to compute the energy release rate at a �xed p ∈ TΓ , �x an extension Γ̃ p of Γ at
p and consider the family (Γ̃ ps )s of extensions of Γ at p such that

Γ̃ ps ⊂ Γ̃ p and H1(Γ̃ ps \ Γ ) = s .

Γ Γ̃p
s

p

H1(Γ̃
p
s \ Γ) = s

1

Figure 6. The extension Γ̃ ps of Γ .

According to the results in Section 1.5, we de�ne the energy release rate at p ∈ TΓ , for a
boundary displacement g ∈ H1(Ω) , by means of the limit

G(g,Γ , p) := − lim
s→0+

Eel(g, Γ̃ ps )− Eel(g,Γ )

s
, (4.81)

which exists and, as noticed in Remark 1.5.1.(ii), is independent of the chosen extension Γ̃ p .
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Fix i ∈ {1, . . . , Nτ} and p ∈ TΓ iτ . Consider a family of extensions Γ̃ ps of Γ iτ at p , as above.
By the minimality property of Γ iτ and uiτ , we obtain

‖∇uiτ‖2 +H1(Γ iτ ) +
1

τ

∑
C∈C(Γ i−1

τ ,Γ iτ )

(
H1(c)

)2
≤ ‖∇uΓ̃ps ‖

2 +H1(Γ̃ ps ) +
1

τ

∑
c∈C(Γ̃ i−1

τ ,Γ̃ps )

(
H1(c)

)2
,

(4.82)

where uΓ̃ps is the minimizer of the problem (4.80) with g = w(iτ) and Γ = Γ̃ ps . Set

cps := Γ̃ ps \ Γ iτ ,

and note that H1(cps) = s and, by de�nition of extension, p ∈ cps .
If p ∈ TΓ iτ ∩ TΓ i−1

τ
, then Γ̃ ps \ Γ i−1

τ = cps ∪
(
Γ iτ \ Γ i−1

τ

)
and∑

c∈C(Γ i−1
τ ,Γ̃ps )

(
H1(c)

)2
=
(
H1(cps)

)2
+

∑
c∈C(Γ i−1

τ ,Γ iτ )

(
H1(c)

)2
.

Since H1(cps) = s , by the above relation and (4.82) we obtain

−
‖∇uΓ̃ps ‖

2 − ‖∇uiτ‖2

s
≤ 1 +

1

τ
s.

Therefore, recalling the de�nition (4.81) of G , as s→ 0+ we get

G(w(iτ),Γ iτ , p) ≤ 1.

Assume now that
p ∈ TΓ iτ \ TΓ i−1

τ
. (4.83)

Then p ∈ cp for (only) one cp ∈ C(Γ i−1
τ ,Γ iτ ) . It results that cp ∪ cps is connected,

Γ̃ ps \ Γ i−1
τ = (cp ∪ cps) ∪

(
Γ iτ \ (Γ i−1

τ ∪ cp)
)

and ∑
c∈C(Γ i−1

τ ,Γ̃ps )

(
H1(c)

)2
=
(
H1(cp ∪ cps)

)2
+

∑
c∈C(Γi−1

τ ,Γiτ )

c 6=cp

(
H1(c)

)2
.

It follows that

−
‖∇uΓ̃ps ‖

2 − ‖∇uiτ‖2

s
≤1 +

1

τ

(
H1(cp ∪ cps)

)2 − (H1(cp)
)2

s

=1 +
1

τ

s2 + 2sH1(cp)

s
,

and, as s→ 0+ , we get

G(w(iτ),Γ iτ , p) ≤ 1 +
2

τ
H1(cp).

If (4.83) is the case, then also the following sets can be considered in the minimization
problem (4.32): Γ̂ ps ∈ S such that Γ i−1

τ ⊂ Γ̂ ps ⊂ Γ iτ , the set Γ iτ \ Γ̂ ps is connected, p ∈ Γ iτ \ Γ̂ ps
and H1(Γ iτ \ Γ̂ ps ) = s . In this case we have that

Γ̂ ps \ Γ i−1
τ =

(
cp ∩ (Γ̂ ps \ Γ i−1

τ )
)
∪
(
Γ iτ \ (Γ i−1

τ ∪ cp)
)
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and ∑
c∈C(Γ i−1

τ ,Γ̂ps )

(
H1(c)

)2
=
(
H1
(
cp ∩ (Γ̂ ps \ Γ i−1

τ )
))2

+
∑

c∈C(Γi−1
τ ,Γiτ )

c6=cp

(
H1(c)

)2
.

Inequality (4.82) holds even in this case, with Γ̂ ps instead of Γ̃ ps , and we obtain

−
(
‖∇uΓ̂ps ‖

2 − ‖∇uiτ‖2
)
≤H1(Γ̂ ps )−H1(Γ iτ )

+
1

τ

((
H1(cp ∩ (Γ̂ ps \ Γ i−1

τ ))
)2

−
(
H1(cp)

)2)
=− s+

1

τ

(
s2 − 2sH1(cp ∩ (Γ̂ ps \ Γ i−1

τ ))
)
.

Dividing by −s and letting s→ 0+ , since

H1(cp ∩ (Γ̂ ps \ Γ i−1
τ ))→ H1(cp)

we obtain the reverse inequality

G(w(iτ),Γ iτ , p) ≥ 1 +
2

τ
H1(cp).

Using the de�nition of discrete velocity introduced in (4.72), we can restate the above dis-
cussion in terms of a discrete Gri�th's principle: for every t ∈ (0, 1) and pτ (t) ∈ Tτ (t)

vτ (t, pτ (t)) ≥ 0 (4.84)

G(wτ (t),Γτ (t), pτ (t)) ≤ 1 + 2 vτ (t, pτ (t)) (4.85)

[−G(wτ (t),Γτ (t), pτ (t)) + 1 + 2 vτ (t, pτ (t))] vτ (t, pτ (t)) = 0. (4.86)

We now look for a similar stability criterion for the continuous-time evolution. We will see
that, in the case of moving tips, this is achievable. On the other hand, when dealing with static
tips a number of problematic issues might appear.

As recalled in Remark 1.5.1.(iii), the energy release rate has the following integral representa-
tion in terms of the displacement gradient. Let K ∈ Rη and γ be its arc-length parametrization.
Consider p ∈ TK , p = γ(H1(K)) . Then

G(g,K, p) =

∫
Ω\K

[
(D1uK)2 − (D2uK)2

2
(D1V

1 −D2V
2) (4.87)

+D1uKD2uK(D2V
1 +D1V

2)
]
dx ,

where uK minimizes Eel(g,K) , ∇uK = (D1uK , D2uK) , and V = (V1, V2) is any vector �eld of
class C0,1 with compact support in Ω such that V (γ(s)) = γ̇(s) for s in a neighbourhood of
H1(K) (recall that p = γ(H1(K))). This explicit formula will be useful in the sequel.

The following lemma is a slight variant of [62, Theorem 2.12], also recalled in Subsection 1.5.3
as Theorem 1.5.4. As announced in Subsection 1.5.3, for the sake of completeness and clarity we
prove the lemma below, following the proof of [62, Theorem 2.12]. We remind that the set A
was introduced in Lemma 4.3.3.

Lemma 4.4.7. Fix t̂ ∈ A and let α(t̂) , ν(t̂) , r(t̂) and pτ (t) be as in Lemma 4.3.6, and p(t)
as in (4.55). Then, for every p ∈MT (t̂) ,

G(wτ (t),Γτ (t), pτ (t))→ G(w(t),Γ (t), p(t)) (4.88)

for every t ∈ (α(t̂), t̂] .
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Proof. We set

Kp
τ (t) := Γτ (t) ∩Br(t̂)(p) and Kp(t) := Γ (t) ∩Br(t̂)(p)

for any t ∈ (α(t̂), t̂] . As seen in Lemma 4.3.6, Kp
τ (t) ∈ Rη and Kp

τ (t)
H−→ Kp(t) .

Consider γτ and γ arc-length parametrizations of Kp
τ (t̂) and Kp(t̂) , respectively, with

γτ (0), γ(0) ∈ ∂Br(t̂)(p) . Set L := H1(Kp(t̂)) , it is p = γ(L) . Using the notation of Propo-
sition 4.1.2, γ̃τ converges to γ in the weak∗ topology of W 2,∞([0, L];R2) . We extend each
Kp
τ (t̂) adding a segment along the tangent direction to the tip pτ (t̂) = γ̃τ (L) and the same

for Kp(t̂) at p = γ(L) . Using the Implicit Function Theorem, the bound on the curvature
in De�nition 4.1.1.(ii) and the choice of r(t̂) , these extended curves are graphs of some C1,1

scalar functions ϕτ , ϕ . We �x two coordinate axes such that the extension of Kp
τ (t̂) is de-

scribed by (x1, ϕτ (x1)) and the extension of Kp(t̂) is described by (x1, ϕ(x1)) . Fix a cut-o�
function ζ supported in Br(t̂)(p) . Given a point x = (x1, x2) ∈ Br(t̂)(p) , de�ne the vector �elds
Vτ (x) := ζ(x) (1, d

dx1
ϕτ (x1)) ; similarly we de�ne a vector �eld V related to ϕ . By the weak∗

convergence of γ̃τ to γ in W 2,∞([0, L];R2) , we obtain that ∇Vτ converges to ∇V weakly∗ in
L∞(Ω;R4) .

Observe that, according to the formula (4.87), the vector �elds introduced above are suitable
for the integral representation of the energy release rate for the curves Kp

τ (t) and Kp(t) for every
t ∈ (α(t̂), t̂] (and not only for t = t̂). That is, we have the following equality:

G(wτ (t),Γτ (t), pτ (t)) =

∫
Ω\Γτ (t)

[
(D1uτ (t))2 − (D2uτ (t))2

2
(D1V

1
τ −D2V

2
τ )

+ D1uτ (t)D2uτ (t)(D2V
1
τ +D1V

2
τ )
]
dx (4.89)

and similarly for G(w(t),Γ (t), p(t)) .
Since the sequence ∇Vτ converges to ∇V weakly∗ in L∞(Ω;R4) as τ → 0 and, as proved

in (4.48), ∇uτ (t) → ∇u(t) strongly in L2(Ω;R2) for all t ∈ (α(t̂), t̂] , we obtain the claimed
pointwise convergence. �

Lemma 4.4.8. Assume the same hypotheses as in Lemma 4.4.7. Then, for every 1 ≤ q <∞ ,

G(w(·),Γ (·), p(·)) ∈ Lq(α(t̂), t̂)

and

G(wτ (·),Γτ (·), pτ (·))→ G(w(·),Γ (·), p(·))
in Lq(α(t̂), t̂) .

Proof. By means of the Dunford-Pettis Theorem (see [6]) and (4.75), we obtain that the
functions vτ (·, pτ (·)) are equiintegrable in (α(t̂), t̂) . Being

0 ≤ G(wτ (t),Γτ (t), pτ (t)) ≤ 1 + 2 vτ (t, pτ (t)),

the sequence G(wτ (·),Γτ (·), pτ (·)) is equiintegrable too. Then, considering Lemma 4.4.7, by
Vitali's Theorem (see [79, Chapter 6, Exercise 9]) we have that G(w(·),Γ (·), p(·)) ∈ L1(α(t̂), t̂)
and ∫ t̂

α(t̂)

G(wτ (t),Γτ (t), pτ (t)) dt→
∫ t̂

α(t̂)

G(w(t),Γ (t), p(t)) dt .

Since G is non-negative, the last limit means that

‖G(wτ (·),Γτ (·), pτ (·))‖L1(α(t̂),t̂) → ‖G(w(·),Γ (·), p(·))‖L1(α(t̂),t̂).
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Then, applying [6, Proposition 1.33] and the pointwise convergence (4.88), we obtain that

G(wτ (·),Γτ (·), pτ (·))→ G(w(·),Γ (·), p(·))

in L1(α(t̂), t̂) .
Finally, observe that, by the integral formula (4.89) for the energy release rate, it results

G(wτ (·),Γτ (·), pτ (·)), G(w(·),Γ (·), p(·)) ∈ L∞(α(t̂), t̂).

Indeed, the maps ∇Vτ and ∇V are uniformly bounded in L∞ by the W 2,∞ norms of γτ and
γ introduced in Lemma 4.4.7; for ∇uτ (t) and ∇u(t) we use (4.41) and (4.49) to have a uniform
bound.

The L∞ bound uniform in τ and the L1 convergence proved above are su�cient to conclude
the proof. �

The concluding main result of this section is proved in the following theorem.

Theorem 4.4.9. Fix t̂ ∈ A and let α(t̂) , ν(t̂) , r(t̂) be as in Lemma 4.3.6, and p(t) as in (4.55).
Then, for every p ∈MT (t̂) , the following conditions hold for a.e. t ∈ (α(t̂), t̂) :

v(t, p(t)) ≥ 0 (4.90)

G(w(t),Γ (t), p(t)) ≤ 1 + 2 v(t, p(t)) (4.91)

[−G(w(t),Γ (t), p(t)) + 1 + 2 v(t, p(t))] v(t, p(t)) = 0. (4.92)

Proof. Fix t such that µ̇(t) exists. Consider ψ ∈ Cb(Ω) with suppψ ⊂ Br1(t)(p(t)) , ψ ≥ 0
and ψ(p(t)) = 1 . Then, by (4.68), it is

v(t, p(t)) = 〈ψ, µ̇(t)〉 = lim
s↗t

1

t− s

∫
Γ(t)\Γ(s)

ψ dH1 ≥ 0 ,

hence (4.90) holds.
Let (a, b) ⊂ (α(t̂), t̂) . By the weak convergence (4.75), Lemma 4.4.8 and (4.85), we obtain∫ b

a

G(w(t),Γ (t), p(t)) dt ≤
∫ b

a

[1 + 2 v(t, p(t))] dt.

If t′ ∈ (α(t̂), t̂) is a Lebesgue point of the function −G(w(·),Γ (·), p(·)) + 1 + 2 v(·, p(·)) , by the
inequality above we obtain

0 ≤ lim
ε→0+

1

ε

∫ t′

t′−ε
[−G(w(t),Γ (t), p(t)) + 1 + 2 v(t, p(t))] dt

=− G(w(t′),Γ (t′), p(t′)) + 1 + 2 v(t′, p(t′)).

Therefore (4.91) holds true a.e. in (α(t̂), t̂) .
The inequalities (4.90) and (4.91) trivially imply

[−G(w(t),Γ (t), p(t)) + 1 + 2 v(t, p(t))] v(t, p(t)) ≥ 0 (4.93)
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for a.e. t ∈ (α(t̂), t̂) . Then, considering (4.86), the weak convergence (4.75) and Lemma 4.4.8,
we have the following chain of inequalities

0 ≤
∫ t̂

α(t̂)

[−G(w(t),Γ (t), p(t)) + 1 + 2 v(t, p(t))] v(t, p(t)) dt

≤ lim
τ→0

∫ t̂

α(t̂)

[−G(wτ (·),Γτ (·), pτ (·)) vτ (t, pτ (t)) + vτ (t, pτ (t))] dt

+ lim inf
τ→0

∫ t̂

α(t̂)

2 vτ (t, pτ (t))2 dt

≤ lim inf
τ→0

∫ t̂

α(t̂)

[−G(wτ (t),Γτ (t), pτ (t)) + 1 + 2 vτ (t, pτ (t))] vτ (t, pτ (t)) = 0,

i.e. ∫ t̂

α(t̂)

[−G(w(t),Γ (t), p(t)) + 1 + 2 v(t, p(t))] v(t, p(t)) dt = 0.

Together with (4.93), this equality implies (4.92) for a.e. t ∈ (α(t̂), t̂) . �

In conclusion, we would like to explain some of the di�culties that arise in the characte-
rization of the behaviour of points in T (t̂) \MT (t̂) . In general, our method does not provide
information about unilateral minimality properties for the continuous-time evolution, therefore
any property concerning it needs to be obtained by the limit behaviour of the discrete-time
evolutions.

In case of static tips, we are not able to prove a result like Lemma 4.3.6, which plays a key
role in the proof of the subsequent results. For example, a static tip might be approximated
by a discrete-time sequence of cracks that kink near the tip. The approximation procedure
suggests that, in this situation, many direction of growth for the crack tip (of the continuous-
time evolution) are possible: which would be the preferred one? How to deal with the energy
release rate G , which, as proved by Negri [71], depends on the kinking angle?

Unfortunately, in the mathematical setting we proposed it is not possible to avoid this
kind of situations and a complete description of the growth process remains an open problem.
Anyway, it is not a simple task to introduce further restrictions on the geometrical properties
of the crack sets in the class S , without �nding some geometrical setting already discussed
in the literature (see for example [63, 58]). On the other hand, our geometrical constraints
are necessary in order to avoid some mathematical �pathologies� (like accumulation of singular
points) that would arise if branching is admissible and those constraints were absent. To our
knowledge, this is a �rst attempt to consider kinking and branching in the framework of Gri�th's
theory without assuming the crack path to be known a priori, and much work still needs to be
done.
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