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Outlook

This thesis conveys the exact theory of phase separation and interfaces in two

dimensions developed in the research articles:

• G. Delfino and J. Viti, Phase separation and interface structure in two

dimensions from field theory, J. Stat. Mech. (2012) P10009 ([1]);

• G. Delfino and A. Squarcini, Interfaces and wetting transition on the half

plane. Exact results from field theory, J. Stat. Mech. (2013) P05010 ([2]);

• G. Delfino and A.Squarcini, Exact theory of intermediate phases in two

dimensions, Annals of Physics 342 (2014) 171-194 ([3]);

• G. Delfino and A.Squarcini, Phase separation in a wedge. Exact results,

Physical Review Letters 113, (2014) 066101 ([4]);

• G. Delfino and A.Squarcini, Multiple phases and vicious walkers in a wedge,

arXiv:1509.00310v1([5]);

• G. Delfino and A.Squarcini, Bulk and boundary e↵ects on the decay of the

thermodynamic Casimir force, Europhysics Letters 109 (2015) 16001 ([6]).

We will devote Chapter 1 to a short review of traditional approaches to inter-

facial phenomena. This starts with an overview on phenomenological descriptions

and terminates with a discussion on mean field theories of interfaces. In Chap-

ter 2 we recall some essential notions of scattering theory in two dimensions on

which we will rely in the rest of the thesis. In Chapter 3 we will pose the basis

of the exact field-theoretic approach to phase separation in two dimensions. In

particular, we will develop the formalism for the study of interfaces in a strip

geometry. Drops on a flat substrate and the corresponding wetting transition

will be discussed in Chapter 4. In Chapter 5 we will analyze phase separation in

presence of a wedge-shaped substrate and its field-theoretical implications.

The exposition will cover phase separation both with and without the occur-

rence of intermediate phases. These two regimes will be discussed in detail for
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the strip, half-plane and wedge geometries. Our study is based on universal prop-

erties of the scaling limit and accounts exactly for the properties of the di↵erent

universality classes.

The field-theoretical approach to near-critical behavior does not exhaust its

applications to interfacial phenomena. We will conclude in Chapter 6 with a

further application in which we will consider the thermal Casimir e↵ect, i.e. the

analogue of the quantum Casimir e↵ect for statistical systems near criticality. We

will show how bulk and boundary e↵ects, jointly with the symmetry of boundary

conditions, play a role in the determination of the long-distance decay of the

Casimir force.
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Chapter 1

Introduction to phase separation,

interfaces and wetting

Before turning to the exact results in two dimensions which are the subject of this

thesis, in this chapter we recall some general notions, as well as the phenomeno-

logical and mean-field descriptions of wetting and surface critical behavior.

1.1 Phase separation: preliminary notions

Phase separation is a common phenomenon of everyday life. A typical example

is a glass of water in which the liquid phase is in contact with its saturated vapor

phase. Many other similar phenomena include binary mixtures below the conso-

lute point, binary alloys, domain walls in magnetic systems, etc. The examples

above provide an intuitive view of the phenomenon, which finds a macroscopic

formalization in the framework of classical thermodynamics. Thermodynamic

systems at equilibrium are characterized by homogeneous domains of states of

matter and chemical composition termed phases. Phase coexistence means the

simultaneous existence of more phases of the same system in thermodynamic

equilibrium1 [7]. The coexistence of di↵erent phases naturally leads to the no-

tions of phase separation and interface, the latter being defined as the surface of

common contact that separates two coexisting phases. In a continuum picture

1In the examples we gave at the beginning the phase can be identified either with the state
of matter (liquid-air) or with the chemical composition (binary mixtures).
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Chapter 1: Introduction to phase separation, interfaces and wetting

the surface can be regarded as a D-dimensional manifold embedded in a D + 1

dimensional bulk.

Consider the thermodynamic equilibrium of a fluid system. The thermody-

namic state is uniquely determined by the pressure P , volume V and temperature

T . All these quantities are related among each other through the equation of state

f(P, V, T ) = 0 whose graphical representation is summarized in the phase diagram

of that substance [7]. We report in Fig.1.1 two prototypical phase diagrams1.

(a) (b)

P

T

H

T

t
p

ls

g

" " " " "

# # # # #
T
c

Figure 1.1: Schematic projection of the phase diagram onto the PT variables for
fluid (a) and HT variables for a magnetic (b) system (see text). Note that (a) is a
qualitative phase diagram of water since the negative slope of the SL coexistence
line is at the origin of the increasing pressure upon freezing, while (b) is the phase
diagram of the Ising model.

Each phase in the diagram of Fig.1.1(a) is defined by a mass density ⇢; an

interface in a fluid system divides two regions with di↵erent values of mass density.

Phase coexistence takes place along the lines of first-order phase transition where

each phase is characterized by a finite correlation length. Three lines of first-order

transitions may meet together in a common point known as triple point where

three phases can coexist (tp of Fig.1.1(a))2.

While interfaces are often studied in the context of fluid systems, the con-

cept of phase coexistence extends straightforwardly to magnetic systems and

1Further examples for real substances can be found in [8, 9].
2The most common example is the case of the triple point of water, where ice, liquid water

and its vapor coexist.

2



Chapter 1: Introduction to phase separation, interfaces and wetting

consequently also the study of their interfaces. With the exception of these in-

troductory sections we will normally use the terminology of magnetic systems.

To be definite we will consider ferromagnetic spin models of classical statistical

mechanics. In close analogy with the fluid case, the thermodynamic state of a

magnetic system is defined through the magnetic field H, magnetization M and

temperature T . The coexistence curves in the PT plane have the magnetic ana-

logue in the curves on the HT plane [10]. An interface in a magnetic system is

thus a domain wall that separates two regions of di↵erent magnetization. Along

the phase coexistence line (H = 0, T < Tc) of Fig.1.1(b) domains of di↵erent

magnetization can freely coexist at thermodynamic equilibrium. In the phase di-

agram of Fig.1.1(b) the line of first order transitions terminate in a second-order

phase transition point, located in T = Tc, H = 0. The distinctive feature of

second order phase transition points is the divergence of the correlation length,

a phenomenon at the basis of the emergence of scale invariance and universality

of critical behavior (see e.g. [11]).

1.2 Phenomenology of interfacial phenomena

In this section we present an overview of the phenomenological aspects of the

physics of interfaces. The literature on wetting and interfacial phenomena is

extremely vast and we only mention some reviews on the subject [12, 13, 14, 15,

16, 17], and [18] as an introductory textbook.

1.2.1 Wetting

Every solid material exposed to the environment is inevitably coated by a gas

or a liquid phase. The interplay/competition of molecular forces between solid

and fluid can lead to quite distinct surface phenomena such as the formation of

isolated liquid drops on the solid substrate or a macroscopically thick layer of

liquid adsorbed on it. Consider a liquid drop on a flat and solid substrate as

in Fig.1.2. At thermodynamic equilibrium the shape of the drop is such that it

attains an equilibrium contact angle ✓. Each pair of phases - solid-vapor, solid-

liquid and liquid-vapor - is characterized by a certain surface tension, that we

3



Chapter 1: Introduction to phase separation, interfaces and wetting

�

�
SL

�
SV

✓

Figure 1.2: Equilibrium contact angle of a sessile drop.

denote with �SV , �SL, �LV ⌘ �. At equilibrium, these quantities are related by

the Young’s law [19]:

�SV = �SL + � cos ✓, (1.1)

a relation that follows after imposing the mechanical equilibrium of the contact

line where the three phases meet. It is wort recalling that such a phenomenological

derivation applies considering the contact line as a well defined geometrical entity.

Of course this is not very precise since the contact region is a↵ected by strong

density inhomogeneities and such a sharp definition of interface between two

phases is an artifact. As pointed out in [15], (1.1) can be better derived by the

following argument. The energy content of the configuration of Fig.1.2 cannot

change after a global shift of the contact line. Such an energy variation is exactly

the area of each interface multiplied by the associated surface tension. The free

energy does not change if (1.1) holds true. The pictorial representation of Fig.1.2

can be considered valid on length scales much bigger than the typical scales of

intramolecular forces. It follows that ✓ acquires the meaning of contact angle

only within this macroscopic perspective1.

Once the surface tensions are known, (1.1) can be used to predict the wetting

state. Two distinct things may happen:

• for �SV < �SL + �, a solid-vapor interface is energetically favored and

Young’s law gives a finite contact angle ✓. In this regime the substrate

is covered by isolated drops and the corresponding state is termed partial

wetting ;

1An alternative way to prove the Young’s law consist into a minimization of the energy
content of an hemisperical-shaped sessile drop on a planar substrate [20].
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Chapter 1: Introduction to phase separation, interfaces and wetting

• for �SV = �SL + � (1), the contact angle vanishes and the drops spread

along the substrate forming a macroscopically thick wetting layer2; in this

case we talk about complete wetting.

The quantity S ⌘ �SV � �SL � � = ��(1 � cos ✓), called equilibrium spreading

coe�cient, measures the free energy di↵erence associated to the solid-vapor inter-

face with respect to the wet situation. The spreading coe�cient is commonly used

to determine the wetting state; we have partial wetting for S < 0 and complete

wetting for S = 0. The passage from a partially wet to a completely wet substrate

goes under the name of wetting transition. Such a transition can be induced upon

the variation of a thermodynamic variable of the system, which in general is the

temperature. Typically, there exists a wetting temperature T
w

lesser than the

bulk critical point temperature Tc such that partial wetting occurs for T < T
w

while complete wetting at T
w

6 T < T
c

. Wetting transitions are characterized by

the vanishing of the equilibrium contact angle and the divergence of the wetting

thickness.

The existence of a wetting temperature smaller than the critical one has been

argued by Cahn [21] using a heuristc argument that we report. It is known that

close to the critical point the surface tension of the LV interface vanishes as a

power law � / (Tc � T )µ. This fact is known since van der Waals, which also

predicts a mean field critical exponent µMF = 3

2

. From a modern perspective, the

surface tension exhibits a critical behavior and µ is called Widom exponent [22].

Cahn argued that also �SV � �SL approaches zero close to criticality through a

power law �SV ��SL / (Tc � T )�1 . The surface critical exponent �
1

is associated

to the order parameter [23] - mass density in this case. It follows that close to

Tc, cos ✓ ⇠ (Tc � T )�1�µ. For a three dimensional system Cahn used the values

µ ⇡ 1.3 and �
1

⇡ 0.8. Since the cosine cannot be greater than unity there exist a

wetting temperature T
w

< Tc, such that for T = T
w

the cosine reaches unity and

the angle vanishes.

1This condition is known as Antonov rule. The energetic cost of the SV interface equals
the sum of free energies of isolated SL and LV interfaces.

2The thickness of the wetting layer may be limited by gravitational e↵ects.
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Chapter 1: Introduction to phase separation, interfaces and wetting

1.2.2 Capillary wave theory

The simplest description of the wetting mechanisms is based on a phenomenolog-

ical approach. At low temperatures the surface is mildly ondulated and therefore

it can be suitably described by collective coordinates. A point s on the surface

S 2 Rd is parametrized via the Monge gauge, which amounts to set s = (r, `(r)).

The height function `(r) is a smooth map of a subset of Rd�1 to R or R+, respec-

tively for free and confined interfaces on the half-space (Fig.1.3). We stress that

such a parametrization becomes ill-defined at high temperatures where strong

undulations may produce overhangs. This is not the situation we are interested

in. The free energy content of the interface is thus written as the surface tension

x1

x2

x3

`(r)

S

Figure 1.3: A two-dimensional surface in three dimensions.

� multiplied by the curvilinear area, something that we can write as

�FDH = �
Z
dd�1r

q
1 + (r`)2, ��1 = BT, (1.2)

which is usually referred as the drumhead model [24]. Notice that (1.2) specifies

the energy of a height configuration only through the total area, a rather common

approach in studies of liquid interfaces1. The discussion so far considered the

1We mention that such an approach can be pursued for the study of biological vesicles and
lipid membranes. However curvatures are generally not negligible and must be included [25];

6



Chapter 1: Introduction to phase separation, interfaces and wetting

surface as isolated, now we introduce a boundary and modify (1.2) accordingly,

taking the limit of small curvatures (|r`| ⌧ 1) the e↵ective hamiltonian becomes

�FCW = �A⇡ +
�

2

Z
dd�1r

ï
(r`)2 +W (`)

ò
. (1.3)

The interaction with the boundary is codified through an e↵ective potential W (`)

and the e↵ective theory (1.3) goes under the name of Capillary Wave model. The

constant term in (1.3) is the free energy of an isolated flat interface with area A⇡

given by the projection of S onto the remaining d� 1 coordinates.

The specific form of the binding potential W (`) depends on the interaction

forces. Apart from specific features, W (`) must decay to a constant (say zero)

at ` ! 1 and should reproduce the hard-wall repulsion at ` ! 0. In Fig.1.4

we show two typical forms of the function W (`) as the temperature T varies.

The minimum of W (`) determines the thickness of the wetting layer. For a

Figure 1.4: Typical forms of the binding potential for: (a) critical wetting and
(b) first-order wetting transitions.

critical wetting transition, as T is increased the thickness grows continuously and

ultimately diverges for T ! T
w

(Fig.1.4(a)). In contrast, for a first-order wetting

transition the minimum jumps discontinuously from a finite value to infinite.

The peculiarity of the wetting transition is a strong sensitivity of the transition

order depending on the kind of cohesion forces among solid-liquid molecules and

liquid molecules with themselves. One of the first tasks of a theory for wetting

is the determination of the equilibrium spreading coe�cient and the binding

see also [26].
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Chapter 1: Introduction to phase separation, interfaces and wetting

potential for a given system whose interactions are known, at least qualitatively.

It is customary, in the wetting contest, to consider as long-ranged the forces

characterized by an algebraic decay in the intramolecular distance, while short-

ranged forces are generally characterized by an exponential decay. A detailed

discussion of these issues can be found in the literature. Long-range forces are

examined in [16, 27] and references therein. While for short-range forces we refer

the reader to [28, 29] for theoretical analyses and to [30] for experiments.

1.3 Surface critical behavior in mean field the-

ory

It is obviously important to pass from a phenomenological to a more fundamen-

tal description. It is thus necessary to formulate a theory for the whole system

and all its microscopic degrees of freedom; the e↵ective ones will result only after

the coarse-graining procedure. We have in mind a statistical system su�ciently

close to a critical point in presence of boundaries. Bulk critical behavior can be

adequately described by a continuum formulation based on fields. Therefore sur-

face critical behavior will be described by field theories in presence of boundaries.

Before turning to the exact treatment of the two-dimensional case in the follow-

ing chapters, we mention here the field-theoretical approach to surface critical

behavior in d dimensions (see e.g. [31]).

Let us take a near critical system with bulk dimension d, confined by a d� 1

dimensional hyperplane. For the sake of simplicity we can consider the case of a

scalar field ' (generalizations to vector fields can be found in [31]). This is suf-

ficient to show the essential ideas without formal complications. It is customary

to divide bulk degrees of freedom from surface ones as follows

H['] = Hs['] +Hb[']. (1.4)

The Hamiltonian functionals Hb/s['] specify the free energy of a generic field

configuration {'}. Keep in mind that this sharp division is not unique since

bulk terms can be integrated by parts becoming thus surface contributions. Bulk

8



Chapter 1: Introduction to phase separation, interfaces and wetting

degrees of freedom are taken into account thanks to

Hb['] =
Z

V
ddxLb(', @'). (1.5)

with Lb(', @') a function of the field and its derivatives. Close to a second-order

phase transition point the free energy density takes the usual form of a '4 theory

Lb(', @') =
1

2
(r')2 + U('), (1.6)

with

U(') =
⌧

2!
'2 +

g

4!
'4. (1.7)

The bare coupling constants ⌧ and g are chosen in order to reproduce the double-

well potential below a certain MF critical temperature. Within these notations

the excess free energy writes as !(') = U(')�U('
0

). The surface term specifies

the free energy of a field configuration due to the interaction with the boundary.

In general one has

Hs['] =
Z

@V
dd�1xLs(', @'), (1.8)

the specific form of Lb(', @') will be specified later. At mean field level, fluc-

tuation e↵ects are not included and the field configuration '? follows from the

energy minimization. The stationarity condition

�H[']

�'(x)

�����
'='?

= 0, (1.9)

leads to the MF equation for the field profile

r2'(x) = ⌧'+
g

6
'3. (1.10)

Such a di↵erential equation must be supplemented with the boundary condition

generated by the surface term. Standard techniques of field theory allow one to

carry out the study of fluctuation e↵ects on top of the mean-field solution. These

techniques are based on perturbative techniques such as the ✏-expansion. Critical

exponents and interfacial profile can be computed perturbatively for continuous

bulk dimension d. These aspects are well described in the review articles [31,

9



Chapter 1: Introduction to phase separation, interfaces and wetting

32]. In the following sections we recall the solution of (1.10) in absence of a

boundary, finding the magnetization profile of a free domain wall. Then we recall

the treatment of wetting in presence of boundary.

1.3.1 A free domain wall

Let us determine the mean-field profile in absence of boundaries. We consider

a system in d-dimensions on a slab geometry with two parallel plates of area A

enclosing a volume V . Let us denote with x the spatial coordinate orthogonal to

the plates. Without loss of generality we can assume the field ' to be a function

of x alone. Using the definition of excess free energy we can write (1.4) in the

form H['] = V U('
0

)+A�['] where volume and surface contributions are clearly

separated. The surface tension is given by

�['] =
Z

R
dx

ñ
1

2

Ç
d'

dx

å
2

+ !(�)

ô
. (1.11)

Below criticality !(') is a double-well potential with global minima in ±'
0

corre-

sponding to bulk magnetizations. Following the parametrization of [33] we write

!(�) =
2

8'2

0

Ä
'2 � '2

0

ä
2

, (1.12)

the bulk correlation length �1 expresses the concavity of ! at bulk phases. After

the functional di↵erentiation of (1.9) we get

d2'(x)

dx2

+ @'!(') = 0. (1.13)

The solution is fixed after imposing the correct asymptotic behavior of the profile

lim
x!1'(x) = '

0

, (1.14)

lim
x!1'

0(x) = 0, (1.15)

and after simple manipulations we find

'(x) = '
0

tanh

Ç

x� `

2

å
. (1.16)

10



Chapter 1: Introduction to phase separation, interfaces and wetting

The profile (1.16) smoothly interpolates between the asymptotic magnetization

�'
0

and '
0

. For x = ` the field vanishes and we can consider that position as

the location of the interface between the bulk phases (crossing criterion). Notice

that the interface position is a free parameter since boundaries are absent. Still

at MF level, we can compute the surface tension of this “liquid-vapor” interface.

From (1.11) and (1.16) we obtain after a simple integration � = 2

3

'2

0

. We recall

that close to Tc the surface tension vanishes as � ⇠ (Tc � T )µ, with a Widom

exponent µ that obeys the scaling and hyper-scaling laws [22]

µ+ ⌫ = 2� ↵, (1.17)

µ = (d� 1)⌫. (1.18)

The exponent µ predicted by this MF calculation is independent on d and takes

the value 3

2

. Notice that this result di↵ers from the one found in three-dimensional

systems, µ = 1.28 ± 0.06 [22]. Despite this discrepancy this approach is reliable

and possible improvements have provided better results on surface tensions, see

[34] and references therein.

1.3.2 Cahn-Landau theory

Short range forces and wetting behavior can be adequately described under a

unified picture due to Cahn [21]. The basic ingredients follow from the general

recipe. The excess free energy takes the form

H['] = Us('s) +
Z 1

0

dz

ñ
1

2
(@z')

2 + !(')

ô
. (1.19)

The interaction with the wall is codified by the boundary free energy

Us('s) = �h
1

's +
c

2
'2

s, (1.20)

in which 's ⌘ '(0) is the magnetization on the boundary. A constant boundary

magnetic field h
1

couples with the order parameter linearly while the surface

enhancement c describes, in a fluid analogy, the depletion of liquid particles close

11



Chapter 1: Introduction to phase separation, interfaces and wetting

to the wall. Once again, the mean field profile is determined by

d2'(x)

dx2

+ @'!(') = 0, (1.21)

while the boundary term produces the boundary condition

d'

dx

�����
x=0

= c'(0)� h
1

. (1.22)

The stationarity condition is actually analogous to the classical motion of a

particle on a line. The identification is established by interpreting the spa-

tial coordinate x as the “time”, ' as the “coordinate” and and �! as the

“potential energy”. The analogue of energy conservation gives1 the “velocity”

'0(x) = ±
»
2!(') ⌘ Q('). Using this result we can eliminate '0 and work with

the field alone. After a simple algebra we determine the surface tension as the

free energy computed with the MF profile; it reads

�('s) =
Z 'b

's

d'
ï
Q(')� Y (')

ò
+ Us('b), (1.23)

with Y (') ⌘ c' � h
1

and 'b is the bulk magnetization. We notice that the

mechanical analogy admits also a graphical interpretation in terms of areas. The

integral (1.23) is actually the area enclosed between the curves Q and Y . The sur-

face magnetization is obtained by the solution of Q('s) = Y ('s). The number of

solutions of the above equations characterizes the order of the wetting transition.

In the following we describe the interpretation of wetting within this model.

• Critical wetting. For c >  there is always a unique intersection of Q

with Y . If |'s| < '
0

the profile decrease from 's to �'
0

: the bulk region

is occupied by the vapor phase. If 's > '
0

the profile decreases from 's to

'
0

and the bulk is now occupied by the liquid phase, see Fig.1.5.

• First-order wetting. For 0 < c <  there can be at most three solutions.

As before, each intersection determines a profile that decreases towards the

1The choice of the ± is determined by the bulk phase, i.e. the magnetization must decrease
if �'0 is the bulk magnetization.
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'0�'0

Q

'

'0
Y1 Y2 '

'0

x

�'0

nw

w
`

(a) (b)

Figure 1.5: The graphical construction for critical wetting (a). Y
1

corresponds
to a non-wetting profile as the continuous curves of (b). Y

2

produces a wetting
profile as the dashed curves of (b).

closest bulk value. It is possible to show that in the regime of three in-

tersections only two of them correspond to stable configurations (↵,� in

Fig.1.6), while the remaining one is metastable (� in Fig.1.6). Stable so-

lutions however compete among themselves and the one with lower surface

tension is attained by the system. In the marginal situation the surface ten-

sions become equal and a slight change in h
1

is su�cient to induce a jump

from one to the other. This condition can be translated into a Maxwell-like

construction of area laws, according to the graphical interpretation. Since

the two profiles are characterized by di↵erent “traveling times” the jump

of the wetting layer is actually discontinuous: the transition is of the first

order.

This simplified exposition is su�cient to appreciate the key predictions of the

theory. We refer to [21, 17] for an extensive discussion of the graphical construc-

tions for o↵-coexistence systems. To conclude, the merit of this theory relies on

its simplicity compared with the wealth of critical behavior, as summarized in

the wetting phase diagram proposed in [35].
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'0�'0

'

'0

A1 A2

A3

↵

�
�

Figure 1.6: Equal area construction for a first-order wetting transition. Stable
configurations correspond to a partially wet substrate and their relative stability
is dictated by the di↵erence of the ares �↵ � �� = A

3

�A
2

.
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Chapter 2

Notions of two-dimensional

scattering theory

In this chapter we introduce basic notions of relativistic scattering theory in two

dimensions, both in the bulk and at boundaries, to be exploited in the following

chapters.

2.1 Bulk scattering

Every lattice structure carries with itself a spatial anisotropy, which is removed

near criticality where the typical extent of correlations is much greater than the

lattice scale. In such a continuum limit the system becomes isotropic and ro-

tationally invariant1. The corresponding field theory associated to the scaling

limit is a Euclidean Field Theory. In D = 2 a point on the Euclidean plane E2

is regarded as the analytic continuation to imaginary time of a point in (1 + 1)

Minkowski space-time. More precisely, a Euclidean field theory with space coor-

dinates (x, y) can be regarded as the analytic continuation of a Quantum Field

Theory in Minkowski space-time with coordinates (x, t) under the Wick rotation

y = it. The square distance x2 � t2 of an event from the origin is a relativistic

invariant that under the analytic continuation turns into the invariance of the

Euclidean norm x2 + y2.

1We shall not consider boundaries in this section.
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Chapter 2: Notions of two-dimensional scattering theory

The elementary excitations are massive, relativistic and real (not virtual)

particles. The latter requirement is enforced by the on-shell condition E2 � p2 =

m2. Energy-momentum can be parametrized through the rapidity variable ✓

(E, p) = (m cosh ✓,m sinh ✓) . (2.1)

Particles interact among themselves once they come close enough: such a process

is a relativistic scattering. It is thus essential to remind some basic properties of

relativistic scattering. Let us consider a set of n incoming particles, each with

energy-momentum (Ej, pj), j 2 {1, . . . , n}. After the collisions the final state will
be characterized by momenta (E 0

j, p
0
j). Total energy and total momentum must

be conserved. In relativistic theories however n may not be conserved.

The probability of such a scattering event is the square modulus of the matrix

element

Sb1,...,bn
a1,...,an(p1, . . . , pn|p0

1

, . . . , p0n) ⌘ b1,...,bnhp01, . . . , p0n|S|p1, . . . , pnia1,...,an ; (2.2)

we used aj, bj to denote internal quantum numbers. In such a notation

|p
1

, . . . , pnia1,...,an denotes the incoming state, while b1,...,bnhp01, . . . , p0n| is the out-

going state. The operator S is called scattering operator. The short-ranged in-

teractions we are assuming allow us to consider incoming and outgoing states as

composed by free particles. In particular, the asymptotic states form a basis of

the Hilbert space; orthogonality and completeness are assumed1.

2.1.1 Elastic amplitude

The scattering is called elastic if particle number is conserved. Let us consider

the simplest among the elastic scattering events: the di↵usion of two particles.

In a di↵usion the masses do not change, and for the sake of simplicity we take

all particles with the same mass m. In two dimensions, energy and momentum

conservation forces the final momenta to be equal to the initial ones. The scat-

tering however can redistribute charges. The two-body process we are referring

to can be pictorially represented as in Fig.2.1. Let us discuss the corresponding

1States are normalized through the condition
i

hp1|p2ij = 2⇡E
i

�(p1 � p2)�ij .
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Chapter 2: Notions of two-dimensional scattering theory

✓1 ✓2

a b

cd

✓1✓2

Figure 2.1: Elastic scattering of two particles in (1 + 1) dimensions. Time runs
upwards.

scattering amplitude. The amplitude is a relativistically invariant function of the

momenta p
1

, p
2

, and ultimately of the invariant s = (E
1

+ E
2

)2 � (p
1

+ p
2

)2. In

the reference frame of the center of mass, s becomes the square total energy. We

denote the scattering amplitude associated to the process of Fig.2.1 as

Scd
ab(s). (2.3)

2.1.2 Analytic properties

The fundamental idea at the basis of the analytic S-matrix approach [36] is to

regard s as a complex variable. In Fig.2.2 we show the analytic structure of a

typical scattering amplitude Scd
ab(s).

The minimum amount of energy needed to produce a state with p particles

corresponds to branch points sp in the complex s-plane. Branch cuts associated

to the opening of scattering channels are ultimately originated by the condition of

unitarity of the two-particle scattering1. Apart from branch cuts, a non-analytic

behavior may also occur through poles, again with a precise physical meaning.

In fact, a pole in the s-plane at s? 2 (0, s
2

) corresponds to a bound state particle.

The relation

Scd
ab(s+ i✏) = Sbc

da
(4m2 � s2 � i✏) (2.4)

is known as crossing symmetry and expresses the fact that interchanging the

1Notice that branch cuts are actually an infinite sequence. The cuts corresponding to s
p

show the nested structure of Fig.2.2.
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Im(s)

Re(s)

s2 s3 s4

0

Figure 2.2: The complex s-plane and the singularities of the scattering amplitude.
Branch cuts along the real axis correspond to opening of scattering channels. The
poles in the region 0 < s < s

2

are stable bound states.

role of space and time in Fig.2.1 corresponds to an analytic continuation of the

amplitude. The symbol a = Ca stands for the internal quantum numbers obtained

upon change conjugation C.
Conservation of probability reflects into the unitarity of the S-matrix, SS† =

I. The collision of two particles may produce intermediate states with n particles

if su�cient energy is available. If we restrict our attention to energies below the

two-particle threshold, the unitarity condition reads

X

e,f

a b

c d

ef =
X

e,f

Sef
ab (s+ i✏)

î
Scd
ef (s+ i✏)

ó⇤
= �ac�bd. (2.5)

Real analyticity is a further requirement. This condition translates into

Scd
ab(s+i✏) =

ï
Scd
ab(s�i✏)

ò⇤
, and connects upper and lower edges of the cut. The in-

variant s can be expressed in terms of the rapidity variables as s = 4m2 cosh2

✓i�✓j
2

.

Notice that a Lorentz boost with rapidity ⇤ acts as the shift ✓ ! ✓ + ⇤. Hence

scattering amplitudes depend on rapidities di↵erences because of the Lorentz in-

variance. Rapidity di↵erences will be denoted with ✓ij := ✓i � ✓j. With a bit of
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Chapter 2: Notions of two-dimensional scattering theory

abuse of notation we shall write (2.3) as Scd
ab(✓), where ✓ ⌘ ✓ij.

The above properties can be expressed through the ✓ parametrization as fol-

lows:

• Unitarity:
P

e,f S
ef
ab (✓)S

cd
ef (�✓) = �ac�bd ,

• Crossing: Scd
ab(✓) = Sbc

da
(i⇡ � ✓) ,

Finally we quote the parity P and time-reversal T symmetries of the S-matrix

• P : Scd
ab(✓) = Sdc

ba(✓) ,

• T : Scd
ab(✓) = Sab

cd(✓) .

As we just discussed, poles in the physical strip at Re(✓) = 0 correspond to

bound states. Let us suppose the existence of a simple pole for Scd
ab(✓) at ✓ = iue

ab

with ue
ab 2 (0, ⇡). Close to that singularity the scattering amplitude behaves as

Scd
ab ⇠

i�e
ab�

e
cd

✓ � iue
ab

, (2.6)

�e
ab and �e

cd are coupling constants at the three-particle vertex of Fig.2.3(a). The

a b

cd

e

m
a

m
b

m
c

uc

ab

(a) (b)

Figure 2.3: (a) graphical representation of a pole in the direct channel corre-
sponding to (2.6) and the mass triangle (b).

location of the pole is determined by the so called mass-triangle

m2

c = m2

a +m2

b � 2mamb cos u
c
ab, (2.7)
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Chapter 2: Notions of two-dimensional scattering theory

the angle uc
ab = ⇡ � uc

ab has a clear geometrical meaning (Fig.2.3(b)).

Correlation functions of local fields can be expanded on the complete basis of

asymptotic particle states. We recall that Hamiltonian and momentum operators

act as the generators of space-time translations

O(x, y) = eyH+ixPO(0, 0)e�ixP�yH , (2.8)

in which we already specified the analytic continuation to the Euclidean space.

Form factors are defined as the matrix elements of a local operator O on the

asymptotic n-particle sate as follows

FO
n (✓

1

, . . . , ✓n) = h0|O(0, 0)|✓
1

, . . . , ✓ni. (2.9)

The state without particles, i.e. the vacuum, is indicated with |0i. The two-point
correlation function hO(x)O(0)i can be expanded as

hO(x)O(0)i = h0|O(x)O(0)|0i,

=
1X

n=0

1

n!

Z nY

j=1

d✓j
2⇡

|FO
n (✓

1

, . . . , ✓n)|2e�|x|Pn
j=1 Ej , (2.10)

where |x| is the Euclidean distance between the two operators. At large distances

the exponential decay of the two-point function hO(x)O(0)i is dominated by the

lightest particles. This leads to the identification of the inverse of the lowest mass

with the bulk correlation length ⇠.

2.2 The integrable case

Quantum field theory in 1 + 1 dimensions allow for integrable theories whose

distinctive feature is the presence of infinitely many conservation laws other than

energy and momentum. We recall a fundamental di↵erence with respect to the

(3 + 1) dimensional case. In that case Coleman-Mandula theorem [37] ensures

that a conserved quantity of tensor rank greater than two immediately leads to a

trivial scattering, S = 1. For (1+ 1)-dimensional theories such a theorem cannot

be applied, and the existence of extra conservation laws reflects in a drastic sim-
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Chapter 2: Notions of two-dimensional scattering theory

plification of the scattering processes, which turn out to be extremely constrained.

The final state in such a theory has exactly the same number of particles of the

initial state with the same set of momenta and a possible redistribution of charges

(complete elasticity).

An additional property of scattering in integrable theories is factorization.

Let us denote with Ps a conserved operator with spin s such that it acts on the

state |pi as Ps|pi = �s(E + p)s|pi. A particle around the origin with momentum

p is described by the wave-packet

 p(x) ⇠
Z
dk f(k)eix, (2.11)

with |f(k)|2 peaked around p. Applying the operator eiPsa and performing a

stationary-phase approximation of the integrand around k = p, the phase be-

comes k@k (kx+ �sksa) |k=p = kx + k�x(p) with �x(p) = s�sps�1. This last

property means that �x does not depend on the momentum only for the mo-

mentum operator (s = 1), while in general it does for s > 1: this is a non-trivial

conservation law. Acting with eiPsa with s > 1 we can resolve the region where

three particles meet obtaining a factorization into 3 two-body processes. The

factorizability of the scattering process is codified by the Yang-Baxter equation

X

�1,�2,�3

S�2�3↵2↵3
(✓

23

)S�1�3↵1�3
(✓

13

)S�1�2�1�2
(✓

12

) =
X

�1,�2,�3

S�1�2↵1↵2
(✓

12

)S�1�3�1↵3
(✓

13

)S�2�3�2�3
(✓

23

),

(2.12)

which admits the graphical representation of Fig.2.4.

✓1

✓2 ✓3

✓1

✓2
✓3

= =
✓1

✓2 ✓3

Figure 2.4: The resolution of a three-body scattering and the graphical represen-
tation of (2.12). Notice the di↵erent chronological order in the scatterings.
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2.3 Boundary scattering

As we emphasized in the first chapter, a satisfactory theory for interfacial phe-

nomena must take into account the interplay of bulk excitations with the bound-

ary. The scattering framework, that we outlined in the previous sections, can be

suitably generalized to encompass the boundary e↵ects. We consider the half-

plane geometry, characterized by the coordinates (x > 0, y). The locus of points

(x = 0, y 2 R) constitutes an infinitely extended and impenetrable boundary.

The half-plane with Euclidean time y corresponds to a motion on the half-line

x > 0. Particles in this geometry can scatter among themselves and with the

boundary when they reach the position x = 0. The boundary itself can be viewed

as an infinitely massive particle sitting at x = 0. If we consider boundary condi-

tions preserving translation invariance in the y direction, the scattering with the

boundary conserves the energy. For elastic scattering, a particle moving towards

the wall with rapidity �✓ bounces and reverses the rapidity to ✓. The scattering

amplitude goes under the name of reflection amplitude and it is denoted with

R(✓) (see Fig.2.5(a)). In integrable theories the knowledge of the bulk dynamics

encoded by the S-matrix allows for the determination of R(✓) [38], [39]. The

unitarity condition takes the form

R(✓)R(�✓) = 1, (2.13)

and is graphically depicted as in Fig.2.6(a).

(a) (b)

✓

�✓

✓�✓

Figure 2.5: (a) reflection amplitude R(✓) and (b) pair emission amplitude K(✓).
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Boundary crossing requires a bit of care as first pointed out in [38]. The

crossed-view of the reflection corresponds to the emission of a pair of particles

with opposite momenta. While the reflection process is characterized by energy

conservation, the pair emission preserves the total momentum rather than energy.

As a consequence of this identification, the reflection amplitude in the direct

channel R(✓) can be analytically continued to define the pair emission amplitude

K(✓) of Fig.2.5(b) as follows

K(✓) = R

Ç
i⇡

2
� ✓

å
. (2.14)

The replacement ✓ ! i⇡/2 � ✓ interchanges energy and momentum as we can

see directly from the rapidity parametrization. As realized in [38], crossing sym-

metry is implemented by imposing the invariance of the pair emission after the

interchange of the particles in the bulk, something that takes the concise form

K(✓) = S(2✓)K(�✓), (2.15)

and the pictorial representation of Fig.2.6(b).

= =

(a) (b)

Figure 2.6: Boundary unitarity (a) and boundary crossing symmetry (b).
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Chapter 3

Exact theory of phase separation

in two dimensions

In this chapter we will illustrate how the formalism of Chapter 2 can be used

as starting point for the exact study of phase separation in two dimensions. We

will present the fundamental ideas and then we will apply them for the case of

a strip geometry. For such a spatial configuration we will investigate first the

separation of two phases; then we will extend our approach to systems allowing

for the appearance of intermediate phases

3.1 Introduction

Statistical systems at a first order phase transition point allow for phase coexis-

tence. Boundary conditions can be chosen to select a phase a on the left half of

the system and a phase b on the right half, the two phases being separated by an

interfacial region whose characterization is a particularly interesting problem.

The physics of phase separation is known to be sensitive to dimensionality.

The two-dimensional case, in particular, possesses specific features originating

from especially strong fluctuations of the interfaces. A key role in establishing

the existence of these peculiarities was played by exact results for the planar Ising

model [40], which then were used to test the reliability of heuristic descriptions

(see in particular [41]). While the technical complexity of lattice derivations has
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Chapter 3: Exact theory of phase separation in two dimensions

restricted them to the Ising case, field theory should provide the natural frame-

work for a general study of universal properties in the scaling limit. Nonetheless,

a field theory of phase separation in two dimensions has been missing, arguably

because the aforementioned peculiarities involve field theoretical counterparts.

We now show how the Ising results, as well as new ones, follow as particular cases

of the general and exact field theoretical formalism which consistently takes into

account the fact that interfaces in two dimensions correspond to trajectories of

topological excitations (kinks) propagating in imaginary time.

3.2 Adjacent phases and single interfaces

3.2.1 Order parameter profile

To be definite we refer to a spin model with short range ferromagnetic interactions,

at a first order phase transition point. The spin variable can take discrete values

labelled by an integer a = 1, . . . , n, and the system can be brought into a pure

(translationally invariant) phase of type a fixing the boundary spins to the value

a and then removing the boundary to infinity.

We consider the scaling limit close to a continuous phase transition point,

which yields a Euclidean field theory on the plane with coordinates (x, y). Such a

theory amounts to the continuation to imaginary time t = iy of a relativistic field

theory in one space dimension. Phase coexistence corresponds in the relativistic

theory to the presence of degenerate vacua |⌦ai associated to the pure phases of

the system. In 1+1 dimensions the elementary excitations are stable kink states

|Kab(✓)i which interpolate between two di↵erent vacua |⌦ai and |⌦bi. These

topological excitations are relativistic particles with enegy-momentum

(e, p) = mab (cosh ✓, sinh ✓) , (3.1)

where ✓ is called rapidity and mab is the kink mass. Two vacua (phases) are

not necessarily connected by an elementary kink, and in this case we call them

non-adjacent; non-adjacent vacua will be connected by a multi-kink excitation

|Kav1(✓1)Kv1v2(✓2) . . . Kvn�1b(✓n)i which visits other vacua along the way.
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+R/2

�R/2

0

y

x

Figure 3.1: ab boundary conditions: the boundary spins are fixed to the value a
for x < 0 and to a di↵erent value b for x > 0. We will denote by h�(x, y)iab the
magnetization on the strip with these boundary conditions.

We now consider the system on a horizontal strip of width R and fix the

boundary spins to a value a for x < 0 and to a value b 6= a for x > 0 (ab

boundary conditions, Fig. 3.1). Phase separation is expected to emerge when

R becomes much larger than the correlation length of the pure phases, which is

inversely proportional to mab. In this section we review the case of separation

between adjacent phases a and b studied in [1].

The boundary condition at time t switching from a to b at x = x
0

is im-

plemented by a boundary state |Bab(x0

; t)i which can be decomposed over the

complete basis of states of the bulk theory (the kink states). Since the states

entering the decomposition have to interpolate between the phases a and b and

the latter are adjacent, we have

|Bab(x0

; t)i = e�itH+ix0P

ñZ

R

d✓

2⇡
fab(✓) |Kab(✓)i+ . . .

ô
, (3.2)

whereH and P are the energy and momentum operators of the (1+1)-dimensional

theory, and the dots correspond to states with total mass larger than mab. The
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partition function on the strip with ab boundary conditions then reads1

Zab(R) = hB(x
0

; iR/2)|B(x
0

;�iR/2)i

'
Z

R
d✓ |fab(✓)|2 e�mabR cosh ✓ ' |fab(0)|2 e�mabR

p
2⇡mabR

, (3.3)

where in the second line we took the large R limit which projects onto the lightest

(single kink) state2 in (3.2) and makes the integral dominated by small rapidities.

Phase separation amounts to the creation of two pure phases on the far left and on

the far right, separated by an interfacial region. The excess free energy due to the

creation of the interface divided by R is called interfacial tension and corresponds

to

⌃ab = � lim
R!1

1

R
ln

Zab(R)

Za(R)
, (3.4)

where Za(R) is the partition function with all the boundary spin fixed to the

value a. The corresponding boundary state expands over bulk states interpolating

between a and a, the lightest of which is the vacuum |⌦ai, so that for large R we

have Za(R) ' h⌦a|⌦ai = 1; (3.3) then yields

⌃ab = mab . (3.5)

The local magnetization at a point (x, y) on the strip with ab boundary con-

ditions reads

h�(x, y)iab =
hBab(0; iR/2)|�(x, y)|Bab(0;�iR/2)i

hBab(0; iR/2)|Bab(0;�iR/2)i , (3.6)

where �(x, y) is the magnetization operator, satisfying

�(x, y) = eixP+yH�(0, 0)e�ixP�yH . (3.7)

1Kink states are normalized by hK
ab

(✓)|K
b

0
a

0(✓0)i = 2⇡�
aa

0�
bb

0�(✓� ✓0). In (3.3) and below
the symbol ' referred to functions of R indicates omission of terms subleading for R large.

2The minimal energy of an asymptotic state is its total mass.
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Use of the boundary state (3.2) gives

h�(x, y)iab =
1

Zab(R)

Z

R2

d✓

2⇡

d✓0

2⇡
f ⇤
ab(✓) hKab(✓)| e(�

R
2 +y)H�(x, 0)

e�(

R
2 +y)H |Kab(✓

0)ifab(✓0) + . . . ; (3.8)

the dots stay for the contribution coming from states with higher mass, which for

any fixed |y| < R/2 becomes negligible as R ! 1. Then in this limit we have

h�(x, y)iab '
1

Zab(R)

Z

R2

d✓

2⇡

d✓0

2⇡
f ⇤
ab(✓)fab(✓

0)M�
ab(✓|✓0)O(✓, ✓0), (3.9)

where1 O(✓, ✓0) = e�M� cosh ✓�M+ cosh ✓0 eimx(sinh ✓�sinh ✓0), M± = m(R/2± y), and

M�
ab(✓|✓0) ⌘ hKab(✓)| �(0, 0) |Kba(✓

0)i. (3.10)

The matrix element (3.10) decomposes as

M�
ab(✓|✓0) = F �,R

ab (✓|✓0) + 2⇡�(✓ � ✓0)h�ia, (3.11)

into the sum of a connected and a disconnected part; h�ia denotes the magne-

tization in the pure phase a. Such a decomposition corresponds to the pictorial

representation

� ba

✓0

✓

✓0

= � ba

✓0

✓

✓0

+ � ba

✓

✓0

, (3.12)

where the disconnected trajectory passes to the right of the insertion point of the

magnetization operator, which is then evaluated in the phase a. Of course, the

decomposition in which the disconnected trajectory passes to the left of the inser-

1From now on we will most of the times drop the indices on the kink mass to simplify the
notation.
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tion point is also allowed, and in this case F �,L
ab (✓|✓0) and h�ib replace F �,R

ab (✓|✓0)
and h�ia in (3.11). It follows that F �,R

ab (✓|✓0) and F �,L
ab (✓|✓0) coincide for ✓ 6= ✓0,

while for ✓ ! ✓0 they behave as1

i
h�ia � h�ib
✓ � ✓0 ⌥ i✏

, (3.13)

with the upper (resp. lower) sign referring to F �,R
ab (✓|✓0) (resp. F �,L

ab (✓|✓0)).
For the purpose of generalization in subsequent sections we use the pictorial

representation2

�iRes✓1=✓2 ba �

✓1

✓2

= ba �

✓1

✓2

� ba �

✓1

✓2

= h�ia � h�ib . (3.14)

Once we substitute (3.11) into (3.9) and take into account that for large R

the integral is dominated by ✓ ' ✓0 ' 0, we can use (3.13) to obtain

h�(x, y)iab ' h�ia+
|fab(0)|2 e�mR

Zab(R)

Z

R2

d✓

2⇡

d✓0

2⇡

i�h�i
✓ � ✓0 � i✏

e�
î
M�
2 ✓2+

M+
2 (✓0)2

ó
+imx(✓�✓0),

(3.15)

where �h�i ⌘ h�ia � h�ib. Defining ✓± =
»
mR/8 (✓ ± ✓0),

� ⌘
»
R/(2m) , (3.16)

 ⌘
»
1� 4y2/R2 , |y| < R

2
, (3.17)

1Relativistically invariant quantities depend on rapitity di↵erences.
2Kinematical poles like (3.13) are well known to experts of two-dimensional integrable field

theory (see [42, 43] and, for the case of kink excitations of interest here, [44, 45]). While
integrability simplify the scattering theory and allows the general determination of residues,
kinematical poles exist in any two-dimensional field theory. For the two-leg case (3.14) no
scattering is involved and the residue is completely general.
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and performing the integral on ✓
+

gives

h�(x, y)iab = h�ia +
i�h�i
2⇡

Z

R

d✓�
✓� � i✏

e�
2✓2�+2ix✓�/� . (3.18)

We can now di↵erentiate with respect to x in order to cancel the pole, perform

the Gaussian integral over ✓� and integrate back over x with the asymptotic

condition h�(+1, y)iab = h�ib; the result is

h�(x, y)iab '
h�ia + h�ib

2
� h�ia � h�ib

2
erf(�) , (3.19)

where erf(x) = (2/
p
⇡)

R x
0

du e�u2
is the error function and

� ⌘ x

�
. (3.20)

For the Ising model h�ia = �h�ib = h�i± and (3.19) reduces to �h�i±erf(�),
which is the scaling limit of the exact lattice result of [46]. The Ising magnetiza-

tion h�(x, y)i�+

is shown in Fig.3.2.

Figure 3.2: Ising magnetization h�(x, y)i�+

/h�i
+

. The ellipses correspond to
constant values of �, and then to constant values of the magnetization.
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3.2.2 Interface structure and passage probability

Subleading terms in the large R expansion of (3.19) can be worked out system-

atically from the smal rapidity expansion of the boundary amplitude fab(✓) and

of the matrix element F �
ab(✓|✓0). If the phases a and b play a symmetric role, we

have fab(✓) = fab(0) + O(✓2), and the next contribution to (3.19) is easily found

to be
C �
ab

m

e��
2

p
⇡ �

, (3.21)

where C �
ab is the coe�cient c

0

of the expansion F �
ab(✓|✓0) =

P1
k=�1

ck(✓�✓0)k, and
then depends only on the bulk theory.

(a) (b) (c) (d)

Figure 3.3: Some configurations of a single interface (a,b,c) and the leading large
R configuration of a double interface (d).

It is easy to see that the result (3.19) corresponds to the average over the

configurations of an interface which intersects only once the lines y = constant

and sharply separates two pure phases a and b (Fig. 3.3a). Indeed, if we call

p(u, y)du the probability that such an interface passes in the interval (u, u+ du)

on the line of constant y on the strip, and1

�ab(x|u) = ✓(u� x)h�ia + ✓(x� u)h�ib (3.22)

the magnetization at a point x on this line for the given interface configuration,

1We denote by ✓(x) the step function which equals 1 if x > 0 and 0 if x < 0.
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the average magnetization

h�(x, y)isharpab =
Z

R
du �ab(x|u) p(u, y) (3.23)

coincides with (3.19) for1

p(x, y) =
e��

2

p
⇡ �

. (3.24)

We also see that (3.21) corresponds to adding to (3.22) the local term (C �
ab/m)�(x�

u), which represents a deviation from sharp phase separation and is the first man-

ifestation of an internal structure of the interface. A typical e↵ect contributing to

(3.21) is the bifurcation and recombination of the interface depicted in Fig. 3.3b;

we see from the factor of � in the denominator of (3.21) that it is suppressed as

R�1/2. The formation of such bubbles requires three di↵erent phases, and the

term (3.21) is indeed absent in the Ising model, in which the magnetization is

odd in x by symmetry. The first branching e↵ect in the Ising model (trifurcation,

Fig. 3.3c) contributes to the subsequent term of the low energy expansion and is

suppressed2 as R�1 at large R.

The bifurcation of the interface requires the presence in the theory of a three-

kink vertex, corresponding to the bound state formation |Kac(✓1)Kcb(✓2)i !
|Kab(0)i for some resonant value ✓

1

� ✓
2

= i�, � 2 (0, ⇡). Relativistic kine-

matics yields the relation m2

ab = m2

ac +m2

cb + 2macmcb cos � among the masses of

the three kinks. In view of (3.5) this becomes the well known relation among the

components of the superficial tensions at each vertex of the bubble [12] (Fig. 3.4).

It also follows from (3.1) that energy conservation at the vertex becomes the equi-

librium condition

⌃ab + ⌃ac cos↵ + ⌃cb cos � = 0 . (3.25)

1The Gaussian passage probability density (3.24), with a width shrinking to zero at the
boundary condition changing points, gives to the interface the property of a Brownian bridge,
which has been rigorously proved for the Ising model [47] and the Potts model [48].

2Within the saddle point evaluation of (3.9) at large R each additional power of rapidity in
the product f⇤

ab

(✓)f
ab

(✓0)M�

ab

contributes a factor R�1/2.
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a b
c

↵ �

�

Figure 3.4: A bubble of phase c contributing to the internal structure of the
interface between phases a and b.

3.3 Intermediate phases

In systems allowing for a third degenerate phase, the latter can appear in the

interfacial region either via the formation of bubbles (or drops, Fig. 3.5a), or

because a macroscopic (“wetting”) intermediate layer of phase c forms between

phases a and b (Fig. 3.5b). A transition from the first to the second regime

induced by the variation of a parameter of the system goes under the name of

wetting transition (see e.g. [12]).

a b

c

c

a bc

(a) (b)

Figure 3.5: Two di↵erent regimes of phase separation: a third phase appears in
bubbles (a), or through a wetting layer (b).

We now consider the case in which, still starting with the ab boundary con-

ditions of Fig. 3.1, phases a and b are not adjacent. More precisely, we consider
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the simplest case of this type, the one in which the minimal path between |⌦ai
and |⌦bi is a two-kink state |KacKcbi passing through a third vacuum |⌦ci (an

example of this kind is shown in Fig. 3.6). This means that now the expansion

⌦
a

⌦
b

⌦
c

⌦
d

⌦
e

Figure 3.6: A vacuum structure including non-adjacent vacua.

(3.2) of the boundary state is replaced by

|Bab(x0

; t)i = e�itH+ix0P

2

4
X

c 6=a,b

Z

R2

d✓
1

2⇡

d✓
2

2⇡
facb(✓1, ✓2) |Kac(✓1)Kcb(✓2)i+ . . .

3

5,

(3.26)

where the summation over c indicates that, in general, there can be more than

one two-kink path interpolating between |⌦ai and |⌦bi. For simplicity we refer

to the case in which the lightest state |KacKcbi, is made of two kinks with the

same mass m. Then we can stipulate that the sum in (3.26) includes only the

states |KacKcbi with mass 2m, with the dots including all heavier states and

contributing subleading terms in the large R expansion. Plugging (3.26) into

(3.3) then gives

Zab(R) '
X

c,d 6=a,b

Z

R4

d✓
1

d✓
2

d✓
3

d✓
4

(2⇡)4
Fab,cd Mab,cd Y , (3.27)

where we defined

Fab,cd(✓1, ✓2, ✓3, ✓4) ⌘ facb(✓1, ✓2)f
⇤
adb(✓3, ✓4)

Mab,cd(✓1, ✓2|✓3, ✓4) ⌘ hKbd(✓3)Kda(✓4)|Kac(✓1)Kcb(✓2)i (3.28)

Y(✓
1

, ✓
2

, ✓
3

, ✓
4

) ⌘ Y �(✓
1

)Y �(✓
2

)Y +(✓
3

)Y +(✓
4

)

Y ±(✓) ⌘ em
î
�R

2 cosh ✓±ix sinh ✓

ó
. (3.29)
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In our framework, the two-kink states are asymptotic states that can be ei-

ther incoming or outgoing, the two basis being related by the scattering operator.

Since the large R limit we are interested in projects towards small rapidities, scat-

tering processes take place at energies below any particle production threshold,

and are then elastic. In particular, two-kink states scatter into two-kink states,

and we can write

|Kac(✓1)Kcb(✓2)i =
X

d 6=a,b

Scd
ab(✓1 � ✓

2

) |Kad(✓2)Kdb(✓1)i , (3.30)

where

Scd
ab(✓1 � ✓

2

) = a

c
b

d

✓1 ✓2

(3.31)

are the two-kink scattering amplitudes, in which all kinks have mass m and initial

and final rapidities coincide by two-dimensional energy-momentum conservation;

in (3.30) we also stipulated that ✓
1

> ✓
2

and that kinks are ordered according to

decreasing (resp. increasing) rapidity for incoming (resp. outgoing) states. The

unitarity condition associated to (3.30) then reads

X

e 6=a,b

Sce
ab(✓)S

ed
ab (�✓) = �cd . (3.32)

Since the large R limit leads to consider rapidities which tend to zero, the essential

information we need from the scattering theory is the threshold value Scd
ab(0) of

the amplitudes. The models to which we will specialize in the next sections satisfy

Scd
ab(0) = ��cd , (3.33)

and this is the case that we consider in the following1. The use of (3.33) into (3.30)

with ✓
1

= ✓
2

shows that the states |Kac(✓)Kcb(✓)i are not allowed. It follows in

particular that the amplitudes facb in (3.26) need to vanish when ✓
1

= ✓
2

, and

can be written as facb(✓1, ✓2) ' cacb ✓12 at small rapidities, where we defined

1It is possible that (3.33) is a necessary condition for the formation of an intermediate
phase.
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✓ij ⌘ ✓i � ✓j. As a consequence

Fab,cd(✓1, ✓2, ✓3, ✓4) ' cacbc
⇤
adb ✓12✓34 (3.34)

at small rapidities. Concerning the product (3.28), it is the sum of the two terms1

depicted in Fig. 3.7, and reads

Mab,cd(✓1, ✓2|✓3, ✓4) = (2⇡)2[�(✓
14

)�(✓
23

)�cd + �(✓
13

)�(✓
24

)Scd
ab(✓12)] . (3.35)

a bc a

d

c

b

Figure 3.7: The two contributions to (3.35).

With (3.34) and (3.35) we can proceed to the saddle point evaluation of (3.27),

obtaining

Zab(R) ' ⇣ab

Z

R2

d✓
1

d✓
2

(2⇡)2
✓2
12

e�mR(cosh ✓1+cosh ✓2) ' ⇣ab
e�2mR

⇡(mR)2
, (3.36)

with

⇣ab =
X

c,d 6=a,b

cacbc
⇤
adb

ï
Scd
ab(0)� �cd

ò
= �2

X

c 6=a,b

|cacb|2. (3.37)

The interfacial tension (3.4) is now 2m, as expected for the double interface of

Fig. 3.3d.

1Due to (3.32) terms with more than one bulk crossing reduce to those of Fig. 3.7.
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The magnetization (3.6) with the boundary state (3.26) becomes

h�(x, y)iab ' 1

Zab(R)

X

c,d 6=a,b

Z

R4

d✓
1

d✓
2

d✓
3

d✓
4

(2⇡)4
Fab,cd(✓1, ✓2, ✓3, ✓4)⇥

⇥ hKbd(✓3)Kda(✓4)|e�
R
2 H

�(x,y)
z }| {
eixP+yH �(0, 0) e�ixP�yH e�

R
2 H |Kac(✓1)Kcb(✓2)i

=
1

Zab(R)

X

c,d 6=a,b

Z

R4

d✓
1

d✓
2

d✓
3

d✓
4

(2⇡)4
Fab,cd(✓1, ✓2, ✓3, ✓4)Y?(✓

1

, ✓
2

, ✓
3

, ✓
4

)

⇥ M�
ab,cd(✓1, ✓2|✓3, ✓4), (3.38)

where

Y?(✓
1

, . . . , ✓
4

) ⌘ Y(✓
1

, . . . , ✓
4

) emy(cosh ✓3+cosh ✓4�cosh ✓1�cosh ✓2) , (3.39)

M�
ab,cd(✓1, ✓2|✓3, ✓4) ⌘ hKbd(✓3)Kda(✓4)|�(0, 0)|Kac(✓1)Kcb(✓2)i . (3.40)

Analogously to what discussed in the previous section for the two-leg case, the

matrix element (3.40) contains a connected part, that we will denote M�,conn
ab,cd ,

and a number of disconnected contributions; pictorially

✓2

c

b

d

✓4

✓1

✓3

a � =

✓2

✓4

✓1

✓3

c

b

d

a � + disconnected parts . (3.41)

As in the two-leg case, the possibility of performing the decomposition in two

di↵erent ways, depending on whether the disconnected trajectories pass to the

right or to the left of the insertion point of the magnetization operator, leads to

kinematical singularities in the connected parts. The residues on these poles are
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given by the generalization of (3.14), namely

�iRes✓1=✓3

✓2

✓4

✓1

✓3

c

b

d

a � =

✓2

a

c

b

d

✓4

✓1

✓3

� �

✓2

a

c

b

d

✓4

✓1

✓3

�

= Scd
ab(0)

✓2

✓4

da � � Scd
ab(0)

✓2

✓4

bc �

' iScd
ab(0)

✓
24

ñ
h�ia � h�id � h�ic + h�ib

ô
, (3.42)

where we work directly in the limit ✓
1

, . . . ✓
4

! 0 and used (3.13) in the last line

(we do not need to keep track of the i✏ prescriptions here). Similarly,

�iRes✓1=✓4

✓2

✓4

✓1

✓3

c

b

d

a � =
X

e

✓2

✓4

✓1

✓3

c

b

d

a � e � �cd

✓2

✓4

✓1

✓3

a bc �

=
X

e

Sce
ab(0)S

ed
ab (0)

✓2

ea �

✓3

� �cd

✓2

bc �

✓3

' i

✓
23

ñX

e

Sce
ab(0)S

ed
ab (0)

ï
h�ia � h�ie

ò
� �cd

ï
h�ic � h�ib

òô

=
i

✓
23

ñ
�

X

e

Sce
ab(0)S

ed
ab (0)h�ie � �cd

ï
h�ic � h�ia � h�ib

òô
;
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(3.32) was used in the last line. Analogous results are obtained when the kink

with rapidity ✓
2

is disconnected, and we have

�Res✓1=✓3M�,conn
ab,cd (✓

1

, . . . , ✓
4

) =
Aab,cd

✓
24

,

�Res✓1=✓4M�,conn
ab,cd (✓

1

, . . . , ✓
4

) =
Bab,cd

✓
23

,

�Res✓2=✓4M�,conn
ab,cd (✓

1

, . . . , ✓
4

) =
Aab,cd

✓
13

,

�Res✓2=✓3M�,conn
ab,cd (✓

1

, . . . , ✓
4

) =
Bab,cd

✓
14

,

with

Aab,cd = Scd
ab(0)[h�ia + h�ib � h�ic � h�id],

Bab,cd = �cd
î
h�ia + h�ib � h�ic

ó
�

X

e

Sce
ab(0)S

ed
ab (0)h�ie .

The condition (3.33) simplifies the result to Aab,cd = �cd(2h�ic � h�ia � h�ib) =
�Bab,cd, and we obtain

M�,conn
ab,cc (✓

1

, ✓
2

, ✓
3

, ✓
4

) ' [2h�ic � h�ia � h�ib]
✓
12

✓
34

✓
13

✓
14

✓
23

✓
24

, (3.43)

M�,conn
ab,cd (✓

1

, ✓
2

, ✓
3

, ✓
4

) ' C �
ab,cd ✓12✓34 , c 6= d , (3.44)

at small rapidities. As in (3.34), the prefactor ✓
12

✓
34

accounts for the property

(3.33), and provides the leading term for c 6= d, when all the residues vanish.

The value of the constant C �
ab,cd depends on the form of the scattering amplitudes

Scd
ab(✓) for ✓ 6= 0. Notice, however, that the total degree of (3.44) in the rapidity

variables exceeds by four units that of (3.43), so that the contribution of (3.44)

to the magnetization is subleading1 at large R with respect to the leading as well

as to some of the subleading terms we are omitting in (3.43). This means that

(3.44) must be ignored at this level of the calculation. Hence the contribution of

1Within the saddle point evaluation of (3.38) at large R each additional power of rapidity
in the product F

ab,cd

M�

ab,cd

contributes a factor 1/
p
R.
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the connected parts is

h�(x, y)iconnab ' 1

Zab(R)

X

c 6=a,b

Z

R4

d✓
1

d✓
2

d✓
3

d✓
4

(2⇡)4
Fab,cdY?M�,conn

ab,cc

' G(�)� 1

4
P

c 6=a,b |cacb|2
X

c 6=a,b

|cacb|2[h�ia + h�ib � 2h�ic] , (3.45)

with a function G(�) which is computed in the appendix and reads

G(�) = � 2

⇡
e�2�2 � 2p

⇡
� erf(�) e��

2
+ erf2(�) . (3.46)

Consider now the disconnected parts of (3.41). We ignore those with two dis-

connected trajectories, since they contribute to the magnetization (3.38) only an

additive constant that we will fix anyway from the condition h�(+1, y)iab = h�ib.
For the contributions with a single disconneted trajectory we use the notations

D(L)
1423

=

✓2

c b

✓4

✓1

✓3

a � , D(L)
2314

=
X

e

✓2

e

✓4

✓1

✓3

a � b

d

c

,

D(L)
1324

=

✓2

✓4

✓1

✓3

a

�

c

b

d

, D(L)
2413

=

✓2

✓4

✓1

✓3

a

�

c

b

d

,

and

D(R)

1423

=
X

e

✓2

e

✓4

✓1

✓3

a � b

d

c

, D(R)

2314

=

✓2

c b

✓4

✓1

✓3

a � ,
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D(R)

1324

=

✓2

✓4

✓1

✓3

a �

c

b

d

, D(R)

2413

=

✓2

✓4

✓1

✓3

a
�

c

b

d

,

depending on the left or right passage prescription. In the limit ✓
1

, . . . , ✓
4

! 0,

taking into account (3.33) and (3.14), we have1

D(L)
ijkl ' (�1)i+j2⇡�cd �(✓ij) i

h�ic � h�ib
✓kl

, (3.47)

D(R)

ijkl ' (�1)i+j2⇡�cd �(✓ij) i
h�ia � h�ic

✓kl
, (3.48)

from which we see that the two prescriptions are inequivalent. The natural idea

to take the average

Dijkl ⌘
D(L)

ijkl +D(R)

ijkl

2
= (�1)i+j⇡�cd �(✓ij) i

h�ia � h�ib
✓kl

(3.49)

is the right one. Indeed, as seen in the previous section, single pole terms of this

type generate a di↵erence between the values of the magnetization at x = �1
and x = +1 proportional to the residue on the pole; we are going to see that

(3.49) produces precisely the required di↵erence2 h�ia � h�ib. The contribution

of Dijkl to the magnetization (3.38) is (h�ia � h�ib)/2 times

�ijkl(x, y) = (�1)i+j
X

c 6=a,b

|cacb|2
Zab(R)

Z

R4

d✓
1

d✓
2

d✓
3

d✓
4

(2⇡)4
✓
12

✓
34

2⇡i �(✓ij)

✓kl
⇥

⇥ Y?(✓
1

, ✓
2

, ✓
3

, ✓
4

),

=
1

4
L(�) + constant ; (3.50)

1It is understood that the indices ijkl take only the four combinations given above.
2The connected contribution (3.45) is even in x and does not contribute to the di↵erence

between the asymptotic values.
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the integral is performed in the appendix and gives

L(�) = �p
⇡
e��

2 � erf(�) . (3.51)

Recalling that there are four choices of ijkl, we obtain

h�(x, y)idiscab ' h�ia � h�ib
2

L(�) + constant (3.52)

for the contribution of the disconnected parts to the magnetization. With (3.45)

and (3.52) we can turn to the study of specific models.

3.4 Application to the q-state Potts model

The q-state Potts model is a generalization of the Ising model to the case in which

the spin variable takes q values (colors), and is characterized by the invariance of

the Hamiltonian under global permutations of the colors [49]. For ferromagnetic

interaction in two dimensions it undergoes at a critical temperature Tc a phase

transition which is continuous for q  4 and first order for q > 4 [50] (see [51] for a

derivation in the continuum). Hence, for q  4 and T < Tc there is a scaling limit

corresponding to a field theory with q degenerate vacua and kinks interpolating

between each pair of them (see Fig. 3.8.a). Phase separation is necessarily of the

type discussed in Section 3.2.

⌦1 ⌦2

⌦3

⌦0

⌦1 ⌦2

⌦3

(a) (b)

Figure 3.8: Vacuum and kink structure of the three-state Potts model at first
order transition points in the pure case (a) and in the dilute case (b).
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When annealed vacancies are introduced, the transition for q < 4 stays con-

tinuous up to a critical value ⇢c of the vacancy density, above which it becomes

first order. As q is varied, there is then a tricritical line for T = Tc(⇢), ⇢ = ⇢c,

which is known to coalesce with the critical line of the undilute (⇢ = 0) model

at q = 4 [49]. On the first order surface T = Tc(⇢), ⇢ > ⇢c the ferromagnetic

vacua |⌦ii, i = 1, . . . , q, are degenerate with the disordered one |⌦
0

i. The elemen-

tary excitations are the kinks |K
0ii running between the disordered vacuum and

the ferromagnetic ones (Fig. 3.8.b), as two ferromagnetic vacua will be related

by |Ki0K0ji. In principle such two-kink configurations could give rise to stable

bound state kinks |Kiji, that would make the vacua |⌦ii and |⌦ji adjacent. This,
however, is not the case. Indeed, the field theory corresponding to the scaling

limit on the first order surface is integrable1, and the spectrum of excitations and

the scattering amplitudes are known exactly [53]. The kinks |K
0ii and |Ki0i do

not form bound states and are the only single-particle excitations of the theory.

As a consequence the vacua |⌦ii and |⌦ji are not adjacent and the strip with

boundary conditions i on the left and j on the right will give rise to a double

interface containing a bubble of the disordered phase. We now apply to this case

the formalism of the previous section.

All kinks have the same mass as a consequence of permutational symmetry of

the colors, which is una↵ected by dilution. Since the only two-kink state connect-

ing two di↵erent ferromagnetic vacua |⌦ii and |⌦ji is |Ki0K0ji, the intermediate

index c in (3.26) is fixed to the value 0. Similarly,

Scd
ij (✓) = �c0�d0 S

00

ij (✓); (3.53)

in addition S00

ij (0) = �1 [53], so that (3.33) is fulfilled. If s(x, y) is the color of a

spin at site (x, y), we define the spin variables

�k(x, y) = �k,s(x,y) �
1

q
, k = 1, . . . , q , (3.54)

and use the same notation �k(x, y) for the corresponding components of the mag-

netization operator in the continuum; they satisfy
Pq

k=1

�k(x, y) = 0. The sym-

1The scaling limit without dilution is also integrable [52].
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metry gives

h�kij =
q�kj � 1

q � 1
M (3.55)

in the pure ferromagnetic phases, and

h�ki0 = 0 (3.56)

in the pure disordered phase. Taking all this into account (3.45) gives

h�k(x, y)iconnij ' h�kii + h�kij
4

ñ
G(�)� 1

ô
. (3.57)

Adding the disconntected contribution (3.52) and fixing the additive constant by

the condition h�k(+1, y)iij = h�kij we finally obtain

h�k(x, y)iij '
h�kii + h�kij

4

ñ
1 + G(�)

ô
+

h�kii � h�kij
2

L(�) . (3.58)

For q = 2 this becomes h�k(x, y)iij = (�1)�kjM L(�), from which we see that,

with respect to the pure Ising case (3.19), the e↵ect of dilution and of the forma-

tion of the intermediate wetting phase is the appearance of the first term of (3.51)

(see Fig. 3.9). The results (3.58) are shown in Figs. 3.10 and 3.11 for q = 3.

As for the case of single interface of Section 3.2, the results (3.58) admit a

probabilistic interpretation in terms of average over configurations of interfaces

sharply separating pure phases. Suppose indeed that two such interfaces intersect

at x = u
1

and x = u
2

the horizontal axis of constant y inside the strip with ab

boundary conditions, and that they can contain a single phase c in between them.

The magnetization corresponding to such a configuration on the line of constant

y can then be written as

�acb(x|u1

, u
2

) = �?acb(x|u1

, u
2

) ✓(u
2

� u
1

) + �?acb(x|u2

, u
1

) ✓(u
1

� u
2

), (3.59)

with

�?acb(x|u1

, u
2

) = h�ia ✓(u1

� x) + h�ib ✓(x� u
2

) + h�ic (✓(x� u
1

)� ✓(x� u
2

)) .

(3.60)
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!3 !2 !1 1 2 3
Χ

!1.0
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!Σ "$! #M

Figure 3.9: Ising magnetization profile h�i
+�/M at the first order transition in

the pure model (continuous curve), and in the dilute model (dashed curve). The
presence of an intermediate disordered phase in the dilute case flattens the profile.
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Figure 3.10: Magnetization profiles (3.58) for q = 3.
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Figure 3.11: The magnetization h�
3

(x, y)i
12

/M for q = 3. The curves are the
ellipses x2

�2C2 + 4y2

R2 = 1, corresponding to � = C, and then to constant magneti-
zation.

The magnetization is obtained averaging over the interface positions,

h�(x, y)isharpab,c =
Z

R2
du

1

du
2

�acb(x|u1

, u
2

) p(u
1

, u
2

; y) , (3.61)

with p(u
1

, u
2

; y) the probability density for intersections at u
1

and u
2

. It is not

di�cult to check that, for h�ic = 0, the result (3.58) is precisely reproduced by

the probability density

p(x
1

, x
2

; y) =
Åx

1

� x
2

�

ã
2

p(x
1

, y)p(x
2

, y) =
(�

1

� �
2

)2

⇡�22
e�(�2

1+�
2
2) , (3.62)

which correctly satisfies
R
R2 du

1

du
2

p(u
1

, u
2

; y) = 1. Hence we see that the proba-

bility density p(x
1

, y)p(x
2

, y) for non-interacting interfaces gets corrected by the

factor (�
1

� �
2

)2, whose origin must be traced back to the property (3.33). For

a generic h�ic (3.62) gives

h�(x, y)isharpab,c =
h�ia + h�ib � 2h�ic

4
G(�)+ h�ia � h�ib

2
L(�)+ h�ia + h�ib + 2h�ic

4
.

(3.63)

In Fig. 3.12 we show h�
3

i
12

from (3.58) and for the undilute T < Tc three-
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state Potts model, for which the leading non-constant term is provided by (3.21)

with C �3
12

= M/(2
p
3) [1]. This latter term accounts for the formation of bubbles

of third color depicted in Fig. 3.4 and corresponding to the vertex KacKcb ⇠
Kab which is indeed present in the pure model [52]; since all kinks have the

same mass, the angles in Fig. 3.4 are ↵ = � = � = 2⇡/3. Hence Fig. 3.12

makes clear the quantitative di↵erence between the e↵ect of the formation of an

intermediate disordered phase in the dilute case (T = Tc, ⇢ > ⇢c) and that due to

the appearance of color 3 via branching and recombination of the single interface

in the undilute case. The maximum of (3.21) decreases as (mR)�1/2; for the

models we discuss in this and the next section, the correlation length defined by

the exponential decay of bulk spin-spin correlations is

⇠ =
1

2m
. (3.64)

!10 !5 5 10
m x

!0.6

!0.5

!0.4

!0.3

!0.2

!0.1

!Σ3"x,0#$12%M

Figure 3.12: Magnetization profile h�
3

(x, 0)i
12

/M in the three-state Potts model
at the first order transition formR = 10. For the undilute case (continuous curve)
the bump is produced by the branching of the single interface and is suppressed
as R�1/2. For the dilute case (dashed curve) the bump is due to the disordered
intermediate phase and its height persists asymptotically at large R.

We derived the results (3.58), (3.62) for the dilute Potts model on the first

order surface T = Tc, ⇢ > ⇢c, q < 4. For the undilute model with q > 4 the phase
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transition becomes first order and the same vacuum structure considered above

(q ferromagnetic vacua degenerate with the disordered vacuum) is present at Tc.

Strictly speaking, the scaling limit at Tc is only defined in the limit1 q ! 4+,

and the exact solution of the associated field theory was studied in [55]. The

vacuum adjacency structure and the property (3.33) are unchanged with respect

to the dilute q < 4 case, and so is the result for the magnetization profiles. It was

also shown in [55] that the field theoretical description remains quantitatively

accurate as long as the correlation length ⇠ is much larger than lattice spacing.

We then expect that (3.58) and (3.62) are essentially exact in the q > 4 critical

pure model up to values such as q = 10, where ⇠ ⇡ 10.

It is interesting to notice that the function (3.43) originally appeared in [56]

within an exact lattice computation of asymptotics of three-point spin correlators

in the Ising model below Tc. In the language of this chapter, the coincidence is

made possible by the fact that the leading non-constant contribution to this

asymptotic correlator comes from a two-kink intermediate state. Later on this

fact was exploited in [57] to propose that G(�) gives the magnetization profile

across a bubble of down spins surrounded by up spins in the Ising model. It was

shown in [58] by lattice computations that this is indeed the case provided that

the pinning points of the interfaces are taken a fixed number of lattice spacings

apart on the edges of the strip, and that the configurations with interfaces starting

and ending on the same edge are removed by hand, before taking the scaling limit

which makes the pinning points on the same edge coalesce. This is a technical

way around the basic problem that the Ising model does not possess the three

di↵erent phases necessary to generate two interfaces with the boundary conditions

of Fig. 3.1.

3.5 Exact interfacial wetting transition:

Ashkin-Teller model

The two-dimensional Ashkin-Teller model in defined on the lattice placing at each

site r = (x, y) two Ising spins �
1

(r), �
2

(r) = ±1, whose interaction is specified by

1It is well known that the Potts model can be continued to real values of q [54].
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the Hamiltonian

HAT = �
X

hr1,r2i
{J [�

1

(r
1

)�
1

(r
2

) + �
2

(r
1

)�
2

(r
2

)] + J
4

�
1

(r
1

)�
1

(r
2

)�
2

(r
1

)�
2

(r
2

)} ,

(3.65)

where the sum is taken over nearest neighbors; we consider the ferromagnetic

case J > 0. The Hamiltonian is invariant under the exchange

E : �
1

$ �
2

, (3.66)

as well as under separate spin reversals

Ii : �i ! ��i . (3.67)

The second order phase transition occurring for J
4

= 0, when the two Ising models

are decoupled, is known to extend to J
4

6= 0 (see e.g. [59] and references therein).

There is then a second order critical line Jc(J4), and the scaling limit around it

is described by the sine-Gordon field theory with Euclidean action

ASG['] =
Z

d2x

ñ
1

2
(@')2 � ⌧ cos �'

ô
, (3.68)

where ⌧ measures the deviation of J from Jc, and � is the coordinate along the

critical line. On the square lattice the relation between � and J
4

is [60]

4⇡

�2

= 1� 2

⇡
arcsin

Ç
tanh 2J

4

tanh 2J
4

� 1

å
. (3.69)

For J > Jc the spin reversal symmetries are both spontaneously broken and

the theory possesses four degenerate vacua ⌦↵1,↵2 , ↵i = ±1, corresponding to the

breaking of Ii in the direction ↵i. These vacua are connected as shown in Fig. 3.13

by elementary excitations A
1

and A
2

, which are kinks with respect to �
1

and �
2

,

respectively1, and have the same mass m. For J
4

> 0 these kinks form bound

states [61] with mass 2m sin(⇡�2/2(8⇡ � �2)) which run along the diagonals of

Fig. 3.13 and make all vacua adjacent. For J
4

 0, on the other hand, there are

1Sine-Gordon soliton and anti-soliton correspond to A1 ± iA2.
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A2

A1

A2

A1 (+,�)

(�,+)

(�,�)

(+,+)

Figure 3.13: Vacuum connectivity in the Ashkin-Teller model. The diagonal kinks
are present only for J

4

> 0.

no bound states, and the pairs of vacua ⌦↵1,↵2 and ⌦�↵1,�↵2 are non-adjacent.

This is the case we now analyze.

To be definite, in the following we consider ab boundary conditions on the

strip, with a = ++ and b = ��. It follows from the adjacency structure of

Fig. 3.13 for J
4

 0 that these boundary conditions correspond to a boundary

state of the form (3.26), with c taking the values +� and �+; in addition, ex-

change symmetry implies that the amplitudes facb(✓1, ✓2) coincide for the two

values of c. Sine-Gordon field theory is integrable and all the scattering ampli-

tudes are known [61]. For our purposes it is su�cient to know that (see [59])

S+�,�+

++,��(✓) = S�+,+�
++,��(✓) =

S(✓) + S�(✓)
2

, (3.70)

S+�,+�
++,��(✓) = S�+,�+

++,��(✓) =
S(✓)� S�(✓)

2
, (3.71)

where the notation is that of (3.31),

S�(✓) = �
cosh ⇡

2⇠
(✓ + i⇡)

cosh ⇡
2⇠
(✓ � i⇡)

S(✓) , ⇠ =
⇡�2

8⇡ � �2

, (3.72)

and S(✓) satisfies S(0) = �1 for any ⇠. The decoupling point J
4

= 0 corresponds

to �2 = 4⇡, namely to ⇠ = ⇡, and J
4

< 0 corresponds to ⇠ > ⇡. For J
4

< 0 we

have Scd
++,��(0) = ��cd, so that (3.33) is fulfilled.

We consider the magnetization operators �
1

(x, y), �
2

(x, y) and �
1

�
2

(x, y). The
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symmetries imply that their expectation values in the four pure phases can be

written as

h�ii(↵1,↵2) = ↵i M , h�
1

�
2

i
(↵1,↵2) = ↵

1

↵
2

M̃ . (3.73)

Concerning the magnetization profiles on the strip with ab boundary conditions,

since cacb in (3.45) does not depend on the allowed values of c, (3.73) leads to

h�i(x, y)iconn
++,�� = 0 and h�

1

�
2

(x, y)iconn
++,�� ' M̃(G(�) � 1) . Adding the discon-

nected contribution (3.52) and fixing the constant at infinty finally gives

h�i(x, y)i++,�� ' M L(�) , (3.74)

h�
1

�
2

(x, y)i
++,�� ' M̃ G(�) . (3.75)

It is straightforward to see that these results correspond to the passage probability

density (3.62) for the two interfaces. Indeed, it is su�cient to sum (3.63) over

the two allowed values of c, and to consider that each intermediate phase occurs

with probability 1/2.

!3 !2 !1 1 2 3
Χ

!0.5

0.5

1.0

!Σ1Σ2"$$,!!#M
%

Figure 3.14: Asymptotic magnetization h�
1

�
2

i
++,��/M̃ in the Ashkin-Teller

model for J
4

< 0 (dashed curve), J
4

= 0 (continuous curve) and J
4

> 0 (dotted
curve).

The results (3.74), (3.75) have been obtained for J
4

< 0, but do not depend

on J
4

, namely on the interaction between two Ising spins. This corresponds to

the fact that the leading large R behavior is entirely determined by the non-
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crossing condition for the interfaces induced by (3.33). Consistency then requires

that (3.33) is violated at the decoupling point J
4

= 0, where profiles correspond-

ing to single interfaces must be recovered. Indeed, it follows from (3.70)-(3.72)

that precisely at ⇠ = ⇡ the threshold value of the amplitudes switches discontinu-

ously to Scd
++,��(0) = �cd�1. A first consequence is that the boundary amplitudes

f
++,c,��(0) no longer vanish, because the state |K++,c(✓)Kc,��(✓)i no longer scat-
ters into minus itself; the partition function then becomes the square of (3.3), as

it should. In a similar way, one can adapt to this J
4

= 0 case the rest of the

analysis of Section 3.3 and formally recover the single interface results �M erf(�)

instead of (3.74), and (M erf(�))2 instead of (3.75) (Fig. 3.14). Hence, we see

how an arbitrarily small J
4

< 0 is su�cient to induce in a discontinuous way the

appearance of the intermediate phase, and a switch in passage probability density

from p(x
1

, y)p(x
2

, y) to (3.62).

Also the passage to J
4

> 0 is discontinuous, since in this regime the vacua

++ and �� become adjacent and the asymptotic profiles are given by (3.19)

(Fig. 3.14). We then have an exact description of the wetting transition occurring

at J
4

= 0 and associated to the interfacial tension

⌃
++,�� =

8
<

:
2m, J

4

 0 ,

2m sin(⇠/2) , J
4

> 0 .
(3.76)

For J
4

> 0 there is formation of interfacial bubbles as in Fig. 3.4 with a = ++,

b = ��, c = +� or �+, ↵ = � and � = ⇡ � ⇠. These bubbles contribute

to the term (3.21) with coe�cients which can be deduced1 from the results of

[62, 59]. Actually, only C �1�2
++,�� does not vanish, since h�i(x, y)i++,�� is odd in x

by symmetry and cannot include the even term (3.21); this is consistent with the

fact that the contributions of the bubbles +� and �+ to the profile of �i have

opposite sign and cancel each other.

1In doing this one has to take into account that [62, 59] use the language of the high
temperature phase, so that the operators �

i

have to be replaced with their duals µ
i

.
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3.6 Summary

In this chapter we showed how field theory yields the exact asymptotic descrip-

tion of phase separation in the scaling limit of two-dimensional statistical systems

at a first order phase transition point. The derivation is performed within the

scattering formalism, in which the interfaces eventually correspond to the trajec-

tories of kink excitations propagating in imaginary time. While this peculiarity

of the two-dimensional case is intuitively clear, the technical way it enters the

derivation is more subtle. In any dimension the matrix elements of local opera-

tors contain disconnected parts corresponding to particles propagating without

coupling to the operator. Only in two-dimensional space-time, however, the tra-

jectory of a disconnected particle cannot be taken around the point where the

local operator is inserted; it will pass either to the left or to the right of this point,

a circumstance resulting into the presence of pole singularities in the connected

part of the matrix element. These singularities determine the jumps in the order

parameter across an interface which are the signature of phase separation.

We derived in particular the following properties. Whether the third phase is

wetting or not is determined by the spectrum of kinks of the field theory. The

interfacial tension between two phases coincides with the mass of the lightest

kink connecting these two phases, and the equilibrium condition among the three

interfacial tensions at the vertex of a bubble coincides with energy conservation

for the relativistic particles at a bound state vertex. The transverse fluctuations

of the interface in the non-wetting regime of Fig. 3.5a are Gaussian with a width

increasing as R1/2, where R is the size of the system in the direction parallel to

the interface; the size in the transverse direction is assumed infinite, while R is

taken much larger than the correlation length in the pure phases, which in turn

is inversely proportional to the mass scale. The e↵ect on the order parameter of

the bubbles of Fig. 3.5a vanishes as R�1/2 to leave a sharp separation between

phases a and b in the asymptotic large R limit. For systems in which the external

phases are exchanged by a symmetry, the coe�cient of this bubble term depends

only on the bulk theory and can also be determined exactly in many cases. The

subsequent term in the large R expansion corresponds to trifurcations rather than

bifurcations in Fig. 3.5a and is suppressed as R�1; in two-phase, Ising-like sys-
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tems this provides the first correction to sharp separation. In the wetting regime

of Fig. 3.5b the order parameter profile does not approach at large R that cor-

responding to sharp separation between phases a and b. Its exact determination

leads to a combined passage probability which di↵ers from that of two indepen-

dent interfaces by a factor of the square of the distance between the interfaces,

which are then mutually avoiding. The transition from the first to the second

regime of Fig. 3.5 corresponds to the unbinding of a bound state and we exhibit

the Ashkin-Teller model as a first exactly solved example of such a bulk wetting

transition.

We remark that the analysis was performed exploiting general properties of

two-dimensional field theory at low energies. The information needed for special-

ization to models concerns the existence of bound states and the threshold values

of kink-kink scattering amplitudes. The main models, however, are integrable in

the scaling limit in two dimensions, and this information is available. In this way

we were able, in particular, to establish the formation of an intermediate disor-

dered phase in the dilute q-state Potts model, and to show how the Ashkin-Teller

model yields an example of exactly solved bulk wetting transition. In all cases we

determined the exact magnetization profiles and deduced from them the interface

properties.

The analysis of this chapter can be extended to cases in which, with the

boundary conditions of Fig. 3.1, the interfacial region consists of more than two

interfaces. This is possible, for example, in the regime III of the RSOS models

[63], in which the degenerate vacua and the kinks connecting them form a chain

in order parameter space. Scattering amplitudes [64] and matrix elements [65] of

the bulk theory are available, but a detailed study is beyond our present scope.
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3.7 Appendix A: computation of integrals

This appendix is devoted to the derivation of the results

z(x, y) ⌘ 1

⇣(R)

Z

R4

d✓
1

d✓
2

d✓
3

d✓
4

(2⇡)4
✓2
12

✓2
34

✓
13

✓
14

✓
23

✓
24

Ỹ?(✓
1

, ✓
2

, ✓
3

, ✓
4

) =
G(�)� 1

2
,

(3.77)

�(x, y) ⌘ i

2⇣(R)

Z

R4

d✓
1

d✓
2

d✓
3

(2⇡)3
✓
12

✓
13

✓
32

Ỹ?(✓
1

, ✓
2

, ✓
3

, ✓
1

) =
L(�)
4

+ const ,

(3.78)

where ⇣(R) ⌘ e

�2mR

⇡(mR)

2 , G and L were given in (3.46) and (3.51), and

Ỹ?(✓
1

, ✓
2

, ✓
3

, ✓
4

) = e�2mR e�
mR
4

î
✓21+✓

2
2+✓

2
3+✓

2
4

ó
+imx

î
✓3+✓4�✓1�✓2

ó
e

my
2

î
✓23+✓

2
4�✓21�✓22

ó

(3.79)

is (3.39) evaluated at small rapidities. In the derivation we will use the Dawson

function [66]

FD(x) ⌘ e�x2
Z x

0

dt et
2
, (3.80)

and the functions

!n(�; a) =
Z

R
dx

x2n

x2 � a2
e��x

2
, (3.81)

with n a non-negative integer. Let us evaluate (3.81). Using

lim
✏!0

1

x� a⌥ i✏
= ±⇡i �(x� a) + P 1

x� a
, (3.82)

we have

!
0

(�; a) = P
Z

R

dx

x2 � a2
e��x

2
=

1

2a
P

Z

R

dx

x� a
e��x

2 � 1

2a
P

Z

R

dx

x+ a
e��x

2
.

(3.83)

Defining

⌫(�, a) = P
Z

R

dx

x� a
e��x

2
, (3.84)

and using x = u+ a we have

@a
ï
⌫(�, a)e�a

2
ò
= �2�

Z

R
du e��(u

2
+2au) = �2

p
⇡� e�a

2
; (3.85)
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integrating with respect to a and using ⌫(�, 0) = 0, we have

⌫(�, a) = �⇡ erfi(
p
�a) e��a

2
= �2

p
⇡FD(

p
�a) , (3.86)

where erfi(z) = �ierf(iz) and FD(z) = (
p
⇡/2)erfi(z) e�z2 [66]. It follows from

(3.86) that

!
0

(�; a) = �2
p
⇡
FD(

p
�a)

a
, (3.87)

while for arbitrary n we can use !n(�; a) = (�@�)n !0

(�; a); in particular

!
1

(�; a) = P
Z

R
dx

x2

x2 � a2
e��x

2
=

p
⇡

ñ
1p
�
� 2aFD(

p
�a)

ô
. (3.88)

We will also need the result

⌅(`) ⌘
Z

R
du

FD(u)

u
e�u2�i`u =

⇡3/2

4

2

41� erf2
Ç
`p
8

å3
5 , (3.89)

which can be derived as follows. Using the integral representation of the Dawson

function

FD(x) =
Z 1

0

du e�u2
sin(2ux) , (3.90)

we can write ⌅(`) in the form

⌅(`) =
Z 1

0

duQ(`, u) e�u2
, Q(`, u) =

Z

R
dx

sin(2ux)

x
e�x2�i`x . (3.91)

Taking the first derivative with respect to ` and carrying out the Gaussian inte-

grations we find1

⌅(`) =
⇡

2

Z 1

0

du e�u2

2

4erf
Ç
u� `

2

å
+ erf

Ç
u+

`

2

å3
5 , (3.92)

and with the aid of

Z 1

0

du e�u2
erf(u+ a) =

p
⇡

4

ï
2� erfc2

Ä
a/

p
2
äò

, (3.93)

1Using the identity
R
R dx sin(2ux)

x

e�x

2

= ⇡ erf(u), we found that the integration constant is
zero.
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we obtain (3.89).

Consider now (3.77). Introducing the variables x± = ✓
1

± ✓
3

, y± = ✓
2

±
✓
4

, and then u⌥ = x
+

⌥ y
+

, v⌥ = x� ⌥ y�, we have

����� det
@(✓1,✓2,✓3,✓4)
@(u�,u+,v�,v+)

����� =
1

16

,

d✓
1

d✓
2

d✓
3

d✓
4

= 16�1du
+

du�dv+dv�, and

Ỹ?(✓
1

, ✓
2

, ✓
3

, ✓
4

) = e�2mR e�
mR
16

î
u2
++u2

�+v2++v2�

ó
�imxv+ e�

my
4

î
u+v++u�v�

ó
.

Rescaling the variables as u± ! (4/
p
mR)u± and v± ! (4/

p
mR)v±, we have

z(x, y) = ⇡�3E(h, ✏), where

E(h, ✏) ⌘
Z

R4
du

+

du�dv+dv�

Ä
u2

� � v2�
ä
2

(v2
+

� u2�) (v2+ � v2�)
⇥

⇥ e�(u
2
++u2

�+v2++v2�)�ihv+�2✏(u+v++u�v�) , (3.94)

with h = 4mx/
p
mR and ✏ = 2y/R. We write

E(h, ✏) =
Z

R2
du

+

dv
+

e�u2
+ e�v2+�ihv+�2✏u+v+ f(v

+

, ✏)

=
p
⇡
Z

R
dv

+

e�
2v2+�ihv+ f(v

+

, ✏) , (3.95)

where we have used the parameter 2 = 1� ✏2 and the function

f(↵, ✏) ⌘
Z

R2
dxdy

(x2 � y2)2

(x2 � ↵2)(y2 � ↵2)
e�x2�y2�2✏xy

=
Z

R2
dxdy

ï
(x2 � ↵2)� (y2 � ↵2)

ò
2

(x2 � ↵2)(y2 � ↵2)
e�x2�y2�2✏xy

= 2
Z

R2
dxdy

2

4x
2 � ↵2

y2 � ↵2

� 1

3

5 e�x2�y2�2✏xy =
p
⇡
Z

R
dy

1� 22y2

y2 � ↵2

e�
2y2 ;

(3.96)

the integration over y can be performed using the functions (3.81), thus

f(↵, ✏) =
p
⇡

ñ
!
0

(2,↵)� 22!
1

(2,↵)

ô
, (3.97)

58



Chapter 3: Exact theory of phase separation in two dimensions

and

E(h, ✏) = 2⇡3/2
Z

R
du e�

2u2�ihu

ñ
2uFD(u)�

FD(u)

u
� 1

ô
. (3.98)

The function (3.98) satisfies E(h, ✏) = E(h/
p
1� ✏2, 0), as one can easily verify

with the rescaling u ! u. We recall that h/ =
p
8�, therefore (3.98) becomes

E(h/, 0) = 2⇡3/2
Z

R
du e�u2�i

p
8�u

ñ
2uFD(u)�

FD(u)

u
� 1

ô
. (3.99)

It follows from (3.80) that F 0
D(x) = 1 � 2xFD(x); using this property, an inte-

gration by parts of (3.99) and recalling (3.89) we can show that (3.99) can be

written in the form

E(h/, 0) = 2⇡3/2

ñ
1

4
@2� + �@� � 1

ô
⌅(

p
8�) =

⇡3

2

ñ
G(�)� 1

ô
, (3.100)

which amounts to (3.77).

We now turn to (3.78). We rescale the integration variables as ✓i !
»
2/mR ✓i,

perform the Gaussian integral over ✓
1

and for the remaining integration rapidities

adopt the change of variables ✓± = ✓
3

± ✓
2

; obtaining

�(x, y) =
i

32⇡3/2

Z

R2
d✓

+

d✓�
ï2 + ✓2

+

� ✓2�
✓�

ò
e�

✓2++✓2�
4 +

✏
2 ✓+✓�+i(x/�)✓� ; (3.101)

Gaussian integration gives

�(x, y) =
i

16⇡

Z

R

d✓�
✓�

Ä
4� ✓2�

ä
e�

✓2�
4 +i�✓� , (3.102)

and then

@��(x, y) = � 1

4
p
⇡
(1 + 2�2) e��

2
. (3.103)

Integrating back we obtain (3.78).
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3.8 Appendix B: Critical interfaces

Phase coexistence arises at first-order transition points. The interfaces we find in

this regime separate two non-critical phases and thus we term these o↵-critical

interfaces. A notion of interface, however, can be introduced also for systems at

a second order phase transition point defined on a lattice; we can refer to these

interfaces as critical interfaces.

Such a curve can be defined for the planar Ising model on a triangular lattice.

Consider the system on the upper half-plane H. Boundary conditions +/� on

the right/left side of the edge will lead to a path (on the dual hexgonal lattice)

with negative spins on its left and positive spins on its right, as in Fig.3.15. The

Figure 3.15: Exploration process for the Ising model. The interface is represented
with colored bonds.

curve starts exactly at the boundary condition changing point and its evolution

in the bulk can be defined rigorously as an exploration process. The analogous

process in the continuum limit is described by Loewner’s evolution ([67] and [68]

for a review).

In the continuum version the curve may touch itself forming closed regions. At

time t the hull Kt is defined as the union of such a regions with the curve �. Using

Riemann theorem we can map the complement of the hull, H�Kt, in the upper

half plane. At a fixed time such a mapping can be uniquely determined using

some asymptotic restrictions. Loewner’s equation determines the time evolution

of such a mapping.
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A critical curve however is not a deterministic process but rather a random

one. Consider a domain D ⇢ H and a curve � that connects the points z
1

and z
2

on the boundary of D. It is possible to define a measure µ(�;D, z
1

, z
2

) on such

an ensemble of random curves requiring the following properties:

• Domain Markov property. Let z? be a point on �, �
1

the portion of �

with endpoints z
1

, z? and �
2

the portion of � with endpoints z?, z
2

. The

conditional measure obeys to µ(�
2

|�
1

;D, z
1

, z
2

) = µ(�
2

|D\�
1

; , z?, z
2

).

• Conformal Invariance. Let � be a conformal transformation that maps the

interior of D onto the interior of a domain D0. The boundary points zk are

thus mapped into z0k. The conformal mapping induces a measure � ⇤ µ on

the curves mapped through �. Conformal invariance states the equality of

these measures: (� ⇤ µ) (�;D, z
1

, z
2

) = µ(�(�);D0, z0
1

, z0
2

).

The above properties jointly with Loewner’s evolution defines the continuum

limit of critical curves on the lattice. Such a process goes under the name of

Schramm-Loewner Evolution (SLE) [67]. Passage probabilities can be defined

also for critical curves and exact computations have been carried out [67]. The

same results for passage probabilities have beed obtained by means conformal

field theory techniques; see [68], [69]. Establishing a link between these critical

interfaces and the o↵-critical ones we study directly in the continuum in this

thesis appears as an interesting subject for future research.
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Chapter 4

Interfaces and wetting on the

half plane

In this chapter we will develop the field theory of phase separation in presence of

a flat boundary. For the case of adjacent phases we will examine the drop config-

uration in which the interface has endpoints pinned on the boundary. Then we

will analyze the unbound regime corresponding to the wetting of a flat substrate.

Lastly we will consider phase separation in presence of intermediate phases.

4.1 Introduction

Interfacial phenomena at boundaries are a subject of relevant interest for both

theory and applications. On the theoretical side - the one this thesis is concerned

with - the e↵ects of the boundary on an interface separating di↵erent phases of

a statistical system have been extensively studied using phenomenological, mean

field, renormalization group and other methods ([15], [31], [12], [14], [13], [17],

[70], [16] is a certainly incomplete list of review articles). The only exact result

that has been available concerns the Ising model on the half plane [71, 40], a

circumstance that, while confirming a specificity of the two-dimensional case,

raises the question about the role of Ising solvability in these exact findings.

We show in this chapter that exact results, including those of [40] as a partic-

ular case, are obtained quite generally for any two-dimensional model exhibiting
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Chapter 4: Drops and wetting on the half plane

a continuous phase transition. This is done extending to the half plane the non-

perturbative field theoretical approach used in the previous chapter. As in that

case, general exact results emerge because, when its end-to-end distance R is

much larger than the correlation length, the interface is described by a single

particle (domain wall) state, in a low-energy limit leading to a general solution.

In this way, the fluctuations of the interface turn out to be ruled by the low-

energy singularity of the matrix element of the order parameter field (as for the

strip), with the fields pinning the interface endpoints to the boundary producing

boundary reflection and an average midpoint distance from the boundary of orderp
R.

The result changes qualitatively if boundary and domain wall excitation admit

a stable bound state, which becomes dominant in the spectral sum at low energies

and bounds the interface to the boundary. The contact angle and the spreading

coe�cient of the phenomenological theory of wetting then emerge in a completely

natural way within the field theoretical formalism.

4.2 Single interface

Consider a ferromagnetic spin model of two-dimensional classical statistical me-

chanics in which spins take discrete values labelled by an index a = 1, 2, . . . , n.

The energy of the system is invariant under global transformations of the spins ac-

cording to a symmetry whose spontaneous breaking below a critical temperature

Tc is responsible for the presence on the infinite plane of n translation invariant

pure phases; we denote by h· · · ia statistical averages in the phase a.

Assuming a continuous transition, we consider the scaling limit below Tc,

corresponding to a Euclidean field theory defined on the plane with coordinates

(x, y), which can be seen as the analytic continuation to imaginary time of a

(1+1)-dimensional relativistic field theory with space coordinate x and time co-

ordinate t = iy. If H and P are the Hamiltonian and momentum operators and

� a field of the theory, translation invariance on the plane yields the relation

�(x, y) = eixP+yH�(0, 0)e�ixP�yH . (4.1)
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(a) (b)

a

b

a

y

x

R/2

�R/2

a

b
0

Figure 4.1: Elastic scattering (reflection) of a kink o↵ the boundary (a), and
interface pinned at the boundary (b).

The (1+1)-dimensional theory possesses degenerate vacua |0ia associated with

the pure phases of the system. The elementary excitations correspond to stable

kink states |Kab(✓)i interpolating between di↵erent vacua |0ia and |0ib. We in-

troduced the rapidity variable ✓, which conveniently parameterizes the energy

and momentum of the kinks as (E, p) = (m cosh ✓,m sinh ✓), m being the kink

mass or inverse correlation length. The trajectory of the kink on the Euclidean

plane corresponds to a domain wall between the phases a and b. Multi-kink ex-

citations take the form |Kaa1(✓1)Ka1a2(✓2) . . . Kan�1b(✓n)i. Within the scattering

framework [36] we consider, these are asymptotic states, incoming if considered

long before the collisions among the kinks, outgoing if considered long after, and

their energy is simply
Pn

i=1

m cosh ✓i.

Consider now the system on the half-plane x � 0. We denote by Ba a bound-

ary condition at x = 0 which is y-independent and breaks the symmetry of the

bulk in the direction a in order parameter space; this can be realized applying

a constant boundary magnetic field pointing in the direction a. We denote by

h· · · iBa statistical averages in the presence of the boundary condition Ba. Preser-

vation of translation invariance in the y direction yields energy conservation in

the (1 + 1)-dimensional picture. The bulk excitations are still the kink states

described for the full plane case, but now they are restricted to x > 0; we in-

dicate this restriction by a subscript Ba. Hence |0iBa denotes the vacuum (no
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excitations in the bulk) on the half plane with the boundary condition Ba. If �

is the spin field, the magnetization h�(x, y)iBa = Bah0|�(x, y)|0iBa points in the

direction a and depends only on the distance x from the boundary; in particular

lim
x!1h�(x, y)iBa = h�ia , (4.2)

where h�ia is the constant magnetization in phase a on the full plane. The state

|0iBa is an eigenstate of the Hamiltonian HBa of the system on the half line. We

consider the case in which boundary conditions Ba and Bb are related by the

symmetry, so that |0iBa and |0iBb
have the same energy EB.

The asymptotic scattering state |Kba(✓)iBa corresponds to an incoming kink

(travelling towards the boundary) if its momentum is negative, i.e. if ✓ < 0.

If its energy is lower than the energy 2m needed to produce two kinks upon

interaction with the boundary, it will simply be reflected into an outgoing kink1

with rapidity �✓ (Fig. 1a). The state |Kba(✓)iBa is an eigenstate of HBa with

eigenvalue EB +m cosh ✓.

We are now ready to set up the configuration we want to study, namely a

boundary condition which is of type Ba if |y| > R/2 and of type Bb if |y| <
R/2. The interest of such a boundary condition, which we denote Baba, is easily

understood by observing that the limit for x ! 1 of the magnetization profile

h�(x, 0)iBaba
has to tend to h�ia if R is finite, and to h�ib if R is infinite. The

natural way to account for this situation is to expect the formation of an interface

pinned at R/2 and �R/2 on the boundary, separating an inner phase b from an

outer phase a (Fig. 1b), and whose average distance from the boundary at y = 0

diverges with R. The remainder of this section is devoted to seeing how such a

picture indeed emerges within our general field theoretical framework.

Technically the change from the boundary condition Ba to Bb at a point y is

realized starting with Ba and inserting on the boundary a field µab(0, y), which

acting on the vacuum |0iBa creates kink states interpolating between phase a and

phase b. Hence the simplest non-vanishing matrix element of the boundary field

1As emphasized in [38], the analogies between bulk and boundary scattering become evident
thinking of the boundary as the propagation of an infinitely heavy particle sitting at x = 0.
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µab is

Bah0|µab(0, y)|Kba(✓)iBa = e�ym cosh ✓
Bah0|µab(0, 0)|Kba(✓)iBa ⌘ e�ym cosh ✓Fµ(✓) .

(4.3)

The partition function of the system with boundary condition Baba reads

Z = Bah0|µab(0, R/2)µba(0,�R/2)|0iBa =
Z 1

0

d✓

2⇡
|Fµ(✓)|2e�mR cosh ✓ +O(e�2mR) ,

(4.4)

where the last expression is obtained by expanding over an intermediate set of

outgoing kink states and retaining only the lightest (single kink) contribution

which is leading in the large mR limit we will consider from now on. Since the

above integral is dominated by small rapidities and Fµ is expected to behave as1

Fµ(✓) = a ✓ +O(✓2) , (4.5)

the partition function becomes

Z ⇠ |a|2
Z 1

0

d✓

2⇡
✓2 e�mR(1+✓2/2) =

|a|2 e�mR

2
p
2⇡ (mR)3/2

. (4.6)

The magnetization profile along the x axis is given by

h�(x, 0)iBaba
=

1

Z
Bah0|µab(0, R/2)�(x, 0)µba(0,�R/2)|0iBa

⇠ 1

Z

Z
+1

�1
d✓

1

2⇡

d✓
2

2⇡
Fµ(✓1)hKab(✓1)|�(0, 0)|Kba(✓2)iF⇤

µ(✓2)⇥

⇥ em[i(sinh ✓1�sinh ✓2)x�(cosh ✓1+cosh ✓2)
R
2 ] , (4.7)

where in the last line we have taken mR � 1 to project on the one-kink in-

termediate states, but also mx � 1 to be able to treat �(x, 0) as a bulk field

which satisfies (4.1) and is evaluated on bulk-kink states (whose rapidities take

both positive and negative values). In other words, for mx large the only e↵ect

of the boundary on the magnetization comes from the boundary changing fields

1Linear behavior of matrix elements at small rapidities in two-dimensional theories is well
known. Within the framework of integrable boundary field theory [38] exact examples can be
found in [72]. More generally, see [43] about matrix elements in integrable theories.
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at (0,±R/2); in their absence one would simply observe the constant value h�ia.
The bulk matrix element of the spin field between one-kink states is related by

the crossing relation1

hKab(✓1)|�(0, 0)|Kba(✓2)i = F�(✓1 + i⇡ � ✓
2

) + 2⇡�(✓
1

� ✓
2

)h�ia , (4.8)

to the form factor

F�(✓1 � ✓
2

) ⌘ ah0|�(0, 0)|Kab(✓1)Kba(✓2)i . (4.9)

As already observed in Chapter 3 for the case of phase separation in the strip,

it is crucial that quite generally, due to non-locality of the kinks with respect to

the spin field, F�(✓) possesses an annihilation pole at ✓ = i⇡ with residue [44]

�iRes✓=i⇡F�(✓) = h�ia � h�ib ⌘ �h�i . (4.10)

Since mR is large, (4.7) is dominated by small rapidities and (4.5), (4.8) and

(4.10) lead to

h�(x, 0)iBaba
⇠ 2h�ia+ i�h�i |a|2

Z
e�mR

Z
+1

�1
d✓

1

2⇡

d✓
2

2⇡

✓
1

✓
2

✓
1

� ✓
2

em[i(✓1�✓2)x�(✓21+✓
2
2)

R
4 ] .

(4.11)

Di↵erentiation removes the singularity of the integrand and gives

@mxh�(x, 0)iBaba
⇠ ��h�i |a|

2e�mR

(2⇡)2Z
g(x)g(�x)

= �h�i 4
p
2p

⇡mR
z2 e�z2 , z ⌘

 
2m

R
x (4.12)

where we used (4.6) and

g(x) =
Z

+1

�1
d✓ ✓ e�mR✓2/4+imx✓ =

2i
p
2⇡

mR
z e�z2/2 . (4.13)

1Crossing a particle from the initial to the final state (or vice versa) involves reversing the
sign of its energy and momentum [36], namely an i⇡ rapidity shift. The delta function term in
(4.8) is a disconnected part arising from annihilation of the two kinks.

68



Chapter 4: Drops and wetting on the half plane

Integrating (4.12) with the asymptotic condition h�(1, 0)iBaba
= h�ia gives

h�(x, 0)iBaba
⇠ h�ib �

2p
⇡
�h�i

Å
z e�z2 �

Z z

0

du e�u2
ã
, mx � 1 . (4.14)

From this result we can compute exactly limR!1h�((↵/m) (mR)�, 0)iBaba
, obtain-

ing h�ib for 0 < � < 1/2, h�ia for � > 1/2, and the rhs of (4.14) with z = ↵
p
2 for

� = 1/2. For h�ia = �h�ib = h�i
+

these are precisely the limits obtained from

the lattice in [73, 71] for the Ising model on the half plane with boundary spins

fixed to be positive for |y| > R/2 and negative for |y| < R/2.

The derivative (4.12) of the magnetization profile is peaked around z = 1,

confirming the presence of an interface whose average distance from the bound-

ary increases as
»
R/m. It is also easy to see that the result for the magnetization

profile is consistent with a simple probabilistic interpretation. Since we are com-

puting the magnetization on a scale Rmuch larger than the correlation length and

far away from the boundary, we can think of the interface as a sharp separation

between pure phases1, and write

h�(x, 0)iBaba
⇠ h�ia

Z x

0

du p(u) + h�ib
Z 1

x
du p(u), mx � 1 , (4.15)

where p(u)du is the probability that the interface intersects the x-axis in the

interval (u, u+du), so that the two integrals are the left and right passage prob-

abilities with respect to x. Di↵erentiating and comparing with (4.12) gives the

passage probability density

p(x) = 4

 
2m

⇡R
z2 e�z2 , (4.16)

which correctly satisfies
R1
0

dx p(x) = 1.

1It has been shown in Section 3.2 how the internal structure of the interface arises from
subleading terms in the large mR expansion.
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4.3 Wetting transition

The results of the previous section are modified if the kink-boundary system

associated to the asymptotic state |Kab(✓)iBb
admits a stable bound state |0iB0

a
,

corresponding to the binding of the kink Kab on the boundary Bb. As usual for

stable bound states [36], such a binding will correspond to a “virtual” value ✓
0

of the kink rapidity, leading to a bound state energy EB + m cosh ✓
0

real and

smaller than the unbinding energy EB +m. This amounts to taking ✓
0

= iu with

0 < u < ⇡, so that

EB0 = EB +m cos u . (4.17)

The existence of the bound state manifests in particular through a simple pole

in the elastic scattering amplitude of the kink o↵ the boundary, which reads

R(✓) ⇠ ig2/(✓ � iu) for ✓ ! iu, with g a kink-boundary coupling constant

(Fig. 2a). This pole is inherited by the matrix element (4.3), for which we have1

(Fig. 2b)

Fµ(✓) = Bah0|µab(0, 0)|Kba(✓)iBa ⇠ ig

✓ � iu
Bah0|µab(0, 0)|0iB0

a
, ✓ ! iu .

(4.18)

The boundary bound state a↵ects the results of the previous section for

the boundary condition Baba because the leading low-energy contribution in

the expansion over intermediate states now comes from |0iB0
a
rather than from

|Kba(✓)iBa . So the partition function becomes

Z = Bah0|µab(0, R/2)µba(0,�R/2)|0iBa ,

=
���Bah0|µab(0, 0)|0iB0

a

���
2

e�mR cosu +O(e�mR) , (4.19)

and the magnetization profile

h�(x, 0)iBaba
⇠ 1

Z
Bah0|µab(0, R/2)|0iB0

a B0
a
h0|�(x, 0)|0iB0

a B0
a
h0|µba(0,�R/2)|0iBa

= h�(x, 0)iB0
a
. (4.20)

1Exact solutions exhibiting boundary bound states poles can be found in [38] for scattering
amplitudes and in [72] for matrix elements.
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(a) (b)
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µ
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g
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Figure 4.2: The boundary bound state (double line) originating in kink-boundary
scattering (a), and a pictorial representation of equation (4.18) (b).

We see then that, as a consequence of (4.2), the magnetization profile now tends

to h�ia at large mx, in contrast to what was obtained in the previous section,

where it tended to h�ib for R large enough. This corresponds to the fact that now

the asymptotic behavior is determined by the state in which the interface, and

then the phase b, are bound to the boundary, while before the dominant state

was that in which phase b extended to an average midpoint distance of order
p
R

from the boundary.

Consistency of the asymptotic expansion requires that the corrections to (4.20)

vanish as R ! 1. For mx large, the first of these corrections is that due to the

|Kba(✓)i intermediate states given in (4.7). The Z in the denominator, however, is

now (4.19) rather than (4.6), so that the correction behaves as emR(cosu�1) at large

R. Hence, if u approaches 0, i.e. if the interface approaches the unbinding point,

consistency requires that R diverges faster than 1/u2. If we adopt a vocabulary

within which b is a liquid phase and a a vapor phase, we can say that as u ! 0

a thin layer of the liquid phase spreads all over the boundary.

The relationship with the usual characterization of interfacial phenomena at

boundaries becomes more transparent if we consider the situation usually referred

to as “partial wetting”, corresponding to a drop of liquid sorrounded by a thin

layer of liquid adsorbed on the rest of the boundary (see e.g. [16]). In our

formalism this amounts to splitting and recombination of the boundary bound
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a

b

✓
e

Figure 4.3: Splitting and recombination of the boundary bound state B0
a cor-

responds to “partial wetting”, in which a drop of phase b makes an equilibrium
contact angle ✓e with the boundary. Equation (4.17) with u = ✓e gives the surface
tension balance condition at the contact points.

state B0
a (Fig. 3). Considering that the kink mass m is the surface tension of the

interface (see Chapter 3), that EB is the surface tension between the boundary

and the drop, and that EB0 is the surface tension between the boundary away from

the drop and phase a, we recognize in (4.17) the Young equilibrium condition at

contact points (see e.g. [15] and references therein), with u playing the role of the

equilibrium contact angle ✓e (Fig. 3). In addition, the combination m(cosu� 1)

encountered a moment ago is recognized as the so called “equilibrium spreading

coe�cient” (see [16]). We also see that interface unbinding at u = 0 corresponds

to vanishing of the contact angle, namely to the usual characterization of the

wetting transition point (passage from partial to complete wetting).

The boundary bound state is a property of the theory with translationally

invariant boundary condition Bb. Parameters of this theory are the temperature,

related to the kink mass as m / (Tc � T )⌫ , and a coupling � entering the bound-

ary term �
R
dy �(0, y) of the classical reduced Hamiltonian. If X is the scaling

dimension1 of the boundary field �(0, y), u is function of the dimensionless com-

bination �/m1�X . If � is kept fixed, the condition u = 0 determines a wetting

1The exponents ⌫ and X are known exactly from bulk [74] and boundary [75] conformal
field theory, respectively.
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transition temperature Tw(�) < Tc.

The results (4.6), (4.19) and (4.20) account for those reported in [71, 40]

for the particular case of an Ising model with boundary condition B
+�+

and

coupling between the boundary spins and their nearest neighbors di↵erent from

the coupling within the rest of the lattice; this modified coupling corresponds to

the boundary parameter � in this case. The generality of our results also explains

why approximated treatments of other models resulted in findings similar to the

Ising ones (see [40] and references therein).

4.4 Intermediate phases

In this section we consider the case in which the phases associated to the vacua

|0ia and |0ib are not adjacent. This scenario occurs for a model with vacuum

structure as the on of Fig.3.6. The calculation that we are going to show for the

half-plane retraces only partially the one carried out in Chapter 3 for the strip.

We will point out the technical di↵erences along the way. Anticipating some

results, we will argue in Chapter 5 that the results of this section can be obtained

in a simpler way. More precisely, we will show that the two-leg disconnected

diagrams of the expansion (3.41) are enough to reconstruct the whole profile. In

this section, instead, we will compute the magnetization profile summing all the

contributions analogous to (3.47) for the half-plane geometry.

The simplest excitation that interpolates among the two vacua is now a two-

kink state |KacKcbi passing through a third vacuum |0ic. In this situation the

emission amplitude of a single-kink vanishes (a = 0 in (4.5)) and the leading

contribution in the expansion of ZBbab
starts with a double-kink excitation, thus

(4.4) is replaced by

ZBbab
(R) '

X

c,d 6=a,b

Z

R4
+

d✓
1

d✓
2

d✓
3

d✓
4

(2⇡)4
fµ
adb(✓4, ✓3)Mab,cd(✓1, ✓2|✓3, ✓4)fµ

acb(✓1, ✓2)⇥

⇥ e�
mR
2 (cosh ✓1+cosh ✓2+cosh ✓3+cosh ✓4) + . . . . (4.21)

The summation in (4.21) takes into account double-kink states |KacKcbi with

total mass 2m, where m is the single-kink mass. The ellipses stand for heavier
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states with total mass M > 2m which contributes as subleading corrections in

the large R expansion. The product of states for the half-plane coincides with

the one of the strip, hence

Mab,cd(✓1, ✓2|✓3, ✓4) = bh0|Kbd(✓3)Kda(✓4)|Kac(✓1)Kcb(✓2)|0ib,

= (2⇡)2
ñ
� (✓

14

) � (✓
23

) �cd + � (✓
13

) � (✓
24

)Scd
ab(✓12)

ô
,

(4.22)

and the information about the geometry is entirely codified by the boundary

amplitudes

fµ
acb(✓1, ✓2) = Bb

h0|µba(0, 0)|Kac(✓1)Kcb(✓2)iBb
. (4.23)

The matrix element (4.23) is discussed in detail in Chapter 5, here we borrow its

expression in the low-energy limit,

fµ
acb(✓1, ✓2) ' cacb✓1✓2

Ä
✓2
1

� ✓2
2

ä
. (4.24)

The computation of the partition function for the large separation regimes is now

a straightforward computation. Using (4.22) and (4.24) we can evaluate the large

mR behavior of (4.21) by means of a saddle-point approximation which give us

ZBbab
(R) ' ⇣ab

Z

R2
+

d✓
1

d✓
2

(2⇡)2
✓2
1

✓2
2

(✓2
1

�✓2
2

)2 e�mR(cosh ✓1+cosh ✓2) ' 3⇣ab
2⇡

e�2mR

(mR)5
, (4.25)

where

⇣ab =
X

c,d 6=a,b

cadbcacb
î
�cd � Scd

ab(0)
ó
= 2

X

c 6=a,b

|cacb|2, (4.26)

in the last equality we used (3.33). The exponential decay at large distances

of (4.25) is related to the interfacial tension of the double interface, ⌃ab = 2m,

which is twice the interfacial tension of a single interface. Consistently, this last

property is shared by strip and half-plane geometries.

We consider now the statistical average of the spin field with the boundary
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condition Bbab

h�(x, y)iBbab
= Bb

h0|µba(0, R/2)�(x, y)µab(0,�R/2)|0iBb

ZBbab
(R)

. (4.27)

Following the steps already outlined for the evaluation of the partition function,

we insert a resolution of the identity between the operators µba� and �µab. Then

we truncate the expansion at leading order and we obtain

h�(x, y)iBbab
' 1

ZBbab

X

c,d 6=a,b

Z

R4

d✓
1

d✓
2

d✓
3

d✓
4

(2⇡)4
fµ
adb(✓4, ✓3)M�

ab,cd(✓1, ✓2|✓3, ✓4)⇥

⇥ fµ
acb(✓1, ✓2)Y?(✓

1

, ✓
2

, ✓
3

, ✓
4

), (4.28)

the symbol ' stands for the omission of the subleading contributions we dis-

cussed one moment ago. The matrix element of the spin field coincides with the

one used for the strip geometry, (3.40). In the same way, the function Y? is the

one defined in (3.39). In analogy with the strip geometry, the four-leg matrix

element appearing in (4.28) admits a decomposition into connected and discon-

nected components similar to (3.41). The connected part is the same for both

the geometries. As we shall see, the only di↵erence is that for the half-plane we

consider only a subclass of disconnected diagrams.

Let us consider the contribution to the magnetization profile originated by

the connected component of such an expansion. The non relativistic limit of the

matrix element entering (4.28) follows from Chapter 3; for completeness we write

its expression

M�,conn
ab,cc (✓

1

, ✓
2

, ✓
3

, ✓
4

) '
î
2h�ic � h�ia � h�ib

ó ✓
12

✓
34

✓
13

✓
14

✓
23

✓
24

, (4.29)

in which we used the condition c = d, otherwise it becomes

M�,conn
ab,cd (✓

1

, ✓
2

, ✓
3

, ✓
4

) ' C �
ab✓12✓34, (4.30)

with C �
ab a model-dependent constant which depends on the scattering dynamics

at ✓ 6= 0. We will consider restrict ourselves to models with a unique intermediate

phase, thus fixing c = d the contribution of the magnetization profile originated
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by the connected part reads

h�(x, y)iconnectedBbab
= &ab

Z

R4

d✓
1

d✓
2

d✓
3

d✓
4

(2⇡)4ZBbab

M�,conn. ✓
1

✓
2

✓
3

✓
4

Ä
✓2
1

� ✓2
2

ä Ä
✓2
3

� ✓2
4

ä
Y?,

(4.31)

with a factor

&ab ⌘
P

c 6=a,b |cacb|2
î
h�ia + h�ib � 2h�ic

ó
P

c 6=a,b |cacb|2
. (4.32)

The integrals in (4.31) can be carried out using the results of Appendix 4.6; thus

we find

h�(x, y)iconn.Bbab
= &ab

î
A(�)� 1

ó
, (4.33)

with a scaling function

A(�) = � 4

3⇡
�2

Ä
�2 � 3

ä
e�2�2

+
2

3
p
⇡
�
Ä
�2�4 + �2 � 6

ä
e��

2
erf(�) + erf(�)2.

(4.34)

Let us consider now the disconnected diagrams entering the decomposition

of the matrix element of the spin operator. The disconnected graphs are listed

below

D(R)

23,14 =

✓2

c b

✓4

✓1

✓3

a � , D(R)

14,23 =
X

e 6=a,b

✓2

e

✓4

✓1

✓3

a � b

d

c

,

D(R)

24,13 =

✓2

✓4

✓1

✓3

a
�

c

b

d

, D(R)

13,24 =

✓2

✓4

✓1

✓3

a �

c

b

d

.

These diagrams are constructed passing aside right of the spin operator. The

analytic expression of the disconnected graphs in the low-rapidity regime coin-
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cides with (3.47), as done for the strip. Therefore the generic contribution of a

disconnected diagram with two legs has the form

|cacb|2
ZBbab

Z

R4

d✓
1

d✓
2

d✓
3

d✓
4

(2⇡)4
✓
1

✓
2

✓
3

✓
4

Ä
✓2
1

� ✓2
2

ä Ä
✓2
3

� ✓2
4

ä 2⇡i�(✓ij)
✓kl

Y?(✓
1

, ✓
2

, ✓
3

, ✓
4

).

(4.35)

It has been shown in Chapter 2 that for the strip geometry we need to take into

account also the diagrams formed passing aside left of the spin operator. In that

case the (total) disconnected contribution can be obtained taking the arithmetic

average of left and right ones, Eq. (3.49). On the other hand, for the case of our

interest we are allowed to construct only half of the diagrams, thus we simply

divide by a factor 2 the sum of the pass-right graphs. The explicit computation of

(4.35) is carried out in Appendix 4.6. Collecting the connected and disconnected

contributions as discussed we arrive at

h�(x, y)iBbab
=
î
h�ia + h�ib � 2h�ic

ó
A(�) + 2

î
h�ic � h�ia

ó
B(�) + h�ia, (4.36)

with

B(�) = 1

3
p
⇡
�
Ä
�6 + �2 � 2�4

ä
e��

2
+ erf(�). (4.37)

It is simple to check that (4.36) interpolates between the boundary and bulk

values h�ia and h�ib, respectively for x = 0 and x ! 1. The scaling functions

entering (4.36) will be derived in the next chapter with a di↵erent technique that

avoids the computation of the connected part. We postpone to Chapter 5 the

discussion of specific models and the derivation of the passage probability in the

presence of intermediate phases.

To conclude, we recall that A and B are universal scaling functions in the

sense that they enter in the magnetization profile for a generic model that admits

an intermediate phase in presence of a repulsive boundary1. The specific choice of

the aforementioned scaling functions follows from the connected and disconnected

diagrams. Nonetheless, there is no reason to prefer them in favor of a di↵erent

pair of scaling functions obtained as two linearly independent combinations of A
1With boundary repulsion we refer to the fermionic behavior R(0) = �1.
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and B. We notice that with the choice of scaling functions

‹G(�) ⌘ 4A(�)� 4B(�) + 1, (4.38)

‹L(�) ⌘ 2B(�)� 1, (4.39)

the magnetization profiles (4.36) becomes

h�(x, y)iBbab
=

h�ia + h�ib � 2h�ic
4

‹G(�)+ h�ib � h�ia
2

‹L(�)+ h�ia + h�ib + 2h�ic
4

.

(4.40)

At the formal level, the structure of (4.40) coincides with the scaling profile ob-

tained in the strip geometry, the di↵erence is the explicit form of the scaling

functions. The magnetization profile (4.40) enlighten the meaning of the scaling

function ‹G(�). In fact, G(�) and ‹G(�) are proportional to the bubble-like magne-

tization profiles of the dilute q-Potts model, respectively for the strip (Fig.3.11)

and half-plane (Fig.5.7).

4.5 Summary

In this chapter we studied the scaling limit of a generic ferromagnetic system

with a continuous phase transition, below criticality and on the half plane, with

boundary conditions favoring one of the phases along an interval of length R, and

a di↵erent phase outside this interval. We used field theory to determine exact

large R asymptotics of the magnetization profile perperdicularly to the boundary

at the middle of the interval. We showed that, generically, the large R asymptotic

behavior corresponds to the presence of an interface pinned at the boundary

condition changing points, with an average midpoint distance from the boundary

which grows as
p
R. The passage probability density of the interface has the

Gaussian form found in Section 3.2 for the strip, modified by a quadratic factor

which accounts for the presence of the boundary. These results are modified if

the scattering on the boundary admits a stable bound state, which then becomes

leading at low energies and corresponds to the binding of the interface to the

boundary. In this case we showed how field theory accounts at a fundamental level

for the contact angle and spreading coe�cient of the phenomenological wetting
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theory. In particular, the contact angle coincides with the parameter u 2 (0, ⇡)

determining the binding energy as m(1 � cos u), with m the kink mass. For

fixed boundary parameters, u is a function of the temperature and the unbinding

condition u = 0 determines the wetting temperature Tw.

These results follow from general low-energy properties of two-dimensional

field theory. In particular, the annihilation singularity of the spin field matrix

element on one-kink states and the boundary-kink bound state pole play a key

role in determining the asymptotics of the magnetization profile in the unbound

and bound regimes, respectively.

Additional interfacial properties, such as the internal structure arising from

subleading terms of the large R expansion or double interfaces appearing in some

models for particular choices of boundary conditions, can be analyzed in the same

way as was done in the previous chapter.

4.6 Appendix A: computation of integrals

In this section we will compute the following integrals

F (x, y) =
1

⇣(R)

Z

R4

d✓
1

d✓
2

d✓
3

d✓
4

(2⇡)4
✓
12

✓
34

✓
13

✓
14

✓
23

✓
24

✓
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✓
2

✓
3

✓
4
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ä Ä
✓2
3

� ✓2
4
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⇥

⇥ ›Y?(✓
1

, ✓
2

, ✓
3

, ✓
4

)

= A(�)� 1, (4.41)

G(x, y) =
i

⇣(R)

Z

R3

d✓
1

d✓
2

d✓
3

(2⇡)3
✓2
1

✓
2

✓
3

(✓2
1
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2

) (✓2
1
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)

✓
23

›Y?(✓
1

, ✓
2

, ✓
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)

= B(�) + const, (4.42)
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where ⇣(R) = 3

⇡
e

�2mR

(mR)

5 , while the function ›Y? corresponds to Y? expanded at small

✓j,

Y? = exp

®
�mR

2

ï
cosh ✓

1

+ cosh ✓
2

+ cosh ✓
3

+ cosh ✓
4

ò
+ (4.43)

+ imx
ï
sinh ✓

3

+ sinh ✓
4

� sinh ✓
1

� sinh ✓
2

ò
+

+ my
ï
cosh ✓

3

+ cosh ✓
4

� cosh ✓
1

� cosh ✓
2

ò´

' e�2mRe

î
�mR

4 (✓21+✓22+✓23+✓24)+
my
2 (✓21+✓22�✓23�✓24)+imx(✓13+✓24)

ó
= ›Y?.

We will need to use the following preliminaries; the Dawson function [66]

D(x) = e�x2
Z x

0

ds es
2
, (4.44)

and

!n(�; a) =
Z

+1

0

dx
x2n

x2 � a2
e��x

2
, (4.45)

this latter function can be computed for arbitrary intiger n thanks to !n(�; a) =

(�@�)n!0

(�; a), where

!
0

(�; a) = �2
p
⇡

D(
p
�a)

a
, (4.46)

this result can be established after the usual regularization of the poles present in

(4.45), we refer to Appendix 3.7 for the details. Let us consider the computation

of the function F (x, y). We perform two changes of variables, the first one x± =

✓
1

± ✓
3

, y± = ✓
2

± ✓
4

and then u⌥ = x
+

⌥y
+

, v⌥ = x�⌥y�, in these new variables

✓
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✓
34

✓
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✓
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✓
23

✓
24
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✓
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✓
4

Ä
✓2
1

� ✓2
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ä Ä
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1024

Ä
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� � v2�
ä
2

Ä
u2

+
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+

ä

(v2
+

� u2�) (v2+ � v2�)
⇥

⇥ �(u
+

, v
+

, u�, v�), (4.47)

with

�(↵, �, x, y) =
Ä
↵2 � �2 + x2 � y2

ä
2 � 4 (↵x� �y)2 , (4.48)
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and
›Y? = e�2mR e�

mR
16

î
u2
++u2

�+v2++v2�

ó
�imxv+ e�

my
4

î
u+v++u�v�

ó
, (4.49)

while the Jacobian matrix for the composition of the mappings is

����� det
@ (✓

1

, ✓
2

, ✓
3

, ✓
4

)

@ (u�, u+

, v�, v+)

����� =
1

16
, (4.50)

thus d✓
1

d✓
2

d✓
3

d✓
4

= 16�1du
+

du�dv+dv�. After these manipulation we can write

the function F in the form

F (x, y) =
4

3⇡3

Z

R2
d↵d� f(↵, �, ✏) e�↵

2��2�2✏↵��ih�, (4.51)

with

f(↵, �, ✏) =
Ä
↵2 � �2

ä Z

R2
dxdy

(x2 � y2)2

(x2 � �2) (y2 � �2)
�(↵, �, x, y) e�x2�y2�2✏xy.

(4.52)

The function f an be written in the form

f(↵, �, ✏) =
Ä
↵2 � �2

ä Z

R2
dxdy

L(↵, �, x, y)

y2 � �2

e�x2�y2�2✏xy, (4.53)

with

L(↵, �, x, y) =
Ä
x2 � �2

ä î
�(↵, �, x, y) + �(�,↵, x, y)

ó
� 2
Ä
y2 � �2

ä
�(↵, �, x, y).

(4.54)

We proceed with the integrations starting from the variable x, the computation

is carried out through the auxiliary function

⇤(↵, �, ✏, y) =
e�✏

2y2

p
⇡

Z

R
dxL(↵, �, x, y) e�x2�2✏xy, (4.55)

the exponential factor in y is introduced to make ⇤(↵, �, ✏, y) a polynomial in y,

hence we can write

⇤(↵, �, ✏, y) =
3X

n=0

�
2n(↵, �, ✏)y

2n, (4.56)
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the coe�cients �
2n(↵, �, ✏) are quite long expressions, so we will not write them.

Then we integrate over y using the functions !n and we find

f(↵, �, ✏) =
p
⇡
Ä
↵2 � �2

ä 3X

n=0

�
2n(↵, �, ✏)!n(

2, �), (4.57)

with  =
p
1� ✏2. Now we turn back to the function F , the integration over

↵ is immediate since ↵ enters only through the polynomials �(↵, �, ✏) and an

exponential factor. The result of this integration is congenitally expressed through

the polynomials

K
2n(�) =

e�✏
2�2
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⇡
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�↵2�2✏↵�, (4.58)

and finally we are left with the integration over �
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ô
e�

2�2�ih�, (4.59)

the summation in the integrand can be considerably simplified, after some ma-

nipulations it reads

1p
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ä D(�)

�

å�����
t=�

. (4.60)

Then we use the identity

Z

R
dt tn�1 e�t2�i�tD(t) =

⇡3/2

4
(i@�)

n

ñ
1� erf2

Ä
�/

p
8
äô
, (4.61)

and the Gaussian integral

Z

R
dt tn e�t2�i�t =

p
⇡ (i@�)

n e�
�2

4 , (4.62)
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to express F (x, y) as a combination of derivatives acting on e��
2
and erf2(�) as

follows

F (x, y) = � 1

6⇡

Ä
36 + 13@2� + @4�

ä
e�2�2

+

ñ
1 + @2� +

3

16
@4� +

1

96
@6�

ô Ä
erf2(�)� 1

ä
,

(4.63)

the explicit computation of this unwieldy expression gives finally

1 + F (x, y) =
4

3⇡
�2

Ä
3� �2

ä
e�2�2

+
2

3
p
⇡
�
Ä
�2�4 + �2 � 6

ä
e��

2
erf(�) + erf2(�),

(4.64)

the RHS of the above expression is the function A(�). The computation of the

function G(x, y) retraces the same same arguments already used of the function

F (x, y); after a rescaling of the integration variables we have

G(x, y) =
4i

3⇡2

Z

R3
d✓

1

d✓
2

d✓
3

✓2
1

✓
2

✓
3

(✓2
1

� ✓2
2

) (✓2
1

� ✓2
3

)

✓
23

e�✓
2
1� 1�✏

2 ✓22� 1+✏
2 ✓23�i⌘✓23 ,

(4.65)

we regularize the singularity according to the usual prescription and then we get

rid of the pole by taking the first derivative with respect to ⌘. The term originated

by the Dirac delta �(✓
23

) does not depend on ⌘ and we are left with

@⌘G(x, y) =
4

3⇡2

Z

R3
d✓

1

d✓
2

d✓
3

✓2
1

✓
2

✓
3

Ä
✓2
1

� ✓2
2

ä Ä
✓2
1

� ✓2
3

ä
e�✓

2
1� 1�✏

2 ✓22� 1+✏
2 ✓23�i⌘✓23 ,

(4.66)

the resulting gaussian integrations are quite tedious but nonetheless simple, we

find

@⌘G(x, y) =
�2 (15� 12�2 + 4�4)

3
p
⇡

e��
2
, (4.67)

integrating back we find the function G(x, y)

G(x, y) =
1

3
p
⇡

Ä
�6 + �2 � 2�4

ä
e��

2
+ erf(�) + const., (4.68)

which coincides, up to an additive constant, with the function B(�).
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Chapter 5

Phase separation and filling

transition in a wedge

Interfacial phenomena strongly depend on the geometry in which they occur. In

this chapter we illustrate how the planar substrate studied in the last chapter

can be continuously deformed into a wedge-shaped one. We will show the corre-

sponding field-theoretical meaning of this operation both for adjacent phases and

for the case in which a third phase appears.

5.1 Introduction

Interfacial phenomena at boundaries are a subject of both experimental and the-

oretical relevance which has received continuous and extensive interest in the

last decades [15, 12, 14, 16]. An aspect particularly important for applications

is that the structure and geometry of the substrate can alter the adsorption

characteristics of a fluid in an important way (see [76] for a review). Adsorp-

tion measurements can then be used, for example, to characterize fractally rough

surfaces [77], or the connectivity of porous substrates [78]. The basic case of a

wedge-shaped substrate [79] acquired special interest since phenomenological and

thermodynamic arguments [80] indicated a specific relation with the adsorption

properties of a completely flat surface: the wedge wetting (or filling) transition

occurs at the temperature for which the contact angle of a fluid drop on a flat
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substrate equals the tilt angle  of the wedge, a circumstance that allows us to

regulate the transition temperature adjusting  . The connections between ad-

sorption characteristics for di↵erent opening angles are known as properties of

wedge covariance [81, 82, 83] and are experimentally testable [84].

It is clearly important to pass from a macroscopic to a fundamental statistical

mechanical description. In two dimensions the essential role of fluctuations was

established by the exact lattice results for the Ising model on the half plane

[85, 86, 87, 71, 40, 88], which provided essential support for heuristic statistical

descriptions of the wetting of a flat boundary [41]. For the wedge geometry the

existence of the filling transition was established for the Ising model on a planar

lattice forming a right-angle corner [89, 90] (see also [91] for a 60� opening angle

on the triangular lattice), but otherwise the theoretical investigations in two and

three dimensions have been based on e↵ective interfacial Hamiltonian models

[81, 82, 83, 92, 93, 94] or density functional methods [95].

In this chapter, we derive general exact results for phase separation in a two-

dimensional wedge. This is achieved by exploiting low energy properties of bulk

two-dimensional field theory (see Chapter 3) together with a characterization of

the operators responsible for the departure of an interface from a point on a

boundary. For a shallow wedge we determine the exact passage probability of

interfaces with endpoints on the boundary. The theory provides a fundamental

meaning to the contact angle and, for generic  , yields the filling transition condi-

tion. More generally, wedge covariance is shown to originate from the properties

of the boundary condition changing operators in momentum space.

5.2 Two phases in a wedge

We start with the characterization of the statistical system in absence of bound-

aries, i.e. on the infinite plane. The system is considered at a first order phase

transition point, where di↵erent phases, that we label by an index a = 1, 2, . . . , n,

have the same free energy and can coexist at equilibrium. At the same time

the system is supposed to be close to a second order transition point1, in such

1As an example, for the Ising ferromagnet these specifications amount to consider a tem-
perature slightly below the critical value T

c

, in absence of external field.
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a way that the correlation length is much larger than microscopic scales and a

continuous description is allowed. For homogeneous and isotropic systems this

continuous description is provided by a Euclidean field theory with coordinates

(x, y) identifying a point on the plane. This field theory in turn corresponds

to the continuation to imaginary time t = iy of a quantum field theory in one

space dimension with coordinate x. The degenerate phases of the statistical

system are in one-to-one correspondence with degenerate vacua |0ai of the asso-

ciated quantum theory. We denote by �(x, y) the order parameter field, and by

h�ia = h0a|�(x, y)|0ai the value of the order parameter in phase a. For a generic

field � we have

�(x, y) = eyH�ixP�(0, 0)e�yH+ixP , (5.1)

with the Hamiltonian H and momentum operator P of the quantum system

acting as generators of time and space translations, respectively; the vacuum

states carry zero energy and momentum.

As usual in presence of degenerate vacua in (1+1) dimensions (see [96]), the

elementary excitations correspond to kinks |Kab(✓)i which interpolate between

two di↵erent vacua |0ai and |0bi, and whose energy and momentum satisfy the

relativistic dispersion relation

(e, p) = (mab cosh ✓,mab sinh ✓) , (5.2)

where mab is the kink mass (inversely proportional to the bulk correlation length)

and ✓ is known as rapidity. Two vacua |0ai and |0bi (as well as the corresponding
phases) are said to be adjacent if they can be connected by an elementary kink;

when the connection requires a state |Kac1(✓1)Kc1c2(✓2) . . . Kcn�1b(✓n)i, with n

necessarily larger than one, the two vacua are said to be non-adjacent.

As a further step towards the study of the wedge problem, we consider this

statistical system on the half plane x > 0. We call boundary condition of type a

a uniform (i.e. y-independent) boundary condition at x = 0 favoring phase a in

the bulk1, in such a way that the order parameter approaches h�ia as x ! +1.

We will use the notation |0ai0 for the vacuum state of the quantum system on

the half line with this boundary condition; more generally, the subscript 0 will

1In a ferromagnet this is achieved applying a magnetic field on the boundary.
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✓

�✓

b

a

a

Figure 5.1: A uniform boundary reflects a low energy kink.

be used to indicate the presence of the vertical boundary.

Phase separation can be induced through a change of boundary conditions.

Within the field theoretical description, the change of boundary conditions from

type a to type b at a point y on the boundary is realized by the insertion of

a field µab(0, y), with non-zero matrix elements on states interpolating between

|0ai0 and |0bi0. When these two vacua are adjacent, which is the case we consider

in this section, the simplest matrix element of µab is1

0

h0a|µab(0, y)|Kba(✓)i0 = e�my cosh ✓f
0

(✓) , (5.3)

where f
0

(✓) gives the amplitude for the emission/absorption of a kink from the

boundary condition changing point. The kink travels towards the boundary for

✓ < 0 (in-state), and away from it for ✓ > 0 (out-state). In- and out-states are

related by the scattering operator [36]. As we are going to see, our computations

involve low energy particles, whose scattering with the boundary is necessarily

elastic, i.e. conserves the number of particles. Moreover, the field µab acts on a

uniform vertical boundary, which preserves the energy. For these reasons the low

energy scattering of a particle on the boundary is a pure reflection (Fig. 5.1), and

the relation between the in- and out-state for (5.3) takes for small momenta the

simple form f
0

(✓) = ±f
0

(�✓). On the other hand, only the choice

f
0

(✓) = �f
0

(�✓) , ✓ ! 0 (5.4)

implies the property f
0

(0) = 0 which will eventually be responsible for the im-

1Here and below, in order to simplify the notation, we drop the indices on the kink mass.
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0 x

y

R/2

a b

ψ

ψ

−R/2

Figure 5.2: Wedge geometry with boundary condition changing points at
(0,±R/2) and an interface running between them.

penetrability of the wall. Generically, we will then have f
0

(✓) = c
1

✓+O(✓2), with

c
1

a constant.

Passing from a vertical boundary to one forming an angle  with the vertical

involves a rotation in Euclidean space, and then a relativistic transformation for

the associated quantum field theory. Recalling (5.2), this transformation shifts

rapidities by i , so that the kink emission amplitude in the rotated frame, that

we denote by f , is related to that in the original frame as

f (✓) = f
0

(✓ + i ) ; (5.5)

our considerations on f
0

then yield

f (✓) ' c
1

(✓ + i ) , |✓|, | | ⌧ 1 . (5.6)

At this point we are able to consider, instead of the half plane, the more

general wedge geometry of Fig. 5.2. The points (0,±R/2) are boundary condition

changing points, such that phase b (resp. a) is favored for |y| > R/2 (resp.

|y| < R/2) on the wedge. For mR large, i.e. when the system is observed on

a scale much larger than the bulk fluctuations, one then expects an interface

running between the points (0,±R/2), separating an inner phase a from an outer

phase b. These expectations emerge from the theory in the following way. For

|y| < R/2 the order parameter in the wedge, that we denote by h�(x, y)iWbab
,
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reads

h�(x, y)iWbab
=

 h0b|µba(0,
R
2

)�(x, y)µab(0,�R
2

)|0bi� 
ZWbab

, (5.7)

where the subscripts ± indicate the di↵erent rotations performed for positive

and negative y, and

ZWbab
=  h0b|µba(0, R/2)µab(0,�R/2)|0bi� 

⇠
Z 1

0

d✓

2⇡
f (✓)f� (✓) e�mR(1+

✓2

2 ) ⇠ c2
1

e�mR

2
p
2⇡(mR)3/2

(1 +mR 2) .(5.8)

This result is obtained inserting a complete set of particle states in between the

two fields, taking the limit mR large which projects on the lightest (single-kink)

intermediate state and to small rapidities, and considering  small in order to

use (5.6); here and in the following the symbol ⇠ indicates omission of terms

subleading for mR large. In a similar way we obtain

h�(x, y)iWbab
⇠ e�mR

ZWbab

Z
+1

�1
d✓

1

d✓
2

(2⇡)2
e�

m
2 [(

R
2 �y)✓21+(

R
2 +y)✓22 ]�imx(✓1�✓2)

⇥ f (✓1) hKba(✓1)|�(0, 0)|Kab(✓2)i f� (✓2) , (5.9)

where we evaluate the order parameter field on bulk states, implying that the

boundary condition changing fields account for the leading boundary e↵ects at

large R. The matrix element in (5.9) contains a disconnected part proportional to

�(✓
1

� ✓
2

) which yields a constant after integration, and then does not contribute

to the derivative with respect to x we are going to take in a moment; the behavior

of the connected part in the relevant region ✓
1

, ✓
2

! 0, is instead determined by

the ‘kinematical’ pole (see [96] and references therein)

hKba(✓1)|�(0, 0)|Kab(✓2)iconnected ' i
h�ib � h�ia
✓
1

� ✓
2

, ✓
1

' ✓
2

. (5.10)

With this information we obtain

@xh�(x, y)iWbab

h�ib � h�ia
⇠ 8

p
2
Åm
R

ã 3
2

Ä
x+ R 

2

ä
2 � ( y)2p

⇡ 3(1 +mR 2)
e��

2
, (5.11)
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where

 =
p
1� ✏2 , ✏ =

2y

R
, � =

 
2m

R

x


, (5.12)

and, integrating back over x with the condition h�(+1, y)iWbab
= h�ib,

h�(x, y)iWbab
⇠ h�ia + [h�ib � h�ia]

2

4erf(�)� 2p
⇡

�+
p
2mR  



1 +mR 2

e��
2

3

5; (5.13)

for  = y = 0 and h�ia = �h�ib this result coincides with that obtained in [71]

from the lattice solution of the Ising model on the half plane.

It was shown in Chapter 3 that the leading large R contribution to the order

parameter profile, i.e. the one associated to the pole in (5.10), corresponds to

a sharp phase separation between pure phases. In the present case of adjacent

phases, there will be a single interface, with a probability P ( )
1

(x; y) to intersect

the line of constant ordinate y in the interval (x, x + dx). It follows that the

leading large R expression of the order parameter can be written as

h�(x, y)iWbab
⇠ h�ib

Z x

x̃
duP ( )

1

(u; y) + h�ia
Z 1

x
duP ( )

1

(u; y) , (5.14)

where x̃(y) is the abscissa of the point on the wedge with ordinate y; this expres-

sion shows that P ( )
1

(x; y) actually coincides with (5.11). Also for later use we

introduce the additional notations

� =

 
R

2m
, ⌘ =

x

�
,  ̂ =

 
mR

2
 , (5.15)

and rewrite this result as

P ( )
1

(x; y) ⇠ 4
p
⇡3�(1 + 2 ̂2)

[(⌘ +  ̂)2 � (✏ ̂)2]e��
2
. (5.16)

The requirement
R1
x̃ dxP ( )

1

(x; y) ⇡ 1 is satisfied as long as
p
mR ⌧ 1. Notice

that (5.11) or (5.16) show that P ( )
1

(x; y) vanishes for |y| = x
 
+ R

2

, which for the

present case of small  are the coordinates of the wedge (x � �R /2); hence, the

properties (5.5), (5.6) that we identified in momentum space indeed lead to an

impenetrable wedge in coordinate space. A plot of P ( )
1

(x; y) is shown in Fig. 5.3.
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Figure 5.3: Contour plot of the passage probability density P ( )
1

(x; y)/m for

mR = 25,  = 0.04. The leftmost contour line corresponds to P ( )
1

(x; y) = 0,
and then to the wedge.

5.3 Filling transition

The results, Eqs. (5.11) and (5.13), apply to values of temperature (i.e., of bulk

correlation length m�1 / (Tc � T )�⌫) for which the kink state is the lightest

one entering the spectral decomposition of Eq. (5.7). To discuss the situation in

which this is not the case we start again from  = 0. For temperatures below a

certain threshold T
0

< Tc the kink Kba(✓) may form with the boundary a bound

state |⌦0
ai0 with energy E 0

0

, in which the phase b forms a thin layer adsorbed

on the boundary. As usual for stable bound states, this corresponds to a purely

imaginary rapidity ✓ = i✓
0

of the kink, leading to a binding energy

E 0
0

� E
0

= m cos ✓
0

(5.17)

smaller than m. This boundary bound state is now the lightest state contributing

to (5.7) and produces an order parameter equal to h�ia for mx � 1, no matter

how large R is (see Chapter 4). Since m is the interfacial tension between the

phases a and b (see Chapter 3), and E
0

(respectively E 0
0

) corresponds to the

tension between the boundary and phase b (respectively a), Eq. (5.17) identifies

✓
0

as the contact angle of the phenomenological wetting theory. The usual relation

✓
0

(T
0

) = 0 characterizing the wetting transition temperature T
0

corresponds to
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µ
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ab

~

b

ab
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Figure 5.4: Illustration of equation (5.18). The kink emission amplitude exhibits
a bound state pole corresponding to adsorption of phase b on the boundary.

the unbinding threshold for the kink.

Bound states manifest in matrix elements as poles in the physical region of

kinematical variables [36]. For the matrix element, Eq. (5.3), this physical region

corresponds to the strip Im ✓ 2 (0, ⇡), and the pole induced by the boundary

bound state takes the form (see Fig. 5.4)

Fµ
0

(✓) =
0

h⌦a|µab(0, 0)|Kba(✓)i0
⇠ ig

✓ � i✓
0

0

h⌦a|µab(0, 0)|⌦0
ai0 , ✓ ⇠ i✓

0

(5.18)

with g a coupling measuring the strength of the bound state. It then follows

from Eq. (5.5) that the pole of Fµ
 (✓) is located at ✓ = i(✓

0

�  ). Since the

kink energy is always m cosh ✓ and the unbinding threshold remains at ✓ = 0, the

filling transition temperature T is determined by the condition

✓
0

(T ) =  . (5.19)

For ✓
0

<  the pole is located at Im ✓ < 0, namely outside the physical strip

allowed for bound states; in such a case the kink is unbounded and phase b

fills the wedge. The condition, Eq.(5.19), is that obtained in the macroscopic

framework [80], and follows here from the exact statistical theory. Notice that

while Eqs. (5.11) and (5.13) rely on Eq. (5.6), and then on small  , Eqs. (5.5)

and Eq. (5.19) are general. Equation (5.5), in particular, encodes the essence of

wedge covariance.
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For the scaling Ising model on the half plane with a boundary magnetic field

h, the scattering amplitude o↵ the boundary is known exactly [38], and exhibits

a boundary bound state pole corresponding to 1� sin ✓
0

= h2

2m
= Tc�T0(h)

Tc�T
; the last

equality follows from ⌫
Ising

= 1 and holds in the scaling limit (see, e.g., [97] for

boundary bound states in the lattice formalism).

5.4 Third phase and double interface

In this section we still consider the wedge geometry of Fig. 5.2 with the same

boundary conditions bab of the previous section, but now we study the case in

which the phases a and b are not adjacent. More precisely, we consider the

case in which the lightest state connecting |0ai and |0bi is the two-kink state

|Kac(✓1)Kcb(✓2)i, with a unique choice of the intermediate vacuum |0ci. This

situation arises, in particular, in the (dilute) q-state Potts model at first order

transition that we discussed in the introduction. Indeed, the model is exactly

solvable (integrable) in the scaling limit, and it is known that there are no kinks

directly connecting two ferromagnetic vacua at the first order transition [53, 55].

The lightest state connecting two such vacua |0ai and |0bi is the two-kink state

|Ka0K0bi passing by the disordered vacuum |0
0

i; the symmetry under permu-

tations of the q ferromagnetic phases which characterizes the Potts model [49]

ensures that the elementary kinks Ka0, K0a (a = 1, . . . , q) all have the same mass

m.

Technically, the di↵erence with respect to the previous section is that now the

large R expansion of (5.7) is dominated by the contribution of the two-kink state.

In particular, the relevant matrix element for the boundary condition changing

fields is no longer (5.3) but

0

h0a|µab(0, y)|Kbc(✓1)Kca(✓2)i0 = e�my(cosh ✓1+cosh ✓2)f
0

(✓
1

, ✓
2

) . (5.20)

As before, the low energy scattering properties of the kinks on a vertical wall

can be used to infer properties of the amplitude f
0

(✓
1

, ✓
2

), but now we will also

exploit the integrability of the scaling (dilute) Potts model at the first order

transition. Integrability ensures that the interaction of the two kinks on the wall
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can be regarded as consisting of two independent processes (factorization of the

scattering [38]), and this in turn allows us to write a relation like (5.4) for each

particle, i.e.

f
0

(✓
1

, ✓
2

) = �f
0

(�✓
1

, ✓
2

) = �f
0

(✓
1

,�✓
2

) , ✓
1

, ✓
2

! 0 . (5.21)

Integrability also yields the exact bulk scattering matrix of the scaling (dilute)

Potts model at the first order transition [53, 55]. From this one reads, in partic-

ular, that at low energy the state |Kb0(✓1)K0a(✓2)i scatters in the bulk into the

state �|Kb0(✓2)K0a(✓1)i, so that we have the additional relation

f
0

(✓
1

, ✓
2

) = �f
0

(✓
2

, ✓
1

) , ✓
1

, ✓
2

! 0 . (5.22)

Equations (5.21) and (5.22) lead to

f
0

(✓
1

, ✓
2

) ' c
2

✓
1

✓
2

(✓2
1

� ✓2
2

) , ✓
1

, ✓
2

⌧ 1 . (5.23)

As before, the passage from the vertical boundary to that rotated by an angle  

involves a rapidity shift,

f (✓1, ✓2) = f
0

(✓
1

+ i , ✓
2

+ i ) , (5.24)

and the leading large mR expression for the order parameter in the wedge can

be written as1

h�(x, y)iWbab
⇠ 1

ZWbab

Z

R4

d✓
1

d✓
2

d✓
3

d✓
4

(2⇡)4
f (✓4, ✓3)hKbc(✓3)Kca(✓4)|�(0, 0)

|Kac(✓1)Kcb(✓2)if� (✓1, ✓2)Y(✓
1

, ✓
2

, ✓
3

, ✓
4

; x, y) , (5.25)

where

Y(✓
1

, ✓
2

, ✓
3

, ✓
4

; x, y) = U�(✓
1

; x, y)U�(✓
2

; x, y)U+(✓
3

; x, y)U+(✓
4

; x, y) , (5.26)

1Generically, we keep the notation c for the third phase; c = 0 for the Potts case.
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σ σ σ σ+ +=

Figure 5.5: The four-leg matrix element of the order parameter field � decomposes
into the sum of the connected and disconnected parts in the r.h.s.

U±(✓; x, y) = em(�
R
2 ±y) cosh ✓⌥imx sinh ✓ , (5.27)

ZWbab
⇠

Z

R2
+

d✓
1

d✓
2

(2⇡)2
f (✓2, ✓1)f� (✓1, ✓2) e�

mR
2 (cosh ✓1+cosh ✓2)

⇠ 3c2
2

⇡

e�2mR

(mR)5

ñ
1 +

Ç
8� 32

3⇡

å
 ̂2 +O( ̂4)

ô
. (5.28)

The matrix element of the field � on two-kink states entering (5.25) contains

three types of contributions, depending on the number of annihilations that arise

when particles on the left and on the right have the same rapidity. The three

contributions are schematically depicted in Fig. 5.5 and correspond to a connected

part (no annihilations), a partially disconnected part (one annihilation) and a

totally disconnected part (two annihilations). The complete computation of the

order parameter taking into account all these contributions has been performed

in Chapter 3 for the case of the strip geometry and in Chapter 4 for the case of

the half plane ( = 0). As expected from the fact that the two-kink state yields

the leading contribution, the results correspond to the presence of two interfaces

separating the intermediate phase c from the phases a and b. For the case of

the wedge the complete calculation becomes cumbersome, and it is particularly

interesting that we can still obtain the complete results in a relatively simple way

through the following procedure, whose exactness we explicitly checked for the

strip and the half plane.

Generalizing what seen in the previous section, the probability P ( )
2

(x
1

, x
2

; y)

that one interface intersects the line of constant ordinate y in the interval (x
1

, x
1

+
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dx), and that the other interface intersects the same line in the interval (x
2

, x
2

+

dx) is related to the order parameter as

h�(x, y)iWbab
=

Z
+1

x̃
dx

1

Z
+1

x̃
dx

2

P ( )
2

(x
1

, x
2

; y)�(x|x
1

, x
2

) , (5.29)

where

�(x|x
1

, x
2

) =

8
>>><

>>>:

h�ia , x̃ < x < min(x
1

, x
2

) ,

h�ic , min(x
1

, x
2

) < x < max(x
1

, x
2

) ,

h�ib , x > max(x
1

, x
2

) ,

and x̃(y) is the abscissa of the wedge. On the other hand

P ( )
1,2 (x1

; y) =
Z 1

x̃
dx

2

P ( )
2

(x
1

, x
2

; y) (5.30)

is the probability that one of the two interfaces passes in the interval (x
1

, x
1

+dx)

at ordinate y, irrespectively of the other. Since it is the field � which ‘detects’

the interfaces, it is natural to expect, and we checked explicitly that this is the

case for the strip and the half plane, that P ( )
1,2 (x; y) is determined by the second

term in the r.h.s. of Fig. 5.5, proportional to1

hKba(✓3)|�(0, 0)|Kab(✓1)iconnected�(✓2 � ✓
4

) , (5.31)

and to which we refer as the two-leg term, from the number of particles connected

to the field �. Up to the factor �(✓
2

� ✓
4

), corresponding to the undetected

interface, this two-leg term is the same we studied in the previous section for the

single interface. Plugging (5.31) into (5.25) we obtain

h�(x, y)itwo-legWbab
/

Z

R4
d✓

1

d✓
2

d✓
3

d✓
4

f (✓4, ✓3)
�(✓

2

� ✓
4

)

✓
1

� ✓
3

f� (✓1, ✓2)

⇥ e�m[R4
P4

k=1 ✓
2
k+

y
2 (✓

2
1+✓

2
2�✓23�✓24)�ix(✓1+✓2�✓3�✓4)] , (5.32)

where, as usual, we took into account that small rapidities dominate at large R

and we used (5.10); as in the previous section, a derivative with respect to x

1Of course there are analogous terms with di↵erent pairings of rapidities, all giving the
same contribution to (5.25).
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cancels the pole. On the other hand, we can also write h�(x, y)itwo-legWbab
in a way

analogous to (5.14), with P ( )
1,2 replacing P ( )

1

, and h�ic replacing h�ia or h�ib. It
follows that P ( )

1,2 (x; y) / @xh�(x, y)itwo-legWbab
, i.e.

P ( )
1,2 (x1

; y) /
Z

dx
2

Z

R4
d✓

1

d✓
2

d✓
3

d✓
4

f (✓4, ✓3)f� (✓1, ✓2)

⇥ e�m[R4
P4

k=1 ✓
2
k+

y
2 (✓

2
1+✓

2
2�✓23�✓24)+ix1(✓1�✓3)�ix2(✓2�✓4)] , (5.33)

where we used �(z) / R
ds eisz. Comparison with (5.30) shows that the integrand

of the integral in x
2

in (5.33) is proportional to P ( )
2

. Since the identity

Z

R2
d�

1

d�
2

f (�1, �2)e
��21+�22

2 +iq1�1+iq2�2 = 2⇡f�i (q1, q2)e
� q21+q22

2 , (5.34)

holds for the function defined by (5.23) and (5.24), we finally obtain

P ( )
2

(x
1

, x
2

; y) =
N

ˆ 

�210
f�i(1+✏) ˆ (⌘1, ⌘2)f�i(1�✏) ˆ (⌘1, ⌘2)e

��2
1��2

2 (5.35)

=
N

ˆ 

�210
f
0

(⌘
1

+ (1 + ✏) ̂, ⌘
2

+ (1 + ✏) ̂)⇥

⇥ f
0

(⌘
1

+ (1� ✏) ̂, ⌘
2

+ (1� ✏) ̂)e��
2
1��2

2 , (5.36)

where we are using the notations (5.12) and (5.15) with ⌘i and �i corresponding to

xi, and N
ˆ is dimensionless and determined by the condition

R1
x̃ dxP

1,2(x; y) = 1.

Recalling the form (5.23) of the function f
0

, we see that the joint passage

probability density (5.35) factors the terms (⌘
1

� ⌘
2

)2 and ±✏ = 1 + ⌘i/ ̂ (i.e.

±y = R
2

+ xi
 
). It follows that the considerations in momentum space that led

us to the result (5.24) for the function f (✓1, ✓2) produce in coordinate space a

mutual repulsion among the interfaces (P ( )
2

(x, x; y) = 0), as well as the presence

of an impenetrable wedge along which the passage probability density vanishes.

A plot of P ( )
1,2 (x; y) is shown in Fig. 5.6.

For  = 0 (5.35) reduces to

P (0)

2

(x
1

, x
2

; y) =
16

3⇡

�2

1

�2

2

(�2

1

� �2

2

)2

2�2
e��

2
1��2

2 , (5.37)

a result which is known [98] to correspond to the so-called “vicious” walkers [41]

98



Chapter 5: Phase separation and filling transition in a wedge

0 2 4 6 8 10

!10

!5

0

5

10

mx

m
y

!0.4

0

0.4

0.8

Figure 5.6: Contour plot of the passage probability density m�1P ( )
1,2 (x; y) for

mR = 25 and  = 0.04. The leftmost contour corresponds to P ( )
1,2 = 0, and then

to the wedge.

on the half line x � 0: the walkers start at x = 0, move randomly with the

constraint of avoiding each other and the boundary, and return to x = 0 after a

time R. Hence, our result (5.35) yields the exact joint passage probability density

of two vicious walkers in the wedge.

The order parameter can be determined from P ( )
2

through (5.29). We quote

here the explicit result in the case of the half plane, for which the expressions

simplify. For the Potts model the order parameter field has components �k

(
Pq

k=1

�k = 0), with h�ki0 = 0 in the disordered phase, and we obtain1

h�k(x, y)i =0

Wbab
= [h�kib + h�kia]A(�)� 2h�kiaB(�) + h�kia , (5.38)

with

h�kia =
q�ka � 1

q � 1
M , a, k = 1, . . . q , (5.39)

1These results coincide with those derived in Chapter 4 by direct summation of all terms
in Fig. 5.5.
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Figure 5.7: Order parameter M�1h�
3

(x, y)i =0

W121
and contour lines for the dilute

three-state Potts model at first order transition. Due to permutational symmetry,
�
3

does not distinguish between phases 1 and 2, and the intermediate bubble of
the disorderd phase is clearly visible.

A(�) = � 4

3⇡
�2

Ä
�2 � 3

ä
e�2�2

+
2

3
p
⇡
�
Ä
�2�4 + �2 � 6

ä
e��

2
erf(�) + erf(�)2 ,

(5.40)

B(�) = �

3
p
⇡

Ä
�6 + �2 � 2�4

ä
e��

2
+ erf(�) . (5.41)

A plot is shown in Fig. 5.7 for q = 3; for q = 2 (Ising) Fig. 5.8 compares the order

parameter profile in the dilute case with the undilute result of Chapter 3.

5.5 Summary

In summary, we constructed the exact theory of phase separation in a two-

dimensional wedge and derived from it the filling transition condition and the

origin of wedge covariance. This has been achieved directly in the continuum

and for arbitrary opening angles, while previous exact results concerned only the
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Figure 5.8: Order parameter M�1h�(x, y)i =0

W+�+
for the Ising model in the undi-

lute (continuous) and dilute (dashed) cases; in the dilute case the intermediate
disordered bubble smoothens the profile.

lattice Ising model and where limited to a right-angle corner. In particular, our

derivation makes transparent the relation of wedge covariance with the relativistic

nature of the kink excitations, and explains why this property has been di�cult to

establish in general within nonrelativistically covariant e↵ective interfacial mod-

els. The passage probability for an interface with endpoints on the wedge has

also been determined for small tilt angles in the unbound regime.

Moreover we developed the theory of phase separation in a planar wedge

for the case in which a macroscopic bubble of a third phase forms in between

the two phases favored by the boundary conditions. We discussed the q-state

Potts model (dilute for q < 4) at its first order transition as an example to

which the theory applies. In principle the full field theoretical calculation is

much more complicated than that performed for the case of a single interface.

However, we found that, isolating a specific contribution to the order parameter

which corresponds to the detection of a single interface, the formalism allows to

reconstruct the complete result. This finding, that we checked explicitly against

the full calculations for the cases of the strip and of the half plane, appears

promising for further developments.

For the case of the wedge, it is worth stressing that the very fact that the

final result exhibits a wedge-shaped path along which the passage probability for
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the interfaces vanishes provides a non-trivial consistency check for the theory.

Indeed, the calculation starts from considerations in momentum space, in which

the presence of a boundary is codified in properties of matrix elements of bound-

ary condition changing fields. Moreover, the boundary is initially flat, and the

information about the wedge is introduced through relativistic transformations

performed on the matrix elements, always in momentum space. While in prin-

ciple these are the same logic steps performed for the separation of two phases,

in practice the case with a third phase is much more structured and leads to

the specific form (5.23), (5.24) for the matrix element f (✓1, ✓2) of the bound-

ary condition changing field. It is then remarkable to realize going on with the

computation that the wedge in real space emerges because f (✓1, ✓2) turns out

to fulfill the self-Fourier transform property (5.34). In this way, the mechanism

which eventually accounts for wedge covariance acquires surprising mathematical

implications in presence of a third phase.

This appears to have also additional implications. Indeed, we arrived at (5.23)

exploiting also the integrability of the scaling Potts model, which in turn ensures

factorization of the scattering and equation (5.21). On the other hand, since

(5.21) is necessary to arrive at (5.23), and the latter is necessary for the ap-

pearance of the wedge in real space through (5.34), we are led to conclude that

factorization of the scattering at low energies is required in systems allowing for

the appearance of a bubble of a third phase. Notice that this is a weaker property

than integrability, which implies factorization of the scattering at all energies.

We determined the joint passage probability for the interfaces separating the

three phases and found that, in the case of a flat boundary (tilt angle  = 0 for

the wedge), it coincides with the known probability for vicious walkers in the half

plane. Hence for  6= 0 our result provides the passage probability for vicious

walkers in a wedge. The name vicious walkers is used in the literature for random

walkers subject to the constraint of avoiding each other and the boundary. In our

framework the properties of random propagation and avoidance for the interfaces

emerge from the limit of large separation R between the boundary condition

changing points on the boundary (pinning points for the interfaces), which is

needed to observe phase separation. This limit projects the dynamics of the

particles to low energies, where it turns out to reduce to fermionic statistics and
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becomes universal. Consistently, the average distances between the interfaces and

between the interfaces and the boundary grow as
»
R/m, and are much larger

than the range 1/m of the particle-particle and particle-boundary interactions,

whose details then a↵ect only subleading orders in the large mR expansion.
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Chapter 6

Decay of the thermodynamic

Casimir force: bulk and

boundary e↵ects

The key idea underlying this thesis is the use of field theory for the description

of near-critical interfacial phenomena. We showed how field theory provides a

unified framework for the systematic study of phase separation and interfaces on

the plane for the various universality classes. As a further application of these

techniques we consider the so called thermal Casimir e↵ect, which arises from the

spatial confinement of critical fluctuations of a statistical system.

6.1 Introduction

The quantum-electrodynamical Casimir force [99] is known to possess a thermo-

dynamical analogue induced by the spatial confinement of the thermal fluctua-

tions of a medium close to a second-order transition point [100]. Such a thermo-

dynamic (very often also called critical) Casimir force is observed experimentally

[101, 102, 103, 104, 105, 106, 107] and is important for a variety of applications

to microdevices. Despite their relevance, on the other hand, theoretical charac-

terizations have proved to be quite challenging, complicated as they are by the

need to deal with interacting theories and by an essential dependence on bound-
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ary conditions. For the simplest geometry, a D-dimensional slab whose infinite

boundary planes are separated by a distance R, and assigned uniform boundary

conditions, it follows on general scaling grounds that the force (in temperature

units kBT and per unit cross-sectional area) is R�D times a scaling function

#(R/⇠), where ⇠ is the bulk correlation length1. This function is universal, in the

sense that it only depends on the symmetry of the order parameter, on D and on

the boundary conditions, but otherwise little is known in general about it, to the

point that even the sign of the force represents a non-trivial problem. Indeed,

while reflection positivity ensures that mirror symmetric boundaries with identi-

cal boundary conditions attract [108, 109], the force is found to be repulsive in

main instances of di↵erent conditions on the two boundaries (see e.g. [102, 110]

for experimental and numerical data, respectively, for the three-dimensional Ising

universality class). On the other hand, it was pointed out in [111] that for di↵er-

ent boundary conditions a tuning of boundary parameters can lead to the reversal

of the force as R/⇠ varies, a circumstance neatly illustrated in [112] through exact

computations for the Ising model in a strip.

In such an intricated situation, a general investigation of the function #(R/⇠)

can only start from asymptotics. For R/⇠ ! 0 the force behaves as #(0)/RD, and

all the information about the boundary conditions is contained in the amplitude.

Since this is a scale invariant limit for the bulk, boundary conformal field theory

[113] allowed the exact determination of critical Casimir amplitudes in D = 2 for

several universality classes and scale invariant boundary conditions [114, 115]. In

this chapter we consider the opposite limit R/⇠ � 1. In the case D = 2, that we

study in detail, we show that the force decays di↵erently for R � ⇠ depending

on the symmetry properties of the boundary conditions on the edges of the strip.

Then, in principle, measuring the force in this limit provides a way to distinguish

classes of boundary conditions realized in the physical system. Moreover, we

show that the e↵ect on the decay of symmetry-breaking and symmetry-preserving

boundary conditions is interchanged when exchanging spontaneously broken with

disordered phases. In recent years two-dimensional near critical behavior has been

identified even in biological systems, such as cellular membranes [116], and the

role of the thermodynamic Casimir force in this context has been investigated in

1We refer to phases with finite correlation length.
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[117]. At the end of the chapter we discuss to which extent our arguments extend

to higher dimensions.

We begin our analysis considering a two-dimensional statistical system con-

fined on a strip of vertical width R and length L ! 1, with boundary conditions

that we denote by u on the upper edge and d on the lower edge. The Casimir

force per unit length between the two edges is given by

Fud =
1

L
@R lnZud =

1

L

@RZud

Zud

, (6.1)

where � lnZud is the contribution to the free energy due to the interaction be-

tween the edges. The system is close to a second-order phase transition point,

so that its scaling limit corresponds to a Euclidean field theory, which in turn

can be regarded as the analytic continuation to imaginary time of a relativistic

quantum field theory in one spatial dimension. If H denotes the Hamiltonian of

this quantum theory, the partition function Zud can be written as

Zud = hBu|e�HR|Bdi , (6.2)

where |Bdi and |Bui are boundary states specifying the initial and final conditions

of the imaginary time evolution; they can be expanded over the complete basis

of asymptotic particle states of the bulk (R = 1) theory, which are eigenstates

of the Hamiltonian H.

We consider uniform, i.e. translation invariant, boundary conditions. The use

of translation invariant boundary states1 in the o↵-critical case was illustrated in

[38] and exploited for free energy calculations on the strip in [118] in the context

of integrable field theories. A study of the leading finite size e↵ects was then

performed in [119, 120], with particular attention for the precise relation between

boundary state amplitudes and scattering amplitudes in the “crossed channel”.

In the present chapter we are interested in the way the symmetry properties of

the boundary conditions a↵ect the finite size dependence in the di↵erent phases

of the system and for the di↵erent universality classes, a subject whose systematic

study was initiated in [121] in the context of crossing probabilities in percolation;

1See Chapter 3 for the non-translation-invariant case.
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but for Eq. (6.11), that we borrow from [38], our derivations are self-contained.

6.2 Below the critical temperature

The nature of bulk excitations di↵ers above and below the critical temperature

Tc associated to the spontaneous breaking of the symmetry (corresponding to a

group G) characterizing the universality class; we discuss first the case T < Tc.

Then, in two dimensions, the system possesses discrete degenerate ground states,

corresponding to degenerate vacua of the associated quantum theory, that we

denote by |⌦ai, a = 1, . . . , n. For topological reasons, the elementary excitations

are kinks |Kab(✓)i interpolating between di↵erent vacua |⌦ai and |⌦bi; the ra-

pidity ✓ parameterizes the energy and momentum of these relativistic particles

as (e, p) = (m cosh ✓,m sinh ✓), where m is the kink mass. In general the kink

mass depends on the indices a and b; here, however, we will be interestend only

in the leading large distance behavior of the Casimir force, which is determined

by the particles with the lowest mass, and for this reason we will keep track

only of the lightest kinks. Similarly, among the bound states that kinks may

form, we will be interested in those arising in the topologically neutral channels

|Kab(✓1)Kba(✓2)i, and will denote by |Ba(✓)i the lightest among them, with mass

mB < 2m. Throughout the chapter we call “exponential” correlation length and

denote by ⇠ the correlation length defined by the large distance decay r�↵e�r/⇠

of the order parameter two-point function in the bulk theory. Since the order

parameter operator is topologically neutral, ⇠ is 1/2m in the absence of neutral

bound states, and 1/mB otherwise.

6.2.1 Identical boundary conditions

The boundary conditions on the edges of the strip can be either symmetry pre-

serving (i.e. left invariant by the action of the group G) or symmetry breaking.

In the latter case we consider symmetry breaking (by a boundary field h) in favor

of one of the degenerate vacua |⌦ai, and denote by |Ba(h)i the corresponding

boundary state. The expansion over bulk states of one such boundary state, say
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|B
1

(h)i, will be of the form

|B
1

(h)i = |⌦
1

i+ g(h)|B
1

(0)i (6.3)

+
X

b 6=1

Z d✓

2⇡
fb(✓, h)|K1b(�✓)Kb1(✓)i+ · · · ,

where the bulk states start and end on the vacuum |⌦
1

i, and have zero total

momentum as a consequence of translation invariance of the boundary condition;

the dots stay for states with higher total mass1 whose contribution to the large

distance expansion of the Casimir force is subleading. Turning to the symmetry-

preserving boundary states, we will denote them by |B
0

(u)i, with u collectively

denoting boundary parameters. These states expand in the form

|B
0

(u)i =
X

a

{va(u)|⌦ai+ ga(u)|Ba(0)i (6.4)

+
X

b 6=a

Z d✓

2⇡
faba(✓, u)|Kab(�✓)Kba(✓)i

+
X

c 6=a

[gac(u)|Kac(0)i

+
X

b 6=a,c

Z d✓

2⇡
fabc(✓, u)|Kab(�✓)Kbc(✓)i]}+ ..,

with the di↵erent vacua treated on the same footing.

We can now consider the large R asymptotics of the Casimir force for the

di↵erent combinations of boundary conditions (6.3) and (6.4). For symmetry-

preserving, or free, boundary conditions on both edges the leading contribution

comes from the single-kink state in (6.4), and we have

Z
00

= hB
0

(u)|e�HR|B
0

(u0)i (6.5)

⇠
X

a

2

4v⇤a(u)va(u
0) +mL

X

c 6=a

g⇤ac(u)gac(u
0)e�mR

3

5 ,

where we used h⌦a|⌦bi = �ab, hKab(✓)|Kac(✓0)i = 2⇡�(✓�✓0)�bc and 2⇡�(0) = mL.

1To be definite, we discuss the case m
B

> m.
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Equation (6.1) then gives

F
00

⇠ �A
00

m2 e�mR , (6.6)

with A
00

=
P

a,c6=a g⇤ac(u)gac(u
0)/

P
a v⇤a(u)va(u

0).

For boundary conditions B
1

(h) on the upper edge and B
1

(h0) on the lower

edge, the two-kink state gives the leading contribution to the force in absence of

neutral bound states (g = 0 in (6.3)). The eigenvalue of e�HR on the two-kink

state is e�2mR cosh ✓, so that the limit of large mR is determined by the behavior of

the excitations at small rapidities, which is a property of the bulk theory. With

few exceptions, interacting particles in 1+1 dimensions behave at low energies as

free fermions, and here we will discuss this generic case. Then for the product of

states entering (6.2) we have in this limit

hK
1c(✓

0)Kc1(�✓0)|K1b(�✓)Kb1(✓)i (6.7)

⇠ �bc(2⇡)
2{[�(✓ � ✓0)]2 � [�(✓ + ✓0)]2}

= �bc 2⇡mL cosh ✓ [�(✓ � ✓0)� �(✓ + ✓0)] .

A further consequence of the low-energy fermionic statistics is that the two-kink

amplitudes in (6.3) vanish at ✓ = 0 (namely when the two particles have the same

momentum), and can be written at small rapidity as

fb(✓, h) ⇠ Cb(h) ✓ . (6.8)

The last two equations allow us to calculate the two-kink contribution to the

partition function Z
11

= hB
1

(h)|e�HR|B
1

(h0)i in the large R limit as

A
11

2mL
Z d✓

2⇡
✓2e�2mR(1+✓2/2) =

A
11

2
p
⇡

mL

(mR)3/2
e�2mR , (6.9)

with A
11

=
P

b 6=1

C⇤
b (h)Cb(h0). The corresponding force is then

F
11

⇠ �A
11p
⇡

m2

(mR)3/2
e�2mR , (6.10)
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in the absence of topologically neutral bound states, and �g⇤(h)g(h0)m2

B e�mBR if

such a bound state is present1. Notice that the force is attractive for h = h0, as for

F
00

with u = u0; this agrees with the general result for identical mirror symmetric

boundary conditions. Apart from these two cases, the sign is not determined in

general.

6.2.2 Mixed boundary conditions

If we consider boundary conditions B
1

(h) on the upper edge and B
0

(u) on the

lower edge, the calculation proceeds as in the previous case, with one important

di↵erence. It was found in [38] that when a boundary state contains a two-particle

contribution such that the two particles individually contribute single-particle

states to the expansion, then the amplitude of the two-particle state has a simple

pole at ✓ = 0. For the state (6.4) this means in particular that for small rapidity

fabc(✓, u) ⇠
Cabc(u)

✓
, (6.11)

with Cabc / gabgbc; this is still consistent with low-energy fermionic statistics since

faba(✓, u) changes sign when the momenta of the two particles are interchanged

(✓ ! �✓). It follows from the combination of (6.8) and (6.11) that the two-kink

contribution to the partition function Z
10

for mR large reads

A
10

2mL
Z d✓

2⇡
e�2mR(1+✓2/2) =

A
10

mLp
⇡mR

e�2mR , (6.12)

with A
10

=
P

b 6=1

C⇤
b (h)C1b1(u). The force is then

F
10

⇠ �2A
10

m2

p
⇡mR

e�2mR , (6.13)

in the absence of neutral bound states, and �g⇤(h)g
1

(u)m2

B e�mBR otherwise; in

writing F
10

we are choosing the normalization with v
1

= 1 for the boundary state

(6.4).

A last possible choice of uniform boundary condition is to take B
1

(h) on the

1The single-particle contribution to the free energy has been investigated in [119, 122],
where its amplitude, including the sign, has been determined for some integrable field theories.
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upper edge and B
2

(h0) on the lower edge, with the latter choice corresponding to

symmetry breaking in the direction of a di↵erent vacuum |⌦
2

i. It follows from

(6.3) that in this case the two boundary states have zero overlap, so that the

free energy � lnZ
12

is infinite. This corresponds to the fact that, in our large R

limit, the boundary conditions we are considering lead to phase separation, with

an interfacial tension equal to the kink mass m (see Chapter 3) and an excess

free energy mL which diverges as L ! 1.

6.3 Above the critical temperature

We can now consider the case T > Tc of unbroken bulk symmetry. In this

case the bulk theory possesses a single, symmetry invariant vacuum |⌦i, and

the elementary excitations are no longer topological. In general, they will form a

multiplet of particles Ai, with mass m̃, transforming according to a representation

of the symmetry group G. These particles may give rise to bound states, and we

denote by B the lightest among those invariant under the action of the group.

Normally in a disordered phase the components of the order parameter operator

create the elementary excitations Ai, so that the exponential correlation length

is ⇠ = 1/m̃. Concerning the expansion of boundary states on bulk states, it

is natural to consider neutral and charged boundary states. Neutral boundary

states are those una↵ected by the action of the group, and expand as

|B̃
0

(u)i = |⌦i+ �(u)|B(0)i (6.14)

+
X

ij

Z d✓

2⇡
fij(✓, u)|Ai(�✓)Aj(✓)i+ · · · ,

where the tilde is used to distinguish (6.14) from the expansion (6.4) below Tc.

Comparison with (6.3) then shows that the derivation of the large R behavior of

F
00

above Tc retraces that of F
11

below Tc. The charged state |Bii, depending
on some boundary parameter �, transforms as the particle Ai under the action

of the group, and expands as

|Bi(�)i = |Ai(0)i+
X

jk

Z d✓

2⇡
fijk(✓,�)|Aj(�✓)Ak(✓)i+ .. . (6.15)
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Notice that Zii = hBi|e�HR|Bii / m̃Le�m̃R for R large, so that Fii ⇠ �m̃/L.

We see that the absence of the vacuum contribution in (6.15) makes LFii non-

extensive in L and non-vanishing as R ! 1. Since extensivity and large R

suppression should be preserved by the boundary state |B̃
1

(h)i corresponding to

the presence of a symmetry-breaking boundary field (the analogue of (6.3) for

T > Tc), we are led to conclude that this is realized by a superposition of (6.14)

and (6.15). Comparing such a superposition to (6.4) we see that the derivation

of the large R behavior of the Casimir force above Tc for symmetry-breaking

boundary fields acting on both edges retraces that of F
00

below Tc.

The dynamics of bulk excitations is known exactly for most universalilty

classes in two dimensions. For example, in the q-state Potts model [49], which

exhibits a second-order transition for q up to 4, the high- and low- temperature

phases are related by duality, and have the same mass spectrum, with the same

mass m for the kinks below Tc and the particles above. These are the only excita-

tions for q = 2, 3, while a neutral bound state with mass
p
3m exists for q = 4 [52]

and a↵ects the Casimir force in the way we described. The case q = 3 provides

one of the exceptions we mentioned to the fermionic low-energy behavior of bulk

excitations, and this results in modifications of (6.10) and (6.13) that we will

detail elsewhere. For the Ising model (q = 2), the exact relations satisfied by the

Casimir force in the strip when exchanging high with low temperature and, simul-

taneously, fixed with free boundary conditions [112, 123], are a duality-enhanced

example of the correspondences we obtained above. Similarly, it follows from our

analysis that, for the Ising model with free boundary conditions on both edges

of the strip, the Casimir force has the asymptotic form (6.6) below Tc and (6.10)

above; this accounts for the asymmetry of the force across Tc studied on the

lattice in [97].

Taking as an additional example the XY universality class, characterized by

O(2) symmetry, we need to remember that continuous symmetries cannot break

spontaneously in two dimensions [124, 125], and that the transition is of the

Berezinsky-Kosterlitz-Thouless type [126]. While the low temperature phase

renormalizes onto a conformal field theory, our results for massive phases ap-

ply above the transition temperature. This disordered phase is described by a

field theory with fermionic low-energy behavior and without bound states [127].

113



Chapter 6: Near critical Casimir force

Hence, we find in particular the asymptotic result F
00

/ R�3/2e�2mR, which

can be compared to R(1�D)/2 exp(�2R/⇠̂) obtained in [128] from a pertubative

calculation in D = 4 � ✏ dimensions. It is not surprising that the ✏-expansion

does not reproduce for D = 2 the prefactor R�3/2, which originates from the

non-perturbative property (6.8). Concerning the exponential factor, ⇠̂ should be

identified with ⇠ = 1/m.

Several of the arguments used for the strip can be generalized to the case D >

2. Boundary states now describe boundary conditions on (D � 1)-dimensional

hyperplanes, and can still be expanded on the asymptotic states of the bulk

theory [120, 122, 129]. In D > 2 also continuous symmetries can break sponta-

neously, but the presence of massless (Goldstone) particles in the expansion of

the boundary states will prevent exponential decay of the force below1 Tc. For

phases with spontaneously broken discrete symmetry the force still decays ex-

ponentially, but the elementary particle excitations are no longer kinks and the

analysis di↵ers substantially from the case D = 2. The symmetry considerations

we made above for the case T > Tc should instead hold in general. A limita-

tion for the asymptotic analysis in D > 2 is that the low-energy behavior of the

amplitudes of two-particle states (the analogue of (6.8) and (6.11) above) is not

known; in principle simulation results for the force can be used to investigate this

point. On the other hand, when the decay of the force Fud = L1�D@R lnZud is

ruled by a single-particle term, the large R suppression is D-independent. For

example, for the O(n) model with a boundary field h on both boundaries, the

force is expected to decay as ↵D(h) ⇠�De�R/⇠ above Tc, with ↵D(h) a pure number

and ⇠ the exponential correlation length.

6.4 Summary

In summary, we studied the decay of the thermodynamic Casimir force on an

infinitely long strip whose width R is much larger than the bulk correlation

length. The analysis exploits the expression of the boundary conditions in terms

of the particle excitations of the bulk theory. Using low energy properties of two-

dimensional field theory we determined the exact form of the large-R suppression,

1See the profile of the force determined in [130] for the three-dimensional O(n ! 1) case.
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and showed that it depends in distinctive ways on the symmetry properties of

the boundary conditions. The possibility to detect symmetry classes of boundary

conditions from the functional form of the decay of the force contrasts with what

happens in the opposite limit (R much smaller than the correlation length), in

which boundary conditions only a↵ect numerical amplitudes. We also discussed

which features specific of the bulk universality class may a↵ect the decay of the

force. The di↵erent nature of the bulk excitations above and below the critical

temperature was shown to induce in general a di↵erent behavior of the force in

the two regimes. On the other hand, the large-R suppression does not change

when exchanging spontaneously broken with disordered phases and, at the same

time, symmetry-breaking with symmetry-preserving boundary conditions, a cir-

cumstance that must be regarded as a weaker, but more general, version of duality

relations known for the Ising model. The formalism makes transparent that the

sign of the force at large R depends on the boundary parameters if these are dif-

ferent on the two edges of the strip, and is attractive if they are identical. Finally

we discussed how several of our arguments extend to higher dimensions and yield

specific predictions.
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te la sua incontenibile energia e incredibile produzione di “entropia

domestica”.

Vorrei dedicare un sentito ringraziamento anche a tutti coloro che con

il loro aiuto materiale, supporto morale o con la semplice vicinanza,



anche inconsapevole, hanno contribuito al raggiungimento di questo

traguardo. Siete tanti e non posso elencarvi tutti.

Concludo con dei ringraziamenti di caratura più “metafisica” dei pre-
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