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Abstract

This thesis is dedicated to study the physical properties at high pre-

cision of two scalars of well-motivated beyond the standard model

theories: the Higgs boson in the Minimal Supersymmetric Standard

Model (MSSM) and the axion of the Peccei-Quinn mechanism. The

discussion is divided in two parts. We make use of the advantages of

the effective field theory framework.

In the first part, we consider the state-of-the-art of the effective field

theory computation of the MSSM Higgs mass, improving the existing

ones by including extra threshold corrections. We perform a detailed

estimate of the theoretical uncertainty. We study the large tan β re-

gion and we put emphasis on the allowed parameter space reproducing

the experimental value of the Higgs mass. We present SusyHD, a fast

computer code that computes the Higgs mass and its uncertainty for

any supersymmetry (SUSY) scale, from the TeV to the Planck scale,

even in Split SUSY, both in the DR and in the on-shell (OS) schemes.

Finally, we apply our results to derive bounds on some well motivated

SUSY models, in particular we show how the value of the Higgs mass

allows to determine the complete spectrum in minimal gauge media-

tion.

In the second part, we discuss how to extract several properties of

the axion of Quantum Chromodynamics (QCD) with great accuracy

using only first principle QCD computations. We obtained the ax-

ion potential, the mass and the coupling to photons by combining

next to leading order (NLO) calculations in chiral perturbation the-

ory (ChPT) with recent Lattice QCD results. Axion-nucleon interac-

tions are also derived reliably. The method we have followed allows

to further improve the precision as uncertainties on the light quark

masses and the effective field theory couplings are reduced. We have

also studied the finite temperature dependence of the axion potential

and its mass, in connection with its role in determining the axion relic

abundance.



Original material contained in this thesis is based on the results pub-
lished in refs. [1, 2]. Some recent improvements on the Higgs mass
calculation in the effective field theory approach presented here are in
preparation for publication.
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Introduction

With the recent discovery of the Higgs boson the last missing piece of the Standard

Model (SM) has been unveiled and all the parameters of the theory measured.

The success of the Standard Model in describing all the measured observables

at colliders contrasts with the failure of the theory to explain some non-collider

observations, such as Dark Matter (DM), matter-antimatter asymmetry, etc.

Among the various completions of the Standard Model proposed so far, su-

persymmetric (SUSY) theories remain the most attractive option. Not only they

screen the electroweak (EW) scale from ultraviolet (UV) sensitivity to new physics

thresholds but they successfully predict the unification of gauge couplings and

may provide with a natural WIMP dark matter candidate.

Indirect hints for a small hierarchy between the scales of electroweak and

supersymmetry restoration (e.g. flavor observables, searches for electric dipole

moments (EDMs)), have found stronger support from the recent discovery of a

moderately heavy SM-like Higgs [3, 4] and from the absence of any evidence of

superpartners at run I of the LHC (see e.g. [5, 6]).

While the scale of supersymmetry may still be low (there are still various argu-

ments in favor of this scenario), hopefully within the reach of the LHC run II, it is

fair to say that our confidence in predicting the new physics scale based on natu-

ralness arguments weakened substantially [7, 8]. The suspicion that other mecha-

nisms may explain the strength of the weak interactions is becoming stronger and

alternative scenarios to low energy SUSY already exist [9, 10]. It is thus useful to

look for different (more-experimentally-driven) methods to infer the scale of the

superpartners. One natural candidate is the value of the Higgs mass, which in su-

persymmetry is calculable in terms of the couplings and the soft SUSY breaking

parameters.

In particular, in the Minimal Supersymmetric Standard Model (MSSM) the

tree-level Higgs mass is predicted to lie below the Z-boson mass up to quantum

corrections logarithmically sensitive to the SUSY breaking scale. Therefore the

measured value of the Higgs mass gives non-trivial constraints on the spectrum
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and couplings of the MSSM, allowing to shrink the allowed energy range for the
superpartners.

The Higgs mass has been measured experimentally with a great accuracy
mh = 125.09(24) GeV [11]. Radiative corrections are needed to reproduce this
value within the MSSM. When applying the Higgs mass constraint to reliably
determine the allowed parameter space of the theory, one needs a high preci-
sion calculation. Indeed there has been exceptional progress in the Higgs mass
computation, using different methods and renormalization schemes. Some of the
calculations are performed at fixed order, thus they are not valid for a SUSY scale
above the TeV where the logarithmic terms need to be resummed. Besides, some
of the calculations and computer codes disagree among themselves, and in some
cases the differences can not be explained in terms of the estimated theoretical
uncertainties.

Motivated by the important role of the Higgs mass in constraining SUSY
models, the limitations of the existing codes compared to the allowed parameter
space and the disagreements in the literature, we decided to revisit the computa-
tion. Particular attention is dedicated to the relevant parameter space consistent
with the Higgs mass value, to the analysis of the uncertainties and to the possible
origin of the differences with other methods. Exploiting the mass gap suggested
by the absence of superpartners at the LHC and the largish value of the Higgs
mass, we recompute the Higgs mass in the MSSM using the effective field theory
(EFT) approach. This method allows to systematically resum large logarithms,
to have arbitrary large hierarchies in the spectrum and to have simple physical
understanding of the results as one neglects subleading effects suppressed by the
SUSY scale.

This part contains three chapters. In the first chapter, we present basic topics
on the MSSM. It is followed by a more specific analysis on the state of the art
of the MSSM Higgs mass calculation in chapter 2. These two chapters help to
understand chapter 3 where the original results are presented.
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Chapter 1

Aspects of the MSSM

In this chapter we describe some basic topics of the minimal supersymmetric

standard model which are useful for this part of the thesis. We do not aim to

present a detailed discussion, since there are excellent reviews and books about

SUSY in general (see eg. [12, 13]), and about the MSSM and its phenomenology

(see eg. [14]).

We start presenting some motivations of why supersymmetry may be real-

ized in nature in section 1.1. In section 1.2 we describe how invariance under

supersymmetry transformations determine the general form of the Lagrangian in

renormalizable theories. In section 1.3 we review the minimal supersymmetric

extension of the Standard Model (SM). In particular we present how the SM par-

ticles are accommodated into representations of SUSY, the particle interactions

fixed by SUSY, the effective Lagrangian containing the soft SUSY breaking terms

whose existence is required by observations, the renormalization group equations

and the mass spectrum.

In section 1.4 we consider how SUSY breaking may be communicated to the

observable sector and discuss some models that have interesting phenomenology.

Finally, in section 1.5 we describe the current experimental limits on SUSY. They

are based on direct searches at the Large Hadron Collider (LHC), measurements

of low energy observables, and the role that may play the MSSM in providing a

dark matter candidate.

1.1 Motivation for Supersymmetry

One of the current theoretical hints suggesting physics beyond the Standard

Model comes from the approximate gauge couplings unification in the SM. With
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1. ASPECTS OF THE MSSM
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Figure 1.1: Evolution of the inverse gauge couplings in the Standard Model

(dashed lines) and the MSSM (solid lines) according to the two loop renormalization

group equations. To draw the MSSM curves, the supersymmetric particles are

treated as a common threshold varied between 0.5 TeV and 1.5 TeV, and the input

value α3(mZ) is varied between 0.117 and 0.121 (figure taken from [14]).

only the SM matter content they do not really unify, because α2 and α3 meet at

∼ 1016 GeV, while α1 meets α2 at ∼ 1013 GeV as shown in fig. 1.1; and pertur-

bative threshold corrections can not cure the lack of unification unless they are

anomalously large. For instance, the minimal SU(5) grand unified theory (GUT)

faces this problem, together with a prediction of too short proton lifetime, i.e.

excluded experimentally. Then, one needs additional field content in the theory

which handles unification and a consistent prediction for proton decay.

The MSSM naturally predicts unification of the gauge couplings at a scale

MU ∼ 2×1016 GeV within threshold effects (see fig. 1.1) and renders proton decay

compatible with the experimental limits. In particular, fermion superparticles

with masses near the TeV guarantees unification regardless of the scalar masses.

Another important implication of SUSY is that it may provide a well-motivated

dark matter candidate. At present, the existence of dark matter is well estab-

lished. We have convincing evidence from the observation of luminous objects

(stars, gas clouds, globular cluster, or galaxies) moving faster than one would

expect if they only felt the gravitational attraction of other visible objects. The

lightest neutralino, usually the lightest supersymmetric particle (LSP), in models

with exact R-parity (which guarantees its stability) is a weakly interacting mas-

sive particle (WIMP) that generically leads to the correct order of magnitude of

the observed dark matter relic density.
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1.1 Motivation for Supersymmetry

There are also more theoretical reasons for SUSY. The direct product of the
supersymmetric version of the Poincaré group (known as super-Poincaré) and
some internal symmetry group is the most general symmetry of the S−matrix
(see more details in section 1.2). One could expect that all possible kind of
allowed symmetries might be realized in nature.

Among the first works on Supersymmetry are those which appeared in the
context of the foundations of String Theory [15]. In fact, SUSY is an essential
ingredient for superstring theory.

In the absence of clear experimental inputs, physicists need a guiding principle
when trying to construct new theories and make predictions. The naturalness
criterion has played a significant role in particle physics. A possible definition of
the naturalness criterion by ’t Hooft [16] is as follows. Consider a theory valid up
to a maximum energy Λ and make all its parameters dimensionless by measuring
them in units of Λ. One such parameters is allowed to be much smaller than
unity only if setting it to zero increases the symmetry of the theory. If this does
not happen, the theory is unnatural.

In the Standard model, the potential for the Higgs doublet is

V (H) =
λ

2

(
H†H − v2

2

)2

, (1.1)

which implies a non-vanishing vacuum expectation value (VEV) denoted as v for
H at the minimum and a mass squared of the physical Higgs field m2

h = λv2.
With this normalization the value of the Higgs VEV is v ≈ 246 GeV. Nowadays
we know the experimental value of the Higgs mass with a precision better than
0.2%, mh = 125.09 ± 0.24 GeV [11]. Note that no symmetry is recovered when
the Higgs mass is set to zero in the SM.

The squared mass of the Higgs field receives quantum corrections, which are
quadratically sensitive to new mass thresholds at high scale. For example, con-
sider a heavy complex scalar S with mass mS that couples to the Higgs through
the interaction term −λS|H|2|S|2 in the Lagrangian. One-loop corrections in-
duced by the scalar S are given by

∆m2
h =

λS
16π2

[
−2m2

S ln

(
Q

mS

)]
, (1.2)

where we have used the MS scheme and Q is the renormalization scale.
As a consequence of this quadratic sensitivity to new physics at high scale, the

large separation between the Planck scale Mp = (8πGNewton) and the electroweak
(EW) scale is a disturbing fact, known as the hierarchy problem [17]. However
this is not an inconsistency of the theory. But for a natural theory one would
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1. ASPECTS OF THE MSSM

expect new physics at the TeV scale or even below, at energies already explored
at the Large Hadron Collider (LHC). The lack of experimental signatures at the
TeV scale already leads to a little hierarchy problem.

If there are no new degrees of freedom with masses M � TeV then there is
no hierarchy problem. This seems in contradiction with the the hints of physics
at high scales such as neutrino masses, gauge coupling unification and the need
of a UV completion of gravity.

There are some possible solutions to the hierarchy problem. If the Higgs bo-
son is not a fundamental scalar but a composite instead, the radiative corrections
to its mass would be cutoff by the compositeness scale. However, if it is funda-
mental, a solution of the hierarchy problem needs the existence of a symmetry
that protects the Higgs mass from quantum corrections. Supersymmetry pro-
vides a solution; it transforms a bosonic state into a fermionic state (whose mass
is protected by chiral symmetry) and arranges the cancellation of quadratically
sensitive corrections to scalar masses.

Despite the naturalness principle has worked for most of the phenomena in
nature, it has failed to explain the smallness of the cosmological constant which
produces a hierarchy of at least 60 orders of magnitude more severe. Similarly
to the cosmological constant problem, the naturalness principle might not be
applicable to the Higgs mass and a different kind of explanation might exist for
the hierarchy problem. This idea is also suggested by the absence of new physics
at the TeV scale. In this thesis we explore a different method to infer the new
physics scale based on the constrain imposed by the Higgs mass on SUSY models.

1.2 Construction of SUSY Lagrangians

In relativistic quantum field theory, the most general group of bosonic symmetries
of the S−matrix is the direct product of the Poincaré group with an internal
symmetry group. Moreover, the internal symmetry group must be the direct
product of a compact semisimple group with some abelian factors. This result
is known as the Coleman-Mandula theorem [18]. Its proof is based on general
physical assumptions and considers only Lie groups of symmetries. Therefore, it
does not exclude the possibility of fermionic generators, although severely restricts
them. Allowing for fermionic generators, it was shown by Haag, Lopuszanski and
Sohnius [19] that the most general graded Lie algebra of symmetries of the S-
matrix is the super-Poincaré group times the algebra of internal symmetries.

The supersymmetry algebra is classified in terms of the number of fermionic
generators N. We focus on the case N = 1 of simple or unextended supersymme-
try. In that case, the R-symmetry stands out, which is a U(1) (chiral) symmetry
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1.2 Construction of SUSY Lagrangians

group characterized for being the only internal symmetry non-commuting with

the generators of the supersymmetry transformations.

There are excellent reviews and books on SUSY in general (see e.g. [12] and

[13]). For a comprehensive and pedagogical lectures notes, see for instance [20].

The most used introduction to the MSSM and its phenomenology is presented in

Martin’s review [14].

There is an elegant and powerful framework to formulate supersymmetric

theories in terms of an extension of space-time known as superspace. Points

in superspace are labeled with coordinates xµ, associated to the generators of

translations, and 2+2 additional anticommuting Grassman coordinates θα, θα̇,

associated with the supersymmetry generators Qα, Qα̇. This makes a total of

eight coordinates (xµ, θα, θα̇). The representation of fields in superspace, which

are functions of the coordinates (xµ, θα, θα̇), are known as superfields. Then,

supersymmetric actions can be written as integrals over the superspace. We do

not describe this formalism here, but we focus on the implications of SUSY for

field theories.

In N = 1 global supersymmetry there are two types of supermultiplets: the

chiral or matter multiplet and the gauge or vector multiplet. If the theory includes

gravity, it contains in addition the gravitino and the graviton multiplet.

A chiral supermultiplet Φi consists of a complex scalar φi and a left-handed

Weyl fermion ψi as physical degrees of freedom, plus a non-propagating complex

auxiliary field Fi that guarantees that SUSY closes off-shell, Φi = (φi, ψi, Fi).

We suppose that we have a collection of chiral superfields labeled by the index i,

representing all flavor and gauge degrees of freedom. The matter fields of the SM

are contained in chiral supermultiplets.

A vector or gauge supermultiplet V is the supersymmetric analogue of a spin

one field. It contains as physical degrees of freedom a massless gauge boson Aaµ,

a Weyl fermion λa called gaugino, and one real scalar auxiliary field Da, nec-

essary for consistency of the supersymmetry algebra off-shell, V = (Aaµ, λ
a, Da).

The index a runs over the adjoint representation of the gauge group. In the

MSSM there is one vector superfield for each simple factor of the SM group

SU(3)× SU(2)× U(1).

Consider chiral supermultiplets Φi = (φi, ψi, Fi) transforming under the gauge

group in a representation with hermitian matrices (T a)ji . All the field components

of the chiral superfields must transform in the same representation because gauge

transformations and supersymmetry commute. Under supersymmetry transfor-

mations the fields transform as

δφi = εψi , (1.3)

9



1. ASPECTS OF THE MSSM

δψiα = −i(σµε†)α ∇µφi + εαFi , (1.4)

δFi = −iε†σµ∇µψi +
√

2g(T aφ)i ε
†λ†a , (1.5)

δAaµ = − 1√
2

(
ε†σµλ

a + λ†aσµε
)
, (1.6)

δλaα =
i

2
√

2
(σµσνε)α F

a
µν +

1√
2
εα D

a , (1.7)

δDa =
i√
2

(
−ε†σµ∇µλ

a +∇µλ
†aσµε

)
, (1.8)

where εα is an infinitesimal, anticommuting, two-component Weyl fermion pa-
rameterizing the supersymmetry transformation and σµ ≡ (I,−σ1,−σ2,−σ3),
where I is the 2 × 2 identity matrix and σj are the Pauli matrices. We denote
the covariant derivative by ∇, e.g. acting on the scalars it gives

∇µφi = ∂µφi − igaAaµT aji φj. (1.9)

The most general renormalizable Lagrangian for chiral and gauge supermul-
tiplets invariant under SUSY transformations has the form

L =∇µφ∗i∇µφi + iψ†iσµ∇µψi −
1

4
F a
µνF

µνa + iλ†aσµ∇µλ
a (1.10)

−
(

1

2
W ijψiψj + h.c.

)
−
√

2g(φ∗T aψ)λa −
√

2gλ†a(ψ†T aφ)− V (φ, φ∗) ,

with scalar potential

V (φ, φ∗) = F ∗iFi +
1

2
DaDa = W ∗

i W
i +

1

2
g2
a(φ
∗T aφ)2 . (1.11)

Here we have used the classical equations of motion to write the auxiliary fields
Fi, F

∗i and Da in terms of the scalar fields, there is an implicit sum over repeated
indices i, and the index a is summed over all the simple factors with different
gauge couplings ga of the gauge group of the theory. The non-gauge interactions
for chiral supermultiplets (invariant under SUSY transformations) are determined
by a single holomorphic function of the complex scalar fields (or the chiral su-
perfields), called the superpotential W . A general renormalizable superpotential
reads

W = Liφi +
1

2
M ijφiφj +

1

6
yijkφiφjφk, (1.12)

where the couplings Li have (mass)2 dimension, M ij is a symmetric mass matrix
for the fermions, and yijk is a Yukawa coupling ψiψjφk which is totally symmetric
in all its indices. The linear superpotential term can only exists if there is a gauge

10



1.3 The MSSM

singlet, thus it is not relevant for the MSSM where there are no gauge singlet chiral

multiplets. We also use the notation

W i =
δW

δφi
, W ij =

δ2W

δφiδφj
. (1.13)

The first line in eq. (1.10) contains the kinetic terms and the ordinary gauge

interactions determined by the covariant derivative. Recall that we neglect the

linear term in the superpotential (1.12), then the terms in brackets in the second

line of eq. (1.10) generate mass matrices for the fermions and Yukawa couplings,

and the next two terms are the gaugino-scalar-fermion interactions fixed by gauge

invariance in SUSY. As we see in eq. (1.11) the scalar potential receives F-term

and D-term contributions and it is always non-negative. The F-term contribution

induces (scalar)4 and (scalar)3 interactions proportional to the Yukawa couplings

yijk and the product of the Yukawa couplings and the fermion mass matrices

respectively; while the D-term produces quartic interactions controlled by the

gauge couplings.

1.3 The MSSM

Supersymmetric extensions of the SM requires that each known fundamental

particle belongs to a chiral or a gauge supermultiplet and have associated a su-

perpartner with spin differing by half. Here we describe how the SM particles are

accommodated into supermultiplets (or superfields). The SM fermions (quarks

and leptons) must pertain to chiral supermultiplets because their left-handed

components transform differently under the gauge group than their right-handed

ones, and there must be a separate chiral supermultiplet for each component.

The spin-0 partners of the SM fermions are named by prepending an “s” which

stands for scalar. That is, they are called squarks and sleptons, or sfermions to

refer to all of them. We denote the superpartners of SM particles with the same

symbol but with a tilde added.

The Higgs scalar boson must be a member of a chiral superfield because it has

spin 0. However, one needs necessarily to introduce another chiral supermultiplet

for two reasons. First, the fermionic partner of the Higgs chiral superfield will

spoil the cancellation of the gauge anomalies of the SM because it is a weak

isodoublet with hypercharge Y = 1/2 or Y = −1/2. One can preserve the

cancellation of gauge anomalies by introducing two Higgs supermultiplets with

opposite hypercharge Y = ±1/2. Second, the structure of supersymmetry implies

that one needs two different chiral supermultiplets to give masses to up-type

11



1. ASPECTS OF THE MSSM

Chiral supermultiplets

Names spin 0 spin 1/2 SU(3)C , SU(2)L, U(1)Y

squarks, quarks Q (ũL d̃L) (uL dL) ( 3, 2 , 1
6
)

(3 families) u ũ∗R u†R ( 3, 1, −2
3
)

d d̃∗R d†R ( 3, 1, 1
3
)

sleptons, leptons L (ν̃ ẽL) (ν eL) ( 1, 2 , −1
2
)

(3 families) e ẽ∗R e†R ( 1, 1, 1)

Higgs, higgsinos Hu (H+
u H0

u) (H̃+
u H̃0

u) ( 1, 2 , +1
2
)

Hd (H0
d H−d ) (H̃0

d H̃−d ) ( 1, 2 , −1
2
)

Gauge supermultiplets

Names spin 1/2 spin 1 SU(3)C , SU(2)L, U(1)Y

gluino, gluon g̃ g ( 8, 1 , 0)

winos, W bosons W̃± W̃ 0 W± W 0 ( 1, 3 , 0)

bino, B boson B̃0 B0 ( 1, 1 , 0)

Table 1.1: Supermultiplets of the Minimal Supersymmetric Standard Model.

quarks, and to down-type quarks and charged leptons; they are denoted byHu and
Hd respectively. The fermionic superpartners are called appending “-ino” to the
name of the corresponding SM particle, thus the higgsinos are the superpartners
of the two Higgses.

Finally, the gauge bosons of the SM must belongs to gauge supermultiplets.
Their fermionic superpartners are called gauginos. The superpartners of the
gluon, theW -boson and the B-boson are called gluino, wino and bino respectively.
After electroweak symmetry breaking (EWSB) the mass eigenstates are the Z-
boson and the photon whose superpartners are the zino and the photino. The
chiral and gauge supermultiplets of the MSSM are summarized in table 1.1.

1.3.1 The SUSY-preserving Lagrangian

The MSSM superpotential reads

WMSSM = uyuQHu − dydQHd − eyeLHd + µHuHd , (1.14)

12



1.3 The MSSM

where Q, L, u, d, e, Hu, Hd are the chiral superfields containing the SM matter
content summarized in table 1.1, and yu, yd, ye are 3×3 dimensionless matrices in
family space representing the MSSM Yukawa couplings. To simplify the notation,
we have suppressed the gauge and family indices. Since the superpotential is
holomorphic in the chiral superfields, we appreciate why we needed both Hu and
Hd to generated the SM Yukawa couplings.

The last term in eq. (1.14) is known as the µ term and it is the supersymmetric
analogous of the Higgs boson mass. It generates mass terms for the Higgs scalars
and the higgsinos. The superpotential Yukawa terms give rise to interactions
of the form (scalar-fermion-fermion) and (scalar)4. There are also important
(scalar)3 interactions generated by the combination of the µ term and Yukawa
couplings. Since the quarks and charged lepton of the third generation are the
heaviest fermions of the SM, for collider physics it is a good approximation to
neglect all the entries of the MSSM Yukawa matrices except the (3, 3) one, i.e.

yu ≈ diag(0, 0, yt), yd ≈ diag(0, 0, yb), ye ≈ diag(0, 0, yτ ). (1.15)

Most often production and decay processes for superpartners in the MSSM are
dominated by the supersymmetric gauge interactions because all the Yukawa cou-
plings are comparably small with except of the third generation ones. As usual,
the couplings of the MSSM particles to the SM gauge bosons is determined by
gauge invariance of the kinetic terms in the Lagrangian. Supersymmetry also
requires couplings of the gauginos to the (squark,quark), (slepton,lepton) and
(Higgs,higgsino) pairs dictated by their transformation properties under the cor-
responding gauge group and controlled by the gauge couplings. These interactions
yields to the decay channels q̃ → qg̃, q̃ → qW̃ and q̃ → qB̃, when the squarks are
sufficiently heavy for the process to be kinematically allowed, just to mention an
example.

SUSY also implies the existence of scalar quartic interactions fixed by gauge
invariance, arising from the D-term contribution to the scalar potential (1.11).
The interactions of the form (Higgs)4 proportional to g2 and g′2, generalizes the
SM Higgs quartic interaction.

The µ term generates both a mass term for the higgsinos

Lhiggsino mass = −µ(H̃+
u H̃

−
d − H̃0

uH̃
0
d) + h.c. (1.16)

and squared masses with positive sign for the Higgs scalars

LSUSY Higgs mass = −|µ|2
(
|H0

u|2 + |H+
u |2 + |H0

d |2 + |H−d |2
)
. (1.17)

We will see in section 1.3.2 that there are additional contributions to the Higgs
squared masses.

13



1. ASPECTS OF THE MSSM

There are other terms which are allowed in the superpotential that violate
either total lepton number (L) or baryon number (B)

W∆L=1 =
1

2
λijkLiLjek + λ′ijkLiQjdk + µ′iLiHu +

1

2
λ′′ijkuidjdk, (1.18)

with the family indices i = 1, 2, 3. The couplings λ and λ′′ must be antisymmetric
in the last two indices because so it is the corresponding operator. The assign-
ment of the baryon number to the chiral superfields attribute B = +1/3 for Qi,
B = −1/3 for ui, di, and B = 0 for the rest, while the lepton number assignment
are L = +1 for Li, L = −1 for ei, and L = 0 for the rest. The first three terms
in eq. (1.18) violate the lepton number by one unit and the third one violate the
baryon number also by one unit.

These operators are dangerous because baryon and lepton number violating
processes are highly constrained experimentally, e.g. by the non-observation of
proton decay, the smallness of the neutrino masses, etc. [21]. For instance, if both
couplings λ′ and λ′′ are unsuppressed, some decays channels for the proton are
opened like p+ → e+π0 or e+K0 or µ+π0 or µ+K0 or νπ+ or νK+, leading to
large contributions to the proton decay width. This is in conflict with the current
experimental limits, in particular the constrains from Super-Kamiokande for the
channels p→ e+π0 and p→ νK+ are [22, 23]

τ(p→ e+π0) > 8.2× 1033 yrs, τ(p→ νK+) > 5.9× 1033 yrs . (1.19)

How can we suppress or possibly kill these B- and L- violating terms? One
way would be to propose baryon and lepton number as symmetries of the theory,
but they are broken at the non-perturbative level [24]. Moreover, it is very nice
that baryon and lepton number emerge as accidental symmetries in the SM. Then
one adds a new symmetry known as R-parity [25] or equivalently as matter-parity
[26], which forbids the dangerous operators in eq. (1.18).

For each particle, the matter-parity PM and the R−parity PR are defined as

PM = (−1)3(B−L), PR = (−1)3(B−L)+2s , (1.20)

where s is the spin of the particle. They are multiplicative quantum numbers
and both are equivalent since they differ only by the angular momentum which
is conserved in any interaction vertex of the theory. In principle, they can be
an exact symmetry because they are not violated non-perturbatively. All the
SM fields have PR = 1 while all SUSY partners have PR = −1. R−parity
conservation implies that there is no mixing between the SM particles and the
sparticles (sfermions, gauginos and higgsinos).

R−parity (or equivalently matter-parity) has relevant phenomenological con-
sequences:

14



1.3 The MSSM

• Baryon and lepton number are conserved.

• The lightest supersymmetric particle is stable. If it interacts only weakly
with the other particles it can be a good candidate for dark matter.

• The sparticles can only be produced in even numbers at colliders, typically
in pairs.

• Any sparticle but the LSP, must decay into an odd number of LSPs. Typ-
ically one expects just one LSP at the end of the decay chain.

We adopt the definition of the MSSM as the most general renormalizable N = 1
gauge theory with the gauge group of the SM SU(3) × SU(2) × U(1), chiral
content as in the SM and R-parity (or equivalently matter-parity) conserved.

1.3.2 Soft supersymmetry breaking

If Supersymmetry were an exact symmetry of nature, it would predict that the
superpartners have the same masses as the corresponding SM particles in the same
supermultiplet. For example, the gluino and the photino would be massless, the
stop masses would be determined by the top mass mt = 173.34 GeV, and similar
for other sparticles. Therefore, if supersymmetry is realized in nature it must be
broken.

We recall that one of the motivations for SUSY was the cancellation of the
quadratic sensitivity of scalar squared masses. If SUSY is intended to solve
or alleviate the hierarchy problem it should be broken without reintroducing
quadratic sensitivity. This leads to the idea of soft SUSY breaking, which means
that all the SUSY-violating operators in the Lagrangian, denoted as Lsoft, should
have positive energy dimension. The models we will discuss in section 1.4 lead to
effective Lagrangians with terms of this type. The Higgs mass receives corrections
proportional to m2

soft, where msoft is the scale defined by the parameters appearing
in Lsoft. In a natural theory one expects msoft to be below the TeV scale.

It is very useful to parametrize the breaking of Supersymmetry in terms of
an effective MSSM Lagrangian, hiding the details of the mechanism of breaking.
Specific models will be discussed in section 1.4. The possible terms with positive
energy dimension are

Lsoft =−
(

1

2
Ma λ

aλa +
1

6
aijkφiφjφk +

1

2
bijφiφj + h.c.

)
− (m2)ijφ

j∗φi, (1.21)

where Ma are the gaugino masses for each gauge group (i.e. the index a is
summed over each group), bij and (m2)ij are scalar squared-mass terms, and
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1. ASPECTS OF THE MSSM

aijk are the scalar cubic couplings. There are also other operators with positive

energy dimension which one can write, they are the tadpoles φi, a cubic scalar

interaction φ∗iφjφk, and a Dirac mass term between the gauginos and a fermion

ψa if it belongs to a chiral supermultiplet which is a singlet or in the adjoint

representation of a simple factor the gauge group. However, they are not present

in the MSSM.

For the MSSM, the soft SUSY breaking Lagrangian in eq. (1.21) becomes

LMSSM
soft = −1

2

(
M1B̃B̃ +M2W̃W̃ +M3g̃g̃ + h.c.

)

−
(
ũ au Q̃Hu − d̃ ad Q̃Hd − ẽ ae L̃Hd + h.c.

)

− Q̃†m2
Q Q̃− L̃†m2

L L̃− ũm2
u ũ
† − d̃m2

d
d̃
†
− ẽm2

e ẽ
†

− m2
HuH

†
uHu −m2

Hd
H†dHd − (BµHuHd + h.c.) . (1.22)

Here M1, M2 and M3 are the bino, wino and gluino masses, the second line

corresponds to the scalar cubic interactions , the third line contains the squark

and slepton masses, while in the last line m2
Hu

and m2
Hd

are terms of the type

(m2)ij in eq. (1.21) and Bµ is of the type bij in eq. (1.21). The symbols au, ad, ae,

m2
Q, m2

u, m2
d
, m2

L, m2
e denote 3× 3 matrices in family space which are complex

in general. The soft SUSY breaking Lagrangian introduces 105 new independent

parameters, which cannot be rotated away by field redefinitions.

Most of the new parameters in LMSSM
soft contribute to flavor mixing or CP-

violating processes which are tightly constrained by experiments (see references

in section 6.4 of [14]), thus some of these parameters are very suppressed. For in-

stance, the off-diagonal elements of the slepton mass matrix m2
e produces mixing

that violates the individual lepton number. In particular, there is a strong con-

strain from the experimental upper limit on the branching ratio Br(µ→ eγ) [27].

Also the scalar cubic interactions ẽ ae L̃Hd+h.c. can produce slepton mixing once

the Higgs field Hd is put on the VEV, so the off-diagonal entries of the matrix ae

are constrained by the experimental limits on Br(µ → eγ) [27], Br(τ → eγ) or

Br(τ → µγ) [28]. Limits on the parameters ∆mK , ε and ε′/ε of the neutral Kaon

effective Hamiltonian put severe constraints on the d̃L,R-s̃L,R mixings and CP-

violating complex phases [29]. There are also weaker constraints on the u − c,

d − b, s − b squark mixings from the D0 − D0
, B0

d − B
0

d and B0
s − B

0

s systems

respectively. Finally, the experimental limits on the electric dipole moments of

the neutron [30, 31] and electron [32] put strong bounds on the CP-violating

phases in the gaugino masses and scalar cubic couplings. These constraints will

be described in section 1.5.2.
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1.3 The MSSM

1.3.3 Renormalization group equations

Generically, the soft SUSY breaking terms are generated at a scale much higher

than the EW scale, then they should be evolved to the low scale using the renor-

malization group equations (RGEs). This also requires the knowledge of the

RGEs of the SUSY parameters. An important technical observation is that the

most common regularization procedure used in loop computations in the SM, di-

mensional regularization, is not appropriate in the context of the MSSM because

it introduces spurious violation of SUSY. Preferably one should use a SUSY

preserving regularization, among which dimensional reduction [33] is the most

popular one. Usually dimensional reduction is combined with renormalization in

the minimal subtraction scheme, this regularization-renormalization procedure is

known as DR for short.

In supersymmetric theories the shape of the RGEs is determined by the non-

renormalization theorems [34, 35]. They imply that logarithmically divergent

contributions can always be written only in terms of wave-function renormaliza-

tions.

The RGEs for softly broken SUSY are known up to 3-loop order, even some

partial 4-loop results are available (see references in [14]). In practice such level

of precision is not required since the soft terms are not known at such accuracy.

In order to highlight some features about the evolution of the MSSM parame-

ters we consider the one-loop RGEs with real quantities. For the gauge couplings

they read

βga ≡
d

dt
ga =

1

16π2
bag

3
a, (b1, b2, b3) =

{
(41/10, −19/6, −7) SM

(33/5, 1, −3) MSSM
(1.23)

where t = lnQ/Q0 with Q representing the renormalization scale and Q0 a refer-

ence scale.

The β-functions for the superpotential parameters, considering among the

Yukawa couplings only the one of the top quark, are given by

βyt ≡
d

dt
yt=

yt
16π2

[
6y2

t −
16

3
g2

3 − 3g2
2 −

13

15
g2

1

]
, (1.24)

βµ ≡
d

dt
µ=

µ

16π2

[
3y2

t − 3g2
2 −

3

5
g2

1

]
. (1.25)

As a consequence of non-renormalization theorems, these β-functions are propor-

tional to the supersymmetric parameters themselves. They do not depend on

the soft SUSY breaking parameters. Radiative corrections to µ do not change its

order of magnitude with respect to the tree-level value.
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1. ASPECTS OF THE MSSM

Each gaugino mass runs as the corresponding gauge coupling squared, i.e. the
ratio Ma/g

2
a is RGE invariant at one-loop as can be seen from

βMa ≡
d

dt
Ma =

1

8π2
bag

2
aMa (ba = 33/5, 1, −3). (1.26)

In the context of SUSY GUT theory and in the absence of large SUSY breaking
thresholds, it is common to assume that the gaugino masses unify near the GUT
scale with a value m1/2 in analogy to the gauge couplings that are unified with a
value gU . Then the relation

M1

g2
1

=
M2

g2
2

=
M3

g2
3

=
m1/2

g2
U

(1.27)

holds at any scale up to NLO effects.
The RGEs of the soft SUSY breaking trilinear couplings and Bµ are not

protected by the supersymmetric non-renormalization theorems

16π2 d

dt
at=at

[
18y2

t −
16

3
g2

3 − 3g2
2 −

13

15
g2

1

]
+ yt

[32

3
g2

3M3 + 6g2
2M2 +

26

15
g2

1M1

]
,

(1.28)

16π2 d

dt
Bµ=Bµ

[
3y2

t − 3g2
2 −

3

5
g2

1

]
+ µ
[
6atyt + 6g2

2M2 +
6

5
g2

1M1

]
. (1.29)

Here we only included the stop-stop-Higgs trilinear coupling for simplicity. Even
if the cubic couplings and Bµ are zero or negligible at the high scale, they will be
attracted by the gaugino masses when they are evolved to the electroweak scale.
It is usual to define At = at/yt, Ab = ab/yb, Aτ = aτ/yτ and we will also use this
notation later.

For the squared soft masses of the Higgses the RGE are

16π2 d

dt
m2
Hu = 6y2

t (m
2
Hu +m2

Q3
+m2

u3
) + 6a2

t − 6g2
2|M2|2 + . . . , (1.30)

16π2 d

dt
m2
Hd

= −6g2
2|M2|2 + . . . , (1.31)

where the ellipses represent subleading corrections proportional to the gauge cou-
pling g1 or other Yukawa couplings. The squared mass m2

Hu
tends to run smaller

in the infrared because of the terms proportional to y2
t or a2

t in eq. (1.30), which
are typically positive and dominates over the other contributions. As a result
m2
Hu

often runs negative, driving EWSB.
Under the approximation of diagonal squared-mass matrices for squarks and

sleptons, the RGEs of the soft squared masses read

16π2 d

dt
m2
Q3

= 6y2
t (m

2
Hu +m2

Q3
+m2

u3
) + 6a2

t −
32

3
g2

3M
2
3 − 6g2

2M
2
2 + . . . , (1.32)
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16π2 d

dt
m2
u3

= 4y2
t (m

2
Hu +m2

Q3
+m2

u3
) + 4a2

t −
32

3
g2

3|M3|2 + . . . , (1.33)

16π2 d

dt
m2
d3

= −32

3
g2

3M
2
3 + . . . (1.34)

16π2 d

dt
m2
L3

= −6g2
2M

2
2 + . . . , 16π2 d

dt
m2
e3

= . . . (1.35)

Here we have omitted corrections proportional to g1 or Yukawa couplings different

than the one for the top quark; these terms are represented generically by the

ellipses. The RGEs for squarks and sleptons of the first and second families can

be obtained by obvious replacements. Generically, sfermion masses are attracted

by the gaugino masses when they are evolved to the low scale. In particular, the

squark squared masses of the third generation get a large positive contribution

proportional to M2
3 , which typically dominates.

More complete expressions for the MSSM RGEs can be found in [14] and
references therein.

1.3.4 The mass spectrum

Electroweak Symmetry Breaking

Electroweak symmetry breaking in the MSSM involves two Higgs doublets: Hu =

(H+
u , H

0
u) and Hd = (H0

d , H
−
d ). Using SU(2)L gauge transformation one can set

H+
u = H−d = 0 at the minimum of the potential, then focus on the minimization

of the potential of the neutral components

V = (|µ|2 +m2
Hu)|H0

u|2 + (|µ|2 +m2
Hd

)|H0
d |2 − (BµH

0
uH

0
d + h.c.)

+
1

8
(g2 + g′2)(|H0

u|2 − |H0
d |2)2. (1.36)

Through field redefinition and U(1)Y gauge transformations, it is easy to show

that CP cannot be spontaneously broken by the scalar potential, then the Higgs

scalar mass eigenstates have well defined CP quantum numbers at tree level. Any-

way, we will assume in this work that the MSSM parameters introduce negligible

CP violation, which is a good approximation given the experimental constraints.

Requiring the potential to be bounded from below implies

2Bµ < 2|µ|2 +m2
Hu +m2

Hd
, (1.37)

while the condition to have EWSB reads

B2
µ > (|µ|2 +m2

Hu)(|µ|2 +m2
Hd

) . (1.38)
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Neglecting EW effects with respect to the MSSM dimensionful parameters the

EWSB condition implies [36]

det

(
|µ|2 +m2

Hu
−Bµ

−B∗µ |µ|2 +m2
Hd

)
≈ 0 . (1.39)

Models of SUSY breaking that generate m2
Hu

= m2
Hd

at leading order at the high

scale are incompatible with eqs. (1.37) and (1.38). However when the soft masses

are evolved to the electroweak scale, the RGEs drive m2
Hu

negative, such that

m2
Hu

< m2
Hd

. In this case EWSB is caused by quantum corrections, a mechanism

known as radiative electroweak symmetry breaking. For a detail analysis of how

the tuning for EWSB can be achieved, see e.g. [36].

Spontaneous symmetry breaking SU(2)L×U(1)Y → U(1)em occurs when the

Higgs scalars develop a non-zero VEVs

〈H0
u〉 = vu, 〈H0

d〉 = vd , with (1.40)

v2
u + v2

d = v2 = 4m2
Z/(g

2 + g′2) ≈ (246 GeV)2. (1.41)

It is useful to define the angle 0 < β < π/2 as

tan β ≡ vu
vd

=

√
m2
Hd

+ |µ|2
m2
Hu

+ |µ|2 . (1.42)

This is a tree level relation, quantum corrections require different definitions at

higher order. The minimization of the scalar potential also leads to a expression

of the Z−boson mass in terms of the MSSM parameters, which at large tan β

reads

m2
Z = −2(m2

Hu + |µ|2) +
2

tan2 β
(m2

Hd
−m2

Hu) + O(tan−4 β). (1.43)

This shows the µ problem: without accidental cancellations the Higgs squared

soft masses and |µ|2 should be of order m2
Z . However the current collider bounds

already require significant cancellation between m2
Hu

and |µ|2, because of the ra-

diative corrections to m2
Hu

proportional to the stop and gluino squared masses.

The SUSY preserving mass µ and the SUSY breaking soft mass terms are appar-

ently unrelated. Then, why should |µ|2 be approximately of the same order of

the soft squared mass terms? In section 1.4.3 we will study the Giudice-Masiero

mechanism [37] as an example of a possible solution to the µ problem.
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Mass eigenstates

The two Higgs doublets contains eight reals scalars. Three of them are the would
be Nambu-Goldstone bosons eaten by the gauge bosons. The other five physical
mass eigenstates are two CP-even neutral scalars h0 and H0 (h0 is the lightest
one that plays the role of the SM Higgs boson), one CP-odd neutral scalar A0,
and single charged scalars H±. They are related to the interaction eigenstates by
the rotation

(
H0
u

H0
d

)
=

1√
2

(
vu

vd

)
+

1√
2
Rα

(
h0

H0

)
+

i√
2
Rβ0

(
G0

A0

)
(1.44)

(
H+
u

H−∗d

)
=

1√
2
Rβ+

(
G+

H+

)
, (1.45)

where Rα, R0
β and R+

β are orthogonal matrices, in particular the rotation Rα that
diagonalizes the mass matrix of the neutral CP-even scalars is given by

Rα =

(
cosα sinα

− sinα cosα

)
. (1.46)

The mixing angle α ranges from −π/2 < α < 0. Then, the tree level masses for
the Higgs scalars reads

m2
A0 =2b/ sin(2β) = 2|µ|2 +m2

Hu +m2
Hd

(1.47)

m2
h0,H0 =

1

2

(
m2
A0 +m2

Z ∓
√

(m2
A0 −m2

Z)2 + 4m2
Zm

2
A0 sin2(2β)

)
, (1.48)

m2
H± =m2

A0 +m2
W . (1.49)

The mass of the light CP-even neutral Higgs scalar h0, which plays the role of
the SM Higgs boson, must satisfy the tree-level bound

m2
h0 < m2

Z cos2 2β. (1.50)

As a result, one needs to rely on the radiative corrections to reproduce the ex-
perimental value of the Higgs mass.

There is an important situation with mA � mZ , favored by the current con-
straints, known as the decoupling limit. In this case the tree level bound (1.50)
is saturated; and the particles A0, H0, and H± are much heavier than the Higgs
and almost degenerate in mass, so they decouple from low energy experiments.
Furthermore, the mixing angle α is roughly α ≈ β−π/2 and the Higgs couplings
are very close to the SM ones.
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We proceed with the mass matrices for squarks and sleptons. Any sfermions

with the same quantum numbers (electric charge, color, R-parity) can mix with

each other in the general case. Then, there would be 6×6 squared mass matrices

for up-type squarks (ũL, c̃L, t̃L, ũR, c̃R, t̃R), down-type squarks (d̃L, s̃L, b̃L, d̃R,

s̃R, b̃R), and charged sleptons (ẽL, µ̃L, τ̃L, ẽR, µ̃R, τ̃R), and one 3 × 3 matrix

for sneutrinos (ν̃e, ν̃µ, ν̃τ ). As a way to evade the bounds from flavor physics

mentioned at the end of section 1.3.2, we make the simplifying assumption that

the soft parameters are flavor blind such that there is no significant mixing be-

tween sfermions of different generations. Thus, only left and right components of

a given sfermion flavor (f̃L, f̃R) can mix, with mass matrices

M2
f̃

=

(
m2
f̃L

+m2
f +m2

Z cos 2β (T 3
f −Qfs

2
w) mfXf

mfXf m2
f̃R

+m2
f +m2

Z cos 2β Qf s
2
w

)
,

(1.51)

where mf̃L
and mf̃R

are the soft masses for the doublet (that contains the left com-

ponent) and the right handed sfermions respectively, Qf and T 3
f denote electric

charge and isospin of the corresponding fermion in the same supermultiplet, and

mf is the mass of the fermion. This sfermion mixing breaks EW symmetry, thus

it is automatically suppressed by the fermion masses. The mixing parameters Xf

are given by Xt = At − µ cot β, Xb = Ab − µ tan β, and Xτ = Aτ − µ tan β for

the stops, sbottoms and staus respectively; while one can generically neglect the

mixing for the other sfermions due to the smallness of the corresponding Yukawa

couplings.

Finally, we are left to consider the mass eigenstates composed of a mixture of

the fermion superpartners (gauginos and higgsinos). The gluino cannot mix with

other MSSM fermions because it is the only one carrying color, so its mass is fixed

by the soft parameter M3. The charged higgsinos (H̃+
u , H̃−d ) and winos (W̃+, W̃−)

combine in two mass eigenstates named charginos. The neutral components of

gauginos (B̃, W̃ 0) and higgsinos (H̃0
u, H0

d) associate to form four mass eigenstates

known as neutralinos. Ordered by ascending mass, the charginos and neutralinos

are denoted as χ̃±i (i = 1, 2) and χ̃0
i (i = 1, 2, 3, 4). In the gauge-eigenstate basis

ψ± = (W̃±, H̃±u ) for the charged fermions and (B̃, W̃ 0, H̃0
d , H̃

0
u) for the neutral

ones, the chargino and neutralino mass matrices are given by

M2
χ̃± =

(
M2 gvu

gvd µ

)
=

(
M2

√
2sβmW√

2cβmW µ

)
, (1.52)
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M2
χ̃0 =




M1 0 −cβsWmZ sβsWmZ

0 M2 cβcWmZ −sβcWmZ

−cβsWmZ cβsWmZ 0 −µ
sβsWmZ −sβcWmZ −µ 0


 . (1.53)

The mixing between gauginos and higgsinos is an electroweak effect. In a situation

with relatively heavy gaugino masses and µ parameter the mixing is suppressed.

Then the charginos are very nearly wino-like and higgsino-like, and the neutrali-

nos are very nearly bino-like, wino-like and higgsino-like (H̃0
u ± H̃0

d)/
√

2. Their

masses are almost completely determined by the value of the gaugino masses and

the µ parameter. Usually one assumes that the lightest neutralino is the LSP,

except when there is a lighter gravitino, because it is the only MSSM particle

that can be a viable dark matter candidate.

1.4 Models of SUSY breaking

We will discuss models of spontaneous SUSY breaking which lead to the La-

grangian LMSSM
soft as the low energy effective field theory. In these models the vac-

uum state |0〉 is not invariant under supersymmetry transformations (Qα|0〉 6= 0

and Q†α|0〉 6= 0). The Hamiltonian of a theory with global supersymmetry can be

written in terms of the generators

H = P 0 =
1

4

(
QαQ

†
α +Q†αQα

)
. (1.54)

When supersymmetry is exact H|0〉 = 0 and the vacuum state has zero energy.

For spontaneously broken supersymmetry the vacuum state has positive energy

due to positivity of the Hilbert space

〈0|H|0〉 =
1

4

∑

α

(
||Q†α|0〉||2 + ||Qα|0〉||2

)
> 0. (1.55)

In perturbative models, the energy of the vacuum state is determined by the

scalar potential since 〈0|H|0〉 = 〈0|V |0〉. This implies that supersymmetry can

be spontaneously broken when the F - or/and D- terms have a non-zero VEV. Of

course, when supersymmetric vacua exist they are global minima of the potential.

Acceptable vacua can be either stable or metastable but sufficiently long-lived.

The extended Nambu-Goldstone theorem states that when a global symmetry

is spontaneously broken there is a massless mode with the same quantum numbers

as the broken generator. Since supersymmetry is a fermionic symmetry and the

23



1. ASPECTS OF THE MSSM

(Hidden sector)
(Visible sector)

Supersymmetry

breaking origin
     MSSMFlavor-blind

interactions

Figure 1.2: Expected paradigm of how SUSY breaking should be realized [14].

broken generator is the fermionic charge Qα, the associated Nambu-Goldstone
particle is a massless neutral Weyl fermion known as the goldstino. Theories
with spontaneous SUSY breaking also satisfy a sum rule for the tree-level squared
mass matrices

STr(m2) = Tr(m2
S)− 2Tr(m†FmF ) + 3Tr(m2

V ) = −2gaTr(T a)Da = 0. (1.56)

In the equation above STr(m2) ≡ ∑j(−1)2j(2j + 1)Tr(m2
j) is the supertrace of

the tree level squared mass matrices and we suppose that the traces of the U(1)
charges over the chiral superfields vanishes, which is satisfied by the U(1)Y of the
MSSM and as well as any anomaly free gauge symmetry.

Within the MSSM field content, a D-term VEV for U(1)Y would produce
an unsatisfactory spectrum because of the supertrace mass formula (1.56) and
there is no gauge singlet whose F -term could develop a VEV. Then there should
exists additional field content responsible for supersymmetry breaking and its
communication to the MSSM. On top of that, it is difficult to find a phenomeno-
logically suitable model which communicates SUSY breaking to the observable
sector only through renormalizable interactions at tree level, because there is not
any scalar-gaugino-gaugino operator which could give rise to the gaugino masses
when the scalar gets a VEV. Also, after taking into account the bounds from
flavor there will be sum rules analogous to (1.56) which predicts too light fermion
superpartners.

According to the arguments above, one expects the following paradigm to
fulfill the constraints from the mass sum rules and flavor violation. The MSSM
soft terms are generated radiatively, rather than from tree-level couplings to the
SUSY-breaking sector. Thus SUSY breaking takes place in a so called hidden
sector of particles that have no or very small direct couplings to the observable
or visible sector determined by the MSSM. This is illustrated in fig. 1.2. The
main proposals communicate SUSY breaking to the observable sector through
gravity or gauge interactions.

The spontaneous breaking of global supersymmetry implies the existence of
the goldstino, the fermionic component of the supermultiplet whose auxiliary field
gets a VEV. In a theory including gravity, supersymmetry must be promoted to
a local symmetry. This theory, which unifies the spacetime symmetries of general
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1.4 Models of SUSY breaking

relativity with local supersymmetry transformations, is known as supergravity. In
supergravity, the graviton multiplet contains, in addition to the spin-2 graviton,
a spin-3/2 fermion superpartner called the gravitino. The gravitino should be
thought of as the gauge field of local supersymmetry transformations. If SUSY
is not broken, the graviton and the gravitino are massless, each with two spin
helicity states. When SUSY is spontaneously broken, the gravitino acquires a
mass by eating the goldstino, which becomes its longitudinal components. The
massive gravitino now has four helicity states, two of which were part of the
would-be goldstino. This is called the super-Higgs mechanism in analogy with
the Higgs mechanism in the SM. The gravitino mass, denoted as m3/2, can be
estimated in the presence of F -term breaking using dimensional analysis

m3/2 ∼
F

MP

. (1.57)

Here we have used that m3/2 must vanish in the limits when SUSY is restored
(F → 0) and when gravity is turned off (MP →∞).

1.4.1 Gravity mediation

We describe a scenario in which SUSY breaking is communicated to the MSSM
sector through gravitational interactions. One can parametrize the effect with a
effective theory at low energy in terms of higher dimensional operators suppressed
by the Planck mass MP with the following superpotential, Kähler potential and
gauge kinetic function

W = WMSSM −
1

MP

(
1

6
yXijkXΦiΦjΦk +

1

2
µXijXΦiΦj

)
+ . . . , (1.58)

K = Φ∗iΦi +
1

MP

(
njiX + njiX

∗)Φ∗iΦj −
1

M2
P

kjiXX
∗Φ∗iΦj + . . . , (1.59)

fab =
δab
g2
a

(
1− 2

MP

faX + . . .
)
, (1.60)

where Φi denotes the chiral superfields of the visible sector, yXijk, kji , n
j
i , n

j
i

and fa are dimensionless couplings, and µXij has the dimension of mass. The
superfield X represents a spurion whose F -term acquires a non-zero VEV F

X = θθF, X† = θ̄θ̄ F . (1.61)

After performing the integral over the superspace one gets the following SUSY
breaking Lagrangian

Lsoft =− F

2MP

faλ
aλa − F

6MP

yXijkφiφjφk −
F

2MP

µXijφiφj −
F

MP

njiφjW
i
MSSM + h.c.
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− |F |
2

M2
P

(kij + nipn
p
j)φ
∗jφi . (1.62)

On the other hand, the MSSM superpotential is given by

WMSSM =
1

6
yijkΦiΦjΦk +

1

2
µijΦiΦj. (1.63)

This leads to the following soft terms

Ma =
F

MP

fa, (1.64)

aijk =
F

MP

(yXijk + nipy
pjk + njpy

pik + nkpy
pij), (1.65)

bij =
F

MP

(µXij + nipµ
pj + njpµ

pi), (1.66)

(m2)ij =
|F |2
M2

P

(kij + nipn
p
j). (1.67)

Also the operator φ∗iφjφk is generated from non-renormalizable terms in the
Kähler potential, but its coupling is of order F 2/M3

P ∼ m2
soft/MP , i.e. it is

very suppressed. To explain the absence of O(1) flavor changing neutral current
(FCNC) effects in gravity mediation additional structure is needed. The param-
eters fa, k

i
j, n

j
i , y

Xijk and µXij may be determined from the theory of ultraviolet
completion. In principle the gravitino mass is comparable to other soft masses.
But the details of the spectrum are model-dependent.

Related to this context, a setup in which all supersymmetric particles have
masses around a common mass scale mSUSY, that can be generically much larger
than the electroweak scale, has received some interest in the literature. This
scenario is known as High-Scale SUSY. For simplicity, sometimes we will assume
that all supersymmetric particles are degenerate in mass.

1.4.2 Gauge mediation

Supersymmetry breaking can be communicated to the observable sector through
gauge interactions leading to the so-called gauge mediated supersymmetry break-
ing (GMSB) models. One introduces new chiral superfields, called messengers,
that couple to the SUSY breaking sector and are charged under the SM group. In
the simplest GUT version, the messenger fields are a set of left-handed chiral su-
permultiplets q, q̄, `, ¯̀with the following charges under SU(3)C×SU(2)L×U(1)Y

q ∼ (3,1,−1

3
), q ∼ (3,1,

1

3
), ` ∼ (1,2,

1

2
), ` ∼ (1,2,−1

2
). (1.68)
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˜B, ˜W, g̃ ˜B, ˜W, g̃

〈FX〉

MX

Figure 1.3: One-loop diagrams generating the MSSM gauginos masses in GMSB.

The messengers acquire their masses from a superpotential coupling to a spurion
superfield X

W ⊃ y2X` `+ y3Xqq, (1.69)

whose scalar component and its F−term have a non-zero VEV,

〈X〉 = MX + θ2〈FX〉. (1.70)

While masses of the fermion component of the messengers (ψ`, ψ`, ψq, ψq) re-
ceives only supersymmetric contribution from the Yukawa type interaction with
the spurion, the scalars (φ`, φ`, φq, φq) receive both supersymmetric and non-
supersymmetric contributions from the potential

mψ`,ψ`
= y2MX , m2

φ`,φ`
= |y2MX |2 ± |y2〈FX〉| (1.71)

mψq ,ψq = y3MX , m2
φq ,φq

= |y3MX |2 ± |y3〈FX〉|. (1.72)

The MSSM gaugino masses are generated at one-loop from the diagrams in
fig. 1.3, where the internal lines represents the scalar and fermion component of
the messengers and the vertex arises from the supersymmetric gauge interactions.
These one-loop diagrams give

Ma =
αa
4π

Λ, (1.73)

where Λ is a mass parameter defined as

Λ ≡ 〈FX〉
MX

. (1.74)

The leading contribution to the scalar masses starts at two-loops (see fig. 1.4),
with messenger fermions (represented by heavy solid lines), messenger scalars
(heavy dashed-lines) and ordinary gauge bosons (wavy lines) and gauginos (solid
lines with wavy lines on top) around the loops. The result reads

m2
φi

= 2Λ2

[(α3

4π

)2

C3(i) +
(α2

4π

)2

C2(i) +
(α1

4π

)2

C1(i)

]
, (1.75)
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Figure 1.4: Two-loop diagrams inducing the scalar soft masses in GMSB at

leading order, with messenger fermions (represented by heavy solid lines), messen-

ger scalars (heavy dashed-lines), ordinary gauge bosons (wavy lines) and gauginos

(solid lines with wavy lines on top) around the loops.

where Ca(i) are the quadratic Casimir invariants, defined in terms of the Lie al-
gebra generators T a by (T aT a)ji = Ca(i)δ

j
i . The scalar cubic couplings au, ad, ae

are generated at two-loops, but they have dimension of (mass)1 so they are sup-
pressed with respect to the gaugino and scalar masses. For practical purposes, it
is a very good approximation to assume

au = ad = ae = 0. (1.76)

Note that the MSSM soft masses and cubic couplings are running parameters and
the eqs. (1.73)–(1.76) holds at the renormalization scale corresponding to the av-
erage characteristic mass of the messengers, i.e. Mmess ∼ yIMX with I = 2, 3.
Also these equations have been obtained under the assumption 〈FX〉/(yIM2

X)� 1
when the mass splittings within each messenger supermultiplet are small com-
pared to the overall messenger scale.

The model can be generalized to have a different messenger sector with chiral
superfields ΦI ,ΦI coupled to the spurion X by

Wmess =
∑

I

yIXΦIΦI . (1.77)

The left-handed supermultiplet ΦI transforms as the complex conjugate represen-
tation of ΦI , also a left-handed supermultiplet. When the spurionX is substituted
by the VEV, the masses for the components of the messenger superfields develop.
Then the MSSM soft masses have the following form

Ma =
αa
4π

Λ
∑

I

na(I), (a = 1, 2, 3) (1.78)
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m2
φi

= 2Λ2
∑

I

[(α3

4π

)2

C3(i)n3(I) +
(α2

4π

)2

C2(i)n2(I) +
(α1

4π

)2

C1(i)n1(I)

]
,

(1.79)

where na(I) is the Dynkin index for Φi + Φi, with the normalization in which

n3 = 1 for a 3 + 3 of SU(3)C , n2 = 1 for a 2 + 2 of SU(2) and for U(1)Y the

Dynkin index is n1 = 6Y 2/5 for each pair with weak hypercharges ±Y . In order

to keep the prediction of unification of gauge couplings, if the messengers have

masses below the GUT scale, they should appear in complete representations of

the SU(5) group that contains the Standard Model gauge group, and the various

components should have similar masses. Therefore, often it is consider that the

messenger sector is composed by N5 copies of the 5+5 of SU(5). In this case the

Dynkin indices are given by
∑

I na(I) = N5 for a = 1, 2, 3. The minimal model

corresponds to N5 = 1.

Solutions to the µ problem in GMSB theories generically introduce a µ−Bµ

problem [38]: both µ and Bµ are generated at the same order in perturbation

theory (say one-loop), which produces a hierarchy Bµ � µ2 inconsistent with

EWSB. There are solutions to the µ−Bµ problem (see e.g. [38–40] and references

therein) but they require excessive model building.

One of the most attractive features of gauge mediation models is that the

masses of the scalar superpartners depend only on their gauge quantum numbers,

thus the flavor-violating mixings are automatically suppressed.

Minimal Gauge Mediation (MGM)

GMSB scenarios do not necessarily predict the values of µ and Bµ. Natural

implementations of GMSB have to deal with the µ and the µ − Bµ problems.

Minimal gauge mediation (MGM) scenario does not try to address these problems.

Instead it is driven by minimality.

The soft masses for scalars and gauginos are generated as explained above. On

the other hand, MGM does not predict a value for the superpotential parameter µ,

it is rather treated as an independent parameter whose value is fixed by the EWSB

condition. The parameter Bµ and the trilinear scalar couplings are negligible at

the messenger scale where SUSY breaking MSSM parameters originate. This is

a plausible assumption because in gauge mediation the A-terms are generated

at two loops and there is no compelling argument to forbid vanishing tree level

Bµ term. Both the values of the A-terms and Bµ are generated by radiative

corrections when they are evolved to the electroweak scale. Since Bµ violates

both Peccei-Quinn symmetry and R-symmetry, in order to generate a non-zero
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value from the RGEs in eq. (1.29), non-zero values are required for µ and at least

one of the trilinear couplings or the electroweakino masses.

MGM has interesting phenomenological consequences [41, 42], as will be

shown in section 3.5.1. We will also see that requiring the model reproduces

the observed value of the Higgs mass is a very powerful constraint.

Lopsided Gauge Mediation

Lopsided gauge mediation models [43] propose a solution to the µ−Bµ problem of

gauge mediation, where both µ and Bµ are generated at one-loop order. The soft

masses are generated as in minimal gauge mediation through messenger loops.

On the other hand, µ and Bµ are generated by adding direct couplings of the

Higgs doublets to two (additional) pairs of messenger fields (D, D̄ and S, S̄)

W = λuHuDS + λdHdD̄S̄ +XDDD̄ +XSSS̄, (1.80)

with

XD,S = MD,S(1 + ΛD,S θ
2) . (1.81)

Then, the calculation of the soft parameters of the Higgs sector yields

m
2 (l)
Hu,d

=
λ2
u,d

16π2
Λ2
D P (x, y) (1.82)

µ =
λuλd
16π2

ΛDQ(x, y) (1.83)

Bµ =
λuλd
16π2

Λ2
D R(x, y) (1.84)

Au,d =
λ2
u,d

16π2
ΛD S(x, y) , (1.85)

with x = MS/MD, y = ΛS/ΛD and the (P,Q,R, S) functions defined as

P (x, y) =
x2(1− y)2

(x2 − 1)3

[
2(1− x2) + (1 + x2) log x2

]
(1.86)

Q(x, y) =
x

(x2 − 1)2

[
(x2 − 1)(1− y) + (y − x2) log x2

]
(1.87)

R(x, y) =
x

(x2 − 1)3

{
(1− x4)(1− y)2 +

[
2x2(1 + y2)− y(1 + x2)2

]
log x2

}

(1.88)

S(x, y) =
1

(x2 − 1)2

[
(x2 − 1)(1− x2y)− x2(1− y) log x2

]
. (1.89)
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Unfortunately, one finds R and P satisfy |R(x, y)| ≥ 2P (x, y) for any x and y.

This relation is problematic for EWSB because for small value of µ it implies

m2
Hum

2
Hd
−B2

µ ∝ P 2(x, y)−R2(x, y) < 0 (1.90)

at the messenger scale. Namely, EWSB takes place at the messenger scale, leading

to a spectrum with too light sparticles. In the original proposal [43], this difficulty

was overcome by complicating the model. We re-examine the simplest versions

of lopsided gauge mediation in chapter 3 (section 3.5.2) and analyze whether the

EWSB condition can be satisfied without adding new degrees of freedom.

The phenomenology of some enlarged versions of the model was discussed in

detail in ref. [43]. As it is often the case in gauge mediation, the LSP is the

gravitino. Since µ and Bµ originate at the same order in perturbation theory,

generically they satisfy µ� Bµ and the EWSB condition imply that µ is smaller

than the scale of the soft masses. Then, the model is characterized by a light

higgsino which is typically the next-to-lightest supersymmetric particle (NLSP),

although the possibility of sneutrino NLSP was also considered in [43].

1.4.3 Anomaly mediation

We discuss a model known as (un-sequestered) anomaly-mediated supersymme-

try breaking (AMSB) [44]. Scalar masses are generated by gravity-mediated

contribution of order the gravitino mass m3/2. Gaugino masses are protected by

R-symmetry and the leading contribution comes from one-loop anomaly media-

tion effects [44, 45]

Ma =
βga
ga
m3/2, (1.91)

where βga is the β-function of the gauge coupling ga. Similarly, the trilinear

couplings also receive their main contribution from anomaly mediation

af = −βyfm3/2, (1.92)

with βyf being the β-function corresponding to the top Yukawa yf of the fermion f .

The eqs. (1.91) and (1.92) hold at any renormalization scale to all orders in per-

turbation theory since they resulted from the conformal anomaly. The spectrum

naturally has a one-loop splitting between the scalars and gauginos. The values

of µ and Bµ depend on the details of the hidden sector and its interactions with

the Higgses.

To completely specify the model one should define how µ and Bµ are gener-

ated. Both µ and Bµ can be generated compatible with EWSB by supergravity
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effects through the Giudice-Masiero mechanism [37]. This is triggered by the

operators ∫
d4θ

X†X

M2
P

HuHd,

∫
d4θ

X†

MP

HuHd, (1.93)

with chiral superfield X = MP+θ2F . The integrals produce Bµ ∼ |µ|2 ∼ m2
3/2. In

this case the tuning of EWSB can be achieved through either µ or Bµ and m2
Hu

can

run negative (see eg. [36]). Another possibility corresponds to Bµ ∼ m2
3/2 > |µ|2,

where the tuning of EWSB must be carried out through Bµ and m2
Hu

must stay

positive. This can also be accomplished by the Giudice-Masiero mechanism,

assigning a VEV to X smaller than MP and R-charge to X different from to 2

such that the second operator in eq. (1.93) is forbidden.

Without an alignment mechanism, O(1) flavor violations are expected from the

gravity mediated contributions to the scalar masses and FCNCs bound the scalar

masses to lie above few 103 TeV [46]. Given the high scale of mediation, additional

constraints exist from the RGE evolution of the soft spectrum potentially leading

to unwanted tachyonic states [36]. The LHC phenomenology depends on the

origin µ/Bµ and the solution to the flavor problem. In the absence of an alignment

mechanism of the soft masses, the gravitino mass should be sufficiently large

implying that gauginos are not accessible at the LHC, although higgsinos may

be light. If the flavor problem is addressed, gauginos and in particular the gluino

may be accessible at the LHC.

1.4.4 Split SUSY

Supported by the failure of the naturalness principle in explaining the smallness of

the cosmological constant, one can consider theories in which SUSY is broken at

scales much higher than the TeV. Moreover the absence of experimental evidence

of sparticles already introduces a little hierarchy problem. Split SUSY [9, 10]

models are characterized by scalar superparticles with masses around m0 well

above the TeV scale, while fermionic superparticles are lighter as they are pro-

tected by R-symmetry, with masses of order m1/2 possibly near the weak scale.

The AMSB model considered in the previous section leads to a Split-SUSY spec-

trum. Other examples such as U(1)′ mediation, Split-gauge mediation and triplet

mediation are discussed in [36].

Fermions near the TeV scale are convenient in order to preserve the successful

gauge coupling unification. In particular, higgsinos should be below 100 TeV. On

the other hand, scalars come in almost complete representations of SU(5) and do

not affect unification at one loop order. The heavy Higgs doublet gives a small

contribution to the running of the gauge couplings. Another reason to expect
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gauginos and higgsinos to be near the TeV scale is to provide a good dark matter

candidate.

This pattern of SUSY breaking is exempt from the usual difficulties of the

MSSM: the absence of sparticles, dimension five proton decay, SUSY flavor and

CP problems, and the cosmological gravitino problem. It is important to note

that the scalar superparticles can not be arbitrarily heavy with respect to the

fermions, as their masses are constrained to be below 105 TeV [36, 47, 48] by the

measured value of the Higgs mass. Having correct electroweak symmetry breaking

and the renormalization group evolution of the scalar masses also constrain Split

model building.

The phenomenology of Split SUSY has a golden channel of gluino decaying

into a quark, antiquark and the LSP. Since the scalar masses has to lie below

105 TeV in order to reproduce the Higgs mass, the gluino lifetime is generically

less than 10−8 s. Therefore, if the gluinos are produced at the LHC, they will show

up as displaced vertices or prompt decays unless the scalars are above 104 TeV,

as discussed in [36].

In case the gluino is the LSP, it decays directly, for example into a gravitino

and a gluon. Then the gluino lifetime is not related to the scalar masses but

still its decay leads to interesting phenomenology. There are other channels in-

volving the gauginos and higgsinos but the best LHC search strategy depends

on the details of the spectrum. A light bino with no other accessible states is

undetectable. More optimistic appears the production of light higgsinos, light

winos or an admixture of electrowikinos and/or higgsinos.

1.5 Experimental searches for SUSY

1.5.1 Direct searches at colliders

After two years of maintenance and upgrading, the LHC has started its second

three-year run. It is operating at collision energy of 13 TeV, a substantial increase

with respect to the run I, which began at 7 TeV, rising to 8 TeV.

As mentioned before, R-parity implies that sparticles are produced in pairs.

The production of colored particles is dominated by the strong interactions, the

processes at the partonic level has the form

gg → g̃g̃, q̃iq̃
∗
j , (1.94)

gq → g̃q̃i, (1.95)

qq → g̃g̃, q̃iq̃
∗
j , (1.96)
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MSUGRA/CMSSM 0-3 e, µ /1-2 τ 2-10 jets/3 b Yes 20.3 m(q̃)=m(g̃) 1507.055251.85 TeVq̃, g̃

q̃q̃, q̃→qχ̃
0
1 0 2-6 jets Yes 3.2 m(χ̃

0
1)<250 GeV, m(1st gen. q̃)=m(2nd gen. q̃) 1605.038141.03 TeVq̃

q̃q̃, q̃→qχ̃
0
1 (compressed) mono-jet 1-3 jets Yes 3.2 m(q̃)-m(χ̃

0
1 )<5 GeV 1604.07773608 GeVq̃

g̃g̃, g̃→qq̄χ̃
0
1 0 2-6 jets Yes 3.2 m(χ̃

0
1)<250 GeV 1605.038141.51 TeVg̃

g̃g̃, g̃→qqχ̃
±
1→qqW±χ̃01 1 e, µ 2-6 jets Yes 3.3 m(χ̃

0
1)<350 GeV, m(χ̃

±
)=0.5(m(χ̃

0
1)+m(g̃)) 1605.042851.6 TeVg̃

g̃g̃, g̃→qq(ℓℓ/ℓν/νν)χ̃
0
1

2 e, µ 0-3 jets - 20 m(χ̃
0
1)=0 GeV 1501.035551.38 TeVg̃

g̃g̃, g̃→qqWZχ̃
0
1 0 7-10 jets Yes 3.2 m(χ̃

0
1) =100 GeV 1602.061941.4 TeVg̃

GMSB (ℓ̃ NLSP) 1-2 τ + 0-1 ℓ 0-2 jets Yes 3.2 To appear2.0 TeVg̃

GGM (bino NLSP) 2 γ - Yes 3.2 cτ(NLSP)<0.1 mm 1606.091501.65 TeVg̃

GGM (higgsino-bino NLSP) γ 1 b Yes 20.3 m(χ̃
0
1)<950 GeV, cτ(NLSP)<0.1 mm, µ<0 1507.054931.37 TeVg̃

GGM (higgsino-bino NLSP) γ 2 jets Yes 20.3 m(χ̃
0
1)<850 GeV, cτ(NLSP)<0.1 mm, µ>0 1507.054931.3 TeVg̃

GGM (higgsino NLSP) 2 e, µ (Z) 2 jets Yes 20.3 m(NLSP)>430 GeV 1503.03290900 GeVg̃

Gravitino LSP 0 mono-jet Yes 20.3 m(G̃)>1.8 × 10−4 eV, m(g̃)=m(q̃)=1.5 TeV 1502.01518865 GeVF1/2 scale

g̃g̃, g̃→bb̄χ̃
0
1 0 3 b Yes 3.3 m(χ̃

0
1)<800 GeV 1605.093181.78 TeVg̃

g̃g̃, g̃→tt̄χ̃
0
1

0-1 e, µ 3 b Yes 3.3 m(χ̃
0
1)=0 GeV 1605.093181.8 TeVg̃

g̃g̃, g̃→bt̄χ̃
+
1 0-1 e, µ 3 b Yes 20.1 m(χ̃

0
1)<300 GeV 1407.06001.37 TeVg̃

b̃1b̃1, b̃1→bχ̃
0
1 0 2 b Yes 3.2 m(χ̃

0
1)<100 GeV 1606.08772840 GeVb̃1

b̃1b̃1, b̃1→tχ̃
±
1 2 e, µ (SS) 0-3 b Yes 3.2 m(χ̃

0
1)=50 GeV, m(χ̃

±
1 )= m(χ̃

0
1)+100 GeV 1602.09058325-540 GeVb̃1

t̃1 t̃1, t̃1→bχ̃
±
1 1-2 e, µ 1-2 b Yes 4.7/20.3 m(χ̃

±
1 ) = 2m(χ̃

0
1), m(χ̃

0
1)=55 GeV 1209.2102, 1407.0583117-170 GeVt̃1 200-500 GeVt̃1

t̃1 t̃1, t̃1→Wbχ̃
0
1 or tχ̃

0
1

0-2 e, µ 0-2 jets/1-2 b Yes 20.3 m(χ̃
0
1)=1 GeV 1506.08616, 1606.0390390-198 GeVt̃1 205-715 GeVt̃1 745-785 GeVt̃1

t̃1 t̃1, t̃1→cχ̃
0
1 0 mono-jet/c-tag Yes 20.3 m(t̃1)-m(χ̃

0
1 )<85 GeV 1407.060890-245 GeVt̃1

t̃1 t̃1(natural GMSB) 2 e, µ (Z) 1 b Yes 20.3 m(χ̃
0
1)>150 GeV 1403.5222150-600 GeVt̃1

t̃2 t̃2, t̃2→t̃1 + Z 3 e, µ (Z) 1 b Yes 20.3 m(χ̃
0
1)<200 GeV 1403.5222290-610 GeVt̃2

t̃2 t̃2, t̃2→t̃1 + h 1 e, µ 6 jets + 2 b Yes 20.3 m(χ̃
0
1)=0 GeV 1506.08616320-620 GeVt̃2

ℓ̃L,R ℓ̃L,R, ℓ̃→ℓχ̃01 2 e, µ 0 Yes 20.3 m(χ̃
0
1)=0 GeV 1403.529490-335 GeVℓ̃

χ̃+
1
χ̃−
1 , χ̃

+
1→ℓ̃ν(ℓν̃) 2 e, µ 0 Yes 20.3 m(χ̃

0
1)=0 GeV, m(ℓ̃, ν̃)=0.5(m(χ̃

±
1 )+m(χ̃

0
1)) 1403.5294140-475 GeVχ̃±

1

χ̃+
1
χ̃−
1 , χ̃

+
1→τ̃ν(τν̃) 2 τ - Yes 20.3 m(χ̃

0
1)=0 GeV, m(τ̃, ν̃)=0.5(m(χ̃

±
1 )+m(χ̃

0
1)) 1407.0350355 GeVχ̃±

1

χ̃±
1
χ̃0
2→ℓ̃Lνℓ̃Lℓ(ν̃ν), ℓν̃ℓ̃Lℓ(ν̃ν) 3 e, µ 0 Yes 20.3 m(χ̃

±
1 )=m(χ̃

0
2), m(χ̃

0
1)=0, m(ℓ̃, ν̃)=0.5(m(χ̃

±
1 )+m(χ̃

0
1)) 1402.7029715 GeVχ̃±

1 , χ̃
0

2

χ̃±
1
χ̃0
2→Wχ̃

0
1Zχ̃

0
1

2-3 e, µ 0-2 jets Yes 20.3 m(χ̃
±
1 )=m(χ̃

0
2), m(χ̃

0
1)=0, sleptons decoupled 1403.5294, 1402.7029425 GeVχ̃±

1 , χ̃
0

2

χ̃±
1
χ̃0
2→Wχ̃

0
1h χ̃

0
1, h→bb̄/WW/ττ/γγ e, µ, γ 0-2 b Yes 20.3 m(χ̃

±
1 )=m(χ̃

0
2), m(χ̃

0
1)=0, sleptons decoupled 1501.07110270 GeVχ̃±

1 , χ̃
0

2

χ̃0
2
χ̃0
3, χ̃

0
2,3 →ℓ̃Rℓ 4 e, µ 0 Yes 20.3 m(χ̃

0
2)=m(χ̃

0
3), m(χ̃

0
1)=0, m(ℓ̃, ν̃)=0.5(m(χ̃

0
2)+m(χ̃

0
1)) 1405.5086635 GeVχ̃0

2,3

GGM (wino NLSP) weak prod. 1 e, µ + γ - Yes 20.3 cτ<1 mm 1507.05493115-370 GeVW̃

GGM (bino NLSP) weak prod. 2 γ - Yes 20.3 cτ<1 mm 1507.05493590 GeVW̃

Direct χ̃
+
1
χ̃−
1 prod., long-lived χ̃

±
1 Disapp. trk 1 jet Yes 20.3 m(χ̃

±
1 )-m(χ̃

0
1)∼160 MeV, τ(χ̃

±
1 )=0.2 ns 1310.3675270 GeVχ̃±

1

Direct χ̃
+
1
χ̃−
1 prod., long-lived χ̃

±
1 dE/dx trk - Yes 18.4 m(χ̃

±
1 )-m(χ̃

0
1)∼160 MeV, τ(χ̃

±
1 )<15 ns 1506.05332495 GeVχ̃±

1

Stable, stopped g̃ R-hadron 0 1-5 jets Yes 27.9 m(χ̃
0
1)=100 GeV, 10 µs<τ(g̃)<1000 s 1310.6584850 GeVg̃

Stable g̃ R-hadron trk - - 3.2 1606.051291.58 TeVg̃

Metastable g̃ R-hadron dE/dx trk - - 3.2 m(χ̃
0
1)=100 GeV, τ>10 ns 1604.045201.57 TeVg̃

GMSB, stable τ̃, χ̃
0
1→τ̃(ẽ, µ̃)+τ(e, µ) 1-2 µ - - 19.1 10<tanβ<50 1411.6795537 GeVχ̃0

1

GMSB, χ̃
0
1→γG̃, long-lived χ̃

0
1

2 γ - Yes 20.3 1<τ(χ̃
0
1)<3 ns, SPS8 model 1409.5542440 GeVχ̃0

1

g̃g̃, χ̃
0
1→eeν/eµν/µµν displ. ee/eµ/µµ - - 20.3 7 <cτ(χ̃

0
1)< 740 mm, m(g̃)=1.3 TeV 1504.051621.0 TeVχ̃0

1

GGM g̃g̃, χ̃
0
1→ZG̃ displ. vtx + jets - - 20.3 6 <cτ(χ̃

0
1)< 480 mm, m(g̃)=1.1 TeV 1504.051621.0 TeVχ̃0

1

LFV pp→ν̃τ + X, ν̃τ→eµ/eτ/µτ eµ,eτ,µτ - - 20.3 λ′
311

=0.11, λ132/133/233=0.07 1503.044301.7 TeVν̃τ

Bilinear RPV CMSSM 2 e, µ (SS) 0-3 b Yes 20.3 m(q̃)=m(g̃), cτLS P<1 mm 1404.25001.45 TeVq̃, g̃

χ̃+
1
χ̃−
1 , χ̃

+
1→Wχ̃

0
1, χ̃

0
1→eeν̃µ, eµν̃e 4 e, µ - Yes 20.3 m(χ̃

0
1)>0.2×m(χ̃

±
1 ), λ121,0 1405.5086760 GeVχ̃±

1

χ̃+
1
χ̃−
1 , χ̃

+
1→Wχ̃

0
1, χ̃

0
1→ττν̃e, eτν̃τ 3 e, µ + τ - Yes 20.3 m(χ̃

0
1)>0.2×m(χ̃

±
1 ), λ133,0 1405.5086450 GeVχ̃±

1

g̃g̃, g̃→qqq 0 6-7 jets - 20.3 BR(t)=BR(b)=BR(c)=0% 1502.05686917 GeVg̃

g̃g̃, g̃→qqχ̃
0
1, χ̃

0
1 → qqq 0 6-7 jets - 20.3 m(χ̃

0
1)=600 GeV 1502.05686980 GeVg̃

g̃g̃, g̃→t̃1t, t̃1→bs 2 e, µ (SS) 0-3 b Yes 20.3 1404.2500880 GeVg̃

t̃1 t̃1, t̃1→bs 0 2 jets + 2 b - 3.2 ATLAS-CONF-2016-022345 GeVt̃1

t̃1 t̃1, t̃1→bℓ 2 e, µ 2 b - 20.3 BR(t̃1→be/µ)>20% ATLAS-CONF-2015-0150.4-1.0 TeVt̃1

Scalar charm, c̃→cχ̃
0
1 0 2 c Yes 20.3 m(χ̃

0
1)<200 GeV 1501.01325510 GeVc̃

Mass scale [TeV]10−1 1

√
s = 7, 8 TeV

√
s = 13 TeV

ATLAS SUSY Searches* - 95% CL Lower Limits
Status: July 2016

ATLAS Preliminary√
s = 7, 8, 13 TeV

*Only a selection of the available mass limits on new
states or phenomena is shown.

Figure 1.5: Summary results of SUSY searches of the ATLAS experiment [5].

qq → q̃iq̃j, (1.97)

while the production of other sparticles are controlled by the electroweak gauge

couplings

qq → C̃+
i C̃

−
j , ÑiÑj, ud → C̃+

i Ñj, du → C̃−i Ñj, (1.98)

qq → ˜̀+
i
˜̀−
j , ν̃`ν̃

∗
` ud → ˜̀+

L ν̃` du → ˜̀−
L ν̃
∗
` . (1.99)

Loosely speaking, the LHC can be considered as a gluon-gluon and gluon-quark

collider given the shape of the parton distribution functions. Of course, the signals

are an inclusive combination of all the possible parton collisions.

One expects the produced sparticles to decay to states with two LSPs, which

escape the detector; this leads to the typical SUSY signature at colliders of missing

energy 6ET (or transverse momenta). The standard observable signals for SUSY

at hadron colliders are final states of the form n jets + m leptons + 6ET , where

either the number of jets n or the number of leptons m can be zero. These signals
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have a large SM background, in particular from processes involving production

and decay of W and Z bosons decaying to neutrinos, which also leads to missing

energy. Hence it is essential to apply specific signal region cuts in order to reduce

the background.

Experimental limits on SUSY are presented in the framework of full models

or simplified models. The full models are characterized by a small number of

parameters that completely (or almost completely) specify the spectrum, e.g.

the GMSB and AMSB models described in section 1.4. In such models the

production cross sections and branching ratios of every particle are fixed and

events can be realized in many different ways. In this approach the results are

difficult to generalize to other models or event topologies. On the other hand,

the presentation of SUSY limits in the context of simplified models assumes a

single production mode and one-step or occasionally two-step decay chain, e.g.

p p → q̃ q̃ → q χ̃0
1 q χ̃

0
1. This has the advantage that the limits can often be re-

interpreted for a full model. ATLAS and CMS experiments [5] provide useful

summary plots which provide an idea of the current reach on sparticles masses in

various channels, see figures 1.5 and 1.6. A good review on the status of SUSY

after the first run of the LHC is given in ref. [6].

The current picture of the SUSY bounds is roughly the following. ATLAS

and CMS experiments at the run I of LHC at 8 TeV with 20 fb−1 luminosity had

a sensitivity to sparticle production at the level of σ×Br ∼ few 10 fb. Then, the

present limits on sparticles are: ∼ TeV on first and second generation squarks

and gluinos, ∼ 650 GeV on third generation squarks, ∼ 250 GeV on sleptons,

and ∼ 350 GeV on electroweakinos without sleptons and it improves to 500 GeV

including light sleptons. These bounds should improve during the second LHC

run.

When the gluino and the light-flavor squarks have comparable masses, the

squark-gluino associated production is available, with a cross section approxi-

mately an order of magnitude larger that gluino pair production. This leads to

an improved sensitivity with respect to separate squarks and gluino scenarios,

which results in improved limits of around 2 TeV.

These limits on sparticle masses rely on the assumption of kinematically avail-

able decays to the lightest neutralino, whose mass is well separated from the

decaying particles. The bounds worsen in compressed regions of the parameter

space, but there is no clear symmetry argument that motivates such degeneracy.
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Figure 1.6: Summary of SUSY results of the CMS experiment in the simplified

model framework [5].

1.5.2 Low energy observables

As it was already mentioned at the end of section 1.3.2, there are indirect con-

strains on SUSY from processes that are suppressed or forbidden in the SM but

receive quantum corrections from sparticles, like those that imply flavor mix-

ing or CP violation. Among them are included µ → e γ [27], B → Xsγ [49],

Bs → µ+µ− [50], neutral meson mixing [29, 51], electric dipole moments for the

neutron [31] and the electron [32], proton decay [22, 23], etc. Some models are

also tightly constrained by the deviation from the SM prediction induced in the

muon anomalous magnetic moment and the branching ratio of hadronic Z decays

with b b (see [52], [53] and references therein). To give an idea, if there is mass

mixing between the first and second generations, FCNC, in particular K0 −K0

mixing, constrains the scalar superpartners to lie above ∼few 100 TeV in the

absence of CP violating phases, and the bounds become one order of magnitude

stronger in the presence of such phases [29].

We comment as an example, on some experimental bounds from B physics

that has been recently improved [49, 50]. B → Xsγ receives contribution from
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1.5 Experimental searches for SUSY

the stop-higgsino loop that constrains Atµ tan β/m2
t̃
< few (analytic expressions

can be found in [54]). There is also a charged Higgs-top quark loop correction

typical from the two Higgs doublet model (2HDM). If there are not accidental

cancellations it implies mH± & 300 GeV, which is complementary to the direct

2HDM searches [55, 56] in the region of low tan β. Another important constraints

come from Bs → µ+µ−; the MSSM contribution is dominated by the Penguin

diagram involving the exchange of the heavy scalar H and pseudoscalar A with

their one-loop induced flavor changing b → s couplings (see ref. [54]). These

corrections decouple as 1/m2
A but put important constraints in the large tan β

region because they scale like tan3 β.

Aside from the experimental searches, there are strong constraints from the

existence of charge and color breaking (CCB) minima in the scalar potential

deeper than the realistic minimum and directions in field space along which the

potential becomes unbounded from below [57, 58]. In particular, absolute stability

requires that the trilinear couplings Af cannot be much larger than the relevant

soft masses for the scalar potential. Allowing the vacuum to be metastable but

with lifetime longer than the age of the universe relaxes the bounds only slightly

(see [58], or more recently e.g. [59]).

1.5.3 Dark matter direct detection

At the moment the most accurate determination of the dark matter mass density

comes from global fits of cosmological parameters. From measurements of the

anisotropy of the cosmic microwave background and of the spatial distribution of

galaxies the density of cold, non-baryonic matter is given by [51, 60]

Ωnbmh
2 = 0.1186± 0.0020 , (1.100)

where h is the Hubble constant in units of 100 km/(s·Mpc). While the baryonic

matter density reads [51]

Ωbh
2 = 0.02226± 0.00023 , (1.101)

which may also receive a contribution from baryonic dark matter.

The LSP in SUSY models with R-parity conservation may be a viable thermal

dark matter candidate. A stable LSP must be neutral from searches for exotic

isotopes, see [51] and references therein. Then, the possible candidates among the

sparticles are the gravitino, the sneutrino and the lightest neutralino. A sneutrino

LSP as primary component of the dark matter halo in our galaxy has been ruled

out by various WIMP searches. In many GMSB models the gravitino is the
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1. ASPECTS OF THE MSSM

LSP. Gravitinos may be produced from other sparticle decays or from reheating
after inflation. In principle they could account for the observed dark matter relic
density, but unfortunately they interact too weakly to be detected directly. The
lightest neutralino remains the best option.

If the lightest neutralino is mostly higgsino or mostly wino, it could account
for all the observed relic density of dark matter if the mass is 1.1 TeV or 3.2 TeV
respectively [61]. Bino-like LSP as dark matter is not possible because the an-
nihilation cross section is too low, so the predicted relic density is too high. An
interesting possibility is that the lightest neutralino is a mixture of two of the
states bino, wino and higgsino.

In order to account for the observed rotational curves, WIMPs should have
the appropriate density profile and should be gravitational trapped inside galaxies
like the Milky Way. Their mean velocity inside our galaxy relative to its center
should be similar to that of stars (few 100 km/s at the solar system). This
implies that WIMPs interact with the ordinary matter on Earth through elastic
scattering on nuclei. For masses in the range 10 GeV to 10 TeV, the nuclear
recoil energies are of order of 1 to 100 keV, which can be detected by the present
experiments. The Xenon100 collaboration [62] and the Large Underground Xenon
(LUX) experiment [63] set interesting exclusion limits for the spin independent
cross section of the scattering of dark matter off of nucleons. LUX is able to set a
minimum upper limit on the cross section of 7.6× 10−46cm2 at a WIMP mass of
33 GeV. Applying these constraints to the MSSM with neutralino dark matter,
one probes important regions of the parameter space [54, 61].
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Chapter 2

MSSM Higgs mass calculation:

state of the art

In this chapter we review the state-of-art of the Higgs mass calculation in the

MSSM. We also present simplified analytical formulas of the MSSM Higgs mass

as a function of the MSSM parameters.

In section 2.1 we describe the main methods used for the MSSM Higgs mass

calculation: the Feynman diagrammatic, the effective potential and the effective

field theory approaches. We briefly comment on the advantages and disadvantages

of each method. In section 2.2 we review the status of the calculation of the

higher order corrections to the MSSM Higgs mass. Finally, in section 2.3 we

obtain simplified analytical expressions, which facilitate a clear understanding of

the dependence of the Higgs mass on the sparticle masses, in particular the gluino

mass.

2.1 Calculational methods

There is a relation between the mass of the light CP-even Higgs boson of the

MSSM and the other parameters of the model. At tree level, the Higgs boson mass

squared has an upper bound, saturated in the decoupling limit m2
h ≈ m2

Z cos2 2β,

with tan β defined by the ratio of the Higgs VEVs. Radiative corrections are

essential in order to raise the theoretical value predicted in the MSSM to the

experimental one:

m2
h = m2

Z cos2 2β +
3

2π2

m4
t

v2

[
X2
t

m2
t̃

− X4
t

12m4
t̃

+ ln
m2
t̃

m2
t

]
+ . . . , (2.1)
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where mt is the top mass, v is the electroweak VEV, Xt is the stop mixing, we
have assumed degenerate stop masses mt̃ for simplicity, and the ellipsis stands
for other (subleading) corrections at one loop and higher order.

In the literature, radiative corrections to m2
h have been computed using three

different techniques or combinations of them: direct diagrammatic calculation,
effective potential method, and effective theory (or renormalization group) ap-
proach. The first one requires the computation of the Higgs self-energy diagrams.
The complete expressions are complicated and huge beyond one-loop order. The
second one consists of taking the second derivatives of the effective potential; this
is equivalent to computing the pole mass from self-energy functions in the approx-
imation that the external momentum is neglected. This has the advantage that
calculations can be reduced to vacuum graphs, which can always be computed
analytically through 2-loop order. The last method uses the effective Lagrangian
formalism, with renormalization group running used to systematically incorpo-
rate the effects that are enhanced by logarithms of the ratio of the superpartner
mass scale to the electroweak scale.

2.1.1 Feynman Diagrammatic Approach

The tree-level mass matrix for the neutral CP-even Higgs bosons in the interaction
basis (S1, S2) is given by,

M2,tree
Higgs =

(
m2
S1S1

m2
S1S2

m2
S1S2

m2
S2S2

)
=

(
m2
A sin2 β +m2

Z cos2 β −(m2
A +m2

Z) sin β cos β

−(m2
A +m2

Z) sin β cos β m2
A cos2 β +m2

Z sin2 β

)
,

(2.2)

where S1 and S2 are real components of the Higgs doublets H1 ≡ Hd and H2 ≡ Hu

respectively. When the mass matrix is diagonalized one obtains the tree level
masses mtree

h , mtree
H , as described in section 1.3.4.

Radiative corrections to the mass matrix are obtained in terms of the self-
energies. The inverse propagator matrix in the interaction basis reads

(∆Higgs)
−1 = −i

(
p2 −m2

S1
+ Σ̂S1S1(p

2) −m2
S1S2

+ Σ̂S1S2(p
2)

−m2
S1S2

+ Σ̂S1S2(p
2) p2 −m2

S2
+ Σ̂S2(p

2)

)
, (2.3)

with p being the external momentum and Σ̂(p2) the renormalized Higgs-boson
self-energies. The latter is written in terms of unrenormalized self-energies Σ(p2),
mass renormalization constants δm2 and wave function renormalizations δZ as

Σ̂
(i)
S1S1

(p2) = Σ
(i)
S1S1

(p2) + δZ
(i)
S1S1

(p2 −m2
S1S1

)− δm2(i)
S1S1

(2.4)
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Σ̂
(i)
S2S2

(p2) = Σ
(i)
S2S2

(p2) + δZ
(i)
S2S2

(p2 −m2
S2S2

)− δm2(i)
S2S2

(2.5)

Σ̂
(i)
S1S2

(p2) = Σ
(i)
S1S2

(p2) + δZ
(i)
S1S2

(p2 −m2
S1S2

)− δm2(i)
S1S2

. (2.6)

Here the index i = 1, 2 denotes the loop level. Requiring the corresponding
renormalization conditions the counterterms are fixed.

Rotating the renormalized self-energies in the interaction basis into the phys-
ical (h,H) basis, where the tree-level propagator matrix is diagonal, one gets

(
Σ̂HH Σ̂hH

Σ̂hH Σ̂hh

)
= D(α)

(
Σ̂S1S1 Σ̂S1S2

Σ̂S1S2 Σ̂S2S2

)
DT (α) (2.7)

where the rotation matrix is

D(α) =

(
cosα sinα

− sinα cosα

)
. (2.8)

Then, the CP−even Higgs boson masses are given by the real part of the
poles of the propagator matrix (or the zeros of the inverse propagator matrix)

(∆Higgs)
−1 = −i

(
p2 −m2

H,tree + Σ̂HH(p2) Σ̂hH(p2)

Σ̂hH(p2) p2 −m2
h,tree + Σ̂hh(p

2)

)
, (2.9)

which is equivalent to solve the equation
[
p2 −m2

h,tree + Σ̂hh(p
2)
] [
p2 −m2

H,tree + Σ̂HH(p2)
]
−
[
Σ̂hH(p2)

]2

= 0. (2.10)

This is a non linear equation which is usually solved iteratively. The solutions
lead to the radiative corrected pole masses for the light (mh) and heavy (mH)
CP -even Higgs bosons.

In the Feynman diagrammatic approach the full momentum dependence is
included. As a consequence, the method is very convenient for low SUSY scale,
close to the EW scale. The price to pay is that the complete expressions are
complicated and huge beyond one-loop order. Moreover, the logarithmic resum-
mation, required for a SUSY scale in the multi-TeV region, is much more involved
than in mass-independent renormalization schemes.

2.1.2 Effective potential approach

The tree-level Higgs potential for the neutral components, introduced in sec-
tion 1.3.4, is given by

V0 = m2
1

∣∣H0
1

∣∣2 +m2
2

∣∣H0
2

∣∣2 +m2
3

(
H0

1H
0
2 + h.c.

)
+
g2 + g′ 2

8

(
|H0

1 |2 − |H0
2 |2
)2
.

(2.11)
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Here we are using a slightly different notation: H1 ≡ Hd, H2 ≡ Hu, m
2
1 = m2

H1
+

|µ|2, m2
2 = m2

H2
+ |µ|2 and m2

3 ≡ Bµ. The neutral Higgses can be decomposed into
their vacuum expectation values plus their CP -even and CP -odd fluctuations

H0
1 ≡

v1 + S1 + i P1√
2

, H0
2 ≡

v2 + S2 + i P2√
2

. (2.12)

The mass matrices are obtained, at every order in perturbation theory, by taking
derivatives of the effective potential

(
M2

P

)
ij

=
∂2Veff

∂Pi∂Pj

∣∣∣∣
min

,
(
M2

S

)
ij

=
∂2Veff

∂Si∂Sj

∣∣∣∣
min

, (i, j = 1, 2) , (2.13)

where Veff = V0 + V is the loop-corrected Higgs potential in the DR scheme, and
the fields S1, S2, P1 and P2 have zero vacuum expectation value. By minimizing
the effective potential one gets the two vevs v1 and v2

1

v1

∂Veff

∂S1

∣∣∣∣
min

= m2
1 +m2

3

v2

v1

+
(g2 + g′2)

4
(v2

1 − v2
2) +

1

v1

∂V

∂S1

∣∣∣∣
min

= 0 , (2.14)

1

v2

∂Veff

∂S2

∣∣∣∣
min

= m2
2 +m2

3

v1

v2

+
(g2 + g′2)

4
(v2

2 − v2
1) +

1

v2

∂V

∂S2

∣∣∣∣
min

= 0 . (2.15)

Using eqs. (2.11)–(2.15) the Higgs mass matrices can be written as

(
M2

P

)
ij

= −m2
3

v1v2

vivj
− δij

vi

∂V

∂Si

∣∣∣∣
min

+
∂2V

∂Pi∂Pj

∣∣∣∣
min

, (2.16)

(
M2

S

)
ij

= (−1)i+j
[
−m2

3

v1v2

vivj
+

(g2 + g′2)

2
vivj

]
− δij
vi

∂V

∂Si

∣∣∣∣
min

+
∂2V

∂Si∂Sj

∣∣∣∣
min

.

(2.17)

Finally using eqs. (2.16) and (2.17) we can express the CP -even Higgs mass
matrix in terms of the CP -odd one as
(
M2

S

)
ij

= (−1)i+j
[(
M2

P

)
ij
− ∂2V

∂Pi∂Pj

∣∣∣∣
min

+
(g2 + g′2)

2
vivj

]
+

∂2V

∂Si∂Sj

∣∣∣∣
min

;

(2.18)
in turn the CP -odd mass matrix can be written in terms of the pseudoscalar
mass mA and of tan β

M2
P =

(
sin2 β sin β cos β

sin β cos β cos2 β

)
m2
A . (2.19)

The effective potential calculation neglects the external momentum depen-
dence. This has the advantage that calculations can be reduced to vacuum graphs,
which can always be computed analytically through 2-loop order. There has been
a lot of progress in the computation of the effective potential in the MSSM as
well as in the Standard Model.
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2.1.3 Effective Field Theory Approach

Effective field theory method is very convenient. It makes calculations easier, be-

cause one is forced to concentrate on the important physics (for excellent reviews

on EFT see [64, 65]). The relevant parameter in particle physics is the distance

scale, or equivalently the energy scale. Any features of the physics that are small

compared to the relevant distance scale of the process under consideration is

shrunk down to zero size. Then, these finite size effects can be incorporated as

perturbations. For this procedure to work, a separation of energy scales is re-

quired. In the case of the MSSM, we assume the SUSY scale of the sparticle

masses (mSUSY) is sufficiently heavy compared to the weak scale (mSUSY � mZ).

Particles too heavy to be produced are integrated out and eliminated from the

low energy EFT. Requiring the two effective theories describe the same physics

lead to matching conditions between the couplings. The couplings of the EFT

below mSUSY receive threshold corrections (free of large logarithms), which need

to be obtained by a loop computation. To avoid large logarithms, the matching

conditions should be evaluated at a renormalization scale Q of order the mass of

the particle being integrated out.

Ultraviolet regularization lead to renormalization group running of coupling

constants with Q. Moreover, EFT changes the running of coupling constants,

replacing the logarithmic dependence on heavy particle masses for scale depen-

dence. The next step of the strategy consist of evolving the couplings from the

matching scale down to the weak scale by solving the renormalization group equa-

tions (RGE). Finally the running couplings at low energy are related to physical

observables. The EFT calculations are usually performed in mass-independent

renormalization schemes like modified minimal subtraction MS.

For the High-Scale SUSY setup presented in section 1.4.1, where all the spar-

ticles have masses around mSUSY, the MSSM theory is directly matched with the

SM. While in the Split-SUSY scenario, where gauginos and higgsinos are much

lighter than the scalars, an additional matching is applied at the intermediate

scale m1/2 of the fermionic superparticles. The intermediate theory between the

mass scales of the scalars m0 and the fermions m1/2 contains the fermionic spar-

ticles in addition to the SM ones. The Lagrangian contains additional terms

L split ⊃−
M3

2
g̃Ag̃A − M2

2
W̃ aW̃ a − M1

2
B̃B̃ − µ H̃T

u εH̃d +

− H†√
2

(
g̃2uσ

aW̃ a + g̃1uB̃
)
H̃u −

HT ε√
2

(
−g̃2dσ

aW̃ a + g̃1dB̃
)
H̃d + h.c. .

(2.20)
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Here σa are the Pauli matrices and it contains mass terms for the fermions and

Higgs-higgsino-gaugino Yukawa interactions. Since gauginos and higgsinos are

integrated out at the scale m1/2, their contributions must be removed from the

matching conditions at m0, and instead they appear when matching the Split-

SUSY theory into the SM at m1/2. More details on this approach are given in

section 3.1.

Effective field theory techniques require the existence of a hierarchy between

the SUSY scale and the weak scale, therefore they are not applicable when

mSUSY ∼ O(mZ). But the EFT method has several advantages. The resum-

mation of the logarithmic corrections is straightforward by solving the RGE,

which allows to consider arbitrary heavy SUSY scale. The physical understand-

ing of the dependence on the various parameters is simple because subleading

effects suppressed by the SUSY scale are neglected, while the leading momentum

dependence can be incorporated.

2.2 State of the art

For the MSSM (with real parameters) the status of higher-order corrections to

the masses and mixing angles in the neutral Higgs sector is advanced (see the

reviews [66–68] and references therein). There are several independent computa-

tions of the Higgs mass in the MSSM by various groups, using different renor-

malization conditions (OS, DR, hybrid) and gauges (Feynman-’t Hooft, Landau).

Some of them are included in computer codes.

The complete one-loop result is known [69, 70]. The dominant contribution is

the O(αt) one due to top and stop loops. While the effect of sleptons and other

squarks is subdominant due to the smallness of their Yukawa coupling relative

to the top Yukawa (yt). The variation of the Higgs mass with chargino and

neutralino parameters is of order 2÷3 GeV and decreases for larger values of M1,

M2 and µ.

In the Feynman-diagrammatic approach the masses are the physical ones and

the self-energies should be evaluated at external momentum equal to the poles of

the (h,H)-propagator matrix. The momentum-independent parts are the domi-

nant contributions (by momentum independent we mean contributions evaluated

at zero external momenta). The prediction for the CP-even Higgs masses contains

a dependence of the field renormalization constants which is formally of higher

order because eq. (2.10) is solved by iteration. For this reason one can choose

suitable renormalization conditions for the field renormalization constants, which

can also be seen as different renormalizations of tan β.
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With respect to the two-loop corrections, all the dominant corrections are

available. The O(αtαs), O(α2
t ), O(αbαs), O(αtαb), O(α2

b), O(α2
τ ) and O(αbατ )

contributions to the self-energies are known in the limit of vanishing electroweak

gauge couplings (gaugeless) and vanishing external momenta in different renor-

malization schemes [71–84]. The main contributions are of O(αtαs), followed by

the O(α2
t ) ones.

All order resummation of the tan β-enhanced terms, O(αb(αs tan β)n), have

been also performed [85]. This is the dominant part of the contributions from the

sbottom sector, which are only sizable for large tan β, say tan β >∼ 30. A similar

situation occurs in the stau sector, where even larger values of tan β are needed

to have sizable corrections.

A full 2-loop effective potential calculation has been published by Martin [86].

The expressions are quited complicated and difficult to interpret analytically.

Moreover, purely electroweak corrections should be of similar order to omit-

ted terms at finite external momentum. The calculation was done for mass-

independent renormalization schemes and no computer code containing these

terms is publicly available.

The inclusion of two-loop external-momentum effects is quite involved. The

two-loop contributions to the Higgs self-energies involving the strong gauge cou-

pling or the third-family Yukawa couplings, including O(ααs), was presented

by Martin [87]. More recently, the momentum dependent O(αtαs) [88–90] and

O(ααs)[89] corrections have been computed.

The leading 3-loop calculation at O(αtα
2
s) is available for vanishing external

momentum, based on a DR or a hybrid renormalization scheme for the stop

sector [91, 92]. The numerical evaluation depends on the mass hierarchies of the

sparticles. This contribution has an effect of a few 100 MeV and is included in

the computer code H3m [92].

Other efforts have been dedicated to the resummation of the logarithmic cor-

rections, which is easily done in the EFT approach. It allows a high precision

prediction for the Higgs mass with stop masses above the TeV scale. The calcu-

lation of the SM β-functions up to three loops have been completed (see [93] and

references therein). They have been used for the EFT calculation of the Higgs

mass in the MSSM at NNLO precision in [94]. The latest versions of the Feyn-

Higgs code [95, 96], provides a combination of the full one-loop result, plus the

dominant two-loop corrections and a resummation of the leading and subleading

logarithmic corrections from the top-stop sector.

There are two types of uncertainties in the prediction of the light CP-even

Higgs boson mass. One consists of the parametric uncertainties due to the exper-

imental uncertainties of the input parameters. The dominant source is associated
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to the experimental determination of the top quark mass. To give an idea, the

experimental uncertainty on the top mass influences the prediction for the Higgs

mass approximately as [97]

δm
(mt)
h

δmexp
t

∼ 1. (2.21)

Therefore, high precision in the Higgs sector requires accurate measurements of

the top mass.

The second type are the intrinsic theoretical uncertainties associated to un-

known higher order corrections. Understanding them is very important in order

to fix some differences found in the recent literature, presented in the next section.

The FeynHiggs code estimates the theoretical uncertainty in the computation

of the Higgs masses and mixing, taking into account three effects: the variation

of the renormalization scale from mt/2 to 2mt, the use of mpole
t instead of mrun

t in

the two-loop corrections, and the exclusion of higher-order resummation effects

in the sbottom sector. The inclusion of the resummation of the leading and sub-

leading logarithms at all orders reduces the theoretical uncertainty related to the

remaining unknown higher-order corrections. For a review on possible ways of

estimating the uncertainty see for instance [98].

2.2.1 Discrepancies among existing computations

There have been some discrepancies among recent computations of the MSSM

Higgs mass. The FeynHiggs code [95] implement the fixed-order result, including

the full one-loop, and the two-loop corrections O(αsαt), O(α2
t ), O(αbαs), O(αtαb),

and O(α2
b) at zero external momentum evaluated in the effective potential ap-

proach. All order resummation of the tan β-enhanced O(αb(αs tan β)n) and the

momentum-dependent two-loop O(αtαs) corrections are also included. The latest

versions [96] perform a combination of the fixed order result with a NLL resum-

mation of the logarithmic corrections from the stop sector, allowing to compute

the Higgs mass in the multi TeV region of the relevant sparticle masses.

Some computer codes: SoftSUSY [99, 100], SuSpect [101], and SPheno [102,

103], which compute the mass spectrum of the MSSM including the full one-loop

and the dominant two-loop corrections to the Higgs masses in the DR scheme at

fixed order, are also available. They are expected to deviate from the results with

logarithmic resummation for multi TeV stops.

Other recent calculations based on the EFT techniques have appeared [1,

94, 104]. They have achieved a good precision for stops around the TeV scale

and above. The numerical results of the EFT computations are similar. Small

differences in the computations are associated with subleading corrections to the
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SUSY thresholds and the matching at the weak scale that are included in some
and neglected in others.

It has been pointed out in [105] the presence of significant deviations between
the Higgs mass calculation in the OS scheme implemented in FeynHiggs [95] and
the DR calculations performed in SofSUSY [99], SuSpect [101], and SPheno [102].
It was also noticed that the deviations were larger for maximal stop mixing. How-
ever, the comparison in [105] was done for fixed-order calculations in what were
considered natural regions of the parameter space and when the value of mh was
still unknown. Thus this comparison does not necessarily apply to computations
with SUSY scale above the TeV, when RGE resummation is required.

In ref. [104] it was found that the EFT calculation of mh gives values which are
lower than those computed by other methods: CPSuperH [106], FeynHiggs [95],
SoftSUSY [99], SPheno [102, 103], and H3M [92] for stop masses of ∼ 1 TeV.
Similar deviations were also found in [94] for two indicative scenarios. For heavy
and degenerate SUSY masses mSUSY = 10 TeV, no stop mixing Xt = 0 and
tan β = 20 the result of the EFT computation in [94] gives mh = 123.6 GeV, while
mh = 126.5 GeV was obtained using FeynHiggs [95, 96]. In the case of vanishing
stop mixing the radiative correction are expected to be under control. The other
scenario corresponds to SUSY mass parameters all equal to mSUSY = 1 TeV,
maximal stop mixing and tan β = 20. Here ref. [94] reported mmax

h ≈ 123 GeV
in contrast with FeynHiggs mmax

h ≈ 129 − 131 GeV (depending on the code’s
setting). While SoftSusy, SuSpect and SPheno give values in between mmax

h ≈
124.5− 126.5 GeV.

We will discuss the origin of the discrepancies in detail and explain how to
reconcile the existing results in section 3.1. We will see that discrepancies are
mostly related to the high sensitivity of the Higgs mass to the values of the
top mass and the top Yukawa coupling. More recently, subsequent versions of
the available codes have taken into account the causes of discrepancies discussed
in [1] and presented in section 3.1, and are now in better agreement.

2.3 Simplified analytical expressions

Full expressions of the radiative corrections to the Higgs mass squared, including
the leading two-loop corrections are very long, which makes difficult to visualize
the dependence on the various parameters. It is convenient to find analytical
simplified expressions for m2

h with a more clear dependence on the MSSM param-
eters.

A simplified analytical formula which has been extensively used in the liter-
ature was provided by Carena et. al. [107]. It is easily derived by using EFT.
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The formula contains the one-loop threshold at the scale of the (common) stop

masses mt̃ and the two-loop leading logarithmic corrections which are obtained

by solving iteratively the two-loop RGE. It reads

m2
h = m2

Z cos2 2β

(
1− 3

4π2

m2
t

v2
ln
m2
t̃

m2
t

)
+

3

2π2

m4
t

v2

[
X2
t

m2
t̃

− X4
t

12m4
t̃

+ ln
m2
t̃

m2
t

]

+
3

32π4

m4
t

v2

(
3
m2
t

v2
− 32πα3

)[
2

(
X2
t

m2
t̃

− X4
t

12m4
t̃

)
ln
m2
t̃

m2
t

+ ln2 m
2
t̃

m2
t

]
, (2.22)

where mt is the running top mass, and α3 is the running strong coupling constant

at the scale of the top mass.

The main radiative corrections can be obtained and resummed using renor-

malization group techniques. On the other hand, the finite non-logarithmic terms

require a two-loop computation. The most important two-loop non-logarithmic

contribution originate from the stop mixing dependent terms. It can increase the

value of the Higgs mass up to 5 GeV [78], in a fixed order computation in the

region of maximal mixing and for mt̃ = 1 TeV. Also the condition of maximal

mixing (Xt)max ≈ ±
√

6mt̃ gets slightly modified as (Xt)max ≈ ±2mt̃.

As it was pointed in ref. [80], in the simplified formula of eq. (2.22), mh is

symmetric under Xt → −Xt and has a minimum at Xt = 0. However, the two

loop fixed order corrections are odd in Xt, leading to values of the Higgs mass

which differ substantially for positive and negative mixing and also the local

minimum is moved slightly away from the origin.

A logical extension of eq. (2.22), by including the O(αtαs) terms, has been

obtained both by a diagrammatic computation [75] and the effective potential

method [78, 79]. When the one-loop corrections are written in terms of OS

parameters, including the top mass, the O(αtαs) expression reads

∆m2
h =

αsm
4
t

π3v2

[
−3 ln2 m

2
t̃

m2
t

− 6 ln
m2
t̃

m2
t

+ 6
Xt

mt̃

− 3
X2
t

m2
t̃

ln
m2
t̃

m2
t

− 3

4

X4
t

m4
t̃

]
. (2.23)

In the expression above it is assumed that the gluino mass is equal to the common

stop massmg̃ = mt̃. There are other simplified expressions (for example [80, 108]),

but eq. (2.23) works quite well and captures the asymmetry in Xt.

A simplified expression containing also the two loop top Yukawa corrections

have been proposed by Espinosa and Zhang [79]. Using an effective potential

approach, they computed the two-loop O(α2
t ) radiative corrections to m2

h in the

simplified case of degenerate soft masses (MS) for the scalars (stops and pseudo-

calar Higgs), while the µ parameters is kept independent. The mass eigenvalues

of the stops are m2
t̃1,2

= m2
t̃
± mtXt, with m2

t̃
= M2

S + m2
t , and mixing angle
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Figure 2.1: Dependence of the Higgs mass mh on the gluino mass mg̃ for no

stop mixing Xt = 0 (left plot), and maximal mixing (right plot). We assumed a

degenerate superparticle spectrum at mt̃ = 1 TeV and tanβ = 10. The plots are

done with FeynHiggs 2.10.2. The asymmetry of mh with respect to Xt is erased

for mg̃ � mt̃ or mg̃ ≈ 6mt̃, and for larger gluino mass the asymmetry is reversed.

sin2 θt̃ = cos2 θt̃ = 1/2 of the top squark squared mass matrix. These contribu-

tions are sizable for the maximal stop mixing case. They can increase mh by as

much as 5 GeV in a fixed order computation, assuming mt̃ = 1 TeV [79]. These

analytical simplified formulas approximate well (with differences below GeV) the

exact fixed order results.

2.3.1 Dependence on the gluino mass

It has been customary to assume the gluino mass satisfies mg̃ ≈ mt̃ to derive the

simplified analytical expressions. This is done for simplicity and to avoid dealing

with the additional scale set by mg̃. But the gluino mass dependence of the Higgs

can be important, as it is shown in figs. 2.1 and 2.2.

Fig. 2.1 shows mh as a function of the gluino mass for tan β = 10, mt̃ = 1 TeV

and Xt = 0,±2mt̃. The plot was done using FeynHiggs 2.10.2, with default

settings. For positive Xt the Higgs mass changes by almost 5 GeV in the range

of the gluino mass mt < mg̃ < 6 TeV, and the value of mh is maximized for

mg̃ ≈ mt̃. The asymmetry in Xt → −Xt is erased for mg̃ ∼ 6 TeV and it is

reversed for larger values of mg̃. We also see in Fig. 2.2 that the dependence on
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Figure 2.2: Higgs mass as a function of the stop mixing for some values of the

gluino mass: mg̃ = mt, mg̃ = mt̃ and mg̃ = 5mt̃. The plot have been done using

FeynHiggs 2.10.2. The other parameters are mt̃ = 1 TeV and tanβ = 10.

the gluino is more relevant for large and positive values of Xt, though for zero

mixing it is not negligible.

An analytical formula for the O(αtαs) two-loop corrections keeping the explicit

dependence on mg̃ was obtained in [81] with the use of the effective potential.

In ref. [81] it was also discussed in detail the limit of heavy gluino, obtaining an

approximate expression for the Higgs mass matrix in this limit for the simplified

case of degenerate stop masses m2
t̃1

= m2
t̃2

= m2
t̃
, but without including the

dependence on the stop mixing. Below we are going to find an extension of

eq. (2.23) including the dependence on the gluino mass and the stop mixing,

based on the results of [81]. We consider the parameters of the stop sector and

the top mass in the OS scheme.

Limit values

In order to find a simple formula for the Higgs mass which includes the dependence

on the gluino mass we need to make some assumptions because the full expression

is intrinsically complicated. We consider three limit cases: mg̃ � mt̃ (light

gluino), mg̃ ∼ O(mt̃) (comparable gluino and stop masses), and mg̃ � mt̃ (heavy

gluino). Our strategy consists of finding approximate expressions of the O(αtαs)
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Figure 2.3: Comparison of the approximate formula with the exact result of the

O(αtαs) corrections in the case of light gluino for Xt = 1 TeV (left) and Xt = 2 TeV

(right). We use tanβ = 10 and mt̃ = 1 TeV. The black line corresponds to the

analytic formula of [81], while the dashed-blue, dashed-red and dashed-green are

obtained with the approximate expression truncated at the power m4
g̃, m

2
g̃ and mg̃.

corrections for these three cases, and based on that obtaining an interpolating

formula valid for any gluino mass.

In the limit of light gluino, expanding in powers of mg̃/mt̃ we find (up to the

quadratic term)

∆m
2, (αtαs)
h =

αsm
4
t

π3v2

[
3
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− 3 ln2

m2
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m2
t

− 6 ln
m2
t̃

m2
t
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t
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t̃

− 3
X2
t

m2
t̃

ln
m2
t̃

m2
t

+
mg̃

mt

(
4
Xt

mt̃

+ 2
X3
t

m3
t̃

)
+
m2
g̃

m2
t̃

(
1 +

X2
t

m2
t̃

− X4
t

2m2
t̃

)
+ O(m3

g̃)

]
. (2.24)

We compare our approximate formula for light gluino with the two-loop

O(αtαs) formula of [81] in fig. 2.3 1. The approximate expression (2.24) agrees

well with the two-loop formula when the gluino mass is of the order of the top

mass mg̃ ∼ O(mt), however it deviates for larger values of mg̃. From fig. 2.3

(black line) we appreciate the behavior of mh as a function of mg̃ for mg
<∼ mt̃. It

goes approximately linear for mg̃
<∼ 0.7mt̃ and after, mh remains almost constant

1For doing the plots we also took into account the tree level and the most important one-

loop corrections. Since we are interested in the effect of the gluino mass contained in the two

loop O(αtαs) corrections, the precise central value of mh is not relevant in this analysis.
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Figure 2.4: Higgs mass vs. gluino mass for Xt = 1 TeV (left) and Xt = 2 TeV

(right) for comparison with the approximate formula for mg̃ ∼ O(mt̃). We use

tanβ = 10, mt̃ = 1 TeV. The black line corresponds to the analytic formula of [81]

and the dashed-blue to the approximate expression quadratic in ∆mg̃ = mg̃ −mt̃.

around the region 0.7mt̃ ≤ mg̃ < mt̃. We will comment more about this behavior

when we find the interpolating formula. Basically, the eq. (2.24) will be useful

to extract the limit behavior of m2
h for vanishing gluino mass.

For the case mg̃ ∼ O(mt̃) we assume that (mg̃ − mt̃) � mt̃. When we try

to find an approximate formula for mg ∼ O(mt̃) we encounter some subtleties

because in this regime we have to deal with physical thresholds at mg̃ = mt̃1
−mt

and mg̃ = mt̃2
−mt. We use the explicit expression for the Passarino-Veltmann

function given in [109]. An approximate expression quadratic in (mg̃−mt̃)/mt̃ is

given in appendix A.1.

The Higgs mass changes quickly its functional behavior in the region mg̃ ≈ mt̃.

This is related to the physical thresholds at mg̃ = mt̃1
−mt and mg̃ = mt̃2

−mt,

when the stop decay channels t̃1,2 → g̃ t open. For this reason the approximate

expression does not capture well the functional dependence on mg̃, in particular

for large Xt, as we can see in fig. 2.4. When we take the limit mg̃ → mt̃ we

recover the simplified expression of Espinosa and Zhang [79]. In the interpolating

formula which we present later, valid for any gluino mass, we will simply consider

mh as a constant function of mg̃ in the range 2/3mt̃ ≤ mg̃ ≤ mt̃.

The case of heavy gluino is approximated by expanding in inverse powers of
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Figure 2.5: Heavy gluino limit for Xt = 1 TeV (left) and Xt = 2 TeV (right),

tanβ = 10 and mt̃ = 1 TeV. The black line corresponds to the analytic formula

of [81], while the dashed-blue, dashed-red and dashed-green to the approximate

expressions truncated at m−2
g̃ , m−1

g̃ and m0
g̃ respectively. We find an excellent

agreement among the black, blue and red curves for mg̃ & 4mt̃.

the gluino mass and it yields
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(2.25)

The expression (2.25) is an excellent approximation for mg̃
>∼ 4mt̃ as it is shown

in fig. 2.5, and it works better and better as we increase the gluino mass. The
asymptotic behavior is approached quickly keeping only the m−1

g̃ power, so there

is no need to include m−2
g̃ terms. We will use the eq. (2.25) up to the m−1

g̃

power for the interpolating expression. Note that the limit of heavy gluino and
for general stop mixing given in eq. (2.25) is a new result not present in the
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literature and can account for a shift of 5 GeV in the Higgs mass (for mt̃ = 1

TeV) with respect to eq. (2.23).

All formulas in this section 2.3.1 are written in terms of OS parameters. In

the DR scheme the two-loop corrections contain terms proportional to mg̃ and

m2
g̃, which become very large in the limit of heavy gluino [81]. This issue is

related to non-decoupling effects of mass-independent renormalization schemes.

Additionally, as we will discuss in section 3.2.1, negative quadratic corrections

proportional to the gluino mass in the expressions of the OS stop masses in terms

of the DR masses, drive the stop masses tachyonic when the gluino mass is roughly

a factor of four larger.

Interpolating Expression

Now we propose an interpolating formula valid for any value of the gluino mass.

We require some general features: simplicity, continuity and accuracy. Of course,

there is no unique choice for the interpolation.

For a gluino mass around the stop mass, mh can be approximated by a con-

stant function of mg̃, given by the first line of eq. (A.1). More specifically, we

consider the interval 2/3mt̃ ≤ mg̃ ≤ mt̃. The deviation from the exact contri-

bution is always smaller than 0.4 GeV. In order to interpolate up to the region

of light gluino it is enough to adopt a linear function. We use two points corre-

sponding to vanishing gluino mass and to mg̃ = 2/3mt̃. The value of the Higgs

mass for vanishing mg̃ is extracted from the limit formula (2.24) while the value

at mg̃ = 2/3mt̃ is approximated by mh(mg̃ = mt̃). Finally, we consider the region

mg̃ > mt̃. Since the approximate expression (2.25) approaches very quickly the

asymptotic behavior (see fig. 2.5), we can assume that the heavy gluino regime

corresponds to not-so-large values mg̃ & 3mt̃.

We require the interpolation to recover the expression for mg̃ ≈ mt̃ and

eq. (2.25) up to the power m−1
g̃ for heavy gluino. We compare the limit expres-

sions for mg̃ ≈ mt̃ and mg̃ � mt̃ term by term. Depending on the importance

of each term one chooses a function of interpolation which approaches faster or

slower to the extremes. Then, the proposal for interpolating function valid for

any value of the gluino mass has the form:
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(2.26)

where the functions Fi are defined in appendix A.1 and Θ(m) is the Heaviside
step function.

The eq. (2.26) shows the influence of every term separately. If we want
to improve the interpolating formula one can play with the functions Fi. The
logarithmic terms in the first two lines of eq. (2.26) can be obtained from the
RGE.

We have checked that the interpolating expression approximates very well the
two-loop O(αtαs) result of [81], as can be seen in fig. 2.6. It performs properly,
with a deviation from the analytic formula of ∆mh

<∼ 0.5 GeV in all the parameter
space or even smaller for most of the parameter space.

2.3.2 Approximate formulas

Combining the dominant corrections, we can write an approximate fixed-order
formula as

m2
h = m

2,(tree)
h + ∆m

2,(1-loop)
h + ∆m

2,(αtαs)
h + ∆m

2,(α2
t )

h , (2.27)

with the tree level and one loop corrections represented as

m
2,(tree)
h = m2

Z cos2 2β, (2.28)

∆m
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Z cos2 2β
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ln
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12m4
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+ ln
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,

(2.29)

∆m
2,(αtαs)
h given in eq. (2.26) and the two-loop correction ∆m

2,(α2
t )

h is well ap-
proximated analytically in ref. [79]. Unfortunately eq. (2.27) does not capture
the momentum dependence, which is sizable at one loop. It also suffers from a
large uncertainty due to large logarithms, that are not resummed in a fixed order
result.

Using effective field theory techniques we also obtain a simple formula for the
High Scale SUSY scenario with a degenerate spectrum of masses mSUSY. The
MSSM parameters such as the sparticle masses and stop mixing Xt are in the
DR scheme while the couplings g1, g2, g3, yt and λ are the SM ones in the MS
scheme. We present the solution of the RGE in two ways: fixed-order expression
by iterative solution and a numeral solution which resums the logarithms at all
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Figure 2.6: Comparison between the interpolating formula (blue-dashed line) for

the gluino mass dependence of the Higgs mass and the exact O(αtαs) expression

(black-solid line). We appreciate the good agreement between them.
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orders. The calculation of the Higgs mass proceeds in three steps: matching
at the high scale of the sparticle masses, evolving the quartic coupling between
the high scale and the weak scale solving the coupled RGE, and relating SM
parameters in the MS scheme to physical observables. For the parameters of the
scalar potential we use the normalization presented in section 1.1.

The quartic coupling at the high scale depends on the various threshold cor-
rections as
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1
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X̂4
t − X̂5

t

]
, (2.30)

with X̂t = Xt/mt̃. The first, second and the next three lines of eq. (2.30) represent
the tree level contribution, one loop corrections enhanced by the stop mixing,
and the corrections proportional to the electroweak gauge couplings. The last
line corresponds to the leading two-loop O(αtαs) corrections [94].

We proceed to solve iteratively the RGE up to two loops (see e.g. refs. [108]
and [104]). We denote the logarithms of the ratio of the low scale Ql and high
scale Qh over a reference scale Q0 as

tl ≡ logQl/Q0, th ≡ logQh/Q0, L ≡ th − tl = logQh/Ql > 0. (2.31)

For a generic running coupling λ, its β-function is defined as

βλ(t) ≡
dλ

dt
, (2.32)

where t = logQ/Q0 and Q is the renormalization scale. The β-function can be
written as

βλ(tl) =
∞∑

n=1

κnβ
(n)
λ (tl) =
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n=1

κn
∞∑

k=0

β
(n,k)
λ (th)

k!
(tl − th)k, (2.33)
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with the notation:

κ ≡ 1

16π2
, β

(n,k)
λ (t) ≡ dkβ

(n)
λ

dtk
(t), β

(n,0)
λ ≡ β

(n)
λ . (2.34)

Integrating eq. (2.33) from tl to th yields
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In terms of the low energy scale it reads
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At two loops, with β-function coefficients evaluated at the top mass, the (fixed

order) solution for the quartic coupling at the top mass reads

λ(mt) = λ(mSUSY)− κβ(1)
λ (mt)L− κ2β

(2)
λ (mt)L− κ

β
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λ (mt)
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L2. (2.37)

Terms proportional to the electroweak gauge couplings are included at the one-

loop level only in our approximation, i.e.
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where we represented all the SM couplings generically by X in the sum. The

formulas for the SM β-functions can be found, for instance, in ref. [93].

We also need the value of the couplings at mSUSY to calculate the threshold

corrections to the quartic coupling. At the order we are working it is enough to

use the exact one loop solution

yt(mSUSY) = yt(mt)
[
1 + κ

(
9/2 y2

t − 8g3
3L
)]

+ . . . (2.41)

g2
1(mSUSY) = g2

1(mt)
[
1 + κ 41/5 g2

1L
]

(2.42)

g2
2(mSUSY) = g2

2(mt)
[
1− κ 19/3 g2

2L
]

(2.43)

(2.44)
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2.3 Simplified analytical expressions

Conversely, we consider the numerical solution of the coupled two-loop RGEs of

λ, yt, g3, g2, g1. As boundary conditions we use the value of all the couplings at

the top mass extracted from data, except the quartic coupling for which we use

the value at mSUSY. Since the SM couplings are known with good precision, the

result of evolving the quartic coupling from the high scale to the weak scale can

be considered as a function of λ(mSUSY) and the logarithm of the ratio of scales

λ(mt) = f (λ(mSUSY), L) . (2.45)

We present the numerical solution of the RGE as an interpolating polynomial1

which depends on two variables λ(mSUSY) and L. We also need the solutions for

yt(mSUSY), g1(mSUSY) and g2(mSUSY); we propose interpolating polynomials for

them. We write

λ(mt) =
∑

n

∑

m

C(λ)
n,mλ(mSUSY)nLm, (2.46)

yt(mt) =
∑

k=0

C
(yt)
k Lk, (2.47)

g2
1(mSUSY) =

g2
1(mt)

1− κ 41/5 g2
1(mt)L

+
∑

k

C
(gY )
k Lk, (2.48)

g2
2(mSUSY) =

g2
2(mt)

1 + κ 19/3 g2
2(mt)L

+
∑

k

C
(g2)
k Lk, (2.49)

with coefficients different from zero up to a given order. Their numerical values

are given in appendix A.1.

Finally we need to do the matching at the electroweak scale. The value of the

SM couplings extracted from experimental data are given, for instance, in [93].

The relation between the Higgs pole mass and the quartic coupling depends only

on SM input (see [93] and references therein). It can be written as

m2
h = v2 {λ(mt) + [0.0028 + 0.0093(λ(mt)− 0.25)] + [0.0034]} , (2.50)

where the first term in brackets represent the one-loop corrections (expanded

around λ(mt) = 0.25) and the second one contains the two-loop QCD and elec-

troweak corrections.

We illustrate the use of the approximate interpolated formula for mh in fig. 2.7.

It shows mh as a function of the SUSY scale in the High scale SUSY scenario with

1The coefficients of the polynomial are chosen to fit the exact numerical solution, thus they

are not directly related to the perturbative solution of the RGE.
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Figure 2.7: Higgs mass as a function of the SUSY scale mSUSY with degenerate

spectrum calculated with the exact numerical solution (left) or the approximate

interpolated solution (right) of the RGE. The lines correspond to tanβ = 1, 2 and

vanishing stop mixing (lower lines) and tanβ = 4, 50 and maximal mixing (upper

lines). The green band represents to the experimental value of mh.

degenerate sparticle masses for various values of tan β. This plots are inspired on
similar ones in refs. [47, 48, 94].

Although our efforts to find simplified analytical formulas are useful to under-
stand the dependence on the various parameters, the complete expressions are
intrinsically complicated and a precise calculation requires a full numerical study.
That is the task in the next chapter, where a very precise calculation is performed
including the estimate of the uncertainties.
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Chapter 3

Higgs mass determination with

EFT

Due to the logarithmic (in)sensitivity of the Higgs mass value to the SUSY scale,

high precision is required in such calculation to reliably determine the allowed

parameter space of the theory. This can be seen in fig. 3.1. Besides, the exper-

imental value is now known with per mille accuracy mh = 125.09(24) GeV [11].

The effort in the Higgs mass calculation has been remarkable, reaching the two-

loop and in some cases the three-loop level, with different techniques and schemes,

see e.g. [47, 48, 71, 72, 74, 76, 78, 79, 81–84, 86, 92, 94, 104, 110]. Some of the

computations, however, are only valid for small SUSY breaking scales, where log-

corrections do not need resummation; in fact currently available computer codes

have a very limited range of applicability compared to the allowed parameter

space. Moreover, different computations and/or computer codes disagree among

themselves, in some cases substantially more than the expected/claimed level of

uncertainties.

Given the important role played by the Higgs mass in constraining super-

symmetric models, the limitations of the existing codes and the disagreements

in the literature, we felt the need to revisit the computation. We put special

emphasis on the relevant parameter space to reproduce the experimental value

of the Higgs mass, on the study of the uncertainties and on the possible origin

of the differences with other methods. In this chapter we recompute the Higgs

mass in the MSSM using the effective field theory (EFT) approach, which allows

to systematically resum large logarithms and to have arbitrary big hierarchies in

the spectrum, exploiting the mass gap hinted by the largish value of the Higgs

mass and the absence of new physics at the LHC.
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3. HIGGS MASS DETERMINATION WITH EFT
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Figure 3.1: Logarithmic sensitivity of the Higgs mass to the SUSY scale. We con-

sider a SUSY spectrum with degenerate masses mSUSY, tanβ = 20, and maximal

(red) or vanishing (blue) stop mixing. The bands represent the total theoretical

uncertainties, while the dashed lines correspond to the experimental uncertainty

estimated by varying the top mass by 2σ around the experimental value.

Our computation follows very closely the ones in [9, 10, 47, 48, 94, 104, 110],

providing independent checks of such computations. We improved them in various

ways. We added all the dominant SUSY threshold corrections including the

contributions from bottom and tau sectors, which become important at large

tan β. In this way we provide the state of the art in the EFT calculation of the

Higgs mass. We performed the computation in both the DR and the on-shell

(OS) schemes, the latter has the advantages of ensuring the correct decoupling

limits and keeping the theoretical errors under control in the whole parameter

space. We point out that large logarithms arising from splitting the fermions from

the scalar superpartners in split SUSY scenarios do not need resummation in the

whole region of parameters space relevant for the observed Higgs mass. We also

find that mh = 125 GeV may not necessarily bound the SUSY scale to lie below

1010 GeV (and much below at large tan β), but it might extend at arbitrarily

high scales. Another outcome of our computation is that, even at maximal stop

mixing, the average stop mass is required to be above the TeV scale in order to

reproduce the correct Higgs mass in the MSSM. We also performed a study of

the various possible uncertainties, showing that for most of the parameter space

we are dominated by the experimental ones. We identified some of the sources of

disagreement between existing computations/codes.
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3.1 The computation

We implemented the computation in a new computer code, SusyHD, which

we make public [111] and which allows to reliably compute the MSSM Higgs mass

(and its uncertainties) even when big hierarchies are present in the spectrum.

Avoiding slow numerical integrations, the code is fast enough to be used to set

the experimental value of the Higgs mass as a constraint on any other SUSY

parameter.

Finally we also explore the implications of the Higgs mass on two of the sim-

plest SUSY scenarios: minimal gauge mediation (MGM) and anomaly mediation.

In particular in the first case we show how the value of the Higgs mass allows to

determine the complete spectrum of the superpartners.

The chapter is organized as follows. In section 3.1 we describe our compu-

tation of the Higgs mass in the effective field theory approach, we study the

theoretical uncertainties and we compare our results with the existing ones. In

section 3.2 we present the implications of our computation for the SUSY spec-

trum in different regimes, in particular we show the constraints from the Higgs

mass in the parameter range relevant for SUSY searches at hadron colliders, we

explored the region of very large tan β and we comment on the (non) importance

of extra log resummation when the SUSY spectrum is split. In section 3.3 we

briefly introduce SusyHD, a new code to compute the Higgs mass using the

EFT technique. Recent progress, further reducing the theoretical uncertainty,

is presented in section 3.4 . In section 3.5 we apply our results to some of the

simplest SUSY models: minimal gauge mediation, lopsided gauge mediation and

anomaly mediation. Finally, in appendix A.2, we provide the explicit expressions

for some of the SUSY thresholds computed in this work and more details about

the conventions used in the text.

3.1 The computation

In this section we review the computation that we presented in [1]. Recent

progress in the EFT computation will be discussed in section 3.4. In that section,

we will improve our computation by including the leading three-loop strong cor-

rections to the matching of λ at the EW scale, the four-loop QCD contributions

to the RGE of λ, yt and g3, and the two-loop SUSY thresholds proportional to

the third generation Yukawa couplings in the general case. We will also consider

the effect on the Higgs mass of the dimension-six operators of the SM EFT ex-

pansion. According to the inclusion of these corrections we will also modify our

estimate of the theoretical uncertainty.
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3. HIGGS MASS DETERMINATION WITH EFT

3.1.1 The Effective Field Theory technique

Whenever a theory presents a gap in its energy spectrum effective field theory

techniques become a very powerful tool. They exploit the hierarchy of scales to

allow a perturbative expansion in powers of the energy gap. This simplifies the

theory getting rid of irrelevant degrees of freedom and couplings.

Applied to supersymmetry, as the scale of the superpartners is raised, the

Standard Model becomes a better and better EFT, with corrections from higher

dimensional operators decoupling fast, as powers of v/mSUSY, the ratio between

the EW and the SUSY scale. At leading order in this expansion the presence

of supersymmetry at low energy reduces to a boundary condition for the SM

couplings evolved at the SUSY scale, where they have to match with the full

supersymmetric theory.

From the bottom up the technique reduces to taking the measured SM cou-

plings at low energy, evolving them up to the superpartner scale and matching

them to the full supersymmetric theory living at high scales. The non-trivial rela-

tions between the couplings in the supersymmetric theory (in particular between

the Higgs quartic, the gauge-Yukawa couplings and the soft terms) translates into

a non-trivial condition on the soft SUSY parameters. Equivalently one can leave

the physical Higgs mass as a free parameter to be determined as a function of

the UV SUSY parameters. Imposing the physical value for the Higgs mass then

gives the constraint.

The use of this technique in the computation of the Higgs mass in the MSSM

is quite old [110], however its utility in natural SUSY spectra was limited since

corrections from higher dimensional operators could not be neglected in that case.

These techniques became more popular with the advent of Split SUSY scenarios

[9, 10] and the recent LHC results [36, 48, 94, 104, 112].

In the rest of the chapter, unless specified otherwise, the gauge couplings g1,2,3,

the Yukawa couplings yt,b,τ and the Higgs quartic coupling λ are assumed to be

the SM ones in the MS scheme while the soft parameters (masses and trilinear

couplings) are in the DR or OS schemes. In particular when we refer to our DR

or OS results it means that the soft masses are DR or OS while the couplings are

always taken to be the SM ones in the MS scheme.

Our computation presented in [1] is organized as follows:

• The SM couplings (gauge, Yukawa and quartic) in the MS scheme are ex-

tracted from the corresponding physical quantities at the EW scale at full
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3.1 The computation

two-loop level [93]. In particular the matching between the top mass1 and

the top Yukawa coupling is done using full two-loop thresholds plus the

leading three-loop QCD one2 from [114].

• The couplings are then evolved from the weak scale to the superpartner

scale using the full three-loop renormalization group equations (RGE) for

these couplings3 [93].

• At the SUSY scale the SM couplings are matched to those of the SUSY

theory (converted from either DR or OS to the MS scheme) using the full one

loop thresholds (from [94] and the O(αb,τ ) corrections from appendix A.2)

plus the leading two-loop thresholds O(αsαt) and O(α2
t ). The former is

computed for generic SUSY spectra while the latter (which is generically

smaller) is only computed for degenerate scalars.

The final expression for the Higgs mass can thus be written as

m2
h = v2[λ(mt) + δλ(mt)] , (3.1)

where v = 246.22 GeV and δλ(mt) are the SM threshold corrections (here com-

puted up to two loops) to match the Higgs pole mass to the MS running quartic

coupling. The coupling λ(mt) is derived using the RGE and the boundary condi-

tions at the SUSY scale (see below). The RGE for the Higgs quartic coupling are

solved together with gauge and Yukawa couplings at three loops, in particular

the top Yukawa yt is extracted from

mt =
v√
2

(yt(mt) + δyt(mt)) , (3.2)

where δyt(mt) is the SM threshold correction matching the top pole mass with

the MS top Yukawa coupling and here computed at NNLO, and N3LO in the

strong coupling. The matching at the SUSY scale Q is instead given by

λ(Q) =
g2(Q) + g′2(Q)

4
cos2 2β + ∆λ(1) + ∆λ(2)

αtαs + ∆λ
(2)

α2
t
, (3.3)

1As usual we interpreted the experimental value mt = 173.34± 0.76[113] as the pole mass,

systematic uncertainties coming from this choice can be estimated by rescaling the experimental

error on the top mass.
2Since we do not perform a complete N3LO computation this last correction is also used to

evaluate the uncertainties from higher order terms.
3As for the three-loop top Yukawa threshold, the four-loop QCD corrections [115, 116] to

the strong coupling RGE has been used to estimate the uncertainties.
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3. HIGGS MASS DETERMINATION WITH EFT

where ∆λ(1) contains the 1-loop thresholds matching the Higgs quartic coupling

λ(Q) in the MS-scheme with the one computed in full SUSY in terms of soft

terms and couplings, in the DR or OS schemes. ∆λ
(2)
i are the leading two loop

threshold corrections further discussed below.

If some of the superpartners are light compared to the rest of the SUSY

spectrum, as in the case of Split SUSY, a new mass threshold develops. In this

case two matchings are in order, the first at the Split scale between the SM and

the Split SUSY theory, and the second at the SUSY scale, between the Split

theory and the MSSM. The evolution up to the Split scale is the same as in the

previous case. We then used 1-loop thresholds to do the matchings and 2-loop

RGEs to run the Split-SUSY theory [10, 47]. We will show in section 3.2.4 that

the simplest approach also works in the Split case, i.e. the effect coming from

the splitting of the fermions from the scalar superpartners do not need RGE

resummation in the parameter region relevant for the observed Higgs mass.

Our computation is very close to the one in [94], in particular we added

the contributions from the bottom and tau Yukawas, relevant at large values of

tan β, we recomputed the two-loop thresholds O(αtαs) using the effective poten-

tial in [77], and we also included O(α2
t ) corrections computed for degenerate scalar

masses.

The general expression for the two-loop O(αtαs) corrections is too long to be

reported here, but can be accessed through the computer code SusyHD provided

in [111] for DR and OS schemes. Our computation in the DR scheme agrees1 with

the one of [94]. In the limit mQ3 = mU3 = mt̃ and vanishing gluino mass the OS

expression takes the simple form

∆λ(2)
αtαs = − y

4
t g

2
3

16π4

[
5

2
− 1

2
X̂2
t −

(
2− 3X̂2

t

)
ln
m2
t̃

Q2
+ 3 ln2 m

2
t̃

Q2

]
, (3.4)

while for M3 = mQ3 = mU3 = mt̃

∆λ(2)
αtαs = − y

4
t g

2
3

16π4

[
4− 6X̂t − 4X̂2

t +
3

4
X̂4
t −

(
2− 3X̂2

t

)
ln
m2
t̃

Q2
+ 3 ln2 m

2
t̃

Q2

]
, (3.5)

where X̂t = Xt/mt̃, Xt = At − µ/ tan β and Q is the renormalization scale. The

definition we used for Xt in the OS scheme is given in eq. (A.24) in appendix A.2.

The two-loop O(α2
t ) supersymmetric threshold correction to the quartic cou-

pling can be derived from the corresponding correction to the Higgs mass. We

1We thank the authors of [94] for providing the explicit expression of their result for the

cross-check.
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3.1 The computation

derived it under the simplifying assumption of degenerate scalars while the µ
parameter and the renormalization scale are left free. We used the results in
ref. [79] for the O(α2

t ) correction to the Higgs mass calculated using the effective
potential technique in DR. Converting in the one-loop O(αt) correction the DR
superpotential top Yukawa coupling and MSSM Higgs vev into the MS SM top
Yukawa and EW vev will produce an additional shift contribution at two loops.
Analogously for the OS computation there is an extra shift from converting the
stop masses and mixings in the one-loop corrections. We subtract the O(α2

t ) top-
quark contribution because it already appears in the matching at the EW scale.
Finally, it is important to notice that there is also a contribution to the matching
of the Higgs mass (and the quartic coupling) at the SUSY scale induced by the
one-loop contribution of the stops to the wave-function renormalization of the
Higgs field, which is instead absent in the O(αtαs) corrections. The complete
expression with the details of the calculation can be found in appendix A.2, a
simplified expression in the OS scheme for the case µ = mt̃ and large tan β reads

∆λ
(2)

α2
t

=
9 y6

t

(4π)4

[
3 +

26

3
X̂2
t −

11

6
X̂4
t +

1

6
X̂6
t −

(
10

3
− X̂2

t

)
ln
m2
t̃

Q2
+ ln2 m

2
t̃

Q2

]

+ O
(
tan−2 β

)
. (3.6)

As a cross check we verified analytically that the two-loop O(αtαs) and O(α2
t )

threshold corrections to the quartic coupling (under the assumption of degenerate
scalars) cancel the dependence on the renormalization scale of the Higgs mass at
the same order.

Finally we also included the 1-loop threshold corrections from the bottom (and
tau) sector, which are relevant in the large tan β region. The explicit expressions
can be found in the appendix A.2. At large tan β, depending on the size and sign
of other parameters, such as the µ term and the gaugino masses, the net effect
is that of reducing the value of the Higgs mass. This effect may even cancel the
tree-level contribution and allow for larger SUSY scales (see section 3.2.3).

The relevance of the supersymmetric thresholds decreases as the SUSY scale
increases because of the evolution of the SM running couplings. Among the
missing SUSY threshold corrections the most important are the two-loop O(α2

t )
when the scalars are not degenerate, the two-loop O(αtα, αsα) proportional to the
electroweak gauge couplings and the three-loop O(αtα

2
s). In the case of large tan β

and sizable µ parameter, the two-loop corrections proportional to the bottom
Yukawa can also be relevant, they include the O(αbαs, αbαt, α

2
b) corrections. The

contribution of the missing SUSY thresholds to the Higgs mass is estimated to
be below 1 GeV even for a spectrum of superparticles as low as 1 TeV, see the
next section.
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3. HIGGS MASS DETERMINATION WITH EFT

Further improvements of our computation are discussed in section 3.4.

3.1.2 Estimate of the uncertainties

In the EFT approach to the calculation of the Higgs mass in SUSY, the uncer-

tainties can be recast into three different groups:

1. SM uncertainties : from the missing higher order corrections in the matching

of SM couplings at the EW scale and their RG evolution;

2. SUSY uncertainties : from missing higher order corrections in the matching

with the SUSY theory at the high scale;

3. EFT uncertainties : from missing higher order corrections from higher di-

mensional operators in the SM EFT and other EW suppressed corrections

O(v2/m2
SUSY).

The estimate of the uncertainties in the Split-SUSY scenario is slightly differ-

ent from the High-Scale one, because there are additional contributions from the

extra matching at the Split scale and the evolution of the Split couplings between

the mass scales of the fermion and scalar superpartners. Fortunately, one does

not expects large stop mixing in Split-SUSY models, which renders the uncer-

tainties under control. As we will discuss in section 3.2.4, the High-Scale SUSY

EFT computation also gives excellent results when the fermion superpartners are

lighter than the scalars. For these reasons we will focus on the estimate of the

uncertainties in the High-Scale EFT calculation.

Fig. 3.2 summarizes the importance of the individual sources of uncertainty

as a function of the SUSY scale. For definiteness we took the superpartners to

be degenerate with mass mSUSY, the Higgs mass has been kept fixed at 125 GeV

by varying either the stop mixing (with fixed tan β = 20 for mSUSY < 20 TeV)

or tan β (with vanishing stop mixing for mSUSY > 20 TeV). We will now discuss

these uncertainties individually.

SM uncertainties

As described in the previous section, in our computation we employed full SM

three-loop RGE and two-loop matching conditions at the EW scale to relate the

pole masses mh and mt and the gauge couplings to the MS running couplings

at the high scale. We also included the 3-loop O(α3
s) corrections to the top

mass matching. This is expected to be the leading higher-order correction and

the missing 3-loop matching and 4-loop running corrections are not expected to
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Figure 3.2: Breakdown of the uncertainties for a 125 GeV Higgs mass as a function

of the (degenerate) superparticle masses mSUSY. The Higgs mass has been kept

fixed at 125 GeV by varying either the stop mixing (with fixed tanβ = 20 for

mSUSY < 20 TeV, left panel of the plot) or tanβ (with vanishing stop mixing for

mSUSY > 20 TeV, right panel of the plot. Note that for mSUSY < 2 TeV (the gray

region) the 125 GeV value for the Higgs mass cannot be reproduced anymore but is

within the theoretical uncertainties. The black “total” line is the linear sum of the

theoretical uncertainties from SM, SUSY and EFT corrections (in dashed lines).

The dotted line ∆exp
mt corresponds to the 2σ experimental uncertainty on the top

mass.

give larger effects. Still, we conservatively used the 3-loop O(α3
s) corrections to

estimate the SM uncertainties from the higher-order missing corrections, although

the latter are probably smaller1.

The full SM uncertainty in fig. 3.2 has been computed by summing the effects

from O(α3
s) corrections to the top mass and the ∼0.15 GeV estimate [93] of

the 3 loop corrections to m2
h. While the latter corrections would be formally of

the same order as the corrections induced by the 2-loop SM corrections to the

matching of the top Yukawa in a fixed order computation, in the EFT approach

they are actually subleading because the 2-loop corrections from the top sector

get enhanced by the RG logarithms and by the stop mixing (when this is large).

1For this reason our theoretical uncertainty from the SM calculation is somewhat larger

than the one quoted for example in [93], which uses the same precision for the computation of

the stability of the SM Higgs potential.
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Figure 3.3: The uncanceled scale dependence from higher order corrections is largest

at maximal stop mixing and small stop masses (here taken 1 TeV). Including only 1-loop

SUSY threshold it amounts to up to a 3 GeV shift of the Higgs mass, when the scale is

changed by a factor of 2. It reduces to below 1 GeV when the leading 2-loop O(αtαs) and

O(α2
t ) corrections are included.

The net effect from these SM corrections amount to a shift to the Higgs mass

of order 0.5÷1 GeV for mSUSY ∼ 1 ÷ 107 TeV. The uncertainty slowly increases

with the SUSY scale as a result of the longer RGE running.

How can the SM uncertainty be reduced? One can consistently include the

next order in the strong corrections, in the matching at the electroweak scale

and the RGE. It requires the expressions of the three-loop O(y4
t g

4
3) and O(ytg

6
3)

threshold corrections to λ and yt respectively. For evolving the running couplings,

one needs the four-loop O(y4
t g

6
3), O(ytg

8
3), and O(y4

t g
9
3) contributions to the beta

functions of λ, yt and g3. This is discussed in more detail in section 3.4.1, where

also the estimate of the SM uncertainties is improved.

SUSY uncertainties

The matching between the SUSY soft parameters and the SM couplings includes

full one-loop threshold corrections (including also bottom and tau Yukawa cor-

rections) plus the leading two-loop corrections O(αtαs) and O(α2
t ) (the latter only

in the simplified case of degenerate scalar masses). While O(αtαs) can give large

effects, the corrections from O(α2
t ) are substantially smaller and other missing

2-loop thresholds are expected to be even smaller. Since a missing threshold pro-

duces an uncanceled renormalization scale dependence in the final Higgs mass,

such dependence can be used to estimate the missing corrections. In the worst

case (maximal stop mixing and small SUSY scale) the uncanceled scale depen-
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3.1 The computation

dence from the 1-loop thresholds may shift the Higgs mass by roughly 3 GeV
when the renormalization scale is changed by a factor of 2. O(αtαs) reduce the
shift1 to 1 GeV and O(α2

t ) further down below 1 GeV, see fig. 3.3.
The uncertainty from SUSY thresholds in fig. 3.2 has been estimated by taking

the maximum of the shifts induced by varying the SUSY matching scale by a
factor of 2 or 1/2 with respect to mSUSY. The impact on the uncertainties from
missing SUSY threshold corrections greatly reduces away from maximal stop
mixing and when the stop masses are increased, the latter effects due to the
reduction of the SM couplings from the RGE evolution. This fact is manifest in
the EFT approach, less so in others, which require a careful resummation of logs.

In order to decrease the SUSY uncertainties one can include some of the miss-
ing SUSY threshold corrections, as those mentioned at the end of section 3.1.1.
In particular, it is worth to compute the two loop O(α2

t ) thresholds for non-
degenerate scalars and the two loop corrections proportional to the bottom Yukawa
coupling O(αsαb, αbαt, α

2
b), important for large values of tan β. That is precisely

the task of section 3.4.2. The two loop O(αtα, αsα) proportional to the elec-
troweak gauge couplings and the three loop O(αtα

2
s) can also be important.

EFT uncertainties

The last source of uncertainties is intrinsic to the EFT approach and comes from
neglecting higher dimensional operators below the SUSY scale; consistently with
such approximation we also neglected EW corrections to the sparticle spectrum.
These corrections decouple fast, as powers of the EW scale over the SUSY scale,
however they could become important for light SUSY scale. Given the relatively
high value of the Higgs mass and the bounds from the LHC, superpartners are
expected to lie above the TeV scale, reducing the relevance of these corrections
only to very particular corners of the parameter space.

At tree level the only source of power corrections comes from the heavy Higgs
states—if mA is close to the EW scale the mixing effects may become important
and the tree-level expression in (3.3) gets corrections of order

δ
(tree)
EFT λ ∼ −λ

m2
Z

m2
A

sin2(2β). (3.7)

Such contributions become important only when mA is particularly light, i.e.
mA . 200 GeV, in a region of the parameter space which is already disfavored
by indirect bounds on the Higgs couplings [117].

1In the right plot of fig. 3.3 the scale dependence left after the inclusion of the O(αtαs)

corrections seems to be smaller because of an accidental cancellation for those particular values

of the parameters.
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Corrections from higher dimensional operators induced by the other super-

partners enter only at one loop (such as the other scalars and the EWinos) or at

two loops (gluino). The most dangerous corrections are thus expected to come

from the stops, they are of O(αtm
2
t/m

2
t̃
) and can get enhanced at large stop mix-

ing. We estimated such corrections by multiplying the one-loop corrections by

v2/m2
SUSY. Numerically, for stops above 1 TeV, even at maximal mixing, these

corrections are below 1 GeV and rapidly decouple for heavier stop masses, see

fig 3.2. Having lighter stops may require to take such corrections into account,

although they start being too light to accommodate the observed value of the

Higgs mass (see sec. 3.2.2).

The total EFT uncertainty in fig. 3.2 has been estimated by taking the sum of

the single contributions to ∆λ from each SUSY particle with mass mi multiplied

by the corresponding factor1 v2/m2
i .

In conclusion, for stops above the TeV scale power corrections are small, jus-

tifying the use of the EFT. A more detailed analysis is performed in section 3.4.3.

Combined uncertainties

Fig. 3.2 summarizes the impact of the various uncertainties to the determination

of the Higgs mass as a function of the SUSY scale, tan β and the stop mixing,

in the relevant region of parameters that reproduces the measured value of the

Higgs mass. For definiteness we took a degenerate spectrum of superpartners, we

checked that the size of the uncertainties remains of the same order when this

assumption is relaxed. The dominant source of error comes from higher order

corrections in the matching and running of the SM couplings. SUSY thresholds

are only important for low SUSY scale and large stop mixing, while power correc-

tions are negligible throughout the parameter space unless some of the sparticles

are very close to the EW scale.

It is fair to say that, for most part of the relevant parameter space, the Higgs

mass in the MSSM has reached the same level of accuracy as the determination

of the Higgs potential in the SM. Further improvements from the theory side

can be achieved by extending the SM calculations at higher orders. The size of

1 More specifically, we multiply the one loop contributions from the scalars ∆λ1`φ and the

fermions ∆λ1`χ by the factors v2/m2
0 and m2

Z/m
2
1/2 respectively, where the mass scale of the

scalars m0 and fermions m1/2 are taken as the average stop mass and the minimum between

the higgsino and wino masses min(|µ|, |M2|). Then the total estimate is considered as the linear

sum of the absolute value of the three partial estimates from the tree-level, one loop scalar and

one loop fermion contributions.
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the uncertainties remains practically unchanged in the split scenario, where the

fermions are parametrically lighter than the scalar superpartners.

The total theoretical uncertainty (computed here conservatively as the lin-

ear sum of the three sources discussed above) is of order 1 GeV or below for

most of the relevant parameter space (i.e. the parameter space that reproduces

mh =125 GeV, see fig. 3.2). It is thus below the error induced by the experimen-

tal uncertainty in the value of the top mass. Indeed, the latter produces a shift

in the Higgs mass of order 1.5÷2.5 GeV depending on mSUSY, when the top mass

value is changed by 2σ=1.5 GeV. The error increases with mSUSY due to RGE

effects.

As usual, estimates of theoretical errors provide only for the order of magni-

tude of the expected corrections and must be taken with a grain of salt. However

since for most of the parameter space the error is dominated by the SM uncer-

tainties, where we have been rather conservative, the estimate of fig. 3.2 should

represent a fair assessment, at least away from the lower end.

3.1.3 Comparison with existing computations

Our EFT computation agrees within the uncertainties with all the others which

use the same technique. As already noticed in [94], however, the EFT computa-

tion seems to give a smaller Higgs mass with respect to other approaches, such

as those based on full diagrammatic and effective potential computations such as

[95, 99, 101, 102]. In some cases the disagreement amounts to up to ∼10 GeV,

well beyond the expected quoted uncertainties, even in regions of parameter space

where both approaches are expected to hold.

A comparison between the EFT computation and some of the available com-

puter codes is shown in fig. 3.4. In order to compare with FeynHiggs, we converted

the masses and the stop mixing from the DR to the on-shell renormalization

scheme employed in that code, using the results from [79]. The disagreement is

around 3 GeV for mSUSY > TeV at large tanβ and zero stop mixing and increases

up to 9 GeV for maximal mixing and mSUSY = 2 TeV. Moreover, it can not be

explained in terms of the claimed uncertainties.

Effect of the electroweak gauge couplings in the resummation

The FeynHiggs code performs the resummation of logarithmic corrections of the

top-stop sector, while those controlled by the electroweak gauge couplings are

included at fixed order. In order to determine their effect in the resummation,

we compare the solution of the coupled (λ, yt, g3, g2, g1) two-loop RGE of the
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Figure 3.4: Comparison between the EFT computation (lower blue band) and two

existing codes: FeynHiggs [96] and Suspect [101]. We used a degenerate SUSY spectrum

with mass mSUSY in the DR-scheme with tanβ = 20. The plot on the left is mh vs mSUSY

for vanishing stop mixing. The plot on the right is mh vs Xt/mSUSY for mSUSY = 2 TeV.

Since the FeynHiggs code works in the OS scheme, we converted the DR parameters to

OS-scheme using the 1-loop formulas in [79] as input for the FeynHiggs code. On the left

plot the instability of the non-EFT codes at large mSUSY is visible.

Standard Model with the solution of the coupled (λ, yt, g3) RGE plus the loga-
rithmic contributions controlled by g1 and g2 taken at fixed order up to two-loops,
obtained by iterative solution of the RGEs1.

One can use the RGE to obtain the logarithmic higher-oder contributions, as
already discussed in section 2.3.2. The Higgs quartic coupling at the top mass
can be written as

λ(mt) =
∞∑

n=0

κn
n∑

p=0

LpCn.p, with κ =
1

16π2
, L = ln

mSUSY

mt

. (3.8)

The term C0,0 contains the tree-level contribution, C1,1 the one-loop LL, C1,0

the one-loop thresholds, C2,2 the two-loop LL, C2,1 the two-loop NLL, C2,0 the
two-loop thresholds and so on.

We solved iteratively the SM two-loop RGE, denoted generically as

dX

dt
= κβ

(1)
X + κ2β

(2)
X , t = ln(Q/Q0) (3.9)

where X = λ, yt, g3, g, g
′. We obtain

C1,1 = −β(1)
λ (3.10)

1In FeynHiggs the tree level contribution to the quartic coupling does not appear as a

boundary condition at the SUSY scale; instead it appears at fixed order. We follow the same

procedure to facilitate the analysis.
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3.1 The computation

mSUSY (GeV) 104 105 108

∆mh (GeV): full−g, g′ at 2 loops 0.5 1.7 6.2

∆mh (GeV): full− g, g′ at 1 loop 0.9 2.6 10.2

Table 3.1: Deviation from the the Higgs mass calculation with a full RG resum-

mation due to considering the logarithms controlled by g and g′ at fixed order.

C2,2 =
1

2

∑

X

β
(1)
X

∂β
(1)
λ

∂X
=

1

2

[
β

(1)
λ

∂β
(1)
λ

∂λ
− β(1)

yt

∂β
(1)
λ

∂yt
− β(1)

g′
∂β

(1)
λ

∂g′
− β(1)

g

∂β
(1)
λ

∂g

]

(3.11)

C2,1 = −β(2)
λ −

∂β
(1)
λ

λ
C1,0, (3.12)

where all the couplings in the β functions are evaluated at the top mass except

the quartic coupling λ which is evaluated at mSUSY. The difference in sign in

eq. (3.11) is because we are running from a higher scale to the top mass, and

yt, g3, g and g′ are evaluated at the top mass. The logarithmic contributions

to λ controlled by g, g′ denoted by Cg,g′
n,p are obtained by subtracting the g, g′-

independent contributions from the full one: Cg,g′
n,p = Cn,p(g, g

′)−Cn,p (g, g′ = 0) .

We also found iteratively the RG contribution to g(mSUSY) and g′(mSUSY) up to

two loops needed to evaluate λ(mSUSY).

The effect of the electroweak gauge couplings in the resummation is illustrated

in Fig. 3.5. It is not very sensitive to the stop mixing Xt, because the Xt-

dependent contributions are controlled by yt and g3. We consider tan β = 20 and

Xt = 0 for definiteness. We plot the shift in the Higgs mass ∆mh, with respect

to the result with full resummation in all couplings, induced by considering the

logarithms proportional to g and g′ at fixed order. To facilitate the analysis we

have also presented the results in the table 3.1.

We see in fig. 3.5 and table 3.1 that despite the deviation in the Higgs

mass induced by considering the loop corrections controlled by g, g′ at fixed

order (as FeynHiggs does) become very important for mSUSY
>∼ 105 GeV, for

mSUSY = 104 GeV this deviation is less than 1 GeV. Moreover including all the

LL and NLL corrections controlled by g and g′ increases the Higgs mass, i.e. it

shifts the Higgs mass in the direction such that the fixed-order result in fig. 3.4 de-

viates more from the EFT one. Therefore, the logarithmic corrections controlled

by the electroweak gauge couplings can not explain the discrepancies.
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Figure 3.5: Effect of the electroweak gauge couplings in the resummation. The

curves show the difference between the Higgs mass computed with NLL resum-

mation in all the couplings and NLL resummation in λ, yt, g3 but including the

logarithms proportional to g and g′ at fixed order, up to one-loop (red dashed) or

two loops (blue solid). We assume a degenerate spectrum of superparticles and

tanβ = 20.

Sensitivity to the top Yukawa

The large disagreement with the FeynHiggs 2.10.1 code can mostly be understood

as follows. The computation in [96] included full 1-loop plus the leading 2-loop

SUSY corrections of the Higgs mass at fixed order combined with partial 2-loop

RGE resummation of the logarithms of the top-stop sector. Consistently with

this however, they only include the 1-loop corrections proportional to g3 and yt
to the matching of the MS top Yukawa coupling. Instead, including the 1-loop

electroweak, the complete 2-loop and the 3-loop strong corrections to the relation

between the MS and the OS mass of the top quark accounts for a shift in the MS

top mass of roughly 4 GeV. Hence, the bulk of the disagreement is due to these

missing corrections in the MS top mass and Yukawa coupling1.

Note that, as discussed in the previous section, the uncertainty in the EFT

approach is dominated by the 3-loop top matching conditions, the 2-loop ones are

thus mandatory in any precision computation of the Higgs mass2. We checked

1It was brought to our attention that a similar observation was also made in [118].
2 The four loop O(α4

s) correction to the relation between the top mass defined in the on-shell

and the MS schemes was recently computed [119]. It confirms the slow convergence of the QCD

perturbative expansion.
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that after their inclusion, the FeynHiggs code would perfectly agree with the

EFT computation at zero squark mixing. At maximal mixing the disagreement

would be reduced to 4 GeV, which should be within the expected theoretical

uncertainties of the diagrammatic computation.

For comparison, in fig. 3.4 we also show the results obtained with a different

code (Suspect [101]) which uses a diagrammatic approach. Unlike FeynHiggs,

Suspect includes the O(α2
s) threshold corrections to the top Yukawa matching

condition but does not perform RGE improvement and its applicability becomes

questionable for mSUSY in the multi TeV region.

3.2 Results

After having seen that the EFT computation is reliable for most of the relevant

parameter space we present here some of the implications for the supersymmetric

spectrum. Given the generic agreement with previous computations using the

same approach, we tried to be as complementary as possible in the presentation

of our results, putting emphasis on the improvements of our computation and

novel analysis in the EFT approach.

3.2.1 Where is SUSY?

Fig. 3.6 represents the parameter space compatible with the experimental value

of the Higgs mass in the plane of (m1/2,m0) for zero (blue) and increasing values

(red) of the stop mixing. For simplicity we took degenerate scalar masses m0 as

well as degenerate fermion masses m1/2 = M1,2,3 = µ. All SUSY parameters of

this plot are in the DR scheme1. The figure highlights a number of features:

• The main effect at small fermion masses is given by the scale of the scalars

(in particular the stops). The lower part of the allowed region corresponds

to large values of tan β & 10. Lowering tan β allows to access larger scalar

masses (see also fig. 3.8 below).

• The dependence on the fermion masses can be understood as follows. For

m1/2 . m0 the biggest contribution comes from the higgsino-wino loop in

the running of the Higgs quartic. It makes the quartic coupling run larger

in the IR thus making the Higgs heavier. This correction is only there

when both wino and higgsino become light. There is also a smaller 1-loop

correction from the individual EWinos, which affects the running of the

1All DR parameters are computed at the scale Q =
√
mt̃L

mt̃R
unless specified otherwise.
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Figure 3.6: Higgs mass constraint on the value of scalar (m0) and fermionic (m1/2)

superpartners (taken degenerate). The upper blue region refer to zero mixing, the lower red

to increasing values of the stop mixing. The lighter bands corresponds to the uncertainty

from the top mass. The gray shaded region corresponds to tachyonic on-shell masses for

the squarks. The non-vertical thin dashed lines correspond to on-shell values for the squark

masses: when m1/2 grows the DR mass m0 must be increased to keep the on-shell mass

constant. The thick dashed burgundy lines correspond roughly to the expected reach of

LHC14 and of an hypothetical 100 TeV machine.

EW gauge couplings. They make the gauge coupling run bigger in the UV
increasing the tree-level contribution to the Higgs quartic (3.3) and thus
its pole mass. Lowering the gluino mass decreases the Higgs mass but the
effect is two-loop suppressed and only non-negligible at large stop mixings.
The region m1/2 & 2m0 should be treated with care. In the DR scheme
there are negative quadratic corrections to the squark masses proportional
to the gaugino masses [69]

m2
q̃
,OS = m2

q̃
,DR(m2

q̃)−
4αs
3π

M2
3

[
log

(
M2

3

m2
q̃

)
− 1

]
+ . . . (3.13)

In particular when M3 becomes larger than roughly a factor of four with
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respect to the squark masses the corresponding on-shell masses become

tachyonic. Just before this happens the on-shell masses (the dashed lines

in the figure) start becoming smaller and smaller with respect to the DR

parameters, in this tuned region large corrections make the DR computation

unstable. This explains the strong apparent dependence on m1/2 on the

right-hand part of the plot, which would disappear if plotted in terms of the

on-shell masses. We decided to keep the plot in terms of the DR parameters

to highlight the tuning required to explore such region.

• Current LHC searches already probed squark and gluino masses up to

1.5 TeV circa [120]. This corresponds to the very lowest part of the al-

lowed parameter space, where the stop mixing is maximal, tan β is large

and fermions must be lighter than scalars. This, of course, with the caveat

that the strongest experimental bounds apply to first generation squarks

and gluino while the Higgs mass mostly depend on the stops and (some-

what weaklier) on EWino. With the same caveat LHC14 should eventually

be able to more confidently explore the same region (extending the squark-

gluino reach to 3 TeV, see e.g. [121]), while the small stop mixing region

could only be reached directly with a 100 TeV machine (capable of prob-

ing colored sparticles of roughly 15 TeV masses, see e.g. [121]). Of course

(mini-)Split scenarios where the heavy scalars are responsible for the Higgs

mass and the light fermions are within reach at lower energies remain a

valid possibility.

3.2.2 The EFT gets on-shell

Previous computations using the EFT approach have used the DR scheme for

the SUSY and the soft parameters. This scheme has the advantage of being

the natural framework for the computations of the soft parameters in theories of

SUSY breaking. In some cases, however, it results inadequate for the computation

of the Higgs mass.

First of all, physical on-shell masses are needed to compare theoretical com-

putation with experiments. While the difference in the schemes is one-loop sup-

pressed, there are non-decoupling effects which require care. For example the

difference between the on-shell and the DR squared mass of the squarks re-

ceives an additive one-loop correction proportional to the gluino mass squared,

see eq. (3.13). Such correction is negative and big—it is enough for the gluino

mass to be a factor of four above the squark masses to drive the corresponding

on-shell mass tachyonic.
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Figure 3.7: Allowed values of the OS stop mass reproducing mh = 125 GeV as a function

of the stop mixing, with tanβ = 20, µ = 300 GeV and all the other sparticles at 2 TeV.

The band reproduce the theoretical uncertainties while the dashed line the 2σ experimental

uncertainty from the top mass. The wiggle around the positive maximal mixing point is

due to the physical threshold when mt̃ crosses M3 +mt.

For similar reasons in the DR scheme the gluino contribution to the Higgs

mass does not decouple [81]. Another consequence is the instability of the Higgs

mass with respect to the renormalization scale—even if the on-shell squark masses

are positive, the DR stop mass becomes highly sensitive to the renormalization

scale when the gluino is more than a factor of 2÷3 above it, which results in

an instability of the estimate of the Higgs mass. What is happening is that the

physical on-shell squark masses becomes tuned and highly sensitive to the soft

parameters. The situation is similar to trying to compute the Higgs mass in terms

of the soft parameter m2
Hu

instead of the on-shell (tuned) EW vev v.

All these problems disappear in the OS scheme, the gluino decouples up to a

physical log correction [81], there are no tachyons since the physical OS masses are

given as input and larger hierarchies can be introduced safely within the SUSY

spectrum (with the usual caveat that large logarithms may require resummation).

Besides, the input masses are directly the physical quantities to be compared with

experiments.

For these reasons we also performed our computation in the OS scheme.

Fig. 3.7 shows an application of such calculation. It corresponds to the region
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of allowed OS stop masses (taken degenerate in this case) which reproduces the

observed Higgs mass for different At-terms. Our definition of At in the on-shell

scheme, eq. (A.24), is different from the usual one, this explains why the point of

maximal mixing is not at Xt/mt̃ ' 2. In the spirit of natural SUSY [122–124] we

kept the higgsino light at 300 GeV while the gauginos and first generation squarks

safely above collider bounds at 2 TeV. The lightest stop masses allowed in this

case (for maximal stop mixing) are about 1.7±0.4 TeV, in the region where the

EFT approach should be reliable.

Had we drawn the same plot in terms of the DR masses we would not be able

to draw the same conclusion—the error would blow up in the region where the

stops are sufficiently lighter than the gluino.

3.2.3 Large-tan β High-Scale SUSY strikes back?

While for most values of tan β the contributions from the bottom and tau sector

can be neglected, at very large tan β the corresponding superpotential couplings

become large and their effects to the SUSY threshold can eventually dominate

over the others. In particular the one loop sbottom threshold to the Higgs quartic

coupling at leading order in tan β and degenerate sbottoms (mb̃) reads

∆λ
(1)

b̃
= − ŷ4

b

32π2

µ4

m4
b̃

, (3.14)

and analogously for the tau. At tree-level the superpotential Yukawa coupling ŷb
is related to the SM Yukawa yb by ŷb = yb/ cos β. At large tan β, ŷb may become

larger than one. In this situation the negative threshold correction (3.14) may

cancel or even overcome the tree-level contribution, especially at high SUSY scale

where the SM EW gauge couplings are smaller. This effect may allow to maintain

mh = 125 GeV and large tan β with arbitrary heavy scalar fields, reopening the

High Scale SUSY window above 1010 GeV, which was thought to be excluded

by the Higgs mass within the MSSM. As an example, we show in fig. 3.8 how

the mSUSY -vs-tan β plot would look like at large tan β after including the leading

bottom (and tau) contributions. For the plot we chose degenerate spectrum with

mass mSUSY, negative µ = −mSUSY and At = mSUSY/2. The SUSY parameters

are given in the OS scheme. The behavior at small and moderately large tan β

(tan β . 40) is well-known [36, 47, 94]. However further increasing tan β, the

bottom coupling α̂b = ŷ2
b/(4π) grows, decreasing the Higgs mass [66]. For very

large tan β the tree-level contribution to the bottom mass is so suppressed that

loop corrections cannot be neglected [125, 126]. In fact the bottom mass receives
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Figure 3.8: Effects of the sbottom threshold at large tanβ. The blue band corresponds to

the mh = 125 GeV constraint (the width is given by the estimated theoretical uncertainties)

for different values of tanβ and the degenerate SUSY mass mSUSY. We fixed µ = −mSUSY

and At = mSUSY/2. Dashed and dot dashed lines correspond to different values of the

bottom and tau couplings respectively. The red region correspond to tachyonic Higgs and/or

non-perturbative bottom Yukawa coupling.

corrections from SUSY breaking proportional to vu = v sin β, i.e. not tan β

suppressed

yb = ŷb cos β+ŷb sin β

[
8

3

αs
4π

µM3

m2
b̃

F
(M2

3

m2
b̃

)
+
αt
4π

1

sin2 β

µXt

m2
b̃

F
( µ2

m2
b̃

)]
+. . . (3.15)

where F (x) = (1− x+ x log x)/(1− x)2 and we considered mQ3 = mU3 = mD3 ≡
mb̃. The loop corrections are proportional to µ and a combination of gauginos

and A-terms. If the latter are small or have opposite sign with respect to µ

(like in fig. 3.8), ŷb will become strong at large tan β in order to reproduce the

observed bottom Yukawa (the red region in the plot). Before that, ŷb is large

enough to make the threshold (3.14) win over the tree-level contribution and

allow mSUSY > 1010 GeV at large tan β. For example the observed Higgs mass

can be reproduced for GUT scale SUSY with tan β ∼ 200. In this case the bottom
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coupling α̂b ∼ 0.5, which is still perturbative but with a very close Landau pole

ΛLP ≈ 10mSUSY. The perturbativity of α̂b could be improved by choosing larger

µ terms, however this may become in tension with bounds from tunneling into

charge/color breaking vacua [57, 58]. We do not know what are the corresponding

bounds on the µ term in this regime, this require a dedicated study which is

beyond the scope of this work.

We thus find that the upper bound of 1010 GeV on the SUSY scale from the

observed Higgs mass may not apply for arbitrary values of tan β but only for small

to moderately large tan β. High scale SUSY at larger tan β, however, requires

large µ terms, gauginos may be lighter but not too much since they receive loop

corrections. Therefore high scale Split SUSY does not seem possible in this way.

If gaugino masses and/or A-terms are large and with the same sign as µ,

the loop corrections may saturate the full contribution to the physical fermion

mass. If this happens, arbitrary large values of tan β can be reached without ever

running into strong coupling effects.

Finally for smaller µ (not shown in the plot) the bottom-tau sector remains

decoupled from the low energy Higgs, the threshold (3.14) is never important and

mSUSY at large tan β stays constant. The bottom and tau Yukawa couplings still

become strongly coupled at large tan β but the effect on the Higgs mass remain

small. Of course the effect from the new physics present at the strong coupling

scale is model dependent and may be important.

3.2.4 Split vs High-Scale SUSY computation

As mentioned before, in (mini)split-SUSY scenarios, where gauginos and possibly

the higgsinos are sensibly lighter than the scalar sector, a new mass scale is present

and large logarithms may require resummation. In this case the correct procedure

would be: 1) to interrupt the SM running at the split scale, where the light fermion

superpartners are, 2) to match to the split-SUSY effective theory, which includes

SM particles and the fermion superpartners, 3) to perform a second running

within the new EFT and eventually 4) to match to the full SUSY theory at the

scalar mass scale. This procedure, which has been employed since the birth of

split SUSY, and became more popular recently after the Higgs discovery, is more

involved than the high-scale SUSY computation. Besides, the thresholds and the

RGE of the split EFT are only known at a lower order in perturbation theory.

Note however the following. The leading effect of resumming the logarithms

generated from splitting the fermion superpartners is to change the running of the

Higgs quartic and EW gauge couplings. Numerically the change in the running

of the Higgs quartic coupling is the leading contribution but it is only present
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Figure 3.9: Constraints in the (m0,m1/2) plane from mh = 125 ± 1 GeV for different

values on tanβ using the proper split-SUSY computation (dark yellow, dashed line) or

the approximate high-scale computation (red, continuous line) which does not resum the

logs induced by the splitting of m1/2 from m0. The agreement is remarkable in the whole

relevant parameter space.

when both higgsino and gauginos are light. The effect from the change in the

RGE of the EW gauge couplings is instead smaller and it is further suppressed

at small tan β, exactly when the logarithms are the largest. Finally the effects

from gluinos are negligible. Since they affect the running of the strong coupling

at one-loop and of the top Yukawa at two-loops, their effect is confined to scales

much higher than their mass. On the other hand the Higgs quartic coupling is

mostly determined by the value of the SM couplings at low energies, which are

fixed by the experimental values.

The observed value of the Higgs mass is not very large and its value limits the

SUSY scale to roughly 1010 GeV. This scale gets further reduced to 107÷8 GeV if

the SUSY fermions are split, as an effect of the extra contribution to the running

of the Higgs quartic. This translates into an upper bound on how large the

logarithmic thresholds from splitting the fermions can grow.

It turns out that in the whole parameter space relevant for the observed value

of the Higgs mass, the effect of resumming the logs of the splitting between

fermion and scalar superpartners is negligible and the results obtained with the
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single-scale SUSY theory are reliable. This is shown in fig. 3.9 where we com-

pare the computation made resumming the logs of the split threshold, using an

intermediate Split-SUSY EFT, with the one that does not resum the logs, which

uses one scale only and just the SM RGE up to the scalar masses. The agree-

ment between the two procedures is impressive. In the worst case (tan β = 1,

fermions at 200 GeV and scalars at 108 GeV) the mismatch is less than 1 GeV,

well within the estimated uncertainties. It can also be seen that the two proce-

dures start deviating exactly at that point. Indeed, had the SUSY scale and the

splitting between fermions and scalars been bigger, the two computations would

start deviating sensibly, fortunately that region is not relevant for mh = 125 GeV.

We conclude that for all the relevant parameter space the computation of the

Higgs mass can reliably be made using only the SM as EFT up to the scalar

masses, independently of the scale of the fermions1, whose main effect is well

approximated by the one-loop thresholds at the SUSY scale.

3.3 The SusyHD code

The computation described in the previous sections has been implemented into

a simple Mathematica [129] package, SusyHD (SUperSYmmetric Higgs mass

Determination), which we made public [111]. The package provides two main

functions that compute the Higgs mass and its theoretical uncertainties2 from the

input soft parameters, and an auxiliary function to change the SM parameters

(mt and αs).

The most time consuming part of the EFT calculation is the integration of

the RGE. The code avoids such step by using an interpolating formula for the

solution of the RGE, which is only function of the amount of running log(Q/mt)

and the value of the Higgs quartic coupling at the high scale λ(Q), set by the

SUSY threshold corrections, eq. (3.3). The interpolating formula only depends

on the SM parameters, so the RGE integration needs to be run only once, when

the package is first called or if the SM parameters are changed. The result is a

very fast code which allows to effectively use the observed value of the Higgs mass

as a constraint for the SUSY parameter space. All plots of this chapter have been

generated with SusyHD.

1The usual caveat from v/mSUSY corrections applies when the fermions are very close to

the EW scale. In this case the full contributions from the SM+fermion states [127, 128] should

be used in the matching at the low scale.
2The latest version of SusyHD also estimates the experimental uncertainty by considering

the uncertainty in the value of the top mass, which is the dominant source.
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The input SUSY parameters can be given in either DR or OS schemes and

thanks to the EFT approach they can be arbitrary heavy. The code also accepts

simplified input where not all the SUSY parameters needs to be specified. There

are also extra options which allow: 1) to switch off independently some of the

higher order corrections, 2) to change the matching scale Q, 3) to use the full

numerical code, which integrates the RGE numerically and 4) to use the Split

SUSY code which integrates the RGE in two steps: SM up to the fermion scale

and Split-SUSY up to the scalars. The function that computes the theoretical un-

certainties accepts also the option to compute the individual uncertainties coming

from the SM corrections, the SUSY thresholds, and the EFT approximation.

All the necessary documentation can be downloaded with the code from [111].

3.4 Recent improvements

We present recent progress in the EFT calculation of the Higgs mass, which allows

to further reduce the theoretical uncertainty and clarifies the regime of validity

of the EFT computation.

3.4.1 NNNLO SM strong corrections

For most of the relevant parameter space, particularly for stops above ∼ 1 TeV,

the uncertainty in the EFT Higgs mass calculation is dominated by the SM part.

It is associated to higher order corrections in the matching of the SM couplings

at the EW scale and their RG evolution. Due to the high sensitivity of mh to the

top Yukawa coupling yt, QCD corrections to the determination of the value of yt
in the MS scheme at the EW scale from the pole mass have a sizable effect.

The perturbative QCD expansion of the relation between the top quark mass

defined in the on-shell and MS schemes converges slowly [119]

mMS
t = (173.34− 8.00− 1.90− 0.59− 0.21) GeV, (3.16)

where the first term correspond to the tree level and the next terms are the

subsequent loop corrections. In fact, the 3-loop contribution is around one third

of the 2-loop one and shift the top mass by ∼ 0.6 GeV. This implies a variation in

the Higgs mass of around half a GeV. Since the VEV of the Higgs field does not

receive pure strong corrections we do not need to distinguish between different

renormalization schemes for its input. As a consequence, the strong contributions

to the matching of yt have the same form as those of mMS
t and loop corrections

in the perturbative expansion are not so suppressed.
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One may wonder whether other strong corrections to the matching at the weak
scale and the running from the high SUSY scale have similar effects to those due
to the determination of yt. We address this query by including the SM NNNLO
corrections in the strong coupling. This task requires three loop thresholds and
the four loop RGE of the quartic, the top Yukawa and the strong gauge couplings.
This is collected in table 3.2, together with the corresponding references.

The four loop contribution, leading in the strong coupling, to the beta func-

tions of the strong coupling β
(α4
s)

gs is known since some time ago [115, 116]. The
corrections proportional to the top Yukawa and Higgs quartic have also been

computed recently [130, 131]; although they are subleading with respect to β
(α4
s)

gs ,
especially those terms involving the quartic coupling. The (numerical) expression
for the pure QCD corrections is given by [115, 116] (see also eg. [93])

dg2
3

d lnQ2
⊃ g10

3

(4π)8
(−2472.28) . (3.17)

While the leading QCD correction to the running of the top Yukawa β
(αtα3

s)
yt can

be read form the running of the top mass, since the β-function of the vev does
not receive strong corrections at leading order. Analytical formulas are available
in [132, 133], also in eqs. (6) and (7) of ref. [134], or for a recent work see [135].
Numerically, they lead to

dy2
t

d lnQ2
⊃ 1

(4π)8
y2
t g

8
3(−13078.) . (3.18)

Recently, the four loop correction to the running of the quartic coupling was
obtained as an application of the four-loop effective potential in eq. (5.1) of [136]
(see also [135])

dλ

d lnQ2
⊃ 1

(4π)8
y4
t g

6
3(33232.). (3.19)

The top Yukawa and the quartic couplings are extracted from the on-shell
masses of the top quark and Higgs boson respectively. Therefore we need these
matching relations. A different situation takes place for the running strong cou-
pling constant, which is directly measured in experiments.

The O(α3
s) correction to the relation between the MS and OS top mass were

computed in [114, 137, 138]. They have been already used in Buttazzo et. al.
[93] for their numerical formula and applied to the vacuum stability of the SM.
Recently also the O(α4

s) was computed [119], which is of order of ΛQCD, i.e. of
the same order of the expected non-perturbative effects.

Extracting the Higgs quartic coupling from the pole mass requires the self-
energy evaluated at external momentum equal to the mass. However a three
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Coupling λ yt gs

RGE O(αtα
3
s) [136] O(αtα

3
s) [132, 133] O(α4

s) [115, 116]

Thresholds O(αtα
2
s) [93] O(αtα

2
s) [114, 137, 138]

Table 3.2: Four-loop RGE and three-loop threshold corrections in the Standard

Model, leading in the strong coupling, needed for EFT calculation of the Higgs

mass at NNNLO.

loop computation of the two point function at non-zero external momentum is a
very hard task. The three-loop SM effective potential at leading order in strong
and top Yukawa coupling was calculated in [139], which allows to obtain the
contribution to λ at zero external momentum. In a later work they also obtained
the 4-loop corrections leading in the strong coupling [136].

We want to write λ in terms of OS masses (as in [93])

λ =
Gµ√

2
m2
h + ∆λ(1) + ∆λ(2) + ∆λ

(3)

αtα2
s
, (3.20)

different from the approach in ref. [140] where it was expressed in terms of MS

couplings. The term ∆λ
(3)

αtα2
s

gets corrections from the effective potential and from
the renormalization of the top mass in the 1-loop and 2-loop corrections

∆λ
(3)

αtα2
s

=
1

2

∂4V αtα2
s

∂2H†∂2H
+ ∆λ

(3,shift)

αtα2
s

. (3.21)

We find for the 3-loop pure QCD correction in the approximation mh � mt

∆λ
(3)

αtα2
s

=− 16g4
3G

2
FMt

135(4π)6

[
− 2415 + 720π2 + 176π4 + 1440π2 ln 2 + 960π2 ln2 2

− 960 ln4 2− 23040Li4

(
1

2

)
+ 8640ζ(3) + 22680 ln3 M

2
t

Q2
− 50220 ln2 M

2
t

Q2

+ 90
(
1327 + 16π2 + 16π2 ln 4− 48ζ(3)

)
ln
M2

t

Q2

]
, (3.22)

where Li4(x) is the polylogarithm function. A similar expression was obtained in
ref. [93] for Q = Mt.

We updated our estimate of the theoretical uncertainty of the MSSM Higgs
mass calculation in fig. 3.10. We tried to estimate the uncertainty by varying the
renormalization scale but there is an accidental cancellation between the matching
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Figure 3.10: Reduction of the uncertainties of the Higgs mass calculation after the

NNNLO SM corrections leading in the strong coupling are included. The meaning

of the curves is the same as in fig. 3.2.

effects on yt and λ, leading to a too optimistic estimate. For this reason, we used

a similar estimate as before. We assign a theoretical uncertainty of 0.3 GeV to yt
and combine it with the uncertainty in the matching of the quartic coupling. Note

that the SM uncertainty in mh has been reduced to the range 0.3÷ 0.6 GeV for

mSUSY between 103 GeV and 1010 GeV. The EFT calculation works remarkably

well for heavy SUSY spectrum & 10 TeV, where other sources of uncertainty are

negligible. Although the effect of the added corrections in the value of the Higgs

mass is tiny, we have now better control of our estimate of the SM uncertainty.

Implications for the SM vacuum stability

The condition of absolute stability of the SM vacuum up to the Planck scale is

obtained by studying the RG improved full effective potential . The critical value

of the Higgs field above which the potential becomes smaller than its value at the

EW vacuum is known as the instability scale ΛI . But ΛI is not a physical quantity

as it is gauge dependent. The SM absolute stability is highly disfavored [48, 93].

It is a very good approximation to trade the stability condition by the re-

quirement λ(Λ) ≥ 0 for any value Λ up to the Planck scale (see eg. [48]). For this

reason, the evolution of the Higgs quartic coupling with the renormalization scale

(fig. 3.11) gives an indication of the effect of including the leading QCD correc-

tions to the 3-loop matching of λ and the 4-loop RGE on the vacuum stability
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Figure 3.11: Evolution of the Higgs quartic coupling λ with the renormalization

scale Q. The dark and light blue regions enclosed by the dashed and dot-dashed

curves are obtained by varying the top mass by the 2σ experimental uncertainty

or by considering the theoretical uncertainty in the top Yukawa respectively. The

right plot zooms in the region where λ becomes negative and highlights the effect

of including the leading QCD corrections in the matching of λ at three loops and in

the 4-loop RGE (red line). Grey bands correspond to values of Q above the Planck

mass MPl ≈ 1.2× 1019 GeV and the reduced Planck mass MPl = MPl/
√

8π.

condition. The right panel of fig. 3.11 shows the theoretical uncertainty around

the region where λ becomes negative. The blue band represent the estimated

theoretical uncertainty in the matching of the top Yukawa, while the red curve

contains the (tiny) contributions of the newly included corrections in addition to

those already contained by the blue curve.

We see that the theoretical uncertainty is clearly dominated by the matching

of the top Yukawa1. Although the added leading NNNLO corrections have a

tiny effect, we are now more confident of the uncertainty estimate. However, the

experimental uncertainty in the top mass is the main limitation by far.

1For the theoretical uncertainty in the matching of the top Yukawa, we use a more con-

servative estimate than ref. [93]. That is because we tried to account for non-perturbative

(unknown) QCD effects, but also because the four-loop QCD contributions are non small due

to the slow convergence of the perturbative expansion.
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3.4.2 Two-loop Yukawa corrections

We include the two-loop SUSY threshold corrections to the Higgs quartic cou-

pling controlled by the third generation Yukawa couplings. More specifically, we

obtain the O(α2
t ) corrections for a generic SUSY spectrum, the O(αsαb, α

2
b) and

the mixed O(αtαb) terms important for large tan β and sizable µ term, and those

from the sbottom sector O(α2
τ , αbατ ) for completeness (although they are sub-

leading with respect to the sbottom contributions). The computation is quite

long but straightforward. The analogous fixed-order corrections for the Higgs

mass, obtained with the effective potential method, were discussed in [71, 79, 82–

84, 105].

The two-loop SUSY thresholds are calculated by taking the fourth derivative

of the corresponding two-loop MSSM effective potential V2l as

∆λ2l =
1

2

∂4V2l

∂2H†∂2H

∣∣∣∣
H=0

+ ∆λ
(shift)
2l + ∆λ

(WFR)
2l , (3.23)

where ∆λ
(shift)
2l is the shift contribution induced by writing the MSSM Yukawa

couplings in the one-loop contributions to λ in terms of the corresponding SM

coupling and ∆λ
(WFR)
2l arises from the wave function renormalization of the Higgs

field. A similar procedure for the O(αsαt) threshold corrections was explained in

detail in [94]. It is convenient to trade the derivatives with respect to the Higgs

field by the derivatives with respect to the Higgs-field-dependent quark masses

mq (with q = t, b, τ).

It is important to notice that ∆λ
(shift)
2l generically contains two contributions.

One arises from expressing the MSSM Yukawa coupling in the one-loop SM con-

tribution to λ from the quark box diagram in terms of the corresponding coupling

of the low-energy theory. This two-loop expression contains terms proportional

to ln(m2
q/Q

2), which diverges in the limit of vanishing quark masses or equiva-

lently H → 0. In fact, this shift is essential to cancel the logarithmic dependence

of the quark masses contained in the derivatives of V2l, first term in eq. (3.23),

which allows to have a meaningful H → 0 limit. The other possible contribu-

tion to ∆λ
(shift)
2l is due to expressing the MSSM Yukawa coupling in the one-loop

contribution to λ from integrating out the sparticles in terms of the correspond-

ing SM coupling. But, since it does not contain logarithmically-divergent terms,

the definition of the coupling entering the sparticle contributions is a matter of

choice.

As expected, the general result of the O(α2
t ) correction to λ agrees with the

approximate expression for the simplified case of degenerate scalars obtained

from the corresponding correction to the Higgs mass in section 3.1.1. In fig. 3.12,
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Figure 3.12: Effect of the general two-loop top Yukawa corrections, compared

with the approximate expressions for degenerate scalars. We consider all masses

degenerate equal to mSUSY = 1 TeV, except mQ3 = 3mSUSY, maximal stop mixing

Xt = (6mQ3mU3)1/2, tanβ = 20, Ab = At, µ = 4mSUSY. For the the approximate

O(αsαt) and O(α2
t ) corrections we take scalar masses degenerate and equal to the

average (mQ3mU3)1/2. The right plot shows the shift in mh with respect to the

1-loop result to improve readability.

we compare the general O(α2
t ) and O(αsαt) results with the approximate ones,

for which we take the scalar masses equal to the (geometric) average stop mass√
mQ3mU3 . We used the following values of the parameters for the plot: all

masses degenerate equal to mSUSY = 1 TeV, except mQ3 = 3mSUSY, maximal

stop mixing Xt = (6mQ3mU3)
1/2, tan β = 20, Ab = At, and µ = 4mSUSY. The

difference between solid and dashed lines of the same color is the error in using

the approximate expression with degenerate scalars. The approximate O(αsαt)

expression gives roughly twice the value of the exact one for mQ3 = 3mU3 , and

even more for larger splitting. The simplified O(α2
t ) formula deviates for large

values of the µ parameter, for µ = 4mSUSY it has opposite sign with respect to

the exact result and their difference is about 0.3 GeV. The different between the

solid black and blue curves is the effect of including the O(α2
t ) terms.

It is well-known that the bottom (and tau) Yukawa couplings of the MSSM

can receive large SUSY threshold corrections at large values of tan β and µ. In

fig. 3.13, it is shown the MSSM bottom Yukawa coupling as a function of µ for

tan β = 40 and maximal mixing, and as a function of tan β for µ = −1 TeV.

The other parameters are fixed as mQ3 = mD3 = M3 = mSUSY = 1 TeV and

92



3.4 Recent improvements

one-loop
tanβ-enhanced
tree-level

-3 -2 -1 0 1 2
0

1

2

3

4

5

μ (TeV )

y
b

tanβ=40, Xt= 6 mSUSY

one-loop
tanβ-enhanced
tree-level

10 20 30 40 50 60
0

1

2

3

4

5

tan(β)

y
b

μ = - mSUSY, Xt = 6 mSUSY

Figure 3.13: SUSY threshold corrections to the MSSM bottom Yukawa coupling

ŷb. It shows the dependence on µ for tanβ = 40 and maximal mixing (left) and

the dependence on tanβ for µ = −1 TeV (right). We also set mQ3 = mD3 = M3 =

mSUSY = 1 TeV and Ab = At.

Ab = At. The curves represent the results including the full one-loop SUSY

thresholds (black), only the tan β-enhanced thresholds (red dashed) and the tree-

level expression (blue dot-dashed). We see that the tan β-enhanced corrections

are clearly the dominant ones and can considerably increase ŷb. When the one-

loop SUSY thresholds to λ from the sbottom sector is expressed in terms of the

MSSM bottom Yukawa couplings the potentially large tan β-enhanced corrections

O(αbα
n
s tann β + αbα

n
t tann β) are automatically resummed.

When including the two-loop corrections from the sbottom and stau sectors

one has to be careful of not re-introducing unphysically large tan β-enhanced

thresholds associated to the matching of the corresponding Yukawa couplings.

While the pure O(α2
b) and O(α2

τ ) corrections can be obtained from the O(α2
t )

expression by doing the appropriate replacements [84], the mixed O(αtαb) and

O(αbατ ) terms require a computation. The relevant formulas for the O(αtαb) and

O(αbατ ) terms of the effective potential are given in appendix D1 of ref. [79] and

appendix B of ref. [105] respectively.

In fig. 3.14 we plot the Higgs mass as a function on tan β to illustrate the effect

of the two-loop SUSY thresholds controlled by the bottom Yukawa coupling. We

1The expression for the two-loop top and bottom Yukawa potential in eq. (D.6) of the arxiv

version of ref. [79] has a typo: the penultimate line should have an overall minus sign.
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Figure 3.14: Impact of SUSY threshold corrections proportional to the bottom

Yukawa coupling at large tanβ. We used a degenerate spectrum with masses

mSUSY = 1 TeV, negative sign of µ, maximal stop mixing Xt =
√

6mSUSY and

Ab = At. We consider two different choices for writing the bottom Yukawa coupling

entering the corrections from the sbottom sector as: the SM coupling (dashed lines)

and the MSSM coupling (solid lines).

use the freedom in the definition of the bottom Yukawa coupling entering in the

threshold corrections from the sbottom sector, showing two choices: the MSSM

(solid lines) and the SM (dashed lines) bottom Yukawa couplings. The red line

represents the Higgs mass result neglecting all the bottom Yukawa corrections,

while the blue and black curves include one-loop O(αb) and additionally the two-

loop O(αbαs +αbαt +α2
b) respectively. When written in term of the SM Yukawa,

we see that the two-loop corrections are anomalously large. On the other hand,

using the MSSM Yukawa for the sbottom corrections is a very convienent choice.

The EFT calculation of mh now incorporates the complete two-loop Yukawa

thresholds at the SUSY scale. The effect of the tau Yukawa is not shown in

fig. 3.14 because it is subleading. Since in the gaugeless limit there are no tan β-

enhanced terms in the matching of ŷτ , we do not have to worry about the defini-

tion of the tau Yukawa coupling in the two-loop corrections at this order. Finally,

note that unlike the case when the two-loop corrections are expressed in terms

of the SM bottom Yukawa coupling, when using the MSSM coupling there are

mixed two-loop corrections to the quartic coupling proportional to ĝ4
bg

2
τ arising
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from Higgs WFR which are not canceled by shift contributions.

3.4.3 Effect of higher dimensional operators

In this section we consider the leading contributions tomh induced by the dimension-
six operators of the SM EFT1. The most sizable corrections are expected to come
from the stop sector because of the maximal mixing enhancement. In first ap-
proximation, we focus on the corrections proportional to g3 and yt that can be
potentially enhanced by the stop mixing, neglecting those proportional to λ and
the electroweak gauge couplings (gaugeless limit). However, the EW gauge cou-
plings appear at tree-level in the matching of λ at the SUSY scale. As a con-
sequence, the effect of dimension-six operators in the matching of the g1 and g2

at the EW scale may be comparable, thus we also estimate it. For simplicity we
assume degenerate soft masses mt̃. Still our discussion can be easily extended for
generic masses and to include other corrections.

Using the Standard Model as a renormalizable effective field theory, one ne-
glects corrections suppressed by the ratio of the electroweak scale over the new
physics (SUSY) scale, of O(m2

t/m
2
SUSY). The effect of these corrections on the

Higgs mass calculation for a light SUSY spectrum (for stops around the TeV
scale) might or might not be negligible, and has aroused debate in the com-
munity. We include the dimension-six operators of the SM EFT important for
the Higgs mass calculation, generated by matching with the SUSY theory. This
computation should clarify the regime of validity of the EFT approach. More-
over these operators can contribute to other observables, which may represent
additional constraints on the model.

The Lagrangian of the SM EFT is given by

LSM-EFT = LSM +
∑

i

ciOi , (3.24)

where LSM is the renormalizable SM Lagrangian, Oi are the dimension-six oper-
ators and, ci their associated Wilson coefficients.

The use of the EFT framework to study phenomenological consequences of
BSM models at low energy is carried out in three steps. The first one consists of
matching the BSM model onto the SM EFT at high scale, set by the mass of the
heavy particles being integrated out. Then, the Wilson coefficient are evolved
down to the weak scale using the RGE of the SM EFT. Finally, the effective
Lagrangian at low energy is used to compute physical observables, which will
depend on the Wilson coefficients. For a comprehensive review see ref. [141].

1This is a work in progress in collaboration with Emanuele Bagnaschi and Pietro Slavich.
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OGG = g2
s |H|2Ga

µνG
a,µν OH = 1

2

(
∂µ|H|2

)2

OWW = g2|H|2W a
µνW

a,µν OT = 1
2

(
H†

↔
DµH

)2

OBB = g′2|H|2BµνB
µν OR = |H|2|DµH|2

OWB = 2gg′H†taHW a
µνB

µν OD = |D2H|2

OW = ig
(
H†ta

↔
DµH

)
DνW a

µν O6 = |H|6

OB = ig′YH
(
H†

↔
DµH

)
∂νBµν O2G = −1

2

(
DµGa

µν

)2

O3G = 1
3!
gsf

abcGaµ
ρ G

bν
µ G

cρ
ν O2W = −1

2

(
DµW a

µν

)2

O3W = 1
3!
gεabcW aµ

ρ W bν
µ W

cρ
ν O2B = −1

2

(
∂µBµν

)2

Ot = yt|H|2 qLHtR

Table 3.3: Dimension-six CP-even bosonic operators and the operator Ot which

contributes to the top Yukawa matching. They are potentially relevant for the

Higgs mass calculation.

In order to match the SUSY theory onto the SM EFT it is convenient to use the

so-called covariant derivative expansion (CDE) [142, 143]. The CDE is a method

for computing the one-loop effective action in a manifestly gauge-invariant way.

Using this technique, ref. [144] obtained the one-loop contribution from integrat-

ing out the stops with degenerate soft masses to the Wilson coefficients of the

CP-conserving dimension-six bosonic operators in table 3.3. The general expres-

sions in the non-degenerate case for the subset of operators involving the Higgs

field are given in [145, 146].

Since the RGE evolution of the Wilson coefficients [147–153] from the UV

scale to the low scale introduces an additional loop factor, we can safely neglect

this effect in our analysis at leading order. The logarithmic factor is never large

enough to compensate the loop factor because the heavy particles decouple power-

like with their masses, i.e. as v2/m2
SUSY. Typically, the RGE running is only

important when some of the ci are generated at tree level [141]. We are interested

in the leading effect on the Higgs mass calculation induced by the SM dimension-

six operators. Therefore, for our purposes it is enough to consider the Wilson

coefficients at one-loop order.

Precision observables at the EW scale constraint the Wilson coefficients. Higgs

production through gluon fusion represent the strongest constraint on operators
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of the Higgs sector (see eg. [144]). Higgs decay into two photons, as well as elec-

troweak precision observables such as the S and T parameters are also important

(see [141] and references therein). Here we focus on the contribution of the Wilson

coefficients to the Higgs mass.

The Wilson coefficient c6 have been computed in several references [144–146,

154]. By deriving the effective potential we also obtained the following expression

arising from integrating out the stops

c6 = − y6
t

32π2

1

m2
t̃

(
2− 3X̂2

t + X̂4
t −

1

10
X̂6
t

)
+ . . . , (3.25)

where the ellipsis represents the one-loop EW and higher order terms. One also

requires the coefficient ct, which receives stop-gluino and stop-higgsino one-loop

contributions. We notice that ct can be obtained from the top quark self-energy

ct =
g2

3y
2
t

144π2

1

m2
t̃

(
−6− 6X̂t + 3X̂2

t + 2X̂3
t

)
+

y4
t

384π2

1

sin2 β

1

m2
t̃

(
−5 + 3X̂2

t

)
+ . . . ,

(3.26)

where we assumed M3 = µ = mQ3 = mU3 = mt̃. The expressions for the other

Wilson coefficients can be found in [144–146].

We now consider the impact of the Wilson coefficients on the physical Higgs

mass. Note that the Higgs potential contains the operator O6. Therefore this

operator produces corrections to the Higgs tadpole and self-energy. Additionally,

we also need the contribution of the Wilson coefficients to the self-energy of the

top quark, the Z-boson and the W -boson which modify the matching of the top

Yukawa, the electroweak gauge couplings and the relation between the VEV and

the Fermi constant.

Including the dimension-six operators the potential of the Higgs doublet H is

given by

V = −m2|H|2 +
λ

2
|H|4 − c6|H|6. (3.27)

The vacuum minimization condition imply

m2 =
λv2

2
− 3

4
c6 v

4, (3.28)

where v is the minimum of the potential in eq. (3.27). The condition (3.28)

guarantees the absence of a linear term of the physical Higgs field h. As in

refs. [48, 93], we identify the renormalized vacuum with the minimum of the

radiatively corrected potential, including in addition the dimension-six operators.
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The relation between the Higgs pole mass and the quartic coupling at one-loop
order can be written as [48, 93, 155]

m2
h = λv2

OS + ∆m
2,(λ)
h , (3.29)

∆m
2,(λ)
h = Re Πhh(m

2
h) +

T

vOS

+m2
h ∆r0. (3.30)

Here we have used a similar notation as in [93]: vOS = (
√

2Gµ)−1/2 with Gµ be-
ing the Fermi constant, Πhh(p

2) is the Higgs self-energy, iT represents the sum
of the tadpole diagrams, and ∆r0 relates the bare VEV v0 and the Fermi con-
stant as v2

0 = v2
OS(1 + ∆r0). At leading order, in eq. (3.30) there are no tadpole

contributions from the dimension-six operators, while the last term is generi-
cally suppressed by the Higgs mass (or the quartic coupling). The contributions
of dimension-six operators to the self-energies, including Πhh(p

2), are given in
appendix A.3.

On the other hand, the top Yukawa coupling and the electroweak gauge cou-
plings are extracted from the on-shell masses of the top quark and the gauge
bosons respectively. We need to obtain the corrections to these relations. The
terms of the SM effective Lagrangian involving both the Higgs field and the top
quark are

LSM−EFT ⊃ −ytqLHtR + ct yt|H|2qLHtR. (3.31)

The second term in eq. (3.31) affects the top quark self-energy (see appendix A.3)
and in consequence the top Yukawa matching, which at one-loop reads

yt =

√
2mt

vOS

+ δyt , (3.32)

δyt =

√
2mt

vOS

(
−Σt(mt)

mt

+
∆r0

2

)
. (3.33)

Since the value of the top Yukawa coupling is not measured experimentally but
extracted from the top mass, the dimension-six operators affect the input value
of yt we use throughout all the EFT calculation. We refer to the corrections to
the Higgs mass produced indirectly by the effect of ci in the matching of the
top Yukawa at low energy as indirect corrections and are denoted as ∆m

2,(yt)
h , to

distinguish them from the (direct) corrections to the matching of mh and λ in
eq. (3.30) arising from diagrams involving one ci vertex. Although the indirect
corrections to mh from the matching of the top Yukawa appear formally at two-
loop order through the one-loop O(y4

t ) corrections to m2
h, they are numerically of

leading order because they are enhanced by the parameters of the stop sector. In
fact, the loop counting of the corrections to the Higgs mass might lead to confusion
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since the one-loop contributions from the stop sector at maximal mixing are larger

than the tree-level one.

We can approximate this indirect corrections by

∆m
2,(yt)
h =

δyt
yt

(
4m

2,(αt)
h

)
, (3.34)

where m
2,(αt)
h are the one-loop O(y4

t ) terms

m
2,(αt)
h =

6y4
t v

2

(4π)2

(
X̂2
t −

X̂4
t

12
+ ln

m2
t̃

m2
t

)
. (3.35)

From eqs. (3.34) and (3.35) we see that at maximal mixing ∆m
2,(yt)
h ∼ (δyt/yt)v

2
OS,

i.e. ∆m
2,(yt)
h is numerically of leading order. For example, we compared the

indirect corrections from Ot with the one-loop contribution involving one ct vertex

to the matching of mh in eq. (3.30), and the latter is generically one order of

magnitude smaller at maximal mixing.

Analogously for the gauge couplings

g′ =
2
√
m2
Z −m2

W

vOS

+ δg′, δg′ =
2
√
m2
Z −m2

W

vOS

(
−ΠZZ(m2

Z)− ΠWW (m2
W )

m2
Z −m2

W

+∆r0

)
,

g =
2mW

vOS

+ δg, δg =
2mW

vOS

(
−ΠWW (m2

Z)

m2
W

+ ∆r0

)
, (3.36)

with terms proportional to the Wilson coefficients contained in δg and δg′, in-

fluencing the matching of the EW gauge couplings. From the tree-level term in

λ(mSUSY), the operators entering the matching of g and g′ will induce (indirect)

corrections to the Higgs mass ∆m
2,(g,g′)
h . We can approximate ∆m

2,(g,g′)
h by the

expression

∆m
2,(g,g′)
h = m2

Z (2gδg + 2g′δg′) . (3.37)

Finally, the total contribution to the Higgs mass from the dimension-six op-

erators is the sum of the corrections to the matching of the Higgs mass, as well

as the induced effects from the matching of the gauge and top Yukawa couplings

∆m2
h = ∆m

2,(λ)
h + ∆m

2,(g1,g2)
h + ∆m

2,(yt)
h . (3.38)

In fig. 3.15 we show the shift in the Higgs induced by the operators O6 and

Ot at leading order for maximal stop mixing. For the plot we considered only

the corrections to c6 and ct proportional to g3 and yt. We see that there is an

accidental cancellation between the effects of O6 and Ot, making the combined
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Figure 3.15: Shift in the Higgs mass induced by the operators O6 and Ot of the

SM EFT at leading order in the couplings g3 and yt. The black-dashed line repre-

sents the estimate of the EFT theoretical uncertainty of SusyHD. We considered

degenerate soft masses mSUSY, tanβ = 20 and maximal stop mixing.

effect very small (black-solid line). We also see that the uncertainty estimate of

SusyHD is a fair assessment.

We also evaluate the effect in the Higgs mass of the one-loop EW corrections to

the matching of c6 and ct, as well as the impact of other dimension-six operators.

These contributions to the Higgs mass are proportional to g, g′ or λ and are

generically smaller than the ones induced by O6 or Ot at leading order in g3

and yt. In general, we expect the total O(v2/m2
SUSY) contribution to the Higgs

mass behave roughly as

∆mh ∼ few 0.1 GeV

(
TeV

mt̃

)2

, (3.39)

which guarantees very precise EFT results for stops around the TeV scale.
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3.5 Phenomenological Applications

3.5.1 Predicting the spectrum of Minimal Gauge Media-

tion

Gauge mediated supersymmetry breaking (GMSB) [39, 156–162] is among the

simplest and most elegant calculable mechanisms for generating the MSSM soft

terms. A very special property is the absence of dangerous FCNC, a very rare

property in extensions of the SM Higgs sector, supersymmetric and non.

However, using GMSB to implement a natural solution of the hierarchy prob-

lem has always been hard. The main obstruction being the µ problem, viz. why

the supersymmetric higgsino mass happens to be at the same scale of the SUSY-

breaking soft terms. Solutions of the µ problem generically produce a µ/Bµ

problem [38]: both µ and Bµ are generated radiatively at the same order in per-

turbation theory, which produces an unwanted hierarchy, Bµ � µ2. Solutions to

the µ/Bµ problem exist (see e.g. [38–40] and references therein) but at the cost

of an excessive model building.

All these problems arise when we try to obtain a natural SUSY spectrum—it

is like we are forcing the theory to do something it was not meant to. In line with

what discussed in the introduction, we are then going to relax this requirement

and try to use experiments instead of naturalness to infer the properties of new

physics.

The apparent gap between the EW and the new physics scale motivates us

to revisit the simplest and more elegant GMSB model, minimal gauge mediation

(MGM)1, without the unnecessary baroque model building associated to the Higgs

sector. Indeed, ignoring the naturalness problem allows us to also ignore the µ-

problem, as the two are closely related. When µ is much larger than the soft

masses EWSB is not possible, when µ is much smaller, the EW scale v would

be of order the soft masses. Therefore if the SUSY scale is above v, µ must

automatically be close to the SUSY scale in order for EWSB to be tuned to its

experimental value.

In MGM all soft masses are generated with the same order of magnitude by the

gauge mediated contribution, one gauge loop below the scale Λ = F/M (the ratio

between the effective scale of SUSY breaking F and the mass of the messengers).

Besides Λ, the spectrum also depends, in a milder way, on the actual mass of the

messengers M , which determines the amount of running of the soft parameters,

1Here by MGM we really mean the most minimal realization, where the Higgs sector only

receives the standard gauge mediated contribution, µ is a free parameter and Bµ is generated

radiatively in the IR.
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and the number of messengers N (typically N = 1 or 3 for a vector like messenger

in the 5 or 10 of SU(5) respectively).

As mentioned before, the µ-term, being supersymmetric, would be an indepen-

dent parameter, but its value is fixed by requiring (tuning) the correct EWSB.

Finally the A-terms and Bµ are generated radiatively from RGE effects. This

fact has very interesting consequences [41, 42]. First, being A and Bµ terms gen-

erated at the quantum level from gaugino masses and µ-term implies that the

corresponding CP phases vanish, avoiding potentially dangerous bounds from

EDMs. Second, small suppressed A-terms imply that the stop mixing will never

be large, while small Bµ implies large values of tan β. These two predictions

combined with the measured value of the Higgs mass allows to fix also the overall

scale Λ, which must then lie at around the PeV scale to produce the O(10) TeV

SUSY scale required by the Higgs mass. The only remaining free parameters are

the messenger mass scale M and their number N , which affect the properties of

the spectrum in a milder way.

Using our computation for the Higgs mass we can thus predict the spectrum of

MGM in terms of N and M , the result is shown in fig. 3.16. Four different spectra

are reported, changing independently N (1 or 3) and the messenger scale M from

M = 107 GeV (to allow the use of leading O(F/M) formulas) to M = 1014 GeV

(to avoid dangerous FCNC contributions from gravity mediated contributions).

For each choice of N and M the spectrum is not completely determined because

of the uncertainty in the Higgs mass computation. Indeed the effect of varying

N and M is actually subleading with respect to the Higgs mass uncertainty. In

the relevant region of parameters (mSUSY ∼ 104 TeV and small stop mixing) the

Higgs mass determination is at its best (see fig. 3.2). Theoretical uncertainties are

completely dominated by the SM ones, which are subleading with respect to the

experimental uncertainties in the top mass. In fact, what limits the prediction of

the MGM spectrum is not the Higgs mass, or its determination in SUSY, but our

poor knowledge of the top mass! Improvements in this quantity are required to

further improve the predictions of fig. 3.16. The lowest (upper) bounds correspond

to values of the top mass 2σ above (below) its measured central value. The overall

scale Λ results to be at the PeV scale, in particular it varies roughly from 0.5 to

2.6 PeV for different choices of the top mass, N and M . The values of tan β are

typically around 45 but they can vary up to 60 and down to 30 in the corners

of the parameter space, the corresponding values for the supersymmetric bottom

and tau Yukawa couplings are largish (typically around 0.5-0.7) but remain always

below the one of the top Yukawa. Similarly the stop mixing parameter is always

small X̂t < 1.
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Figure 3.16: Prediction for the spectrum of MGM after imposing the constraint from the

Higgs mass (or better from the top mass). For each superpartner we plot the allowed range

of masses (in TeV) for four different combinations of N = 1(3) and M = 104(1011) TeV.

For each mass the lowest (highest) value corresponds to increasing (decreasing) the value

of the top mass by 2σ with respect to its experimental central value. The values of tanβ at

the bottom (top) side of each of the four bands, from left to right, are 58 (42), 49 (45), 56

(29) and 44 (46) respectively. The three differently shaded areas represent “pictorially” the

existing LHC8 bounds and the expected reach at LHC14 and at a future 100 TeV collider,

respectively from the bottom.

Except for the overall scale Λ, which is one order of magnitude larger than the

one usually considered in the literature, the rest of the spectrum has the typical

GMSB form, with bino or right-handed stau being the NLSP depending if N = 1

or 3 respectively.

On the experimental side, besides the simplified model and the generic SUSY

searches, ATLAS and CMS also performed a number of dedicated GMSB searches

[163–170], which exploits some of the most peculiar properties of its spectrum,

such as photon and taus in the final states. Of particular relevance for this

scenario is the direct search for the pseudoscalar Higgs boson A0, which, for the

large values of tan β predicted here, bounds mA & 950 GeV [55, 56]. This channel

appears to be the most powerful for MGM, with a slightly better reach than the

standard GMSB candles.

While a dedicated study is required, in fig. 3.16 we also show “pictorially”

the existing experimental bounds and the expected reach at LHC14 and at an
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hypothetical 100 TeV machine. The latter are obtained by rescaling the pdf on

the existing bounds [61, 171] and should serve only to guide the eye. However,

given the expected scale of the spectrum we can confidently say that this model

is mostly out of the reach of existing collider machines1, but could be seriously

(if not completely) explored by a 100 TeV hadron collider. In fact, MGM may

well represent one of the strongest motivations for such machine.

We checked that, while the values of tan β in this model are large, bounds

from the rare decays Bd,s → µµ [50] are not strong enough to be sensitive to

the spectrum in fig. 3.16 yet. An improvement on the experimental bounds by a

factor 3÷5 could be enough to start probing the bottom part of the spectrum.

In conclusion, MGM represents probably the simplest and most predictive

implementation of SUSY. The whole spectrum is almost completely determined

just by experimental data. In particular, the upper bound on the scale of the

superpartners exists independently from any naturalness consideration, in fact

the value of the Higgs mass predicts a SUSY scale not too far beyond our current

reach. The model also makes other successful predictions such as: gauge coupling

unification, the absence of SUSY particles at current hadron colliders, no EDMs

and no deviation from any flavor observables. Gravitino may be dark matter

although this possibility is more model dependent.

3.5.2 Lopsided gauge mediation

As discussed in section 1.4.2, in lopsided gauge mediation models EWSB is prob-

lematic. In the original reference [43], new degrees of freedom are added to avoid

this issue. Here we examine the simplest versions of Lopsided gauge mediation

and analyze whether the correct EWSB can be achieved without introducing

additional particles.

The very minimal choice is to generate the soft parameters of the Higgs sec-

tor with the same spurion and messenger fields used to generate the scalar and

gaugino masses. The soft masses m2
Hu

and m2
Hd

receive two contributions at the

messenger scale M

m2
Hu,d

(M) = m
2 (l)
Hu,d

+m
2 (g)
Hu,d

, (3.40)

where m
2 (g)
Hu,d

comes from gauge mediation and m
2 (l)
Hu,d

arises from the superpoten-

tial coupling between the Higgs doublets and the messenger fields as explained

in section 1.4.2. Their evolution to low scales is governed by the MSSM RGE

presented in section 1.3.3.

1We would like to point out that in some corners of the allowed parameter space A0 may

be light enough to be within the reach of LHC14.
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The simplest possibility of overcoming the problematic relation of lopsided

in eq. (1.90) is to have a sizable gauge mediation contribution m
2 (g)
Hu

>∼ m
2 (l)
Hu

.

Unfortunately, it does not work because of the usual issue of gauge mediation:

m2
Hu

receives large negative radiative corrections dominated by the stops.

On the other hand, it is technically natural to expect that the effective scale

of SUSY breaking of the doublet and the triplet messenger fields, ΛD and ΛT ,

have slightly different values (ΛD 6= ΛT ). Although they should have similar

values such that gauge coupling unification is not spoiled. For instance, it can be

achieved with MD 6= MT and FD = FT . The expressions for the soft masses are

modified as

M (g)
a = nGΛa

αa
4π

, m̃
2 (g)
I = 2nG

3∑

a=1

C(I)
a

(αa
4π

)2

Λ2
a, (3.41)

Λ3 = ΛT , Λ2 = ΛD , Λ1 =
2

5
ΛT +

3

5
ΛD. (3.42)

Under this consideration, one can compensate the negative radiative corrections

to m2
Hu

, and one easily gets EWSB with a doublet-triplet splitting close to unity

(but greater)

nDT ≡
ΛD

ΛT

>∼ 1. (3.43)

This very-minimal model of lopsided gauge mediation has a phenomenological

drawback: it is very difficult to test. Since Bµ is generated at one loop, the EWSB

condition implies that, in general, one-loop in λu,d is numerically equivalent to

two loops in the gauge couplings. Therefore, higgsinos will be very light, one

electroweak loop lighter than the scalars and gauginos, i.e. approximately two

orders of magnitude.

We show the spectrum of superparticles in fig. 3.17 for M = 10ΛD and one

set messenger fields nG = 1. The model is characterized by three independent

parameters: µ, nDT , and tan β. The last two are fixed by requiring the correct

EWSB and mh ≈ 125 GeV. The doublet triplet splitting nDT >∼ 1 slightly in-

creases the mass of the doublets relative to the colored particles, leading to a

spectrum slightly different from the one usually presented in gauge mediation.

Since there is no large amount of running from the messenger scale to mSUSY

and the top Yukawa coupling runs to smaller values at high energies, the scalar

masses of the three generations are similar.

In the model above we used the same spurion and messenger fields to generate

the scalar and gaugino masses, and the Higgs soft parameters. In the original

proposal of the model [43], they started by considering two sets of spurions and

messengers. One was responsible for the scalar and gaugino masses while the
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Figure 3.17: Spectrum of superparticles as a function of the µ parameter. The soft

masses are evaluated at the SUSY scale mSUSY =
√
mQ3mU3 . We used M = 10ΛD

and number of messenger nG = 1. By requiring the correct EWSB and the exper-

imental value of the Higgs mass, we fixed the doublet triplet messenger splitting

nDT ≈ 1.2÷ 1.3 and tanβ ≈ 2.1÷ 3.5 from right to left.

other one for the parameters of the Higgs sector. Is it possible to have not-so-

light higgsinos µ <∼ mSUSY in this way?

Consider two spurions and messenger pairs: (XA, ΦA, Φ̄A) which generates

the scalars and gaugino masses, and (XB, ΦB, Φ̄B) which generates the soft

parameters of the Higgs sector. To motivate the existence of the singlets S and

S̄, we can suppose that the messengers ΦB+Φ̄B transform in the 10⊕10 of SU(5)

group.

We analyze the implications of the EWSB condition for the µ term. We as-

sume the contributions to m2
Hu

and m2
Hd

are dominated by gauge mediation. In

this way we relax the relation between the Higgs soft masses and the other param-

eter of the Higgs sector (µ and Bµ). Then the value of µ behaves approximately

like

µ ∼
√

αλ
16π2

Bµ, (3.44)

with αλ ≡ λuλd/(4π). The EWSB condition requires that Bµ has to be of the

106



3.5 Phenomenological Applications

order of the Higgs soft masses |Bµ|2 ≈ m2
Hu
m2
Hd

. Depending on the ratio of the

effective scales of SUSY breaking in the visible sector ΛA
D/Λ

B
D
>∼ 1 we can have µ

in the range
α2

4π
mA

<∼ µ <∼
√
αλ
4π
mA. (3.45)

But now we can expect (the square root of) the loop factor in αλ to be not so

small, while still in the perturbative regime.

3.5.3 Anomaly Mediation

Minimal anomaly mediated supersymmetry breaking (AMSB) models [44, 172]

probably provide for the simplest implementation of Mini Split supersymmetry.

Scalars get their mass from gravity mediation of order the gravitino mass, while

fermions, protected by R-symmetry, get one-loop suppressed soft masses from

anomalies. The generation of the µ and Bµ parameters require also the breaking

of the Peccei-Quinn (PQ) symmetry so that the higgsino mass is practically a free

parameter—it can be of order the gravitino mass or naturally smaller if the PQ

breaking is not efficient. The theory is thus defined by three main parameters:

the gravitino mass m3/2 setting the scale of scalars and gauginos, the higgsino

mass µ and tan β which is determined by the details of the scalar masses and Bµ.

Unlike in MGM the details of the scalar spectrum are model dependent, how-

ever, given the large scales involved in this scenario, threshold corrections at the

SUSY scale are almost irrelevant, for definiteness we fix all the scalars degener-

ate, m0 = m3/2. The actual value of the Higgs mass gives a further constraint on

these parameters. It can be used, for example, to fix tan β in terms of the other

two parameters. It is trivial to impose such constraint using SusyHD, the result

is shown in fig 3.18. Values of tan β larger than 3÷4 are already excluded, for

they would require too low SUSY scale and the wino would lie below the LHC

bounds [173]. Also a wino with mass ∼ 3 TeV, which would provide for a good

thermal dark matter candidate, corresponds to tan β ∼ 2 ÷ 3. Bounds on such

parameters from direct detection experiment can be found for instance in [61].

Since a LSP wino above ∼ 3 TeV would overclose the universe in the mini-

mal AMSB scenario, the allowed parameter space reduces to the “narrow” strip

below the red line in fig. 3.18, and the one with |µ| . 1 TeV . M3 where the

higgsino is the LSP. Most of this parameter space could in principle be probed

at a larger hadron collider and future dark matter experiments [61, 174–178]. In

this interesting region, tan β is constrained between 2 and 3; scalars are clearly

out of reach, between 102 and 103 TeV, but not heavy enough to guarantee the
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Figure 3.18: Allowed parameter space of minimal anomaly mediation in the plane

(m0, µ) for different values of tanβ, after imposing the constraint from the Higgs mass.

According to AMSB gauginos are one-loop lighter than the scalars, here taken with a com-

mon mass m0. The wiggle for negative µ at small tanβ is due to a cancellation in the

one loop threshold correction from EWinos when µ crosses the gaugino masses. Values of

tanβ & 3 are excluded by LHC bounds on Winos. The horizontal red line corresponds to

M2 ' 3 TeV.

absence of FCNC [46]. Gauge coupling unification further prefers values of µ
below O(10) TeV [36].
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Part II

QCD axion properties
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Introduction

Quantum chromodynamics allows the presence of a CP-violating θ-term, which

combined with the common phase of the quark mass matrix form the physical

quantity θ = θ + arg detMq. Experimental limits on the neutron electric dipole

moment [30, 31] imply |θ| . 10−10. While values θ = O(1) would completely

change nuclear physics, its effects rapidly decouple for smaller values, already

becoming irrelevant for |θ| . 10−1 ÷ 10−2. As a consequence, this extremely

small vale of θ does not seem necessary to explain any known large-distance

physics. Since other phases in the Yukawa matrices are O(1) and CP-violating

new physics at high scales can contribute to θ, its tiny value seems to require a

high degree of cancellation between θ and arg detMq, two apparently unrelated

parameters. This puzzle of why θ is so small is known as the strong CP-problem.

Perhaps the simplest solution is the Peccei-Quinn mechanism [179]. It predicts

the existence of the QCD axion [180–185], the pseudo-Goldstone boson of an

additional U(1) PQ symmetry. The axion only couples non-derivatively to the

QCD topological charge and the coupling is determined by the scale fa. Such a

coupling allows to rotate away θ through a shift of the axion field, whose VEV

is then guaranteed to vanish [186]. Extra model dependent derivative couplings

may be present but they do not affect the solution to the strong CP-problem. All

the physical properties of the axion are controlled by a single scale fa.

Presently astrophysical constraints bound fa between few 108 GeV (see for

e.g. [187]) and few 1017 GeV [188–190]. It has been known for a long time [191–

193] that in most of the available parameter space the axion may explain the

observed dark matter of the universe. Indeed, non-thermal production from the

misalignment mechanism can easily generate a suitable abundance of cold axions

for values of fa large enough, compatible with those allowed by current bounds.

Such a feature is quite model independent and, if confirmed, may give non-trivial

constraints on early cosmology.

After the recently discovered Higgs boson, another scalar that may exist in

nature is the QCD axion, one of the best motivated beyond the standard model

particles. The axion provides an elegant solution to the strong CP problem
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and represents an excellent dark matter candidate. Moreover axion-like particles

naturally arise in string theory.

The field of experimental searches for axions is very active. Due to the ex-

tremely small couplings allowed by astrophysical bounds, in order to enhance

the signal some experiments use resonance effects and the fact that, if the ax-

ion is dark matter, the line width of the resonance is suppressed by v2 ∼ 10−6

(v being the virial velocity in our galaxy) [194, 195]. The Axion Dark Matter

eXperiment (ADMX) [196] is expected to become sensitive to a new region of

parameter space unconstrained by indirect searches soon. Other experiments are

also being planned and several new ideas have recently been proposed to directly

probe the QCD axion [197–200]. In the case of a successful discovery of the axion

by such experiments, its mass would be known with a comparably high precision

of O(10−6) and some axion couplings may also be determined depending on the

experiment.

In this part we try to explore how such high precision experimental measure-

ments in the axion mass and maybe couplings could be combined with accurate

theoretical predictions to gain information about the axion physics, in particular

to infer its UV completion and its cosmology. We will show that high theoretical

precision is possible despite most of the axion properties, such as its mass, cou-

plings to matter and relic abundance are dominated by non perturbative QCD

dynamics. Since the axion mass is extremely light, QCD chiral Lagrangians [201–

203] can be used reliably. Performing a NLO computation we were able to extract

the full axion potential, its mass, self-coupling and the tension of domain walls.

The coupling to photon can be extracted with similar precision. We also describe

a new strategy to extract the coupling to nucleons directly from first principle

QCD.

We also study the finite temperature dependence of the axion potential for

its important role in cosmology since it controls the axion relic abundance. At

temperatures below the QCD crossover chiral Lagrangians allow to compute the

temperature dependence of the axion potential and consequently of its mass.

Around the critical temperature non-perturbative methods such as lattice QCD

[204, 205] are required. At higher temperatures, when QCD becomes perturba-

tive, we point out however that the instanton gas approximation is completely

unreliable for temperatures below 106 GeV. At the end we consider the effect of

the uncertainty of the temperature dependence of the axion potential and mass

in the axion relic abundance, providing updated plots for the allowed axion pa-

rameter space.

This part, about the physics of the QCD axion, contains two chapters. In

chapter 4 we study the basic aspects of the QCD axion and its physical properties.
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In chapter 5, we present our original results about precision corrections to the
properties of the QCD axion and their temperature dependence in connection
with the axion relic abundance.
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Chapter 4

Basics of the QCD axion

In this chapter we review some basic aspects of the QCD axion. In section 4.1,
we introduce the strong CP problem and consider a possible solution through
the Peccei-Quinn mechanism. This type of solutions predicts the existence of the
QCD axion, the pseudo Nambu-Goldstone boson associated to the spontaneous
breaking of the PQ symmetry.

The most common axion models are briefly mentioned in section 4.2. In
section 4.3, we review some basic elements of chiral perturbation theory, which
are relevant for section 4.4 where we present the physical properties of the axion
at leading order. Finally, in section 4.5 we describe the current experimental
limits on the axion parameter space.

4.1 The strong CP problem

In the SM one can write the following term in the Lagrangian

Lθ = −θ g2
s

32π2
Ga,µνG̃a

µν , (4.1)

where gs is the QCD coupling constant, Ga
µν is the field strength tensor of the

strong interactions and θ is a parameter with values −π ≤ θ ≤ π as physical
observables are periodic in θ with period 2π. The dual field strength tensor G̃a

µν

is defined as

G̃a
µν =

1

2
εµνρσG

a,ρσ, (4.2)

with the convention for the antisymmetric tensor such that ε0123 = 1. This term
Lθ respects all the SM symmetries. It violates CP which is anyway badly broken
by the quark sector. Then one would naively expect θ = O(1).
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4. BASICS OF THE QCD AXION

The pseudoscalar combination GG̃ is a total derivative, so it does not affect
the equations of motion. However there are non-trivial gauge configurations with
finite action known as instantons [24, 206] and with

Gµν = ±G̃µν . (4.3)

Their contribution to the action can be written as a surface integral characterized
by the integer index n, the winding number [207]

1

4

∫
d4xGa,µνGa

µν = ±1

4

∫
d4xGa,µνG̃a

µν = ±8π2n. (4.4)

From this equation we see the periodicity in the θ angle.
Instantons have a characteristic scale (their size), which is the integration

constant arising from solving eq. (4.3). This scale breaks the scale invariance of
the classical QCD action. Then there are instantons with any size. All of them
should be taken into account in the path integral. The instanton contribution to
the QCD action is dominated by large instantons which are controlled by larger
values of the strong coupling. They are intrinsically non-perturbative.

Under chiral transformations of the quark fields

qf → eiαγ5/2qf , (4.5)

QCD is apparently invariant in the massless quark limit. But actually quantum
effects explicitly break this symmetry due to the chiral anomaly [208–211]. That
is, the massless QCD Lagrangian is invariant while the path integral transforms
non-trivially. This leads to the shift in the action

δS = α
g2
sNf

32π2

∫
d4xGa,µνG̃a

µν , (4.6)

where Nf is the number of quark flavors contributing to the anomaly. From here
we see that chiral transformations change the value of the θ angle

θ → θ + α. (4.7)

But the SM Lagrangian also contains a mass term for the quarks

LSM = qiLMijqRj + h.c.+ . . . (4.8)

Chiral transformations, which transforms differently left and right components of
the quark fields, induces a phase in the quark mass matrix

argM → argM + α. (4.9)
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4.1 The strong CP problem

The parameters θ and argM separately are not physical quantities because they

change under the field redefinition in eq. (4.5). But there is a physical combination

given by

θ = θ − arg(detM). (4.10)

The strongest experimental limit on θ is based on the bounds on the neutron

electric dipole moment (EDM) [30, 31]. Since the θ-term breaks CP it will induce

a contribution to the neutron EDM. Although estimate of this contribution have

large uncertainties associated to nuclear physics. The most sensitive experimental

result set dn < 2.9× 10−26e cm [212]. This implies the upper bound

|θ| <∼ 10−10. (4.11)

Why should θ have such extremely small value is known as the strong-CP

problem. Generically one would expect order one values for θ and arg(detM).

After all, the off-diagonal Cabibbo-Kobayashi-Maskawa (CKM) phases are order

one. One would need a high degree of cancellation between the two parameters

of unrelated origin.

4.1.1 Possible solutions: the axion

Possible solutions to the strong CP problem can be divided into two groups de-

pending on their underlying mechanism: spontaneously broken CP or an addi-

tional chiral symmetry called Peccei-Quinn (PQ) symmetry [179, 213]. In the

first class of models [214–217], CP is a symmetry of the fundamental theory in

the UV. Then θ and arg(detM) are zero at tree-level. When CP is broken in

order to produce the CKM phase a special choice of the particle content and the

couplings of the theory guarantees the absence of tree-level contributions to θ

and the sufficient suppression of loop corrections. They also require some model-

building to avoid FCNC and other problems. Perhaps the biggest drawback of

these type of solutions is that experimental data perfectly agree with the Yukawa

sector of the SM where CP is explicitly broken, so how they get O(1) CKM phases

may seem a bit artificial.

The second group of solutions is based on an additional chiral symmetry. It

is very elegant since these transformations induce a shift of the action due to

the anomaly which can be used to rotate the θ term away. That is, the θ term

becomes non physical. If the up quark were massless there would be an additional

chiral symmetry one could use. But this possibility is strongly disfavored by the

current value mu(2 GeV) = 2.15(15) MeV [51] extracted from lattice simulations.

Hence in the SM there are no chiral symmetries available.
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4. BASICS OF THE QCD AXION

The most compelling option is to introduce a global chiral symmetry U(1)PQ
as in [179]. It is spontaneously broken and the axion is the corresponding Gold-

stone boson [180, 181]. Under U(1)PQ transformations the axion shift as

a(x)→ a(x) + αfa, (4.12)

where fa is the order parameter corresponding to the U(1)PQ breaking. This

implies the axion should only have derivative couplings.

We need to add extra terms to the SM Lagrangian involving the axion

L = −θ g2
s

32π2
Ga,µνG̃a

µν +
1

2
∂µa∂µa+

a

fa

g2
s

32π2
Ga,µνG̃a

µν + . . . , (4.13)

where the last term, which explicitly breaks U(1)PQ, is due to the anomaly.

The U(1)PQ symmetry is used to absorb the θ term. That is, the QCD anomaly

generates a potential for the axion, such that the total contribution cancel in the

vacuum θ = 0 [186] and there is no CP violating term in the strong sector.

Since the last term in eq. (4.13) contains a dimension-five operator the theory

is non renormalizable. At very high energy the theory becomes strongly coupled.

There are renormalizable models which UV complete this theory with a weakly

coupled theory at high energy. In fact, this is the historical way the axion was

introduced.

4.2 Models of axions

The axion decay constant fa is associated with the PQ breaking scale but in

general it is a free parameter of UV models. The originally proposed model

of axions tried to relate fa to the electroweak scale v. It was introduced by

Peccei, Quinn [179, 213], and Weinberg and Wilczek [180, 181]. In the SM the

Higgs boson can not account for the axion field because the would be Goldstone

bosons are eaten by the gauge fields. One needs to introduce two Higgs fields,

Hu and Hd, with vacuum expectation values 〈Hu〉 = vu and 〈Hd〉 = vd, such that

v2
u + v2

d = v2 ∼ (246 GeV)2. Similar to the MSSM, Hu generates the masses of

the up-type quarks and Hd generates the masses of down-type quark and leptons.

In this model, the axion decay constant is fixed by the relation

fa = v[Nf (tan β + cot β)]−1, (4.14)

where Nf is the number of generations and tan β = vu/vd. This imply that

fa . 41 GeV, severely excluded by experimental bounds.
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4.3 Chiral Lagrangians

To be consistent with the allowed range of values of fa (fa � v), other models

introduce an electroweak singlet scalar field Φ whose vacuum expectation value

(VEV) 〈Φ〉 = vPQ/
√

2 is not related to the weak scale. These models are called

invisible axion models because they predict a very light and very weakly coupled

axion.

The first invisible axion proposal is the KSVZ model, which is an acronym of

the authors Kim [182], and Shifman, Vainshtein and Zakharov [183]. The scalar

field Φ breaks U(1)PQ spontaneously. One can introduce N extra quarks in the

fundamental representation of SU(3)C . Then, the value of fa is fixed by vPQ and

the color anomaly N as

fa = vPQ/N. (4.15)

In this model the axion does not couple directly to the SM fermions. Axion

interactions at low energy arise only from the axion-gluon coupling, which is

generic of the PQ solution of the strong CP problem.

Dine, Fischler and Srednicki [185], and Zhitnitskii [184] introduced another

UV completion known as the DFSZ model. It combines ingredients of both

PQWW and KSVZ models. The model contains two electroweak doublet Hu and

Hd with the same role as above and a scalar field Φ. All of them get a vev,

the PQ breaking scale is mostly determined by the vev of Φ, although there is a

small contribution from the Higgs doublets. The axion decay constant is given

by fa = vPQ/Nf . The axion couples directly to the SM fermions which now carry

PQ charges, their relative strength depends on the angle β defined by the ratio

of the Higgs vevs.

4.3 Chiral Lagrangians

For a theory with a global symmetry group G, spontaneously broken to a sub-

group H, there is a general formalism to construct the effective Lagrangian at low

energy proposed by Callan, Coleman, Wess and Zumino [218, 219]. The vacuum

has the structure of the coset space G/H. The effective Lagrangian is written

in terms of the relevant coordinates at low energy, associated to a set of broken

generators.

In the massless quark limit, the QCD Lagrangian with Nf flavors has a global

SU(Nf )L × SU(Nf )R chiral symmetry, which transforms independently the left

and right components of the quark fields

qL(x)→ L qL(x), qR(x)→ RqR(x). (4.16)
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4. BASICS OF THE QCD AXION

This symmetry is spontaneously broken by the chiral condensate to the diagonal

combination

SU(Nf )L × SU(Nf )R −→ SU(Nf )V . (4.17)

At low energy, it is convenient to use the following field

U = eiΠ/fπ , (4.18)

where fπ is the pion decay constant, and Π the mass matrix of pions, the Gold-

stone bosons associated to the broken generators. In the case of three flavors, it

is given by

Π = πaT a =
1√
2




1√
2
π0 + 1√

6
η π+ K+

π− − 1√
2
π0 + 1√

6
η K0

K− K
0 − 2√

6
η


 , (4.19)

where T a are the generators of SU(3).

Under chiral transformation the field U transforms as

U → LUR†. (4.20)

Since the quark masses explicitly break the chiral symmetry, it is convenient to

treat the mass matrix as an external spurion field transforming also as

M → LMR†. (4.21)

We can absorb the θ term into the quark mass matrix with a chiral rotation, such

that

M = e−i
θ
2
QaM0e

−i θ
2
Qa , with trQa = 1. (4.22)

Here M0 = diag(mu,md,ms) is the diagonal mass matrix.

We construct the most general effective Lagrangian consistent with Lorentz

symmetry and invariant under chiral transformations [201–203]. At lowest order

in momenta, it reads

L =
f 2
π

4
tr
(
∂µU∂

µU †
)

+ 2B0
f 2
π

4
tr
(
M †U +MU †

)
, (4.23)

where the parameters B0 and the pion decay constant fπ are not fixed by sym-

metry arguments. Higher order terms in the chiral expansion will involve more

derivative or more insertions of M . Since the field U is a non-linear representation

of the pions, by expanding one obtains the pion mass term and interactions.
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4.3 Chiral Lagrangians

By expanding U at the quadratic level one finds the relation between the
meson masses and the quark masses

M2
π± = B0(mu +md) , M2

π0 = B0(mu +md)− ε+ O(ε2) ,

M2
K± = B0(mu +ms) , M2

K0 = B0(md +ms) ,

M2
η8

=
1

3
B0(mu +md + 4ms) + ε+ O(ε2) , (4.24)

with

ε =
B0

4

(mu −md)
2

(ms − m̂)
. (4.25)

Chiral Lagrangians does not allow to obtain the quark masses from experiments,
but only the product of B0 and the quark masses or their ratio. Using the values
of the quark masses extracted from Lattice simulations we can find the value
of B0. While the pion decay constant fπ can be fitted from pion-pion scattering
or the pion decay and it is around fπ ≈ 92 MeV.

At low energy, the momenta on-shell are of the same order of the meson
masses. In order to have a consistent low energy expansion for non-zero quark
masses one have to treat the meson masses as a term of the same order as the
derivatives, and expand in powers of the momenta at fixed m2

π/p
2 [202]. As

consequence, we count the external field M as a quantity of order p2.
To see how dimensional analysis works we consider the π−π scattering ampli-

tude at order p4 (for a review on chiral perturbation theory and power counting
see [220, 221]). The power counting of the one-loop contribution gives

I ∼ p2

f 2
π

p2

f 2
π

∫
d4k

(4π)2

1

k2

1

k2
, (4.26)

where the factors of the external momentum p2/f 2
π come from the two four-pion

interaction vertices and the two pion internal propagators are of order 1/k2, where
k is the loop momentum. The result of this integral is log-divergent and goes like

I ∼ 1

16π2

p4

f 4
π

log
p

µ
, (4.27)

where µ is the renormalization scale. The scale dependence of the total four-pion
amplitude is canceled by a four-derivative operator of order p4

a tr
(
∂µU∂µU

†∂νU∂µU
†) . (4.28)

From eqs. (4.27) and (4.28) we see that loop corrections in chiral perturbation
theory will be suppressed by 1/(4π)2 p2/f 2

π . This means that the cut-off of the
effective theory is at most

Λχ ∼ 4πfπ ∼ 1 GeV, (4.29)
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4. BASICS OF THE QCD AXION

and the expansion parameter is p2/Λ2
χ. As long as the energy is smaller than Λχ

the loop expansion converges and the theory is perturbative. That is the case for

processes involving pions and to a lesser extent kaons.

We are now interested in the effective Lagrangian for axions. Above the

weak scale the interactions of the axion consist of gauge invariant derivative

couplings to matter and anomalous couplings to gauge bosons. While the strength

of the couplings to matter are arbitrary the anomalous couplings are fixed by the

anomaly. Below the chiral symmetry breaking scale, the effective Lagrangian will

describe the interactions of the axion with photons, leptons, mesons and baryons.

Just above the weak scale, we assume that under PQ transformations all fields

are invariant except the axion field, which is shifted by an additive constant

a→ a+ θfa. (4.30)

The most general effective Lagrangian at first order in the axion field is given by

La =
1

2
∂µa∂µa+

∂µa

fa
jµa +

(
a

fa
− θ
)

g2
s

32π2
GµνG̃µν +

1

4
g0
aγγaF

µνF̃µν . (4.31)

Here jµa is the axial current containing the SM matter fields jµa,0 = c0
ffγ

µγ5f ,

where the coefficients c0
f depend on the specific UV model. Color indices are

implicitly contracted and the mass parameter fa is defined in terms of the axion

coupling to gluons. This definition is convenient because fa is the parameter

relevant for the axion mass and coupling to hadrons. The coupling to the photon

field strength Fµν is

g0
aγγ =

αem
2πfa

E

N
, (4.32)

where E/N is the ratio of the Electromagnetic (EM) and the color anomaly,

equals to 8/3 for complete SU(5) representations.

By shifting the axion field according to eq. (4.30) we can remove the θ-angle

in eq. (4.31). The only non-derivative coupling to QCD can be conveniently

moved away into the quark mass matrix by a field redefinition of the quark fields.

Performing a change of field variables on the up and down quarks

q =
(
u
d

)
→ eiγ5

a
2fa

Qa
(
u
d

)
, trQa = 1 , (4.33)

the axion Lagrangian (4.31) becomes

La =
1

2
(∂µa)2 +

1

4
a gaγγFµνF̃

µν +
∂µa

2fa
jµa − q̄LMaqR + h.c. , (4.34)
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4.4 Physical properties

where

gaγγ =
αem
2πfa

[
E

N
− 6 tr

(
QaQ

2
)]

, jµa = jµa,0 − q̄γµγ5Qaq , (4.35)

Ma = ei
a

2fa
QaMq e

i a
2fa

Qa , Mq =
(
mu 0
0 md

)
, Q =

(
2
3

0
0 −1

3

)
.

This basis of axion couplings has two advantages. The axion coupling to the
axial current only renormalizes multiplicatively unlike the coupling to the gluon
operator, which mixes with the axial current divergence at one-loop. Secondly
the non-derivative couplings only arise from the quark mass terms.

For the values of fa we are interested in, axion couplings are very small. As
a consequence, we can work at leading order in this parameter. Virtual axion
contributions are suppressed by this quantity and the axion can be treated as
an external source. The non-derivative couplings are contained in the phase
dependence of the matrix field of the quark masses Ma, while in the derivative
couplings the axion appears as an external axial current.

The choice of field redefinition (4.33) allowed us to move the non-derivative
couplings entirely into the lightest two quarks. In this way we can integrate
out all the other quarks and directly work in the 2-flavor effective theory, with
Ma capturing the whole axion dependence, at least for observables that do not
depend on the derivative couplings. The Lagrangian at leading order in the chiral
expansion has the form

Lp2 =
f 2
π

4

[
tr
(
DµUDµU

†)+ 2B0tr
(
UM †

a +MaU
†)] , (4.36)

where

U = eiΠ/fπ , Π =

(
π0

√
2π+√

2π− −π0

)
, (4.37)

tr represents the trace over flavor indices, Dµ is the covariant derivative con-
taining the axial gauge field, the pion decay constant is normalized such that
fπ ' 92 MeV, and B0 is related to the chiral condensate and determined by the
pion mass in term of the quark masses. Using this Lagrangian we can compute
any process involving the axion and pions through a perturbative expansion.

4.4 Physical properties

The axion potential contains all the relevant information about the mass, the
self-coupling, and the tension of its domain wall solutions. At leading order, it is
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4. BASICS OF THE QCD AXION

enough to consider the neutral pion sector. Taking Qa in the dressed pion mass

matrix proportional to the identity we find

V (a, π0) = −B0f
2
π

[
mu cos

(
π0

fπ
− a

2fa

)
+md cos

(
π0

fπ
+

a

2fa

)]

= −m2
πf

2
π

√
1− 4mumd

(mu +md)2
sin2

(
a

2fa

)
cos

(
π0

fπ
− φa

)
(4.38)

where

tanφa ≡
mu −md

md +mu

tan

(
a

2fa

)
. (4.39)

The neutral pion π0 gets a VEV 〈π0〉 = fπφa to minimize the potential, which

corresponds to the cosine in eq. (4.38) equals to unity. Then π0 can be trivially

integrated out leaving the axion effective potential

V (a) = −m2
πf

2
π

√
1− 4mumd

(mu +md)2
sin2

(
a

2fa

)
. (4.40)

As expected the minimum is at 〈a〉 = 0, thus solving the strong CP problem.

Deriving twice the potential we obtain the well-known [181] expression for the

axion mass

m2
a =

mumd

(mu +md)2

m2
πf

2
π

f 2
a

. (4.41)

Although the expression for the potential (4.40) was derived long ago [222],

we would like to stress some points often under-emphasized in the literature.

The axion potential (4.40) is nowhere close to the single cosine suggested by

the instanton calculation (see fig. 4.1). This is not surprising given that the latter

relies on a semiclassical approximation, which is not under control in this regime.

Indeed the shape of the potential is O(1) different from that of a single cosine,

and its dependence on the quark masses is non-analytic, as a consequence of the

presence of light Goldstone modes. The axion self coupling, which is extracted

from the fourth derivative of the potential

λa ≡
∂4V (a)

∂a4

∣∣∣∣
a=0

= −m
2
u −mumd +m2

d

(mu +md)2

m2
a

f 2
a

, (4.42)

is roughly a factor of 3 smaller than λ
(inst)
a = −m2

a/f
2
a , the one extracted from

the single cosine potential V inst(a) = −m2
af

2
a cos(a/fa). The six-axion couplings

differ in sign as well.
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-3π -2π -π 0 π 2π 3π

a/fa

V
(a
)

Figure 4.1: Comparison between the axion potential predicted by chiral

Lagrangians, eq. (4.40) (continuous line) and the single cosine instanton one,

V inst(a) = −m2
af

2
a cos(a/fa) (dashed line).

The non-trivial potential (4.40) allows for domain wall solutions [223]. These
have width O(m−1

a ) and their tension is computed from the definition

σ = 2fa

∫ π

0

dθ
√

2[V (θ)− V (0)] , (4.43)

which gives

σ = 8maf
2
a E

[
4mumd

(mu +md)2

]
, E[q] ≡

∫ 1

0

dy

[2(1− y)(1 +
√

1− qy)]1/2
. (4.44)

The function E[q] can be written in terms of elliptic functions but the integral form
is more compact. Note that changing the quark masses over the whole possible
range, q ∈ [0, 1], only varies E[q] between E[0] = 1 (cosine-like potential limit)
and E[1] = 4 − 2

√
2 ' 1.17 (for degenerate quarks). For physical quark masses

E[qphys] ' 1.12, only 12% off the cosine potential prediction, and σ ' 9maf
2
a .

In a non vanishing axion field background, such as inside the domain wall
or to a much lesser extent in the axion dark matter halo, QCD properties are
different than in the vacuum. This can easily be seen expanding eq. (4.38) at the
quadratic order in the pion field. For 〈a〉 = θfa 6= 0 the pion mass becomes

m2
π(θ) = m2

π

√
1− 4mumd

(mu +md)2
sin2

(
θ

2

)
, (4.45)

and for θ = π the pion mass is reduced by a factor
√

(md +mu)/(md −mu) '
√

3.
Even more drastic effects are expected to occur in nuclear physics (see e.g. [224]).
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4. BASICS OF THE QCD AXION

Expanding at the quadratic order the potential of the axion and the neutral

pion in eq. (4.38) we see the existence of π0-a mass mixing controlled by isospin

breaking effects. In fact, it was pointed out in ref. [225] that the leading order

chiral Lagrangian contains (4.36) the mixing term

Lp2 ⊃ 2B0
fπ
4fa

a tr (Π{Qa,Mq}) . (4.46)

The mixing can be avoided by choosing the matrix Qa as

Qa =
M−1

q

tr(M−1
q )

. (4.47)

Loop level corrections reintroduce the mixing. But since they are small they can

be treated as a perturbation.

Finite temperature effects modify the axion properties. In particular, the be-

havior of the mass at high temperature (above the QCD scale ΛQCD) has been

widely studied for its role in the axion relic abundance. Well above the QCD

crossover, the plasma of thermal fluctuations screen all color electric fields and

quarks are deconfined. Functional dependence of the axion mass at high temper-

ature has been estimated in the dilute instanton gas approximation. It can be

written as [191–193, 226]

ma(T ) ∼ 2× 10−2 (ΛQCDmumdms)
1/2

fa

(
9 ln

π T

ΛQCD

)(
ΛQCD

π T

)4

, (4.48)

where mu, md, and ms are the light quark masses. It approaches asymptoti-

cally to zero as T → ∞. However the instanton computation suffer from large

uncertainties, commented in section 5.2.1 of the next chapter.

The axion photon interaction, defined in eq. (4.34), can be obtained in chiral

perturbation theory. From eqs. (4.35) and (4.47) one finds

gaγγ =
αem
2πfa

[
E

N
− 2

3

4md +mu

md +mu

]
, (4.49)

where E/N is the model dependent EM anomaly of the PQ symmetry, while the

second term is model independent and arises from the minimal coupling to QCD

at the non-perturbative level. For the most common grand unified models we

have E/N = 8/3 (DFSZ) and E/N = 0 (KSVZ). One may use a different basis

for Qa, but then the pion-photon coupling will induce a contribution through the

a-π0 mixing.
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4.5 Experimental limits

Other axion couplings to matter are either more model dependent (as the

derivative couplings) or theoretically more challenging to study (as the coupling to

EDM operators), or both. The derivative interaction with leptons, in particular to

electrons, appears through the pseudoscalar current containing the SM fermions

as

Laff =
c0
f

2fa
fγµγ5f∂µa, (4.50)

where f is the fermion field and c0
f a model dependent coefficient. The tree-level

coefficient of the coupling to electrons in the DFSZ model reads

ce =
sin2 β

3
, (4.51)

with β defined in section 4.2. In the KSVZ model Ce vanishes at tree level but it

appears at one loop through the axion coupling to photons.

Usually, the axion-nucleon couplings has been extracted by combining experi-

mental data from neutron beta decay, deep inelastic scattering and semi-leptonic

hyperon decays. In section 5.1.4, we present a new strategy using experimental

data and lattice QCD simulations and we explain its advantages. Unlike previous

studies our analysis is based only on first principle QCD computations. While

the precision is not as good as for the coupling to photons, the uncertainties are

already below 10% and may improve as more lattice simulations are performed.

Interactions with pions can be reliably obtained using chiral Lagrangians.

Results with the 3-flavor chiral Lagrangian are often found in the literature.

In the 2-flavor Lagrangian the extra contributions from the strange quark are

contained inside the low-energy couplings. Within the 2-flavor effective theory

the difference between using 2 or 3 flavor formulas, is a higher order effect. Indeed

the difference is O(mu/ms) which corresponds to the expansion parameter of the

2-flavor Lagrangian. As we will see in the next chapter these effects can only be

consistently taken into account after including the full NLO correction.

4.5 Experimental limits

Constraints from astrophysical sources suggest that fa should lie between few

108 GeV (see for eg. [187]) and few 1017 GeV [188–190, 211]. Axions are pro-

duced in hot astrophysical plasmas and can extract energy from stars. The cou-

plings to matter and radiation are bounded by observations of stellar lifetimes

or energy-loss rates. Current limits are based on measurements of the duration

of the neutrino signal of the supernova SN 1987A, the white dwarfs luminosity
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4. BASICS OF THE QCD AXION

function (WDLF), the number counts of stars in the horizontal branch of globu-
lar clusters, red giant branch of the color-magnitude diagram of globular clusters,
and helioscopes searches of axion fluxes potentially emitted from the sun. The
absence of gamma-ray signals form the supernova SN 1987A also sets a constraint.
The upper limit on fa is associated to stellar black hole spin measurements that
would be affected by the phenomenon of superrandiance in the presence of axions.
These limits are reviewed in [51].

In most of the allowed parameter space the axion represents an excellent dark
matter candidate and it could account for the whole dark matter density of the
universe [191–193]. They can be produced through the misalignment mechanism
and play the role of cold dark matter for sufficiently low masses. The details of
the production mechanism depend on whether PQ symmetry is broken or not
after inflation. However light axions have extremely small couplings, making
them very hard to detect.

Searches for the QCD axion as dark matter use some resonance effects and the
fact that the line width of the resonance is suppressed by the virial velocity in our
galaxy v2 ∼ 10−6 [194, 195] in order to enhance the tiny signal. Soon, the ADMX
experiment is expected to probe a new region of parameter space unconstrained
by indirect searches. Other experiments to directly search for the QCD axion are
being planned [197–199]. If the axion is discovered by such experiments, we will
know its mass with a high precision and possibly also the couplings depending
on the experiment.

There are also laboratory experiments searching for axions and axion-like
particles which do not rely on cosmological or astrophysical sources [200]. As
light bosons would mediate long range forces, they are constrained by “fifth force”
experiments, but at present these limits are far from realistic values expected for
axions.
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Chapter 5

Precision physics of the QCD

axion

The experimental program searching for axions is very active and promising. If

the axion were discovered, its mass would be determined with high precision.

Similarly other axion couplings may also be extracted depending on the experi-

ment. What can we learn from such measurements? Will we be able to infer the

UV completion of the axion and its cosmology? In this chapter we try to make a

small step towards answering these questions.

Since most of the axion properties, like the mass, couplings to matter and relic

abundance are controlled by non-perturbative dynamics, high precision in QCD

axion physics seems unachievable at first sight. However we will show that high

precision is within reach. Given its extremely light mass, QCD chiral Lagrangians

[201–203] can be used reliably. Performing a NLO computation we are able to

extract the axion mass, self coupling and its full potential at the percent level.

The coupling to photons can be extracted with similar precision, as well as the

tension of domain walls. As a spin-off we provide estimates of the topological

susceptibility and the quartic moment with similar precision and new estimates

of some low energy constants.

We also describe a new strategy to extract the couplings to nucleons directly

from first principle QCD. At the moment the precision is not yet at the percent

level, but there is room for improvement as more lattice QCD results become

available.

Finite temperature effects to the axion potential are also considered. At tem-

peratures below Tc ∼ 170 MeV chiral Lagrangians allow to precisely compute

the temperature dependent axion potential. Around the crossover region one

needs to rely on non-perturbative methods as lattice QCD simulations [204, 205].
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5. PRECISION PHYSICS OF THE QCD AXION

At sufficiently higher temperature one may expect the dilute instanton gas ap-

proximation to work. However the bad convergence of the perturbative QCD

expansion at finite temperature makes this computation unreliable for tempera-

tures below 106 GeV, in accordance with the large discrepancy observed in recent

lattice QCD simulations [227–229]. Finally, we evaluate the impact of such uncer-

tainty in the computation of the axion relic abundance, providing updated plots

for the allowed axion parameter space.

The chapter is organized as follows. In section 5.1 we present our new com-

putations of the axion properties, most of them obtained based on NLO chiral

Lagrangians, and their numerical estimates at zero temperature. In section 5.2

we discuss the temperature dependence of the axion mass and potential and the

implications for the axion dark matter abundance. Some details about the input

parameters used and extra formulas can be found in appendix B.

5.1 Properties at zero temperature

In this section we address the question of how good are the estimates obtained

so far using leading order chiral Lagrangians. NLO corrections are typically

about 20-30% in 3-flavor chiral perturbation theory. The 2-flavor theory enjoys a

much better perturbative expansion given the larger hierarchy between pions and

the other mass thresholds. To have a quantitative answer one must perform a

complete NLO calculation. As the 2-flavor expansion enjoys a better convergence

we perform all our computation in this theory.

When working with 2-flavor chiral Lagrangian a reduced number of physical

observables are available to fit the higher order couplings. This difficulty is over-

come by using 3-flavor theory to extract the values of the 2-flavor couplings when

needed. This will produce intrinsic uncertainties O(30%) in the extraction of

the 2-flavor couplings. Such uncertainties however will only have a small impact

on the final results whose dependence on the higher order 2-flavor couplings is

suppressed by the light quark masses.

5.1.1 The mass

Because of the smallness of the relevant values of the axion decay constant the

axion can be treated as an external source. Therefore its mass is related to the

topological susceptibility χtop through the relation

m2
a =

δ2

δa2
logZ

(
a
fa

)∣∣∣
a=0

=
1

f 2
a

d2

dθ2
logZ(θ)

∣∣∣
θ=0

=
χtop
f 2
a

, (5.1)
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5.1 Properties at zero temperature

where Z(θ) is the QCD generating functional in the presence of a theta term.
A partial computation of the axion mass at one loop was first attempted

in [230], followed by a recent computation of the full NLO corrections to the
topological susceptibility in ref. [231]. The latter results are presented in terms
of unphysical masses and couplings in the chiral limit. Here we recompute this
quantity independently. We present the result for the axion mass in terms of
observable renormalized quantities and the quark masses.

It is convenient to work in a basis with no tree-level mass mixing between
the axion and the neutral pion. Then, since there are no cubic vertices with one
axion and two pion fields, only diagrams with one single vertex contributes. In
terms of Lagrangian parameters we find

m2
a =

B0mumd

mu +md

(fπ)2

f 2
a

{ 1 +
2B0(mu +md)

f 2
π

[
− 3

64π2
ln
m2
π

µ2
+ hr1 − hr3 + lr3

−4
mumd

(mu +md)2
lr7

]}
, (5.2)

where µ is the renormalization scale, hr1, hr3, lr4 and lr7 are the renormalized NLO
couplings of [202], and both the couping B0 and the pion decay constant fπ are
in the chiral limit. Rewritten in terms of the physical observables it has the form

m2
a =

mumd

(mu +md)2

m2
πf

2
π

f 2
a

[
1 + 2

m2
π

f 2
π

(
hr1 − hr3 − lr4 +

m2
u − 6mumd +m2

d

(mu +md)2
lr7

)]
,

(5.3)
where mπ and fπ are the physical (neutral) pion mass and decay constant (which
include NLO corrections). After having reabsorbed one loop corrections of the
tree-level factor m2

πf
2
π , there is no remaining contribution from loop diagrams

at this order. In particular lr7 and the combination hr1 − hr3 − lr4 are separately
renormalization scale invariant.

We reproduce the result for the axion mass in the 3-flavor effective theory by
matching with the computation of the 2-flavor effective theory in appendix B.2.
Similar properties are also exhibited in the 3-flavor computation. After expressing
the axion mass in terms of physical quantities, potentially large corrections of
O(m2

K) are absent, as noticed already in [230].
Based on the Appelquist-Carrazone decoupling theorem [232] one can under-

stand the absence of power corrections proportional to the heavy meson masses
as we checked explicitly in our calculation. The reason is that the dependence
on large particle masses is absorbed by the low-energy parameters of the effective
field theory describing the physics at scales much smaller than the large particle
masses. In this way the dependence on the physics at large scales disappear from
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5. PRECISION PHYSICS OF THE QCD AXION

the physics at low scales in the effective field theory, remaining only the (physical)

logarithmic dependence related to processes that contribute at all scales.

When we performed the computation using two flavor ChPT, the heavy

mesons have been integrated out, so the explicit dependence on their masses

disappear from the effective theory. On the other hand, using three flavor ChPT

the axion mass do contains power corrections proportional to the heavy meson

masses when written in terms of the Lagrangian (unrenormalized) parameters.

However, after writing the axion mass in terms of physical parameters this de-

pendence gets absorbed by the physical parameters.

For the numerical evaluation of the axion mass and the size of the corrections

in eq. (5.3) we need the values of the NLO low energy constants. The values of

lr7 and the difference hr1 − hr3 are not available in the literature. Despite hr1 and

hr3 separately are non physical, their difference is indeed physical, as they appear

in eq. (5.3). In principle lr7 could be extracted from the QCD contribution to the

π+-π0 mass splitting. While lattice simulations have started to become sensitive

to EM and isospin breaking effects, at the moment there are no reliable estimates

of this quantity from first principle QCD. Even less is known about hr1−hr3, which

does not appear in other measured observables. The only hope would be to use

lattice QCD computation to extract such coupling by studying the quark mass

dependence of observables such as the topological susceptibility.

Fortunately the values of the low energy constants of 2-flavor ChPT can be

obtained in terms of the 3-flavor ones using the relations in [203]. We find

lr7 =
mu +md

ms

f 2
π

8m2
π

− 36L7 − 12Lr8 +
log(m2

η/µ
2) + 1

64π2
+

3 log(m2
K/µ

2)

128π2
= 7(4)·10−3,

hr1 − hr3 − lr4 =−8Lr8 +
log(m2

η/µ
2)

96π2
+

log(m2
K/µ

2) + 1

64π2
= (4.8± 1.4)·10−3. (5.4)

The first term in lr7 is due to the tree-level contribution to the π+-π0 mass splitting

due to the π0-η mixing from isospin breaking effects. The rest of the contribution,

formally NLO, includes the effect of the η-η′ mixing and numerically is as impor-

tant as the tree-level piece [203]. We thus only need the values of the 3-flavor

couplings L7 and Lr8, which can be extracted from chiral fits [233] and lattice

QCD [234], we refer to appendix B.1 for more details on the values used. An

important point is that by using 3-flavor couplings the precision of the estimates

of the 2-flavor ones will be limited to the convergence of the 3-flavor Lagrangian.

However, given the small size of such corrections even an O(1) uncertainty will

still translate into a small overall error.
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5.1 Properties at zero temperature

We also need the numerical value of the ratio of the light quark masses.

As this quantity appears at tree level we need a precise estimate. Because of

the Kaplan-Manohar (KM) ambiguity [235], it cannot be extracted within the

meson Lagrangian. One may wonder whether the KM ambiguity also affects our

computation of the axion mass. In 3-flavor ChPT the KM term has the form

L ⊃ B0f
2
π

2

[
tr (MU) +

δ

ms

det(M)tr
(
M−1U †

)
+ h.c.

]
. (5.5)

Using matrix identities it can be written as

det(M)tr
(
M−1U †

)
=

1

2

{[
tr(U †M)

]2 − tr
[
(U †M)2

]}
. (5.6)

This shows that at NLO it is absorbed by the higher-order operators of the O(p4)

Lagrangian. In 2-flavor ChPT the KM term is of order p2. However using the

vector form it is clear that there is no ambiguity because one can form only one

invariant at leading order (MTU, with M and U being the analogous of M and

U in the vector representation). In fact, we have

tr[det(M)M−1U ]† + h.c. = 4MTU. (5.7)

Therefore, the KM coupling is absorbed into the definition of B0. Our expression

for the axion mass is not affected by the KM ambiguity and we can safely use

the quark masses at high energy.

Recent lattice QCD simulations have seriously improved our knowledge of the

ratio of the up and down quark masses

z ≡ mMS
u (2 GeV)

mMS
d (2 GeV)

= 0.48(3) , (5.8)

where we have conservatively taken a larger error than the one associated with just

averaging the latest results in [236–238] (see the appendix B.1 for more details).

Note that z is scale independent up to αem and Yukawa suppressed corrections.

Another important observation is that since lattice QCD simulations allow us

to relate physical observables directly to the high-energy MS Yukawa couplings,

in principle1, they do not suffer from the KM ambiguity, which is a feature of

chiral Lagrangians. It is reasonable to expect that the precision on the ratio z

will increase further in the near future.

1Modulo well-known effects present when chiral non-preserving fermions are used.
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Evaluating the axion mass in eq. (5.3) we obtain

ma = 5.70(6)(4) µeV

(
1012GeV

fa

)
= 5.70(7) µeV

(
1012GeV

fa

)
, (5.9)

where the first error comes from the uncertainties in the light quark mass ra-

tio (5.8) and the second is associated to the uncertainties in the low energy

constants (5.4). The total error of ∼1% is much smaller than the relative errors

in the quark mass ratio (∼6%) and in the NLO couplings (∼30÷60%) because of

the weaker dependence of the axion mass on these quantities

ma =

[
5.70 + 0.06

z − 0.48

0.03
− 0.04

103lr7 − 7

4

+ 0.017
103(hr1 − hr3 − lr4)− 4.8

1.4

]
µeV

1012 GeV

fa
. (5.10)

Note that the full NLO correction is numerically smaller than the quark mass

error and its uncertainty is dominated by lr7. The error on the latter is particularly

large because of a partial cancellation between Lr7 and Lr8 in eq. (5.4). As the

contribution of lr7 dominates over the others, extracting its value from Lattice

QCD simulations would represent a considerable improvement.

We used the value of the pion decay constant fπ = 92.21(14) MeV [51], ex-

tracted from π+ decays and including the leading Quantum Electrodynamics

(QED) corrections. Other electromagnetic corrections to ma are expected to be

sub-percent, but further reduction of the error on the axion mass may require a

dedicated study of this source of uncertainty as well.

As a by-product we also provide a comparably high precision estimate of the

topological susceptibility itself

χ
1/4
top =

√
mafa = 75.5(5) MeV , (5.11)

against which lattice simulations can be calibrated.

5.1.2 The potential and derived quantities

The potential can be computed at NLO using the 2-flavor chiral Lagrangian,

similar to the mass. It receives three corrections: the pure Coleman-Weinberg

1-loop potential from pion loops, the tree-level contribution from the NLO La-

grangian, and the corrections from the renormalization of the tree-level result,
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when rewritten in terms of physical quantities (mπ and fπ). The complete result

has the form

V (a)NLO = −m2
π

(
a
fa

)
f 2
π

{
1− 2

m2
π

f 2
π

[
lr3 + lr4 −

(md −mu)
2

(md +mu)2
lr7 −

3

64π2
log

(
m2
π

µ2

)]

+
m2
π

(
a
fa

)

f 2
π

[
hr1 − hr3 + lr3 +

4m2
um

2
d

(mu +md)4

m8
π sin2

(
a
fa

)

m8
π

(
a
fa

) lr7

− 3

64π2

(
log

(
m2
π

(
a
fa

)

µ2

)
− 1

2

)]}
, (5.12)

where m2
π(θ) is the function defined in eq. (4.45), and all quantities have been

rewritten in terms of the physical NLO quantities1. In fact, the first line contains

those terms arising from the NLO corrections to mπ and fπ in the tree-level

potential.

The dependence on the axion is highly non-trivial, however the NLO correc-

tions account for only up to few percent change in the shape of the potential

(for example the difference in vacuum energy between the minimum and the

maximum of the potential changes by 3.5% when NLO corrections are included).

The numerical values for the additional low-energy constants lr3,4 are reported in

appendix B.1. We thus know the full QCD axion potential at the percent level!

The quartic self-coupling of the axion at NLO can be obtained straightfor-

wardly by expanding the effective potential (5.12) around the origin

V (a) = V0 +
1

2
m2
aa

2 +
λa
4!
a4 + . . . (5.13)

It is written as

λa =− m2
a

f 2
a

{
m2
u −mumd +m2

d

(mu +md)2
(5.14)

+6
m2
π

f 2
π

mumd

(mu +md)2

[
hr1 − hr3 − lr4 +

4l̄4 − l̄3 − 3

64π2
− 4

m2
u −mumd +m2

d

(mu +md)2
lr7

]}
,

in terms of the physical one-loop corrected axion mass ma of eq. (5.3). Numerical

evaluation leads to

λa = −0.346(22) · m
2
a

f 2
a

, (5.15)

with the uncertainty dominated by lr7 and representing about the 6%.

1See also [239] for a related result computed in terms of the LO quantities.
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Finally the NLO result for the domain wall tensions can be simply extracted
from the definition, eq. (4.43), and numerically it gives

σ = 8.97(5)maf
2
a , (5.16)

where the uncertainty is below percent and it receives comparable contributions
from the errors on lr7 and the quark masses.

As a by-product we also provide a precision estimate of the topological quartic
moment of the topological charge Qtop

b2 ≡ −
〈Q4

top〉 − 3〈Q2
top〉2

12〈Q2
top〉

=
f 2
aV
′′′′(0)

12V ′′(0)
=

λaf
2
a

12m2
a

= −0.029(2) , (5.17)

to be compared to the cosine-like potential binst2 = −1/12 ' −0.083.

5.1.3 Axion-photon coupling

Like the axion potential, the coupling to photons (4.49) also gets QCD corrections
at NLO, which are completely model independent. Indeed derivative couplings
only produce ma suppressed corrections which are negligible, thus the only model
dependence lies in the anomaly coefficient E/N .

For physical quark masses the QCD contribution (the second term in eq. (4.49))
is accidentally close to −2. This implies that models with E/N = 2 can have
anomalously small coupling to photons, relaxing astrophysical bounds. The de-
gree of this cancellation is very sensitive to the uncertainties from the quark mass
and the higher order corrections, which we compute here for the first time.

NLO corrections to the coupling to photons arise from Feynman diagrams with
one anomalous vertex, i.e. one vertex containing the antisymmetric tensor, as
shown in fig. 5.1. These anomalous vertices come from the Wess-Zumino-Witten
(WZW) Lagrangian or the anomalous O(p6) Lagrangian. To study anomalous
processes involving the axion field in chiral perturbation theory, both single vector
(vµ) and axial (aµ) currents need to be included. In that case, the O(p4) chiral
Lagrangian of ref. [202] is generalized to include extra operators with new low
energy constants l8, . . . , l12 and h4, . . . , h7 as discussed in [240]. Fortunately, the
contributions from these extra operators to the axion mass and the coupling
gaγγ are further suppressed by the ratio fa/fπ because they contain derivatives
on the axion field; thus they do not induce axion-pion mixing. There are also
electromagnetic corrections which were estimated in [241], but they can be safely
neglected at the level of precision we are currently able to achieve.

Higher-dimensional operators of O(p6) correcting the WZW Lagrangian in the
presence of a single vector current were classified in [242], which is the basis we
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a π0 aa a

(a) (b) (c) (d)

Figure 5.1: Corrections to the axion-photon coupling from: (a) the axion-pion

mass mixing, (b) the anomalous O(p6) Lagrangian, (c) the WZW Lagrangian, (d)

the WZW Lagrangian and the O(p2) pion photon vertex.

use. For the WZW term a significantly simple expression in 2-flavor ChPT was
derived in [240]

LWZW = − Nc

32π2
εµνρσ

{
〈U †r̂µUl̂ν − r̂µl̂ν + iΣµ(U †r̂νU + l̂ν)〉〈vρσ〉

+
2

3
〈ΣµΣνΣρ〉〈vσ〉

}
, (5.18)

where we use the notation

r̂µ = v̂µ + âµ , l̂µ = v̂µ − âµ , Σµ = U †∂µU , (5.19)

X̂ = X − 1

2
〈X〉 , for any matrix X. (5.20)

The corrections to the axion-photon couping can be decomposed as

gaγγ =
α

2π

1

fa

(
E

N
− 2

3

4md +mu

md +mu

)
+ ∆g(a)

aγγ + ∆g(b)
aγγ + ∆g(c)

aγγ + ∆g(d)
aγγ, (5.21)

where the ∆gaγγ’s are the contributions from the diagrams in fig. 5.1. From the
a − π0 mixing diagram and the tree-level diagrams with insertions of the NLO
WZW operators we obtain

∆g(a)
aγγ =

α

2πfa

[
−8B0mumd(md −mu)

f 2
π(mu +md)2

lr7

]
, (5.22)

∆g(b)
aγγ =

α

2πfa

[
1024B0π

2mumd(5c
W
3 + cW7 + 2cW8 )

9(mu +md)

]
. (5.23)

While one-loop diagrams involve the following vertices contained in the O(p2) and
the WZW Lagrangians

Lp2 ⊃ −ieAµ
(
π+∂µπ

− − π−∂µπ+
)
, (5.24)

LWZW ⊃
1

8π2f 2
πfa

md −mu

mu +md

εµνρσa
[
−e2π+π−∂µAν∂ρAσ + ie∂µπ

+∂νπ
−∂ρAσ

]
.
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One loop diagrams exactly cancel similarly to what happens for π → γγ and

η → γγ processes [243]

∆g(c)
aγγ + ∆g(d)

aγγ =
α

2πfa
(4− 4)

[(
md −mu

mu +md

)
m2
π

(
1− ln

m2
π

µ2

)]
, (5.25)

where the first and second factors in eq. (5.25) corresponds to the contributions

of π+π− loops in figs. 5.1(a) and 5.1(b) respectively. The final result reads

gaγγ =
αem
2πfa

{
E

N
− 2

3

4md +mu

md +mu

+
m2
π

f 2
π

8mumd

(mu +md)2

[
8

9

(
5c̃W3 + c̃W7 + 2c̃W8

)
− md −mu

md +mu

lr7

]}
, (5.26)

where the couplings cWi of [242] have been rescaled into c̃Wi ≡ cWi (4πfπ)2 for

simplicity. Notice that the lr7 term includes the mu/ms contributions which one

obtains from the 3-flavor tree-level computation.

Unlike the NLO couplings entering the axion mass and potential little is known

about the couplings c̃Wi , so we describe the way to extract them here.

We can attempt to use the available observables within 2-flavor ChPT, the

π0 → γγ width and the vector form factor F π
V , in order to extract the anomalous

couplings cWi . Calling δi the relative correction at NLO to the amplitude for the

i process, i.e.

ΓNLO
i ≡ Γtree

i (1 + δi)
2 , (5.27)

the expressions for Γtree
πγγ and δπγγ read

Γtree
πγγ =

α2
em

(4π)3

m3
π

f 2
π

,

δπγγ =
16

9

m2
π

f 2
π

[
md −mu

md +mu

(
5c̃W3 + c̃W7 + 2c̃W8

)
− 3

(
c̃W3 + c̃W7 +

c̃W11

4

)]
. (5.28)

Once again the loop corrections are reabsorbed by the renormalization of the tree-

level parameters and the only contributions come from the NLO WZW terms.

While the isospin breaking correction involves exactly the same combination of

couplings entering the axion width, the isospin preserving one does not. This

means that we cannot extract the required NLO couplings from the pion width

alone. However in the absence of large cancellations between the isospin breaking

and the isospin preserving contributions we can use the experimental value for

the pion decay rate to estimate the order of magnitude of the corresponding

corrections to the axion case. Given the small difference between the experimental
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and the tree-level prediction for Γπ→γγ the NLO axion correction is expected of

order few percent.

Analogously we can consider the vector form factor1

F π
V = F π,tree

V (1 + δF ) , (5.29)

with

F π,tree
V =

mπ+

4
√

2π2fπ
(5.30)

δF =
8

3
m2
π(4c̃W3 + 4c̃W7 + c̃W11) + 32m2

π

md

mu +md

c̃W5 +
16

3
(k2)c̃W13 . (5.31)

For on-shell photons k2 = 0, thus the form factor does not depend on c̃W13 . However

it depends additionally on the coupling c̃W11 and cannot be used in combination

with the π0 → γγ width to fit the anomalous coefficients.

To obtain numerical values for the unknown couplings we can try to use the

3-flavor theory, in analogy with the axion mass computation. In fact at NLO

in the 3-flavor theory the decay rates π → γγ and η → γγ only depend on two

low-energy couplings that can thus be determined. Matching these couplings to

the 2-flavor theory ones we are able to extract the required combination entering

in the axion coupling. Because the c̃Wi couplings enter eq. (5.26) only at NLO

in the light quark mass expansion we only need to determine them at LO in the

mu,d expansion.

The η → γγ decay rate at NLO is

Γtree
η→γγ =

α2
em

3(4π)3

m3
η

f 2
η

, δ(3)
ηγγ =

32

9

m2
π

f 2
π

[
2ms − 4mu −md

mu +md

C̃W
7 + 6

2ms −mu −md

mu +md

C̃W
8

]

' 64

9

m2
K

f 2
π

(
C̃W

7 + 6 C̃W
8

)
, (5.32)

where in the last step we consistently neglected higher order corrections O(mu,d/ms).

The 3-flavor couplings C̃W
i ≡ (4πfπ)2CW

i are defined in [242].

The expression for the correction to the π → γγ amplitude with three flavors

also receives important corrections from the π-η mixing ε2,

δ(3)
πγγ =

32

9

m2
π

f 2
π

[
md − 4mu

mu +md

C̃W
7 + 6

md −mu

mu +md

C̃W
8

]
+
fπ
fη

ε2√
3

(1 + δ(3)
ηγγ) , (5.33)

1Contributions from chiral loops were computed and shown to vanish in [244].
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where the π-η mixing derived in [203] can be conveniently rewritten as

ε2√
3
' md −mu

6ms

[
1 +

4m2
K

f 2
π

(
lr7 −

1

64π2

)]
, (5.34)

at leading order in mu,d. In both decay rates the loop corrections are reabsorbed
in the renormalization of the tree-level amplitude1.

By comparing the light quark mass dependence in eqs. (5.28) and (5.33) we
can match the 2 and 3 flavor couplings as follows

c̃W3 + c̃W7 +
c̃W11

4
= C̃W

7 , (5.35)

5c̃W3 + c̃W7 + 2c̃W8 = 5C̃W
7 + 12C̃W

8 +
3

32

f 2
π

m2
K

[
1 + 4

m2
K

fπfη

(
lr7 −

1

64π2

)]
(1 + δηγγ) .

Notice that the second combination of couplings is exactly the one needed for
the axion-photon coupling. By using the experimental results for the decay rates
(reported in appendix B.1), we can extract CW

7,8. The result is shown in fig. 5.2, the

precision is low for two reasons: 1) C̃W
7,8 are 3 flavor couplings so they suffer from

an intrinsic O(30%) uncertainty from higher order corrections2, 2) for π → γγ
the experimental uncertainty is not smaller than the NLO corrections we want
to fit.

For the combination we are interested in, 5c̃W3 + c̃W7 + 2c̃W8 , the final result
reads

5c̃W3 + c̃W7 + 2c̃W8 =
3f 2

π

64m2
K

mu +md

mu

{[
1 + 4

m2
K

f 2
π

(
lr7 −

1

64π2

)]
fπ
fη

(1 + δηγγ)

+3δηγγ − 6
m2
K

m2
π

δπγγ

}

5c̃W3 + c̃W7 + 2c̃W8 = 0.033(6) . (5.36)

When combined with eq. (5.26) we finally get

gaγγ =
αem
2πfa

[
E

N
− 1.92(4)

]
=

[
0.203(3)

E

N
− 0.39(1)

]
ma

GeV2
. (5.37)

1NLO corrections to π and η decay rates to photons including isospin breaking effects

were also computed in [241]. For the η → γγ rate we disagree in the expression of the terms

O(mu,d/ms), which are however subleading. For the π → γγ rate we also included the mixed

term coming from the product of the NLO corrections to ε2 and to Γηγγ . Formally this term

is NNLO but given that the NLO corrections to both ε2 and Γηγγ are of the same size as the

corresponding LO contributions such terms cannot be neglected.
2We implement these uncertainties by adding a 30% error on the experimental input values

of δπγγ and δηγγ .
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Figure 5.2: Result of the fit of the 3-flavor couplings C̃W7,8 from the decay width

of π → γγ and η → γγ, which include the experimental uncertainties and a 30%

systematic uncertainty from higher order corrections.

Note that despite the rather large uncertainties of the NLO couplings we are

able to extract the model independent contribution to a → γγ at the percent

level. This is due to the fact that, analogously to the computation of the axion

mass, the NLO corrections are suppressed by the light quark mass values. Mod-

ulo experimental uncertainties, eq. (5.37) would allow the parameter E/N to be

extracted from a measurement of gaγγ at the percent level.

For the three reference models with respectively E/N = 0 (such as hadronic

or KSVZ-like models [182, 183] with electrically neutral heavy fermions), E/N =

8/3 (as in DFSZ models [184, 185] or KSVZ models with heavy fermions in

complete SU(5) representations) and E/N = 2 (as in some KSVZ “unificaxion”

models [245]) the coupling reads

gaγγ =

{ −2.227(44) · 10−3/fa E/N = 0
0.870(44) · 10−3/fa E/N = 8/3
0.095(44) · 10−3/fa E/N = 2

. (5.38)

Even after the inclusion of NLO corrections the coupling to photons in E/N = 2

models is still suppressed. The current uncertainties are not yet small enough to

completely rule out a higher degree of cancellation, but a suppression bigger than

O(20) with respect to E/N = 0 models is highly disfavored. Therefore the result

for g
E/N=2
aγγ of eq. (5.38) can now be taken as a lower bound to the axion coupling

to photons, below which tuning is required. The result is shown in fig. 5.3.
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Figure 5.3: The relation between the axion mass and its coupling to photons for

the three reference models with E/N = 0, 8/3 and 2. Notice the larger relative

uncertainty in the latter model due to the cancellation between the UV and IR

contributions to the anomaly (the band corresponds to 2σ errors.). Values below

the lower band require a higher degree of cancellation.

5.1.4 Coupling to matter

Axion couplings to matter are more model dependent as they involve all the UV

couplings defining the effective axial current in eq. (4.50). Of course, there is also

a model independent contribution from the axion coupling to gluons and to a less

extent to the other gauge bosons.

Derivative interactions with leptons are simple since they can be read off

directly from the UV Lagrangian up to one loop effects coming from the coupling

to the EW gauge bosons. The latter are particularly important for hadronic

axions, where axions do not couple to quarks and leptons at tree-level, as they

generate higher-order axion-lepton couplings [246].

Interactions with hadrons are more delicate because they involve matching

hadronic to elementary quark physics. Phenomenologically the most interesting

ones are the axion couplings to nucleons, which could in principle be tested from
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long range force experiments, or from dark-matter direct-detection like experi-

ments. They also affect stellar energy-loss rate from nucleon bremsstrahlung.

In principle we could attempt to follow a similar procedure to the one used in

the previous section, namely to employ chiral Lagrangians with baryons and use

known experimental data to extract the necessary low energy couplings. Unfor-

tunately effective Lagrangians involving baryons are on much less solid ground—

there are no parametrically large energy gaps in the hadronic spectrum to justify

the use of low energy expansions.

A much safer thing to do is to use an effective theory valid at energies much

lower than the QCD mass gaps ∆ ∼ O(100 MeV). In this regime nucleons are

non-relativistic, their number is conserved and they can be treated as external

fermionic currents. For exchanged momenta q parametrically smaller than ∆,

heavier modes are not excited and the effective field theory is under control. The

axion, as well as the electro-weak gauge bosons, enters as classical sources in the

effective Lagrangian, which would otherwise be a free non-relativistic Lagrangian

at leading order. At energies much smaller than the QCD mass gap the only

active flavor symmetry we can use is isospin, which is explicitly broken only by

the small quark masses (and QED effects). The leading order effective Lagrangian

for the 1-nucleon sector reads

LN = N̄vµDµN + 2gAA
i
µ N̄S

µσiN + 2gq0 Â
q
µ N̄S

µN + σ〈Ma〉N̄N + bN̄MaN + . . .

(5.39)

where N = (p, n) is the isospin doublet nucleon field, vµ is the four-velocity

of the non-relativistic nucleons, Dµ = ∂µ − Vµ, Vµ is the vector external cur-

rent, σi are the Pauli matrices, the index q = (u+d
2
, s, c, b, t) runs over isoscalar

quark combinations, 2N̄SµN = N̄γµγ5N is the nucleon axial current, the matrix

field Ma = cos(Qaa/fa)diag(mu,md), and Aiµ and Âqµ are the axial isovector and

isoscalar external currents respectively. Neglecting SM gauge bosons, the external

currents only depend on the axion field as follows

Âqµ = cq
∂µa

2fa
, A3

µ = c(u−d)/2
∂µa

2fa
, A1,2

µ = Vµ = 0 , (5.40)

where we used the short-hand notation c(u±d)/2 ≡ cu±cd
2

. The couplings cq = cq(Q)

computed at the scale Q will in general differ from the high scale ones because

of the running of the anomalous axial current [247]. In particular under RG

evolution the couplings cq(Q) mix, so that in general they will all be different

from zero at low energy. We explain the details of this effect in appendix B.3.
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Note that the linear axion couplings to nucleons are all contained in the deriva-

tive interactions through Aµ while there are no linear interactions1 coming from

the non derivative terms contained in Ma. In Eq. (5.39) dots stand for higher

order terms involving higher powers of the external sources Vµ, Aµ, and Ma.

Among these the leading effects to the axion-nucleon coupling will come from

isospin breaking terms O(MaAµ).2 These corrections are small O(md−mu
∆

), be-

low the uncertainties associated to our determination of the effective coupling gq0,

which are extracted from lattice simulations performed in the isospin limit.

The effective field theory of eq. (5.39) should not be confused with the usual

heavy baryon chiral Lagrangian [248] because here pions have been integrated out.

The advantage of using this Lagrangian is clear: for axion physics the relevant

scale is of order ma, so higher order terms are negligibly small O(ma/∆). The

price to pay is that the couplings gA and gq0 can only be extracted from very low-

energy experiments or lattice QCD simulations. Fortunately the combination of

the two will be enough for our purposes.

Actually at the leading order in the isospin breaking expansion, gA and gq0
can simply be extracted by matching single nucleon matrix elements computed

with the axion UV Lagrangian (4.34) and with the effective axion-nucleon the-

ory (5.39). The result is given by

gA = ∆u−∆d , gq0 = (∆u+ ∆d,∆s,∆c,∆b,∆t) , sµ∆q ≡ 〈p|q̄γµγ5q|p〉 ,
(5.41)

where |p〉 is a proton state at rest, sµ its spin and we used isospin symmetry

to relate proton and neutron matrix elements. Note that the isoscalar matrix

elements ∆q inside gq0 depend on the matching scale Q, such dependence is how-

ever canceled once the couplings gq0(Q) are multiplied by the corresponding UV

couplings cq(Q) inside the isoscalar currents Âqµ. Non-singlet combinations such

as gA are instead protected by non-anomalous Ward identities, as long as we use

renormalization schemes which preserve them. For future convenience we set the

matching scale Q = 2 GeV.

Writing the EFT Lagrangian (5.39) directly in terms of the UV couplings

leads to

LN = N̄vµDµN +
∂µa

fa

{cu − cd
2

(∆u−∆d)N̄Sµσ3N

1This is no longer true in the presence of extra CP violating operators such as those coming

from the CKM phase or new physics. The former are known to be very small, while the latter

are more model dependent and we will not discuss them in the current work.
2Axion couplings to EDM operators also appear at this order.
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+
[cu + cd

2
(∆u+ ∆d) +

∑

q=s,c,b,t

cq∆q
]
N̄SµN

}
. (5.42)

It just remains to determine the matrix elements ∆q.

The isovector combination can be accurately determined from neutron beta

decay [51]

∆u−∆d = gA = 1.2723(23) , (5.43)

which is renormalization-scale independent. The tiny neutron-proton mass split-

ting mn−mp = 1.3 MeV guarantees that we are within the regime of our effective

theory. The uncertainty quoted is experimental and does not include possible

isospin-breaking corrections.

Unfortunately we do not have other low energy experimental inputs to de-

termine the remaining matrix elements. Until now such information has been

extracted from a combination of deep-inelastic-scattering data and semi-leptonic

hyperon decays: the former suffer from uncertainties coming from the integration

over the low-x kinematic region, which is known to give large contributions to

the observable of interest; the latter are not really within the EFT regime, which

does not allow a reliable estimate of the accuracy.

Opportunely lattice simulations have recently started producing direct reliable

results for these matrix elements. From [249–254] (see also [255, 256]) we extract

the following inputs computed at Q = 2 GeV in MS

gud0 = ∆u+ ∆d = 0.521(53) , ∆s = −0.026(4) , ∆c = ±0.004 . (5.44)

Details of the derivation are contained in appendix B.1. Notice that the charm

spin content is so small that its value has not been determined yet, only an upper

bound exists. Similarly we can neglect the analogous contributions from bottom

and top quarks which are expected to be even smaller. As mentioned before,

lattice simulations do not include isospin breaking effects, these are however ex-

pected to be smaller than the current uncertainties. Combining eqs. (5.43) and

(5.44) we obtain the individual matrix elements with good precision

∆u = 0.897(27) , ∆d = −0.376(27) , ∆s = −0.026(4) , (5.45)

evaluated at the renormalization scale Q = 2 GeV.

Using the values in eq. (5.45) we can obtain the axion-nucleon couplings:

cp = −0.47(3) + 0.88(3)c0
u − 0.39(2)c0

d − 0.038(5)c0
s

− 0.012(5)c0
c − 0.009(2)c0

b − 0.0035(4)c0
t ,

cn = −0.02(3) + 0.88(3)c0
d − 0.39(2)c0

u − 0.038(5)c0
s

145



5. PRECISION PHYSICS OF THE QCD AXION

− 0.012(5)c0
c − 0.009(2)c0

b − 0.0035(4)c0
t , (5.46)

which are defined in analogy to the couplings to quarks as

LaNN =
∂µa

2fa
cNN̄γ

µγ5N , (5.47)

and are scale invariant (as they are defined in the effective theory below the QCD

mass gap). The errors in eq. (5.46) include the uncertainties from the lattice

data and those from higher order corrections in the perturbative RG evolution

of the axial current (the latter is only important for the coefficients of c0
s,c,b,t).

The couplings c0
q are those appearing in eq. (4.31) computed at the high scale

fa = 1012 GeV. The effect of varying the matching scale to a different value

of fa within the experimentally allowed range is smaller than the theoretical

uncertainties.

We make some observations about the result (5.46). The theoretical errors

quoted here are dominated by the lattice results, which for these matrix elements

are still in an early phase and the systematic uncertainties are not fully explored

yet. Still the error on the final result is already good (below ten percent), and

there is room for a large improvement which is expected in the near future. Note

that when the uncertainties decrease sufficiently for results to become sensitive

to isospin breaking effects, new couplings will appear in eq. (5.39). These could

in principle be extracted from lattice simulations by studying the explicit quark

mass dependence of the matrix element. In this regime the experimental value

of the isovector coupling gA cannot be used anymore because of different isospin

breaking corrections to charged versus neutral currents.

The numerical values of the couplings we get are not too far off those already

in the literature (see e.g. [51]). However, because of the caveats in the relation

of the deep inelastic scattering and hyperon data to the relevant matrix elements

the uncertainties in those approaches are not under control. On the other hand

the lattice uncertainties are expected to be reduced in the near future, which

would further improve the precision of the estimate performed with the technique

presented here.

The numerical coefficients in eq. (5.46) include the effect of running from

the high scale fa (here fixed to 1012 GeV) to the matching scale Q = 2 GeV,

which we performed at the NLLO order (more details in appendix B.3). The

running effects are evident from the fact that the couplings to nucleons depend

on all quark couplings including charm, bottom and top, even though we took the

corresponding spin content to vanish. This effect has been neglected in previous

analysis.
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Finally it is interesting to notice that there is a cancellation in the model
independent part of the axion coupling to the neutron in KSVZ-like models,
where c0

q = 0,
cKSVZ
p = −0.47(3) , cKSVZ

n = −0.02(3) , (5.48)

the coupling to neutrons is suppressed with respect to the coupling to protons
by a factor O(10) at least, in fact this coupling still is compatible with zero. The
cancellation can be understood from the fact that, neglecting running and sea
quark contributions

cn ∼
〈
Qa ·

(
∆d 0
0 ∆u

)〉
∝ md∆d+mu∆u , (5.49)

and the down-quark spin content of the neutron ∆u is approximately ∆u ≈
−2∆d, i.e. the ratio mu/md is accidentally close to the ratio between the number
of up over down valence quarks in the neutron. This cancellation may have
important implications on axion detection and astrophysical bounds.

In models with c0
q 6= 0 both the couplings to proton and neutron can be large,

for example for the DFSZ axion models, where c0
u,c,t = 1

3
sin2 β = 1

3
− c0

d,s,b at the
scale Q ' fa, we get

cDFSZ
p = −0.617 + 0.435 sin2 β ± 0.025 , cDFSZ

n = 0.254− 0.414 sin2 β ± 0.025 .
(5.50)

A cancellation in the coupling to neutrons is still possible for special values of
tan β.

5.2 Properties at finite temperature

Axions can be produced thermally in the early universe from its coupling to
the SM particles in the thermal bath, in particular from the coupling to gluons,
for sufficiently small values of fa. This population of hot axions would be sub-
dominant for the allowed values of fa [257–260], but it gives a small contribution
to the total relativistic energy fraction, usually parametrized by the effective
number of neutrinos. Other mechanisms of axion production do not rely on its
interactions with SM particles. The misalignment mechanism [191–193] is the
most model independent and is almost completely determined by the shape of
the axion potential at finite temperature and its zero temperature mass. Hence
the importance of the temperature dependence of this quantities as they control
the relic abundance of axions today (for a review see e.g. [261]). Radiation from
topological defects (strings and domain walls), which can be present if the PQ
symmetry is restored after inflation, can be the dominant source of dark matter
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[262–268]. Their contribution also depends on the finite temperature behavior
of the axion potential; although large uncertainties, associated to the dynamical
evolution of these topological defects (for a recent numerical study see e.g. [269]),
may change the predicted abundance by two orders of magnitude.

At low temperature we perform a high precision computation based on chi-
ral Lagrangians, whose convergence degrades as the temperature approaches the
critical value Tc '160-170 MeV where QCD starts deconfining. At Tc the chiral
approach is already out of control. Fortunately around the QCD cross-over region
lattice computations are possible. The current precision is not yet competitive
with our low temperature results but they are expected to improve soon. One
expects the dilute instanton gas approximation to provide a reliable estimate for
T � Tc, where a perturbative computation is well behaved. However finite tem-
perature QCD converges fast only for very high temperatures, above O(106) GeV
(see e.g. [270]). The instanton computation is especially problematic due to an
exponential sensitivity to quantum thermal loop effects. In fact, the resulting un-
certainty on the axion mass and potential can easily be one order of magnitude
or more!

5.2.1 Behavior of the potential

Below the critical temperature axion properties can be reliably computed using
finite temperature chiral Lagrangians [271, 272]. In this region finite temperature
effects are exponentially suppressed thanks to the QCD mass gap. Temperature
dependence can be computed by simply evaluating the loop corrections using the
corresponding sum-integrals (see eg. [273]). It can only arise from (non-local)
loop corrections that can feel the finite temperature.

The leading temperature dependence of the potential, contained in vacuum
graphs with virtual pions, is given by

V (a;T )

V (a)
= 1 +

3

2

T 4

f 2
πm

2
π

(
a
fa

) J0

[
m2
π

(
a
fa

)

T 2

]
, (5.51)

with loop integrals Jn defined as

J0[ξ] ≡ − 1

π2

∫ ∞

0

dq q2 log
(

1− e−
√
q2+ξ

)
, Jn[ξ] =

1

(n− 1)!

(
− ∂

∂ξ

)n
J0[ξ].

(5.52)

By taking the second derivative of the potential we easily get the temperature
dependent axion mass

m2
a(T )

m2
a

=
χtop(T )

χtop

NLO
=

m2
π(T )f 2

π(T )

m2
πf

2
π

=
〈q̄q〉T
〈q̄q〉 = 1− 3

2

T 2

f 2
π

J1

[
m2
π

T 2

]
, (5.53)
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where we have used a recursive relation of the Jn functions. At one loop the axion

mass only receives contributions from the local NLO couplings once rewritten

in terms of the physical mπ and fπ [274]. Therefore the leading temperature

dependence is completely determined by the temperature dependence of mπ and

fπ, and in particular is the same as that of the chiral condensate [271, 272, 274].

The function J1(ξ) approaches asymptotically to ξ1/4e−
√
ξ/(2π)3/2 at large ξ and

to 1/12 at small ξ. Note that in the ratio m2
a(T )/m2

a the dependence on the quark

masses and the NLO couplings cancel out. This means that, at T � Tc, this ratio

is known at a even better precision than the axion mass at zero temperature itself.

The temperature dependence of the quartic self-coupling is also extracted from

the potential

λa(T )

λa
= 1− 3

2

T 2

f 2
π

J1

[
m2
π

T 2

]
+

9

2

m2
π

f 2
π

mumd

m2
u −mumd +m2

d

J2

[
m2
π

T 2

]
. (5.54)

Higher order corrections are small for all values of T below Tc. There are also

contributions from the heavier states that are not captured by the low energy

Lagrangian. In principle these are exponentially suppressed by e−m/T , where m

is the mass of the heavy state. However, because the ratio m/Tc is not very large

and a large number of states appear above Tc there is a large effect at around

Tc, where the chiral expansion ceases to reliably describe QCD physics. An in

depth discussion of such effects appears in [275] for the similar case of the chiral

condensate.

In summary, eqs. (5.51), (5.53) and (5.54) work very well for T . Tc, while

at some temperature close to Tc they no longer apply and full non-perturbative

QCD computations are needed.

Around the crossover the theory is clearly non-perturbative and information

is obtained by means of lattice QCD simulations. For sufficiently high temper-

ature perturbation theory is expected to work, such that the potential can be

computed under the dilute instanton gas approximation [226]. Contrary to the

zero temperature case, where large gauge configurations dominate because of the

larger gauge coupling, at high temperature these are exponentially suppressed

due to Debye screening. This justifies the instanton computation.

The axion effective potential is calculated in terms of the single instanton

contribution to the partition function and has the form

V inst(a;T ) = −f 2
am

2
a(T ) cos(a/fa) , (5.55)

where

f 2
am

2
a(T ) ' 2

∫
dρ n(ρ, 0)e

− 2π2

g2s
m2
D1ρ

2+...
. (5.56)
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Here the integral is over the instanton size ρ, n(ρ, 0) ∝ Πq det(D/+mq)e
−8π2/g2s is

the zero temperature instanton density proportional to the quark determinant,

m2
D1 = g2

sT
2(1+nf/6) is the Debye mass squared at LO, nf is the number of flavor

degrees of freedom active at the temperature T , and the dots stand for smaller

corrections (see [226] for more details1). The functional dependence of eq. (5.56)

on temperature is approximately a power law T−α where α ≈ 7 + nf/3 + . . . is

fixed by the QCD beta function.

Nevertheless the dilute instanton gas approximation suffers from a serious

problem. It relies on finite temperature perturbative QCD, which is valid at very

high temperatures T >∼ 106 GeV due to IR divergences of the thermal bath [279].

Moreover, the temperature dependent axion mass, being exponentially sensitive

to quantum corrections, converges even worse than other observables. Indeed lat-

tice simulations [280, 281] and NLO perturbative computations [282–284] suggest

an order one deviation from the LO perturbative estimate of the Debye mass, for

temperatures around few GeV. As the axion mass depends exponentially on the

Debye mass, higher order effects can easily shift its value at a given temperature

by an order of magnitude or more. Even the shape of the potential in eqs. (5.55),

(5.56) and the functional dependence on the temperature may be questioned.

Thus non-perturbative methods as lattice QCD are highly appreciated.

There are lattice simulations [204, 228] for temperatures around Tc and above,

which however do not correspond to real QCD. Although they provide useful in-

sights, numerical results should be treated with care. They use light-quark masses

which are heavier than the physical ones (corresponding to larger pion masses)

and rather coarse lattice spacing. It is essential for future lattice computations

to use the right quark masses and to perform a reliable extrapolation to the

continuum limit.

Very recently, in refs. [229, 285, 286] the temperature dependence of the topo-

logical susceptibility above Tc have been studied with physical quark masses and

performing the continuum limit. The simulations use different techniques and

approximations to overcome the difficulties of this type of computations. The

results however do not agree and further studies are requiered to get a reliable

estimate only based on first principle QCD. These large uncertainties in the tem-

perature dependence above the crossover are transfered to the calculation of the

axion relic density.

1The instanton density was first computed by ’t Hooft [276] at one-loop for number of colors

Nc = 2, it was generalized by Bernard [277] to arbitrary Nc and computed at finite temperature

in ref. [226]. The ultraviolet divergent part of the two-loop correction to the vacuum energy in

the presence of an instanton background field was calculated in [278], resulting in a two-loop

renormalization group invariant size distribution.
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5.2.2 Dark matter abundance

The axion relic density and the features of the production mechanisms in the early

universe depend sensibly on whether PQ symmetry is broken or not after infla-

tion. First we consider the case where PQ symmetry is broken before inflation

(HI . fa) and the universe is not reheated beyond the PQ scale (Tmax . fa). At

some moment of the cosmic evolution the temperature of the universe falls below

the PQ scale, then the scalar field Φ, which contains the axions as a phase, devel-

ops a VEV spontaneously breaking the PQ symmetry. While still at T � ΛQCD,

the axion potential is negligible and the exponential expansion during inflation

renders the axion field homogeneously constant over the observable universe, with

initial value a(x) = θ0fa, (0 ≤ θ0 ≤ 2π).

Between the PQ phase transition and the QCD crossover, the evolution of the

axion field, in particular of its zero mode, is determined by the equation

ä+ 3Hȧ+m2
a (T ) fa sin

(
a

fa

)
= 0 . (5.57)

where we assumed that the shape of the axion potential is well described by

the dilute instanton gas approximation, eq. (5.55). As the Universe cools, the

Hubble parameter decreases while the axion potential grow. When the pull from

the latter becomes comparable to the Hubble friction, i.e. ma(T ) ∼ 3H, the axion

field starts oscillating with frequency ma. This typically happens at temperatures

above Tc, around the GeV scale, depending on the value of fa and the temperature

dependence of the axion mass. Soon after that the comoving number density

na = 〈maa
2〉 becomes an adiabatic invariant and the axion behaves as cold dark

matter.

The other possibility is that PQ symmetry is broken after inflation. At tem-

peratures around the PQ breaking scale vPQ, the axion field is randomly dis-

tributed over the interval [0, 2πfa] in different regions of space, which in this

case remain causally connected. Such field configurations imply the formation

of topological defects, like strings and domain walls. These decay into axions,

whose abundance is affected by large uncertainties associated with the evolution

and decay of the topological defects. Independently of this evolution there is a

misalignment contribution to the dark matter relic density from axion modes with

very close to zero momentum. The calculation of this is the same as for the case

where inflation happens after PQ breaking, except that the relic density must be

averaged over all possible values of θ0. While the misalignment contribution gives

only a part of the full abundance, it can still be used to give an upper bound to

fa in this scenario.
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Figure 5.4: Values of fa such that the misalignment contribution to the axion

abundance matches the observed dark matter one for different choices of the pa-

rameters of the axion mass dependence on temperature. For definiteness the plot

refers to the case where the PQ phase is restored after the end of inflation (cor-

responding approximately to the choice θ0 = 2.15). The temperatures where the

axion starts oscillating, i.e. satisfying the relation ma(T ) = 3H(T ), are also shown.

The two points corresponding to the dilute instanton gas prediction and the recent

preliminary lattice data are shown for reference.

The current axion abundance from misalignment, assuming standard cosmo-
logical evolution, is given by

Ωa =
86

33

Ωγ

Tγ

n?a
s?
ma , (5.58)

where Ωγ and Tγ are the current photon abundance and temperature respectively
and s? and n?a are the entropy density and the average axion number density
computed at any moment in time t? sufficiently after the axion starts oscillat-
ing such that n?a/s

? is constant. The latter quantity can be obtained by solving
eq. (5.57) and depends on 1) the QCD energy and entropy density around Tc, 2)
the initial condition for the axion field θ0, and 3) the temperature dependence of
the axion mass and potential. The first is reasonably well known from pertur-
bative methods and lattice simulations (see e.g. [287, 288]). The initial value θ0
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is a free parameter in the first scenario, where the PQ transition happen before
inflation—since in this case θ0 can be chosen in the whole interval [0, 2π] only
an upper bound to Ωa can be obtained in this case. In the scenario where the
PQ phase is instead restored after inflation n?a is obtained by averaging over all
θ0, which numerically corresponds to choosing1 θ0 ' 2.1. Since θ0 is fixed, Ωa is
completely determined as a function of fa in this case. At the moment the biggest
uncertainty on the misalignment contribution to Ωa comes from our knowledge
of ma(T ). Assuming that ma(T ) can be approximated by the power law

m2
a(T ) = m2

a(1 GeV)

(
GeV

T

)α
= m2

a

χ(1 GeV)

χ(0)

(
GeV

T

)α
,

around the temperatures where the axion starts oscillating, eq. (5.57) can eas-
ily be integrated numerically. In fig. 5.4 we plot the values of fa that would
reproduce the correct dark matter abundance for different choices of χ(T )/χ(0)
and α in the scenario where θ0 is integrated over. We also show two represen-
tative points with parameters (α ≈ 8, χ(1 GeV)/χ(0) ≈ few 10−7) and (α ≈ 2,
χ(1 GeV)/χ(0) ≈ 10−2) corresponding respectively to the expected behavior
from instanton computations and to the suggested one from the preliminary lat-
tice data in [205]. The figure also shows the corresponding temperature at which
the axion starts oscillating, here defined by the condition ma(T ) = 3H(T ).

It is important to mention that for large values of α, as predicted by instanton
computations, the sensitivity to the overall size of the axion mass at fixed tem-
perature (χ(1 GeV)/χ(0)) is weak. However if the slope of the axion mass with
the temperature is much smaller, as suggested by the results in [205], then the
corresponding value of fa required to give the correct relic abundance can even
be larger by an order of magnitude (note also that in this case the temperature
at which the axion starts oscillating would be higher, around 4÷5 GeV). The
difference between the two cases could be taken as an estimate of the current
uncertainty on this type of computation. More accurate lattice results would be
very welcome to assess the actual temperature dependence of the axion mass and
potential.

To show the impact of this uncertainty on the viable axion parameter space
and the experiments probing it, in fig. 5.5 we plot the various constraints as
a function of the Hubble scale during inflation and the axion decay constant.
Limits that depend on the temperature dependence of the axion mass are shown
for the instanton and lattice inspired forms (solid and dashed lines respectively),
corresponding to the labeled points in fig. 5.4. On the right side of the plot we

1The effective θ0 corresponding to the average is somewhat bigger than 〈θ2〉 = π2/3 because

of anharmonicities of the axion potential.
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Figure 5.5: The axion parameter space as a function of the axion decay constant

and the Hubble parameter during inflation. The bounds are shown for the two

choices for the axion mass parametrization suggested by instanton computations

(continuous lines) and by preliminary lattice results (dashed lines), corresponding

to the labeled points in fig. 5.4. In the green shaded region the misalignment axion

relic density can make up the entire dark matter abundance, and the isocurvature

limits are obtained assuming that this is the case. In the white region the axion

misalignment population can only be a sub-dominant component of dark matter.

The region where PQ symmetry is restored after inflation does not include the

contributions from topological defects, the lines thus only represent conservative

upper bounds to the value of fa. Ongoing (solid) and proposed (dashed empty)

experiments testing the available axion parameter space are represented on the

right side.

also show the values of fa that will be probed by ongoing experiments (solid) and

those that could be probed by proposed experiments (dashed empty). Orange

colors are used for experiments using the axion coupling to photons, blue for the

others. Experiments in the last column (IAXO and ARIADNE) do not rely on

the axion being dark matter. The boundary of the allowed axion parameter space

is constrained by the CMB limits on tensor modes [289], supernova SN1985 and

other astrophysical bounds including black-hole superradiance.
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When the PQ preserving phase is not restored after inflation (i.e. when both
the Hubble parameter during inflation HI and the maximum temperature after
inflation Tmax are smaller than the PQ scale) the axion abundance can match the
observed dark matter one for a large range of values of fa and HI by varying the
initial axion value θ0. In this case isocurvature bounds [290] (see e.g. [291] for a
recent discussion) constrain HI from above. At small fa obtaining the correct relic
abundance requires θ0 to be close to π, where the potential is flat, so the the axion
begins oscillating at relatively late times. In the limit θ0 → π the axion energy
density diverges. Given the sensitivity of Ωa to θ0 in this regime, isocurvatures
are enhanced by 1/(π−θ0) and the bound on HI is thus strengthened by a factor
π − θ0.1 Meanwhile, the axion decay constant is bounded from above by black-
hole superradiance. For smaller values of fa axion misalignment can only explain
part of the dark matter abundance. In fig. 5.5 we show the value of fa required
to explain ΩDM when θ0 = 1 and θ0 = 0.01 for the two reference values of the
axion mass temperature parameters.

If the PQ phase is instead restored after inflation, e.g. for high scale inflation
models, θ0 is not a free parameter anymore. In this case only one value of fa will
reproduce the correct dark matter abundance. Given our ignorance about the
contributions from topological defect we can use the misalignment computation
to give an upper bound on fa. This is shown on the bottom-right side of the
plot, again for the two reference models, as before. Contributions from higher-
modes and topological defects are likely to make such bound stronger by shifting
the forbidden region downwards. Note that while the instanton behavior for the
temperature dependence of the axion mass would point to axion masses outside
the range which will be probed by ADMX (at least in the current version of the
experiment), if the lattice behavior will be confirmed the mass window which will
be probed would look much more promising.

1This constraint guarantees that we are consistently working in a regime where quantum

fluctuations during inflation are much smaller than the distance of the average value of θ0 from

the top of the potential.
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Chapter 6

Conclusions

We computed the mass of the MSSM Higgs boson and several QCD axion prop-

erties with high precision. For this task, effective field theory methods proved to

be very powerful.

The Higgs mass calculation improves previous computations by including

extra two-loop SUSY threshold corrections, the contributions from the sbot-

tom/stau sectors relevant at large tan β and the implementation of the OS scheme,

the relevant formulas can be found in the appendix A.2 and in [111].

We also performed a study of the theoretical uncertainties, showing that for

most of the relevant parameter space the error is sub-GeV and dominated by

higher order SM corrections. The result is summarized in fig. 3.10. The recent

inclusion of the SM NNNLO corrections leading in the strong coupling and the

effect of the dimension six operators allow to have more control on our estimate

of the theoretical uncertainty.

The computation has been arranged into an efficient computer package which

we made publicly available [111]. The code exploits the power of the EFT ap-

proach, allowing to compute the Higgs mass for arbitrary heavy sparticles, even

when a large hierarchy between fermions and scalars is present. Analytic formulas

for the solution of the RGE make the code very fast, which allows to efficiently

use the Higgs mass as a constraint on the spectrum.

We then performed several studies on the implication of the Higgs mass con-

straint on SUSY:

• In agreement with previous EFT computation we find that the SUSY spec-

trum needs to be a little heavier than expected, in particular stops below

2 TeV are disfavored (see fig. 3.7).
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• The upper bound on the SUSY spectrum, which is O(1010) GeV (O(104) GeV

at large tan β), can actually be relaxed without adding new degrees of free-

dom. At very large tan β, if µ is not suppressed with respect to the scalar

masses, sbottom/stau contributions may reduce the Higgs mass, allowing

larger values for the SUSY scale (see fig. 3.8).

• In mini-split SUSY, in the region of parameter space relevant for the Higgs

mass, the effect of the thresholds from splitting the fermions from the scalars

is completely captured by the leading fixed order one loop corrections (see

fig. 3.9). This allows to use the SM as an effective field theory all the way

up to the scalar mass scale, avoiding the need of using an intermediate split

SUSY effective theory.

• We point out that the value of the Higgs mass may be used to predict

the spectrum of minimal gauge mediation, the simplest calculable SUSY

model, almost completely. The spectrum of SUSY in this case can thus be

bounded just by experimental data alone without the need of arguments

based on naturalness. Interestingly enough the spectrum lies just above

the expected reach of LHC14 (see fig. 3.16), making it an ideal target for a

future 100 TeV hadron machine.

• Finally we discuss about the analogous implications for lopsided gauge me-

diation and anomaly mediation models, constraining the allowed values of

tan β and the parameter space (see figs. 3.17 and 3.18).

For most of the allowed parameter space the Higgs mass computation is dom-

inated by the experimental uncertainty in the top mass. The theoretical uncer-

tainties instead are mostly dominated by the SM higher order corrections. Only

for maximal stop mixing and at the lightest possible stop masses uncertainties

from SUSY corrections and from higher-order terms in the EFT expansion may

become important. Improvements in this region can be achieved by including

subleading two-loop SUSY threshold corrections neglected in this work, such as

O(ααs,t) or O(αtα
2
s).

Regarding the physics of the QCD axion, we explain how several properties can

be computed with high accuracy, despite of being controlled by non perturbative

dynamics. More specifically, we calculated higher order corrections to the axion

potential and its derived quantities (mass, self-coupling, domain-wall tension), as

well as the coupling to photons, providing numerical estimates for these quantities

with percent accuracy. We also showed how lattice data can be used to extract

the axion-nucleon couplings reliably, estimating their values with better than 10%

precision. These results are important both experimentally, to assess the actual

160



axion parameter space probed and to design new experiments, and theoretically,
since in the case of a discovery they would help determining the underlying theory
behind the PQ breaking scale.

We also considered the temperature dependence of the axion mass and poten-
tial, which are relevant to determine the axion relic density. At low temperature,
we computed accurately this dependence using chiral Lagrangians. However, we
comment that close to the crossover region and above, perturbative methods like
the instanton gas approximation, are unreliable due to serious convergence prob-
lems of the QCD perturbative expansion at finite temperature. We analyze the
effect of this uncertainty on the calculation of the axion relic abundance and the
bounds on the axion parameter space. As a consequence, more dedicated non-
perturbative computations such as lattice QCD are needed to reliably determine
the axion relic abundance today.
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Appendix A

Details of the Higgs mass

calculation

A.1 Interpolating functions and coefficients

When the gluino mass is of the order of the degenerate stop mass, we obtain
an approximate expression by expanding up to the quadratic order in power of
(mg̃ −mt̃)/mt̃, given by

∆m
2, (αtαs)
h =
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. (A.1)

The interpolating functions used to capture the dependence of the Higgs mass
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on the gluino mass (for arbitrary values) are defined as

F1(mg̃) =





3/2
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−
t̃

)
θ(m−
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−
t̃

), (A.5)

F5(mg̃) = 1−mt̃/mg̃. (A.6)

One may choose different functions F1, . . . , F5 to improve the behavior of the

expression of the approximate expression of mh as a function of mg̃, but these

formulas (A.3)–(A.6) are appropriate enough.

The numerical coefficients of the interpolating polynomials used to approxi-

mate the solution of the SM RGE in section 2.3.2 have the values

C
(λ)
0,0 = 0.003355 + 0.003856(mt/GeV − 173.34),

C
(λ)
0,1 = 0.05064 + 0.2342(mt/GeV − 173.34),

C
(λ)
0,2 = −0.005348− 0.02380(mt/GeV − 173.34),

C
(λ)
0,3 = [0.0003460 + 0.001533(mt/GeV − 173.34)] · 10−4,

C
(λ)
0,4 = −[1.202 + 0.533(mt/GeV − 173.34)] · 10−5,

C
(λ)
0,5 = [1.676 + 0.749(mt/GeV − 173.34)] · 10−7,

C
(λ)
1,0 = 0.9986 + 0.02490(mt/GeV − 173.34),

C
(λ)
1,1 = −0.04026− 0.1638(mt/GeV − 173.34),

C
(λ)
1,2 = 0.001021 + 0.002849(mt/GeV − 173.34),

C
(λ)
2,0 = −0.1087− 0.2808(mt/GeV − 173.34),

C
(λ)
2,1 = −0.02403 + 0.1386(mt/GeV − 173.34),

C
(yt)
0 = 0.92663 + 1.00678(mt/GeV − 173.34),

C
(yt)
1 = −0.037365− 0.002349(mt/GeV − 173.34),
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C
(yt)
2 = [1.2622 + 0.1657(mt/GeV − 173.34)] · 10−2,

C
(yt)
3 = − [1.8251− 0.4791(mt/GeV − 173.34)] · 10−5,

C
(gY )
1 = 9.8 · 10−6, C

(gY )
2 = 5.0 · 10−7,

C
(g2)
1 = 2.0 · 10−4, C

(g2)
2 = −5.1 · 10−6. (A.7)

A.2 SUSY thresholds

This appendix is dedicated to some analytical expressions of the threshold correc-

tions from integrating out supersymmetric particles that were not written in the

body for the sake of readability. We start summarizing our conventions. For the

numerical part we used the values mt = 173.34 GeV [113], αs(mZ) = 0.1185 [51],

yb(mt) = 0.0156 and yτ (mt) = 0.0100 [104]. The MSSM Lagrangian is written

with all the parameters in the DR scheme (or the “OS” scheme described below),

and is matched with the SM Lagrangian with all couplings and masses in the MS

scheme. For tan β we used the definition of [94]. As in the rest of the paper, un-

less specified otherwise, all the formulae are written in terms of the SM couplings

(g1,2,3, yt,b,τ and λ, or αi ≡ g2
i /(4π) and αt,b,τ ≡ y2

t,b,τ/(4π)) in the MS scheme and

the soft parameters (masses and trilinear couplings) in the DR or OS schemes.

The SUSY-breaking masses for the scalars of the i-th generation are denoted

by mQi , mUi , mDi , mLi and mEi , the soft SUSY-breaking Higgs-squarks cubic

couplings are written in terms of the superpotential Yukawas ŷt,b,τ as at ≡ ŷtAt,

ab ≡ ŷbAb, ab ≡ ŷbAb for the stops, sbottoms and staus respectively, while the

relative signs of the µ parameter, gaugino masses and A-terms are the same as

in [14], so that the scalar mass mixings depend on Xt = At − µ cot β, Xb =

Ab − µ tan β and Xτ = Aτ − µ tan β.

In this work, we extended the one-loop threshold in eq. (10) of [94] to include

also the tan β−enhanced contributions from integrating out sbottoms and staus:

(4π)2∆λ1`,φ = 3y2
t

[
y2
t +

1

2

(
g2

2 −
g2

1

5

)
cos 2β

]
ln
mQ2

3

m̃2
+3y2

t

[
y2
t +

2

5
g2

1 cos 2β

]
ln
m2
U3

m̃2

+
cos2 2β

300

3∑

i=1

[
3
(
g4

1 + 25g4
2

)
ln
m2
Qi

m̃2
+ 24g4

1 ln
m2
Ui

m̃2
+ 6g4

1 ln
m2
Di

m̃2

+
(
9g4

1 + 25g4
2

)
ln
m2
Li

m̃2
+ 18g4

1 ln
m2
Ei

m̃2

]

+
1

4800

[
261g4

1 + 630g2
1g

2
2 + 1325g4

2 − 4 cos 4β
(
9g4

1 + 90g2
1g

2
2 + 175g4

2

)
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− 9 cos 8β
(
3g2

1 + 5g2
2

)2
]

ln
m2
A

m̃2
− 3

16

(
3

5
g2

1 + g2
2

)2

sin2 4β

+
∑

φ=t,b,τ

{
2Nφ

c y
4
φr

4
φX̃φ

[
F̃1 (xφ)− X̃φ

12
F̃2 (xφ)

]

+
Nφ
c

4
y2
φr

2
φX̃φ cos 2β

[
9

10
g2

1QφF̃3 (xφ) +

(
2g2

2T
3
φL

+
3

5
g2

1

(
2T 3

φL
− 3

2
Qφ

))
F̃4 (xφ)

]

− Nφ
C

12
y2
φr

2
φX̃φ

(
3

5
g2

1 + g2
2

)
cos2 2β F̃5 (xφ)

}
. (A.8)

In the last three lines of the equation above we sum over the contributions

of the stops, sbottoms and staus, where T 3
φL

is the third component of weak

isospin of the left-handed chiral multiplet to which the sfermions belongs, Qφ

is the electric charge, X̃φ ≡ {X2
t /(mQ3mU3), X

2
b /(mQ3mD3), X

2
τ /(mL3mE3)},

Nφ
c ≡ {3, 3, 1} is the color factor, xφ ≡ {mQ3/mU3 ,mQ3/mD3 ,mL3/mE3}, and

rφ ≡ {1, ŷb cos β/yb, ŷτ cos β/yτ}. The latter coefficients take into account the

tan β enhanced corrections discussed in sec. 3.2.3 which require resummation,

the explicit expressions can be found e.g. in [104, 111]. The loop functions F̃n are

defined in appendix A of [94]. Because of the smallness of the bottom Yukawa

coupling, the one-loop O(αb) SUSY threshold corrections are only sizable for large

tan β and |µ| >∼ √mQ3mD3 .

We obtained the two-loop O(α2
t ) SUSY threshold corrections to the quartic

coupling of the Higgs from the corresponding correction to the Higgs mass, under

the simplifying assumption of degenerate scalars (mQ3 = mU3 = mA = mt̃)

while the µ parameter and the renormalization scale are kept independent. The

two-loop O(α2
t ) correction to the Higgs mass from the matching between the

MSSM and the SM in the EFT approach can be written as the sum of various

contributions:

m
2 (α2

t )
h = m

2 (α2
t , EP)

h +m
2 (α2

t , shift)
h +m

2 (α2
t , WFR)

h −m2 (α2
t , top EP)

h . (A.9)

The meaning of the various terms in this equation is explained below. The term

m
2 (α2

t , EP)
h is the contribution from the effective potential in the DR scheme, which

was calculated by Espinosa and Zhang [79]:

m
2 (α2

t , EP)
h =

3y6
t v

2

(4π)4s2
β

{
9ln2 m

2
t̃

Q2
− 6ln

m2
t

Q2
ln
m2
t̃

Q2
− 3 ln2 m

2
t

Q2

+2 [3f2(µ̂)− 3f1(µ̂)− 8] ln
m2
t̃

m2
t

+6µ̂2

(
1− ln

m2
t̃

Q2

)
−2(4 + µ̂2)f1(µ̂) + 4f3(µ̂)−π

2

3
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+

[
(33 + 6µ̂2)ln

m2
t̃

Q2
− 10− 6µ̂2 − 4f2(µ̂) + (4− 6µ̂2)f1(µ̂)

]
X̂2
t

+

[
−4(7 + µ̂2)ln

m2
t̃

Q2
+ 23 + 4µ̂2 + 2f2(µ̂)− 2(1− 2µ̂2)f1(µ̂)

]
X̂4
t

4

+
1

2
s2
βX̂

6
t

(
ln
m2
t̃

Q2
− 1

)
+ c2

β

[
3 ln2 m

2
t̃

m2
t

+ 7ln
m2
t̃

Q2
− 4ln

m2
t

Q2
− 3 + 60K +

4π2

3

+

(
12− 24K − 18ln

m2
t̃

Q2

)
X̂2
t −

(
3 + 16K − 3ln

m2
t̃

Q2

)
(4X̂tŶt + Ŷ 2

t )

+

(
−6 +

11

2
ln
m2
t̃

Q2

)
X̂4
t +

(
4 + 16K − 2ln

m2
t̃

Q2

)
X̂3
t Ŷt

+

(
14

3
+ 24K − 3ln

m2
t̃

Q2

)
X̂2
t Ŷ

2
t −

(
19

12
+ 8K − 1

2
ln
m2
t̃

Q2

)
X̂4
t Ŷ

2
t

]}
. (A.10)

where Xt = At − µ cot β, Yt = At + µ cot β, cβ ≡ cos β, sβ ≡ sin β, we use the
notation ẑ ≡ z/mt̃ where z stands for any of the parameters µ, Xt or Yt, and the
definitions

f1(µ̂) =
µ̂2

1− µ̂2
ln µ̂2, (A.11)

f2(µ̂) =
1

1− µ̂2

[
1 +

µ̂2

1− µ̂2
ln µ̂2

]
, (A.12)

f3(µ̂) =
(−1 + 2µ̂2 + 2µ̂4)

(1− µ̂2)2

[
ln µ̂2 ln(1− µ̂2) + Li2(µ̂2)− π2

6
− µ̂2 ln µ̂2

]
, (A.13)

K = − 1√
3

∫ π/6

0

dx ln(2 cosx) ' −0.1953256. (A.14)

Here Li2(x) is the dilogarithm function. Below the SUSY scale we use the SM
as an effective field theory in the MS scheme. Then we need to write the MSSM
top mass and the EW vev (in the DR scheme) in terms of the SM ones in the
MS scheme in the one-loop O(αt) correction to the Higgs mass. Doing so will
produce an additional (shift) contribution at two loops

m
2 (α2

t , shift)
h =

3y6
t v

2

(4π)4s2
β

{(
−3

2
+ 3 ln

m2
t̃

Q2
− 6 ln

m2
t̃

m2
t

ln
m2
t̃

Q2
+ 3 ln

m2
t̃

m2
t

)
(1 + c2

β)

+ 3µ̂2f2(µ̂)−6µ̂2f2(µ̂) ln
m2
t̃

m2
t

+X̂2
t

[(
3− 6 ln

m2
t̃

Q2

)
(1 + c2

β) + s2
β ln

m2
t̃

m2
t

−6µ̂2f2(µ̂)

]

+ X̂4
t

[
3

4
− 5

4
c2
β +

1

2
µ̂2f2(µ̂) +

1

2
(1 + c2

β) ln
m2
t̃

Q2

]
− X̂6

t

12
s2
β

}
. (A.15)
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Unlike the two-loop O(αtαs) correction to the Higgs mass, the O(α2
t ) one receives

a wave-function renormalization contribution. It arises as a combination of the
one-loop O(αt) contribution of the stops to the wave-function renormalization of
the Higgs field and the one-loop correction to the Higgs mass from the matching
at the SUSY scale. It reads:

m
2 (α2

t , WFR)
h = −3 y6

t v
2

(4π)4
X̂2
t

(
ln
m2
t̃

m2
t

+ X̂2
t −

1

12
X̂4
t

)
. (A.16)

Finally, we need to subtract the O(α2
t ) corrections to the Higgs mass associated

with the contribution of the top-quark loops to the effective potential because it is
already present in the matching at the EW scale. The two-loop O(α2

t ) correction
to the Higgs mass in the SM from the matching at the top mass, which receives
EP and WFR contributions, is given in eq. (20) of [48]. We extract the EP piece
which is given by

m
2 (α2

t , top EP)
h = −3 y6

t v
2

(4π)4

(
2 +

π2

3
− 7 ln

m2
t

Q2
+ 3 ln2 m

2
t

Q2

)
. (A.17)

Evaluating eq. (A.9) we obtain for the Higgs quartic coupling

∆λ
(2)

α2
t

=
3 y6

t

(4π)4s2
β

{(
−4 ln

m2
t̃

Q2
+ 3 ln2 m

2
t̃

Q2

)
s2
β − 6µ̂2 ln

m2
t̃

Q2
+

1

2
+ 6µ̂2

− (8 + 2µ̂2)f1(µ̂) + 3µ̂2f2(µ̂) + 4f3(µ̂) + X̂6
t s

2
β

(
− 1

2
+

1

2
ln
m2
t̃

Q2

)

+X̂2
t

(
−7−6µ̂2+4f1(µ̂)−6µ̂2f1(µ̂)−4f2(µ̂)−6µ̂2f2(µ̂)+27 ln

m2
t̃

Q2
+6µ̂2 ln

m2
t̃

Q2

)

+
X̂4
t

2

(
11+2µ̂2−f1(µ̂) + 2µ̂2f1(µ̂)+f2(µ̂) + µ̂2f2(µ̂)− 13 ln

m2
t̃

Q2
− 2µ̂2 ln

m2
t̃

Q2

)

+ c2
β

[
− 13

2
+60K+π2+9 ln

m2
t̃

Q2
+X̂2

t

(
15−24K−24 ln

m2
t̃

Q2

)
−X̂4

t

(
25

4
−6 ln

m2
t̃

Q2

)

−X̂tŶt

(
12+64K−12 ln

m2
t̃

Q2

)
+X̂3

t Ŷt

(
4+16K−2 ln

m2
t̃

Q2

)
−Ŷ 2

t

(
3+16K−3 ln

m2
t̃

Q2

)

+ X̂2
t Ŷ

2
t

(
14

3
+ 24K − 3 ln

m2
t̃

Q2

)
+ X̂4

t Ŷ
2
t

(
− 19

12
− 8K +

1

2
ln
m2
t̃

Q2

)]}
.

(A.18)

After taking into account all the contributions in eq. (A.9), we checked that the
logarithmic dependence on the top mass of the SM quartic coupling is canceled,
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as it is shown in eq. (A.18). We also verified analytically that the inclusion of the
two-loop O(α2

t ) correction in eq. (A.18) makes the result of the pole Higgs mass
independent of the renormalization scale at this order.

The two-loop O(αtαs) correction was also re-computed in this work. The
explicit expressions for the SUSY thresholds are too long to be reported here and
can be found in the SusyHD package [111].

On-shell scheme

A change in the renormalization of the parameters entering in the one-loop SUSY
thresholds to λ will produce a two-loop (shift) contribution. We present the
relation between the MSSM parameters in the DR and OS schemes. In particular,
we need the relations for the stop masses and mixing at O(αs) and O(αt), the
latter for degenerate stops. This will determine the shift contributions to the
two-loop O(αtαs) and O(α2

t ) SUSY corrections in the OS scheme.
In the OS renormalization scheme the masses are defined as the poles of the

propagators. The relation between the DR and OS masses for a scalar particle
with squared mass m2 is given by

m2 (OS) = m2 (DR)(Q)− δm2(Q) (A.19)

δm2(Q) ≡ Re Π̂(m2, Q), (A.20)

where m2 (DR)(Q) is the tree-level DR mass evaluated at the renormalization scale
Q, and Π̂(m2, Q) is the DR renormalized one-loop self-energy.

On the other hand, the OS renormalization for the mixing angle is more subtle.
At tree-level, the mixing angle of the stops is

sin 2θt̃ =
2mtXt

m2
t̃1
−m2

t̃2

. (A.21)

We use the symmmetric renormalization for the stop mixing angle (for a discus-
sion on possible renormalizations see [292] and references therein):

δθt̃ =
1

2

Π̂12(m2
t̃1

) + Π̂12(m2
t̃2

)

m2
t̃1
−m2

t̃2

, (A.22)

where Π̂12(p2) is the off-diagonal self-energy of the stops. We define the OS
combination (mtXt)

OS from eqs. (A.21) and (A.22), which implies

δ(mtXt)

mtXt

=

(
δm2

t̃1
− δm2

t̃2

m2
t̃1
−m2

t̃2

+
δ sin 2θt̃
sin 2θt̃

)
. (A.23)
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In the usual definition for the stop mixing on-shell, XOS
t = (mtXt)

OS/mOS
t , terms

proportional to log(mt̃/mt) appear in the two loop thresholds. In the EFT ap-
proach these logs are big and need resummation. Therefore we use a different
definition for Xt which does not produce such terms and is more suitable for the
EFT computation:

Xt(Q) ≡ (mtXt)
OS

mMS
t (Q)

, (A.24)

where the numerator is computed from eq. (A.23) and we stress again that
mMS
t (Q) is the top mass in the SM as any other MS quantities in this paper.

An analogous definition applies for the sbottom and stau mixings. The decou-
pling of heavy particles like the gluino is ensured in our on-shell renormalization
scheme.

For the squarks, the O(αs) shift (neglecting the quark masses) reads [69]:

δm2
q̃

m2
q̃

= − g2
3

6π2

[
1 + 3x+ (x− 1)2 ln |x− 1| − x2 lnx+ 2x ln

Q2

m2
q̃

]
, (A.25)

with x = M2
3/m

2
q̃. For the product (mtXt) we obtain

δ(mtXt) =
8

3

g2
3

(4π2)
mt

[
4M3 − (2M3 −Xt) log

M2
3

Q2
+M3F̃10

(
mQ3

M3

)

+M3F̃10

(
mU3

M3

)
+ XtF̃11

(
mQ3

M3

,
mU3

M3

)]
(A.26)

and for the shift between the DR top mass in the MSSM and the MS top mass
in the SM (which is also given in [94])

δmt

mt

= −4

3

g2
3

(4π)2

[
1 + log

M2
3

Q2
+ F̃6

(
mQ3

M3

)
+ F̃6

(
mU3

M3

)
− Xt

M3

F̃9

(
mQ3

M3

,
mU3

M3

)]
.

(A.27)
The functions F̃10 and F̃11 in eq. (A.26) are defined as:

F̃10(x) =
1− x2

x2
ln |1− x2| (A.28)

F̃11(x1, x2) = −2 +
2(x2

1 lnx2
1 − x2

2 lnx2
2)

x2
1 − x2

2

+
x2

1(1− x2
2)2 ln |1− x2

2| − x2
2(1− x2

1)2 ln |1− x2
1|

x2
1x

2
2(x2

1 − x2
2)

. (A.29)

Analogously for the O(α2
t ) corrections for degenerate scalars [79]

δm2
t̃

m2
t̃

=
3y2

t

32π2s2
β

[
(X̂2

t s
2
β + Ŷ 2

t c
2
β)

(
2− ln

m2
t̃

Q2

)
+ c2

β

(
1− π√

3
Ŷ 2
t − ln

m2
t̃

Q2

)
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+ µ̂4 ln µ̂2 + (1− µ̂2)

(
3− 2 ln

m2
t̃

Q2

)
− (1− µ̂2)2 ln(1− µ̂2)

]
, (A.30)

δ(mtXt) =
3y2

t

(4π)2s2
β

mt

{
(Xts

2
β + Ytc

2
β)

(
2− ln

m2
t̃

Q2

)
− π√

3
Ytc

2
β+Xt

(
1− 3

2
ln
m2
t̃

Q2

)

− 1

2

[
1− µ̂2 + µ̂4 ln µ̂2 + (1− µ̂4) ln(1− µ̂2)

]
Xt

}
, (A.31)

and the top mass shift is

δmt

mt

=
3

4

y2
t

(4π)2s2
β

[(
1 + c2

β

)(1

2
− ln

m2
t̃

Q2

)
− µ̂2f2(µ̂)

]
. (A.32)

As it was discussed in section 3.2.2, in the DR scheme there are power-like
corrections from the gluino-stop loops to the Higgs quartic coupling which do not
decouple in the limit of heavy gluino. We illustrate this effect for the simplified
case of degenerate stops

∆λ(2,DR)
αtαs =

y4
t g

2
3

96π4

[
12
M2

3

m2
t̃

(
1− ln

M2
3
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− 15 + 4π2 + 12 ln
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− 18 ln2 m

2
t̃

Q2

−42 ln
M2

3

m2
t̃

+ 12 ln2 M
2
3

m2
t̃

+ O(M−1
3 )

]
. (A.33)

While our on-shell result, obtained from the DR one by shifting the parameters
in the one-loop O(αt) correction, guarantees the decoupling of heavy gluino

∆λ(2,OS)
αtαs =

y4
t g

2
3

96π4

[
−30+4π2+12 ln

M2
3

Q2
−18 ln2 m

2
t̃

Q2
−48 ln

M2
3

m2
t̃

+12 ln2 M
2
3

m2
t̃

+O(M−1
3 )

]
.

(A.34)
We also see that eq. (A.34) does not contain large logarithms lnmt̃/mt. At last,
the two-loop O(α2

t ) SUSY threshold in our on-shell scheme is given by
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(2)

α2
t

=
3 y6
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(4π)4s2
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−10 ln
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+ (4− 6µ̂2)f1(µ̂)− 4f2(µ̂)− 3µ̂2f2(µ̂)− 9µ̂4 ln µ̂2 − (3 + 6µ̂2 − 9µ̂4) ln(1− µ̂4)

]

− X̂4
t

[
15

4
+

3

2
µ̂2+

(
1

2
−µ̂2

)
f1(µ̂)− 1

2
f2(µ̂)− 3

2
µ̂4 ln µ̂2−

(
1

2
+µ̂2− 3

2
µ̂4

)
ln(1−µ̂2)

]
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+ c2
β

[
− 7

2
+ 60K + π2 − X̂2

t

(
39

2
+ 24K + 3 ln

m2
t̃

Q2

)
+ X̂4

t

9

2

+X̂tŶt

(
12−64K−4

√
3π
)

+Ŷ 2
t

(
3−16K−

√
3π

)
−X̂2

t Ŷ
2
t

(
4

3
−24K−

√
3π

)

+ X̂3
t Ŷt

(
16K +

2π√
3

)
− X̂4

t Ŷ
2
t

(
7

12
+ 8K +

π

2
√

3

)]}
. (A.35)

A.3 Contribution of dimension-six operators to

self-energies

We calculate the contribution of higher dimensional operators to the self-energies
of the Higgs Πhh, the W -boson ΠWW , the Z-bosom ΠZZ and the top quark Σt.
We focus on the terms proportional to the Wilson coefficients. To that end, we
expand the Lagrangian around the vacuum and write it in terms of the physical
Higgs field h. The relevant terms of the Lagrangian are

Lhh = −1

2
h(∂2)h− 1

2
(λV 2

M)h2 +
cD
2
h
(
∂4
)
h− 1

4
(cR + 2cH)V 2

Mh(∂2)h+
3

2
c6V

4
Mh

2,

LWW = −1

2
W+µνW−

µν +m2
WW

+µW−
µ − c2W (∂µW+

µν)(∂ρW
−ρν)

+ cDm
2
W∂

µW+
µ ∂

νW−
ν + 4cWWm

2
WW

+µνW−
µν + cWm

2
W (W+µ∂νW−

µν

+W−µ∂νW+
µν) +

1

2
cRm

2
Wv

2cRW
+µW−

µ ,

LWW = W+
µ (∂2gµν − ∂µ∂ν)W−

ν +m2
WW

+µW−
µ − c2WW

+
µ (∂4gµν − ∂2∂µ∂ν)W−

ν

+ 2(4cWW + cW )m2
WW

+
µ (−∂2gµν + ∂µ∂ν)W−

ν − cDm2
WW

+
µ (∂µ∂ν)W−

ν

+
1

2
cRm

2
Wv

2W+
µ (gµν)W−

ν ,

LZZ = −1

4
ZµνZµν +

1

2
m2
ZZ

µZµ −
1

2
(s2
Zc2B + c2

Zc2W )(∂µZµν)
2 +

1

2
cDm

2
Z(∂µZµ)2

+
1

2
m2
Z(s2

ZcB + 4s4
ZcBB + c2

ZcW + 4c2
Zs

2
ZcWB + 4c4

ZcWW )ZµνZµν

+
1

4
(cR − 2cT )m2

Zv
2ZµZµ,

LZZ =
1

2
Zµ(∂2gµν−∂µ∂ν)Zν+

m2
Z

2
ZµZµ−

(s2
Zc2B+c2

Zc2W )

2
Zµ(∂4gµν−∂2∂µ∂ν)Zν

+m2
Z

[
4(s4

ZcBB + c2
Zs

2
ZcWB + c4

ZcWW )+s2
ZcB+c2

ZcW
]
Zµ(−∂2gµν + ∂µ∂ν)Zν ,

− 1

2
cDm

2
ZZµ(∂µ∂ν)Zν +

1

4
(cR − 2cT )m2

Zv
2Zµ(gµν)Zν . (A.36)
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For the self-energies of the gauge bosons we extract the transverse part, given
by

iΠµν
V V (p2) = i

(
gµν − pµpν

p2

)
ΠV V (p2) +

ipµpν

p2
ΠL
V V (p2). (A.37)

Then, the vacuum polarization functions read

Πhh(p
2) = −p4cD − p2v

2

2
(cR + 2cH)− 3v4c6, (A.38)

ΠWW (p2) = −p4c2W + 2p2m2
W (4cWW + cW ) +

1

2
m2
Wv

2cR, (A.39)

ΠZZ(p2) = −p4(c2
Zc2W + s2

Zc2B) + p2(2m2
Z)
[
4(c4

ZcWW + c2
Zs

2
ZcWB + s4

ZcBB)

+ (c2
ZcW + s2

ZcB)
]

+
m2
Zv

2

2
(cR − 2cT ) (A.40)

Σt(p) = −mtct
v2

2
(A.41)

The expressions for the self-energies derived in this appendix A.3 agree with
those given in [141], except for the last term in Πhh(p

2) in eq. (A.38) which does
not appear in [141].
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Appendix B

Numerical values and formulas

relevant for axion physics

B.1 Input parameters and conventions

For convenience in table B.1 we report the values of the parameters used in this
work. When uncertainties are not quoted it means that their effect was negligible
and they have not been used.

In the following we discuss in more in details the origin of some of these values.

Quark masses

The value of z = mu/md has been extracted from the following lattice estimates:

z =

{
0.52(2) [238]
0.50(2)(3) [236]
0.451(4)(8)(12) [237]

(B.1)

which use different techniques, fermion formulations, etc. In [293] the extra pre-
liminary result z = 0.49(1)(1) is also quoted, which agrees with the results above.
Some results are still preliminary and the study of systematics may not be com-
plete. Indeed the spread from the central values is somewhat bigger than the
quoted uncertainties. Averaging the results above we get z = 0.48(1). Waiting
for more complete results and a more systematic study of all uncertainties we
used a more conservative error, z = 0.48(3), which better captures the spread
between the different computations.

Axion properties have a much weaker dependence on the strange quark mass
which only enter at higher orders. For definiteness we used the value of the ratio
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z 0.48(3) l̄3 3(1)
r 27.4(1) l̄4 4.0(3)
mπ 134.98 l7 0.007(4)
mK 498 Lr7 −0.0003(1)
mη 548 Lr8 0.00055(17)
fπ 92.2 gA 1.2723(23)

fη/fπ 1.3(1) ∆u+ ∆d 0.52(5)
Γπγγ 5.16(18) 10−4 ∆s −0.026(4)
Γηγγ 7.63(16) 10−6 ∆c 0.000(4)

Table B.1: Numerical input values used in the computations. Dimensionful

quantities are given in MeV. The values of scale dependent low-energy constants

are given at the scale µ̄ = 770 MeV, while the scale dependent proton spin content

∆q are given at Q = 2 GeV.

r ≡ 2ms

mu +md

= 27.4(1) , (B.2)

from [293].

ChPT low energy constants

For the value of the pion decay constant we used the PDG [51] value:

fπ = 92.21(14) MeV , (B.3)

which is free from the leading EM corrections present in the leptonic decays used

for the estimates.

Following [203] the ratio fη/fπ can be related to fK/fπ, whose value is very

well known, up to higher order corrections. Assuming the usual 30% uncertainty

on the SU(3) chiral estimates we get fη/fπ = 1.3(1).

For the NLO low energy couplings we used the usual conventions of [202,

203]. As described in the main text we used the matching of the 3 and 2 flavor

Lagrangians to estimate the SU(2) couplings from the SU(3) ones. In particular

we only need the values of Lr7,8, which we took as

Lr7 ≡ Lr7(µ̄) = −0.3(1) · 10−3 , Lr8 ≡ Lr8(µ̄) = 0.55(17) · 10−3 , (B.4)

computed at the scale µ̄ = 770 MeV. The first number has been extracted from

the fit in [233] using the constraints for Lr4 in [234]. The second from [234]. A

30% intrinsic uncertainty from higher order 3-flavor corrections has been added.
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This intrinsic uncertainty is not present for the 2-flavor constants where higher

order corrections are much smaller.

In the main text we used the values

l̄3 = 3(1) , lr3(µ̄) = − 1

64π2

(
l̄3 + log

(
m2
π

µ̄2

))
,

l̄4 = 4.0(3) , lr4(µ̄) =
1

16π2

(
l̄4 + log

(
m2
π

µ̄2

))
,

extracted from 3-flavor simulations in [234].

From the values above and using the matching in [203] between the 2 and the

3 flavor theories we can also extract:

l7 = 7(4) 10−3 , hr1 − hr3 − lr4 = −0.0048(14) . (B.5)

Preliminary results using estimates from lattice QCD simulations [294] give

l̄3 = 2.97(19)(14), l̄4 = 3.90(8)(14), l7 = 0.0066(54) and Lr8 = 0.51(4)(12) 10−3.

The new results in [295] using partially quenched simulations give l̄3 = 2.81(19)(45),

l̄4 = 4.02(8)(24) and l7 = 0.0065(38)(2). All these results are in agreement with

the numbers used here.

Proton spin content

While the axial charge, which is equivalent to the isovector spin content of the

proton, is very well known (see discussion around eq. (5.43)) the isosinglet com-

ponents are less known.

To estimate gud = ∆u+ ∆d we use the results in [249–254]. In particular we

used [253], whose value for gA = 1.242(57) is compatible with the experimental

one, to estimate the connected contribution to gud. For the disconnected con-

tribution, which is much more difficult to simulate, we averaged the results in

[251, 252, 254] increasing the error to accommodate the spread in central values,

which may be due to different systematics. Combining the results we get

gudconn. + guddisc. = 0.611(48)− 0.090(20) = 0.52(5) . (B.6)

All the results provided here are in the MS scheme at the reference scale Q =

2 GeV.

The strange spin contribution only have the disconnected contribution, which

we extract averaging the results in [249–252, 254]

gs = ∆s = −0.026(4) . (B.7)
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All the results mostly agree with each others but they are still preliminary or use

heavy quark masses or coarse lattice spacing or only two dynamical quarks. For

this reason the estimate of the systematic uncertainties is not yet complete and

further studies are required.

Finally [251] also explored the charm spin contribution. They could not see a

signal and thus their results can only be used to put an upper bound which we

extracted as in table B.1.

B.2 Matching between 2- and 3-flavor theories

The matching between the theory containing kaons, the η-meson, and pions (three

flavors) and the theory with only pions (two flavors) is done at an intermediate

scale of order of the masses mK and mη. The low-energy effective field theory

with two flavors is valid for:

p2 �M2
K , mu,md � ms. (B.8)

Order by order in perturbation theory and at a given order in the momentum

expansion both theories are matched, i.e. they are required to reproduce the

same physics at the boundary. In ref. [203] the matching is done at O(p4), by

comparing the generating functional (or the Green functions) of the two theories

up to one-loop oder. That is, first the two theories are matched at tree level

at O(p4) and then one proceeds with the matching at one-loop. It is also given

the relation between the low-energy constants of the two chiral Lagrangians.

We illustrate the procedure for the axion mass, similarly it can be applied

to other observables like the coupling to photons. Integrating out the η- and

K- mesons does not require introducing an explicit axion mass because it is not

a parameter of the low-energy theory. The parameters of the low-energy theory

(with two-flavors) are fπ and B0 present in the LO Lagrangian and the parameters

of the O(p4)-Lagrangian (l1, . . . , l7, h1, h2, h3). Unlike the theory obtained after

integrating out all the mesons (i.e. everything except the axion, where no chiral

symmetry remains) in which an explicit axion mass appears in the Lagrangian, in

the low-energy theory with two-flavors the chiral symmetry fixes the way in which

the axion field appears in the Lagrangian (i.e. through e−iaQA/fMe−iaQA/f ). After

the matching, the dependence on the parameters of the high-energy theory with

three flavors is absorbed by the low energy parameters.

The expressions for the conversion of the parameters of the two theories are

in eqs. (11.2)-(11.6) of [203]. We recover the expression for the axion mass with

three flavors from the expressions obtained in the two-flavor case. We start from
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the expression for the axion mass with two flavors in terms of the tree-level

parameters (B0 and fπ):

m2
a =

B0mumd

mu +md

f 2
π

f 2
a

{
1 +

2B0(mu +md)

f 2
π

[
− 3

64π2
ln
m2
π

µ2
+ hr1 − hr3 + lr3

−4
mumd

(mu +md)2
lr7

]}
. (B.9)

Substituting the expression of the low-energy parameters in terms of the param-

eters of the 3-flavor theory we obtain:

m2
a =

B0f
2
πm(−w + z + 1)

f 2
a (z + 1)2

− 32B2
0m

2 (z + z2 + w (1 + z + z2))

f 2
awz(z + 1)2

Lr6 +
288B2

0m
2

f 2
a (z + 1)2

Lr7

+
96B2

0m
2

f 2
a (z + 1)2

Lr8 −
B2

0m
2 (1 + 38z + z2)

288f 2
az(z + 1)2

−
B2

0m
2(2w + z + 1) log

(
B0m
µ2w

)

16π2f 2
aw(z + 1)2

B2
0m

2 (w (5z2 − 22z + 5)− 4z(z + 1)) log
(

4B0m
3µ2w

)

288π2f 2
awz(z + 1)2

−
3B2

0m
2 log

(
B0m(z+1)

µ2z

)

32π2f 2
az

,

(B.10)

where z = mu/md, w = mu/ms and m = mu +md/2. Here there are some things

to notice. The low energy constant l7r contains a tree level piece proportional to

1/ms that contributes to the tree-level axion mass. Despite the term proportional

to lr7 in eq. (B.9) is formally one loop in the 2-flavor theory, since there is a tree-

level piece in lr7 it will produce additional one-loop contributions to the axion mass

when substituting B0 and fπ by its one-loop expression. Also, the conversion from

two to three flavors only reproduce the leading dependence on w (that is, O(w) in

the tree-level piece and O(w0) in the one-loop piece) because higher powers of w

is equivalent to higher powers of the cutoff and corresponds to higher order in the

momentum expansion. We have checked explicitly that eq. (B.10) perfectly agree

with the corresponding expression obtained using the 3-flavor effective theory.

B.3 Renormalization of axial couplings

While anomalous dimensions of conserved currents vanish it is not true for anoma-

lous currents. This means that the axion coupling to the singlet component of

the axial current is scale dependent:

∂µa

2fa

∑

q

cqj
µ
q =

∂µa

2fa

[∑

q

(
cq −

∑
q′ cq′

nf

)
jµq +

∑
q′ cq′

nf
jµΣq

]
(B.11)
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→ ∂µa

2fa

[∑

q

(
cq −

∑
q′ cq′

nf

)
jµq + Z0(Q)

∑
q′ cq′

nf
jµΣq

]
(B.12)

where Z0(Q) is the renormalization of the singlet axial current jµΣq. It is impor-
tant to note that jµΣq only renormalizes multiplicatively, this is not true for the

coupling to the gluon operator (GG̃) which mixes at one-loop with ∂µj
µ
Σq after

renormalization (see e.g. [296]).
The anomalous dimension of jµΣq starts only at 2-loops and is known up to

3-loops in QCD [247, 297]

∂ logZ0(Q)

∂ logQ2
= γA =

nf
2

(αs
π

)2

+ nf
177− 2nf

72

(αs
π

)3

+ . . . . (B.13)

The evolution of the couplings cq(Q) can thus be written as

cq(Q) = cq(Q0) +

(
Z0(Q)

Z0(Q0)
− 1

) 〈cq〉nf
nf

, (B.14)

where we used the short hand notation 〈·〉nf for the sum of q over nf flavors.
Iterating the running between the high scale fa and the low scale Q = 2 GeV
across the bottom and top mass thresholds we can finally write the relation
between the low energy couplings cq(Q) and the high energy ones cq = cq(fa):

ct(mt) = ct +

(
Z0(mt)

Z0(fa)
− 1

) 〈cq〉6
6

,

cb(mb) = cb +

(
Z0(mb)

Z0(mt)
− 1

) 〈cq〉5
5

+
Z0(mb)

Z0(mt)

(
Z0(mt)

Z0(fa)
− 1

) 〈cq〉6
6

,

cq=u,d,s,c(Q) = cq +

(
Z0(Q)

Z0(mb)
− 1

) 〈cq〉4
4

+
Z0(Q)

Z0(mb)

(
Z0(mb)

Z0(mt)
− 1

) 〈cq〉5
5

+
Z0(Q)

Z0(mt)

(
Z0(mt)

Z0(fa)
− 1

) 〈cq〉6
6

, (B.15)

where at each mass threshold we matched the couplings at LO. In eq. (B.15) we
can recognize the contributions from the running from fa to mt with 6 flavors,
from mt to mb with 5 flavors and the one down to Q with 4 flavors.

The value for Z0(Q) can be computed from eq. (B.13), at LLO the solution is
simply

Z0(Q) = Z0(Q0) e
−

6nf
33−2nf

αs(Q)−αs(Q0)
π . (B.16)

At NLLO the numerical values at the relevant mass scales are

Z0(1012 GeV) = 0.984 , Z0(mt) = 0.939(3) , Z0(mb) = 0.888(15) , Z0(2 GeV) = 0.863(24) ,
(B.17)
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where the error is estimated by the difference with the LLO which should capture
the order of magnitude of the 1-loop thresholds not included in the computation.
For the computation above we used the MS values of the quark masses, i.e.
mt(mt) = 164 GeV and mb(mb) = 4.2 GeV. The dependence of Z0(fa) on the
actual value of fa is very mild, shifting Z0(fa) by less than ±0.5% for fa =
1012±3 GeV.

Note that DFSZ models at high energy can be written so that the axion
couples only through the quark mass matrix. In this case no running effect
should be present above the first SM mass threshold (at the top mass). Indeed
in this models, 〈cq〉6 = 〈c0

q〉6 − trQa = 0 and the renormalization effects from fa
to mt cancel out.
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