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Overview

The characterization of proteins and enzymes is traditionally organised ac-
cording to the sequence-structure-function paradigm.

The investigation of the inter-relationships between these three properties
has motivated the development of several experimental and computational
techniques, that have made available an unprecedented amount of sequence
and structural data. The interest in developing comparative methods for
rationalizing such copious information has, of course, grown in parallel.

Regarding the structure-function relationship, for instance, the availabil-
ity of experimentally resolved protein structures and of computer simulations
have improved our understanding of the role of proteins’ internal dynamics in
assisting their functional rearrangements and activity. Several approaches are
currently available for elucidating and comparing proteins’ internal dynamics.
These can capture the relevant collective degrees of freedom that recapitu-
late the main conformational changes. These collective coordinates have the
potential to unveil remote evolutionary relationships between proteins, that
are otherwise not easily accessible from purely sequence- or structure-based
investigations.

Starting from this premise, in the first chapter of this thesis I will present
a novel and general computational method that can detect large-scale dy-
namical correlations in proteins by comparing different representative con-
formers. This is accomplished by applying dimensionality-reduction tech-
niques to inter-amino acid distance fluctuation matrices. As a result, an
optimal quasi-rigid domain decomposition of the protein or macromolecular
assembly of interest is identified, and this facilitates the functionally-oriented
interpretation of their internal dynamics.

Building on this approach, in the second chapter I will discuss its system-
atic application to a class of membrane proteins of paramount biochemical
interest, namely the class A G protein-coupled receptors. The comparative
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analysis of their internal dynamics, as encoded by the quasi-rigid domains,
allowed us to identify recurrent patterns in the large-scale dynamics of these
receptors. This, in turn, allowed us to single out a number of key functional
sites. These were, for the most part, previously known – a fact that at the
same time validates the method, and gives confidence for the viability of the
other, novel sites.

Finally, for the last part of the thesis, I focussed on the sequence-structure
relationship. In particular, I considered the problem of inferring structural
properties of proteins from the analysis of large multiple sequence align-
ments of homologous sequences. For this purpose, I recasted the strategies
developed for the dynamical features extraction in order to identify compact
groups of coevolving residues, based only on the knowledge of amino acid
variability in aligned primary sequences.

Throughout the thesis, many methodological techniques have been taken
into considerations, mainly based on concepts from graph theory and statis-
tical data analysis (clustering). All these topics are explained in the method-
ological sections of each chapter.

The material presented in chapter 1 is largely based on the published
paper Ponzoni L., Polles G., Carnevale V., Micheletti C., SPECTRUS: a di-
mensionality reduction approach for identifying dynamical domains in protein
complexes from limited structural datasets, Structure, 2015. A manuscript
describing the results presented in Chapter 2 has been submitted in August
2016 to PLOS Computational Biology (Ponzoni L., Rossetti G., Carloni P.,
Micheletti C., Unifying view of mechanical and functional hotspots across
class A GPCRs). Chapter 3 includes preliminary results of my latest re-
search done in collaboration with Daniele Granata, Vincenzo Carnevale and
Cristian Micheletti, and a manuscript is in preparation, with expected sub-
mission in November 2016.
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Chapter 1

Quasi-rigid domain
decomposition of proteins and
viral capsids

Proteins’ functionality is promoted and assisted by the conformational changes
their structures undergo both spontaneously, from the thermal excitation of
innate fluctuations encoded by its three-dimensional organization, and/or as
a response to external effects, like the binding of ligands.

Elucidating the conformational dynamics of macromolecules can therefore
be a valuable tool to better understand the structure-function relationship
in proteins and enzymes, to detect common large-scale features across super-
families, as well as expose evolutionary relationships that would otherwise
be elusive from the sequence and structural point of view.

For this purpose, many analysis tools have been devised, like normal
mode analysis of elastic network models or principal component analysis of
MD trajectories. These tools allow to detect the few collective degrees of
freedom that capture most of the structural fluctuations characterizing the
internal dynamics of a protein.

However, in order to obtain a simple insight and a transparent interpre-
tation, the collective structural changes represented by the modes can be
described in a more natural way, as resulting from the relative motion of few
subdomains. Although these elementary functional units can be intuitively
perceived by the visual inspection of modes, the problem emerges of defining
a quantitative and rigorous scheme to derive such representation.

In this chapter, I will present a general computational method, named
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1.1. INTRODUCTION

SPECTRUS, that I developed as my main PhD project, and that is aimed
at giving an objective identification of quasi-rigid domains in single proteins
or macromolecular assemblies.

The method uses advanced dimensionality-reduction techniques to single
out the basic quasi-rigid, functional units of proteins complex from the sole
analysis of alternative conformers, even very few of them. No prior assump-
tions are made on the molecules’ properties and hence the method applies
equally well to individual proteins or very large complexes, and to structural
sets comprising thousands of conformers sampled from molecular dynamics
simulations or just very few crystal structures. A key element is the intro-
duction of a quality score parameter which guides the selection of the most
significant, innate subdivisions, thus solving one of the main difficulties in
providing an objective criterion for quasi-rigid domain decompositions.

The present discussion is largely based on the paper where this algorithm
was first introduced [1]. My contributions regarded all phases of this work,
from the design and implementation of the algorithm, to its application to
the practical examples illustrated below, and to the creation of an online
webserver.

1.1 Introduction

The functional proficiency of proteins as molecular machines often relies on
their internal structural dynamics. In fact, the innate conformational fluctu-
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CHAPTER 1. QUASI-RIGID DOMAIN DECOMPOSITION

ations of these biomolecules are often primed to favor and assist the intercon-
version between different substates, such as activated and inactivated forms
of an enzyme or the open and closed states of pores and channels [2–15].

The fact that these structural changes are typically of large amplitude
and have a collective character [16–22] has naturally posed the challenge of
developing suitable methods for describing these rearrangements in terms
of rigid-like displacements (rotations and translations) of a limited number
of quasi-rigid domains [23–39]. By these means, in fact, one can achieve
a parsimonious identification of the few degrees of freedom that suffice to
describe and explore the conformational space accessible to a given protein.

The applicative avenues of quasi-rigid domain decomposition strategies
are several and diverse. For instance, they can be used to extend the anal-
ysis of molecular dynamics trajectories beyond the linear superposition of
essential dynamical spaces [40, 41], for preconditioning enhanced sampling
techniques [42], and for comparing the functional dynamics of proteins with
different degrees of sequence and structural similarity [3,6,38,43–47]. Other
applications include the selection of a manageable parameter space for infer-
ential or maximum-likelihood structure determination [48, 49] as well as the
inference of the basic mechanical and assembly units of large macromolecular
complexes, such as viral capsids [50–57].

Available quasi-rigid domain decomposition methods build either directly
or indirectly on the notion that, for genuinely rigid bodies, the distances
between any two constitutive points are strictly preserved during the motion
in space [28, 34, 36, 37, 58]. Accordingly, a common starting point is the
calculation of the distance fluctuations for each pair of amino acids, a and b:

fa,b =
√
〈d2
a,b〉 − 〈da,b〉2 , (1.1)

where da,b is the Cα atoms distance and the 〈〉 brackets denote the average
over representative conformers from available crystal structures or sampled
from molecular dynamics trajectories. A model f matrix can also be com-
puted from a single reference structure by using elastic networks.

The entries of the distance fluctuation matrix give a quantitative measure
of the likelihood that two amino acids belong to the same rigid domain, and
hence provide a natural metric for their grouping by using generic clustering
algorithms.

The implementation of this general and transparent strategy is, however,
limited by two main factors.
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1.1. INTRODUCTION

First, because the quasi-rigid character of biomolecular domains holds
only approximately, the subdivisions can depend significantly on the cluster-
ing algorithm and on the number of conformers used to derive the distance
fluctuation matrix, especially when only few conformers are used.

The second challenge is the definition of an objective, quantitative crite-
rion for choosing the most significant subdivision among those obtained by
clustering amino acids in an increasing number of domains. In specific con-
texts, this challenge can be overcome by using ad hoc auxiliary parameters.
For instance, considerations of domain shape homogeneity and structural
integrity have been recently used to identify viable decompositions of viral
capsids [56].

Because such strategies are intrinsically tailored to specific systems it re-
mains open the issue of identifying suitable order parameters for ranking the
significance of various subdivisions using general criteria that are internal to
the clustering procedure itself. In this regard we note that although virtu-
ally all current decomposition strategies entail the minimization of the total
intra-domain distance fluctuations, the latter quantity is generally not useful
for singling out the optimal quasi-rigid domains. In fact, it attains its global
minimum for the trivial subdivision where each amino acid corresponds to a
single domain.

Here we introduce, validate and apply a self-contained quasi-rigid domain
subdivision strategy, termed SPECTRUS after SPECTral-based Rigid Units
Subdivision, that allows for overcoming both difficulties.

Specifically, the consistency of quasi-rigid subdivisions with respect to
the number of available conformers as well as the adopted clustering method
is achieved through the Laplacian spectral projection. This is a data pre-
conditioning technique which provides an optimal dimensional reduction of
the phase space describing the distance fluctuations of all amino acids pairs,
thus providing the required partitioning robustness.

Furthermore, we show that the very same properties of the reduced-
dimensionality space can be seamlessly used to define a quality score which
can pinpoint significant subdivisions based on the balance of intra- and inter-
domain distance fluctuations compared to a random reference case. To our
knowledge, this balance, which is increasingly recognized as crucial for op-
timal clustering strategies [59], has not been exploited yet in the context of
protein rigid domain decomposition, where intra-domain compactness is usu-
ally the sole quantity being optimized. Therefore, the proposed quality score
arguably represents a first general, quantitative criterion that is internal to
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CHAPTER 1. QUASI-RIGID DOMAIN DECOMPOSITION

the decomposition method and allows for assessing the statistical significance
of subdivisions and hence single out the innate one(s).

The effectiveness of SPECTRUS as a general and transferable strategy
for quasi-rigid domain decomposition has been evaluated and ascertained by
comparing it to various alternative subdivision schemes applied to a wide
range of proteins and molecular assemblies. In particular, starting from the
familiar validation case of adenylate kinase we next consider two membrane
protein complexes, namely GLIC and NavAb, whose basic functional, quasi-
rigid domains have been suggested only recently, based on the supervised
inspection of novel experimental and numerical data [60–62]. Finally, the
capability of the method to operate with a “high dynamic range” of do-
mains and molecular sizes is illustrated for two viral capsids, namely those of
the satellite tobacco mosaic virus and Triatoma virus, for which it correctly
pinpoints the several tens of functional units as established from molecular
dynamics simulations or AFM nano-indentation experiments [51,52,55]. For
these or even larger macromolecular assemblies, which may be too onerous
to simulate with atomistic molecular dynamics, we further show that the
distance fluctuation matrix can be viably obtained from computationally-
effective elastic network models. This further illustrates the applicability
of the decomposition method even in limiting cases where a single crystal
structure is available.

SPECTRUS is made available as an online tool, accessible at the address
http://spectrus.sissa.it/, from where it is also possible to download the source
code.

1.2 Domain subdivision strategies

In practical contexts, only a few structural data are usually available for the
conformational analysis of a given protein. Moreover, even when extensive
molecular dynamics simulations have been carried out, in most cases there is
no guarantee that all relevant conformers have been sampled. When dealing
with this general issue of the scarcity of structural information, it is therefore
even more crucial to make sure that the tools used for the analysis are as
robust with respect to noisy data as possible.

For this purpose, we conducted a comparative analysis of the most used
clustering schemes in order to establish if they meet the requirements of ro-
bustness and reliability needed for producing meaningful results. We then
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1.2. DOMAIN SUBDIVISION STRATEGIES

considered both hierarchical schemes, here represented by the complete-
linkage and group-average agglomerative clusterings, and flat schemes, rep-
resented by k-medoids and cut-based clusterings.

These techniques, whilst widely used and algorithmically very simple, are
found to provide inconsistent results on particularly challenging datasets.
We will then discuss a more sophisticated clustering method, the spectral
clustering, which can be used in combination with any of the previously
mentioned algorithms and can be described as a sort of preprocessing step
on the original dataset. By performing a dimensional reduction, it is able to
enhance the dominant features of the underlying data, making them more
recognizible for the subsequent step of clustering.

In the following sections, we first provide a detailed description of the
algorithms and then discuss their application.

1.2.1 Reference clustering schemes

In their general formulation, the various clustering schemes take as inputs a
matrix of pairwise similarities, σ, or dissimilarities, δ, between the elements.
In our context, the elements are the amino acids and the average fluctuations
of pairwise Cα distances, f , defined in eq. (1.1), provide a natural measure
of dissimilarity, i.e. δ ≡ f .

• Agglomerative clustering. Hierarchical agglomerative schemes start by
assigning each element (amino acid) to a separate cluster and proceed
by iteratively merging the two least dissimilar clusters [63]. For the
complete-linkage scheme, the dissimilarity ∆ of two clusters, Ci and
Cj, is given by the most dissimilar pair of their elements:

∆Ci,Cj = max
a∈Ci;b∈Cj

δa,b . (1.2)

For the group-average scheme one instead considers the dissimilarity
averaged over all possible pairs of elements from the two clusters:

∆Ci,Cj =
1

nCi
nCj

∑
a∈Ci;b∈Cj

δa,b , (1.3)

where nCi
is the number of elements in cluster Ci. In both cases, the

process ends with the subdivision into two clusters, when a full tree
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CHAPTER 1. QUASI-RIGID DOMAIN DECOMPOSITION

of partitions is obtained. The complete-linkage usually returns more
compact clusters than the group-average one. However, the latter is
clearly less sensitive to the presence of outliers.

• k-medoids clustering. In the k-medoids scheme [64], the subdivisions
into a given number Q of clusters are obtained by assigning Q repre-
sentative elements {r1, r2, . . . , rQ}, called medoids, and the members of
each cluster, so to minimize the total intra-cluster dissimilarity:

Q∑
i=1

∑
a∈Ci

δa,ri . (1.4)

The minimization of the score in eq. (1.4) is carried out iteratively
starting from an initial tentative choice of the Q representatives. The
other elements are next assigned to the cluster of their nearest rep-
resentative. Each representative is then replaced by the element for
which the sum of the dissimilarities from the other cluster members is
smallest, and so on until convergence. The subdivision associated to
the lowest total dissimilarity over several different initial conditions is
retained as the optimal partitioning.

• Cut-based clustering. The cut-based clustering aims at simultaneously
maximizing the intra-cluster similarity and minimizing the inter-cluster
one. As such it is naturally formulated in terms of the matrix of pair-
wise similarities, σ, rather than the one of dissimilarities, δ. A con-
venient mapping between corresponding entries of the two matrices is
obtained with a Gaussian weighting function, σa,b = exp(−δ2

a,b/2δ̄
2),

where δ̄ is a conservative measure for intra-cluster dissimilarities [65].
For our purposes, since the local network formed by amino acids in
close contact is expected to be typically rigid, δ̄ is computed as the
average dissimilarity (i.e. the average distance fluctuation) of Cα pairs
that are closer than 10 Å. Moreover, in order to improve performance
by taking advantage of sparse matrices properties, entries correspond-
ing to amino acid pairs that are farther than 10 Å apart are set equal
to 0.

The clustering is performed by using a stochastic optimization method
(e.g. simulated annealing) to identify the partitioning which minimizes
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1.2. DOMAIN SUBDIVISION STRATEGIES

Figure 1.1: SPECTRUS flowchart.

the cost function:
Q∑
i=1

∑
a∈Ci

∑
b/∈Ci

σa,b∑
a,b∈Ci

σa,b
. (1.5)

1.2.2 Spectral projection and clustering

As it is shown in the flowchart of Fig. 1.1, the SPECTRUS subdivision of
amino acids into quasi-rigid domains relies on a preconditioning step involv-
ing the spectral dimensional reduction of the distance fluctuation matrix.
More specifically, starting from the similarity matrix σ, the partitioning of
the N amino acids into Q clusters is achieved through the following steps [66],
which are heuristically explained further below:

1. Calculation of the N × N symmetric Laplacian matrix, L = I −
D−1/2 σD−1/2, where I is the identity matrix and D is a diagonal ma-
trix with elements equal to Da,a =

∑
b σa,b.

2. Calculation of the Q lowest eigenvectors of L (i.e. those associated to
the Q smallest eigenvalues), ~v1, ~v2, . . . , ~vQ.

3. Construction of the auxiliary N ×Q matrix X, whose columns are the
Q lowest eigenvectors of L. Accordingly, the matrix entries are defined
as Xi,j = vji .

4. Normalization of each row of X. The normalized arrays represent
the coordinates of N points on the Q-dimensional unit sphere. These
points provide the projection of the original N elements in the lower-
dimensional spectral space.

5. The N projected points are finally grouped in Q clusters with a method
of choice, such as the k-medoids scheme, which is computational effi-
ciency and has a simple formulation. Because the projected points are
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CHAPTER 1. QUASI-RIGID DOMAIN DECOMPOSITION

in one-to-one correspondence with the original elements, this cluster-
ing straightforwardly translates into the partitioning of the amino acids
into Q quasi-rigid domains.

The outlined strategy can be intuitively understood by recalling that the
Laplacian matrix describes how a probability density, defined on the nodes
of a graph, evolves by diffusion on the graph itself. Accordingly, the eigen-
vectors at step 2 embody the slowest modes of relaxation to the steady state
probability distribution defined on the network (graph) connecting similar
elements (that is, in the present case, amino acid pairs experiencing the least
distance fluctuations). The usefulness of these eigenvectors in clustering con-
texts readily emerges when considering a graph consisting of Q disconnected
subparts. Because the probability distribution evolves independently on each
of the uncoupled subgraphs, one has that the support of each one of the top
Q Laplacian eigenvectors is associated to a different subgraph. Accordingly,
in the more general context of a fully-connected graph, the norm of the top
eigenvectors of the Laplacian is expected to be concentrated on the subgraphs
with the least inter-connection between each other.

When dealing with protein subdivisions into Q quasi-rigid domains, it is
therefore sufficient to restrict considerations to the subspace spanned by the
orthonormal set of the top Q eigenvectors of the Laplacian of the similarity
(rigidity) matrix, see steps 1-3 above. Moreover, since the graph is typically
fully connected, it can be proved that the first eigenvector has a definite
sign [66]. The actual clustering (steps 4-5), therefore, is finally performed
on elements which are represented as unit vectors whose first component is
always positive (or negative), i.e. the projected points in the Q-dimensional
space lie on the surface of half the Q-dimensional unit sphere.

1.2.3 Quality and significance of spectral partitions

In ideal clustering cases, where the elements have neatly-separated groupings,
the correct number of clusters can be identified by the presence of a gap in the
Laplacian spectrum [65, 66]. This sharp criterion is generally not applicable
in practical contexts, including subdividing protein in domains whose rigid
character holds only approximately.

As a robust criterion to guide the identification of the innate number and
type of partitions, we introduce an order parameter, which we term qual-
ity score, which quantifies how compact and well separated are the clusters
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1.3. APPLICATIONS

respect to a random reference case. The calculation of the quality score is
described hereafter for partitions obtained at step 5 with the k-medoids clus-
tering method, that we elected to use after the comparative tests described
in the Results section.

To measure the compactness and separation of the Q returned clusters
we take

ρ(Q) = mediana=1,...,N(δa,νa/δa,µa). (1.6)

In the above expression, a is the index of one element, µa is its representative
medoid, i.e. the nearest of the medoids, and νa is the second nearest medoid.
For distance (or dissimilarity) of two elements, δ, we take their arclength
separation on the surface of the Q-dimensional unit (hemi)sphere where the
points lie. The quantity ρ therefore captures how typically distant are the
elements from the closest alternative cluster compared to the distance of their
own cluster representative. It therefore provides an apt measure of clustering
quality since it is simultaneously informative about intra-cluster compactness
and inter-cluster separation. The use of the median in place of the average
over all elements confers further robustness against the presence of outliers.

For an equal footing comparison of the clustering quality across differ-
ent values of Q we finally normalize ρ(Q) dividing it by its value computed
over a collection of N points that are randomly distributed on the unit Q-
dimensional hemi-sphere and clustered in Q groups. This normalization fac-
tor is straightforwardly computed numerically.

Significant subdivisions are clearly associated to values of the quality score
that are appreciably larger than 1. This, in fact, implies that the clusters are
substantially more compact and better separated than for the random case.

The present introduction of the quality order parameter represents a valu-
able contribution to spectral clustering approaches in general and, as we shall
discuss, proves very valuable for the problem of protein domain decomposi-
tion, in particular.

1.3 Applications

1.3.1 Adenylate kinase

For a first assessment and validation of the SPECTRUS strategy we consider
the case of E. coli adenylate kinase. This is a monomeric phosphotransferase
enzyme of about 200 amino acids which balances the energy charge of the
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CHAPTER 1. QUASI-RIGID DOMAIN DECOMPOSITION

Figure 1.2: (a) Conformations of Escherichia coli adenylate kinase in the open and
closed state. (b) Color-coded representation on the sequence of the subdivisions into
Q = 3 domains, obtained by using various clustering methods, before and after performing
the spectral projection step. (c) Quality score profiles, as a function of the number of
domains Q, returned by SPECTRUS for different pairs of open/closed conformations of
adenylate kinase. The optimal subdivisions into few domains is achieved for Q = 3 while
Q = 8, 9 should be used for finer subdivisions, see Fig. 1.4b. The robustness of this result is
underscored by the parallel behavior of the quality score profile computed from thousands
of conformations sampled with extensive MD simulations [22] and shown in blue in the
same panel. The associated Q = 3 and Q = 9 subdivisions are provided in Fig. 1.4a and
are in very good agreement with the two-structures case. (d) Structural representation of
the Q = 3 subdivision.

cell by catalyzing the conversion of ATP and AMP into two molecules of
ADP. The enzyme is capable of spontaneously interconverting between the
open conformation and the closed, catalytically competent one [2, 22].

Consistently with the noticeable structural differences of the two forms,
which are shown in Fig. 1.2a, the enzyme functional mechanics is usually
rationalized in terms of the relative movements of two main subparts, the
ATP binding domain (LID) and the AMP binding domain (NMP) around
the central core.

We shall accordingly start the study of adenylate kinase by focusing on
the subdivisions into Q = 3 domains obtained by using the various types
of clustering strategies mentioned before. For all of them, we used as in-
put the distance fluctuation matrix computed from the sole open and closed
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1.3. APPLICATIONS

conformers of Fig. 1.2a. The difference between these two conformers cap-
tures the enzyme’s functional motion to the fullest extent. We accordingly
use them to check whether rigid domains can be reliably identified when the
input dataset is limited and yet representative of the biologically-relevant
conformational ensemble.

We first apply the direct partitioning approach, that is without the pre-
conditioning step of the spectral Laplacian projection. The resulting sub-
divisions are shown with one-dimensional color-coded representations in the
upper part of Fig. 1.2b. Although these partitions display an overall accord
for identifying the core, NMP (residues ∼30 to ∼60) and LID (residues ∼115
to ∼160) as the main quasi-rigid units, there are also significant qualita-
tive differences across them. This is readily conveyed by the varying degree
of fragmentation of the domain assignment along the sequence. In this re-
gard, we note that, while a high degree of sequence-wise fragmentation is
not plausible a priori, it is not directly penalized by the clustering schemes.
Therefore, checking for overall sequence-wise domain integrity can be a useful
a posteriori criterion for evaluating a subdivision’s viability.

Exactly the same analysis was next repeated after preconditioning the
data with the Laplacian spectral projection. The results obtained after such
dimensional reduction are shown in the lower section of Fig. 1.2b. The dra-
matic improvement of the degree of consistency and sequence-wise domain
integrity is readily noticed. In fact, it is seen that all methods now give a
practically unanimous consensus for the location of the domain boundaries
and the sequence-wise domain discontinuity is now minimal across all meth-
ods. The consensus domain boundaries agree with those returned by other
quasi-rigid decomposition methods such as DynDom, PiSQRD, TLSMD and
CYRANGE, as detailed in Fig. 1.3a. For CYRANGE, which aims at identi-
fying rigid-like domains that are recurrent across NMR models, we however
point out that only the core and the LID regions are recognised as being
quasi-rigid.

The advantages of the spectral projection technique, however, better
emerge after lifting the restriction to the Q = 3 case. In fact, the data
preconditioning step can help identifying the innate number and type of do-
mains based on a quality score, previously introduced, which captures the
statistical significance of the subdivisions.

We accordingly computed the quality score for all adenylate kinase sub-
divisions from Q = 2 to Q = 30 quasi-rigid domains, using separately as
input each of the four possible pairings of chains from PDB entries 1AKE
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CHAPTER 1. QUASI-RIGID DOMAIN DECOMPOSITION

Figure 1.3: (a) Subdivisions of AKE into Q = 3 domains, obtained with SPECTRUS
and with other rigid-domain partitioning tools. The latter include: (i) DynDom, which ex-
clusively operates on two alternative conformers, here the open (4AKE:A) and the closed
(1AKE:A) conformers; (ii) PiSQRD, applied to the same MD trajectory used before; (iii)
TLS Motion Determination, based on the analysis of the B-factors of the 4AKE open
structure (this tool enforces the sequence-continuity of domains, thus we accordingly con-
sidered 5 segments); (iv) CYRANGE, which, as a preliminary step, identifies a set of core
atoms that are next grouped into domains (the atoms not considered are shown as blank
gaps in the sequence). The overall consensus of the domains is apparent. (b) Eigenvalue
spectrum of the Laplacian matrix for AKE. In ideal contexts, the viable numbers of eigen-
vectors (clusters) to be used for the projection step is indicated by the presence of gaps in
the spectrum. The approximate quasi-rigid character of the dynamical domains does not
allow for a clear identification of such gaps.

and 4AKE. For reasons of efficiency, for each value of Q we considered the
subdivision returned by the k-medoids scheme after the Laplacian spectral
projection.

The resulting profile of the quality score is shown in Fig. 1.2c. Across the
wide range of considered number of domains, two peaks emerge clearly in the
profiles. The first peak is associated to the above discussed subdivision into
Q = 3 domains, shown on the open conformation in Fig. 1.2d. It is notewor-
thy and pleasing that this intuitive and customary subdivision consistently
emerges as the optimal one among those involving only few domains. The
second, and most prominent peak occurs for the finer subdivision into Q = 8
or 9 domains. The associated subdivisions, which are hierarchically related
to the Q = 3 one, are shown in Fig. 1.4b.

The robustness of these findings was ascertained by repeating the anal-
ysis using as input the distance fluctuation matrix obtained from exten-
sive MD trajectories rather than the minimalist set of the sole open and
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Figure 1.4: (a) AKE subdivisions into Q = 3, 9 domains, computed from both the sole
two 1AKE:A and 4AKE:A structures, and the extensive MD simulations reported in [22].
The consistency is manifest: moreover, most of the domains for Q = 9 appear to be nested
inside the coarser domains for Q = 3. (b) Subdivision of AKE into 9 and 8 domains, shown
on the open conformation.

closed conformers. To this purpose we used thousands of conformations
from previously-published 50ns-long atomistic simulations started from both
the open and closed state of adenylate kinase [22]. This duration suffices to
yield reliable essential dynamical spaces (the cosine content of the top ten
principal components is < 0.5 [67]).

Fig. 1.2c shows that the resulting quality score profile has a trend that
parallels the one obtained for the two-structures case. In particular, the
subdivisions for Q = 3 and Q = 9 stand out as the most significant ones, as
in the previous case, and are in very good agreement with the subdivisions
obtained from the crystal structures (Fig. 1.4a).

The main difference is in the relative quality score of the subdivisions
based on only two conformers, since the most significant one now corresponds
to Q = 3.

We finally note that the possibility to single out only few outstanding
subdivisions among tens of possible ones is made possible by the quality
score definition which, with a single parameter, can convey how compact
and well-separated are the clusters compared to a null reference case. These
features, for instance, cannot be straightforwardly gleaned by a standard
analysis of the Laplacian matrix spectrum, see Fig. 1.3b.
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1.3.2 Robustness of subdivisions and quality score

To better illustrate the robustness of SPECTRUS, we considered the im-
pact of progressively impoverishing the dataset on the subdivision consis-
tency. Specifically we considered: (i) removing the residues with the largest
B-factors from 1AKE and 4AKE so to simulate structural gaps due to non-
resolved residues, (ii) using separately the two halves of the above-mentioned
MD trajectories of AKE, (iii) using alternative open and closed forms of the
homologous Streptococcus pneumoniae adenylate kinase, (iv) using various
combinations of the structural representatives for three enzymes, whose in-
ternal dynamics and functional domains were previously characterized in [68].
The results of all these cases are detailed in Appendix A and show that im-
poverishing the input datasets usually has minor effects on the domain as-
signments, while the sharpness of the quality score peaks can degrade. The
latter observation prompted us to complemented the profile of the quality
score median (as defined above in the section on methodology) with the pro-
files of the 40th and 60th percentiles. In this way, the consistency (or lack
thereof) of the three percentile trends provides valuable elements to assess
a posteriori whether a sharp indication of the intrinsic number of domains
emerges from the available structural data.

1.3.3 GLIC, a ligand-gated ion channel

We now turn to the case of GLIC, a pentameric ligand-gated ion channel
[69]. The ongoing efforts to characterize its molecular mechanism of ion
permeation have been significantly aided very recently by the successful X-
ray determination of the open and closed forms of the channel [60, 61]. The
root-mean-square distance (RMSD) of the 1555 amino acids present in both
crystal structures is less than 2.0 Å. This overall small structural deviation
makes the identification of quasi-rigid domains in GLIC very challenging in
general.

As a matter of fact, the mechanistic bases of the GLIC gating action have
ultimately been elucidated by Sauguet et al. with a meticulous and laborious
supervised procedure [61].

To this same purpose, we carried out the quasi-rigid domain decomposi-
tion of GLIC. The corresponding distance fluctuation matrix was computed
using the five available pentameric conformers of GLIC: four from the closed
structure (PDB ID: 4NPQ) and one from the open structure (PDB ID: 4HFI),
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Figure 1.5: Quasi-rigid domain decomposition of the GLIC ion channel based on the
distance fluctuation matrix computed from the only two crystal structures that are avail-
able for it: 4HFI and 4NPQ [60,61]. The crystal structure of conformer 4HFI is shown in
panel (a) and its five constitutive monomers are highlighted with different colors. (b) The
quality score profile of the SPECTRUS subdivisions indicates that the primary partition-
ing involves Q = 6 quasi-rigid domains. The robustness of the Q = 6 partitioning respect
to the clustering method is shown in panel (c) and is contrasted by the results obtained
without the spectral projection preconditioning step. The structural representation of the
Q = 6 subdivision is shown in panel (d).

see Fig. 1.5a. The matrix was constructed by omitting the few amino acids
which were solved for only one of the two forms. The resulting linear size of
the matrix was 1555, corresponding to 311 amino acids per each monomer
of the pentameric channel. The matrix was next used as input for the same
combination of clustering methods previously discussed for adenylate kinase.

We start by directly discussing the SPECTRUS output, that is the re-
sults obtained with the spectral projection preconditioning step. The quality
score profile, computed for the computationally-efficient k-medoids scheme,
is shown in Fig. 1.5b and presents a very prominent peak for a subdivision
in Q = 6 domains. The corresponding sequence-wise amino acid partitioning
is shown in the lower half of Fig. 1.5c.

The same panel illustrates that, as for adenylate kinase, after the projec-
tion preconditioning step the subdivisions of GLIC are practically indepen-
dent of the clustering method. Accordingly, for reasons of efficiency, in the
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following we shall exclusively consider the k-medoids partitioning.
Such robustness is particularly notable when considering two aspects.

The first one regards the contrast of the rather large size of the complex, more
than 1500 amino acids, and the minimal number of conformers used for the
analysis. Such combination might be expected a priori to negatively affect
the sensitive discrimination of domain boundaries, thus making subdivisions
too dependent on the adopted decomposition strategy. This is, in fact, what
is observed when the clustering is applied directly to the unprojected distance
fluctuation matrix, as shown in Fig. 1.5c. The difference with the projection
case, in terms both of sequence-wise domain continuity and consistency across
the methods, is striking. The second aspect regards the fact that several
clustering methods tend to balance the size of the domains. This effect is
discernible in the subdivisions, particularly the k-medoids one of Fig. 1.5c,
but is strikingly absent after the introduction of the spectral projection.

The last point is particularly important in connection with the mecha-
nistic interpretation of GLIC gating action. In fact, the Q = 6 subdivisions
consensually indicate that about half the channel is encompassed in a sin-
gle quasi-rigid domain. This domain corresponds to the lower part of the
pentamer, see Fig. 1.5d, which, in turn, is the channel portion that is sur-
rounded by the lipid membrane. The remaining half of each monomer is, in-
stead, assigned to a different quasi-rigid domain. Pleasingly, this subdivision
is well-consistent with the partitioning obtained by the PiSQRD web-server
when constrained to return 6 quasi-rigid domains for each of the two GLIC
conformers. We recall that PiSQRD differs from SPECTRUS for the use
of essential dynamical spaces in place of the matrix of distance fluctuations
and for the lack of a non-monotonic quality score. The other decomposition
methods were not applicable to GLIC for the aforementioned limits of the
input protein size or oligomeric state.

The SPECTRUS subdivision for Q = 6 has a straightforward interpreta-
tion as it indicates that the top halves of the five monomers (which is the
extracellular part of the channel) can move relatively to each other while be-
ing hinged or anchored to the same pentameric quasi-rigid core. This agrees
with the fact that the binding sites for GLIC ligands are located in the ex-
tracellular part of the monomers which must hence be mobile with respect
to the intra-membrane core to trigger the pore response.

This mechanistic view, which blurs the boundaries between structural and
dynamical domains, is in very good agreement with the conclusions drawn
by Sauguet et al. based on the supervised inspection and comparison of the

17



1.3. APPLICATIONS

Figure 1.6: Domain decomposition of GLIC into
Q = 15 domains, corresponding to the secondary peak
of the quality score, shown in Fig. 1.5b. For visual
clarity the subdivision is shown for a single monomer
as it is identically replicated for the other monomers.
The comparison with the Q = 6 case of Fig. 1.5d ex-
poses the hierarchical quasi-rigid organization of the
individual GLIC monomers.

available crystal structures [61].
This successful comparison represents a further validation of the spectral

decomposition method and hence gives confidence for applying the method
to capture the finer aspects of the channel mechanical articulation, which
would be particularly challenging to establish with supervised techniques.
In particular, we note that the profile of the quality parameter in Fig. 1.5b
features a secondary peak for Q = 15. This partitioning involves finer sub-
divisions of the Q = 6 domains, see Fig. 1.6, and hence provides valuable
insight into the functional mechanics of GLIC and its connection with the
hierarchical quasi-rigid organization of its five constitutive monomers.

1.3.4 NavAb, a voltage-gated ion channel

As a further challenging case we considered the NavAb channel, whose gating
action is controlled by the polarization state of the embedding membrane and
whose structure has been recently solved [70]. The structural organization
of the tetrameric NavAb complex is given in Fig. 1.7a. It features a pore do-
main, assembled from the last two transmembrane helices of each monomer
(conventionally referred to as S5 and S6), and four separate structural do-
mains, each comprising the first four helices of a monomer (S1 to S4), which
act as voltage sensors.

When the polarization state of the membrane is altered, the voltage sens-
ing domains undergo a conformational change which displaces the S4 helix
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Figure 1.7: Quasi-rigid domain decomposition of the NavAb voltage-gated ion channel
based on the distance fluctuation matrix computed from atomistic simulations. The repre-
sentative structure of NavAb is shown in panel (a) along with the standard labeling of the
helices for one of its constitutive monomers. The quality score profile of the SPECTRUS
subdivisions shown in panel (b) indicates that NavAb is ideally subdivided into Q = 5
main quasi-rigid domains or into Q = 15 finer ones. The subdivision into Q = 5 domains
is illustrated in both sequence-wise and structural representation in panel (c), while the
one for the Q = 15 case is given in panel (d).

perpendicularly to the membrane [71–74]. The displacement is next prop-
agated allosterically via the S4-S5 linker to the tetrameric pore causing its
opening or closing. One standing issue regards how these displacements are
coupled.

To address this point, we applied the spectral domain decomposition anal-
ysis to the NavAb complex using as input the distance fluctuation matrix
computed from a set of six extensive atomistic molecular dynamics simula-
tions sampled by Amaral et al. [62]. Four of these trajectories sampled the
main steps along the voltage sensor activation pathway, but with the pore
still closed, while the remaining ones featured respectively a partially-open
and an open pore.

The results of the SPECTRUS analysis are summarized in Fig. 1.7. The
quality score profile in Fig. 1.7b features a peak for Q = 5 quasi-rigid
domains. Such subdivision corresponds to the intuitive partition of the
tetrameric complex into the four separate voltage sensing domains plus the
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core.
The interesting and informative point regards the location of the bound-

ary between the pore domain and the voltage sensing ones. It is seen that
for all four monomers this boundary occurs systematically in the loop con-
necting the S4 helix to the S4-S5 linker between residues 105 and 118, see
Fig. 1.7c.

This is a very valuable clue for the mechanics underpinning the pore
gating mechanism. In fact, it indicates that a hinge is present allowing dis-
placements of the voltage sensor domain with respect to the pore domain
and that the S4 helix is more rigidly connected to the voltage-sensor domain
than to the pore domain. The intervening S4-S5 linker is instead co-opted
in the quasi-rigid pore macrodomain in all four monomers. Because the lat-
ter are treated independently, i.e. no symmetry of the subdivision across the
monomers is enforced a priori, one concludes that the mechanical coupling
of the linker and the pore domain is robust. As a matter of fact, the linker
and the pore domain section of each monomer are recognized as two dis-
tinct quasi-rigid units when one considers the finer subdivision in Q = 15
domains, corresponding to the second peak of the quality score, see Fig. 1.7d.
Other aspects of this finer subdivision, however, are less conserved across the
monomers, arguably due to the still imperfect sampling of the MD trajec-
tories. Specifically, while the voltage sensing domain is subdivided in two
domains in all monomers, there appears to be two alternative locations for
the boundary. For the aforementioned reasons, the profiles of the median,
40th and 60th percentiles of quality score do not follow exactly the same
trend.

Importantly, the results from the Q = 15 domains subdivision suggest
an activation mechanism in which the displacement of S4 results in a mo-
tion of the linker that releases the steric hindrance exerted by the latter on
the pore domain in the resting/closed state; this observation disfavors the
alternate scenario in which the linker exerts an active pulling on the pore
domain. These quantitative indications ought to be valuable for designing
future studies aimed at elucidating by more direct means the mechanical
workings of the pore complex.

1.3.5 Viral capsids: STMV and TrV

As a last applicative avenue, we discuss the quasi-rigid domain decomposi-
tion of viral capsids. Identifying the mechanical, quasi-rigid units of viral
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Figure 1.8: Quasi-rigid domain decompositions of the capsids of the satellite tobacco
mosaic virus (STMV) and of the Triatoma virus (TrV). The crystal structure of STMV
is shown in panel (a) where the protein defining the asymmetric unit is highlighted. The
quality-score profile of the SPECTRUS subdivisions shown in panel (b) indicates that
STMV is ideally subdivided into Q = 60 domains, which correspond to the intuitive
partitioning into the individual constitutive proteins. The next, coarser subdivision, cor-
responds to Q = 20 quasi-rigid domains. Their structural representation reveals that
they correspond to trimers. The reference structure and SPECTRUS quality score of the
Triatoma virus are shown in panels (d) and (e), respectively. The optimal partition into
Q = 12 units is represented in panel (f), which clarifies that the units are all pentameric.

shells has several practical ramifications: it is important for singling out the
fundamental assembly or disassembly units and for identifying the functional
blocks that preside structural changes such as those involved in the matura-
tion steps [56,75–77].

Even the smallest viral capsid is much larger than any of the complexes
considered so far and is constituted by dozens of proteins. Accordingly,
the subdivision task is significantly more challenging than the previously
discussed cases, even for obtaining the basic input data for general domain
decompositon strategies, that is the matrix of pairwise amino acid distance
fluctuations, f . In fact, alternative crystal structures are usually not available
and the large capsids size makes it largely impractical to compute the f
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matrix using atomistic molecular dynamics simulations.
To tackle the problem, we accordingly resorted to the use of elastic net-

work models (ENMs) which, thanks to the specific properties of proteins [16]
and of their free energy landscape, can reliably reproduce the equilibrium
structural fluctuations of proteins and protein assemblies starting from the
input of a single reference crystal structure [25, 77–79]. The applicability of
these models to viral capsids has been previously demonstrated in the con-
text of viral capsid maturation [75–77] and for the supervised identification
of geometrically-stable blocks through auxiliary parameters related to their
shape homogeneity and integrity [56].

Here, we use a β-Gaussian ENM, which accounts for both main- and
side-chains in proteins, to obtain a model distance fluctuation matrix, f ,
for the two icosahedral capsids of two viruses: namely the satellite tobacco
mosaic virus (STMV) and the Triatoma virus (TrV). The STMV was chosen
for validation purposes. In fact, it is the smallest known viral capsid and
the first one for which the mechanical stability of the protein shell has been
probed by all-atom molecular dynamics simulation [52, 80]. The functional
domains of TrV, instead, have so far been probed only by nano-indentation
experiments and characterized from the inspection of rupture debris [55,81].
For this still relatively unexplored system, the identification of the quasi-rigid
domains by theoretical/computational means can add valuable insight about
the nature of the mechanical domains.

We accordingly start by discussing the SPECTRUS application to the
STMV capsid consisting of 60 identical proteins for a total of 8820 residues,
see Fig. 1.8a. The distance fluctuation matrix derived from ENM data (see
Appendix B for details about its calculation) was next used as input for the
spectral decomposition from Q = 2 to Q = 80 quasi-rigid domains. This
range was chosen because it covers from the coarsest possible subdivisions to
finer ones that are smaller than the constitutive proteins.

The profile of the quality order parameter is shown in Fig. 1.8b. It is
seen that there exist a prominent peak for Q = 60 and a secondary one for
Q = 20 domains. The same peak profiles are seen if a plain anisotropic elastic
network and a different interaction cutoff are used, see Fig. 1.9a.

The subdivision into Q = 60 domains practically coincides with the
physically-viable partitioning into single constitutive proteins. Although this
result is intuitive, we stress that it is obtained by using only the ENM-based
internal structural fluctuation of the capsid, with no explicit reference to the
sequence or structural boundaries of the individual proteins.
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a b

Figure 1.9: (a) The use of different interaction cutoffs for the ENM (here, we considered
7.5 Å and 10 Å) doesn’t significantly affect the overall partitioning and quality score. The
relative heights of the peaks in the score profile, however, could differ when using, for
instance, ANM instead of the β-Gaussian ENM. For ANM, a cutoff of 10 Å has been used,
which is about the minimum interaction range yielding only six null modes (corresponding
to roto-translations). (b) Quality score from SPECTRUS for the STMV capsid, plotted
against the ones obtained by retaining in the analysis only one residue every 5 or 10. The
cutoff value δ̄ has been set to 20 Å to make up for the increased separation of proximal
amino acids in the reduced set. The fact that for the 1-every-5 case the main peaks in
the score profile are preserved suggests the feasibility of the reduction scheme, which can
be important for keeping computational costs at a manageable level for particularly large
systems.

The coarser subdivision into Q = 20 domains is therefore more informa-
tive and relevant for the multimeric mechanical units of the capsid. Fig. 1.8c
shows the associated subdivision which is very symmetric despite the fact
that no a priori symmetry was enforced. It is readily seen that each domain
corresponds to trimeric assemblies of the individual capsid proteins. These
trimers are, indeed, the correct mechanical units for STMV, as it has been
previously established by computational studies on STMV structural stabil-
ity [52] and in our previous ENM-based analysis of functional units based on
the analysis of several order parameter specifically tailored for viral shells [56].
We also note that, as for the case of AKE, in this context too the innate char-
acter of the subdivisions into Q = 60 and Q = 20 domains eludes the analysis
based on the inspection of the Laplacian matrix spectrum, see Fig. 1.10. This
latter fact is not surprising, because the approximate quasi-rigid character
of the domains makes it particularly challenging to detect genuine gaps in
the spectrum, especially at relatively high indices of the ranked eigenvalues.
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Figure 1.10: Eigenvalue spectrum of the Laplacian matrix for STMV and TrV. In ideal
contexts, the viable number of egenvectors (clusters) to be used for the projection step is
indicated by the presence of one or more gaps in the spectrum. The approximate quasi-
rigid character of the dynamical domains does not allow for a clear, objective identification
of significant gaps in the spectrum. In particular, no discernible features are observed in
correspondence of the subdivisions for Q = 20, 60 for STMV and Q = 12 for TrV, while
they are readily singled-out from the quality score profiles.

These considerations underscore the discriminatory capability of the quality
score even for a wide dynamic range of Q values.

Building on the successful validation of the STMV domain decomposition,
we next considered the still largely unexplored case of TrV. The recently-
solved structure of the TrV capsids is shown in Fig. 1.8d: it is formed by
180 proteins which come in three structurally-nonequivalent types, colored
differently in the panel, for a total of 47,220 amino acids.

In this case too the capsid was subdivided in a number of domains ranging
from 2 to 80 and the profile of the associated quality order parameter is shown
in Fig. 1.8e. The most prominent peak corresponds to the Q = 12 solution
illustrated in Fig. 1.8e. This subdivision involves twelve identical pentagonal
units, each formed by 15 proteins. The markedly high value of the quality
score for this subdivision, compared to that for more or fewer domains, is a
strong indication of the robust, innate character of these multimers as the
fundamental mechanical blocks of the capsid.

As a matter of fact, this result is fully consistent with the conclusions of
Snijder et al. [55] who, by inspecting the debris of TrV capsids ruptured by
an AFM tip, concluded that the most plausible mechanical blocks were the
same pentagonal units observed here. The present result therefore reinforces,
from an independent quantitative perspective, the earlier conclusions based
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on nano-indentation experiments.
This consensus, in turn, adds confidence to the viability of the present

approach for identifying the quasi-rigid units from individual proteins to large
macromolecular assemblies.

For the latter, computationally onerous contexts, the scope of elastic net-
works can be extended by using a coarse-grained representation of the capsid
where, for instance, only one in five amino acids are retained. As shown in
Fig. 1.9b, this structural simplification procedure, if kept within reasonable
limits, can significantly speed up the numerical calculation without impairing
the overall correct identification of the rigid domains.

1.4 Conclusions

In conclusion, we introduced and used a transparent and transferable method
for identifying both the number and type of quasi-rigid domains in proteins
and protein complexes involving from few hundreds to tens of thousands
amino acids.

The method, named SPECTRUS, takes as input the matrix of pairwise
distance fluctuations of amino acids, which can be obtained from various
sources: it can be either computed from a limited number of available crys-
tal structures, or from conformations sampled with extensive molecular dy-
namics trajectories, or derived from elastic network models, when a single
conformation of the molecule of interest is available. The partitioning into
quasi-rigid domains is recasted as a clustering problem. A key element of the
strategy is the preconditioning step where the distance fluctuation matrix
is projected (via the essential spaces of its Laplacian) in a space of low di-
mensionality which is ideally suited to expose the innate groupings of amino
acids taking part to different quasi-rigid domains. This step has two major
advantages. First, it is instrumental for making the subdivision robust and
practically independent of the specific method of clustering. Secondly, it is
crucial for providing a quantitative basis to assess the quality of a given sub-
division, that is the extent to which the observed intra-cluster compactness
and inter-cluster separation differ from equivalent random subdivisions. By
these means, it is possible to single out the most significant number and type
of subdivisions of a given protein and protein complex.

The viability of the SPECTRUS approach was ascertained by applying
it to a number of well-characterized cases, which are used for validation pur-
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poses, as well as open and debated ones. The former include adenylate kinase,
the GLIC channel and the STMV capsid, for which the customary, super-
vised subdivisions are all correctly reproduced. For the more challenging
and open cases we instead considered the NavAb voltage-gated ion channel
and the viral capsid of the Triatoma virus, for which the decomposition pro-
vides valuable insight regarding their still relatively unexplored functional
mechanics.

The source code of SPECTRUS is made freely-available, upon request,
for academic use.
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1.5 Appendix A: robustness of domain de-

compositions

To simulate the effect of missing/unresolved residues, we applied SPECTRUS
after removing the 10 and 20 most mobile amino acids (those with highest
B-factors) from the open and closed conformers of adenylate kinase. The 10
and 20 excluded residues have indexes: 41, 75-79, 127, 129-130, 157, and 41,
74-79, 127, 129-131, 142-143, 151-152, 157, 160, 211, 213-214, respectively.

Figure 1.11

We observed that the progressive removal of residues can diminish the
sharpness of the quality score peaks (Fig. 1.11a), which can be assessed a
posteriori by comparison with those of the 40th and 60th percentiles. The
consistency (or lack thereof) of the three percentile trends allows to judge
whether a clear indication of the number of innate domains emerges from
the available data. It is seen that after removing 20 amino acids the peak for
Q = 3 is still discernible, though it has lost its original prominence. Never-
theless, the actual subdivision is much more robust, see Fig. 1.11c (blank gaps
refer to missing residues). The degree of consistency (percentage of residues
assigned to the same domains, see Fig. 1.11b), with respect to the all-residues
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partitioning up to 10 domains, is of 94.1% on average (with a minimum value
of 86.3%) for the first case, and of 93.8% on average (minimum: 85.1%) for
the second case.

As a further test of the domain decomposition robustness against the
input dataset size, we repeated the analysis of adenylate kinase by considering
separately each of the two MD trajectories (one started from 1AKE, the
other from 4AKE) that were used jointly in the main text (Fig. 1.11d). The
decompositions performed on each individual trajectory, while still producing
the same domains (at least 97.7% of domain overlap, see Fig. 1.11e), present
noticeable differences in the quality score profiles. The ability of the score in
detecting the innate domain number can be qualitatively assessed a posteriori
by comparing the profiles of the 40th and 60th percentiles with respect to
the median. Based on this criterion, the higher discriminatory power of the
two combined trajectories relative to each of them emerges very clearly.

Another interesting analysis consisted in computing the quasi-rigid do-
main decomposition for an homologous enzyme, namely Streptococcus pneu-
moniae D39 adenylate kinase (see Fig. 1.12a), using its 4 structures available
in the PDB: 4W5H, 4NTZ (open), and 4W5J, 4NU0 (closed). The quality
score shows the same two prominent peaks in Q = 3 and Q = 9 seen for
the pair of open and closed E. coli adenylate kinase structures, 1AKE and
4AKE, discussed in the main text. As it is shown by the rightmost panel, the
Q = 3 partitioning for the two homologous kinases are practically identical.

Finally, we considered three additional cases, whose functional domains
had been already detailed in a recent work [68]. In Figs. 1.12b–d we show the
domain decompositions of HIV-1 RT, p38 MAP kinase and cyclin-dependent
kinase 2 based on datasets consisting of various numbers and combinations
of their structural representatives (identified as those highlighted in Figs. 1a,
2a, 3a of ref. [68]).

HIV-1 RT (Fig. 1.12b) is an enzyme composed of two subunits, p66 and
p51. We focused on the p66 unit, which is customarily partitioned into 5
functional domains. Based on its 6 representatives structures (1HQE, 1N6Q,
1RTJ, 1TVR, 1VRT, 3DOK) the optimal decomposition is for 5 quasi-rigid
domains, which are in good correspondence with the functional ones. These
subdivisions remain practically unchanged if various combinations of only two
of the 6 representatives are used: their average overlap with the reference (6-
representatives) subdivision is always larger than 95% (98.0% on average).
For some pairs, however, a degradation of the quality score peak is seen.

Analogous results, i.e. robustness of the subdivisions for fixed number of
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Figure 1.12
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domains, and occasional degradation of the sharpness of the quality score
peaks are seen upon impoverishing the datasets of representative structures
for p38 MAP kinase (Fig. 1.12c) and Cdk2 (Fig. 1.12d). For the former,
the used representatives are: 1P38, 1W82, 1ZZ2, 2PV8 (1OZA was omitted
because significantly shorter) and the Q = 3 subdivisions with the reduced
datasets have average domain overlap of 91.9% (with a minimum value of
70.4%) with the global one. For Cdks the used representatives are 1GIJ,
1HCL, 2J9M, 1H01, and the Q = 3 subdivisions with the reduced datasets
have average domain overlap of 97.7% (minimum value: 92.2%). For both p38
MAP kinase and Cdk2, the largest quasi-rigid domains are in good correspon-
dence with the two functional ones, although the SPECTRUS subdivisions
are finer as they feature a third, smaller domain.

1.6 Appendix B: distance fluctuation matrix

from elastic network models

A model distance fluctuation matrix, f , can be computed from a single ref-
erence structure by using elastic network models. To this purpose we used
the β-Gaussian network model which uses a two-centroid amino acid descrip-
tion (mainchain and sidechain) and has been successfully validated against
atomistic MD simulations [78,79].

Given a set of ENM (non-zero) eigenmodes, {~v1, ~v2, . . . , ~vn}, and their cor-
responding eigenvalues {λ1, λ2, . . . , λn}, one constructs an auxiliary, “meta-
ensemble” of conformations, each of which is obtained by adding to the ref-
erence protein structure a deformation vector obtained by a linear stochastic
superposition of the modes: ε

∑
i=1,...,n ηi ~vi, where ηi is drawn from a Gaus-

sian distribution with zero mean and variance equal to 1/λi. The f matrix
is next straightforwardly computed from the conformational ensemble.

Notice that, because the entries of f are proportional to ε, the relative
magnitude of different entries of this matrix (which is what controls the clus-
tering scheme) are independent of ε, which then can be set to any convenient
value, e.g. equal to 1.

The construction of the auxiliary ensemble can be sped up by restricting
the stochastic superposition to the lowest energy modes which are those
that account for most of the structural fluctuations (e.g., 10 modes suffice a
posteriori to yield a converged f for capsids of ∼ 9000 amino acids, see Fig.
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a b

Figure 1.13: (a) Quality score profiles for STMV, illustrating the dependence on the
number of low-energy elastic modes used for computing the covariance matrix. It is striking
that 10 modes suffice to identify unambiguously the main peaks in the profile. (b) Quality
scores for STMV relative to both the approaches that can be used to derive the distance
fluctuation matrix from ENM. In the first approach, used for the cases discussed in the
Applications section, an auxiliary ensemble of conformations is produced by a stochastic
superposition of the lowest-energy eigenmodes. In the second one, the distance fluctuations
are calculated directly from the ENM covariance matrix using an approximate expression.

1.13a). The results presented in the text were obtained by using 30 modes.
For a faster, albeit approximate approach, one can obtain f from: fij =√∑
αC

αα
ii + Cαα

jj − 2Cαα
ij , where Cαβ

ij is the ENM covariance matrix element

pertaining to centroids i and j and Cartesian components α and β. This
approximate method yields consistent results for the location of the quality
score peaks, although not necessarily for their relative height, see Fig. 1.13b.
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Chapter 2

Unifying view of mechanical
and functional hotspots across
class A GPCRs

G protein-coupled receptors (GPCRs) are the largest superfamily of signaling
proteins. Their activation process is accompanied by conformational changes
that have not yet been fully uncovered. Here, we carry out a novel compar-
ative analysis of internal structural fluctuations across a variety of receptors
from class A GPCRs, which currently has the richest structural coverage.
We infer the local mechanical couplings underpinning the receptors’ func-
tional dynamics and finally identify those amino acids whose virtual deletion
causes a significant softening of the mechanical network. The relevance of
these amino acids is demonstrated by their overlap with those known to
be crucial for GPCR function, based on static structural criteria. The dif-
ferences with the latter set accordingly point to sites whose functional role
is more clearly detected by considering dynamical and mechanical proper-
ties. Of these sites with a genuine mechanical/dynamical character the top
ranking is amino acid 7x52, which we accordingly point out as a previously
unexplored, and experimentally verifiable key site for GPCR conformational
response to ligand binding.

The work presented here was done in collaboration with Giulia Rossetti1,
Paolo Carloni1 and Cristian Micheletti, and a manuscript is currently under
review in the PLOS Computational Biology journal.

1IAS/INM, Forschungszentrum Jülich, Jülich, Germany
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2.1. INTRODUCTION

2.1 Introduction

Mammalian G protein-coupled receptors (GPCRs) are the largest family of
signaling proteins, with approximately∼850 unique members up to now iden-
tified in the human genome [82,83]. Given the size of this family, their ubiqui-
tous expression, and their involvement in virtually every (patho)physiological
process in mammals, it is not surprising that human GPCRs are targeted by
more than half of current drugs [84].

GPCRs share a distinctive structural signature, namely seven α-helical
transmembrane (TM) domains [85]. Such common structural organization
strongly contrasts with the structural diversity of the agonists: these range
from subatomic particles (a photon), to ions (H+ and Ca++), to small organic
molecules, to peptides and proteins [85]. The presence of an agonist (or a
photon in the case of rhodopsin) triggers specific downstream G protein-
dependent signaling pathways.

The mechanisms that precisely control GPCR agonist binding and the
following receptor activation have until very recently been hindered by a lack
of crystallized active receptor states and receptor-ligand complexes. However,
significant advances in crystallization has recently permitted the structural
determination of several class A receptors in active state. Moreover, several
mutagenesis and assay procedures were performed in an attempt to identify
functionally important residues [86], along with specific micro-switches, i.e.
small groups of residues that undergo conformational change during receptor
activation [87,88].

Despite a consolidated list of residues important for binding and/or func-
tion emerged, the findings are limited by their individualized nature [89].

Indeed, GPCRs are not rigidly switching between the alternative agonist-
bound and inactive forms. They rather adopt a series of intermediate con-
formations influenced not only by association with ligands, but also by other
receptors, signaling and regulatory proteins, by post-translational modifica-
tions, and by environmental cues [83]. The capability of GPCRs to engage
with such diverse signaling machinery strongly depends on their conforma-
tional flexibility. All these diverse signaling events are indeed accompanied
by dynamic conformational changes. Each state is likely represented by an
ensemble of conformations [90].

A characterization of the conformational and structural dynamics of these
proteins is therefore critical for understanding the molecular mechanisms un-
derlying their function. A suitable comparative analysis of the available
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CHAPTER 2. MECHANICAL HOTSPOTS IN CLASS A GPCRS

structures for these receptors ought to give insight into their structure–
function relationship by clarifying the functional-oriented character of their
internal dynamics.

While the inspection of GPCRs’ and G proteins’ structures has been
essential to map out the accessible distinct signaling states, our knowledge is
still limited regarding the internal dynamics of such states and the pathways
that link them [91].

To our knowledge this problem has not yet been addressed systemati-
cally. The reason for its challenging character lies, at least in part, in the
high structural heterogeneity of the conformers that bridge between the ac-
tive and inactive forms. Such structural diversity, for instance, limits a priori
the scope of general methods, such as elastic networks and normal mode anal-
ysis, which can otherwise be profitably used to identify low-energy collective
modes from near-native fluctuations [92,93].

Here, we introduce and apply a novel comparative tool that can single out
those sites that act as hubs in the network of mechanical connections between
the receptor residues, i.e. that are crucial for maintaining the integrity of the
protein’s large-scale dynamics and mechanics.

We present and discuss this strategy, which is otherwise general and trans-
ferable, to the members of a specific GPCR class, namely the class A. This
functional group was chosen precisely because of its well-populated and struc-
turally diverse repertoire of conformers.

We analyze the structural fluctuations across representative conformers
to identify those residues that are central for the network of mechanical
couplings, and hence the functional dynamics, of the receptors. Such sites
have good overlap with known key residues, including those established by
purely static structural considerations, but involve additional sites whose
functional relevance, that is experimentally verifiable, emerges more clearly
from a dynamical perspective.

2.2 Results and discussion

We focus on GPCRs belonging to the rhodopsin-like class A. This class has
currently the broadest structural coverage spanning between active, or par-
tially active, and inactive forms. The set includes six different types of re-
ceptors, namely: A2A adenosine, β2 adrenergic, M2 muscarinic, µ-opioid,
neurotensin NTS1 and rhodopsin (see Table 2.2).
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Figure 2.1: Scanning GPCRs’ mechanical network for key sites. The structural
ensemble of a G protein-coupled receptor, see panel (a) for rhodopsin, is used to com-
pute the distance fluctuations for all pairs of amino acids. (b) The pairings in the local
mechanical network (Cα distance < 12Å) are highlighted with red bonds with thickness
proportional to the observed rigidity; only the strongest links are shown here, while the
full network is shown in Fig. 2.5. The network is represented as a color-coded contact map
in panel (c). Key residues for the overall mechanical integrity of the network are identified
by measuring how the link connectedness varies when one removes all the links of a node
corresponding to non-covalent bonds (highlighted in yellow in panel d).

2.2.1 Identifying the mechanical hubs

The mechanical hubs of these receptors were identified with a three-step
strategy described below and sketched in Fig. 2.1, see Methods for further
details.

As a first step, for each receptor we first retrieved all available PDB
structures covering its conformational repertoire (Fig. 2.1a). Next, for each
pair of residues in spatial proximity (within 12Å on average), we computed
their distance fluctuations over the structural set. The fluctuation amplitude
is a measure of rigidity, and the residues’ pairwise distance variance can be
used as an inverse measure of residues mechanical couplings [1, 28, 34, 36,
37, 58]. Hence, this step allows to define the local mechanical network that
underpins the receptors functional dynamics (Figs. 2.1b–c).

In the final step, each amino acid is profiled based on how much its virtual
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CHAPTER 2. MECHANICAL HOTSPOTS IN CLASS A GPCRS

“mutation”, performed by deleting from the network its local mechanical
interactions, changes the network’s connectivity, an approach similar and
alternative to measuring the centrality of a particular node in a network (Figs.
2.1d). The higher is the perturbation induced on the network, the higher is
the dynamical impact of the considered amino acid. The returned quantity is
a measure of the relevance of each residue in establishing indirect couplings
between structural fluctuations across distant parts of the receptors. For this
reason we shall refer to it as the “mechanical bridging score”.

As we shall discuss later, amino acids with high mechanical bridging
score are typically located at the hinge or interface regions between quasi-
rigid protein domains and are accordingly well-suited to affect the long-range
propagation of structural fluctuations, including functionally-oriented ones.
Note that, because we consider intrinsically dynamical properties (structural
fluctuations), our notion of bridging score can aptly complement previous
GPCRs’ profiling based on networking properties defined from single, static,
structures [94, 95].

For a robust identification of the aforementioned mechanical hubs, we
combined the six mechanical bridging profiles of the different receptors (Fig.
2.6 and 2.7) into a single, average one. The average was taken over the set of
corresponding residues (with same GPCRdb numbers [96]) that are shared
by all considered receptors.

The resulting average profile is shown in Fig. 2.2. One observes that
the highest average bridging scores are found at the interface between trans-
membrane helices that are known to be relevant for the receptor activation,
namely: TM3, TM6 and TM7 [88,97].

2.2.2 Validating the mechanics-based profiling

The functional relevance of sites with high average bridging score can be
shown more stringently by cross-referencing them with the list of currently
known key residues for class A receptors based on the survey of Tehan et
al. [97]. This list of residues was recently compiled by combining sequence-
and structure-based selection criteria, that is by singling out residues that are
both highly conserved as well as located along the pathway that structurally
connects the orthosteric site and the G protein docking site. This connecting
region coincides with a hydrophobic core that is central to the helix bundle.
The top ranking sites for the average bridging score and those reported in
ref. [97] are given in Table 2.1.
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3x44 3x43

6x443x40

6x40

7x45

7x42

3x36

TM5 TM6 TM7 TM1
TM3TM4 TM2

6x43

Figure 2.2: Color-coded profile of the average bridging score. Amino acids in
a reference GPCR structure (rhodopsin, PDB ID: 1F88) are color-coded according to
the mechanical bridging score averaged over all receptors (blue to red from low to high
scores). Residues shown in grey are those with no equivalent positions across the receptors’
ensemble. The top ten ranking sites, listed in the first column of Table 2.1, are labelled
and highlighted with yellow beads in the inset.

The overlap between our top ranking sites and the known key functional
residues reported by Tehan et al. [97] was assessed by using the receiver op-
erating characteristic (ROC) curve in Fig. 2.3a. The curve shows that by
running through our ranked list of residues, the “discovery” of the known
functional sites occurs at a significantly higher rate than expected for a ran-
dom reference case (the plot diagonal).

This is an indication that the average bridging score is able to capture
with a significant degree of sensitivity those residues likely to be involved in
the functionality of class A GPCRs.

This conclusion is further supported by comparing the ranking based
on the average bridging score with one based on a purely static structural
criterion. To this end, we ranked the amino acids based on their number
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top sites for average key functional sites
bridging score (Tehan et al. [97])

7x52 1x50 6x40
3x40 2x46 6x41
7x42 2x50 6x44
6x44 3x40 6x48
7x45 3x43 6x50
3x43 3x50 7x49
3x36 4x50 7x50
3x44 5x50 7x53
6x43 5x58
6x40 6x30

Table 2.1: Key mechanical and functional sites. The first column provides the
ranked list of sites with the highest mechanical bridging score averaged over all receptors
of class A. The list of known key functional sites for the same class is shown in the second
column. Residues present in both lists are highlighted in boldface.

of contacts. This allows for a transparent and equal-footing comparison,
since the criterion exclusively considers the average amino acid connected-
ness, regardless of whether a contact is associated to a strong (i.e. rigid-like)
mechanical coupling or not. This structure-based ranking criterion is in-
spired by previous works on GPCRs [94,95] that demonstrated a correlation
between sites with functional relevance and graph properties of the static
contact map build on single receptor structures, a fact that is confirmed by
the marked deviation of the corresponding ROC curve from the diagonal in
the plot of Fig. 2.3a. The key observation that is relevant here is that the
average bridging score ROC curve is well in line with the structure-based one,
thus underscoring the functional significance of the mechanics-based ranking
criterion. In addition, it prompts to understand the different insight that it
can offer over pure structural approaches.

To clarify the latter point, we show in Figs. 2.3b-c and 2.8 the profiling
of residues according to the dynamical or structural criteria. The compara-
tive inspection indicates that the differences are mostly localized at specific
portions of TM6 and TM7, which are high ranking for the mechanical bridg-
ing score, but not for the structural one. These regions, therefore, appear to
have a key role across class A members that is genuinely tied to the receptors’
functional mechanics and hence cannot be detected from static structural ob-
servables.
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Figure 2.3: Functional profiling of key sites for GPCR’s mechanical and struc-
tural networks. (a) The list of known GPCRs functional sites in Table 2.1 are used for
the ROC curve profiling of the top mechanical sites in Table 2.1 (red) and of those that
have the highest structural coordination (number of contacts) across the receptor ensem-
ble (blue). For reference, the performance of a random classifier is shown by the dashed
black line. Color-coded representations of the average bridging score and of the average
coordination number are shown for rhodopsin (PDB ID: 1F88) in panels (b) and (c), re-
spectively. The representation in panel (b) is the same as in Fig. 2.2. The coordination
number averaged over the six receptors shown in panel (c) ranges from 18.7 (blue) to 47.4
(red).

2.2.3 Functional role of key mechanical hubs

The 10 sites with the highest average bridging score (Table 2.1) include
residues forming the so-called hydrophobic hindering mechanism (HHM: 6x44,
3x43 and 6x40). Mutagenesis experiments have shown that this conserved
hydrophobic triplet, that is contacted by other listed residues, namely 3x40,
6x43 and 3x44, is essential for the activation process of class A GPCRs [97].
The HHM triplet plus the proximal site 3x40, which has the second highest
score, all take part to the structural rearrangements bridging the inactive
and active state. The latter, in fact, depends on the HHM opening for es-
tablishing the water channel in the active conformation [97]. Residue 3x40
additionally participates to the transmission switch [88] and is highly con-
served as a large hydrophobic residue as well [97].

Residue 7x42 is, instead, involved in a different molecular switch, i.e. the
TM3-TM7 lock [88]. This is the main mechanism responsible for activation in
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rhodopsin and possibly one of the first switches triggered by ligand binding in
other GPCRs. Position 7x45 is one of the most conserved residue in TM7 [88].
Finally, the 3x36 position, though not conserved, was shown by site-directed
mutagenesis experiments to have a stabilizing role for the inactive state [88].

Most of the top scoring residues listed in Table 2.1 are therefore sites with
a demonstrated involvement in class A GPCRs activity. This validates the
viability of dynamical profiling approaches in general, and the mechanical
bridging score in particular, for singling out functionally important residues
and providing a rationale for their relevance. Given these premises, of par-
ticular interest are those sites that have a high bridging score, but are not
yet known as functionally relevant.

This is the case for site 7x52, that has the highest score in our analysis.
This amino acid is part of the well-conserved motif NPxxY(x)5,6F, but is
otherwise not particularly central in the static network of contacts, see Fig.
2.3c and Fig. 2.8. Its functional relevance therefore has not been fully inves-
tigated before, though its possible participation in stabilising the TM6–TM7
interhelical interaction has been suggested by [98]. Mutations at position
7x52 were shown to constitutively activate the TSH (thyroid stimulating
hormone) receptor [86, 99] by possibly disrupting the packing between TM6
and TM7. We therefore suggest site 7x52 as a putative novel site crucial
for functionality. Again, the fact that its relevance does not emerge from
structural considerations indicates that its role is likely to be a genuinely
dynamical, or mechanical one.

We finally note that the highest scoring sites in Fig. 2.2 are immedi-
ately adjacent to the region that the latest studies of refs. [100, 101] have
identified as the most structurally affected by the activation/inactivation
transitions. In particular, by comparing class A GPCRs with different acti-
vation states, Venkatakrishnan et al. [101] identified three G protein-coupling
residues, 3x46, 6x37 and 7x53, whose contacts are disrupted during activa-
tion, and that are exposed to the G protein-binding pocket by the dislocation
of the cytoplasmic side of TM6 away from the helix bundle.

2.2.4 Analysis of µ-opioid MD simulation and recep-
tors’ rigid domains

The conclusions of the previous section are supported by two complementary
extensions of the analysis above. Specifically, we first repeated the bottom-
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Figure 2.4: Functional role of site 7x52: MD simulations and quasi-rigid do-
main decomposition. (a) Amino acids of the µ-opioid receptor (PDB ID: 4DKL) are
color-coded according to the mechanical bridging score computed from atomistic molecu-
lar dynamics simulations. The color convention is the same as in Fig. 2.2, with the top 10
ranking residues being labelled and highlighted with yellow beads, corresponding to the
following sites, in decreasing order of score: 6x40, 7x52, 7x45, 3x40, 1x53, 7x49, 7x42,
7x53, 3x37, 6x44 (in boldface, the key functional sites also present in the list of Tehan
et al. [97]). Panel (b) shows the optimal SPECTRUS [1] decomposition of rhodopsin into
5 quasi-rigid domains. The TM6-based domain is highlighted in yellow and it notably
includes residue 7x52 from TM7. Analogous decompositions for the other receptors are
shown in Fig. 2.9.
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up mechanical profiling of residues for a single receptor using an ensemble
of structures obtained from a molecular dynamics simulation. Finally, we
examined the mechanical role of residue 7x52 by using a top-down approach
based on the quasi-rigid domain decomposition of all receptors.

For the first extension, we applied our protocol to conformers sampled
by extensive atomistic molecular dynamics (MD) simulations of the µ-opioid
receptor [102] started from both the inactive state and the ligand-bound
active one. The MD ensemble provides a richer sampling of the active and
inactive conformers and hence allows to capture the internal dynamics and
mechanics with greater fidelity than from the sole pair of available crystal
structures.

The results of the single-residue analysis for the µ-opioid (Fig. 2.4a) are
well consistent with those of Fig. 2.2, based on the cumulated profiles of all
six receptors. Specifically, the highest scoring residues, highlighted in Fig.
2.4a and listed in the caption, include conserved residues of helices TM3,
TM6 and TM7, two residues of the HHM (6x40 and 6x44) and, again, site
7x52.

We finally turn to the top-down analysis based on the quasi-rigid domain
decomposition of the six class A receptors. To this purpose we used the
SPECTRUS webserver [1]. This performs an optimal domain decomposi-
tion based on the internal distance fluctuations across a set of representative
structures. The analysis, an example of which is illustrated in Fig. 2.4b for
rhodopsin, presented two salient features that recurred across the different
receptors.

First, the intracellular half of TM helix 6 was systematically identified as
a quasi-rigid domain, consistent with its role in the internal rearrangements
accompanying the receptors’ activation [97].

The second feature is that residue 7x52 is often assigned to the same rigid
domain as TM6. Such domain association is interesting because intuitively
one would otherwise always assign 7x52 to the TM7-based domain, to which it
structurally belongs, see Fig. 2.4b. As a matter of fact, site 7x52 is recognised
part of the TM6 dynamical domain in a sizeable fraction (∼ 25%) of the
subdivisions from 2 to 10 domains of the receptors, including the µ-opioid
MD simulations, see Fig. 2.9. This means that the displacements of 7x52,
unlike other sites in TM7, are appreciably coupled with those of the cognate
helix, TM6. Accordingly, 7x52 appears to act as an interface, bridging site
between the two distinct mobile TM6- and TM7-based domains, as it is
illustrated in Fig. 2.4b for rhodopsin.
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The recurrent difference of the dynamics- and structure-based assign-
ment is consistent with the other evidence presented above that residue 7x52,
whose functional role is still largely unexplored, is likely relevant for the me-
chanical response of class A GPCRs.

2.2.5 Concluding remarks

The current understanding of GPCRs functionality, and primarily the re-
sponse to ligand binding, has been significantly shaped by the analysis of the
growing number of their structures solved with X-ray or NMR [103]. Though
such structures give valuable clues for the active state of GPCRs, they still in-
clude a limited set of snapshots of the likely conformational states induced by
agonist and G protein binding. In addition, both experiments and atomistic
MD simulations indicate that the receptors are capable of adopting multiple
conformations, depending on the nature of the bound ligand. Our insight
into the agonist- and G protein-initiated conformational changes is therefore
still limited.

As a step towards clarifying this open problem, we devised and applied
a strategy for identifying key sites presiding the functional dynamics and
mechanics of class A GPCRs. This is the largest subclass and it has arguably
the widest structural coverage, with conformers from 6 different receptor
types (including rhodopsin) in different activation states. We analysed the
internal structural fluctuations across the dataset. In particular, we focussed
on the pairwise distance fluctuations of corresponding amino acids which
were used to infer the network of local mechanical couplings that underpin
the large scale, and arguably functionally-oriented conformational changes.
The mechanical network was finally analyzed to locate the few sites that
most contribute to GPCR’s collective mechanics. To do so we identified the
residues whose virtual deletion leads to the strongest softening of the overall
mechanical response.

The viability of the approach to single out the most relevant functional
sites was validated by the significant overlap between key sites for mechanical
response and those known to be crucial for function based on independent
and different criteria.

On the one hand, this result provides a concrete and vivid illustration
of the relevance of dynamics- and mechanics-based criteria for locating key
sites for enzyme functionality and hence prompts their use in combination
with other more established structure-based static criteria.
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On the other hand, the validation revealed that mechanically-relevant
sites at interface between transmembrane helices 6 and 7 were not included
in the list of previously known functionally-relevant positions. This was
particularly the case for site 7x52, which is among the highest ranking ones
for the mechanical response, and whose relevance is supported by the analysis
of both atomistic MD simulations of the µ-opioid receptor as well as the
analysis of GPCR’s rigid-domain decompositions.

Based on these convergent indications, we conclude that site 7x52 likely
plays a key role in the conformational dynamics of class A GPCRs. Its
functional relevance, as well as that of other sites in the central region of the
transmembrane helical bundle, ought to be experimentally verifiable, e.g.
with site-directed mutagenesis experiments.

2.3 Methods

2.3.1 Network of dynamical similarities

The receptors’ mechanical network was inferred from the analysis of distance
fluctuations between pairs of amino acids. These, in fact, are key elements to
define the subparts of the proteins that interact in such a concerted manner
that they behave as quasi-rigid domains [1]. The distance fluctuation fa,b
between two residues a and b is computed as the standard deviation of the
distances da,b between their Cα atoms over two or more structures (PDB
entries or snapshots from MD simulations):

fa,b =
√
〈d2
a,b〉 − 〈da,b〉2. (2.1)

The strength (rigidity) of the pairwise mechanical couplings is then quan-
tified with a Gaussian weighting of the corresponding distance fluctuations

σa,b = exp(−f 2
a,b/2f̄

2), (2.2)

Because we are interested to define the receptors’ mechanical network in
terms of physical, local coupling between amino acids, we set σa,b = 0 for
amino acids whose Cα’s are at an average distance larger than 12Å, see Fig.
2.10. The value of the sensitivity parameter, f̄ , in eq. 2.2 is then set as the
average of fa,b over the amino acids pairs closer than 12Å.

45



2.3. METHODS

2.3.2 Mechanical bridging score

To define the key mechanical bridging sites, or hubs, of the receptors, we
resort to the spectral clustering analysis of the mechanical network [65,66].

Specifically, given the matrix, σ, of couplings between N amino acids, we
characterize the spectrum of the symmetric Laplacian matrix,

L = I −D−1/2 σD−1/2, (2.3)

where I is the identity matrix and D is the degree matrix Da,b = δa,b
∑

c σa,c.
Its non-negative eigenvalues 0 = λ0 ≤ . . . ≤ λi ≤ . . . ≤ λN−1 provide
information about how well the network is neatly partitioned in distinct
clusters (mechanical domains) and, accordingly, are typically used to define
optimal subdivisions of the network.

Here, the eigenvalues will be used for a different goal, namely to ascertain
how important is each node to maintain the overall mechanical connectedness
of the network. This amounts to measuring how much the network Laplacian
spectrum changes when the connections, or couplings, of a node with its
neighbors (excluding the connections corresponding to bonded interactions)
are deleted. This response for residue k is given by the mechanical bridging
score:

∆k = Ωk − Ω0. (2.4)

where Ω0 =
∑̃N−1

i=1
1
λi

is the sum of the inverse eigenvalues (the tilde super-
script denotes the omission of zero eigenvalues) for the full network, and
Ωk is the same quantity but calculated for the network where the couplings
relative to the kth node have been deleted.

The bridging score profile is computed separately for each receptor using
its available structural representatives. The average bridging score is then
obtained by averaging the bridging score over all equivalent positions of the
various receptors.

2.3.3 Class A GPCRs database

The structures used for the analysis are listed in Table 2.2. Among the
receptors whose structure is reported in the Protein Data Bank, we selected
those for which both active and inactive conformations were known. These
include the following: A2A adenosine, β2 adrenergic, M2 muscarinic, µ-opioid,
neurotensin NTS1, rhodopsin. Moreover, we applied the same analysis on an
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receptor PDB ID state organism
A2A adenosine 3RFM inactive H. sapiens

3VG9 inactive H. sapiens
3EML inactive H. sapiens
3QAK active H. sapiens
2YDO p. active H. sapiens
3PWH inactive H. sapiens
3REY inactive H. sapiens
2YDV p. active H. sapiens
3VGA inactive H. sapiens
4EIY inactive H. sapiens
4UHR active H. sapiens
3UZA inactive H. sapiens
3UZC inactive H. sapiens
4UG2 active H. sapiens

β2 adrenergic 2RH1 inactive H. sapiens
3D4S inactive H. sapiens
3PDS inactive H. sapiens
3NY8 inactive H. sapiens
3P0G active H. sapiens
3SN6 active H. sapiens
3NY9 inactive H. sapiens
3NYA inactive H. sapiens
4LDE active H. sapiens
4LDL active H. sapiens
4LDO active H. sapiens
4QKX active H. sapiens

M2 muscarinic 3UON inactive H. sapiens
4MQS active H. sapiens
4MQT active H. sapiens

receptor PDB ID state organism
µ-opioid 4DKL inactive M. musculus

5C1M active M. musculus
neurotens. NTS1 4GRV active (?) R. norvegicus

4BUO inactive R. norvegicus
4BV0 inactive R. norvegicus
4BWB inactive R. norvegicus
4XEE active R. norvegicus
4XES active R. norvegicus

rhodopsin 1F88 inactive B. taurus
1GZM inactive B. taurus
1L9H inactive B. taurus
1U19 inactive B. taurus
3DQB active B. taurus
4A4M active B. taurus
3PXO meta-II B. taurus
2X72 active B. taurus
3PQR active B. taurus
2J4Y inactive B. taurus
2I37 active B. taurus
2I35 inactive B. taurus
2I36 inactive B. taurus
3CAP inactive B. taurus
1HZX inactive B. taurus
2HPY p. active B. taurus
2G87 inactive B. taurus
2PED inactive B. taurus
3C9L inactive B. taurus
3C9M inactive B. taurus
3OAX inactive B. taurus

Table 2.2: Structures’ dataset. List of PDB structures of the six receptors considered
for the bridging score profiling.

MD trajectory as well, obtained by merging two simulations of the µ-opioid
receptor [102], starting from the inactive state (PDB ID: 4DKL [104]) and
the active state bound to the agonist BU72 (PDB ID: 5C1M [105]).

Each of the six receptors included in our dataset had a minimum of two
crystal structures (µ-opioid) and a maximum of 21 (rhodopsin), including
both active and inactive conformations.

The GPCRdb numbering scheme [96] has been used to match the residue
positions common to all receptors. This scheme consists of the combination of
two numbers in the form AxBB, where the first one is the helix number, while
the second one is a progressive number chosen so that the most conserved
residue in each helix has the value of 50.

When defining the set of common positions, those residues, close to the
intra- and inter-cellular regions, for which the process of cutting the sur-
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rounding connections could lead to unwanted disconnections of the network,
were not included. The remaining set of positions correspond to the trans-
membrane region of the receptors, with numbering: 1x36 - 1x56, 2x40 - 2x63,
3x24 - 3x54, 4x42 - 4x61, 5x38 - 5x60, 6x34 - 6x57, 7x36 - 7x43, 7x45 - 7x55.
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2.4 Appendix: additional figures

Figure 2.5: Mechanical network of rhodopsin. The full mechanical network for
rhodopsin is shown here, connecting all Cα’s whose distance is less than < 12Å on average.
The strongest links are colored in red, while the weakest ones are in blue. For residue 7x52,
the links corresponding to non-covalent bonds are highlighted in yellow.
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Figure 2.6: Mechanical bridging score for the six GPCRs considered in this
work. The score is presented with a decreasing color scale from red to blue, on one of their
conformations (PDB IDs: 4UHR, 4QKX, 4MQT, 5C1M, 4XES, 4A4M). The structures
are oriented with TM6 and TM7 up front.

50



CHAPTER 2. MECHANICAL HOTSPOTS IN CLASS A GPCRS

 0

 1

 2

 3

 4

 5

 6

 1.3 1.4 1.5 1.6

m
e
ch

. 
b
ri

d
g

in
g
 s

co
re

 (
a
.u

.)

GPCRDB residue number

A2A ad.
β2 adr.

M2 mus.
µ-op.
NTS1
rhod.

 2.4 2.5 2.6  3.2 3.3 3.4 3.5  4.4 4.5 4.6  5.4 5.5 5.6  6.3 6.4 6.5 6.6  7.3 7.4 7.5  8.5 8.6

 

 

 

 

 

 

 

Figure 2.7: Sequence profiles of the mechanical bridging score. The residues are
numbered according to the GPCRdb scheme.
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Figure 2.8: Average bridging score (red) and coordination number (blue). The
positions of the 10 top ranking residues of the bridging score, as listed in the first column of
Table 2.1, are indicated by the dashed vertical lines. The residues are numbered according
to the GPCRdb scheme.
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Figure 2.9: Quasi-rigid domain decompositions of receptors. The decompositions
into quasi-rigid domains of the six GPCRs were produced by the SPECTRUS webserver
(http://spectrus.sissa.it) [1]. Those decompositions including a TM6+7x52 domain have
been selected, and this particular domain is highlighted in yellow. For µ-opioid, a subdi-
vision based on conformations from the MD simulation is shown as well.
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Figure 2.10: Distribution of interhelix Cα-Cα distances. Histogram of the dis-
tances, for all six receptors considered in our analysis, between each residue’s Cα and
its nearest neighbor one, belonging to the closest facing helix. A threshold of 12Å, corre-
sponding to the 98.5th percentile (dashed vertical line), guarantees that the great majority
of connections is included, without disrupting contacts between helices.
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Chapter 3

From sequence to structure:
identifying protein domains by
coevolution-based clustering

Recent methodological developments in bioinformatics have led to an un-
expected and striking use of the rapidly-growing databases of sequenced
genomes, namely the inference of inter-residue contacts from the analysis
of large multiple sequence alignments.

Here we elaborate on the possibility of deriving structural insight from
sequence-based coevolutionary information by further using the SPECTRUS
dimensionality-reduction approach of Chapter 1.

The material presented in this chapter illustrates some preliminary re-
sults from a work done in collaboration with Daniele Granata1and under the
supervision of Cristian Micheletti and Vincenzo Carnevale1. A manuscript
is currently in preparation.

3.1 Introduction

In recent years, the steady increase in the amount of available protein se-
quence data and the development of sequence homology detection methods
allowed for the construction of very accurate multiple sequence alignments
(MSA). A single MSA can contain tens of thousands of non-redundant amino
acid sequences, which collectively capture the evolutionary pathway of a

1ICMS, Temple University, Philadelphia, USA
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protein. As a result, the patterns of amino acid substitutions at analo-
gous sequence positions in a MSA have the potential to unveil the con-
straints imposed by the protein three-dimensional structure and biological
function [106,107].

Many techniques have been devised to address the problem of inferring
structural features from coevolutionary correlation between homologous pro-
teins. The rationale is that mutations of one amino acid are likely accompa-
nied by compensatory mutations of its neighbours. Accordingly, systematic
co-mutations of amino-acid pairs ought to correlate with their spatial proxim-
ity. Approaches implementing such contact-prediction strategies are referred
to as direct coupling analysis (DCA) methods.

Hinging on this concept, we try to go beyond the “pointwise” contact
inference strategy and, instead, focus on patterns of multiple, or cooperative
coevolutionary relationships. Specifically, we aim at using DCA approaches
to detect coevolutionary domains, that is groups of residues that presumably
underwent similar structural and functional selection mechanisms.

3.2 Methods

An overview of the step-by-step procedure discussed here is sketched in Fig.
3.1.

The core of the procedure consists in interpreting the norm of statistical
couplings Jij, obtained by direct coupling analysis (DCA) of the protein
MSA, as a measure of evolutionary proximity between residues i and j. Such
similarity measure is then processed by a clustering algorithm, which is an
adapted version of the SPECTRUS clustering scheme of Chapter 1 [1].

3.2.1 The dataset

For our analysis we used the extensive dataset of ∼ 800 MSAs compiled
in [108]. These alignments were computed by using the homology detection
method HHblits [109], and are characterized by a heterogeneous number of
sequences (16–65535) and positions (30–494). The dataset was specifically
aimed at testing the contact prediction capability of DCA methods. Accord-
ingly, each MSA in the dataset is associated to a target structure, that is the
known conformation of the most representative member in the MSA. These
structures will be used here a posteriori to examine the structural character-
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Figure 3.1: Schematic workflow of the steps for identifying the coevolutionary domains
from an initial MSA. The procedure is applied for each of the ∼ 800 entries in the dataset.

istic of the “coevolutionary domains” that we will infer on the basis of the
MSA information only.

3.2.2 Direct coupling analysis

We present here a brief overview, based on [108], of the most recent com-
putational methods implementing the direct coupling analysis (DCA). This
term indicates a family of methods to predict contact between amino acid
pairs from the analysis of correlated mutations between sequence positions
in a MSA.

The common characteristic of these methods is the idea of disentangling
direct from indirect couplings between residue positions, by eliminating spu-
rious correlations. By using a global statistical approach, in fact, it is possible
to recognize the cases in which a high correlation between two residues is due
to the fact that both of them are directly correlated to a third variable.

From a statistical point of view, a MSA can be considered as a collection of
M samples

{
a(1), . . . , a(M)

}
from an unknown probability distribution. Each

row of the MSA, corresponding to one protein, is then one of the qN possible
realizations of a set of N random variables, where each random variable
represents one position in the alignment, that can take q = 21 different
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values (the amino acid type or the gap symbol):

a = (ai, . . . , aN), ai ∈ 1, . . . , q. (3.1)

In its original formulation [110,111], the DCA assumes that the underly-
ing probability distribution generating the samples can be described by the
Potts model of statistical physics:

PPotts(a) =
e−HPotts(a)

Z
,

HPotts(a) = −
∑
i<j

Jij(ai, aj)−
∑
i

hi(ai),
(3.2)

where hi ∈ R21 and Jij ∈ R21×21 are the couplings to be inferred.
The inference process is based on the maximum likelihood principle,

where one selects the optimal probability distribution in a class which mini-
mizes a negative-log-likelihood function

L = − 1

M

M∑
m=1

logPPotts(a
(m)). (3.3)

However, since the partition function Z in eq. 3.2 cannot be evaluated exactly,
the minimization can only be done approximately.

Several approaches have been proposed to tackle this challenge, including
the mean-field approximation [112], the sparse inverse covariance methods
(PSICOV) [113] and the pseudo-likelihood optimization. In the following,
we will focus on the latter approach, which has been shown to outperform
the others [114,115].

In [116], Ekeberg et al. first adopted the weaker criterion of pseudo-
likelihood maximization for solving the inverse Potts model. In this approx-
imation, the probability in eq. 3.3 is replaced by the conditional probability
of observing one variable ar, given the observations of all the other variables
a\r, that is

P
(
ar = a(m)

r

∣∣ a\r = a
(m)
\r

)
=

=
exp

[
−
∑

i 6=r Jri

(
a

(m)
r , a

(m)
i

)
− hr

(
a

(m)
r

)]
∑q

l=1 exp
[
−
∑

i 6=r Jri

(
l, a

(m)
i

)
− hr (l)

] ,
(3.4)
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where, for notational convenience, Jri(l, k) means Jir(k, l) when i < r.

Given an MSA, the conditional likelihood is then maximized by minimiz-
ing

Lr(Jr, hr) = − 1

M

M∑
m=1

logP
(
ar = a(m)

r

∣∣ a\r = a
(m)
\r

)
. (3.5)

This expression now depends only on the parameters Jr = {Jir}i 6=r and hr
relative to position r, and by repeating the process for each position r it is
possible to determine all parameters.

In this way, however, there could be different predictions for Jrs and Jsr,
that must be reconciled. A possible way consists in taking their average
1
2
(Jrs + JTsr). Alternatively, one can avoid such inconsistencies by directly

minimizing a new objective function, obtained by summing up all contribu-
tions:

Lpseudo =
N∑
r=1

Lr(Jr, hr). (3.6)

The minimization of Lpseudo does not predict the same parameters as min-
imizing the true likelihood function 3.3. However, replacing L with Lpseudo

makes the problem computationally tractable, because it does not require
the evaluation of the full partition function Z.

This procedure, described in [116], is named pseudo-likelihood maximiza-
tion DCA (plmDCA), and it has been shown to achieve very accurate predic-
tions, when validated against experimentally determined protein structures.

In a more recent paper, Feinauer et al. [108] noted that the outcome
from this method can be affected negatively by the presence of long gap-rich
portions in the MSA. This issue can be traced back to the choice of the rather
simple Potts model of eq. 3.2 for representing the (unknown) probability
distribution. In this model, in fact, the gap symbol is considered on the
same footing as any other amino acid type. This assumption is therefore
quite distant from reality, since a real MSA, which usually includes sequences
with long stretches of a same variable (the gap symbol), cannot be regarded
as a set of independent realizations drawn randomly from such probability
distribution.

They therefore suggested to use a refined version for the inference model,
in which an additional set of parameters is introduced in the original Potts
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model 3.2 in order to deal with the possible presence of gaps:

PGap-Potts(a) =
e−HPotts(a)−HGap

Z
. (3.7)

The new term HGap, which describes the propensity of each position to be the
beginning of a gap of variable length, introduces a maximum ofNL additional
parameters to be learned, where L is the largest gap length found in a given
alignment. This is a relatively small increment in the computational burden,
compared to the previous number of parameters in 3.2, which is about 1

2
q2N2.

On the other hand, the modified inference model, which is referred to as gap-
enhanced pseudo-likelihood maximization DCA (gplmDCA) has been shown
to improve the overall contact prediction [108].

The outcome of learning a model like 3.2 or 3.7 is a set of pairwise in-
teraction coefficients Jij for each pair of positions (i, j). Each coefficient, in
turn, consists in a 21×21 matrix. In order to quantify the strength of a cou-
pling between two positions, one can then compute the norm of the relative
coefficient matrix:

cij = ||Jij||2. (3.8)

Here, we will use the Frobenius norm augmented by the average-product
correction (APC), as introduced in [116], which mitigates the bias due to
insufficient sampling.

By introducing a small modification in the latter step, it is also possible
to derive an alternative method of handling the gaps. The procedure con-
sists in simply ignoring the gap terms when computing the couplings cij, by
calculating the Frobenius norm on the 20 sub-matrix not involving the gap
variables. Such method is named plmDCA20 [108], and its contact prediction
performance has been found to be slightly better than the one of gplmDCA.

In the following, we will use the couplings cij, computed from all three
inference methods, plmDCA, gplmDCA and plmDCA20, as the inter-residue
similarity measure to be processed by the clustering algorithm.

3.2.3 Spectral clustering

The clustering strategy adopted in this context is the same as the one de-
scribed in the previous chapters of this thesis, and in particular for SPEC-
TRUS, namely the spectral clustering [66,117].

This algorithm takes in input the pairwise similarities Sij between the
elements to be clustered and returns a set of subdivisions into a variable
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number of clusters Q = Qmin, . . . , Qmax. For our purpose, the similarities
between the residues are given by the DCA couplings cij defined in eq. 3.8.

The quality score, introduced with SPECTRUS [1], will be also used for
the analysis of single examples. We recall that the purpose of this score
is to help identifying the optimal number of clusters Qbest, among the ones
spanned by the clustering algorithm.

3.2.4 k-nearest neighbor graph and clustering coeffi-
cient

In the context of spectral clustering, the pairwise similarities Sij between the
elements to be clustered are used for building a graph representation G(V,E),
where V = {vi} is a set of vertices, corresponding to the original elements,
and E = {eij} the edges connecting them. The goal of such representation is
to map the initial similarities into local neighborhood relationships between
the graph vertices [117].

This is usually done by either defining a cutoff value for the similari-
ties or choosing a maximum number of edges connecting each vertex to its
nearest-neighbors. The SPECTRUS algorithm, for instance, was based on
a similarity graph built by connecting residues with an edge only if their
reciprocal distance on the structure was less than 10 Å. In the present work,
however, the graph vertices represent sequence positions, and, as such, it is
not possible to introduce a spatial cutoff. We therefore consider a k-nearest
neighbor graph, obtained by connecting each vertex to the top k most sim-
ilar neighbors, with an edge weighted according to the relative similarity
(eij = Sij).

The final graph must be symmetric, therefore an edge between vi and vj
is drawn if either eij or eji is one of the k strongest edges. Moreover, in order
to be sure to always work on a completely connected graph, we also force
the inclusion of edges between consecutive residues on the sequence. As a
result, the effective average number of nearest-neighbors in the final graphs
is always larger than the initial (nominal) k (see Fig. 3.2a for examples from
the dataset).

The parameter k controls the sparsity of the connections in the graph:
a high value of k corresponds to a greater overall graph connectivity and is
more suitable for identifying larger clusters, while a smaller one might be
used for more granular decompositions.
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Figure 3.2: (a) Average effective number of nearest-neighbors in the graphs obtained from
the three DCA approaches, as a function of the nominal number k. (b) Average number
of sequence consecutive residues per position included in the set of top k residues with
strongest couplings. The red line shows that plmDCA tends to assign stronger couplings
to the pairs of consecutive residues on the sequence. In both figures, error bars = s.e.m.

To choose k, we use an internal criterion based on the clustering coeffi-
cient C [118], also known as “cliqueness”. This quantity measures the av-
erage probability that two neighbors of a vertex be also connected between
themselves. More precisely, given a vertex vi with ni neighbours, the local
clustering coefficient is computed as

Ci =
ti

ni(ni − 1)/2
, (3.9)

where ti is the number of links between the neighbors of vi. The global
clustering coefficient is then defined as the average of the local coefficients of
vertices with more than 1 neighbor:

C = 〈Ci〉ni>1. (3.10)

A high clustering coefficient means that the probability for two vertices
to be connected by an edge is higher if they have a mutual neighbor, and for
real-world networks it typically ranges from a few percent to about 50% or
more [119].

For comparison, it is informative to derive the clustering coefficient for
random graphs, also known as Erdös-Rényi graphs. In these models, the
probability p of edge formation is defined a priori, and it is independent for
each vertex, so that the clustering coefficient is simply equal to p. Given the
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number N of vertices, the average number of neighbours (or average degree)
k̄ is also easily computed as the total number of edges, N(N − 1)/p, divided
by N , i.e. k̄ = (N − 1)p. It then follows that:

Crand = p =
k̄

(N − 1)
. (3.11)

The difference of the clustering coefficient with respect to the random
case,

∆C = C − Crand, (3.12)

provides then a good measure for the intrinsic clustering “propensity” of a
graph.

In the Results section, we will use this criterion to guide our choice of the
parameter k.

3.2.5 Cluster compactness

Once the clusters of the graph G(V,E) are obtained, we will assess their
spatial compactness on the protein structure with a suitable order introduced
hereafter.

In case of a compact cluster q of nq vertices, each vertex can be con-
nected with any other one in the same cluster by at least one path joining
only vertices within the cluster itself. When a single vertex vi is completely
disconnected from the relative cluster, the number of intra-cluster “broken
paths” bq is equal to nq − 1 (counting symmetric paths once). We then say
that there are dq = bq/(nq−1) disconnected vertices, which in the latter case
amount to 1. We note that this definition distinguishes between a “fuzzy”
cluster, where the disconnected vertices are scattered and do not group to-
gether, and a cluster split in multiple sub-clusters. In particular, the case
in which half of the cluster vertices are scattered over the graph in isolated
positions has a worse count (bq = (nq/2)(nq − 1), dq = nq/2) than the case
where a cluster is split in two compact sub-clusters (bq = (nq/2)2, dq ' nq/4).

We, then, finally compute an intensive quantity, called compactness, de-
fined as:

Ω = 1− 1

N

∑
q

dq, (3.13)

where N is the total number of vertices.
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3.2.6 Adjusted mutual information

When discussing the results obtained by our method, we will need a quan-
titative way to compare two cluster partitionings in order to assess their
similarity. In the context of information theory, one of the way is to esti-
mate the amount of shared information between the two partitionings, i.e.
by computing their mutual information (MI).

The information content of a partitioning P of N elements into Q clusters
is quantified by the entropy:

H(P ) = −
Q∑
q=1

nq
N

log
nq
N
, (3.14)

where nq is the number of elements in cluster q.
Given a second partitioning P ′, the average amount of information needed

to describe it, once the first partitioning P is already known, is given by the
conditional entropy

H(P ′|P ) = −
Q′∑
q′

Q∑
q

nq′q
N

log
nq′q
nq

, (3.15)

where nq′q counts the elements belonging to both cluster q′ and q.
The mutual information is then defined as the difference between the

entropy associated with P ′ and the conditional entropy H(P ′|P ):

MI(P ′, P ) = H(P ′)−H(P ′|P ). (3.16)

For our purpose, we will adopt the related concept of adjusted mutual
information (AMI). This quantity is defined as:

AMI =
MI− 〈MI〉

max(MI)− 〈MI〉
, (3.17)

where 〈MI〉 is the expected value of MI over pairs of random partitions, for
which an analytical expression has been derived [120].

The AMI has two desirable properties: (i) it is normalized, i.e. two iden-
tical partitions return an AMI equal to 1, and (ii) it is adjusted-for-chance,
namely two random clusterings produce on average an AMI equal to 0.

64



CHAPTER 3. FROM SEQUENCE TO STRUCTURE

3.3 Results and discussion

We present and discuss here the main findings from the application of the
scheme detailed in Fig. 3.1 to the dataset of ∼ 800 MSAs. The final goal
is to test the feasibility of the decomposition strategy for obtaining domains
of evolutionarily-related residues and hence assess its usefulness for studying
the sequence-structure relationship. Throughout this analysis, we will also
present a comparison between the three DCA methods (plmDCA, gplmDCA,
plmDCA20) briefly recalled in the Methods section.

We start by describing the analysis performed on the matrix of statistical
couplings between residues, as obtained from the DCA, in order to prepare
the ground for the clustering procedure. In fact the latter, for optimal dis-
criminatory performance, is best applied not to the matrix of couplings, but
to a sparser graph obtained by retaining only the strongest couplings for each
amino acid. This ensures that the partitioning will capture the strongest sig-
nals of coevolutionary relationships. The number of strongest couplings to
retain, k, is a parameter that will itself be optimised.

In the subsequent sections, we will then present a dataset-wide survey of
some properties of the domain decompositions obtained from coevolutionary
information. A few notable cases will be discussed in detail as well.

3.3.1 Clustering propensity of coevolutionary signals

As detailed in the Methods section, the input of the clustering algorithm
is a similarity graph, G(V,E), whose vertices V are the sequence sites (i.e.
the residues in the consensus sequence) and the pairwise edges E are the k
strongest coevolutionary couplings for each site.

The optimal value of the connectivity parameter k is set by generating
an ensemble of graphs Gk for a few values of k, ranging from 3 to 55, and for
each MSA in the database. We then evaluate their corresponding clustering
coefficients, adjusted with respect to a random reference, according to the
definition of eq. 3.12. We recall that the clustering coefficient has been intro-
duced in the context of graph theory to measure the “clustering propensity”
of a graph, that is the tendency of vertices in a graph to aggregate locally.

Fig. 3.3a shows the histogram of the parameters k giving a maximum
value of the adjusted clustering coefficient ∆C = C − Crand. In most cases,
the maximum occurs for relatively small values of k, i.e. about 7. The same
properties hold for the average value of ∆C as well (see Fig. 3.3b). Based
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Figure 3.3: (a) Histogram of the parameter k for which the highest adjusted clustering
coefficient ∆Cmax is observed, over the MSA dataset. (b) Average adjusted clustering
coefficient for different nearest-neighbor numbers k (error bars = s.e.m.).

on these typical, general features of the graphs, we set k to be equal to 7
and, for definiteness, we will keep this parameter fixed for each entry in the
dataset.

By comparing the curves in Fig. 3.3 one also observes that, among the
three considered DCA methods, the higher clustering propensity is given by
plmDCA. It is possible that this compliance to clustering results from the
fact that plmDCA takes into higher account the influence of peptide chain
connectivity on coevolutionary mutations (see Fig. 3.2b), which may favour
the formation of stronger couplings between mutual neighbors of the same
residue.

In the following, we will demonstrate a correlation between the adjusted
clustering coefficient ∆C computed on a similarity graph and some desirable
properties of the associated clusters of residues, like their compactness on
the structure.

3.3.2 Structural compactness of coevolutionary domains

Following the scheme of Fig. 3.1 we next use the spectral clustering scheme
to partition the graph in groups of residues that are strongly related from the
evolutionary point of view. As for the SPECTRUS approach, the number of
partitions, Q, is first varied in the 2–10 range and then the optimal value of
Q is set for each MSA based on the quality score profile.
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Figure 3.4: (a) Domain compactness, averaged over the MSA dataset, at fixed number
of domains, for the three inference methods. (b) Average compactness computed over the
top 40 MSAs which feature the highest adjusted clustering coefficient ∆C. In both figures,
the error bars represent the standard error of the mean.

One of the key elements of our approach is assessing the degree to which
the coevolutionary domains are compact in space. This is a particularly
relevant question because, we recall, the degree of coevolutionary relationship
is inferred from the sole sequence alignment, with no reference to the proteins’
actual three-dimensional structure.

As a first step in this endeavour, we compute the degree of domain com-
pactness Ω (see Methods section) averaged over all MSAs (〈Ω〉MSA), for each
value of Q.

The results are shown in Fig. 3.4a and clarify that, indeed, the clusters
are typically compact structural domains. In fact, according to the definition
of compactness in eq. 3.13, a value of Ω larger than 0.9 means that less than
10% of residues do not belong to spatially compact domains. Of course, this
significant overall compactness tends to decrease as the number of clusters
increases.

Again, we observe that plmDCA performs better than gplmDCA and
plmDCA20, yielding more compact domains.

For each single MSA, we then consider the degree of domain compactness,
averaged over all number of considered clusters Q as well (〈Ω〉Q). This is done
to obtain a comprehensive view that is robust and not tailored to specific
domain numbers.

By inspecting Figs. 3.5, one observes that low values of the Q-averaged
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Figure 3.5: Scatter plots of the domain compactness, averaged over the subdivisions into
Q = 2, . . . , 10 domains of a single MSA, vs the adjusted clustering coefficient, for the three
inference methods.

compactness are typically observed for MSAs with low adjusted clustering
coefficient. The converse is also true: if we restrict considerations to the top
40 cases with highest ∆C, corresponding to ∼ 5% of dataset, their compact-
ness degree is typically never below 0.97 for any of the three DCA methods,
see Fig. 3.4b.

To better illustrate the implications of the results in Figs. 3.5 we shall
discuss a set of specific plmDCA decompositions, namely those marked in
Fig. 3.5a.

As a first example, we describe the case of Thermoplasma Acidophilum
1320 (PDB ID: 1NE2), whose MSA includes more than 65,000 sequences
(corresponding to 14,000 homology reduced sequences, with a maximum of
90% sequence identity) and which features a relatively high ∆C.

Its coevolutionary domain decomposition is typical of most plmDCA de-
compositions, as almost 78% of MSAs have a comparable or higher compact-
ness score. The quality score computed on the spectral clustering results
gives a clear indication of the optimal number of domains for this protein,
located at Q = 7, see Fig. 3.6a. The relative coevolutionary domains, shown
on the protein structure in Fig. 3.6b, are extremely well-defined from a struc-
tural point of view, comprising uninterrupted stretches of secondary elements
as α-helices or β-sheets. The compactness is therefore very high (Ω ' 0.99).

For completeness, we additionally provide in Fig. 3.6c the subdivision of
the same protein into Q = 4 coevolutionary domains. This subdivision has a
compactness of 0.94, which is the lowest in the Q = 2, . . . , 10 range, though
clearly still being very good. The individual domains are again compact in
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Figure 3.6: Coevolutionary domain decomposition of Thermoplasma Acidophilum 1320
(PDB ID: 1NE2), based on plmDCA. (a) Quality score from the spectral clustering. (b)
Decomposition into Q = 7 domains, corresponding to the maximum in the quality score.
(c) Decomposition into Q = 4 domains. The red domain is the “gap domain”, which
includes nearly all amino acid positions with a gap content higher than 87 %, localized at
the two termini (see also Fig. 3.7a)

both structure and sequence, with only one domain, the one comprising the
termini, that appears split in two. This particular domain assignment is
found in a significant fraction of decompositions in the MSA dataset, and is
related to the presence of a high percentage of gaps in those sequence sites
(see Fig. 3.7a).

It is known, in fact, in the context of DCA, that the couplings between
gap-rich positions tend to be overestimated. This issue has been addressed,
for instance, in the case of plmDCA, by the introduction of the two improved
versions gplmDCA and plmDCA20, as discussed in the Methods section.
While the latter approaches help reducing the bias induced by gaps on the
contact prediction [108], we do not have a definitive answer, at the moment,
to whether they mitigate this phenomenon of a “gap domain” assignment.
Similar subdivisions as the one in Fig. 3.6c from plmDCA are, for example,
obtained from gplmDCA and plmDCA20 as well. On the other hand, it is
noteworthy that such domain assignment is clearly penalized by the quality
score in Fig. 3.6a.

We conclude by illustrating an atypical case, specifically the Zaire Ebola
viral protein 35 (PDB ID: 3L28), which is an outlier in the scatter plot of
Fig. 3.5a. This entry has an atypically low Q-averaged compactness, despite
having a good clustering propensity. It is relevant to note that this entry
has the lowest number of sequences in the dataset (9.15 homology reduced
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a b1NE2:A Q = 6
Ω = 0.79

3L28:D

Figure 3.7: (a) Percentage of gaps per position in the aligned sequences of 1NE2:A, from
0% (blue) to almost 100 % (red), reported on the protein structure. (b) Coevolutionary
domain decomposition of Zaire Ebola viral protein 35 into Q = 6 domains (plmDCA),
with compactness Ω = 0.79. We note that the choice of always retaining the couplings
between sequence nearest-neighbors, while useful to ensure a global connectivity of the
coupling matrix, does not prevent the occurrence of this kind of fragmented clusters.

sequences), which clearly makes it more noisy and less robust. Fig. 3.7b
shows its decomposition into 6 coevolutionary domains, corresponding to a
compactness close to its average value of 0.8.

The analysis of structural compactness, then, gives us confidence about
the method’s viability. The coevolutionary domains identified by the de-
composition strategy are, indeed, generally compact on the structure. The
emergence of cases with an unusually low degree of domain compactness is
clearly linked to problems with the input data statistics, that can be kept
under control by looking, for instance, at the clustering coefficient of the
similarity graph or at the number of sequences of the initial MSA.

3.3.3 Comparison of DCA methods

To gain further insight on the domain analysis, we look at the internal con-
sistency between the subdivisions obtained from the three inference methods
(plmDCA, gplmDCA and plmDCA20). Such consistency measure is carried
out by calculating the Adjusted Mutual Information (AMI) between the re-
spective partitions P and P ′ at the same number of domains Q, and by taking
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Figure 3.8: (a) Histograms of the Q-averaged Adjusted Mutual Information (AMI) be-
tween the partitions into coevolutionary domains derived from the three inference methods.
(b) Plot of the Q-averaged AMI between plmDCA and gplmDCA, as a function of the
adjusted clustering coefficient ∆C, computed for plmDCA. Analogous plots for the other
method comparisons show a similar behavior.

the average:

〈AMI〉Q =
1

9

10∑
Q=2

AMI(P (Q), P ′(Q)). (3.18)

The AMI, described in detail in the Methods section, quantifies in a rigorous
way the overlap between two subdivisions, producing a score normalized
within the range [0, 1], where 0 is the value expected by chance agreement
between two random partitions, and 1 the value associated with identical
partitions. Since the shorter MSA is only 30 positions long, the average is
computed on decompositions into up to a maximum of 10 domains.

In principle, the quality score derived from the spectral clustering, pre-
viously employed for instance in the analysis of 1NE2, should allow to pick
out the optimal number of domains Qbest for a decomposition. Here, we
decide, however, to consider the AMI averaged over the number of domains
because this makes more intuitive the comparison between decompositions
with different Qbest.

As shown by the histograms in Fig. 3.8a, a general agreement between the
three methods emerges quite clearly, with typical values of 〈AMI〉Q within
the range [0.65, 0.85] (see the example in Fig. 3.9 for an intuitive term of
reference for the parameter range).

In particular, gplmDCA and plmDCA20, the two improved versions of
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Figure 3.9: Comparison between the decompositions of Thermoplasma Acidophilum 1320
(PDB ID: 1NE2) into 7 coevolutionary domains, obtained from the three DCA methods.
The AMI between the three partitionings is shown as well.
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the original plmDCA show a quite large AMI between them, larger than the
respective comparison with plmDCA. This suggests that the modifications
introduced by these two methods for handling gap-rich sequence segments in
MSAs makes them distinctly different from plmDCA and yet similar among
themselves.

Fig. 3.8b shows, as an example, the adjusted clustering coefficient com-
puted on plmDCA, plotted against the AMI between plmDCA and gplmDCA
partitionings. The correlation observed here reaffirms what has been previ-
ously noted from the compactness analysis, i.e. that the clustering propensity
measured initially on the matrix of statistical couplings is a good indicator
of the robustness of the final results, here measured from the comparison
between DCA methods.

3.3.4 Connection with structural domains

The accuracy of contact predictions, in the context of DCA methods vali-
dation, is customarily evaluated by computing the fraction of contacts cor-
rectly identified on the true contact map, for cases where the relative three-
dimensional structure is known [108]. Here, for the assessment of a protein
coevolutionary domain decompositions, we adopt the approach of directly
comparing our findings with the structural domains, obtained by clustering
the Cα-Cα distance matrix (within a cutoff of 10 Å, as done in SPECTRUS
with the distance fluctuation matrix). This structural clustering, similarly to
the sequence-based clustering, with which it shares the same algorithmic en-
gine, produces a hierarchy of subdivisions into a variable number of spatially
compact domains.

The similarity between the sequence- and structure-based partitionings is
measured by 〈AMI〉Q, as introduced before in eq. 3.18. In Fig. 3.10a, we then
compare the 〈AMI〉Q for the three inference methods. From the histograms
in the figure, one can see that the performances of plmDCA, gplmDCA and
plmDCA20 are comparable, an observation in accord with the consistency
test of the previous section. Hereafter, we will then mainly refer to the results
relative to plmDCA.

Fig. 3.10b demonstrates once again the usefulness of measuring the ad-
justed clustering coefficient associated with an MSA in order to rule out
those cases that are presumably affected by low statistics, and which are
more prone to give inconsistent partitionings.

As an example, we detail in Fig. 3.11 the case of the NSE1 domain pro-
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Figure 3.10: (a) Histograms of the Q-averaged AMI between the partitions into co-
evolutionary domains, derived from the three inference methods, and the corresponding
structural ones. (b) Plot of 〈AMI〉Q for each MSA vs. the relative adjusted clustering
coefficient ∆C, based on plmDCA.

tein (PDB ID: 3NW0:A), which features the highest clustering propensity
for plmDCA (∆C = 0.57). This is a typical example of a sequence-based
decomposition with a good overall overlap with the corresponding structural
partitioning. The highest value of AMI (0.64), restricted to a few domains,
is obtained for Q = 3, see Fig. 3.11a. From the structural comparison, we
can see how the coevolutionary domains correctly predict the disposition of
residues into the three subdomains.

Without having any prior knowledge of the protein structure, one can
be guided in the choice of an optimal number of coevolutionary domains by
the quality score, introduced with SPECTRUS. In the case of NSE1 domain
protein, the quality score computed for the sequence-based decomposition,
shown in Fig. 3.12, has a first, significant maximum at Q = 4. This is dif-
ferent from the optimal Q found for the structural decomposition, which is
for 3 domains. We note that such discrepancy, although legitimate, given
the different protein aspects the two decompositions are based on, might af-
fect the estimate of the overlap between them. A more accurate calculation
of the AMI may then be obtained from a comparison at different number
of domains. Fig. 3.12d shows, for example, that the AMI between the op-
timal sequence- and structure-based decompositions, into 4 and 3 domains
respectively, is larger than the one computed at the same number of domains,
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Figure 3.11: Analysis of NSE1 domain protein (PDB ID: 3NW0:A). (a) The AMI with
the relative structural decomposition has a first maximum for Q = 3 domains, for all three
inference methods. Panels (b) and (c) show on the structure the relative sequence- and
structure-based decompositions (for plmDCA). In (d), the corresponding partitionings are
shown on the sequence (with different colors with respect to panels (b) and (c)).

Q = 4. The overlap between optimal decompositions, however, can only be
computed by inspecting individually each single case. For the dataset-wide
analysis presented here, the unsupervised Q-averaged AMI is better suited.

In the Appendix, we illustrate a few selected examples of decompositions,
chosen in the dataset among the cases with highest clustering propensity ∆C
and a sufficiently large number of sequences in the MSA. A characteristic
observed in most of these examples is that the coevolutionary domains are
generally compact not only in structure, but also in sequence, that is each
domain is formed by a single uninterrupted amino acid stretch. However, we
note that this is not always the case: a notable example is E. coli SbmC pro-
tein (PDB ID: 1JYH:A), whose decomposition for Q = 4 shown in Fig. 3.13
features structurally compact domains formed by several sequence segments
connected by tertiary contacts. The agreement with the corresponding struc-
tural decomposition into 4 domains, that is one of the optimal partitioning
according to the structural quality score, is remarkable (AMI = 0.82).

We can then conclude that the coevolutionary domains decomposition is
a very promising tool for identifying the residues that are more likely to form
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Figure 3.12: (a) Quality scores of the coevolutionary (CD) and structural (SD) domain
decompositions of NSE1 domain protein (PDB ID: 3NW0:A). Panels (b), (c) and (d) show
a few notable domain decompositions, both on the structure and on the sequence. The
color legend is not preserved between the two representations.

spatially compact clusters in the folded structure.

3.4 Conclusions

In this chapter, we have summarized some preliminary results from the ap-
plication of the coevolutionary domain decomposition strategy.

The method has been tested on an extensive dataset of almost 800 mul-
tiple sequence alignments. A particular attention has been put in recog-
nizing and controlling the effect of insufficient sampling in MSAs, that can
be detected a priori by measuring intrinsic properties of the coevolutionary
inter-residue coupling matrix.

Measures of internal consistency as well as a comparison with experi-
mental structural information suggest that the method is indeed capable of
providing robust and meaningful results.
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Figure 3.13: Coevolutionary (CD) and structural (SD) domain decompositions of E. coli
SbmC protein (PDB ID: 1JYH:A).

This tool may be therefore useful to interpret and integrate the results
from well established techniques of contact prediction from coevolutionary
information.
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3.5 Appendix: additional figures
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Figure 3.14: Typical examples of coevolutionary domain decompositions, compared with
the corresponding structural domains. The number of domains selected for the represen-
tation on the structure is one of the maxima in the sequence-based quality score. Different
colors are used for the corresponding representation on the sequence.
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Figure 3.15
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Figure 3.16
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PDB ID N Nseq Neff.seq ∆Cplm ∆Cgplm ∆Cplm20

1F98:A 125 65147 23111 0.52 0.42 0.44
1NE2:A 172 65535 14080 0.56 0.39 0.41
2FVR:A 255 52373 9025 0.56 0.30 0.38
2JRF:A 178 51412 13794 0.53 0.35 0.37
2QED:A 258 65496 18268 0.49 0.34 0.36
3PHY:A 125 65182 23212 0.52 0.28 0.43

Table 3.1: Number of residues N , number of (effective) sequences N(eff.)seq in the MSA
and adjusted clustering coefficients ∆C for the examples shown in previous figures.
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