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�It ain't what you don't know that gets you into trouble.

It's what you know for sure that just ain't so.�

� Mark Twain





Abstract

This thesis contains some of the main results obtained during my research activity

in these years, in the Statistical Physics sector at SISSA and in the Quantitative Life

Sciences sector at ICTP.

Chapter 1 serves as an introduction and is kept brief, because each of the following

chapters has a separate introduction containing more details on the di�erent problems

that have been considered.

In Chapter 2 several models of wealth dynamics are discussed, with focus on

the stationary distributions that they have. In particular, we introduce a stochastic

growth model that has a truncated power law distribution as a stationary state, and

we give an interpretation for the mechanism generating this cut-o� as a manifestation

of the shadow banking activity.

Chapter 3 is devoted to the issue of wealth inequality, and in particular to its

consequences, when in a system with a power law wealth distribution, economic

exchanges are considered. A stylized model of trading dynamics is introduced, in

which we show how as inequality increases, the liquid capital concentrates more and

more on the wealthiest agents, thereby suppressing the liquidity of the economy.

Finally in Chapter 4, we discuss the issue of complexity and information sensi-

tiveness of �nancial products. In particular, we introduce a stylized model of binary

variables, where the �nancial transparency can be quanti�ed in bits. We quantify

how such information losses create sources of systemic risk, and how they should

a�ect the pricing of �nancial products.

The results of Chapter 2, Chapter 3 and Chapter 4 are contained in the following

publications:

� Davide Fiaschi, Imre Kondor, Matteo Marsili and Valerio Volpati, The Inter-

rupted Power Law and the Size of Shadow Banking, PLoS ONE, 9(4): e94237

(2014) .

� João Pedro Jerico, François Landes, Matteo Marsili, Isaac Pérez Castillo and

Valerio Volpati, When does inequality freeze an economy?, J. Stat. Mech.

073402 (2016) .

� Marco Bardoscia, Daniele d'Arienzo, Matteo Marsili and Valerio Volpati, Lost

in Diversi�cation, in preparation (2016) .
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Chapter 1

Introduction

Historically, Statistical Physics introduced the idea that the complex phenomenol-

ogy of a macroscopic system can be explained as an emergent process through the

interaction of its constituents, when these are modelled as an ensemble of random

variables following simple rules [1]. The enormous practical advantage of this ap-

proach lies in the fact that a full detailed description of the microscopic dynamics

is irrelevant for the understanding of the collective behaviour. Even extremely styl-

ized models can have rich and non predictable macroscopic emergent properties. The

conceptual breakthrough of this idea is that what should be considered fundamental

- in Science - cannot be reduced to something happening at the scales of elementary

particles, but lies as well in the types of interactions taking place at any scale [2].

More recently, these ideas made their way also through non-conventional physical

systems, both in natural and social sciences. Apart from bringing into the game

very successful and modern quantitative tools (in some cases directly borrowed from

Statistical Physics, in other cases from Network Science or from Information Theory,

just to name a few), the Complex Systems Science has introduced unifying prin-

ciples in areas where the quantitative understanding used to be limited to few speci�c

sub-�elds. One illustrative example of this might be the concept of complex adaptive

system, initially introduced to explain the robustness of ecological systems [3], and

then used for the description of the development of language [4] and societies[5], or to

derive principles for the stability of the �nancial system [6] and for business strategies

[7].

In this thesis, I have been mainly interested in the application of these concepts

to economic sciences.
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In the �eld of Economics, quite surprisingly, for many years empirically driven

analyses have been rather marginal. On the contrary, quantitative models borrowed

from classical economic theories have been designed more with the purpose of es-

tablishing the internal consistency of some axioms referred to some ideal capitalistic

dream, rather than to reproduce empirical evidences (see [8] for a partisan manifesto).

Nevertheless, persistent statistical regularities and patterns in empirical data are

frequently observed in many contexts, from stock market returns distributions [9]

to corporate growth [10], passing through urban development [11]. This suggests

that explaining economic phenomena as emergent statistical properties of a large

interacting system should be indeed feasible, as it has been done with encouraging

success in these years [12�15].

When these attempts started to become popular, in the middle of the 1990s

under the name of Econophysics, the attention was primarily focused on the analysis

of �nancial markets [9]. Soon after, another direction, closer to Economics than

Finance, has emerged. It studies the distributions of wealth and income in a society

and overlaps with the long-standing line of research in Economics studying inequality.

This research line stemmed from one of the most robust empirical stylized facts

about economic systems, since the work of Pareto, that is the observation that both

the distributions of wealth and income among a group of individuals, as well as the

distributions of sizes of cities and �rms, approximately follow a power law distribution

(called Pareto distribution in Economics) [16, 17]. From the modelling side, a power

law distribution does not require sophisticated assumptions, but it can be easily

reproduced as the stationary state of a plethora of simple stochastic models [18�21].

In Chapter 2, analyzing data from the Forbes Global 2000, a dataset containing

the total assets of the world's largest 2000 �rms, we observe that the largest amongst

these �rms show a deviation from Pareto distribution, because of the presence of a

sharp cut-o� in the tail of the power law, which is populated exclusively by banks and

�rms operating in the �nancial sector. We give an interpretation for the mechanism

generating this cut-o� as a manifestation of the shadow banking system [22], and we

propose a measure of the total asset size involved in this system. Furthermore, we

introduce a stochastic growth model that has a truncated power law distribution as

a stationary state, which is able to �t the data surprisingly well, and can provide a

measure of the shadow banking activity through the years.

The debate on wealth and income distributions, in particular related to the sus-

tainability of economic inequalities, has regained much interest recently, in view of

the claim the actual inequality has raised dramatically in recent years, reaching the

same levels of the beginning of the 20th century [23]. To address the problem of the
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consequences of inequality on the e�ciency of an economy with Pareto distributed

wealth, in Chapter 3 we introduce a simple model of trading dynamics in which a set

of zero-intelligent agents randomly trade a set of goods of di�erent prices. In such

a model, we show how as inequality in the wealth distribution increases, the liquid

capital concentrates more and more on the wealthiest agents, thereby suppressing the

probability of successful exchanges, i.e. liquidity.

An interesting role, in the literature of wealth and inequalities, is played by the

exponent of the power law, that it has been measured to be close to unity in many

systems [24]. For �rms size distribution, this exponent is found to be slightly below

one in the Forbes Global 2000 dataset, while it is slightly above one in the US house-

hold wealth distribution [25], and it is even larger for the US income distribution

[26]. As a matter of fact, an economy with a Pareto exponent smaller than one looks

very di�erent from an economy for which this exponent is larger than one, the �rst

having the richest agents owning a �nite fraction of the total wealth in the system,

even in the thermodynamic limit of in�nite number of agents. As a result of this

wealth condensation, the random exchange dynamics that we introduced completely

freezes in the condensed phase, giving a measure of when inequality is too large to

be sustainable. This is particularly relevant because in the aforementioned datasets

on households income and wealth, the exponents of these empirical distribution have

been decreasing steadily in recent years.

Another very interesting feature that is contained in the Forbes Global 2000

dataset, is the apparent decoupling between the �nancial and non-�nancial sectors.

In the last two decades or so, �nancial �rms have grown at a rate which is consid-

erably larger than the growth rate of non-�nancial �rms. This phenomenon can be

considered as a sort of �ine�ciency� of the �nancial industry to deliver investments

to the real economy. In this respect, a promising direction of research which may

provide clues about the role of �nance in our global economy, is related to the under-

standing of the relationship between the faster growth of �nancial �rms (relative to

non-�nancial ones) and the proliferation of �nancial instruments, as in reference [27].

A di�erent type of �nancial ine�ciency is related to the information processing

of complex �nancial products, considered to be the key factor that lead to the mas-

sive devaluation of structured �nance type of products in 2007, the main trigger of

the global �nancial crisis [28]. Expectations on the future returns of these type of

products can be shown to be sharply dependent on the underlying distribution of the

returns of the individual assets they are composed with. As a result, even when they

are composed of a large number of such individual components, the diversi�cation

principle does not apply and the risk of these �nancial instruments remains high.
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In the last chapter of this thesis, we introduce stylized models of binary variables,

in which we can quantify how �nancial products are sensitive on some side informa-

tion, a�ecting the probability distribution of their components. This leads us to give

some proposal related to how the �nancial industry might increase market e�ciency

and transparency by creating speci�c barcodes for �nancial products [29].
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Chapter 2

Power Law, Interrupted

Power law distributions arise very often, in a large number of surprising empirical

regularities in Economics and Finance. In particular, the distributions of wealth and

�rms sizes, are very often in the literature found to follow power law distributions

(called Pareto distributions in Economics)[16, 17].

Analyzing data from the Forbes Global 2000 dataset, we observe that the largest

global �rms show an anomalous deviation from a Pareto distribution, because of the

presence of a sharp cut-o� in the tail of the power law, which is populated exclusively

by banks and �rms operating in the �nancial sector.

This anomaly in the shape of the top tail of the assets distribution is the starting

point of our analysis, and we discuss it in section 2.1.

From a theoretical point of view, the occurrence of power laws (i.e. Pareto dis-

tributions) in the size distribution of �rms does not require strong assumptions, but

it has been related to proportional random growth (PRG) mechanism [18�21] (see

section 2.3). Assuming that a PRG dynamics should hold also for �nancial �rms, we

can calculate the hypothetical distribution of assets in the absence of any anomaly.

Next, we argue that the di�erence between this hypothetical distribution and the ac-

tual one can be taken as a proxy for the size of the so-called shadow banking system

(see section 2.2), which has been broadly de�ned as credit intermediation involving

entities and activities outside the regular banking system (see [30], p. 3), and it is

the subject of much debate in the literature of �nancial regulation [22, 31, 32].

Finally, in section 2.4 we introduce, as a simple generalization of the model pro-

posed in reference [21], a stochastic growth model that has a truncated power law

distribution as a stationary state, which allows a �rst investigation of the determi-
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nants of the observed anomaly.

2.1 A snapshot of the global economy

Financial deepening

If we take the Forbes Global 2000 (FG2000) list 1 as a snapshot of the global economy,

we �nd that �nancial �rms 2 dominate the top tail of the distribution of �rms by asset

size.

In this analysis, we used the asset size, i.e. the total market value of all the

investments that are presented on the balance sheet of a �rm, as a proxy of the �rm

size. Firm size can, and often has been in several studies where detailed data on assets

were not available, also be measured by other variables such as total sales, number

of employees, or market value. However, even though these variables are available

in the FG2000, they can be strongly a�ected by the �uctuations in market prices,

and by the conditions of labour and other economic fundamentals. Furthermore, for

�nancial �rms in particular, they are not expected to be a good proxy of the actual

size of the �rm.

Even though �nancial �rms are approximately 30% of the �rms that are enlisted

in the FG2000 list in terms of numbers, they account for 70% of total assets in the

2004 FG2000 list, a share that rose to 74% in the 2016 list. On the other side, they

account for approximately 30% of the total sales, pro�ts and market value, a share

that has been roughly constant in the whole period studied.

The predominant role of �nancial �rms in the asset distribution can be described

also by noting how they are placed in the list rank. The highest placed �rm which

is classi�ed as non-�nancial is General Electric, which ranks only 62nd in the 2016

FG2000 list. This seems to be a recent trend: General Electric was the largest non-

�nancial �rm by asset size also in the 2004 FG2000 list, but then it ranked 22nd.

This trend, in which �nancial �rms dominate more and more the tail of the

distribution, and form the largest part of the total assets in the economy, is called

1The data used are publicly available at http://www.forbes.com/global2000/list/ (FG2000). The

FG2000 list refers to the previous year. Thus the 2016 FG2000 list collects �rms according to their

characteristics in 2015.
2we consider as �rms belonging to the �nancial sector all the �rms that in the FG2000 list belong

to the following industries: Banking, Diversi�ed Financials, Insurance, Consumer Financial Services,

Diversi�ed Insurance, Insurance Brokers, Investment Services, Major Banks, Regional Banks, Rental

& Leasing, Life & Health Insurance, Thrifts & Mortgage Finance, Property & Casualty Insurance.

Their number ranges from 501 in the 2013 list to 597 in the 2008 list.
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�nancial deepening in reference [33], to which we refer for a discussion on the systemic

implication of the growth in the size of banks.

Figure 2.1 shows the asset size of all the �nancial �rms, and asset size of all

the remaining �rms. According to reference [33] (see Chart 2), data from Bank of

England shows how the �nancial deepening has been started to take place most likely

in the �rst half of the 1990s.
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Figure 2.1: Total asset sizes for the �nancial and the non-�nancial sectors, in Forbes Global

2000 dataset. In particular, in the years before the 2008-09 global �nancial crisis, �nancial

�rms have been growing at a larger rate than non-�nancial ones. The FG2000 list refers to

the previous year. Thus the 2016 FG2000 list collects �rms according to their characteristics

in 2015. Data of 2004 (2005 FG2000) and 2014 (2015 FG2000) are missing from the plot.

The interrupted power law

Besides being remarkable in themselves, the sizes of the biggest �nancial �rms also

display a peculiar distribution. The 10th largest �rm in the 2016 FG2000 list is Bank

of America, with 2.18 trillion of U.S. dollars in assets, which is comparable to the

Italy's gross domestic product ($2.22 trillion). Yet its size is not much smaller than

the largest �rm in the list, Industrial and Commerce Bank of China (ICBC), which

has assets worth $3.42 trillion. This observation contrasts with the aforementioned

empirical fact for the �rm sizes S to follow a power law distribution as

P (S = x) ∼ x−β−1, (2.1)

with some exponent β > 0.
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Figure 2.2 shows that the rank plot of the �rms included in the 2004, 2007 and

2013 lists of FG2000 approximately follows equation (2.1), with an exponent β close

to one, corresponding to Zipf's law [24]. However, such a power law distribution in

rank seems to apply only from the 20th largest company downward, while the upper

tail, which is entirely dominated by �nancial �rms, levels o�. If Zipf's law were to

hold also for the top 20 companies, we would expect ICBC to be ten times as large as

the Bank of America (hence it should have assets worth approximately $21.8 instead

of $3.42 trillion).
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Figure 2.2: Rank plot of the 2004 list (+), 2007 list (�) and 2013 list (∗) of FG2000 by

asset size. Financial �rms are shown in blue, while the other �rms in red. The straight line

corresponds to Zipf's law and is drawn for comparison.

In fact, we recall that, when a random variable S is distributed with a power law

distribution, the most probable values for the rank ordered �rm sizes S[k] of the k
th

largest �rm, in a sample constituted by N �rms, depend on rank with another power

law dependence. In fact, these most probable values are given by

S[k] ∼
[
N

k

]1/β

. (2.2)
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When a variable is distributed with a power law distribution with exponent β, its

rank ordered statistics depends on rank with a power law with exponent 1/β.

A simple argument to make sense of this can be given shortly. The cumulative

distribution

P (S > x) =

∫ ∞
x

dx′ P (S = x′), (2.3)

is the probability that a �rm has size larger than x. Consequently, the integer value

of NP (S > x) is the expected number of �rms with sizes larger than x, in a sample

of N �rms extracted from the distribution. The kth largest observed value S[k] should

then be given by

NP (S > S[k]) = k. (2.4)

Assuming P (S > S[k]) ∼ S−β[k] yields equation (2.2).

The same truncated power law can be observed also in the more conventional

frequency plot (see �gure 2.3), but the rank plot emphasizes the behaviour of the

distribution in the tail of large �rms.

The occurrence of a power law with a cut-o� is not entirely peculiar of these �rms

size datasets. For instance, in cases in which the sample is not very large, or if the

exponent β is particularly small, an apparent cut-o� could emerge in the rank plot

due to incomplete sampling. Following the analysis of reference [34] (see Chapter 6

in the reference), a re�nement of equation (2.2) yields for the most probable values

S[k] '
[

(βN + 1)C

βk + 1

]1/β

. (2.5)

which could be responsible of an apparent cut-o� (visible only in the rank plot)

looking similar to the one in �gure 2.2 .

In other cases, for instance in the distribution of earthquake moments worldwide

documented in the Harvard catalogue (see Figure 6.1 in reference [34]), one can �nd

a distribution which has a bulk well described by a power law distribution (with

exponent β ' 0.7), while the tail for the largest earthquakes exhibits a signi�cant

departure that can be described by an exponential tail [35]. This departure is usually

described invoking a change of regime in the mechanism generating the largest earth-

quake, for which the same mechanism that is responsible for the events in the bulk

of the distribution does not hold. The mechanism we are going to invoke to account

for this cut-o� in the tail of �rm size distribution has to do with the shadow banking

system, that we are going to introduce in section 2.2.
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Figure 2.3: Cumulative distribution P (S > x) of asset sizes S for �nancial (left panel) and

all (right panel) �rms in 2003, 2006, and 2012 (2004, 2007, and 2013 of FG2000 lists). The

straight line is obtained as a linear �t in an intermediate range of logP (S > x) vs log x (see

table 2.1).

The bulk of the distribution

Table 2.1 reports the ranges considered in the estimate of the power law distribution,

and the estimate of the Pareto exponent β of equation (2.1) for all �rms in the FG2000

list from 2004 to 2013 (2005 is missing for lack of data, while the analysis has not

been extended to the following years). Quite interestingly, Pareto exponent β peaks

at the beginning of the period and steadily decreases until it reaches the lowest level

in 2007 (2008 list), before the �nancial crisis. Then it increases suddenly in 2008 and

remains relatively stable thereafter. Table 2.1 also reports the estimate of the Pareto

exponent of the distribution of �nancial �rms only, βfin ; βfin is smaller than β but

it exhibits a behaviour similar to β, with the important exception that it starts to

decline again after the crisis.

However, the authors of reference [36] observed that Zipf's law (and the same for

power laws in general) holds as a property of a system as a whole, but it may not

hold for its parts. As such, it is manifest in samples that preserve a form of coherence

(with the whole system), but fails to hold in incomplete samples that account for only

part of the system (see [36]). Our �ndings of deviations from a power law behaviour

for �nancial �rms - which are more pronounced than for the whole economy, is not

entirely surprising and it might indicate that the Pareto distribution of asset sizes

should be considered as a property that applies to the whole economy, rather than
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List FG2000 S− S+ β βfin

2004 14.88 665.14 0.926 0.710

(0.0012) (0.0019)

2006 11.02 897.85 0.889 0.678

(0.0005) (0.0013)

2007 12.18 992.27 0.871 0.645

(0.0005) (0.0012)

2008 12.18 1096.63 0.864 0.655

(0.0006) (0.0016)

2009 14.88 1339.43 0.899 0.672

(0.0008) (0.0012)

2010 14.88 1339.43 0.891 0.674

(0.0008) (0.0011)

2011 18.17 1339.43 0.899 0.669

(0.0006) (0.0013)

2012 24.53 1635.98 0.905 0.648

(0.0009) (0.0012)

2013 24.53 1998.20 0.897 0.627

(0.0008) (0.0009)

Table 2.1: The range of assets (in billion $) [S−, S+] where the power law behaviour is

estimated (for the whole sample), and the estimated Pareto exponents β both for the whole

sample and limited to the �nancial �rms in the FG2000 lists from 2004 to 2013 (data for

2005 are not available). From the standard errors of the estimated Pareto exponents (re-

ported in brackets) we can notice how �nancial �rms size distribution show more pronounced

deviations from a power law behaviour.

to a particular sector. This is consistent with empirical �ndings e.g. in [24], and

suggests that, in the absence of anomalies, one should expect a hypothetical assets

distribution that would perfectly obey a power law distribution up to the largest

�rms.

But the most interesting aspect of table 2.1 that we want to point out here is that

both estimated exponents β and βfin are less than one for the whole period 2004-2013.
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2.2 Shadow banking

Shadow banking (SB) is a relatively new concept; the term itself is attributed to

McCulley [37]. SB is a term for the collection of non-bank �nancial intermediaries

that provide services similar to traditional commercial banks but outside normal

�nancial regulations. During the 2007-08 crisis, which is often described as a run on

the SB system [38], the private guarantee provided by non-bank institutions proved to

be insu�cient, and without massive public intervention the collapse of the SB system

would have brought down the whole global �nancial system. The �rst taxonomy

of the di�erent institutions and activities of SB was given by Pozsar [39], who also

constructed a map to describe the �ow of assets and funding within the system.

The rise of a large part of SB was motivated by regulatory and tax arbitrage, and

as such represented the answer of the �nance industry to regulation, in particular

to capital requirements. In fact, the core activities of investment banks are subject

to regulation and monitoring by central banks and other government institutions.

As a response, it has been common practice for investment banks to conduct many

of their transactions in ways that do not show up on their conventional balance

sheet accounting and so are not visible to regulators or unsophisticated investors.

Irrespective of the shortcomings or merits of the system, the SB has remained by and

large unregulated, its systemic risks implications uncharted, and its connections with

the rest of �nancial system opaque. Indeed, SB is one of the most important issues

on the agenda of �nancial reform [31, 32].

For us, the only property of interest of the SB system is its total volume. Estimates

of its size di�er in nature: Gravelle and Lavoie [40] distinguish between two broad

approaches to measuring the SB sector, one which is based on identifying the entities

that contribute to it, and the other based on mapping the activities that constitute it.

They also di�er quantitatively, because of the di�culty to determine precisely which

�nancial activities should be included in the calculation. For example, the Deloitte

Shadow Banking Index [41] shows a rise of the SB system in the US before 2008, but

then displays a dramatic drop, suggesting that the phenomenon is now over. The

index is built from speci�c components which are known to have played a major role

in the crisis, and its decline after 2008 re�ects the de�ation of these markets. On the

contrary, the Financial Stability Board (FSB) estimates that SB �[...] grew rapidly

before the crisis, rising from $26 trillion in 2002 to $62 trillion in 2007. The size of

the total system declined slightly in 2008 but increased subsequently to reach $67

trillion in 2011� [30].
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Figure 2.4: Comparison between our index of SB, ISB, with the estimate of the size of SB

made by FSB [42] for the period 2003-2012. The reported con�dence bands for our estimate

of SB are calculated on the basis of ±2 standard errors in the estimate of the coe�cients of

the power law distributions.

The shadow banking index

Here we propose an index for the size of the SB system, denoted by ISB, based on the

idea that, in an ideal economy where the dynamics of �nancial �rms size should be the

same of all other �rms, the power law distribution should extend all the way to the

largest �rms. Since SB is expected to act e�ectively as a movement of assets outside

the largest banks' balance sheets, and the top tail of the distribution is dominated by

�nancial �rms, we are led to attribute the mass missing from the distribution of asset

sizes to SB. Fitting the middle range of the distribution to a power law (as in the

left panel of �gure 2.3) leads us to a theoretical estimate Ŝ[k] of what the size of the

kth largest �rm should be. Summing the di�erence between this theoretical estimate

and the actual size S[k] of the k
th largest �rm, over k, i.e.:

ISB =
N∑
k=1

(
Ŝ[k] − S[k]

)
(2.6)

provides our estimate of the size of the SB system. The sum is limited to the N

largest �rms. We take N = 1000 but the results depend very weakly on the choice
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of N as long as S[N ] is in the range over which the �t is made (Ŝ[k] ' S[k] within this

range).

For comparison, �gure 2.4 reports also the estimated size of the SB system by

FSB [42]. Apart from being of the same order of magnitude, both the FSB estimate

and ISB show a strong rise before the crisis in 2007, a drop in 2008 (much more severe

for ISB), and a growth after 2008, with ISB increasing at a faster pace, especially in

2011.

In reference [40] it is argued that an entity-based approach to SB, such as that

of the FSB, �[...] may omit SB activities undertaken by banks that may contribute

to systemic risk.� Furthermore, as observed by Adrian et al. [22] �[...] the shadow

banking system comprises several di�erent entities and activities. In addition, the

types of entities and activities which are of particular concern will change in the

future, in response to new regulations.� Along similar lines, Pozsar et al [38] conclude:

�[...] the reform e�ort has done little to address the tendency of large institutional

cash pools to form outside the banking system. Thus, we expect shadow banking to

be a signi�cant part of the �nancial system, although almost certainly in a di�erent

form, for the foreseeable future.� These arguments suggest that the FSB estimate,

as well as other estimates which try to map the SB activity, is likely to provide a

lower bound to the real size of the SB system. ISB may instead be considered as

an upper bound, since it measures the amount of assets that are missing from a

hypothetical economy in which a power law distribution holds across all scales of

asset sizes, but there might be di�erent mechanisms, other than SB, which could

account for deviations from it.

In the next section we are going to describe which type of proportional random

growth models (PRG) we are interested in, in order to shed more light on the dynamics

that could have shaped the empirical distribution of �rms asset.

2.3 Stochastic processes of wealth distribution and the expo-

nent β

The ubiquity and stability of these empirical power law distributions (both in Eco-

nomics and in other �elds) lead several researchers to look for mechanisms that are

able to generate such distributions. In particular, power laws can be obtained as

stationary distributions of a very general class of simple stochastic processes, the

proportional random growth (PRG) models - or processes with multiplicative noise.

The simplest PRG model can be de�ned in terms of the following multiplicative
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recurrence equation, for the �rm size Si.

Si(t+ 1) = ηi(t+ 1)Si(t), (2.7)

with any time independent distribution for the multiplicative noise ηi. Rigorously,

this process does not have a stationary distribution. Taking the logarithms we have

logSi(t) = log Si(0)+
∑t′

i=1 ηi(t
′), hence the size probability distribution at large time

converges to a log-normal, but there is not a steady state. An argument to show that

this is the case can be given by noting that, the variance for the log of the �rms size

distribution at time t is given by (if it exists!) V[logSi(t)] = V[logSi(0)] + V[η]t and

it grows linearly in time without bound.

Nevertheless, at large but �nite time, the aforementioned process has a log-normal

distribution which in several regimes is indistinguishable from an apparent power law

[43]. Additionally, it can be regularized (for instance by adding a friction term to

prevent �rms to become too small) and in such a way one can show how such a

process do have a power law distribution as a stationary distribution, but with a

Pareto exponent β always larger than one (and very close to one if the friction is

small) [17]. As we have seen, the �rms size data in the FG2000 list, in the bulk of the

distribution, are compatible with a power law but with an exponent that is steadily

smaller than one, see table 2.1 .

Bouchaud and Mezard [19] argue that β < 1 can be obtained within models of

PRG with random shocks, by adding trading of assets among �rms if this trading is

restricted in size and happens within a sparse network. In this model, the �rms size

evolution is given by

Si(t+ 1) = ηi(t+ 1)Si(t) +
∑
j 6=i

JijSj(t)−
∑
j 6=i

JjiSi(t) , (2.8)

where ηi is a Gaussian random variable and Jij the amount of wealth �rm j spends

buying the product of �rm i. In the mean �eld model, Jij ≡ J/N for all i 6= j,

with N the total number of �rms, the stationary distribution has a power law tail

with Pareto exponent β that again is always larger than one, and converge to Zipf

(β → 1) when J → 0. In the presence of some sparsity in the trading network, both

on a regular random network [19] or on some di�erent complex networks [44], this

dynamics can be studied numerically and the stationary distribution does still have

a power law tail, but now the exponent can be smaller than one.

Malevergne, Saichev and Sornette [21] provide a di�erent mechanism of PRG

which can have a condensed phase, by accounting for the entry and exit of �rms

from the system. In this model, �rms evolve independently according to a log-normal
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stochastic process, like the one of equation (2.7), where ηi is a Gaussian random

variable (with drift µ and variance σ). In addition, according to a Poisson point

process at rate h, one �rm chosen at random disappears from the market. Similarly,

new �rms enter the market according to a Poisson point process at rate ν, having

initial size Si(0) = 1. In reference [21] the possibility of an exogenous growth of

economy is considered by having new �rms which appears more often (ν(t) = νed0t)

and with larger initial size (Si(0) = ec0t). An exponent smaller than one characterizes

an unsustainable economy where the return on investment of the whole economy is

larger then the investments in new �rms (µ − h > d0 + c0), and Zipf's law emerge

as an optimal allocation of resources that ensure a maximum sustainable growth

(µ − h = d0 + c0). In the following we neglect growth (i.e. we take c0 = d0 = 0). It

can be shown that the top tail of the equilibrium size distribution has a power law

shape with a Pareto exponent given by

β =
1

2

[(
1− 2

µ

σ2

)
+

√(
1− 2

µ

σ2

)2

+ 8
h

σ2

]
. (2.9)

This exponent turn out to be independent of ν, which is a parameter that just speci�es

how many �rms there are on average in the economy, and can be �xed to be ν = 1

without loss of generality.

The simplest way to understand this result is by considering a continuous version

of the model, for the density of log �rms sizes ρ = P (logS = x). Such a dynamics

can be described by the Fokker-Planck equation

∂tρ = ∂2
xρ− µ′∂xρ− h′ρ+ δ(x), x ∈ R. (2.10)

The �rst two terms in this equation are the ones which are usually present in a

di�usion process, as they are expected for the evolution of the log of sizes, as in

equation (2.7). The last two corresponds to the two Poissonian point processes, the

uniform absorption of �rms and a source in the origin. The di�usion constant has

been put to unity, and µ′ and h′ are some coarse grained coupling corresponding to

the microscopic parameters µ and h.

It can be shown (see appendix 2.A) that the stationary solution of this di�usive

equation has a power law tail with exponent given by (2.9), provided the boundary

conditions

∂xρ(0+)− ∂xρ(0−) = 1 (2.11)

ρ(0+) = ρ(0−).
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The �rst of these boundary condition speci�es how new �rms are generated in the

origin (S(0) = 1) while the second guarantees the continuity of the solution.

In the next section we introduce a modi�cation of this last model, in order to

reproduce the cut-o� displayed by the Forbes data, i.e. in the presence of SB.

2.4 The model: a PRG model with shadow banking

As described in section 2.2, shadow banking is expected to act e�ectively as a mech-

anism subtracting assets to the largest banks, who are the most targeted by the

�nancial regulators, hence they have the largest incentive in moving assets away from

their balance sheets. A modi�cation of the model of reference [21], which reproduce

the observed cut-o�, can be obtained by adding a Poisson point process at rate λ,

in which the largest �rm i∗ in the economy (with size Si∗ = maxi Si) moves a frac-

tion ε of its assets outside the regular banking system to the SB system, reducing

its observed size to (1 − ε)Si∗ . The subtracted wealth is not distributed among the

other �rms, but it is just removed from the system. Such a modi�cation produces

an anomalous extremal dynamics for the �rms whose size is among the largest in the

economy, which have a diminished growth because of this mechanism.

Like in the model of reference [21], we could consider the exogenous growth of

the economy, by having new �rms which appears more often and with larger initial

size. Since the Forbes dataset contains only information about the largest 2000 �rms

in the economy, it is not possible to estimate from this data the parameters d0 and

c0. Hence, since we ultimately want to �t the observed empirical distribution with

the present model, we �x d0 and c0 to zero, neglecting growth and just focusing our

attention on the shape of the normalized stationary distribution.

A continuous equation like equation (2.10) can be written by just adding a re�ec-

tive boundary condition at some position x0, to account for the extremal dynamics

∂tρ = ∂2
xρ− µ′∂xρ− h′ρ+ δ(x), x < x0 . (2.12)

x0 can be treated as a parameter, and it can found self consistently, after the solution

is found (see appendix 2.A). It can be shown that the stationary distribution has a

bulk which is still described by a power law distribution, with the same exponent β

of equation (2.9), while the tail is characterized by a sharp cut-o� in correspondence

of the re�ective boundary (see appendix 2.A).

The stationary distribution of such a process reproduces surprisingly well the

observed distribution in the data. Table 2.2 reports a calibration of the parameters
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Year µ σ β h ε λ

2005 0.12 0.20 0.89 0.10 0.1 18

2006 0.10 0.24 0.87 0.09 0.1 15

2007 0.15 0.22 0.86 0.13 0.1 20

2008 0.11 0.28 0.90 0.10 0.1 12

2009 0.04 0.21 0.89 0.04 0.1 6

2010 0.11 0.23 0.90 0.10 0.1 14

2011 0.10 0.17 0.91 0.09 0.1 13

2012 0.09 0.17 0.90 0.08 0.1 12

Table 2.2: Estimates of the parameters of the modi�ed PRG model of the SB system for

the period 2005-2012 based on the FG2000 list of �rms.

of our modi�ed PRG model based on the FG2000 list of �rms for the period 2005-

2012 (the analysis has not been extended to the following years). We set ε = 0.1 and

we located the value of λ that yields the best match between the simulated and the

observed �rm size distributions. µ and σ are calculated by yearly variations of the

�rms' asset size in the data between consecutive years (except for 2005 where we use

data of 2003, instead of 2004 which is missing). Using these values, h is computed

from the estimate of the Pareto index β, inverting equation (2.9). The reported value

of λ is the one that minimizes the distance between the observed and the simulated

normalized �rm size distributions. Speci�cally, i) we compute Zk = 〈log (Sk/S
0
k)〉

with Sk being the k-th largest �rm in the simulation, S0
k the k-th largest �rm in the

FG2000 list and 〈 · 〉 is the average over 100 simulations. ii) We �nd λ that minimizes

the mean square deviation
∑

k(Zk − Z̄)2/N , with Z̄ =
∑

k Zk/N .

Figure 2.5 shows the quality of our calibration of the model for 2012. The same

�tting procedure was performed for di�erent values of ε; for ε ∈ (0, 0.1) the ��ux�

ελ of capital �ow into the SB system results independent of ε. This is reasonable,

because when ε is very small and λ very large, wealth is repeatedly drawn into the

SB system from the same �rm (the largest one). The parameter λ, can therefore be

interpreted as a proxy for the intensity of the activity feeding the SB system.

According to the estimate of λ reported in table 2.2, the intensity of SB activity

peaked in 2007 before the �nancial crisis, when the originate-to-distribute activities

implemented by asset-backed securities and other credit derivatives probably reached

their zenith [38]. In 2008 and 2009 the SB activity showed a dramatic fall in agreement

with the sharp decline in all economic activities and the supposed breakdown of the
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Figure 2.5: Comparison between the empirical FG2000 (red crosses) and the simulated

(black bold line) distributions for 2012. Inset: the estimate of λ in the period 2005-2012.

SB system; but from 2010 to 2012 we observe a renewed increase, even though not at

pre-crisis rates. This dynamic is fully consistent with the evolution of the size of SB

system reported in �gure 2.4, being λ a proxy for the intensity of the activity feeding

the SB system. Considering that the largest �rm is of the order of $ 3 trillion in 2012,

our result ελ ≈ 1.2 suggests a �ow of capital into the SB system that is progressing

at approximately $ 3.5 trillions a year.

2.5 Conclusions and outlook

Based on solid evidence in the literature [17], we consider the Pareto distribution

for asset sizes as an empirical law of an economy. The observation of power law

distributions in Economics is a remarkably solid piece of empirical evidence, dating

back to the work of Pareto [16]. This empirical law arises from a generic mechanism

� proportional random growth � that is expected to work in particular for �nancial

�rms. The actual distribution of �rm sizes, at the global scale, closely follows this

empirical law in the middle range, but deviates markedly from it in the upper tail,

which is populated entirely by �nancial �rms.

We invoke SB as the element that would reconcile observations with the expected

law. This allows us to derive an index that identi�es the size of SB with the missing

mass in the top tail of the asset size distribution. This approach resembles the one
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leading astrophysicists to invoke dark matter and dark energy in order to reconcile

empirical observations with the law of gravitation (current estimates suggest that

dark matter and dark energy account for approximately 95% of the total mass in the

universe). Likewise, the observation of a truncated power law in the distribution of

asset sizes, points to the existence of dark assets that account for the missing mass

in the top tail of the distribution.

Our estimate of the SB size is silent about the precise nature of SB activities

and entities, as well as about the mechanisms that generate the observed departure

from the theoretical power law behaviour. The missing mass from the top tail of the

distribution does not necessarily correspond to hidden assets. It may rather refer

to assets being redistributed within the system. The creation of Special Investment

Vehicles in the securitization process is one example of a mechanism that transfers

assets from large banks in the top tail to the bulk of the distribution.

The index is based on a simple and robust statistical feature, depending on a

collective property of the economy. It is hard to manipulate and simple to compute,

as it requires only data publicly available.

Haldane [45] recently argued that monitoring and regulation based on a detailed

classi�cation of �nancial activities is unlikely to keep pace with the rate of innovations

in the �nancial industry. The increase in complexity of �nancial markets should

rather be tamed by measures based on simple metrics, which are robust to change in

regulation and �scal policy. The index of SB proposed here is a contribution in this

direction.

ISB implicitly attributes SB activities to the largest �nancial �rms which populate

the top tail of assets distribution. It is well documented that the main �nancial �rms

originated most of the SB activities before the crisis [46]. Yet, ISB also crucially

depends on the exponent β, whose estimate depends on the shape of the distribution

in the intermediate range. In particular, ISB is expected to increase if the exponent

β decreases and vice-versa. A comparison between table 2.1 and �gure 2.4 shows

how ISB is (anti)correlated with β and βfin: when the assets distribution gets broader

(i.e. β and βfin decrease), ISB increases and vice-versa. After the 2007-08 crisis, the

correlation of ISB with βfin is much stronger than with β. This is a further indication

that the behaviour of �nancial �rms is at the core of the dynamics of ISB.

On the theoretical side, in section 2.4 we discuss a PRG model reproducing the

observed behaviour of the largest �nancial �rms based on an anomalous extremal

dynamics, by which �rms at the top of the distribution of �rm sizes shift part of

their assets o�-balance-sheet. Within this framework, we estimate the intensity of

SB activity in 2005-2012, which largely agrees with the observed behaviour of the
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SB system. Such an estimate is obtained by comparing the stationary distribution

of the model with the empirical distribution in the FG2000 lists. Such an approach

could be criticized by arguing that we cannot really assume that each distribution

for a given year in the FG2000 lists is a stationary distribution, but instead these

snapshots should be considered as out of equilibrium snapshots of the economy. A

�rst hint that this could indeed be the case is given by the fact that the FG2000

normalized distributions at di�erent years look very similar, β and βfin changing only

very little from year to year, while the estimated parameters µ, σ and h change more

pronouncedly in time. Secondly, in the last two decades, �nancial �rms have grown at

a rate which is larger than the growth rate of �real economy� �rms. In any stochastic

model of wealth evolutions, di�erent growth rates among �rms hinder the reaching

of a stationary state. For these reasons, a full dynamical inference of the model over

the data seems to be preferable, with di�erent parameters describing the dynamics

in the �nancial and in the non-�nancial sectors.
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2.A A Fokker-Planck equation for the model: with and with-

out shadow banking

We write down a continuous equation for the density of �rms in the model of reference

[21] and in our modi�cation with shadow banking (SB). In this model, �rms are

created with Poissonian rate ν with unit size. Firms disappear from the market at

Poissonian rate h, uniformly with no dependance on the size of the �rm. While

they are alive, these �rms experience a log-normal process (drift µ variance σ). As

presented, this model predict a power-law distribution for the �rm sizes. In order

to account for the cut-o� present in the data we add a SB mechanism by selecting

with Poissonian rate λ the richest �rm in the market who decide to move a part of

its asset εSi∗ outside the regular banking system, thus reducing its size to (1− ε)Si∗ .

The model of reference [21]

The following equation, equation (2.10) in the main text, is expected to give a coarse

grained description of the microscopic model, accounting for the evolution of the �rms

(log of the �rms sizes):

∂tρ = ∂2
xρ− µ′∂xρ− h′ρ+ δ(x), x ∈ R. (2.13)

In this equation, µ′ and h′ are some coarse grained coupling corresponding to the

microscopic parameters µ and h, while the di�usion constant (related to σ has been

set to 1 for convenience). Normalizable stationary solutions of the previous equation

are

ρ(x) = Aea+x, x < 0 (2.14)

ρ(x) = Cea−x, x > 0

.

By plugging this ansatz into (2.13), we get

a± =
µ′ ±

√
µ′2 + 4h′

2
=
√
h′
g ±

√
g2 + 4

2
, with g = µ′/

√
h′. (2.15)

Without shadow banking, the equation has to be endowed with the two boundary

conditions:

∂xρ(0+)− ∂xρ(0−) = 1 (new �rms, rate ν = 1) (2.16)

ρ(0+) = ρ(0−) (continuity),
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which are enough to determine

A = C =
1

a+ − a−
. (2.17)

In order to compare this result with the one in reference [21], we can perform the

change of variable s = ex so that for large s

ρ(s) =
1

s

1

a+ − a−
sa− ∼ sa−−1. (2.18)

Hence a− should be minus the β exponent of equation (2.9). In fact by �xing

µ′ =
µ− (σ2/2)

(σ2/2)
(2.19)

h′ =
h

(σ2/2)
(2.20)

we get the expected result

β = −a− = 1/2− µ/σ2 + 1/2

√
(1− 2µ/σ2)2 + 8h/σ2. (2.21)

We notice, for further convenience, that the presence of the drift term breaks the

x→ −x symmetry in ρ(x) so that we have

E[x] =

∫
xρ(x) =

g

h′3
(2.22)

The model with SB; a simpli�ed case, without drift

As suggested by numerical results which show a sharp cut-o� in correspondence of a

given size, the equation to account for the evolution of the �rms with the addition

of the SB mechanism can be the same as before, and the extremal process can be

inserted here as a re�ecting boundary in the Fokker-Planck. Hence we have:

∂tρ = ∂2
xρ− h′ρ+ δ(x), x < x0 , (2.23)

with boundary conditions

∂xρ(x0) = 0 (SB cut-o�) (2.24)

∂xρ(0+)− ∂xρ(0−) = 1 (new �rms, rate ν = 1)

ρ(0+) = ρ(0−) (continuity).
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The position of the boundary x0 is now an unknown of the model, and we are going

to �x it later.

The normalizable stationary solutions now are

ρ(x) = Ae
√
h′x, x < 0 (2.25)

ρ(x) = Be
√
h′x + Ce−

√
h′x, 0 < x < x0

Imposing boundary conditions (2.24) we �nd

A =
1 + e−2

√
h′x0

2
√
h′

, B =
e−2
√
h′x0

2
√
h′

, C =
1

2
√
h′
. (2.26)

The stationary solution ρ(x) that we just found is not normalized, instead∫ x0

−∞
ρ(x) =

1

h′
. (2.27)

In order to normalize it, one should multiply A, B and C by h′

Without any SB mechanism, this distribution is expected to be even for x→ −x,
because we are in a simpli�ed case with no drift term µ′ = 0. SB induce a shift of

the distribution to the left proportional to some ε′, the amount that is subtracted to

the top �rms, and to h′, the probability of subtraction to that given �rm. Imposing

this condition

E[x] = −ε′h′. (2.28)

We want to compute
∫
xρ(x) and impose it to be equal to −ε′ (since we use the

non-normalized ρ(x)), in order to determine the unknown x0. We have

∫ x0

−∞
xρ(x) =

∫ 0

−∞

1 + e−2
√
h′x0

2
√
h′

xe
√
h′x +

∫ x0

0

e−2
√
h′x0

2
√
h′

xe
√
h′x + (2.29)

+

∫ x0

0

1

2
√
h′
xe−

√
h′x.

The sum of this 3 integrals can be shown to be∫ x0

−∞
xρ(x) = −e

−
√
h′x0

h′3/2
. (2.30)
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The model; with drift and SB

We consider here the same equation of the previous section in the presence of drift

∂tρ = ∂2
xρ− µ′∂xρ− h′ρ+ δ(x), x < x0 (2.31)

Again, the normalizable stationary solution is

ρ(x) = Aea+x, x < 0 (2.32)

ρ(x) = Bea+x + Cea−x, 0 < x < x0

with

a± =
µ′ ±

√
µ′2 + 4h′

2
=
√
h′
g ±

√
g2 + 4

2
, with g = µ′/

√
h′. (2.33)

The boundary conditions are:

µ′ρ(x)− ∂xρ(x0) = 0 (SB cut-o�) (2.34)

∂xρ(0+)− ∂xρ(0−) = 1 (new �rms, rate ν = 1)

ρ(0+) = ρ(0−) (continuity).

We �nd

A = B + C, (2.35)

C =
1

a+ − a−
. (2.36)

B = −a+

a−
C
ea−x0

ea+x0
. (2.37)

At g = 0 these value are equal to the result of the no-drift subsection. The normal-

ization of ρ(x) is still given by noting that∫ x0

−∞
ρ(x) =

1

h′
(2.38)

We use the same argument of the previous subsection to �nd x0. The integral∫ x0

−∞
xρ(x) =

∫ 0

−∞
Axea+x +

∫ x0

0

Bxea+x + (2.39)

+

∫ x0

0

Cxea−x.
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can be shown to be ∫ x0

−∞
xρ(x) =

g

h′3/2
− a+

ea−x0

h′2
(2.40)

which turn out to be equal to (2.30) for g = 0 and to the result without the SB

mechanism for x0 → ∞. The position of the re�ective boundary can be �xed by

inversion of:

a+
ea−x0

h′2
= ε′ . (2.41)

Connection with microscopic parameters

We studied the process with di�usion coe�cient equal to 1 (the constant in front of

∂2
xρ). In order to �nd the connection with the microscopic parameters one should

consider the di�usion coe�cient to be σ2/2.

Hence we can use

µ′ =
µ− (σ2/2)

(σ2/2)
(2.42)

h′ =
h

(σ2/2)
, (2.43)

In addition to these, the parameter ε′ that we introduced as a mean displacing that

is due to SB should be

ε′ = −λ log(1− ε). (2.44)

Moving to the notation used in the paper, and keeping track also on a factor h′ coming

from the normalization of ρ(x) we �nd

a+s
a−
0

4h2/σ4
= −λ log(1− ε) (2.45)

where s0 = ex0 . The previous equation can be used to �x x0 when the microscopic

parameters of the model are known. As in the previous cases, the exponents read

a− = −1/2 + µ/σ2 + 1/2

√
(1− 2µ/σ2)2 + 8h/σ2 (2.46)

a+ = −1/2 + µ/σ2 − 1/2

√
(1− 2µ/σ2)2 + 8h/σ2. (2.47)

Inverting (2.45) is easy and one can thus easily compute the full distribution

ρ(s) =

{
Asa+ s ≤ 1

Bsa+ + Csa− 1 ≤ s ≤ s0

(2.48)
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Or, for large s the cumulative distribution

P (S > s) = − 1

a−(a+ − a−)

(
sa− − s

a−
0

s
a+
0

sa+
)

(2.49)

For s� s0 this equation shows the same power law exponent of the case with no SB,

controlled by β = −a−. Close to the cut-o� the distribution shows a sharp drop to

zero.

2.B A comment on power laws and criticality

The ubiquity of power laws distributions in both social and natural sciences asks

for a deeper understanding about mechanisms generating them. In section 2.3 we

give a short account of the mechanisms based on proportional random growth, or

multiplicative noise, which is particularly convincing for wealth distribution models,

but it is not appropriate for several di�erent power laws arising in language, biology,

earthquakes and so on.

In addition, very often power laws are observed with an exponent β that is very

close to unity (Zipf's law), like in the data on �rms asset presented in this chapter. We

recall that β = 1 corresponds to a critical point in the space of power law distributions,

signalling the condensation transition. In fact, when β < 1, even in a very large

sample, the average properties are controlled by a �nite number of events.

In the models described in section 2.3, the speci�c value β = 1 corresponds to a

special point. While in reference [19], in order to attain distribution with a tail β < 1

some sparsity has to be introduced, in the model of reference [21] β = 1 is the point of

optimal sustainable growth. In the more general point of view expressed in reference

[47], Zipf's law is critical, because in an exponential representation of the probability

distribution, it turns out to reduce to a linear relationship between �energy�, the

logarithm of the p.d.f., and entropy. However, while in the usual context of critical

phenomena, criticality requires the �ne tuning of some external control parameters,

in order to poise the system on the speci�c critical point, such a mechanism seems to

be missing in these distributions in complex systems. In other words, many of these

distribution seems to be self poised at critical point [47].

To account for this ubiquity in very diverse systems, a series of less speci�c mech-

anisms for the occurring of Zipf's law have been proposed in the literature, which

could also be relevant for the present subject of economic distributions. Zipf's law

could be attained in a complex system of interacting objects thanks to some learning

process [48], to the presence of hidden variables [49] or it can be a trade-o� between
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cooperation and competition [50]. Finally, in reference [51], it is proposed that Zipf's

law, as well as power laws in general, can appear even when it is not an inherent

property of the real distribution of a given system, but as a result of the e�ort of ex-

tracting more information as possible from an incomplete sample, in a regime where

the sampling is poor.
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Chapter 3

The Chilling Inequality

The issue of economic inequalities is central in the present economic [52] and political

[53] debate. It is beyond the scope of this chapter to discuss why it is so, but it is

surely related with the observation that in recent years the levels of inequality have

grown dramatically and have reached the same levels as in the beginning of the 20th

century [23, 25, 26, 52]. The recent availability of highly detailed datasets on income

[26] and wealth [25], that we discuss in section 3.1, shows how empirical household

distributions, similar to �rm sizes ones, are compatible with a power law description.

In this setting, the aforementioned rise in inequality can be described by a decrease

in the Pareto exponent, that has been taking place steadily in the last 30 years, both

for the income and the wealth distribution.

Without clear yardsticks marking levels of inequality that seriously hamper the

functioning of an economy, the debate on inequality very often remains at a qualitative

or ideological level. For these reason, from section 3.2 onwards, we introduce a stylized

model that addresses the issue of the e�ciency of an economy with high degree of

inequality. In particular, the main goal of the present work is to isolate the relation

between inequality and liquidity in the simplest possible model that allows us to draw

sharp and robust conclusions.

Speci�cally, the model that we introduce in section 3.2 is based on a simpli�ed

trading dynamics in which agents with a Pareto distributed wealth randomly trade

goods of di�erent prices. Agents receive o�ers to buy goods and each of these trans-

action is executed if it is compatible with the budget constraint of the buying agent.

This re�ects a situation where, at those prices, agents are indi�erent between all

feasible allocations.
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The results, summarized in section 3.3 and section 3.4, show that when inequality

in the wealth distribution increases, �nancial resources (i.e. cash) concentrate more

and more in the hands of few agents (the wealthiest), leaving the vast majority

without the �nancial means to trade, resulting in the freezing of the economy.

Our main �nding is that, in the simpli�ed setting of our model, there is a sharp

threshold beyond which inequality becomes intolerable. More precisely, when the

power law exponent of the wealth distribution approaches one from above, liquidity

vanishes and the economy halts because all available (liquid) �nancial resources con-

centrate in the hands of few agents. This provides a precise, quantitative measure of

when inequality becomes too much.

3.1 Inequality in the long run

The debate on the sustainability of economic inequalities has a long history, dating

back at least to the work of Kuznets [54] on the u-shaped relationship between in-

equality and development, who discussed how a society with a too large degree of

inequality grows less than a more fair one (at least in developed countries). Following

Kuznets, much research in this �eld has focused on the relation between inequality

and growth (see e.g. [55]). Inequality has also been suggested to be positively cor-

related with a number of indicators of social disfunction, from infant mortality and

health to social mobility and crime [56].

Despite these seminal contributions, inequality has been a marginal topic in most

economic theories, which relegate it more to an ethical issue, though important, than

to one of the main factors concerning growth. The subject has regained considerable

interest recently, in view of the claim that levels of inequality have reached the same

levels as in the beginning of the 20th century [26, 52]. After the global �nancial cri-

sis, and the slow growth of the subsequent period (Great Recession), the prevailing

view on inequality is changing. In the words of Blanchard, former chief economist

at IMF, � as the e�ects of the �nancial crisis slowly diminish, another trend may

come to dominate the scene, namely rising inequality. Though inequality has always

been perceived to be a central issue, until recently it was not seen as having major

implications for macroeconomic developments. This belief is increasingly called into

question. How inequality a�ects both the macroeconomy, and the design of macroe-

conomic policy, will likely be increasingly important items on our agenda for a long

time to come � [57, 58] .

Piketty and Saez [26], and Saez and Zucman [25] study the evolution of the

distributions of income and wealth among the US households over the last century,
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and they �nd increasing concentration, of both income and wealth, in the hands of

the 0.01% of the richest.

Figure 3.1 shows the Pareto exponents of the wealth and income distributions,

obtained assuming that both the data in references [26] and [25] are consistent with

a power law distribution

P (ci > x) ∼ x−β, (3.1)

where ci is the wealth (or income) of the of the i−th household. Such an assumption

is justi�ed with a good agreement down to the 10% of the richest (see the inset in

�gure 3.4 in section 3.5).

The Pareto exponents in �gure 3.1 are estimated by noting that both references

[26] and [25] report the fraction c> of wealth (or income) in the hands of the P> =

10%, 5%, 1%, 0.5%, 0.1% and 0.01% richest individuals. If the fraction of individuals

with wealth (or income) larger than c is proportional to P>(c) ∼ c−β, the wealth share

c> in the hands of the richest P> percent of the population satis�es c> ∼ P
1−1/β
> (for

β > 1). Hence β is estimated from the slope of the relation between logP> and log c>.

The error on β is computed as three standard deviations in the least square �t. The

quality of the �t is not constant through the years, for instance the data on wealth

better �ts a power law distribution after the 1960s (see the error bars in �gure 3.1).

Wealth inequality is much greater than income inequality. While having approx-

imately similar behaviour along the years, the Pareto exponent for wealth is always

clearly smaller than the income one. The exponents β, both for the income and the

wealth distributions, have been steadily decreasing in the last 30 years, reaching the

same levels it attained at the beginning of the 20th century (for wealth, β = 1.43±0.01

in 1917 and β = 1.38± 0.01 in 2012).

Traditionally, data on wealth are less discussed than data on income, since the

latter has always been easier to obtain, due to the fact that taxation in almost every

country is mainly based on labour income. Even from the theoretical side, models

of wealth are conceptually more complicated, mainly because wealth accumulates

gradually over long period of time. However, in the following we concentrate our

analysis on wealth. In the next section, we introduce a model that, rather than

focusing on the determinants of inequality, focus on a speci�c consequence of it, i.e.

liquidity, which is the ability of the economy to allow agents to exchange goods.
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Figure 3.1: Pareto exponent β of the income and wealth distribution as a function of time.

Both time series refer to the US. The data on the income distribution is retrieved from [26]

and covers the period from 1917 to 2000, the data on the wealth distribution is taken from

[25] and covers the period 1917-2012.

3.2 The model: a zero-intelligence agent-based trading dy-

namics

The model consists of N agents, each with wealth ci with i = 1, . . . , N . Agents are

allowed to trade among themselves M objects. Each object m = 1, . . . ,M has a

price πm. A given allocation of goods among the agents is described by an N ×M
allocation matrix A with entries ai,m = 1 if agent i owns good m and zero otherwise.

Agents can only own baskets of goods that they can a�ord, i.e. whose total value

does not exceed their wealth. The wealth not invested in goods

ci −
M∑
m=1

ai,mπm = `i ≥ 0, i = 1, . . . , N, (3.2)

corresponds to the cash (liquid capital) that agent i has available for trading. The

inequality `i ≥ 0 for all i indicate that lending is not allowed. Therefore the set of

feasible allocations � those for which `i ≥ 0 for all i � is only a small fraction of the

MN conceivable allocation matrices A.
Starting from a feasible allocation matrix A, we introduce a random trading

dynamics in which a good m is picked uniformly at random among all goods. Its

owner then attempts to sell it to another agent i drawn uniformly at random among

the other agents. If agent i has enough cash to buy the product m, that is if `i ≥ πm,
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the transaction is successful and his/her cash decreases by πm while the cash of the

seller increases by πm. We do not allow objects to be divided. Notice that the total

capital ci of agents does not change over time, so ci and the prices πm are parameters

of the model. The entries of the allocation matrix, and consequently the cash, are

dynamical variables, which evolve over time according to this dynamics. This model

belongs to the class of zero-intelligent agent-based models, in the sense that agents

do not try to maximize any utility function.

An interesting property of our dynamics is that the stochastic transition matrix

W (A → A′) is symmetric between any two feasible con�gurations A and A′: W (A →
A′) = W (A′ → A). We note that any feasible allocation A can be reached from any

other feasible allocation A′ by a sequence of trades. This implies that the dynamics

satis�es the detailed balance condition, with a stationary distribution over the space

of feasible con�gurations that is uniform: P (A) = const. Alternative choices of

dynamics which also ful�l these conditions are explored in appendix 3.A.

In particular, we focus on realisations where the wealth ci is drawn from a Pareto

distribution P (ci > c) = c−β, for c larger than a �xed cmin, for each agent i. With

cmin and β being two parameters describing our wealth distribution, we let β vary to

explore di�erent levels of inequality, and compare di�erent economies in which the

ratio between the total wealth C =
∑

i ci and the total value of all objects Π =
∑

m πm
is kept �xed. We use C > Π so as to have feasible allocations. We consider cases

where the M objects are divided into a small number K of classes with Mk objects

per class (k = 1, . . . , K); objects belonging to class k have the same price π(k). If

zi,k is the number of object of class k that agent i owns, then (3.2) takes the form

ci =
∑K

k=1 zi,kπ(k) + `i.

3.3 Main results

The main result of this model is that the �ow of goods among agents becomes more

and more congested as inequality increases until it halts completely when the Pareto

exponent β tends to one from above.

The origin of this behaviour can be understood in the simplest setting where

K = 1, i.e. all goods have the same price πm = π(1) = π (we are going to omit the

subscript (1) in this case). Figure 3.2 shows the capital composition {(〈z〉i , ci)}Ni=1 for

all agents in the stationary state, where 〈z〉i is the average number of goods owned by

agent i. The population of agents separates into two distinct classes: a class of cash-

poor agents, who own an average number of goods that is very close to the maximum

allowed by their wealth, and a cash-rich class, where agents have on average the
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same number of goods. These two classes are separated by a sharp crossover region.

The inset of �gure 3.2 shows the cash distribution Pi(`/π) (where `/π = ci/π − z

represents the number of goods they are able to buy) for some representative agents.

While cash-poor agents have a cash distribution peaked at 0, the wealthiest agents

have cash in abundance.

#970

#1000#976

#1

#970

Figure 3.2: Capital composition in an economy with a single type of good, N = 103 agents,

β = 1.8, cmin = 1, π = 0.01, M ≈ 2.105 and C/Π = 1.1. Points {(〈z〉i , ci)}Ni=1 denote

the average composition of capital for di�erent agents obtained in Monte Carlo simulations.

This is compared with the analytical solution obtained from the master equation (green

dashed line) given by equation (3.7). The vertical dashed line at c(1) ' 7.98 = M/Np
(suc)
1

indicates the analytically predicted value of the crossover wealth that separates the two

classes of agents. Insets: cash distributions Pi(`) of the indicated agents.

These two observations allow us to trace the origin of the arrest in the economy

back to the shrinkage of the cash-rich class to a vanishingly small fraction of the

population, as β → 1+. As we'll see in the next section, when β is smaller than 1

the fraction of agents belonging to this class vanishes as N → ∞. In this regime,

not only the wealthiest few individuals own a �nite fraction of the whole economy's

wealth, as observed in reference [19], but they also drain all the �nancial resources in

the economy.

These �ndings extend to more complex settings. Figure 3.3 illustrates this for an

economy with K = 10 classes of goods (see �gure caption for details) and di�erent

values of β. In order to visualise the freezing of the �ow of goods we introduce the

success rate of transactions for goods belonging to class k, denoted as p
(suc)
k . Figure

3.3 shows that, as expected, for a �xed value of the Pareto exponent β the success

rate increases as the goods become cheaper, as they are easier to trade. Secondly it

shows that trades of all classes of goods halt as β tends to unity, that is when wealth
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Figure 3.3: Left: Liquidity of goods {p(suc)
k }Kk=1 as a function of the inequality exponent β

for a system of N = 105 agents exchanging K = 10 classes of goods (π(k) = π(1)g
k−1 with

g = 1.5, π(1) = 0.005, Mkπ(k) = Π/K, cmin = 1 and C/Π = 1.2). Note that all success rates

p
(suc)
k vanish when β → 1+. The curves are ordered from the cheapest (top) to the most

expensive (bottom). The markers are the result of numerical simulations, with error bars

indicating the minimum and maximum values obtained by averaging over 5 realizations of

the wealth allocations (for more details on the simulations see appendix 3.E). Right: for

the same simulations with K = 10 classes of goods, we plot the time averaged cash 〈`i〉
as a function of wealth ci, from β = 1.1 to β = 2. The dashed lines indicate the di�erent

prices of goods. Agents with 〈`i〉 below the price of a good typically have not enough cash

to buy it. Cash is proportional to wealth for large levels of wealth (see the upper straight

red dashed line).

inequality becomes too large, independently of their price.

The decrease of p
(suc)
k when inequality increases (i.e. as β decreases) is a conse-

quence of the concentration of cash in the hands of the wealthiest agents. This can

be observed in the right panel of �gure 3.3, which shows the average cash of agents

with a given wealth, for di�erent values of β. The freezing of the economy when β

decreases occurs because fewer and fewer agents can dispose of enough cash (i.e. have

` > π(k)) to buy the di�erent goods (prices π(k) correspond to the dashed lines).

Note �nally that p
(suc)
k quanti�es liquidity in terms of goods. In order to have an

equivalent measure in terms of cash that can be compared to the velocity of money,

we average π(k)p
(suc)
k over all goods

p̄(suc) =
1

Π

K∑
k=1

Mkπ(k)p
(suc)
k . (3.3)

This quanti�es the frequency with which a unit of cash changes hand in our model

economy, as a result of a successful transaction. Its behaviour as a function of β for



36 The Chilling Inequality

the same parameters of the economy in �gure 3.3 is shown in the right panel of �gure

3.4.

3.4 The analytical approach to the stationary state

In order to shed light on the �ndings described above, in this section we describe how

to derive them within an analytic approach. We start by dealing with the simpler

case where all the goods in the system have the same price πm = π, ∀m (i.e. K = 1).

A formal approach to this problem consists in writing the complete master equa-

tion that describes the evolution of the probability P (z1, . . . , zN) to �nd the economy

in a state where each agent i = 1, . . . , N has a de�nite number zi of goods. Taking

the sum over all values of zj for j 6= i, one can derive the master equation for a

single agent with wealth ci (see appendix 3.B for more details). The corresponding

marginal distribution Pi(z) in the stationary state can be derived from the detailed

balance condition

Pi(z + 1)
z + 1

M
p(suc) = Pi(z)

1

N
(1− δz,mi) , z = 0, 1, . . . ,mi (3.4)

where mi = bci/πc is the maximum number of goods which agent i can buy with

wealth ci and p
(suc) is the probability that a transaction where agent i sells one good

(i.e. z + 1 → z) is successful. Equation (3.4) says that, in the stationary state,

the probability that agent i has z objects and buys a new object is equal to the

probability to �nd agent i with z + 1 objects, selling successfully one of them. The

factor 1− δz,mi enforces the condition that agent i can a�ord at most mi goods and

it implies that Pi(z) = 0 for z > mi. Exchanges are successful if the buyer j does not

already have a saturated budget zj = mj. So the probability p(suc) is also given by

p(suc) = 1− 1

N − 1

∑
j 6=i

P (zj = mj|zi = z) (3.5)

∼= 1− 1

N

∑
j

Pj(mj) (N,M � 1) . (3.6)

In equation (3.5), p(suc) is related to agent i only, and depends on the fact that

agent i owns z objects. When N,M � 1, the dependence on z in the conditional

probability becomes negligible (P (zj = mj|zi = z) ' P (zj = mj)), and p(suc) can

be approximated as in equation (3.6). In such a limit, p(suc) can be approximately

considered the same for all agents. This is important, because it implies that for N

large the variables zi can be considered as independent, i.e. P (z1, . . . , zN) =
∏

i Pi(zi),
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and the problem can be reduced to that of computing the marginals Pi(zi) self-

consistently.

The solution of equation (3.4) can be written as a truncated Poissonian with

parameter λ = M/(Np(suc))

Pi(z) =
1

Zi

[
λz

z!

]
Θ (mi − z) (3.7)

with Zi is a normalization factor that can be �xed by
∑

z Pi(z) = 1. Finally, the value

of p(suc) � or equivalently of λ � can be found self-consistently, by solving equation

(3.6).

Notice that the most likely value of z for an agent with mi = m is given by

zmode(m) ≡ argmax
z
P (z) =

{
m, if m ≤ λ

λ, if λ ≤ m
. (3.8)

This provides a natural distinction between cash-poor agents � those with m ≤ λ

� that often cannot a�ord to buy further objects, and cash-rich ones � those with

m > λ � who typically have enough cash to buy further objects.

This separation into two classes of agents was already pointed out in �gure 3.2.

In terms of wealth, the poor are de�ned as those with ci < c(1) whereas the rich ones

have ci > c(1), where the threshold wealth is given by c(1) = λπ = Mπ/(Np(suc)).

Notice that when λ� 1, a condition that occurs when the economy is nearly frozen

(p(suc) � 1), the distribution Pi(z) is sharply peaked around zmode(m) so that its

average is 〈z〉 ' zmode(m). Then the separation between the two classes becomes

rather sharp, as in �gure 3.2.

In this regime, we can also derive an estimate of p(suc) in the limit N → ∞, for

β > 1. Indeed, we have Pi(z = mi) ' 1−mi
λ

+O(λ−2) for λ� mi, so a rough estimate

of Pj(mj) is given by Pj(mj) ' max{0, 1 −mj/λ}. Taking the average over agents,

as in equation (3.6), and assuming a distribution density of wealth ρ(c) = βc−β−1 for

c ≥ 1 and ρ(c) = 0 for c < 1, one �nds (see appendix 3.C)

c(1) '
[
β

(
1− Π

C

)]1/(1−β)

, (3.9)

p(suc) =
M

Nλ
' Π

C

E [c]

c(1)
. (3.10)

Here E [c] = β/(β − 1) is the expected value of the wealth. Notice that E [c] diverges

as β → 1+, but also that within this approximation the threshold wealth c(1) diverges
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much faster, with an essential singularity. More precisely, we note that Π/C < 1,

so that β(1 − Π/C) ∼ (1 − Π/C) is a number smaller than 1 (yet positive). From

equation (3.9), we have c(1) ∼ (1− Π/C)−1/(β−1) →∞. Therefore the liquidity p(suc)

vanishes as β → 1+.

For �nite N , this approximation breaks down when β gets too close to or smaller

than one. Also, E [c] is ill-de�ned and in equation (3.10) it should be replaced with

〈c〉 ≡ 1/N
∑

i ci, which strongly �uctuates between realizations and depends on N .

An estimate of p(suc) for �nite N and β < 1 can be obtained by observing that the

wealth c(1) marking the separation between the two classes cannot be larger than the

wealth cmax of the wealthiest agent. By extreme value theory, the latter is given by

cmax ∼ N1/β. Therefore the solution is characterised by c(1) = πλ ∼ cmax ∼ N1/β.

Furthermore, for β < 1 the average wealth is dominated by the wealthiest few, i.e.

〈c〉 ∼ N1/β−1 and therefore p(suc) ∼ 〈c〉 /c(1) ∼ N−1. In other words, in this limit

the cash-rich class is composed of a �nite number of agents, who hold almost all the

cash of the economy. Figure 3.5 (left) shows that the rough analytical estimate of

equation (3.10) is in good agreement with Monte Carlo simulations.

The analysis carries forward to the general case in which K classes of goods

are considered, starting from the full master equation for the joint probability of the

ownership vectors ~zi = (zi,1 . . . , zi,K) for all agents i = 1, . . . , N . For the same reasons

as before, the problem can be reduced to that of computing the marginal distribution

Pi(~zi) of a single agent. The main complication is that the maximum number mi,k of

goods of class k that agent i can get now depends on how many of the other goods

agent i owns, i.e. mi,k(z
(k)
i ) = b(ci −

∑
k′(6=k) zi,k′π(k′))/πkc, where z(k)

i = {zi,k′}k′(6=k).

The detailed balance condition

Pi(~z + êk)
zk + 1

M
p

(suc)
k = Pi(~z)

Mk

M

1

N

(
1− δzk,mi,k(z(k))

)
(3.11)

again yields the stationary state distribution (for N,M � 1). On the left we have the

probability that one of the zk +1 objects of type k of agent i is picked for a successful

sale (here êk is the vector with all zero components and with a kth component equal

to one, and p
(suc)
k is the probability that a sale of an object of type k is successful).

This must balance the probability (on the r.h.s.) that agent i is selected as the buyer

of an object of type k, which requires that agent i has less than mi,k(z(k)) objects of

type k, for the transaction to occur (here Mk/M is the probability that an object of

type k is picked at random, and 1/N is the probability that agent i is selected as the

buyer). It can easily be checked that the solution to this set of equations is given by

a product of Poisson laws with parameters λk = Mk/(Np
(suc)
k ), with the constraint
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equation (3.2),

Pi(z1, ..., zK) =
1

Zi

[
K∏
k=1

λzkk
zk!

]
Θ

(
ci −

K∑
k

zkπ(k)

)
, (3.12)

with Zi a normalization factor obeying
∑

z1
...
∑

zK
Pi(z1, ..., zK) = 1. Here the p

(suc)
k

corresponds to the acceptance rates of transactions of goods of class k and are given

by

p
(suc)
k = 1− 1

N

N∑
i=1

P
{
zi,k = mi,k(z

(k)
i )
}

(3.13)

As in the case with K = 1, the values of the p
(suc)
k need to be found self-consistently,

which can be complicated when K and M are large.

When the total number of objects per agent is large for any class k, we expect

that λ1, ..., λK � 1, and then the values of zi,k are close to their expected values. This

implies that the population of agents splits into K classes, where agents with wealth

ci ∈ [c(k−1), c(k)] have their budget saturated with goods of class k′ ≤ k and cannot

a�ord more expensive objects (here c(k) = λkπ(k), k = 1, . . . , K and c(0) = cmin). An

estimate for the thresholds c(k) can be derived following the same arguments as for

K = 1, by observing that when analysing the dynamics of goods of type k, all agents

in class k′ < k are e�ectively frozen and can be neglected. Combining this with

the conservation of the total number of objects of each kind, we obtain a recurrence

relation for c(k). We refer the interested reader to the appendix 3.C for details on the

derivation, and report here the result in the case of goods with π(k) = π(1)g
k−1, g > 1

large enough, with β > 1 and in the limit N →∞:

c(k) '
[
βk −

(
β − βk+1

1− β

)
Π

KC

] 1
1−β

, (3.14)

p
(suc)
k =

Mk

Nλk
' Π

KC

E [c]

c(k)
. (3.15)

In the limit β → 1+ of large inequality, close inspection1 of equation (3.14) shows

that c(k) → ∞,∀k, which implies that all agents become cash-starved except for

the wealthiest few. Since p
(suc)
k ∼ E [c] /c(k), this implies that all markets freeze:

p
(suc)
k → 0,∀k. The arrest of the �ow of goods appears to be extremely robust against

all choices of the parameter π(k), as p
(suc)
1 is an upper bound for the other success

rates of transactions p
(suc)
k . These conclusions are fully consistent with the results of

extensive numerical simulations (see �gure 3.5 in appendix 3.C).

1Note that the term in square brackets is smaller than one, when β → 1+.
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3.5 Conclusions and outlook

We have introduced a zero-intelligence trading dynamics in which agents have a

Pareto distributed wealth and randomly trade goods with di�erent prices. We have

shown that this dynamics leads to a uniform distribution in the space of the alloca-

tions that are compatible with the budget constraints.

Unlike traditional models in Economics, in which agents try to maximize an utility

function and the properties of the economy are derived from the equilibrium of the

economy, the point in con�guration space in which all agents' utilities are maximal,

the typical properties of our stylized economy are simply a matter of entropy. This

is the main di�erence on how equilibrium is intended in Economics and Statistical

Physics. While in the former equilibrium is the solution of a complicated optimization

problem, in the latter it is intended as a statistical ensemble, in which even sub-

optimal con�gurations are weighted with a non vanishing probability, giving rise to

entropy which quanti�es the relevance of these con�gurations. In this respect, the

model presented here is a limiting case where only entropy matters.

The main result of this model is that when the inequality in the distribution of

wealth increases, the economy converges to an equilibrium where typically (i.e. with

probability very close to one) the less wealthy agents have less and less cash available,

as their budget becomes saturated by objects of the cheapest type. At the same time

this class of cash-starved agents takes up a larger and larger fraction of the economy,

thereby leading to a complete halt of the economy when the distribution of wealth

becomes so broad that its expected average diverges (i.e. when β → 1+). In these

cases, a �nite number of the wealthiest agents own almost all the cash of the economy.

The model presented here is intentionally simple, so as to highlight a simple,

robust and quanti�able link between inequality and liquidity.

In particular, the model neglects important aspects such as i) agents' incentives

and preferential trading, ii) endogenous price dynamics and iii) credit. It is worth

discussing each of these issues in order to address whether the inclusion of some of

these factors would revert our �nding that inequality and liquidity are negatively

related.

In particular, our model assumes that all exchanges that are compatible with

budget constraints will take place, but in more realistic setting only exchanges that

increase each party's utility should take place. Yet if the economy freezes in the case

where agents would accept all exchanges that are compatible with their budget, it

could be expected to freeze also when only a subset of these exchanges are feasible.

Also the model assumes that all agents trade with the same frequency whereas one
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might expect that rich agents trade more frequently than poorer ones. Could liquidity

be restored if trading patterns exhibit some level of homophily, with rich people

trading more often and preferentially with rich people?

First we note that both these e�ects are already present in our simple setting.

Agents with higher wealth are selected more frequently as sellers as they own a

larger share of the objects. In spite of the fact that buyers are chosen at random,

successful trades occur more frequently when the buyer is wealthy. So, in the trades

actually observed the wealthier do trade more frequently than the less wealthy, and

preferentially with other wealthy agents. Furthermore, if agents are allowed to trade

only with agents having a similar wealth (e.g. with the q agents immediately wealthier

or less wealthy) it is easy to show that detailed balance still holds with the same

uniform distribution on allocations. As long as all the states are accessible, the

stationary probability distribution remains the same2. Therefore, our conclusions are

robust with respect to a wide range of changes in our basic setting that would account

for more realistic trading patterns.

Secondly, it is reasonable to expect that prices will adjust � i.e. de�ate � as a

result of a diminished demand caused by the lack of liquidity. Within our model, the

inclusion of price adjustment, occurring on a slower time-scale than trading activity,

would reduce the ratio Π/C (between total value of goods and total wealth), but

it would also change the wealth distribution. If we think of price adjustment as

occurring on a slower time-scale than trading activity, this, within our model, would

have the e�ect of reducing the ratio Π/C between the total value of goods and the

total wealth, but it would also change the wealth distribution. Since the freezing

phase transition occurs irrespective of the ratio Π/C, the �rst e�ect, though it might

alleviate the problem, would not change our main conclusion. The second would make

it more compelling, because cash would not depreciate as prices do, so de�ation would

leave wealthy agents � who hold most of the cash � even richer compared to the cash

deprived agents, that would su�er the most from de�ation. So while price adjustment

apparently increases liquidity, this may promote further inequality, that would curtail

liquidity further.

Finally, can the liquidity freeze be avoided by allowing agents to borrow? Access to

credit, we believe, will hardly improve the situation in line with the results of reference

2 The dynamics changes and thus p
(suc)
k changes, in particular for goods more expensive than

π(1), the seller is typically cash-rich and thus its neighbours are too. This can induce to have a

liquidity of expensive goods higher than that of cheaper ones. However in the limit β → 1+, it is

still true that cash concentrates in the hands of a vanishing fraction of agents, and there is still a

freeze of the economy.
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[20] and for similar reasons. Allowing agents to borrow using goods as collaterals is

equivalent to doubling the wealth of cash-starved agents, provided that any good

can be used only once as a collateral, and that goods bought with credit cannot

themselves be used as collaterals. This would at most blur the crossover between

cash-rich agents and cash-starved ones, as intermediate agents would sometimes use

credit. This does not change our main conclusion that inequality and liquidity are

inversely related and that the economy would halt when β → 1+. Credit may mitigate

illiquidity in the short term, but cash deprived agents should borrow from wealthier

ones. With positive interest rates, this would make inequality even larger in the long

run. So credit is likely to make things worse, in line with the arguments of Piketty

[23], who observes that when the rate of return on capital exceeds the growth rate of

the economy (which is zero in our setting), wealth concentrates more in the hands of

the rich.

Therefore, even though the model presented here can be enriched in many ways,

we don't see a way in which the relation between inequality and liquidity could be

reversed.

Corroborating the present model with empirical data goes beyond the scope of

our work, yet we remark that our �ndings are consistent with the recent economic

trends, as shown in �gure 3.4. The direct measure that quanti�es the e�ciency of

an economy, in our simple model ,is the number of possible exchanges that can be

realised or equivalently the probability that a random exchange can take place. This

probability quanti�es the ��uidity� of exchanges and we call it liquidity in this chapter.

A quantitative measure of liquidity is provided by the velocity of money [60],

measured as the ratio between the nominal Gross Domestic Product and the money

stock and it quanti�es how often a unit of currency changes hand within the economy.

In �gure 3.4 we report data on the MZM (money with zero maturity), the broadest

de�nition of money stock that includes all money market funds. We refer to [59] for

further details. As �gure 3.4 shows, the velocity of money has been steadily declining

in the last decades.

Our model suggests that this decline and the increasing level of inequality are not

a coincidence. Rather the former is a consequence of the latter. In addition, it is

worth observing that, alongside with increasing levels of inequality, trade has slowed

down after the 2008 crisis. The U.S. Trade Overview, published by the International

Trade Administration in 2013, observes that �Historically, exports have grown as a

share of U.S. GDP. However, in 2013 exports contributed to 13.5% of U.S. GDP, a

slight drop from 2012'" [61]. A similar slowing down can be observed at the global

level, in the UNCTAD Trade and Development Report, 2015 ( see page 7 in reference
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Figure 3.4: Left: Velocity of money of MZM stocks (right y-axis) and Pareto exponent β of

the wealth distribution (left y-axis) as a function of time. Both time series refer to the US.

The data on the money velocity is retrieved from [59], the data on the wealth distribution

is taken from [25]. Inset: relation between the fraction w> of wealth owned by the P>
percent wealthiest individuals, and P> for the years 1980, 1990, 2000 and 2010. Right:

MZM velocity of money (MZMV, central y-axis) as a function of β, for the same data.

Liquidity, de�ned as the probability that a unit-money random exchange takes place, (right

y-axis) as a function of β, in the synthetic economy described by our model (see equation

(3.3) and �gure 3.3 for details on the numerical simulations).
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[62]).

More generally, avoiding de�ation -or promoting in�ation- has been a major target

of monetary policies after 2008, which one could take as an indirect evidence of

the slowing down of the economy. In fact liquidity, as intended here, has been the

primary concern of monetary polices such as Quantitative Easing aimed at contrasting

de�ation and the slowing down of the economy, in the aftermath of the 2008 �nancial

crisis.

Furthermore, the fact that inequality hampers liquidity and hence promotes de-

mand for credit suggests that the boom in credit market before 2008 and the increas-

ing levels of inequality might not have been a coincidence.

An interesting side note is that the concentration of capital in the top agents

goes hand in hand with a �ow of cash to the top. Indeed, in our model an injection

of extra capital in the lower part of the wealth pyramid �the so-called helicopter

money policy� is necessarily followed by a �ow of this extra cash to the top, via many

intermediate agents, thus generating many transactions on the way. This trickle up

dynamics should be contrasted with the usual idea of the trickle down policy, which

advocates injections of money to the top in order to boost investment. In this respect,

it is tempting to relate our �ndings to the recent debate on Quantitative Easing

measures, and in particular to the proposal that the (European) central bank should

�nance households (or small businesses) rather than �nancial institutions in order to

stimulate the economy and raise in�ation [63, 64]. Clearly, our results support the

helicopter money policy, because injecting cash at the top does not disengages the

economy from a liquidity stall.

Extending our minimal model to take into account the endogenous dynamics of

the wealth distribution and of prices, accounting for investment and credit, is an

interesting avenue of future research, for which the present work sets the stage. In

particular, this could shed light on understanding the conditions under which the

positive feedback between returns on investment and inequality, that lies at the very

core of the dynamics which has produced ever increasing levels of inequality according

to [23, 25, 26], sets in.

In fact, a tentative extension of the present model in which wealth is not �xed, but

it changes much more slowly with respect to the relaxation of the exchange dynamics

can be formulated shortly. In this case in which the two dynamics are decoupled, if the

return of investment is assumed to be proportional to the amount of liquid capital at

disposal of each agent, the model presented in this chapter can give a purely entropic

mechanism for the observed growth in inequality, since wealthier agents are also the

only ones who can a�ord to invest a consistent fraction of their capital.



The Chilling Inequality 45

This model can be thought of the starting point for addressing more complex

issues, such as the e�ect of investment and the interplay between �nance and the real

economy. In fact, while data on individual wealth (see [25]) usually have an exponent

of the power law that is larger than one, in �rms sizes data, which are considered

in Chapter 2, this exponent is steadily less than one, especially when only �nancial

�rms are considered. Finance has been described as an formidable tool to increase the

market e�ciency, through its ability to perform an optimal inter-temporal resource

allocation. In the context of this model, the decoupling discussed in the previous

chapter - the �nancial deepening, might be related to the excessive broadness of the

�nancial �rms distribution, resulting in the freezing of the �nancial market ability to

perform this resource allocation task in real economy investments.
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3.A About the rules providing detailed balance

The detailed balance condition is a useful criterium to �nd the stationary state in

stochastic processes. Given a dynamics formulated in terms of the transition rates

W (Ai,Aj) between con�gurations Ai and Aj, If one can �nd a measure P (Ai) ≥ 0

over con�gurations that satis�es the detailed balance condition

∀i, j, W (Ai,Aj)P (Ai) = W (Aj,Ai)P (Aj), (3.16)

and if the system is ergodic3, then P (Ai) is the unique stationary distribution. The

detailed balance condition is thus a local balance of the probability �ux between any

pair of con�gurations.

The simplest way to impose detailed balance is to use symmetrical transfer rates:

W (Ai,Aj) = W (Aj,Ai). In that case, one automatically gets a uniform distribution

over the space of con�gurations: P (A) = const,∀A. The �ux W (A1,A2)P (A1)

is then also uniform. It is clear that the dynamics de�ned here has this property,

because for any two con�gurations that di�ers by the ownership of one object, the

rate of the process linking them is equal to 1/(NM) in both directions.

What about the rules providing detailed balance, but without symmetry of the

rates? In that case, one would need to explicitly �nd the probability density over

the con�gurations. Since the resulting density would be non-uniform, it would be

more di�cult to link dynamical observables (rate of money transfer, etc.) to static

variables (number of neighbouring con�guration to a given con�guration). We do not

explore these cases.

What are the rules that give symmetrical transfer rates? Here, we consider the

simplest case where objects are picked independently of their price4. This still leaves

us several choices. There are N − 1 rules which yield symmetric rates (and thus

respect detailed balance). The generic case is the following, with 2 ≤ n ≤ N :

� rule #n: The integer n is �xed. Select n distinct agents at random. Select one

object among the set of all the objects they (collectively) own. This object will

be sold (if possible) by the owner to a randomly selected agent among the n−1

remaining agents in the set of selected agents.

3Meaning that for each pair of con�gurations Ai and Aj there is a path of a �nite number of

intermediate con�gurations Aik with non-zero rate W (Aik ,Aik+1
),

4One could pick an object with a rate proportional to its value. This kind of choice would still

give the same phase space and thus the same probability distribution over microstates, but the

dynamics could become very di�erent in terms of the speed of transactions, in particular it could

�uctuate much more.
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This generic rule is a bit cryptic, but has two particular cases that are clearer:

� rule #2: Select two distinct agents at random. Select one object among the set

of all the objects they (collectively) own. This object is sold (if possible) by the

owner to the other agent.

� rule #N : Pick an object at random. The owner is then the seller. Select a

buyer at random among the N − 1 remaining agents.

Note that the rule #n = 1 does not make sense, so that there are indeed N − 1

di�erent rules. Here, we always use the rule #N , i.e. simply pick the object at

random. As all these rules produce an ergodic dynamics, and since the probability

distribution of con�gurations is the same for all rules (it is P (A) = const), it does

not matter which of these dynamical rules we picked.

3.B The full and the mean �eld master equations

The proposed dynamics (rule #N in the previous appendix) is very simple: we pick

an object at random, pick an agent at random and assign the object to the agent

if possible. Let us write down the master equation for this dynamics in the most

general way, for a system with N agents, each with capital ci, for i = 1, . . . , N and

M objects.

The full master equation

We recall that an allocation of goods among the agents is described by an N ×M
allocation matrix A with entries ai,m = 1, if agent i owns good m and zero otherwise.

A change in this allocation could be described in terms of some operator êi,m, such

that êi,m = 0 always, except for agent i and good m, in which êi,m = 1. Then we

have the following transition rates

Rm
i→j = W [A → A− êi,m + êj,m], (3.17)

describing the transition of the goodm from agent i to agent j. In the case considered

in the main text, where the goods are divided into K classes of di�erent prices π(k),

this transition rates for a good in the class k, can be written explicitly in terms of

the N ×K matrix Z with entries zi,k, specifying the number of goods of class k that

agent i own

Rk
i→j = W [Z → Z − êi,k + êj,k] =

Mk

M

zi,k
Mk

1

N
θ

[
cj −

∑
k′

(zj,k′ + êj,k)π(k′)

]
. (3.18)
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The �rst fraction speci�es the probability that a good in the class k is picked up, the

second the probability that this good belongs to agent i and the third the probability

that the agent that is picked up as a buyer is agent j. Finally, the constrained imposed

by the θ function guarantees that the budget constraint of agent j is not violated. If

we denote P (Z, t) the probability that the system is found in the state Z = zi,k at

time t, its continuous time master equation is

∂P (Z, t)
∂t

=
∑
Z′
{W [Z ′ → Z]P (Z ′, t)−W [Z → Z ′]P (Z, t)}. (3.19)

where the sum is performed over all the allocation matrix Z ′ which are 1 exchange

away from Z.

The mean �eld master equation

The most general master equation (3.19) is of little practical use. In the mean

�eld approximation we write P (Z, t) =
∏N

i=1 P (zi,k, t) inside equation (3.19), and

we marginalize over the state of the system of all agents except agent i; we refer to

this state using the notation Z \ i. This allows us to write K general mean �eld

master equation for a single agent i, each of one reads

∂P (zi,k, t)

∂t
=
∑
z′i,k

{w[z′i,k → zi,k]P (z′i,k, t)− w[zi,k → z′i,k]P (zi,k, t)}, (3.20)

where we have de�ned

w[z′i,k → zi,k] =
∑
Z\i

∑
Z′\i

W [Z ′ → Z]P (Z ′ \ i, t) (3.21)

w[zi,k → z′i,k] =
∑
Z\i

∑
Z′\i

W [Z → Z ′]P (Z \ i, t) (3.22)

This can be done explicitly, for simplicity, in the case in which all agents have the same

capital (ci = c) and all goods have the same price (π(k) = π). In this case, the notation

can be further simpli�ed substituting the matrix Z with a vector ~z = (z1 . . . , zN)

specifying the number of goods owned by each agents. The rates of the master

equation can be calculated, for instance the transition rate leading to zi number of
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goods for the agent i, when the agent is a buyer, is given by

w[zi − 1→ zi] =
∑
~z\i

∑
~z ′\i

W [~z ′ → ~z ]P (~z ′ \ i, t)

=
∑
~z\i

∑
j

W [~z − ei + ej → ~z ]P (~z \ i+ ej, t)

=
∑
~z\i

∑
j

zj
M

1

N
θ [c− ziπ]P (~z \ i+ ej, t)

' M − (zi − 1)

M

1

N
θ [c− ziπ]

In the �rst passage we used the fact that all the non-zero rates leading to zi in which

agent i is a buyer, involve a single exchange, from an agent j. In the last passage

we performed the sum over ~z \ i and we put
∑

~z\i P (~z \ i + ej, t) = 1, ignoring the

fact that there is a dependence on the con�guration of the system in the transition

rates. This dependence can be expected to be negligible when the number of agents

and the number of goods are both very large, because it depends only on the value

of zi. More precisely, the assumption that is done is that P (~z \ i) = P (~z \ i|zi).

Analogous calculations can be done for the case in which agent i is a seller, i.e.

w[zi + 1→ zi] =
∑
~z\i

∑
~z ′\i

W [~z ′ → ~z ]P (~z ′ \ i, t)

=
∑
~z\i

∑
j

W [~z + ei − ej → ~z ]P (~z \ i− ej, t)

=
∑
~z\i

∑
j

zi + 1

M

1

N
θ [c− (zj + 1)π]P (~z \ i− ej, t)

' zi + 1

M
p(suc),

where in the last passage p(suc) = 〈θ [c− (zj + 1)π]〉 is introduced as the average

number of buyer who can a�ord the transaction.

Finally, calculating all 4 possible terms giving non vanishing contributions in
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(3.20), we get

∂tP (zi, t) =P (zi − 1, t)
1

N
(1− δ(zi − 1,m))

+P (zi + 1, t)
zi
M

(
p(suc)

)
−P (zi, t)

1

N
(1− δ(zi,m))

−P (zi, t)
zi
M

(
p(suc)

)
, (3.23)

where the θ constraints have been turned into δ constraints, by introducing m as the

integer part of c/π.

The detailed balance condition implies that, when looking for the stationary so-

lution of this equation ∂tP (zi, t) = 0, the terms have to cancel in pairs, leading to

equation (3.4) in the main text.

3.C Computation of p
(suc)
k in the large λ limit

Derivation of p(suc) and c(1) in the large λ limit for 1 type of good.

As discussed in the main text, we can compute p(suc) using

p(suc) = 1− 1

N

N∑
i=1

Pi(z = mi) (3.24)

approximating the probability to be on a threshold Pi(z = mi) by

Pi(z = mi) =

{(
1− mi

λ

)
for mi � λ

0 for mi > λ
. (3.25)

The �rst case can be understood by noting that

Pi(z = mi) =
λmi 1

mi!∑mi
x=0 λ

x 1
x!

=
1

1 + mi
λ

+ mi(mi−1)
λ2

+ . . .
'
(

1− mi

λ

)
, (3.26)

where the approximation is valid in the limit mi � λ. Assuming this approximation

to be valid in all the range mi < λ is clearly a bad assumption for all agents with mi

close to λ. However the wealth is power law distributed, and so the weight of agents

with mi ∼ λ is negligible in the sum over all agents, equation (3.24). The accuracy

of this approximation increases when the exponent of the power law β decreases.
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Then p(suc) can be computed using

p(suc) = 1− 1

N

N∑
i=1

Pi(z = mi) ' 1−
∫ c(1)=λπ

1

dc βc−β−1
(

1− c

λπ

)
. (3.27)

This is an implicit expression for p(suc), since it appears on the l.h.s. of the equation

and also on the r.h.s. (because λ = M
Np(suc)

).

When β > 1 this expression can be expressed to be realization-independent, using

p(suc) =
M

Nλ
=

Π

C

E [c]

c(1)
, (3.28)

where E [c] = β/(β − 1) is the expected value of the wealth per agent. We also use

the fact that we �ll in the system a number M of goods in such a way to have a �xed

ratio Π/C. Performing the integral on the r.h.s of equation (3.27) gives an equation

for c(1):
Π

C

E [c]

c(1)
= c(1)−β

(
1

1− β

)
− β

1− β
1

c(1)
, (3.29)

that simpli�es into:

c(1) =

[
β

(
1− Π

C

)]1/(1−β)

. (3.30)

Derivation of p
(suc)
k and c(k) in the large λ limit for several types of good.

An analytic derivation for the p
(suc)
k and c(k) can be obtained also for the cases of

several goods, but only in the limit in which prices are well separated (i.e. π(k+1) �
π(k)) and the total values of good of any class is approximately constant (we use

Mkπ(k) = Π/K = const). In this limit we expect to �nd a sharp separation of the

population of agents into classes. This is because M1 � M2 � . . . � MK implies

that the market is �ooded with objects of the class 1, which constantly change hands

and essentially follow the laws found in the single type of object case. On top of this

dense gas of objects of class 1, we can consider objects of class 2 as a perturbation

(they are picked M2/M1 times less often!). On the time scale of the dynamics of

objects of type 2, the distribution of cash is such that all agents with a wealth less

than c(1) = π(1)λ1 have their budget saturated by objects of type 1 and typically do

not have enough cash to buy objects of type 2 nor more expensive ones. Likewise,

there is a class of agents with c(1) < ci ≤ c(2) that will manage to a�ord goods of

types 1 and 2, but will hardly ever hold goods more expensive that π(2).

In brief, the economy is segmented into K classes, with class k composed of all

agents with ci ∈ [c(k), c(k+1)) who can a�ord objects of class up to k, but who are



52 The Chilling Inequality

excluded from markets for more expensive goods, because they rarely have enough

cash to buy goods more expensive than π(k). This structure into classes can be read

o� from �gure 3.3, where we present the average cash of agents, given their cash

in a speci�c case (see caption). The horizontal lines denote the prices π(k) of the

di�erent objects, and the intersections with the horizontal lines de�ne the thresholds

c(k). Agents that have ci just above c
(k) are cash-�lled in terms of object of class k,

but are cash-starved in terms of objects π(k′), k
′ > k.

The liquidities p(suc) can be given by the following expression

p
(suc)
k = 1− 1

N

N∑
i=1

P
{
zi,k = mi,k(z

(k)
i )
}

= 1− 1

N

N∑
i=1

Pi(not accepting good type k)

(3.31)

According to the previous discussion of segmentation of the system into K classes,

and using the same approximation for this threshold probability discussed in the case

of 1 type of good, we assume

Pi(not accepting good type k) =


1 for mi < λk−1(

1− mi
λk

)
for λk−1 < mi < λk

0 for mi > λk

, (3.32)

Then

p
(suc)
k ' 1−

∫ c(k−1)

1

dc βc−β−1 −
∫ c(k)

c(k−1)

dc βc−β−1
(

1− c

c(k)

)
(3.33)

In this case now we have

p
(suc)
k =

Mk

Nλk
=

Π

KC

E [c]

c(k)
(3.34)

With similar calculations to the ones showed for the previous case, one can easily get

to the recurrence relation:

c(k) =

[
β
(
c(k−1)

)1−β − β Π

KC

] 1
1−β

. (3.35)

Iterating, we explicit this into:

c(k) =

[
βk −

(
β − βk+1

1− β

)
Π

KC

] 1
1−β

, (3.36)

A comparison between the analytical estimate and numerical simulations, pre-

sented in �gure 3.5, shows that this approximation provides an accurate description

of the collective behaviour of the model.
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Figure 3.5: Success probability of transaction p
(suc)
k as a function of the Pareto exponent β.

Comparison between numerical simulations and analytical estimates for one class of goods

(left panel) and two classes of goods (right panel). The blue solid circles are the result of

Monte Carlo simulations performed for N = 105 agents and averaged over 5 realizations.

Here the error bars indicate the min and max value of p
(suc)
k over all realizations (we used

the �adjusted Pareto� law for the right panel, see appendix 3.E). The red lines are the

analytic estimates according to equation (3.10) and equation (3.14) for left and right panels,

respectively. The green crossed lines correspond to numerically (see appendix 3.E) solving

the analytical solution (3.12) for a population composed of N = 64 (kind of) agents.

See also in �gure 3.6 how the liquidity over-concentrates (with respect to capital

concentration). There, we compare the liquid and capital concentrations, measured

via their Gini coe�cients, for various values of β in the system of �gure 3.3 (K =

10, g = 1.5, π(1) = 0.001, C/Π = 1.2). In particular, note that the limit β → 1+ is

singular, as G` reaches one around β = 1.1, with smaller β yielding also G` ≈ 1.

This is an alternative way to see how the concentration of capital generates an over-

concentration of liquidities.

3.D An argument for p(suc) → 0 for β < 1, in the N →∞ limit

In this appendix we give an di�erent and intuitive argument to justify why we expect

the p(suc) to go to zero, when β < 1, for a very large system, with number of agents

N → ∞. We are going to formulate the argument for one type of good, but it can

be generalised to the generic case.

Let's rank the N agents from the richest c1 to the poorest cN . The argument can

be divided into two main steps. First we will show that when β < 1 there is always

a �nite n such that the capital of the �rst n agents, the n richest in the ranking, is
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Figure 3.6: Gini coe�cient G` of the cash distribution (liquid capital) in the stationary

state of the model as a function of the Gini Gc of the wealth distribution. The dashed line

indicates proportionality between cash and wealth, in which case the inequality in both is

exactly the same. The wealth follows a Pareto distribution with exponent β that tunes the

degree of inequality (the higher is β, the more egalitarian the distribution).

around the same size as total capital of the remaining agents

crich ≡
n∑
i=1

ci ' cpoor ≡
N∑

i=n+1

ci (3.37)

and this n stays �nite in the N → ∞ limit. More generally we can �nd a threshold

n for which the capital of the richest n agents is equal to any given �nite fraction of

the total capital of the system.

Secondly we will show that in a typical allocation of goods, the agents belonging

to the poorest class of agents is typically with no cash and thus they mostly do not

accept a transition when they are selected as buyers. Since the probability of selecting

a buyer is uniform and since n
N
∼ 0 in the large N limit, we will then prove that p(suc)

has to be null.

According to rank ordering statistics (see [34]), the typical value of the capital of

the i−th agent in the ranking is

ctypi = c1
1

i1/β
(3.38)

The typical value for the total capital of �rst (second respectively) class of agents is

ctyprich = c1

n∑
i=1

1

i1/β
ctyppoor = c1

N∑
i=n+1

1

i1/β
(3.39)
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When β ≥ 1, the in�nite series
∑

i
1

i1/β
is divergent, then in the N → ∞ limit we

have ∑n
i=1

1
i1/β∑∞

i=n+1
1

i1/β

= 0 (3.40)

for any �nite n.

When instead β < 1 the in�nite series is convergent, then there is a �nite n for which∑n
i=1

1
i1/β∑∞

i=n+1
1

i1/β

∼ 1, (3.41)

thus for which ctyprich ' ctyppoor. More generally, an n can be found in such a way that

the ratio of rich-poor capital is equal to any �nite value.

In particular, we can also �nd a �nite n for which the partition of the agents in

rich and poor is such that, even if we initially distribute the goods among the agents

in such a way that the all the poorer are �lled with goods, and the only agents with

some cash are the �rst n in the ranking, the goods are equally divided among the

rich and the poor classes, i.e.

Mrich 'Mpoor. (3.42)

We show now that this con�guration is quite close to a typical stationary allocation

of goods, under our dynamical process. We can describe the dynamics in this system

using a birth-death process using as a variable the �number of holes� in the poor class,

i.e. the number of agents in the poor class that are not on their capital threshold.

The transition rates for this variable i can be approximately written as

p(i→ i+ 1) ' n

N
(3.43)

p(i→ i− 1) ' i

N
. (3.44)

In fact, the number of poor agents with some cash increases by one if a rich is selected

as a buyer (event with probability n/N), and with probability almost 1 the buyer is

going to be a poor agent on the capital threshold (if N >> n). This number decreases

by one if a poor agent who is able to buy is selected as a buyer. When the goods are

equally divided among rich and poor, the selection of the seller gives with the same

probability an agent in the poor or in the rich class.

If the dynamics preserves these rates. it is easy to see that under a such birth-

death process the typical number of holes in the poor phase are of the same order as

n, hence typically agents in the poor class are not able to buy a good, and we can

conclude that p(suc) is order n/N in this limit.
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3.E Details on the numerical methods

Monte-Carlo simulations

We perform our Monte Carlo simulations of the trading market for N = 105 agents.

Prices generally start from π(1) and increase by a factor g between each good class.

The minimal wealth is cmin = 1. The ratio C/Π is �xed as indicated in captions, and

most importantly is kept constant between di�erent realizations. As the total wealth

�uctuates, so does the total number of goods.

There are no peculiar di�culties with the numerical method (apart from the large

�uctuations in the average wealth, addressed below). The only thing one has to be

careful with is to ensure that the stationary state has been reached, i.e. that all

observables have a stationary value, an indication that the (peculiar) initial condi-

tion has been completely forgotten. The codes for this Monte Carlo simulation are

available online [65].

Adjusted Pareto wealth distribution

For K ≥ 2 we have predictions for the β ∼ 1 regime, in which the average wealth

is particularly �uctuating from realization to realization. Because the value of E [c]

controls the number M of objects introduced in the market, this in turns produces

large �uctuations in the values of the p
(suc)
k which can make it di�cult to have robust

results.

More importantly, the typical value of the (empirical) average wealth 〈c〉 is usually
quite di�erent from its expectation value E [c]. This e�ect is well known and well

documented for power laws, but we present a concrete example of it in �gure 3.7 to

emphasize its intensity.

For the sample size that is typically manageable in our simulations, i.e. N = 105,

the typical value for the average value of the wealth (using e.g. β = 1.1) is of the

order of the half of its expected value: 〈c〉 ≈ 7 ≈ E [c] /2. This indicates that N = 105

is (by far) an insu�cient size to correctly sample a power-law with exponent β = 1.1.

To circumvent this problem, we introduce the �adjusted� Pareto distribution. The

idea is to draw numbers from a power law distribution as usual, and then to adjust

the value of a few of them so that the empirical average matches the expected one.

The algorithm is the following: Start from a true random Pareto distribution.

� if 〈c〉 < E [c], we select an agent at random and increase its wealth until we

have exactly 〈c〉 = E [c].
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Figure 3.7: Distribution of the average 〈c〉j of power laws depending on their sam-

ple size N (from top to bottom, N = 106, 105, 104, 103, 102) for 1000 realizations each

(j = 1, ..., 1000), using an exponent β = 1.1. The dashed line indicates the expectation

value E [c] = cminβ/(β − 1). We see that even for huge samples, the typical 〈c〉j 's are

signi�cantly smaller than the expected E [c].

� if 〈c〉 > E [c], we select the wealthiest agent and decrease its wealth until we

have exactly 〈c〉 = E [c], or until its wealth becomes cmin. If we reach the

latter case (it is quite unlikely), then we perform the same operation on the

second-wealthiest agent, and so on until 〈c〉 = E [c].

As can be seen in �gure 3.7, the most common case is the �rst one. The corresponding

adjustment is equivalent to re-drawing the wealth of a single agent until it is such

that 〈c〉 = E [c]. This is a weak deviation from a true Pareto distribution. The second

case is more rare, and mostly consists also in a correction on the wealth of a single

agent.

This change in the wealth distribution is very e�cient at reducing the variability

between di�erent realizations of the same β value. Furthermore it ensures that we can

compare our numerical results at �nite N with the predictions that implicitly assume

N =∞, since we now have 〈c〉 = E [c]. It is quite crucial to use this �adjusted� Pareto

law for the small β's (i.e. for β ≤ 1.3). See �gure 3.8 to have an idea of what this

modi�ed distribution means: the only changes in the two sample shown would be in

the values of the wealthiest agent.

Algorithm computing self-consistent solution p(suc), Z(ci)

Here we describe the algorithm used to converge to a self-consistent set of values

for {p(suc)
1 , p

(suc)
2 , Z(c1), ..., Z(cN)}, i.e. solving equation (3.13) for K = 2 (or more

simply equation (3.6) in the case of a single type of goods). It can be generalized
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Figure 3.8: Di�erent instances and representation of power-law distributed wealth (or

�Pareto distribution�). Blue and pale blue circles are two realisations for N = 104 agents,

green crosses are an example of staircase-like distribution (a useful approximation of a Pareto

law that we use elsewhere) and the black dashed line is the law itself (blue dots converge to

it in the N →∞ limit). Left: Probability distribution, with shifts up and down for clarity

(i.e. it is not normalized) Right: wealth ci of each agent, sorted by the rank i. Note that the

wealth of the wealthiest agents (low rank) �uctuates a lot from realization to realization.

straightforwardly toK > 2, although it may become numerically extremely expensive

(see also our code, [65]). The results (green crosses) presented in �gure 3.5 were

obtained using the method described here.

For each agent there is a constant Z(ci) to be determined self-consistently. This

presents a technical di�culty, as for a true power-law distribution, each agent gets a

di�erent wealth and thus the number of constants to compute is N .

A way to tackle this di�culty is to consider a staircase-like distribution of wealth,

where agents are distributed in groups with homogeneous wealth cg and where the

number of agents per group is Ng ∼
∫ cg+1

cg
ρ(c)c., so that individual agents approxi-

mately follow a power law with exponent β. See �gure 3.8 (green crosses) to have

an idea of what this modi�ed distribution means concretely. This kind of staircase

distribution is not a true power-law, in particular because its maximum is always

deterministic and �nite. However, as we now have 1 < N � N , we can numerically

solve the N + 1 equations and thus �nd the exact value of p(suc). Of course, the value

of p(suc) found in this way perfectly matches with Monte Carlo results if and only if

we use the exact same distribution of wealth and goods in the simulation. This is

not surprising at all, and merely validates our iterative scheme.

However, we note that staircase-like wealth distributions turn out to be very good

approximations of true power laws, when the wealth levels cg are su�ciently re�ned

and the number of classes N su�ciently large. In particular, using cg = bg with a
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(a) (b) (c)

Figure 3.9: (a): Average wealth 〈c〉 dependence on N for a staircase distribution, using

β = 2 and b = 1.1. Black dots: average computed (exactly) for the staircase distribution.

Dashed black: expectation value for the corresponding true power law. Convergence is

reached as soon as N ≈ 50.

(b): Dependence on N of the p
(suc)
1 computed from the iterative method, using a staircase-

like distribution of wealth (green crosses). As soon as N > 50, it approaches its �true� value,

i.e. the value obtained for a true power-law with exponent β = 2 (dashed blue line). We

used b = 1.1.

(c): Average wealth 〈c〉 dependence on N for a staircase distribution, using β = 1.1 and

b = 1.1. Black dots: average computed (exactly) for the staircase distribution. Dashed

black: expectation value for the corresponding true power law. It takes very large N to

converge.

base b ≈ 1+, it can be seen that for large enough N , the average wealth 〈c〉 converges
to a value very close to the expected one E [c] (and no longer depends on N ). For

large β, typically β ≥ 1.5, convergence is reached rather fast (N ≥ 50 is enough),

and the iterative method can be used (see for instance �gure 3.9a). Under these

conditions, the observables (e.g. p(suc)) have the same values for a true power law

and the corresponding staircase-distribution (see �gure 3.9b). However for smaller

values of β, convergence is very slow and one needs at least N > 200 to converge

(see �gure 3.9c). The maximum wealth is then very large, which makes the iterative

method useless for practical purposes (over�ow errors arise, and the number of terms

in the sums to be computed explodes exponentially, along with the computational

cost). More details on the algorithm we actually use can be found in reference [65].
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Chapter 4

Lost in Diversi�cation

There is a growing consensus around the idea that increasingly complex �nancial

products play an important role in the emergence of new instabilities and systemic

risks [66] [67] [27]. Historically, �nancial innovations have been seen as a formidable

tool to increase the e�ciency of the market, reducing the risk associated with any

investment strategy and ensuring an increasingly optimal resource allocation between

investors and the real economy.

After the 2007-2008 global �nancial crisis, this picture has been showing signs

of fraying. The most commonly believed determinant of the crisis is rooted in the

�nancial bubble of the mortgage subprime structured �nance market [28]. As it has

been discussed widely in the economic literature [68] [69], the formidable complexity

of these type of products brought down a curtain of opacity that was able to hide the

true risk of the underlying assets (the subprime mortages). In section 4.1 we give a

brief account of this history.

While the nature of these instruments as ��nancial weapons of mass destruction�

[70] has been widely recognised, most of the response to the crisis did not address

the core issue of the transparency loss implicit in �nancial transformations. For this

reason, from section 4.2 onwards, we introduce a stylized model where both future

returns of a pool of assets and some side information related to these assets are treated

as random variables. The goal is to try to sort out how relevant the information is

for the pricing of a �nancial product built from the aforementioned pool, and how

this information should be transmitted in the most informative way.

In section 4.3, we de�ne the key concepts of �nancial transformations, relevance

of information as well as its price alongside with some general results. Finally, in
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sections 4.4 and 4.5 we explicitly construct an instance of such class of models for

binary variable, derived from the maximum entropy principle.

4.1 The rise and fall of the structured �nance market

Classical theories of �nancial markets are based on a set of very strong assumptions,

which often lead to a systematic underestimation of both the non-systemic and the

systemic risk. One of those assumption is the e�cient market hypothesis [71] [72],

which roughly states that the �nancial markets are able to process all the information

coming from the real economy and from the news, and consequently the price of any

stock exchanged in the market re�ects faithfully this information.

The crisis, and in particular the role played as a trigger by the mortgage backed

securities market, exposed a huge ine�ciency in the �nancial market; many of these

�nancial products were commonly perceived by investors as virtually risk-free and

certi�ed as such by rating agencies, even though all the information about the status

of the underlying assets was available to market participants.

These �nancial instruments are usually called Asset Backed Securities (ABS) and

when the individual assets which compose the pool are credits over some residential

mortgages, they are called Residential Mortgages Backed Securities (RMBS). Al-

though they are fairly complex themselves, they can be used as individual blocks to

build even more complex products, like the Collateralized Debt Obligations (CDO).

See �gure 4.1 and its caption for a brief explanation of how these instruments work.

The rise and fall of the structured �nance market has been dramatic [28]. In

less than a decade, before the crisis, the issuance of these products within the U.S.

economy have been growing by a factor larger than 10. About $100 billion in ABSs

were issued in the last quarter of 2006 and in the �rst two quarters of 2007. However,

at the beginning of 2008, these quantities dropped to less than $5 billion per quarter.

At the same time, a vertical drop in the ratings of these products was observed, 90%

of the ABS tranches underwritten by Merrill Lynch in 2007, initially rated AAA,

were downgraded to junk (rated below investment grade) in just few weeks [28].

For a variety of reasons, market participants and rating agencies did not accurately

measure the risk inherent with �nancial innovations such as ABSs and CDOs. One

of such reasons, in the case of the RMBS market, was the fact that, despite these

instruments were accompanied by a large documentation containing full details about

the underlying assets, the status of the housing market and the infamous risk pro�les

of the mortgages typically involved, were e�ectively hidden to almost all investors

[69] .
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worked as long as mortgages all over the country and of all different 
characteristics didn't default all at once.  When homeowners all over 
the country defaulted, there was not enough money to pay off all the 
mortgage-related securities.

Higher-rated bonds 
are the �irst paid each 
month, so they are 
safer. But lower-rated 
bonds have the 
potential to earn 
more.

RMBS payment 
structure

Collateralized Debt Obligations (CDOs) were 
created by taking the lower-rated tranches 
out of the MBSs and repackaging them. Most 
of this CDO is highly rated, even though it is 
built out of high-risk assets.Source: IMF, Global Financial Stability Report: Containing Systemic Risks 

and Restoring Financial Soundness, April 2008.

RESIDENTIAL MORTGAGE PAYMENTS

RESIDENTIAL MORTGAGE PAYMENTS

THE THEORY OF HOW THE FINANCIAL SYSTEM CREATED AAA-RATED ASSETS OUT OF SUBPRIME MORTGAGES
In the �inancial system, AAA-rated assets are the most valuable 
because they are the safest for investors and the easiest to sell. 
Financial institutions packaged and re-packaged securities built on 
high-risk subprime mortgages to create AAA-rated assets. The system 

People all over the 
country take out 
mortgages. Financial 
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hundreds of subprime 
mortgages into 
Mortgage Backed 
Securities (MBSs).
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Another �inancial 
institution does 
the same thing 
with high-risk 
tranches of CDOs, 
creating a 
CDO-squared.

Figure 4.1: Taken from reference [73]. The cash �ow coming from individual payments

over some credits (residential mortgages in this case) is pictured as a water �ow. When

these credits are pooled together, the cash �ow coming from these payments is collected,

and distributed to investors according to a prioritized structure of claims. In practice, an

investor who possess a given tranche of a RMBS gets a payo� if more than a given threshold

of the payments which constitute the pool are regularly paid. The value of this threshold

de�nes the seniority of the RMBS tranche; while a AAA tranche pays back even when few

payments are executed, for a BB- tranche to give a positive payo�, many more (almost all)

individual payments have to. The most junior tranches (more risky, rated BB- or unrated in

this �gure), have been used as the building blocks of di�erent products, CDOs, which work

with the same mechanism as the initial RMBSs, just with di�erent underlying assets. This

process can be further iterated, junior tranches of CDOs can be used as building blocks of

a CDO2.
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After the crisis, the framework and the very existence of these structured �nance

products has been subject to criticism, and new models for risk assessment have been

proposed, mainly focused on the issue of how to take into account the dependencies

among assets, when computing future expectations of a set of assets. Nevertheless,

the prevailing view is still that securitisation techniques are able to create low risk

�nancial products that are somehow �information insensitive� or �money-like�. The

subtleness associated with this belief is that these products will consequently be

exchanged between investors without the due diligence, in particular without an

adequate analysis of the building blocks these products are composed with.

In order to oppose this tendency, the �nancial industry is pursuing an e�ort [29]

to build an e�cient and standardized system, or a common language, through which

this information should be easily available to all market participants. Such a �nan-

cial barcode, which should be attached to any �nancial product, should contain all

the information that is relevant in order to make realistic estimates about return

and risk of the product, from the risk pro�les of the building blocks to the market

fundamentals. Yet, it is not clear how such barcodes should be constructed, which

information they should contain and whether they should be statically or dynamically

updated, when new information is available. In particular, an interesting open ques-

tion is whether demand for such barcodes may �naturally� arise and how it should be

priced, since without a barcode price the seller does not have an incentive for sharing

the information.

4.2 The model: how side information a�ects future returns

Let's suppose we have a pool of stocks {Xi} = {X1, . . . , Xn}, where each Xi is the

return on an investment, e.g. a loan, a mortgage, an option or a generic �nancial

asset. Together with these stocks, some additional variables {Yi} ={Y1, . . . Yn} are

available, where each Yi represents side information related to the stock Xi (e.g. the

income of the borrower of the loan or information on the fundamentals of the stock).

We assume that both the values of {Xi} and the values of {Yi} are unknown to the

investor, therefore they can be treated as random variables, described by a probability

distribution P ({Xi}, {Yi}).
The investor faces the decision problem of how to evaluate the uncertain future

returns of the stocks {Xi}. He/she can perform this task either using a prior belief,

encoded in the marginal distribution P ({Xi}), or retrieving the information {Yi}
and using instead the conditional distribution P ({Xi}|{Yi}). We are interested to

understand in which cases the retrieval of the information is relevant for the risk
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assessment.

Figure 4.2: The general structure of the models we are going to consider. Each Xi inter-

acts with the system only through its associated Yi, as expressed in equation (4.1). The

dependence between the returns of the assets is a consequence of the dependence among

information {Yi}.

The general structure of the models we are going to consider is de�ned by a

joint p.d.f of returns and information. We assume the returns to be conditionally

independent given the information. Namely the joint p.d.f has the form

P ({Xi}, {Yi}) = P ({Yi})× P ({Xi} |{Yi})
= P ({Yi})×

∏
i

P (Xi |Yi) . (4.1)

The factorizability of the conditional P ({Xi} |{Yi}) implies that any dependence

among returns, if it exists, enters in the game only through the {Yi}, since each

individual Xi becomes independent on the rest of the system when its own Yi is

speci�ed. This assumption encodes the idea that when the most relevant factors

a�ecting future returns are taken into account and quanti�ed in the {Yi} variables,
the additional ones act just like noise.

For simplicity, the conditional distributions P (Xi|Yi) in equation (4.1) are as-

sumed to be identical and we are going to focus on models where the variables {Yi}
are identically distributed, i.e. the distribution P ({Yi}) is invariant under permuta-
tions of the variables {Yi}.
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In the following, we specialize to the case of binary variables

{
Xi = ±1

Yi = ±1 .
(4.2)

For instance, we have in mind a situation where Xi = 1 if the investment yields a

positive return or if a loan payment is regularly paid back, while Xi = −1 in the

opposite case. We assume that the information associated with the stocks can be

quanti�ed and then quantized in binary variables as well. For instance, Yi could be

positive when the investment had positive returns at previous times (often �nancial

time series show strong persistence) or when the previous payments have been paid

in time by the borrower.

In realistic risk management practices, the probability distributions are never

known exactly. Typically only few observables, such as expected returns and some

correlations, are measured, often with low precision. These observed moments (e.g.

E[Xi], E[XiXj] or E[XiYi]) can be used to infer the joint probability distribution

of returns and information. Within the assumption of our model equation (4.1),

and with binary variables, the conditional probability P (Xi|Yi) (identical for all i) is
speci�ed by just two numbers. The marginal distribution of the {Yi} can instead be

more complex. Because of the aforementioned ignorance about the distribution and

about its moments, we assume P ({Yi}) to be the most general compatible with the

few observed moments. Such an approach is usually referred to as maximum entropy

principle, and it has been used in a wide range of applications, as well as in the foun-

dations of Statistical Physics [74]. In the speci�c example of binary variables, when

only �rst and second moments are known, and when the information variables are

identically distributed, the result of the entropy maximization yields a fully connected

Ising model [75]. The use of an Ising model for a joint return distribution has already

been considered in the literature [76], and it has been show to weight large losses

very di�erently from a standard multivariate Gaussian distribution, widely used by

practitioners.

In the cases we are going to consider in more details in sections 4.4 and 4.5, the

joint p.d.f. is speci�ed by four parameters, two of them �xing the conditional p.d.f.

P ({Xi}|{Yi}) and two describing P ({Yi}). In the next section we highlight some

general results that are not speci�c of any particular choice for the model and we

introduce some observables we are interested in.
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4.3 General results

Financial products and complexity

A typical practice in �nance is the pooling of a large number of assets, obtaining

portfolios or more complex investment structures. In our model, such a �nancial

product can be described through a function F ({Xi}), expressing the return of the

product as a function of the returns of the individual assets that compose it. In the

following, we are going to consider the homogeneous portfolio, or average return

X({Xi}) =
1

n

∑
i

Xi. (4.3)

The return of such an investment is the average return of the di�erent assets that

are pooled together in the portfolio. This corresponds to one of the most basic

diversi�cation techniques, where the investor decides that instead of investing his/her

total wealth in a single asset Xi, he/she invests a fraction 1/n in each of the n assets.

The bene�t of diversi�cation is that it reduces risk. For example, for n i.i.d. stocks,

we have that the variance V(X) = V(Xi)/n is reduced by a factor of n, with respect

to that of the individual stocks. In the next subsection we clarify why the variance

can be considered a proxy of the risk of a �nancial asset.

Another class of products we consider are Asset Backed Securities (ABS), the

typical products of the structured �nance market, whose return function is based

over a prioritized structure of claims. In these products, the claims over the cash �ow

of the underlying asset returns {Xi} are prioritized, structured in such a way that

the ABS tranche yields a positive return when the total return is larger then a given

threshold. The return of these products is

Fk({Xi}) = sgn

(∑
i

Xi − k

)
, (4.4)

where sgn(x) = 1 when x ≥ 0 and sgn(x) = −1 when x < 0. Di�erent tranches

correspond to di�erent risk pro�les that can be obtained with di�erent values of k.

The transformation of {Xi} into Fk({Xi}) is an example of a securitisation and the

advantage of it is that it turns a set of risky assets into assets with a controlled risk

pro�le. For example, it is possible to obtain assets that are very safe, i.e. for which

Fk({Xi}) = 1 with high probability, by taking a su�ciently small value of k.

Given the complexity of these products and the large number of assets that are

typically used to construct these �nancial products, the issue of quantifying the risk
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associated with these investments is a subtle problem [28]. In the following subsection

we discuss the lack of transparency that is involved in the processes of diversi�cation

and securitization.

Quantifying transparency loss

In order to capture how relevant is the information content of the {Yi} about the

{Xi} variables and about a generic transformation (i.e. product) F ({Xi}), themutual

information provides a natural way to address this issue in quantitative terms. For

a pair of random variables A and B, it is given by

I(A;B) =
∑
a,b

P (a, b) log

(
P (a, b)

P (a)P (b)

)
= H(A)−H(A|B), (4.5)

where the sum is intended over all possible outcomes a and b of the random variables.

It can be shown to be equivalent to the reduction in entropyH(A) = −
∑

a P (a) logP (a)

of the random variable A, when the value of the random variable B is given, averaged

over the possible outcomes of B, H(A|B) =
∑

b P (b)H(A|B = b).

A general result involving the mutual information is the so called data processing

inequality, which we can formulate in our setting in the following way. When the

{Xi} are manipulated and transformed in a product through some F ({Xi}), some

information may or may not be lost, but for sure no information can be gained. This

can be formalized using the mutual information as follows

I(F ({Xi}); {Yi}) ≤ I({Xi}; {Yi}). (4.6)

In the following, we consider the mutual information as a measure of how much

the information contained in the {Yi} variables is informative on the return of the

�nancial product F ({Xi}).
Another quantity we are going to consider is the mutual information per bit, i.e.

the ratio between the mutual information and the entropy,

I(F ({Xi}); {Yi})
H(F ({Xi}))

, (4.7)

which expresses the reduction of the initial ignorance about the return of F ({Xi})
when the information is given.

The data processing inequality also holds when a manipulation of the information

is considered, namely

I({Xi};G({Yi})) ≤ I({Xi}; {Yi}). (4.8)
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When the pools are composed by a large number of assets, it is di�cult for investors

to transmit all the original information about the individual assets, from the product

originators to the buyers. In practice, this may happen because the information is

costly and because sellers have no incentives to share such information and provide

details on the �nal product [69]. Yet, we can imagine that some compressed version of

the information, expressed in terms of a function of the original information, G({Yi}),
might be used instead of the whole set of information variables {Yi}, with some

information loss in the process. This is a relevant issue in the �nancial industry,

where the introduction of barcodes for �nancial products has been discussed [29]. An

optimal barcode for a �nancial product F ({Xi}) would be one for which the mutual

information

I(F ({Xi});G({Yi})) (4.9)

is maximal, with respect to all possible compressions G.

A �rst general result for the case of binary assets and binary information variables

can be obtained for the type of products we introduced before, i.e the homogeneous

diversi�cation and the ABS. Both these type of products are function of the asset

returns {Xi} through their aggregate return X =
∑

iXi (we denote by capital X the

sum of the returns Xi in the following). The probability distribution for the aggregate

return X have the following property:

P (X |{Yi}) = P (X |Y ) , (4.10)

where Y is the aggregate information Y =
∑

i Yi. Such a property holds as a con-

sequence of the permutation symmetry of the sum. This is actually a general result

for any function of the stocks that is symmetric under any permutation of the stocks.

This implies that the sum (or the average) Y (or Y/n) is an optimal barcode for any

�nancial transformation F (X) which is a function of the average return of the assets,

i.e.

I(F (X);Y ) = I(F (X); {Yi}). (4.11)

Pricing information

A task closely related to the relevance of the information {Yi} is its pricing, a typical
goal of portfolio theory and risk management practices.

It is commonly believed that complex �nancial products, obtained by pooling

together a large number of stocks, have the nice property of reducing the associated

risks. For instance, this can be quanti�ed by a reduction in the variance of the
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corresponding distribution, with respect to the variance of the single asset.

V(F ({Xi})) < V(Xi) (4.12)

To understand why variance can be a proxy of the risk of an asset we may think to

the following setup of a two times market [77] .

An investor in this market is endowed with an initial wealth W0 and an utility

function U(W) which quanti�es how much the wealth W satis�es the need of our

investor. The utility function U is usually assumed to be an increasing and concave

function of W , to ensure respectively greediness and risk aversion of the investor.

At some time t0 the investor may decide to invest part of his/her initial wealth

W0 to buy A units of cash (say $) of an asset with return Xi, resulting in owing

W0 − pAXi + AXi where pAXi is the price of the asset. The return of the asset Xi

is known only at some later time t1, so at time t0 it can be considered a random

variable. The fair price, i.e. the price that makes the investor indi�erent between

buying and not buying the asset is given by the condition

U(W0) = E [U(W0 − pAXi + AXi)] , (4.13)

where the expected value E [·] is intended on the probability distribution of Xi.

If we assume that A�W0 and we Taylor expand expression (4.13), i.e.

U(W0) ' E
[
U(W0) + U ′(W0)(AXi − pAXi) +

1

2
U ′′(W0)(AXi − pAXi)2

]
, (4.14)

we get

pAX ' AE[Xi] +
U ′′(W0)

2U ′(W0)
E [(AXi − pAXi)2]. (4.15)

In the following we are going to discuss in which cases the truncation of this this

Taylor expansion is meaningful. By now, if we assume that the second term on the

r.h.s is small compared to the �rst, the price on the r.h.s. can be assumed to be

approximately equal to AE[Xi]. In this case, the equation for the price reduces to

pAX = AE[Xi] + A2 U ′′(W0)

2U ′(W0)
V[Xi] = A (E[Xi]− αV[Xi]) . (4.16)

In the last equation α = −AU ′′(W0)
2U ′(W0)

is dimensionless, and it is positive (since U ′ > 0

and U ′′ < 0 are the general requirement for an utility function). That is, the fair

price for A units of an asset with return Xi is given by its expected return, minus a

term embedding the uncertainty of the probability distribution, as expressed by its

variance; the minus sign precisely highlight the risk aversion.
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We further assume investors with constant relative risk aversion (CRRA) utility

functions [78] [77]. This means, for instance U(W) = Wγ, with γ < 1, or U(W) =

logW . In these cases. α is proportional to A/W0, and it can be assumed to be small

from the very beginning. Furthermore, the Taylor expansion leading to equation

(4.16) is justi�ed in this case, since the next term in the expansion of (4.13) would

be order A2/W2
0 .

Now we tackle the problem of pricing the bits of information: within this for-

malism, it is natural to price information as the di�erence in price due to a change

in the probability distribution. When the agent acquire some information Yi, the

probability distribution changes from P (Xi) to P (Xi|Yi). In this case, the calcula-

tion of the price he/she is willing to pay for the asset Xi is computed with the new

conditional probability distribution. Such a price will depend on the speci�c value

of the information Yi. We can consider the average of such a price, averaged with

respect to the distribution of Yi, as the price that the investor is willing to pay for

both the asset and the information.

For the cases we are going to consider in our models, the uninformed distribution

P (Xi) is the marginal of the joint distribution P (Xi, Yi). Hence the information on

average does not change the expected return of the asset (E[Xi] = E[E[Xi|Yi]]), but
produces a reduction in variance (V[Xi] 6= E[V[Xi|Yi]]). E[Xi|Yi] and V[Xi|Yi] are the
conditional cumulants, expected value and variance, at �xed Yi. As such, they are

function of Yi and they can be averaged with respect to the information probability

distribution P (Yi), as we did in the previous equations in brackets.

In this setup, the fair price that the investor is willing to pay for the information

Yi, is given by the di�erence in price among the two following cases; the case in which

he/she buys the asset and the information, and the one in which he/she buys only

the asset. Hence the price of the information per unit of asset A = 1, can be given

by

δpi = α (V[Xi]− E [V[Xi |Yi]]) = αV [E[Xi |Yi]] , (4.17)

where in the last equality we used the variance decomposition formula (V[Xi] =

E [V[Xi |Yi]] +V [E[Xi |Yi]]) in order to show that the price of the information is non

negative.

Equation (4.17) can be extended beyond the case of the single asset Xi, and we

can apply this formalism to estimate the price of the information Y associated with

any �nancial transformation F (X) (that can be a homogeneous diversi�cation X/n

or an ABS Fk(X)). We get

δp = α (V [F (X)]− E [V [F (X) |Y ] ]) , (4.18)
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as the de�nition of the price of the information Y associated with the �nancial in-

strument F (X). This price depends on α, which is an investor-dependent quantity,

which expresses his/her risk aversion. In the following, when we use such a price we

�x α = 1, referring just to the reduction in variance given by the information.

A quite general result can be proven (see appendix 4.A) about this expression for

the class of the models introduced in (4.1) with binary variables. For those model, as

a consequence of the factorizability of the conditional probability P (Xi |Yi), we can
show that for the average return X the following holds

E
[
V [X |Y ]

]
=

E[[V [Xi |Yi] ]

n
. (4.19)

We are going to use this result in the following to understand the behaviour of the

information price, as a function of the size of the pool, for the homogeneous portfolio.

In the next two sections we are going to specialize to two classes of less general

models, symmetric and asymmetric. Symmetric models are intended to model stock

price dynamics while asymmetric ones are intended to model those cases where a

negative return is a rare event, e.g. credits.

4.4 A model for symmetric assets (stocks)

In this section we consider a symmetric model of binary variables, i.e. for which{
Xi = ±1

Yi = ±1

{
E[Xi] = 0

E[Yi] = 0
. (4.20)

This type of distributions could arise for instance when dealing with binarized high

frequency �nancial data, where observations are very noisy. In this case, volatil-

ity is much higher that the expected return, hence the binarization yields at �rst

approximation symmetric variables.

When the asset returns are assumed to be independent, so are the information

variables, and the marginals distributions are trivial, i.e P ({Xi}) = P ({Yi}) =

(1/2)N . In this independent returns case, the unique measurable quantity which

is non trivial is E[XiYi], which measure how likely the return is positive (or negative)

when the information is positive (or negative). Since both returns and information

are symmetric, the conditional P (Xi |Yi) can be parametrized in terms of a single

number. For convenience, we use the following parametrization

P (Xi = xi |Yi = yi) =
eJxiyi

2 cosh(J)
. (4.21)
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Alternatively to J , we can introduce the probability to be aligned, pa = E[XiYi]+1
2

=

(1 + e−2J)−1, describing how likely each information Yi is equal to the asset return it

is related with.

In the more general case in which the assets returns are not independent and a

non zero empirical measure of E[XiXj] is available, we have to make an assumption

on which distribution of the information P ({Yi}) is compatible with the observed

correlation. We recall that in our setting, equation (4.1), a dependence among returns

emerges as a consequences of a dependence among information. Equation (4.21)

implies E[XiXj] = tanh2(J)E[YiYj] (we refer to appendix 4.D for computational

details), showing explicitly how the asset returns dependence is inherited from the

information dependence. When a single measure of correlation is available, and there

are no reasons to expect inhomogeneities in the system (i.e. we can assume identical

P (Xi|Yi) and {Yi} identically distributed), the most general distribution compatible

with a �xed value of E[YiYj] is a symmetric fully connected Ising model

P ({Yi} = {yi}) =
1

Zy
e
C
2n
y2 , (4.22)

where y =
∑

i yi. By most general distribution, we mean that this is the distribu-

tion compatible with the observed moments that has the largest entropy (maximum

entropy principle). The independent assets case is recovered when C = 0. The pa-

rameter J is speci�ed as before by the measurement of E[XiYi] while C can be �xed

by E[YiYj] or equivalently by E[XiXj] = tanh2(J)E[YiYj]. In particular, we note

that the coupling C changes with the size of the pool n - at �xed returns correlation

E[XiXj]. In order to �nd the value of C that corresponds to a given value of the

correlation, for a given n, one has to solve the inverse Ising model, the details of

which are described in the appendix 4.B.

Here we consider �nancial transformations that are functions of the average asset

performance, as discussed in the previous section. Hence it is useful to compute the

joint p.d.f for the sums

X =
n∑
i=1

Xi and Y =
n∑
i=1

Yi. (4.23)

In general we can write this as

P (X = x , Y = y) =
∑
{Xi}

∑
{Yi}

(
n∏
i=1

P (Xi = xi , Yi = yi)

)
δ

(
n∑
i=1

Xi = x

)
δ

(
n∑
i=1

Yi = y

)
,

(4.24)
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but this sum is tricky to compute, because all terms for which the deltas are non

zero, do not have the same weight. Let's consider instead

P (X = x , Y = y ,A = a), (4.25)

where the variable A is the number of aligned binary variables, i.e. for which the

return Xi and its associated Yi have the same sign. In this case all the terms con-

tributing to this probability have the same weight and we can write

P (X = x , Y = y ,A = a) =
eJae−J(n−a)eC/2ny

2

(2 cosh(J))nZY
B(x, y, a) . (4.26)

By B(x, y, a) we denote all possible couples of strings of ±1 - of length n - such that

the �rst sum to x, the second to y, in such a way they have a aligned variables.

To compute this number, we start from all strings summing to x, which is
(

n
n+x
2

)
.

Starting from each of these string of {Xi}, we can create a string of {Yi} summing

to y and having a aligned variables with the {Xi} string in the following way. We

initially take {Yi} = {Xi} and then we change sign to 1
2
(n− a− y−x

2
) variables out of

the n+x
2

which are positive in the string {Xi}, and we change sign to 1
2
(n− a+ y−x

2
)

variables out of the n−x
2

which are negative.

Hence we get

B(x, y, a) =

(
n
n+x

2

)( n+x
2

1
2
(n− a− y−x

2
)

)( n−x
2

1
2
(n− a+ y−x

2
)

)
. (4.27)

The allowed values of a goes from amin = |x+y
2
| to amax = n − |x−y

2
|, so that we can

write

P (X = x , Y = y) =
amax∑
a=amin

P (X = x , Y = y, A = a) (4.28)

and we �nally get

P (X = x , Y = y) =
amax∑
a=amin

B(x, y, a)
eJae−J(n−a)e

C
2n
y2

(2 cosh(J))nZY
(4.29)

with B(x, y, a) expressed as in equation (4.27). This expression is very useful to

compute numerically all desirable quantities like measures of mutual information

and variances, because it reduces the sum over an exponential (in n) number of

con�gurations to the sum over a linear set of states.
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Independent assets and information

We report in this subsection the results obtained for independent assets, when C = 0.

Figure 4.3 shows the mutual information per bit and the price of information for an

homogeneous portfolio against di�erent values of J - or pa. With increasing n, the

distributions of X and Y converge to two Gaussian distributions, with correlation

tanh(J), because of the central limit theorem. As a result, the mutual information

reaches a constant value, which is In→∞(X;Y ) = −1/2 log(1− tanh(J)2) [79]. Since

the entropy is growing logarithmically, as it is known that for a binomial distributed

random variableH(X) ' 1/2 log(2πen), the mutual information per bit plotted in the

left panel of �gure 4.3 shows a logarithmic decay to zero. At large n, the knowledge

of the information Y is only weakly informative on the random variable X. An

alternative way to express this loss of information, is by noting that a constant (in

n) mutual information, together with an increasing (in n) entropy H(X), implies

H(X|Y )

H(X)
→ 1 when n→∞, (4.30)

showing how the knowledge of Y does not reduce the entropy of X.

For independent assets, this loss of information is consistent with what observed

on the right panel of �gure 4.3, where the information price is going to zero ∼ 1/n.

This can be understood by recalling that the information price, expressed as in (4.18)

is a di�erence between two variances. While the second is decreasing with n in general,

as stated in (4.19), the �rst variance is also having a ∼ 1/n behaviour in the case of

independent assets. In fact, the variance for the average of a set of random variables

can be written as

V [X] =
1

n2
V [X] =

1

n
V [Xi] +

n(n− 1)

n2
cov [XiXj]. (4.31)

When n is very large only the covariance term is not going to zero. However, in the

case of independent returns, it is exactly zero for all n.

The general picture emerging from �gure 4.3 is that the return of a large homo-

geneous portfolio of independent assets, is only weakly dependent on information. In

other words, risks (even unknown ones, since we neglect relevant bits of information)

can be e�ciently diversi�ed.

This indeed is the perfect realization of the diversi�cation task, namely safe �-

nancial products can be easily created and they prove to be stable with respect to a

change in the market fundamentals. In such a world, it can be expected to see that

information has no value, and both buyers and sellers do not have an incentive in

building nor buying barcodes for �nancial products.
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Figure 4.3: Independent assets, homogeneous portfolio X. Di�erent curves correspond to

data for pa = 0.75(J = 0.5493), 0.8(J = 0.69315), 0.85(J = 0.8673). The mutual informa-

tion per bit dependence on n shows a logarithmic decay to zero. Correspondingly, the price

of the information goes to zero proportional to 1/n. In the curves with larger value of J ,

(or with larger pa), as expected the information is more relevant and has higher price.

Figure 4.4 shows the same plots for an ABS. For the ABS, we �xed k in such a

way that, by changing n, the default probability pd = P (Fk(X) = −1) is constant,

namely we studied the size e�ect on a given tranche. In the case of independent

assets, being X normally distributed at large n, this could be achieved by having

k ∼
√
n (since X = nN (0, 1)). In particular, in order to have pd = 0.01 we can

�x k = −2.326
√
n. In general, when dependencies are included in the model, this

inversion is not a trivial task, so in �gure 4.4 we �x k numerically, to be the smallest

value with a default probability larger than 0.01. Oscillation are observed at small n,

due to the fact that the ABS return function distinguishes only even integer values

of k, so that it is not possible to �x pd at the same value for small n.

At variance with the case of the homogeneous portfolio, both the mutual informa-

tion per bit and the information price go to a constant value. This implies that, for

an ABS, the information remains informative about the return on the product and,

consistently, the price of such information does not vanish.

For structured �nance type of products, like the simple ABS studied here, even

at the level of independent and symmetric assets the diversi�cation task does not

work: the process of securitisation does not diversify enough to make the information

negligible. Therefore, the information stored in the Y variable remains relevant, irre-

spectively of the size n of the pool of assets involved. Such collective transformations

introduce a systemic source of risk that is sensible to the side information Y and that,

therefore, cannot be e�ciently hedged neglecting Y . In such a case it is meaningful to
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think that a barcode, containing the value of Y , could be sold together with a tranche

Fk(X), and the price of such a barcode could be expressed by the information price

(4.18), quantifying the reduction of risk that is on average achieved, when the value

of Y is known.
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Figure 4.4: Independent assets, ABS Fk(X). Di�erent curves correspond to data for pa =

0.75(J = 0.5493), 0.8(J = 0.69315), 0.85(J = 0.8673). k is �xed to be the smallest value

of with a default probability larger than 0.01. Both the mutual information per bit and

the information price go to a constant value, initial oscillation are there because of the

impossibility to �x k realizing a precise value of pd when n is small.

Dependent assets and information

In this subsection, we discuss the results for dependent assets. In �gure 4.6 we can see

mutual information per bit and the information price for an homogeneous portfolio.

Both plots are for a �xed value of J = 0.5493 (corresponding to pa = 0.75 ) and

the di�erent curves correspond to di�erent values of ρ = E[XiXj], or equivalently

E[YiYj] = tanh−2(J) ρ = 4 ρ. This choice is dictated by the observation that both the

mutual information per bit and the information price are always increasing in J (or

in pa), while the dependence on the correlation is less trivial. For each value of ρ at a

given pool size n, the value of C is computed by the numerical inversion of the Ising

model at �nite n.

On the left panel we show the behaviour of the mutual information per bit, where

all curves eventually reaches a logarithmically decreasing regime, but comparing to

the independent assets case, this value is much larger and it is not attained up to

very large values of n. In particular, for di�erent values of ρ, the behaviour is not

trivial, and for curves corresponding to smaller value of ρ the mutual information per
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bit is larger, when the pool size n is larger than a given amount. This property can

be understood in terms of the behaviour of the mutual information, which is growing

logarithmically only when C = 1, whereas it reaches a constant value for all values

of C > 1, as discussed in appendix 4.C. Since weakly correlated assets (hence weakly

correlated information) are asymptotically described by a model with C closer to 1

than strongly correlated assets(see appendix 4.B), their mutual information is larger

at large n, and so is the mutual information per bit.

In the right panel of �gure 4.5, we show the behaviour of the price of the infor-

mation. The discussion after equation (4.31) is still valid except that here assets are

not independent, hence the covariance term is not zero. Each curve is asymptotic to

the value of ρ = E[XiXj] which is �xed for all n.

A non trivial observation is that here the mutual information per bit and the infor-

mation price exhibit a di�erent monotonicity in ρ. In fact, the weaker the correlation

among assets returns, the more the information is relevant for large portfolios (when

looking at the mutual information per bit), while on the contrary the information

price is a decreasing function of this correlation. This is because while the informa-

tion price asymptotically converges to the value of ρ, the mutual information strongly

depends on the assumption on how the dependence among information is modelled,

in particular here on (4.22). Its behaviour as a function of n and its asymptotic value

is dictated by some speci�c properties of the inverse Ising model.

Figure 4.6 shows the same for an ABS. For ABSs, the introduction of depen-

dences does not change the main qualitative picture of the case of independent asset,

meaning that both the mutual information per bit and the information price go to

a constant value. This convergence is slower for curves with smaller values of ρ,

due to the slow convergence of the inverse Ising. A non-monotonic behaviour, sim-

ilar to what observed for the homogeneous portfolio is observed also here, and the

non-monotonicity extends also to the information price; for products composed with

weakly dependent assets the information is more relevant then for products composed

with strongly dependent assets, both at the level of entropy reduction and at the level

of risk reduction.

4.5 A model for asymmetric assets (credits)

In this section we consider models with binary and homogeneous variables, but we

drop the symmetric assumption. In this case, the most general model compatible
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Figure 4.5: Dependent assets, homogeneous portfolio X. All curves correspond to pa =

0.75(J = 0.5493) and di�erent values of ρ = E[XiXj ] = 0.1, 0.05, 0.025, 0.0. The value of

C is computed by the numerical inversion of the Ising model at �nite n corresponding to a

given value of E[YiYj ], and C = 0 for the curve at ρ = 0, which is shown for comparison.

On the left the behaviour of the mutual information per bit, which eventually reaches

a logarithmically decreasing regime. In the n−range showed in the plot only the curves

corresponding to ρ = 0.4 and 0.2 have reached this regime. On the right the behaviour of

the price of the information. Each curve is asymptotic to the value of ρ which is �xed for

all n.
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Figure 4.6: Dependent assets, ABS Fk(X). All curves correspond to pa = 0.75 and di�erent

values of ρ = E[XiXj ] = 0.1, 0.05, 0.025, 0.0. The value of C is computed by the numerical

inversion of the Ising model at �nite n corresponding to a given value of E[YiYj ], and C = 0

for the curve at ρ = 0, which is shown for comparison. The tranches correspond to k �xed

to be the smallest value of with a default probability larger than 0.01.
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with the maximum entropy principle would be speci�ed by:

P (Xi = xi |Yi = yi) =
eJxiyi+H1xi

2 cosh(Jyi +H1)
, (4.32)

and by

P ({Yi} = {yi}) =
1

Zy
e
C
2n
y2+H2y. (4.33)

Given the larger number of parameters involved, we might consider two simpler cases;

H1 = 0, in which the anisotropy in returns is obtained as a result of anisotropic

information or the case in which H2 = 0, in which information are still symmetric

and the anisotropy is imposed in the conditional P (Xi |Yi). We are going to focus here

only the latter case, because asymmetric information variables are not particularly

meaningful. In particular, they are not meaningful in all cases in which information

is not binary and it is binarized a posteriori. In these cases in fact, the only practical

argument to perform the binarization, is to maximize the informative content of

information H({Yi}), as symmetric binary variables do.

Analogously to the symmetric case, we compute the joint p.d.f for sums, resulting

in

P (X = x , Y = y) =
amax∑
a=amin

B(x, y, a)
eJae−J(n−a)e

C
2n
y2+H1x+H2y

2n cosh(J +H1)(n+y)/2 cosh(J −H1)(n−y)/2ZY
(4.34)

with B(x, y, a) expressed as in equation (4.27).

We are going to report here only results about dependent asset, since indepen-

dent are not showing any new behaviour. In �gure 4.8 the behaviour of the mutual

information and the information price are shown as a function of n. The parameters

J and H1 are �xed once for all, from measurement of E[Xi] and E[XiYi]. In fact, in

the case H2 = 0 the generic form of single returns correlations, as explicitly shown in

appendix 4.D, are given by

E[Xi] =
1

2
[tanh(H1 + J) + tanh(H1 − J)] (4.35)

E[XiXj] =

(
1 + E[YiYj]

4

)(
tanh2(H1 + J) + tanh2(H1 − J)

)
+ (4.36)

+

(
1− E[YiYj]

2

)
tanh(H1 + J) tanh(H1 − J)

E[XiYi] =
exp(J +H1)

2 cosh(J +H1)
+

exp(J −H1)

2 cosh(J −H1)
− 1. (4.37)
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Fixing E[Xi] = 0.96 and E[XiYi] = 0.02 (with symmetric Yis and strongly biased

Xis, E[XiYi] has to be small) and inverting the �rst and third of the previous equa-

tions, we get J ' 0.27976 and H1 ' 2.0178. With these values of J and H1, the

correlation among asset returns ρ =
E[XiXj ]−E[Xi]

2

1−E[Xi]2
results to be still 4 times smaller

than the information correlations E[YiYj], like in the symmetric case.

Figure 4.7 and �gure 4.8 show the usual plots for an homogeneous portfolio and

for the ABS. They con�rm essentially the picture emerging from the analysis of asset

with symmetric returns. In �gure 4.7 the regime in which the mutual information per

bit decrease with n is not reached up to n = 2048 for all curves. The same behaviour

for the price of information is also found.
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Figure 4.7: Dependent assets, homogeneous portfolio X. All curves correspond to E[Xi] =

0.96 and E[XiYi] = 0.02 (J ' 0.27976 and H1 ' 2.0178) and di�erent values of ρ =

0.1, 0.05, 0.025, 0.0. The value of C is computed by the numerical inversion of the Ising model

at �nite n corresponding to a given value of E[YiYj ] = 4ρ, while C = 0.0 for independent

assets. On the left the behaviour of the mutual information per bit, which eventually reaches

a logarithmically decreasing regime, but in the n−range showed in the plot not a single curve

has reached this regime. On the right the behaviour of the price of the information. Each

curve is asymptotic to the value of E[XiXj ] = 0.0016ρ, which is �xed for all n.

4.6 Conclusions and outlook

In this �nal chapter, we exploited information theoretic concepts and asset pricing

theory to investigate the lack of transparency associated with �nancial transforma-

tions, which is widely spread in nowadays �nancial practices and it had a predominant

role in the 2007-2008 global �nancial crisis.
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Figure 4.8: Dependent assets, ABS Fk(X). All curves correspond to E[Xi] = 0.96

and E[XiYi] = 0.02 (J ' 0.27976 and H1 ' 2.0178) and di�erent values of ρ =

0.1, 0.05, 0.025, 0.0. The value of C is computed by the numerical inversion of the Ising

model at �nite n corresponding to a given value of E[YiYj ] = 4ρ, while C = 0.0 for inde-

pendent assets. On the left the behaviour of the mutual information per bit, on the right

the behaviour of the price of the information. The tranches correspond to k �xed to be the

smallest value of with a default probability larger than 0.1.

In an ideal world in which asset returns are independent between each other,

standard diversi�cation techniques, like the homogeneous portfolio considered here,

allow investors to trade safe �nancial products, and whose low risk pro�le is stable

with respect to �uctuations in market fundamentals. A very simple principle, which is

based on increasing the size of the pool, can be e�ciently used to generate instruments

with a risk as low as desired.

When instead dependencies among returns are taken into account, or when more

involved �nancial products like structured securitisations are considered, such a di-

versi�cation dream drastically collapses.

In ABSs, the risk can be e�ciently hedged by moving the threshold and low risk

instruments can be created out of risky assets. However, such an evaluation is ex-

tremely unstable. In our model, stability is considered with respect to the acquisition

of additionally variables, containing information about the distributions of returns.

We explicitly show how in these cases the knowledge of the information remains rel-

evant for the return distribution, both at the level of entropy and at the level of risk,

up to very large pools.

The model is motivated by the recent history of the bubble in the subprime mort-

gage backed securities market, which was nourished by the lack of transparency of

structured �nance products. [28] [69]. Our results highlight the importance of the
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proposal [29] to build an e�cient and standardized system, or a common language,

though which information should be easily available to all market participants. In

addition, we proposed a way to price such a �nancial barcode, through the risk reduc-

tion due to the information. Such an aspect is particularly relevant, since without a

barcode price the seller does not have an incentive for sharing the information with

the buyer, and the system is not sustainable.

In the case of homogeneous portfolios, while the actual informative content of the

information about the whole distribution of returns, the mutual information per bit,

depends on the speci�cities of how dependencies are introduced in the model, the

barcode price does not. In particular, when a fully connected Ising model is used to

model information dependencies, the information Y remains informative up to very

large portfolios and asymptotically is more informative for weakly dependent assets,

whose distribution's parameters are closer to the critical point. This implies that a

bit of information is more valuable when the correlations are weak.

This suggests that measures of correlations, which are usually rather noisy and

unreliable, are not su�cient to understand risk in an environment of complex �nancial

products, but understanding how the returns actually depend on each others is of

fundamental need. Eventually, this suggest that that the barcode might include, on

top of the actual value of Y , which gives information on the average quality of the

assets {Xi}, also details about the probability distributions of future returns of these

{Xi}.
Our simpli�ed scheme highlights those crucial issues and might be a benchmark

for more complex and realistic theoretical models, e.g. with continuous returns as well

as a benchmark for the implementation of such barcodes in real �nancial practices,

in particular from the point of view of the regulator. In general, it highlights how

systemic lack of transparency in Finance should be considered a key ingredient to

compute risk.
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4.A The conditional variance

We prove here that the result (4.19), namely

E
[
V
[
X

n
| Y
]]

=
E [V [Xi | Yi ]]

n
(4.38)

is very general and it can be proven for all the models of binary variables we have

introduced.

To compute this variance we use

V
[
X

n
| Y
]

=
1

n2
V [X | Y ] (4.39)

and we calculate separately E [X | Y ] and E [X2 | Y ]. For the �rst we have

E [X | Y ] = nE [Xi | Y ]

= n
∑
Yi

E [Xi | Yi ]P (Yi |Y ) . (4.40)

We note in that the last equation we can write

E [Xi | Yi ] = a+ bYi (4.41)

because this is just a di�erent parametrization (using a and b instead of J and H1),

and

P (Yi |Y ) =
n+ YiY

2n
. (4.42)

Using those we easily get

E [X | Y ] = na+ bY. (4.43)

Similarly we can write for

E
[
X2 | Y

]
= n+ n (n− 1)E [XiXj | Y ]

= n+ n (n− 1)
∑
Yi,Yj

E [XiXj | Yi, Yj ]P (Yi, Yj |Y )

= n+ n (n− 1)

a2 +
2abY

n
+ b2

∑
Yi,Yj

YiYjP (Yi, Yj |Y )


= n+ n (n− 1)

[
a2 +

2abY

n
+ b2

(
Y 2 − n
n2 − n

)]
. (4.44)
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Putting everything together we get

V [X | Y ] =
(1− a2 − b2)

n
− 2ab

n
Y, (4.45)

hence

E
[
V
[
X

n
| Y
]]

=
(1− a2 − b2)

n
− 2ab

n
E[Y ]. (4.46)

We observe that, being E [Xi | Yi ] = a+ bYi we have

E [V [Xi | Yi ]] = 1− a2 − b2 − 2abE[Yi], (4.47)

hence the equation is proved in general.

4.B Fully connected Ising model, direct and inverse problems

The fully connected Ising model for a set of binary variables {Yi} is de�ned by the

partition function

Z(C,H, n) =
∑
{Yi}

exp

{
C

2n
Y 2 +HY

}
=
∑
Y

B(Y ) exp

{
C

2n
Y 2 +HY

}
, (4.48)

where Y is a shortcut for Y =
∑
Yi and

B(Y ) ≡
(

n
n+Y

2

)
(4.49)

is the number of con�guration {Yi} summing to Y .

From this partition function, di�erent moments of the distributions such as E[Yi]

or E[YiYj] can be computed numerically for �nite n, and analytically in the large

n limit. We refer to this problem as the direct Ising problem. The inverse Ising

problem, instead, is the determination of C and H that provide a given value for

some observed moments of the distribution.

Both these problems are amenable to an approximated solution in the large n limit.

To account for the quadratic term we can use a Hubbard Stratonovich transformation

exp

{
C

2n
Y 2

}
=

√
nC

2π

∫
dm exp

{
−nC

2
m2 + CYm

}
, (4.50)

and use such transformation to rewrite the partition function and get

Z(C,H, n) =

√
nC

2π

∫
dmenf(m) (4.51)
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with

f(m) = log(2)− C

2
m2 + log [cosh (Cm+H)] . (4.52)

In the large n limit, the previous integral can be computed with the use of the

saddle point method. The maximum of the function f(m) is located in the point m∗,

determined by the saddle point equation

f ′(m∗) = 0 =⇒ m∗ = tanh(Cm∗ +H), (4.53)

and the integral can be approximated to be

Z(C,H, n) '
√
nC

2π
enf(m∗)

∫
dmenf

′′(m∗) (m−m∗)2

2
. (4.54)

The second derivative f ′′(m∗) can be computed and it is equal to

f ′′(m∗) = −C + C2
(
1−m∗2

)
. (4.55)

There are two subtleties associated with the previous approximation when H =

0, because the equation (4.53) may have more than one solution and the second

derivatives can be null. Speci�cally, the second derivative is null on the critical point

{H = 0 , C = 1}, separating a phase where equation (4.53) has only one solution

(m∗ = 0 in the region {H = 0 , C < 1}) to a phase where equation (4.53) has three

solutions (m∗ = {0,±m∗} in the region {H = 0 , C > 1}).
We discuss the case of H = 0 separately, also because we have in mind to apply

this case to the case of symmetric information.

In this case, if C ≥ 1, equation (4.53) has three solution, 0 and two ±m∗ corre-
sponding to two separate global maxima of the function f(m). Furthermore, in the

special case C = 1, the second derivative f ′′(m∗) is null, and the �rst derivative which

is non-zero is the fourth one. Hence, to have a convergent integral in equation (4.54)

additional terms in the power expansion have to be added.

Using the two famous integrals∫ ∞
−∞

dx e−x
2

=
√
π

∫ ∞
−∞

dx e−x
4

= 2 Γ

(
5

4

)
, (4.56)

we have that for large n

Z(C,H = 0, n) '



1√
1−C 2n if C < 1

2nn1/4121/4
√

2/π Γ
(

5
4

)
if C = 1

1√
1−C(1−m∗2)

enf(m∗) if C > 1

. (4.57)
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From the partition function we can compute the correlation ρ = E[YiYj] for large n

by using

ρ = E[YiYj] =
1

n(n− 1)
E[Y 2]− 1

n− 1
' 1

n2

1

Z
2n

d

dC
Z − 1

n
, (4.58)

and we get

ρ = E[YiYj] ∼



α1
1
n

if C < 1

α2
1√
n

if C = 1

m∗2 + α3

n
if C > 1

(4.59)

where α1, α1 and α3 are some constants. The results in equation (4.59) can be used

to understand the inverse problem in the large n limit. If we want to �nd the value of

the coupling C that is providing a given value of correlation ρ, the value of C has to

be larger than 1, because C < 1 is compatible only with ρ = 0 in the n → ∞ limit.

The speci�c value of C(ρ) reached in the n→∞ limit can be obtained by inverting

the equation ρ = m∗2, that in the H = 0 case gives

C(ρ)→
tanh−1√ρ
√
ρ

for n→∞. (4.60)

Such inversion can be obtained also numerically, inverting the equation that provides

a given ρ at �nite n, and the result is shown in �gure (4.9).

4.C Large n behaviour of the mutual information

The de�nition of the mutual information reads

I(X;Y ) = H(Y )−H(Y |X). (4.61)

An upper bound for the mutual information is given by the entropy H(Y ) of the

distribution of Y .

In �gure 4.10 it is shown the behaviour of the entropy H(Y ) when the variables

{Yi} are distributed according to a fully connected Ising model (4.33). It is observed

to be growing proportionally to 1/2 log(n) for all values except for C = 1 and H2 = 0

where the slope is steeper and it can be observed to be 3/4 log(n). This can be

understood in terms of the moments in equation (4.59). For all values except for
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Figure 4.9: Numerical inversion of the fully connected Ising model, as a function of n. The

exact expression for ρ = E[YiYj ] as a function of C and n is numerically inverted (Newton's

method), obtaining C for several values of n and ρ. Asymptotically, C converges to the

limit
tanh−1√ρ√

ρ .

C = 1 and H2 = 0 the variance of Y is proportional to n, while on the critical point

it is going as n3/4. Given that at large n, the Ising spins are essentially independent

(E[YiYj]−E2[Yi] ' 0), the entropy is expected to be logarithmic in the variance V[Y ],

as for a Normal distribution.

In �gure 4.10 it is shown the behaviour of the mutual information I(X;Y ), when

the {Xi} and the {Yi} variables are distributed according to (4.32) and (4.33). It is

observed to be constant at large n for all values except for C = 1, H1 = 0 and H2 = 0,

where it is observed to grow like (1/4) log(n). This can be understood in terms of

the entropy discussed above, since only at the critical point and when H1 = 0 the

di�erence of the two terms in equation (4.61) is not cancelling the logarithmic term.

4.D Empirical averages against model's parameters

Here we derive the relations among empirical averages and model's parameters, in the

general case considered in the main text with binary variables distributed according

to equations (4.32) and (4.22). The simple trick for the calculation is using the law of

iterated expectations conditioning on information and then exploiting the conditional

independence of the assets, as we assumed in our model. For the symmetric case we
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Figure 4.10: H(Y ) growth as a function of n in a linear-log plot. The slope is asymptotically

1/2 for all values except for C = 1 and H2 = 0, while it is 3/4 on the critical point.
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Figure 4.11: I(X;Y ) growth as a function of n in a linear-log plot. Asymptotically, for all

values except for C = 1 and H1 = H2 = 0 the mutual information converges to a constant,

while it grows as (1/4) log(n) on the critical point.
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have:

E[XiXj] = E[E[XiXj|Yi, Yj]] = E

[(
eJYi − e−JYi

) (
eJYj − e−JYj

)
4 cosh(J) cosh(J)

]
=

=
1

4
E
[
(2 tanh2(J))P (Yi = Yj)+

+ (tanh(J)2)(1− P (Yi = Yj))
]
.

This is exactly the expression reported in the main text since E[YiYj] = 2P (Yi =

Yj)−1. For the asymmetric model, with H2 = 0 the expected value of an asset reads:

E[Xi] = E[E[Xi|Yi]] = E
[
eJYi+H1 − e−JYi−H1

2 cosh(JYi +H1)

]
=

=
1

2
tanh[J +H1] +

1

2
tanh[H1 − J ],

while the relation involving the expected value of the product of asset returns reads:

E[XiXj] = E[E[XiXj|Yi, Yj]] = E

[(
eJYi+H1 − e−JYi−H1

) (
eJYj+H1 − e−JYj−H1

)
4 cosh(JYi +H1) cosh(JYj +H1)

]
=

=
1

4
E
[
(tanh2(J +H1) + tanh2(J −H1))P (Yi = Yj)+

+ (tanh(J +H1) tanh(J −H1))(1− P (Yi = Yj))] .

This is exactly the expression (4.35) since E[YiYj] = 2P (Yi = Yj) − 1. Finally the

correlation among assets and information is related through model's parameters by:

E[XiYi] = E [YiE[Xi|Yi]] = E
[
Yi
eJYi+H1 − e−JYi−H1

2 cosh(JYi +H1)

]
=

=
1

2
tanh[J +H1]− 1

2
tanh[H1 − J ].
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Concluding Remarks

Today's global economy is more interconnected and complex than ever, and seems out

of any particular institution's control. The diversity of markets and traded products,

the complexity of their structure and regulation, make it a daunting challenge to

understand behaviours, predict trends or prevent systemic crises.

The standard approach of Economics, that mostly aims at explaining global be-

haviour in terms of perfectly rational actors and e�cient markets, has largely failed

[8, 80]. Some alternative approaches, inspired by Statistical Physics and the Complex

Systems Science, in which economic phenomena are considered as emergent statistical

properties of a large interacting system, and empirical evidences are favoured over

mathematical idealizations, can be of great help in dealing with this challenge.

The perspective lying below these approaches describes the economy, likewise an

ecological system, as a complex adaptive system. That is, according to the de�nition

in reference [81], a system �[. . .] composed of individual agents that adjust their

behavior or their relative number, with consequences for the system as a whole, and

these consequences can in turn a�ect individual behaviors �. As a result, the economy

turns out to be extremely interconnected, a perturbation in a given sector will have

consequences on other far related sectors, and these consequences in turn will a�ect

the initial perturbation, possibly amplifying it.

In this thesis, few issues hampering the sustainability of the economic and �nancial

systems have been considered and analyzed with the methods of Statistical Physics:

the anomalous size of �nancial institutions and �nancial regulation, the trend of

rising inequalities and growth, market e�ciency and the systemic �nancial risk. The

general idea of this thesis, lying behind the mere models, is that these problems are

all deeply interconnected.

Quantitative models, when properly conceived, have the great merit of exposing

these interconnections, unravelling the complexity of a large variety of natural and
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social phenomena. In these respect, economic and social systems are sources of a very

large number of interesting problems lacking a satisfactory understanding, a number

that evolves together with society itself, because it is intimately connected to the

increasing complexity of existing networks and their structure [82].

In the words of Bialek, an ambitious goal for future scientists can be described as

�[. . .] reconcile the physicists' desire for concise, unifying theoretical principles with

the obvious complexity and diversity of life� [83]. The present work wishes to be a

humble contribution in this direction.
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