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Thesis Summary

Auditory speech perception can be described as the task of mapping an auditory

signal into meaning. We routinely perform this task in an automatic and effortless

manner, which might conceal the complexity behind this process. It should be

noted that the speech signal is highly variable, ambiguous and usually perceived in

noise. One possible strategy the brain might use to handle this task is to generate

predictions about the incoming auditory stream.

Prediction occupies a prominent role in cognitive functions ranging from per-

ception to motor control. In the specific case of speech perception, evidence shows

that listeners are able to make predictions about incoming speech stimuli. Word

processing, for example, is facilitated by the context of a sentence. Furthermore,

electroencephalography studies have shown neural correlates that behave like error

signals triggered when an unexpected word is encountered.

But these examples of prediction in speech processing occur between words, and

rely on semantic and or syntactic knowledge. Given the salient role of prediction

in other cognitive domains, we hypothesize that prediction might serve a role in

speech processing, even at the phonological level (within words) and independently

from higher level information such as syntax or semantics. In other words, the brain

might use the first phonemes of a word to anticipate which should be the following

ones.

To test this hypothesis, we performed three electroencephalography experiments

with an oddball design. This approach allowed us to present individual words in

a context that does not contain neither semantic nor syntactic information. Ad-

ditionally, this type of experimental design is optimal for the elicitation of event

related potentials that are well established marker of prediction violation, such as

the Mismatch Negativity (MMN) and P3b responses.
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In these experiments, participants heard repetitions of standard words, among

which, deviant words were presented infrequently. Importantly, deviant words were

composed by the same syllables as standard words, although in different combina-

tions. For example if in an experiment XXX and YYY were two standard words,

XXY could be a deviant word. We expected that if as we proposed, the first

phonemes of a word are used to predict which should be the following ones, en-

countering a deviant of this kind would elicit a prediction error signal.

In Chapter 3, we establish that as we expected, the presentation of deviant

words, composed of an unexpected sequence of phonemes, generates a chain of well

established prediction error signals, which we take as evidence of the prediction of

the forthcoming phonemes of a word. Furthermore, we show that the amplitude of

these error signals can be modulated by the amount of congruent syllables presented

before the point of deviance, which suggests that prediction strength can increase

within a word as previous predictions prove to be successful.

In Chapter 4, we study the modulating role of attentional set on the chain

of prediction error signals. In particular we show that while high level prediction

(indexed by the P3b response) is strategically used depending on the task at hand,

early prediction error signals such as the MMN response are generated automatically,

even when participants are simply instructed to listen to all the words. These results

imply that phonological predictions are automatically deployed while listening to

words, regardless of the task at hand.

In Chapter 5, we extend our results to a more complex stimulus set that re-

semble natural speech more closely. Furthermore we show that the amplitude of the

MMN and P3b prediction error signals is correlated with participant’s reaction time

in an on-line deviant detection task. This provides a strong argument in favor of a

functional role of phonological predictions in speech processing.

Taken together, this work shows that phonological predictions can be generated

even in the absence higher level information such as syntax and semantics. This

might help the human brain to complete the challenging task of mapping such a

variable and noisy signal as speech, into meaning, in real time.
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Chapter 1

Introduction

1.1 Prediction in speech processing

Auditory speech perception requires the fast mapping into meaning of a complex

auditory signal that is variable, noisy and ambiguous [67, 12]. Despite this, under

normal circumstances, speech perception is experiences as an effortless activity. This

is in part explained by the fact that speech processing is supported by a truly vast

network of brain regions involving temporal, parietal and frontal cortices [47, 48, 49,

62, 99].

One strategy that this brain machinery could use to process the incoming speech

signal, is to generate predictions based on the information available at a given mo-

ment and past experience. In fact, prediction has shown to play a role in a wide

variety of cognitive domains. In the case of visual perception, this idea has a long

tradition and can be traced back to the concept of unconscious inference forged

by Helmholtz in 1860 [50] and has gained new momentum in recent years [112, 1].

Currently it can be found in a variety of other domains such as motor control [95],

placebo analgesia [16] and self recognition [4]. The concept of a predictive brain has

become a guiding principle in neuroscience [15, 63, 30, 51, 52].

In the case of speech processing, the idea that prediction plays a role is not

new, as several behavioural experiments starting in the late 70’s and early 80’s have

shown. For example, in the now famous garden path effect, while reading a sentence,

reading speed is reduced [39, 53] and comprehension accuracy drops [40, 41] when

an ambiguity is encountered. Importantly, the magnitude of the garden path effect
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CHAPTER 1. INTRODUCTION

is dependent on the predictability of the forthcoming words given the preceding

context.

The topic of prediction in speech as always been an arena of intense debate.

Arguments against have centred in the fact that any given context can have several

possible continuations, which implies that betting on one particular prediction would

be costly, as this prediction would usually fail [43]. For some authors, predicting

ahead of time would not only be an unnecessary waste of processing resources [111]

but could even hinder performance [79].

Despite this, the general idea that prediction serves a role in speech processing

has become widely accepted in recent years, and is now the focus of great research

effort [58]. Authors agree that given the noisiness, ambiguity and speed of our

linguistic input, prediction is the most efficient solution for fast, and accurate com-

prehension [67].

A revision of the current literature in speech processing shows that examples of

prediction can be found across language processing levels. At the syntactic level,

listeners’ individual experience, knowledge, and beliefs influence sentence parsing

and interpretation [108, 115, 37, 6]. In a similar way, lexico-semantic processing

is affected by contextual predictability, as reaction times are faster for predictable

words compared to unpredictable ones [110, 93].

Furthermore, electroencephalography studies dating back as far as 1980 have

shown the existence of an event related potentials (ERPs) known as N400, which

amplitude is inversely correlated with the semantic predictability of words given

previous context [69, 110, 14, 70, 71, 45, 28]

1.2 Prediction at phonological level

In this thesis, we will focus on the study of prediction at the phonological level.

This type of prediction can, for example, explain the phenomenon of phonemic

restoration. If a phoneme in a word that is presented in a sentence is replaced

by a non-speech sound (e.g., a tone), listeners tend to hallucinate its presence.

Furthermore, the strength of this illusion can be influenced by preceding context

which provides information about the likelihood of the missing phoneme. The more
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CHAPTER 1. INTRODUCTION

the context constrains in favour of a particular phoneme, the more listeners tend to

hallucinate its presence [66, 57]. This phenomenon can be related to our ability to

understand speech in noisy environments, for which it has been shown that a flow

of top-down information constrains the interpretation of the incoming speech signal

[24].

Similarly, Bendixen, Scharinger, Strauß and Obleser [10] have shown that when

a phoneme is omitted from a word, this can elicit an event related potential known

as the mismatch negativity (MMN) [76], which can be interpreted as a marker of

violation of expectations [50, 118]. But importantly, this only happens if context

in which the phoneme omission occurs, contains either semantic or probabilistic

information that makes the omitted phoneme predictable.

In the examples shown so far, an expected phoneme is either omitted or replaced

by a non linguistic sound. But the literature also contains examples of evidence

of prediction in cases in which one phoneme is replaced by another phoneme. For

example, in electroencephalography experiments, when words are presented sequen-

tially in pairs and participants are asked to report if the words are identical, if the

second word of the pair contains a phoneme change, this will elicit a mismatch re-

sponse, but only if the phoneme replacement goes against a phonological rule of the

native language of the listener [23, 104, 119]. This shows how the phonotactic rules

of a language can constrain early stages of speech sound categorization favouring

the prediction of particular phonemes.

1.3 Goal of this thesis

In brief, given the available body of evidence, is clear that the context influences the

state of the speech processing system, across different levels, before the bottom-up

input is observed [68]. This is also truth at the phonological level. Listeners’ brains

can use high level syntactic, semantic and phonotactic information to anticipate

which are the likely incoming phonemes of a word while is still unfolding. We

propose that as prediction seems to plays a fundamental role in speech processing

[60, 80, 12], phonological prediction might be possible even in the absence of this

high level information. Specifically, once a word form has been learned, even if it

14



CHAPTER 1. INTRODUCTION

is not attached to any particular meaning (neither semantic nor syntactic), while

listening to that word, preceding phonemes could be use to anticipate which should

be the forthcoming ones.

To test this hypothesis, we performed three electroencephalography experiments

with an OddBall design. This type of experimental design allowed us to present

individual pseudowords in a context that does not contain neither semantic nor

syntactic information. Additionally, this type of experimental design is optimal

for the elicitation of event related potentials that can be interpreted as marker of

prediction violation, such as the mismatch negativity (MMN) [76, 118, 50] and P3b

responses [50].

The stimuli used in this experiments consisted in pseudowords that respected

the phonotactic rules of the listeners native language (Italian). Importantly, de-

viant words were constructed by cross-splicing standard words. In this way, they

were composed by the same syllables as standard words, although in different com-

binations. For example if XXX and YYY were two standard words, XXY could be

a deviant word. This implies an advantage over previous experiments on the topic,

because the phoneme over which prediction is tested, is not omitted or replaced

by a non-linguistic sound, but instead, is replaced by a phoneme that belongs to a

different word. In this way, if an effect is found, it cannot be ascribed to a difference

in low level acoustic features.

To summarize, the use of an OddBall design in which deviant pseudowords were

constructed by cross-splicing standard words, allowed us to constrain the information

available for prediction to the phonological and lexical (word form) levels. This

allowed us to test if the presentation of an unexpected sequence of phonemes elicited

prediction error signals such as the MMN and P3b responses, which would imply

that listeners’ brains are able to predict incoming phonemes within a word, based

solely in phonological and word form information.

The evidence of the deployment of phonological prediction in the absence of

higher level information would help us better understand how the speech processing

system can handle the variability and noisiness of the speech stream.
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Chapter 2

Methods

2.1 Data acquisition setup

EEG data was collected using a 128-electrode-net system (Geodesic EEG System

300, Electrical Geodesics, Inc.) referenced to the vertex. EEG signal was bandpass

filtered by hardware between 0.1 and 100 Hz, and digitalized at 250 Hz. Electrode

impedance was kept below 100 kΩ. Participants were tested in a soundproof Faraday

cage. They sat on a chair in front of a LCD 19 inches monitor. Sound was delivered

by a loudspeaker located behind the monitor, at a comfortable sound intensity of

approximately 60 dB. The experiment was programmed in MATLAB (MathWorks,

Inc., Natick,MA, USA) using the Psychophysics Toolbox extensions [13, 86]. Word

onset was marked on the EEG data by sending both a digital input signal (DIN)

and a TCP/IP mark.

Participants were requested to minimize movement throughout the experiment,

except during breaks between blocks. No particular instructions were given to the

subjects with respect to when to blink, as eye blink artefacts can be easily removed

using Independent Component Analysis [29, 18]. At the beginning of the recording

session, we registered resting state brain activity in 2 blocks of 4 minutes, during

which participants were instructed to fixate at a white cross presented centrally

against a grey background. Resting state activity was registered for a connectivity

analysis that is not included in this thesis.
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CHAPTER 2. METHODS

2.2 EEG data pre-processing

EEG data preprocessing was performed in MATLAB using custom code and the

EEGLAB toolbox [29]. After being imported, data was band-pass filtered (0.1-

30Hz) and segmented. Bad channels were rejected using EEGLAB pop rejchan

function1 [29]. Following this automatic cleaning, additional channels were rejected

by visual inspection. Independent Component Analysis (ICA) was use to remove

eye blinks [29, 18]. Following, data was re-referenced to the average of all electrodes

and baseline corrected using the 300ms before word onset. Next, we performed trial

rejection by eliminating trials containing extreme values (± 200 µV) and improbable

trials (4 σ).

Only after this cleaning procedure the data was divided into conditions. Given

that different words from different conditions were presented with different frequen-

cies, the datasets of each condition were pruned by randomly discarding trials to

ensure the same number of trials per condition. Finally, missing channels were inter-

polated and the trials of all participants were concatenated for each condition. The

final result of these procedures were 1 dataset per condition, all of which contained

the same amount of trials.

2.3 Statistical analysis

Statistical testing was performed utilizing a nonparametric clustering methods, in-

troduced first by Bullmore et al [17] and implemented in the FieldTrip toolbox for

EEG/MEG analysis [82]. This method offers a straightforward and intuitive solu-

tion to the Multiple Comparisons problem. It relies on the fact that EEG data has

a spatio-temporal structure. In other words, a real effect should not be isolated but

should instead spread over different electrodes and over time. Instead of assessing for

significant differences between conditions in a point by point fashion, which would

lead to a very big number of comparisons, this method groups together adjacent

spatio-temporal points.

The procedure is as follows. For every point in time and space, the EEG signal

1We used the 3 available methods. Kurtosis threshold was set to 4 σ, Joint probability threshold

was set to 4 σ, and Abnormal spectra was checked between 1 and 30 Hz, with a threshold of 3 σ
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CHAPTER 2. METHODS

of 2 conditions is statistically compared. In our case, we used a nonparametric

permutation t test for this step. The t values of adjacent spatio-temporal points

with p values < 0.05 are clustered together and a cluster-level statistics is calculated

by summing the t values within a cluster.

Once these candidate clusters have been defined, their significance is assessed

using a nonparametric permutation test. In this test, conditions are shuffled and

cluster-level t values are calculated as before. This step is repeated 5000 times and

on each iteration the most extreme cluster-level t value is retained. This allows

to build an histogram of expected cluster-level t values under the null hypothesis

of no difference between the conditions. The significance of the observed candidate

clusters is calculated as the proportion of expected t values under the null hypothesis

that are more extreme than the observed ones. This method offers 2 important

advantages over parametric methods. It profits from the spatio-temporal structure

of the EEG signal to effectively reduce the number of comparisons performed, and

it does not require to make strong assumptions about the distribution of the data.

For further details see [73].
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Chapter 3

Experiment 1

3.1 Introduction

In agreement with Kuperberg & Jaeger have proposed [68], we can consider that a

prediction has been made in speech processing whenever the context (preceding in-

put) influences the state of the language processing system before the (forthcoming)

bottom-up input is observed.

This system can generate predictions at different levels of speech processing and

these different levels can influence each other. But a survey of the literature shows

that there are few examples of prediction at the phonological level. Furthermore,

such examples use contexts that include syntactic or semantic information, which

means that even though what is being predicted is a particular phoneme, the pre-

diction might depend on higher level information.

We propose that if the human brain possess a hierarchically organizes predic-

tive system for speech processing, this system should be able to generate predic-

tions about the incoming stimuli even at low levels of processing. To be more spe-

cific, we propose that when listening to words, the identity of preceding phonemes

could be used to predict the forthcoming phonemes within that word, without the

need of additional syntactic or semantic context. Additionally we propose that the

strength such predictions could be modulated by the number of preceding congruent

phonemes presented within the word.

To test these hypotheses, we performed an electroencephalography experiment

with an OddBall design. We choose this type of design because is optimal for
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the elicitation of a MMN response [77, 76]. This event related potential is a well

established marker of violation of expectations which can be interpreted as prediction

error that the system has to minimize [20, 113, 54, 50]. Another advantage of using

an OddBall design is that it allowed us to study prediction at the single word level,

without introducing syntactic or semantic information.

Participants heard repetitions of 2 three-syllabic pseudowords (STD pseudowords).

Among these pseudowords, we presented deviants of 2 types. While XYY deviants

were composed of the first syllable of one word, and second and third of the other

word, XXY deviants were composed of the first and second syllable of one word,

and third of the other word. If as we propose the first phonemes of a word are

used to predict the forthcoming ones, when a deviant is presented, the established

prediction would fail, and this should in turn trigger a MMN response.

It is important to notice that, as the syllables in the deviant pseudowords were

acoustically identical to the syllables in the STD pseudowords, if the presentation

of a deviant would trigger an effect such as the MMN, this could not be driven by

instantaneous low level features of the stimuli such as pitch or intensity. Instead,

such an error signal could only be triggered by the violation of an abstract rule [84].

The rule in question would be the one that states that given a syllable X1, the next

syllable of the word should be X2.

The use of deviants that are composed by the same phonemes of standard pseu-

dowords implies an advantage over the stimuli used in phonemic restoration exper-

iments. In such experiments, the expected phonemes are replaced by a non-speech

stimulus, such as a tone, which on its own can trigger a MMN response, regardless

of the predictability of the replaced phonemes. Instead, in the design we propose,

the expected phonemes are replaced different phonemes, for which the only feature

that defines them as deviant is that they are unexpected.

We expected that the presentation of deviants like the ones described in the

preceding paragraphs would trigger a MMN response. We would interpret such

response as an error signal generated by the violation of a prediction with respect

to which should be the forthcoming phonemes given the previous ones presented in

the word.

Besides the MMN response, we considered that the presentation of deviants could
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elicit a P3b response. This event related potential can de considered as an index

of violation of expectations, although it represents processing of information at a

higher level, as this ERP is highly dependant on top-down attention and is only

elicited by unexpected events that are relevant for the task at hand (e.g. deviants

to which a response is required in an OddBall design) [8, 90, 64].

In conjunction, probing for the presence of MMN and P3b responses in an Odd-

Ball paradigm like the one we propose, would provide valuable information to de-

termine if the brain’s speech processing system is predicting which should be the

forthcoming phonemes within a word. Furthermore, evaluating the presence of these

ERPs would be informative with respect to the degree of automation of the predic-

tions and role of attention.

We included 2 deviant types in our design in order to test if the strength of

a prediction could be modulated. We were interested in testing whether MMN

amplitude could be modulated by the number of congruent syllables presented before

the point of deviance. In the case of XYY deviants, hearing the syllable X1 could

lead to the prediction that the next syllable should be X2, but when the syllable

Y2 is instead presented, the prediction proves to be wrong. In contrast, in the case

of the XXY deviants, when the syllable X1 is presented, if is predicted that the

next syllable should be X2, this prediction is fulfilled. As 2 congruent syllables are

presented in this case, this could lead to a stronger prediction stating that the last

syllable should be X3. Thus, when the syllable Y3 is instead presented, this could

trigger a stronger error response than the one elicited in the case of a XYY deviant.

In brief, in this experiment we expected to find error signals such as the MMN and

P3b, that would be taken as evidence that while listening to a word past phonemes

are used to predict which should be the forthcoming ones. Additionally, we expected

that the amplitude of these error signal would be modulated by the number of

syllables congruent with a standard word, presented before the point of deviance,

which would be taken as evidence in favour of a modulation of the strength of the

predictions.
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3.2 Participants

A total of 30 participants took part in this experiment (10 male and 20 female, mean

aged 22.86 ± 3.42 years). All of them were Italian native speakers, right handed

and reported no auditory or language-related problems. Participants were recruited

from the city of Trieste and received a monetary compensation of 15 e.

After data preprocessing, 11 participants were excluded from analysis due to

contributing with less than 30 clean trials per condition. Additionally, 1 participant

was excluded due to poor behavioural performance. Therefore, 18 participants were

included in the final analysis (6 male and 12 female, mean age 24.15 n ± 3.12 years).

3.3 Stimuli

A total of 6 pseudowords divided in 3 sets of 2 pseudowords each were used as stimuli

in this experiment. The experiment followed an OddBall design in which while the

pseudowords of one of the sets were presented 84% of the times (STD pseudowords),

the pseudowords of the other two sets were used as deviants that were presented

only 8% of the time each.

As all the subjects in our experiments were native Italian speakers, we applied

a series of constrains in the construction of our stimuli to ensure that the resulting

pseudowords would resemble real Italian words. First we consulted the phonItalia

lexical database [56] to identify syllable candidates. In order to exclude monosyllabic

words and onomatopoeias, we removed syllables with a token frequency above the

70th percentile. Next, in order to keep syllables that could take any position within

a word, we removed syllables with initial, medial or final position token frequencies

either bellow the 20th percentile or above the 90th percentile. Finally, syllables

containing voiceless stop consonants were removed, as they can be perceived as a

pause. This selection procedure allowed us to identify 24 syllable candidates that

are not monosyllabic words and have an even frequency distribution at different

word positions.

Using these syllable candidates, we constructed 2 trisyllabic pseudowords that

contained no vowel or consonant repetitions. No syllables were repeated between

pseudowords. Hereafter, these pseudowords will be referred to as STD (i.e. Stan-
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dard) pseudowords. Taking these STD pseudowords as a base, we constructed 2

different types of deviant pseudowords. The first one, that we will refer to as XYY,

consisted of the first syllable of a STD word and the second and third of the other

STD word. The second type of deviant, that we will call XXY, consisted of the

first and second syllable of a STD word, and the third of the other STD word.

None of these deviant words contained either consonant or vowel repetitions.

In natural speech, phonemes are co-articulated. Hence, using cross-splicing to

generate the deviant words could result in sharp transitions that would sound un-

natural. Because of this, we took measures to obtain a natural render for our stimuli

[101]. For the first and last syllable position, the vowels of both STD words had

similar first and second formant. As one STD word had the vowel ’o’ in the first

syllable, the other STD word had the vowel ’u’ at the same position. In the case

of the third syllable, while one STD word used the vowel ’i’, the other one used

the vowel ’e’. In the case of the second syllable, both STD words had ’a’ as the

vowel (Figure: 3.1). Finally, for each syllable position, the consonants of both STD

words had the same mode of articulation. This measures had the effect of reducing

the difference between both STD words at the points of syllable transitions so that

when we cross-spliced them to construct the deviant words, these didn’t contain any

sharp transitions, which would sound unnatural.

The audio of the 2 STD words was generated using the MBROLA speech syn-

thesizer [33] and the Italian female diphone database it41. Consonant and vowel

durations were set to 150ms and 175ms respectively. In this way, word duration

was 975ms. Once the 2 STD words were produced, deviants were constructed by

cross-splicing the audio of the STD, with the precaution of cutting at a point close

to zero amplitude.

The final set consisted of 2 STD words, 2 XYY deviants and 2 XXY deviants

(3.1), and was checked by a native Italian speaker who specializes in linguistics to

ensure that they sounded like plausible but not real Italian words.

1The it4 diphone database was created by the Istituto Trentino di Cultura, ITC-irst
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Figure 3.1: First and second formants of vowels used in the stimuli. While vowels ’o’ and

’u’ were used for the first syllable position, vowels ’i’ and ’e’ were use for the third syllable

position. The vowel ’a’ was used in the second syllable position of both Standard words.

As deviant words were constructed by cross-splicing the Standard words, this prevented

the occurrence of sharp formant transitions.

STD XYY XXY

1. foSaÃe fodzaţi foSaţi

2. budzaţi buSaÃe budzaÃe

Table 3.1: Stimulus set use for experiments 1 and 2 in IPA notation. A total of 6 words

were used. Deviant words were produced by cross-splicing the 2 Standard words either at

the end of the first syllable (XYY) or at the end of the second syllable (XXY).

3.4 Data acquisition setup

For a description of the data acquisition setup used in this experiment, see 2.1.

3.5 Procedure

The experiment followed an OddBall design. Stimuli were presented in 13 blocks

with an average duration of 3.3 minutes each. During each block, a total of 98 words

were presented, with an inter stimulus interval that varied between 900 and 1300 ms.

24



CHAPTER 3. EXPERIMENT 1

During the first of such blocks, only STD words were presented and participants

were instructed to try to learn them. Subsequently, participants completed 12 blocks

composed of 84% Standard words 8% XYY deviant words and 8% XXY deviant

words. Within each block, word order was pseudo-random, with the restrictions of

no word repeating more than 2 times consecutively and having between 2 to 4 STD

words between deviant words. Participants were instructed to count the occurrence

of ”mistaken” words (i.e. deviant words) during each block and write down the

result during the pause between blocks.

3.6 EEG analysis

3.6.1 Data pre-processing

Details about the procedure used for EEG data preprocessing and cleaning can be

found in 2.2. Data was segmented into 1850ms long epochs starting 300ms before

word onset. After cleaning, data was divided into STD, XYY and XXY conditions.

The final result of these procedures were 1 dataset per condition, each containing

799 clean trials.

3.6.2 Regions of interest

We predefined 2 spato-temporal Regions of Interest (ROIs). The first one consisted

on a Fronto-Central ROI comprised by 13 electrodes and spanned over a 325ms

starting at the point of deviance of each deviant condition. With respect to word

onset, this window spanned from 325ms to 650ms for the XYY condition, and from

650ms to 975ms for the XXY condition. This ROI coincided with the region were

a MMN response could be expected [32, 77, 76].

The second region of interest consisted on a Parietal ROI composed by 21

electrodes and temporally extended from 200ms after the point of deviance of each

deviant condition, to the end of the epoch. With respect to word onset, this window

started at 525ms for the XYY condition, and at 850ms for the XXY condition.

In this way, this ROI corresponded to the region were a P3b response would be

expected [21, 90, 32] (Fig: 3.2).
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Figure 3.2: Regions of Interest for ERP analysis. A) Fronto-Central ROI. B) Parietal

ROI

3.6.3 Statistical analysis

Unless otherwise noted, statistical testing was performed utilizing the procedure

described in detail in 2.3. This nonparametric clustering methods offers a straight-

forward and intuitive solution to the Multiple Comparisons problem.

3.7 Results

3.7.1 Behavioural Results

During each block, a total of 16 deviant words were presented, and participants were

requested to count them. On average, participants reported 15.22 deviant words per

block (σ 2.56). For each participant, we checked the number of blocks with a deviant

count further than 2 σ from the mean. While most of the participants reported a

deviant count within these limits for all the blocks, 3 participants had 1 block with

an abnormal count, and 1 participant had all 12 blocks outside the limits. This

participant reported a mean of only 3.58 deviants per block, hence, we decided to

exclude him from the analysis. After removing this participant, the mean number

of deviants reported per block increases to 15.62 (σ 1.39).

Note that the method of asking participants to mentally count the occurrence

of deviants does not allow us to determine with certainty neither the detection rate

for each deviant condition, nor the occurrence of false alarms. In spite of this, given

that the mean count of deviant was close to ceiling, we can safely conclude that

the participants were able to perform the task with high accuracy for both deviant
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conditions.

3.7.2 EEG Event Related Potentials

In this subsection we will describe the results of our ERP analysis. Given that the

XYY and XXY conditions differed with respect to the time point at which a word

could be identified as a deviant, for clarity, we will refer to this point as zero, instead

of taking the onset of the word.

Fronto-Central region of interest

Compared to STD words, XYY deviants elicited a negative deflection starting at

143ms (t = 41.77, p < 0.05). The topography of the difference wave between these

2 conditions, at the time point of the peak of this negative deflection corresponds

to the one that characterizes a MMN response.

This was followed by a positive deflection starting at 219ms (t = -72.09, p < 0.01)

whose topography is suggestive of a P3a response (Fig: 3.3), which is a positive-

going potential with a maximum amplitude over fronto-central electrodes, with a

peak latency between 250 and 280 ms [21, 85, 91, 90].

In parallel with these results, the comparison between the STD and XXY con-

ditions also revealed a negative deflection, this time starting at 130ms (t = 102.90,

p < 0.01) likewise displaying a topography compatible with a MMN. As previously,

the negative deflection was succeeded by a positive one, starting 226ms after the

point of deviance (t = -39.17, p < 0.05) with a topography resemblant to a P3a

response (Fig: 3.4).

As we noted in the introduction (3.1) we expected that when a deviant word is

presented, this would trigger an early error signal such as the MMN. These results

fulfilled our expectations. Given that we were able to identify a MMN in both

contrasts, we proceeded to compare both deviant types to test whether the amplitude

of the MMN was modulated by the number of syllables congruent with a STD word,

presented before the point of deviation.

Deviant conditions differed with respect to the time point at which the word

presented revealed to be a deviant (350ms and 650ms from word onset for XYY and

XXY conditions respectively). As the processing of a word has an intrinsic temporal
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Figure 3.3: Experiment 1. Grand average over Fronto-Central ROI. STD vs XYY.

First, second and third vertical dashed lines indicate syllable onset times. Forth vertical

dashed line indicates end of the word. Time zero indicates the point at which deviance

occur. Error bars denote 1 SEM. Horizontal light grey line delimits time window of

interest. Black horizontal line demarks p < 0.01. Middle grey horizontal line demarks

p < 0.05. Left Top: Topography of the difference wave at the time point of the peak of

the significant negative deflection. Left Bottom: Topography of the difference wave at the

time point of the peak of the significant positive deflection.

dynamic, we eliminated this confounding factor by subtracting the activation elicited

in the STD condition to each deviant condition. Moreover, we re-segmented the

trials of both deviant conditions so that the point of deviation would be aligned.

The resulting epochs had a length of 1148ms, starting 325ms before the point of

deviance.

This comparison revealed that as we expected, the MMN elicited by the XXY

condition had a bigger amplitude than the one elicited by the XYY condition (t =

-46.91, p < 0.01) (Fig: 3.5). We expected that this would be the case, because as

the XXY deviants start with two congruent syllables, this could lead to a stronger

prediction that would be reflected by a stronger error response in case of failure

of the prediction. On the contrary, the positive deflection that followed the MMN

response, didn’t differ across deviant types.

But an alternative explanation exists. We noticed that the topography of the

MMN response elicited by the XYY deviant was slightly shifted to the left. Because

of this, our pre defined Fronto-Central ROI might favour the XXY condition,
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Figure 3.4: Experiment 1. Grand average over Fronto-Central ROI. STD vs XXY.

First, second and third vertical dashed lines indicate syllable onset times. Forth vertical

dashed line indicates end of the word. Time zero indicates the point at which deviance

occur. Error bars denote 1 SEM. Horizontal light grey line delimits time window of

interest. Black horizontal line demarks p < 0.01. Middle grey horizontal line demarks

p < 0.05. Left Top: Topography of the difference wave at the time point of the peak of

the significant negative deflection. Left Bottom: Topography of the difference wave at the

time point of the peak of the significant positive deflection.

which is better centred. To test this possibility, we repeated our analysis keeping

the original Fronto-Central ROI for the XXY condition, but hand picking a ROI

with the same number of electrodes but better aligned for the XYY conditions (Fig:

3.6).

Even after this intentional selection of the most negative electrodes in the XYY

condition, we found that the amplitude of the MMN response elicited by the XXY

condition was higher (t = -28.25, p < 0.05) (Fig: 3.7).

To summarise, our analysis showed that both deviant types elicited a MMN and a

P3a response. The MMN is a well established marker of violation of expectations [84,

76] that can be interpreted as a prediction error signal [117, 50], reflecting a mismatch

between a predicted stimulus and the one presented in reality. Therefore, we consider

that the presence of a MMN in response to the presentation of a deviant evidences

that a prediction about the forthcoming phonemes had been made. Moreover, we

could determine that the amplitude of this MMN response, which would reflect the

strength of the prediction, was modulated by the number of syllables congruent with
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Figure 3.5: Experiment 1. Grand average over Fronto-Central ROI. XYY vs XXY.

Trials were re-segmented and locked to the point of deviance, indicated by time zero. Time

zero indicates the point at which deviance occur. Error bars denote 1 SEM. Horizontal

light grey line delimits time window of interest. Black horizontal line demarks p < 0.01.

a STD word, presented before the point of deviance. Besides the MMN, we were also

able to identify a P3a response, which can indicate novelty detection [72, 92, 21, 90].

Notice that in the case of the stimuli used in our experience, novelty cannot be

defined in terms of low level features such as pitch. Instead, when a deviant is

presented, what is novel is the occurrence of a syllable that is unexpected given the

preceding one.

Parietal region of interest

Next we focused our analysis on the spatio-temporal region of interest tailored to

detect a P3b component (see 3.6.2). We were able to determine that the XYY

deviant evoked a long lasting positive deflection starting at 271ms and extending

till the end of the epoch (t = -1297.6, p < 0.001). The topography of this deflection

corresponds to a large parietal positivity, which allowed us to identify it as a P3b

response (Fig: 3.8).

An equivalent positive deflection was present for the XXY condition (t = -

1252.2, p < 0.001). This deflection started at 286ms and displayed its topography
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Figure 3.6: Alternative ROIs for comparison of XYY (left) and XXY (right) conditions.

Instead of using the predefined ROI for the XYY condition, we hand picked electrodes

that overlap with the MMN response in this condition.

consisted on a large parietal positivity. Hence, once more we could identify this

effect with a P3b response (Fig: 3.9).

Our predictions for the occurrence of a P3b response were satisfied by the data.

We proceeded to compare the P3b components detected in both deviant conditions

using the same procedure that we used for the MMN. This allowed us to conclude

that the amplitude of the P3b elicited by the XXY condition was higher than the

one elicited by the XYY condition (t = 177.93, p < 0.001) (Fig: 3.10).

In brief, we could determine that both deviant types elicited a clear P3b response

whose amplitude is modulated by the number of syllables congruent with a STD

word, presented before the point of deviance.

3.8 Discussion

3.8.1 Prediction at the phonological level

The main goal of this experiment was to determine if while listening to words, the

first phonemes presented are used to make a prediction regarding the identity of

the forthcoming ones. We argued that if this would be the case, the presentation

of deviants which start with the syllables of one word, but continues with the ones

belonging to another word, should elicit an error signal such as the MMN, P3a or

P3b. Additionally, we wanted to test whether this predictions could become stronger

with successive successfully predicted phonemes within a word.

Overall, we found that the presentation of a deviant word consisting on an un-
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Figure 3.7: Experiment 1. Grand average over alternative ROIs. XYY vs XXY.

(Using custom ROI for the XYY condition) Trials were re-segmented and locked to the

point of deviance, indicated by time zero. Time zero indicates the point at which deviance

occur. Error bars denote 1 SEM. Horizontal light grey line delimits time window of

interest. Middle grey horizontal line demarks p < 0.05.

expected sequence of phonemes, elicited a chain of error responses, including MMN,

P3a and P3b ERPs. Furthermore, the amplitudes of the MMN and P3b responses

were greater for the deviant type that contained 2 successive congruent syllables.

These results suggest that as we expected, the first phonemes of a word are used to

generate a prediction about which should be the forthcoming ones.

Given that both standard and deviant words were constructed using the same

set of syllables, but in different combinations, the occurrence of a MMN in response

to the deviants is of greater interest. It is know that the MMN can be elicited by

manipulating a variety of stimuli features such as pitch, duration, intensity, location

and the presence of a gap [78, 42, 2, 87, 88]. But in our stimuli, each syllable

in a deviant was acoustically identical to a syllable in a standard word (see 3.1).

Therefore, the MMN detected in our experiment cannot be explained by a mismatch

of low level acoustic features, but is instead a response to an abstract rule violation

[84]. The abstract rule being violated would be the one connecting sequences of

phonemes to form words.
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Figure 3.8: Experiment 1. Grand average over Parietal ROI. STD vs XYY. First,

second and third vertical dashed lines indicate syllable onset times. Forth vertical dashed

line indicates end of the word. Time zero indicates the point at which deviance occur.

Error bars denote 1 SEM. Horizontal light grey line delimits time window of interest.

Black horizontal line demarks p < 0.01. Left: Topography of the difference wave at the

time point of the peak of the XYY condition.

The presence of a P3a response in our experiment represents an unexpected

finding. This ERP is usually elicited in 3 stimuli OddBall paradigms in response to

distractors (deviants that are not targets) [91], and is associated with involuntary

attentional shifts and the processing of novelty [21, 85, 90]. As in our experiment

participants were explicitly instructed to deploy top-down attention to detect all

deviant, we didn’t expect to detect this ERP. Even if unexpected, the presence of

this ERP is compatible with our hypothesis.

Finally a P3b was registered as we expected. As we argued before, this ERP

can be interpreted as a marker of violation of expectations, but in contrast with the

MMN response, which is largely automatic and can even be observed in patients with

disorders of consciousness [9, 77, 19, 32, 65], this ERP is dependant on top-down

attention and task instructions [90].

To summarise, we interpret the presence of MMN, P3a and P3b components in

response to the deviants, as evidence in favour of our hypothesis which posits that,

when processing speech, the human brain generates predictions about the incoming

phonemes within individual words, even in the absence of higher level information

such as syntax or semantics.
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Figure 3.9: Experiment 1. Grand average over Parietal ROI. STD vs XXY. First,

second and third vertical dashed lines indicate syllable onset times. Forth vertical dashed

line indicates end of the word. Time zero indicates the point at which deviance occur.

Error bars denote 1 SEM. Horizontal light grey line delimits time window of interest.

Black horizontal line demarks p < 0.01. Left: Topography of the difference wave at the

time point of the peak of the XXY condition.

It is worth remarking that in our design, as we constructed the deviant stimuli

by cross-splicing the standard words, the only feature that defined a word as deviant

is that within that word, given a syllable Xn, instead of the usual syllable Xn+1, the

syllable Yn+1 was presented. This represents an important difference with respect to

previous studies in which the predicted phonemes are either omitted [10] or replaced

by non-linguistic sounds [57].

To our knowledge, this is the first time in which it has been shown that the

human speech processing system can generate predictions at the phonological level

based solely in the identity of the preceding phonemes within a word.

3.8.2 Modulation of the strength of the predictions

As we described previously, the amplitudes of the MMN response (3.7.2) and the

P3b response (3.7.2) were greater when 2 congruent syllables were presented before

the point of deviance. We propose that this increase in amplitude could indicate

that when a prediction based on a first syllable is corroborated by the presentation

of a second congruent syllable, the prediction for the next incoming syllable inte-
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Figure 3.10: Experiment 1. Grand average over Parietal ROI. XYY vs XXY. Trials

were re-segmented and locked to the point of deviance, indicated by time zero. Time zero

indicates the point at which deviance occur. Error bars denote 1 SEM. Horizontal light

grey line delimits time window of interest. Black horizontal line demarks p < 0.01.

grates information from the 2 precedent ones and becomes stronger. This result

is particularly interesting in the case of the MMN response, as it shows that this

early and automatic component can integrate information presented in (at least) the

past 650ms. This implies that in order to predict the forthcoming phonemes within

a word, the proposed predictive system can use information taken not only from

the immediate past. The modulation of the P3b response is less surprising, as this

ERP is contingent to top-down attention and even displays a tight correlation with

conscious access [19, 96, 9, 26, 103, 38], a level of processing at which information

can be integrated over very long time windows.

Alternatively, instead of the result of a strengthening of a prediction, the observed

modulation of amplitude of the MMN and P3b responses could be due to a difference

in detection rate between deviant types. If the XYY deviants would be more

difficult to detect, a higher proportion of ”miss” trials in this condition would lead

to a smaller overall amplitude. However we find it implausible. With a mean count

of 15.62 deviants per block (which corresponds to 97% of the deviants presented per

block), the overall performance of the participants in the counting task was close to
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ceiling. This implies that unless the counting reported contains a high proportion

of false alarms, even if there would be an asymmetry in the detection rate of the

deviants, this alone would be unlikely to account for the observed difference in

amplitude between the conditions. Furthermore, during a short debriefing after

the experiments, participants tend to report that they notice the existence of both

deviant types, and they didn’t consider that they were presented with different

frequencies. It should also be considered than even in our analysis using a custom

ROI for the XYY condition, the amplitude of the MMN respond in this condition

was 1.25 μV against 2 μV for the XXY condition, which represents a 60% of increase

in amplitude for the XXY condition. Given all these reasons, we can rule out a

difference in detection rate between deviants as an alternative explanation for the

observe difference in amplitude of the MMN and P3b responses.

3.8.3 Experiment 1 summary and follow up

In this chapter we have exposed evidence suggesting that when listeners hear a word,

the first phonemes perceived are used to build a prediction about the forthcoming

ones, even in the absence of higher level information such as syntax or semantics.

As our experiment shows, the presentation of a deviant word that is composed of

an unexpected sequence of phonemes trigger a chain of event related potentials that

are well known markers of violation of expectations.

In this experiment, we informed the participants about the presence of ”mis-

taken” words, and we instructed them to count them. But while listening to natural

speech, we don’t (usually) pay particular attention to the individual words uttered

by our interlocutors in an attempt to catch them making a mistake. As top-down

attention can influence perceptual processes to a great extend, it remains possible

that the responses we recorded during this experiment might behave differently if the

participants were not explicitly instructed to count the occurrence of the deviants.

There are reasons to suppose that a MMN response would be present even under

different task instructions. As we argued before, the MMN response has demon-

strated to be independent from top-down attention [76], to the point that its pres-

ence can be corroborated across all stages of sleep [103] and even in patients with

disorders of consciousness [65, 8]. Furthermore, source estimation of MMN using
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equivalent current dipoles suggests that its main generators are the auditory cortices

[83, 54, 76]. These characteristics of the MMN response imply that the predictive

system we propose can function at early stages of the processing hierarchy.

Nevertheless, the degree of automaticity of the MMN response registered in our

experiment should be further evaluated. Some authors have proposed that the

amplitude of the MMN response can be attenuated if stimuli are presented outside

the focus of attention [5, 75]. Additionally, it should also be considered that the

MMN response recorded in our experiment was not driven by changes of low level

features of the stimuli, but by the violation of an abstract rule. It has been shown

that in abstract rule paradigms, it is not always possible to trigger a MMN response

in non-attentive blocks, unless participants complete at least 1 attentive block first

[106, 105].

In the case of the P3a and P3b responses, it is well know that this components can

be strongly modulated by task instructions and top-down attention [21, 91, 90, 19].

In particular the P3b response can disappear altogether if participants’ attention is

allocated somewhere else [32]. Because of these reasons, how task instructions can

affect the chain of predictive error signals recorded in our experiment remains as an

open question.

To answer this question, in the next chapter we will introduce an ecologically

more valid version of our task which doesn’t provide to the participants any infor-

mation or particular instructions with respect to the occurrence of deviants.
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Chapter 4

Experiment 2

4.1 Introduction

In the previous chapter (3) we exposed evidence in favour of our hypothesis which

states that while listening to a word, the human brain builds predictions at the

phonological level to anticipate the forthcoming phonemes, even in the absence of

higher order information such as syntax or semantics. Using EEG in an experiment

with an OddBall design, we showed that the presentation of deviants that were com-

posed by an unexpected sequence of syllables, triggered a chain of well established

mismatch responses such as the MMN, P3a and Pb3 (3.7.2).

As we argued in the discussion of the previous chapter (3.8.3), the behaviour, and

even the presence of this ERPs, can be affected by how participants allocate atten-

tion, and this in turn, depend on task instructions. As in the experiment presented

in the previous chapter we instructed participants to explicitly count ”mistaken”

(i.e. deviant) words, whether the same chain of mismatch responses would unfold

under different instructions remained as an open question. Language processing is

largely automatic [89], and even complex operations like the build up of local phrase

structure [46], learning of nonadjacent dependencies [25] and speech segmentation

[22, 107] are performed even when no explicit task instructions are provided. Be-

cause of this we considered that, even under different task instructions, incoming

phonemes within a word would be predicted based on the preceding ones.

To test if this is the case, in this chapter we present an experiment (Experiment

2) with a similar design to Experiment 1 (3), but this time asking participants
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to pay attention to all words, without informing them of the presence of deviants.

The main goal of this experiment was to characterize the prediction error responses

that would emerge while participants keep an attentional set closer the the one held

while processing natural language.

We expected that under this conditions a MMN response would still be present,

and its amplitude could even increase. It has been shown that when attention is

focused on deviant detection, as in the case of Experiment 1, as the occurrence

of deviants is expected, top-down attention can reduce the amplitude of the MMN

response [20]. As in Experiment 2 the participants were not informed about the

presence of deviant words, these were fully unexpected.

We were also interested in testing whether the MMN modulation by number of

congruent syllables found in Experiment 1 (3.8.2) would persist. Even though

source estimation studies show that the main generators of the MMN are the au-

ditory cortices, a variety of additional regions can contribute, including frontal cor-

tices, depending on the task at hand [83, 54, 76]. The construction of phonological

predictions based on past information exceeding the adjacent phonemes might re-

quired the involvement of frontal regions that are only recruited when participants

are explicitly trying to detect the deviants. Therefore, under instructions that don’t

distinguish between standard and deviant words, phonological predictions might be

restricted to the use of the immediate preceding phonemes. In our experimental

design, this would be reflected by the presence of a MMN that is not modulated by

the number of congruent syllables presented before the point of deviance.

In the discussion of chapter 1 (3.8.1) we argued that as the P3a response is

usually elicited by distractors in 3 stimuli OddBall paradigms [91], its presence in

Experiment 1 was unexpected. Instead, in the experiment we are about to present,

it is possible that the deviants would trigger an involuntary attentional shift which

usually is indexed by such ERP [21, 85, 90]. Therefore, if the response registered

in Experiment 1 is indeed a P3a, it should be also present in Experiment 2,

and its amplitude might even be higher. Finally, with respect to the P3b response

recorded in Experiment 1, without particular instructions regarding the deviants,

it is possible that this ERP wouldn’t be present [32].

In brief, the experiment that we will present in this chapter allowed us to charac-
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terize the prediction error signals that are present while participants listen to speech

while in an attentional set more similar to the one used to process speech in everyday

life.

4.2 Participants

A total of 29 participants took part in this experiment (9 male and 20 female, mean

aged 23.24 ± 3.52 years). All of them were Italian native speakers, right handed

and reported no auditory or language-related problems. Participants were recruited

from the city of Trieste and received a monetary compensation of 15 e.

After data preprocessing, 4 participants were excluded from analysis due to con-

tributing less than 30 clean trials per condition. Additionally, 1 participant was

excluded from analysis due to having more than 3 adjacent bad electrodes in the

predefined regions of interest. Therefore, 23 participants were included in the final

analysis (7 male and 16 female, mean age 23.45 ± 3.26 years).

4.3 Stimuli

The stimulus set used for Experiment 2 consisted of the same 6 words used for

Experiment 1 (2 STD words, 2 XYY deviants and 2 XXY deviants) (3.1), plus

the addition of 2 New words that were only used during a test at the end of the

experiment. These New words were composed by the first and last syllable of 1 STD

word, and the second syllable of the other STD word (XYX structure). They were

constructed following the same cross-splicing procedure that was use to construct

the deviants (see 3.3).

4.4 Data acquisition setup

For a description of the data acquisition setup used in this experiment, see 2.1.
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4.5 Procedure

The experimental setup and design were identical to those used for Experiment 1

(see 3.5), with the exception of the instructions given to the participants and the

addition of a behavioural test at the end of the experiment. Whereas in Experi-

ment 1 participants were instructed to count the occurrence of ”mistaken words”

(i.e. deviant words), in Experiment 2 the participants were not informed about

the presence of deviants and were simply instructed to pay attention to all the words

presented and try to learn them.

At the end of the experiment, participants completed a forced choice test. In-

structions were given verbally. On each trial, participants heard 2 words and were

requested to choose the one that most likely was presented during the experiment.

Participants completed 4 trials for each of 6 contrasts between conditions, for a

total of 24 trials. The contrasts between conditions were ”STD vs XYY”, ”STD

vs XXY”, ”XYY vs XXY”, ”STD vs New”, ”XYY vs New” and ”XXY vs

New”. Participants reported their answers verbally and the experimented entered

them through keypress.

4.6 EEG analysis

4.6.1 Data pre-processing

Details about the procedure used for EEG data preprocessing and cleaning can be

found in 2.2. Data was segmented into 1850ms long epochs starting 300ms before

word onset. After cleaning, data was divided into STD (Standard), XYY and

XXY conditions. The final result of these procedures were 1 dataset per condition,

each containing 946 clean trials.

4.6.2 Regions of interest

The spatio-temporal regions of interest used for this experiment were identical to

the ones used in Experiment 1. See 3.6.2 for details.
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4.6.3 Statistical analysis

Unless otherwise noted, statistical testing was performed utilizing the procedure

described in detail in 2.3. This nonparametric clustering methods offers a straight-

forward and intuitive solution to the Multiple Comparisons problem.

4.7 Results

4.7.1 Behavioural Results

In this experiment, participants were not informed of the existence of the deviants

and were not instructed to perform any task with respect to them during the exper-

imental blocks. Regardless of this, if our predictions were correct, the participants

would prefer the STD words over both deviant categories. To evaluate this, at

the end of the experiment we requested the participants to perform a force choice

test in which each stimuli condition was contrasted against the others and against

new words that were not presented during the blocks. The mean preference in each

contrast was calculated for each participant and a one sample t test was performed

at the group level to test against the null hypothesis of no difference from chance.

Results were corrected for multiple comparisons using the Bonferroni-Holm method

(See table 4.1).

Participants preferred the STD words over both deviant types. They choose

STD words over XYY deviants on 67% of the trials (t(28) = 3.57, p < 0.01) and

over XXY deviants on 69% of the trials (t(28) = 4.07, p < 0.01). When both

deviant types were contrasted, they preferred XYY over XXY deviants on 62%

of the trials, but this preference didn’t reach a significant level (t(28) = -2.32, p >

0.05).

Next, we contrasted the words used in the experiment against new words that

were not previously presented. Participants selected STD words over new ones on

85% of the trials (t(28) = 10.39, p < 0.0001) and XXY deviants over new words

on 64% of the trials (t(28) = 2.99, p < 0.05). XYY deviants on the contrary, could

not be distinguished from new words and were preferred on only 55% of the trials

(t(28) = 1.03, p > 0.05).
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In brief, these results indicate that despite the fact that the instructions pro-

vided didn’t distinguish between deviant and standard words, participants displayed

a strong preference for STD words over both deviant types. Even though both de-

viant types had the same probability of appearance, while XXY deviants could be

distinguished from new words, XYY could not.

Contrast Pref. Statistics

STD vs XYY 67% t(28) = 3.57 p < 0.01

STD vs XXY 69% t(28) = 4.07 p < 0.01

XYY vs XXY 62% t(28) = -2.32 p > 0.05

STD vs NEW 85% t(28) = 10.39 p < 0.0001

XYY vs NEW 55% t(28) = 1.03 p < 0.05

XXY vs NEW 64% t(28) = 9.99 p > 0.05

Table 4.1: Experiment 2 Behavioural Results. A forced choice test was performed

contrasting each condition against the other and against new words that were not presented

during the experimental blocks. The mean preference in each contrast was calculated for

each participant and a one sample t test was performed at the group level to test against

the null hypothesis of no difference from chance. Results were corrected for multiple

comparisons using the Bonferroni-Holm method.

4.7.2 EEG Event Related Potentials

In this subsection we describe the results of our ERP analysis. Given that the XYY

and XXY conditions differed with respect to the time point at which a word could

be identified as a deviant, for clarity, we will refer to this point as zero, instead of

taking the onset of the word.

Fronto-Central region of interest

We first directed our analysis to our Fronto-Central region of interest (see 4.6.2).

As we argued in the introduction of this chapter, we expected that even without in-

structions to detect deviants, the proposed predictive system would generate a MMN

response when a deviant is presented. Indeed, we could determine that both deviant

types elicited a MMN response comparable to the ones found in Experiment 1 (see
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3.7.2).

A comparison between STD and XYY conditions revealed that the XYY de-

viants triggered a negative deflection starting at 135ms (t = 44.35, p < 0.01). As in

the case of Experiment 1, the topography of the difference between the conditions

matched with a MMN (Fig: 4.1).

Figure 4.1: Experiment 2. Grand average over Fronto-Central ROI. STD vs XYY.

First, second and third vertical dashed lines indicate syllable onset times. Forth vertical

dashed line indicates end of the word. Time zero indicates the point at which deviance

occur. Error bars denote 1 SEM. Horizontal light grey line delimits time window of

interest. Black horizontal line demarks p < 0.01. Left: Topography of the difference wave

at the time point of the peak of the significant negative deflection.

Similarly, a negative deflection was also found for the XXY condition, in this

case starting at 86ms (t = 140.84, p < 0.001). Once more, an examination of the

topography of this deflection revealed a MMN response (Fig: 4.2).

Since we were able to establish the presence of a MMN response for both deviant

types, we compared them to test whether a modulation as the one observed in

Experiment 1 was present (Fig: 3.5). As the point of deviance differed across

conditions and the processing of a word has an intrinsic temporal dynamic, we

eliminated this confounding factor by subtracting the activation elicited in the STD

condition to each deviant condition and we align them by locking the signal to the

point of deviance.

When compared, the amplitude of the MMN response triggered by the XXY

condition proved to be bigger than the one elicited by the XYY condition (t =
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Figure 4.2: Experiment 2. Grand average over Fronto-Central ROI. STD vs XXY.

First, second and third vertical dashed lines indicate syllable onset times. Forth vertical

dashed line indicates end of the word. Time zero indicates the point at which deviance

occur. Error bars denote 1 SEM. Horizontal light grey line delimits time window of

interest. Black horizontal line demarks p < 0.01. Left: Topography of the difference wave

at the time point of the peak of the significant negative deflection.

-93.49, p < 0.001). This mirrors the effects found in Experiment 1. Even when

instructions didn’t distinguish between deviant and standard words, the occurrence

of a word containing an unexpected sequence of phonemes triggered a MMN re-

sponse, and this response was modulated by the number of syllables matching the

STD word before the point of deviance (Fig: 4.3).

To summarise, both deviant types elicited a MMN response, whose amplitude

was modulated by the number of syllables congruent with a STD word presented

before the point of deviance. In contrast with the results of Experiment 1 (3.7.2)

no P3a was registered.

Parietal region of interest

In contrast with Experiment 1, we did not observe a P3b response. In the case

of the XYY condition, we were only able to detect a small positivity, starting at

387ms, that approached significance (t = -30.74, p = 0.057) (Fig: 4.1).

Similarly, the XXY condition triggered a small but this time significant positiv-

ity starting at 410ms (t = -36.75, p < 0.05) (Fig: 4.5).

In the same way we did for the Fronto-Central ROI, we compared the re-
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Figure 4.3: Experiment 2. Grand average over Fronto-Central ROI. XYY vs XXY.

Trials were re-segmented and locked to the point of deviance, indicated by time zero. Time

zero indicates the point at which deviance occur. Error bars denote 1 SEM. Horizontal

light grey line delimits time window of interest. Black horizontal line demarks p < 0.01.

sponses elicited by both deviant conditions in Parietal electrodes. We subtracted

the activation elicited by the STD condition from each deviant type, and we align

them by locking the signal to the point of deviance. This analysis didn’t result in a

significant difference.

4.8 Prediction error signals under different atten-

tional sets

4.8.1 MMN response

In this chapter we have shown that even when listeners are not actively trying

to detect mistakes in the incoming words, the presentation of a deviant contain-

ing an unexpected sequence of phonemes triggers a MMN response. This suggests

that the human speech perception system generates predictions about the incoming

phonemes of a word even when this is not required by the task at hand. But even if

phonological predictions are deployed automatically, different attentional sets might

46



CHAPTER 4. EXPERIMENT 2

Figure 4.4: Experiment 2. Grand average over Parietal ROI. STD vs XYY. First,

second and third vertical dashed lines indicate syllable onset times. Forth vertical dashed

line indicates end of the word. Time zero indicates the point at which deviance occur.

Error bars denote 1 SEM. Horizontal light grey line delimits time window of interest.

Orange horizontal line demarks p = 0.0576. Left: Topography of the difference wave at

the time point of the peak of the XYY condition.

have a modulating effect. For example, it has been shown when attention is focused

in deviant detection, the amplitude of the MMN response can be reduced [20].

To test whether the attentional set of the listener could have a modulating effect

in the strength of the predictions made about incoming phonemes in a word, we

compared the 4 different MMN responses recorded in experiments 1 and 2. We

performed a two-way ANOVA with a 2 x 2 design, with deviant type as a within

participants factor with 2 levels (XYY and XXY), and attentional set as a between

participants factor with 2 levels (”Count deviants” and ”Learn all words”). For each

of the 4 conditions defined by this 2 x 2 design, taking the Fronto-Central ROI,

we calculated for each trial, the mean amplitude in a 52ms window centred at the

peak of the mean MMN response of that condition.

This analysis resulted in a main effect for deviant type (F (1,3486) = 20.41,

p < 0.0001), no main effect of attentional set (F (1,3486) = 0.27, p > 0.05) and

no interaction (F (1,3486) = 0.09, p > 0.05). In this way we can conclude that

the number of syllables congruent with a STD word, presented before the point

of deviance, modulates the amplitude of the MMN response, independently from

task instructions. This suggests that when a word is presented, listeners can build a
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Figure 4.5: Experiment 2. Grand average over Parietal ROI. STD vs XXY. First,

second and third vertical dashed lines indicate syllable onset times. Forth vertical dashed

line indicates end of the word. Time zero indicates the point at which deviance occur.

Error bars denote 1 SEM. Horizontal light grey line delimits time window of interest.

Middle grey horizontal line demarks p < 0.05. Left: Topography of the difference wave at

the time point of the peak of the XYY condition.

predictive model of the incoming phonemes using at least the phonemes from the last

2 syllables, all this in an automatic way and independently from the task at hand.

Figure 4.6 represents the mean MMN response amplitude for all the conditions.

4.8.2 P3a response

Contrary to our predictions, we didn’t registered a significant P3a response in Ex-

periment 2. To understand better the modulating role of attention on the this

component, we performed a two-way ANOVA, as the one we performed for our

analysis of the MMN response (4.8.1).

As before, we used a 2 x 2 design, with deviant type as a within participants

factor with 2 levels (XYY and XXY), and attentional set as a between participants

factor with 2 levels (”Count deviants” and ”Learn all words”). For each of the 4

conditions defined by this 2 x 2 design, taking the Parietal ROI, we calculated for

each trial, the mean amplitude in a 52ms window centred at the peak of the mean

P3a response from Experiment 1 and using the same time points for the data from

Experiment 2.

48



CHAPTER 4. EXPERIMENT 2

Figure 4.6: Comparison of MMN responses Error bars denote 1 SEM. As the ANOVA

result indicates, the driving factor to determine the amplitude of the MMN response is the

number of syllables that are congruent with a STD word, presented before the point of

deviance. This modulation is independent from the instructions given to the participants

with respect to the deviants

This analysis resulted in no main effect for deviant type (F (1,3486) = 2.08,

p > 0.05), a main effect of attentional set (F (1,3486) = 6.75, p < 0.01) and no

significant interaction (F (1,3486) = 0.11, p > 0.05). This implies that what we

considered a P3a response in Experiment 1, is only present when participants are

actively counting the occurrence of deviants (Fig: 4.7).

4.8.3 P3b response

Even though we did not registered a significant P3b response in Experiment 2, we

did observe a small parietal positivity with a topography reminiscent of a P3b for

both deviants (although it only approached significance for XYY). Because of this,

in order to fully explore the modulating role of attention on the P3b response, we

performed a two-way ANOVA for the Parietal ROI, as the one we performed for

our analysis of the MMN response (4.8.1).

Once more, we used a 2 x 2 design, with deviant type as a within participants

factor with 2 levels (XYY and XXY), and attentional set as a between participants
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Figure 4.7: Comparison of P3a responses Error bars denote 1 SEM. What we considered

a P3a response in Experiment 1, is only present when participants are actively counting

the occurrence of deviants.

factor with 2 levels (”Count deviants” and ”Learn all words”). For each of the 4

conditions defined by this 2 x 2 design, taking the Parietal ROI, we calculated

for each trial, the mean amplitude in a 100ms window centred at the peak of the

mean P3b response from Experiment 1 and the peak of the clusters detected in

Experiment 2.

This analysis resulted in a main effect for deviant type (F (1,3486) = 4.52, p

< 0.05), a main effect of attentional set (F (1,3486) = 54.33, p < 0.0001) and a

significant interaction (F (1,3486) = 5.89, p < 0.05). Looking at figure 4.8 we can

conclude that while listeners are actively trying to detect deviants, is is possible to

register a P3b that is modulated by the number of syllables congruent with a STD

word before the point of deviance. When instead no particular instructions are given

regarding the deviants, the P3b response disappears.

4.9 Discussion

As we argued in the introduction of this chapter (4.1), the main goal of Experiment

2 was to study how a change in attentional set would affect the chain of predictive
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Figure 4.8: Comparison of P3b responses Error bars denote 1 SEM. As the ANOVA

result show, in the case of the P3b response, the number of syllables that are congruent

with a STD word, presented before the point of deviance, only have a modulating effect

when listeners are actively counting the occurrence of deviants. When no instructions

with respect to the deviants are given, there is no modulating effect of deviant type and

the overall amplitude recorded at the Parietal ROI is much smaller.

error signals that are triggered by the presentation of a deviant word that contains

an unexpected sequence of phonemes. We were particularly interested in testing

if predictions about the forthcoming phonemes of a word would still be produced

when task instructions don’t distinguish between standard and deviant words. We

were able to corroborate that even if participants are simply instructed to listen all

words and try to learn them, the presentation of a deviant triggers a prediction error

signal.

4.9.1 Phonological predictions within a word are performed

automatically

In the experiment presented in this chapter, participants were not informed about

the occurrence of deviant words, and the instructions given didn’t distinguish be-

tween standard and deviant words. Despite this, the presentation of a word that

contains an unexpected sequence of phonemes, elicited a MMN response. Further-
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more, a comparison with the MMN responses elicited in Experiment 1 showed

that the responses recorded in Experiment 2 had an equivalent amplitude (4.6).

In this way the results of Experiment 2 not only confirm our previous find-

ings but moreover they shows that listeners build predictions about the incoming

phonemes of a word in an automatic way (i.e. even if is not required by the task

at hand). As the attentional set held by the participants during this experiment

resembles closely the one use in natural speech processing, these results implies that

the language comprehension system proactively anticipates the incoming phonemes

within individual words.

4.9.2 Modulation of the strength of the prediction

As in the case of Experiment 1 (3.8.2) the amplitude of the MMN response elicited

by a deviant was modulated by the number of syllables congruent with a STD

word presented before the point of deviance, even if the listener is not actively

trying to detect the deviants. This is of particular interest because it suggests that

the prediction for the upcoming syllables integrates information from at least the

two past syllables (i.e. 650ms in the past), and that this long range integration is

performed automatically.

The behavioural results of Experiment 2 are in line with the interpretation

of a stronger prediction violation elicited by the XXY deviant. While participants

were able to discriminate XXY deviants from new words in the forced choice test,

they were not able to do it for the XYY deviants (4.7.1). We consider that XXY

were more easily distinguishable from new words because as they generate more

prediction error (i.e. MMN amplitude), there is a stronger effort to minimize that

error, therefore they are encoded better and are easily remembered.

In brief, XXY deviants elicits a stronger MMN response and are more easily

discriminable from new words. This suggests that predictions about the incoming

phonemes within a word can integrate information from at least 2 syllables in the

past. Is worth underlining that this predictions were produced in an automatic way,

with new pseudowords that were learned in a period of minutes during the experi-

ment and without the aid of higher level information such as syntax or semantics.

This implies a formidable capacity and flexibility of the language system to learn

52



CHAPTER 4. EXPERIMENT 2

the sequences of phonemes composing new words and generate predictions about

upcoming phonemes based on the preceding ones.

4.9.3 Prediction error beyond the MMN response depends

on listener’s attentional set

In this chapter we have shown that the MMN response acts as an automatic pre-

diction error signal elicited in response to a deviant that contains an unexpected

sequence of phonemes (4.9.1) and that the predictive system that generates such

response can integrate information from at least the 2 preceding syllables (4.9.2), all

these even if listeners are not actively monitoring the words they hear looking for

mistakes. On the contrary, when participants are not instructed to detect deviants,

ERPs beyond the MMN response seem to vanish.

The absence of a P3a response went against our prediction. This ERP is usually

elicited by distractors in 3 stimuli OddBall paradigms [91], and is thought to reflect

automatic reorientation of attention. Given that we registered a P3a response in

Experiment 1 (3.7.2) even though the deviants in that experiment were targets

to be counted, we considered that in Experiment 2, where from a top-down point

of view deviants should receive the same attention as standard words, they were

more likely to trigger an automatic bottom-up attentional shift. But instead, no

P3a was present in Experiment 2. The fact that this positivity is only present

when listeners are actively counting the occurrence of deviants calls for a revision of

our labelling of it as a P3a response. In brief, this is a positive component peaking

around 260ms after the point of deviance, which displays a fronto-central topography

and is modulated by the attentional set of the participants, being present only when

they are actively trying to count the occurrence of deviants. Unfortunately, with

our current data, is not possible to further characterize this component or venture

an interpretation of its behaviour.

Our ANOVA analysis of the P3b response (4.8.3) revealed that this component

is present when participants actively try to count the occurrence of deviant words,

but fades away when deviants receive the same treatment as standard words. A

premature interpretation of this would be that this component is not an index of

prediction, but instead only reflects the decision of categorizing a word as a deviant,
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or the result of the counting task itself. But it should be noted that when this

component is present, is modulated by the amount of syllables congruent with a

STD word presented before the point of deviance. Therefore, the P3b response can

be considered as a marker of prediction in speech processing, but generated at a

higher level of the processing hierarchy than the MMN response. As a high level

event related potential [90], the P3b response can be modulated by different aspects

of cognition, including predictive processes [50] and generation of responses [109].

4.9.4 Extending these results to a more complex scenario

The results of experiments 1 and 2 support our proposal that the human brain gen-

erates automatic on-line predictions about the identity of the forthcoming phonemes

of words, even in the absence of higher level information such as syntax or semantics.

Additionally our results suggest that the strength of such predictions can grow with

the presentation of subsequent phonemes that confirm the prediction made. We were

able to identify 2 different markers of prediction error that reflect different levels in

the processing hierarchy. While the MMN response reflects predictive processes that

are deployed automatically, the P3b response indexes higher level prediction that is

contingent to the task at hand.

Having shown that the MMN and P3b responses elicited in an OddBall paradigm

can be use to study prediction in speech processing, and considering that the ampli-

tude of these components increased with subsequent successful predictions within a

word, we decided to study another possible speech dimension that might modulate

prediction strength. We refer to the frequency with which phoneme combinations

are found in the lexicon. In the stimulus set used in experiments 1 and 2 (3.1)

each syllable could be followed by 2 others, with 92% and 8% probability respec-

tively. But in natural speech, each phoneme in a word can usually be followed by

several competing candidates with different probabilities. In the next chapter we

will present an experiment in which we used a richer stimulus set which included

2 possible deviants with different probabilities for the same syllable position. This

allowed us, on one hand, to test whether prediction error signals can be modulated

by how unlikely is a given syllable combination. On the other hand this allowed us

to extend our results to a more complex stimulus set that better represents natural
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speech.

55



Chapter 5

Experiment 3

5.1 Introduction

One topic of intense debate in the general literature on prediction in speech process-

ing is whether the predictive system generates a single prediction at a time, or if

multiple parallel candidates can be established with different strengths. In general,

older views of prediction consider that the predictive system picks only one candi-

date. The original explanations of the garden path phenomenon1, for example, held

that the reader predicted just one possible structure of the sentence, usually the

most frequent and therefore the most likely structure [44]. Similar positions were

held in early views of lexico-semantic prediction [43]. But this ”single candidate”

position was usually attached and used as an argument against prediction playing a

major role in language processing. It was argued that given that any context have

several possible continuations, betting on one prediction would be costly as it would

usually fail [111].

In contrast with the ”single candidate” view, prediction can be considered as

a probabilistic phenomenon, in which different candidates are generated in parallel

with different prediction strengths. In accordance with this view, evidence shows

that predictive effects can be graded. The garden path effect, for example, can be

modulated by how much a particular discourse context restrict possible candidates

1The Garden Path Effect refers to an increase in reading time in grammatically correct sentence

that starts in such a way that a reader’s most likely interpretation will be incorrect. Example:

”The old man the boat”.
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[100]. In the same way, it is known that the amplitude of the N400 response elicited

by an incoming word is inversely proportional to that word’s probability considering

the preceding context [70, 71]. In the example sentence ”He wanted to prepare coffee

but he didn’t have a clean...”, while the word cup elicits a low amplitude N400 re-

sponse, the word knife elicits a higher amplitude response, and importantly, the word

bowl elicits a response with an amplitude that falls in between. One interpretation

of this modulation is that while the word cup is predicted as the most likely candi-

date, the word bowl is also predicted, although with less prediction strength. These

effects show that at least at the syntactic and semantic level, prediction strength

can be modulated by contextual information in a graded fashion.

Although these examples of modulation of prediction refer to higher levels of

speech processing, a similar modulation might be present at the phonological level.

In natural speech, each phoneme of a word can be usually followed by several candi-

dates, and such candidates occur with different frequencies. Therefore, considering

the existing evidence in favour of graded prediction, it would be possible that the

brain could build predictions that ponder different phoneme candidates, based on

their frequency of appearance.

To test this, we performed an OddBall experiment in which we used 2 deviant

types that differ in their probability of presentation. We expected that, if the phono-

logical predictive system can keep track of different phoneme candidates, the mag-

nitude of prediction error generated by an unexpected phoneme combination would

be modulated by how unexpected (i.e. how infrequent) such combination is. In

this way, a more unlikely deviant should generate more prediction error (i.e. higher

amplitude MMN response), than a less unlikely deviant.

For this experiment, we used a stimulus set that is more complex than the one

used in the experiments of chapters 3 and 4. Not only it contains more words, but

also, as the point of deviance is the same for both deviant types, each syllable can

be followed by 3 others, instead of 2. Therefore, finding evidence of prediction at

the phonological level with this stimulus set would help us to extrapolate our results

to natural speech.

In chapters 3 and 4, we have shown evidence that while hearing a word, listeners

can make predictions about the forthcoming phonemes, based on the preceding
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ones, even in the absence of higher level information such as syntax or semantics.

In particular, while the MMN response seems to act as an automatic prediction

error signal, the P3b response can index higher level prediction that is strategic

in nature (i.e. depends on the task at hand). One of the goals of the experiment

presented in the current chapter was to test whether this predictions can actually

serve a functional role by modulation behaviour. To test this, we introduced an

on-line deviant detection task. Instead asking participants to count the occurrence

of deviant words, we requested them to respond to the occurrence of deviants with

a mouse click. This granted us a measure of reaction time that we could correlate

with features of the MMN and P3b responses. Specifically, we expected that higher

prediction error (i.e. higher ERP amplitude) would lead to shorter reaction times.

In brief, the current chapter presents an experiment that had 3 objectives. First,

to test whether the phonological predictive system can keep track of how likely are

different phoneme candidates. We accomplished this by including in our experimen-

tal design, deviants with different frequency of appearance. Second, the use of a

more complex stimulus set (when compared to the one used for experiments 1 and

2) allowed us to test for the presence of prediction at the phonological level under

conditions closer to natural speech. Finally, in order to test if the phonological pre-

dictive system can play a functional role, we performed a correlation analysis linking

the amplitude of prediction error signals with the reaction time in an on-line deviant

detection task.

5.2 Participants

A total of 34 participants took part in this experiment (13 male and 21 female, mean

aged 24.88 ± 2.72 years). All of them were Italian native speakers, right handed

and reported no auditory or language-related problems. Participants were recruited

from the city of Trieste and received a monetary compensation of 15 e.

After data preprocessing, 3 participants were excluded from analysis due to con-

tributing with less than 20 clean trials per condition, 4 participants were excluded

from analysis due to missing more than 3 electrodes of interest and 2 participants

were excluded due to poor behavioural performance. Therefore, 25 participants were
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included in the final analysis (9 male and 16 female, age 24.8 ± 2.44 years).

5.3 Stimuli

The stimuli of this experiment consisted of 3 sets of 4 bisyllabic words each, making

a total of 12 words. Following the same procedure used for the construction of the

stimuli for experiments 1 and 2 (see 3.3), we first constructed a set of 4 words based

on which other 2 sets of 4 words were constructed using cross-splicing. In this 2

sets, each word was made of the first syllable from a word of the original set and the

second syllable of another word, hence, they had a XY structure. The final product

of this procedure were 3 sets of 4 bisyllabic words. Even though the words in all

sets were composed of the same syllables, their combinations were different in each

set. The 12 resulting words were checked by a native Italian linguist to ensure that

they were plausible but not real Italian words.

Set 1 Set 2 Set 3

1. SaÃe Saţi Sabo

2. luţi lubo ludza

3. modza moÃe moţi

4. nibo nidza niÃe

Table 5.1: Stimulus set use forExperiment 3 in IPA notation. A total of 12 words were

used. These words were divided in two sets. Sets 2 and 3 were produced by cross-splicing

the 4 words belonging to Set 1.

The resulting stimulus set was more complex than the one used in experiments

1 and 2 (3.3). It was composed by 8 different syllables instead of 6, combined in 12

words instead of 6, and each syllable could be followed by 3 alternatives instead of

2. The higher variability in this stimulus set allowed us to test for the presence of

phonological predictions under conditions that are more similar to natural speech.
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5.4 Data acquisition setup

The experimental setup for EEG data acquisition was identical to the one use in

experiments 1 and 2 (2.1). In addition, a Tobii T-120 Eye-tracker system was used

to co-register pupil diameter, as we had plans for performing a pupillometry analysis

that is not included in this thesis. In order to reduce artefacts participants were

requested to minimize movement and use a chin rest positioned at 24cm from the

screen throughout the experiment, except during breaks between blocks.

5.5 Procedure

After receiving instructions, the experimental session started with a 5 point calibra-

tion for the eye tracking system. Next, we registered resting state brain activity and

pupil diameter in 2 blocks of 4 minutes, during which participants were instructed to

fixate at a white cross presented centrally against a grey background. The analysis

of this data will not be included in this thesis.

After resting state recording, the experiment followed an OddBall design. The

3 sets of words that we described in 5.3 were for each subject assigned randomly

to one of 3 conditions (STD, Dv1 and Dv2). Stimuli were presented in blocks

with an average duration of 5.3 minutes. On each block, a total of 134 words were

presented, with an inter stimulus interval that varied between 1800 and 2200ms.

During the first of such blocks, only STD words were presented and participants

were instructed to try to learn them. Subsequently, participants completed 12 blocks

composed of 83% STD words 13% Dv1 words and 4% Dv2 words. Within each

block, word order was pseudo-random, with the restrictions of no word repeating

more than 2 times consecutively and having between 2 to 4 STD words between

deviant words.

Participants were instructed to perform a mouse click each time that they heard

a ”mistaken” words (i.e. deviant words). We decided to include this on-line deviant

detection task to have a measure of reaction time that we could correlate with

features of the MMN and P3b responses. This allowed us to test if there is a

functional link between prediction error signals and behavioural measures.

As in Experiment 2 (4.5), at the end of the experiment, participants completed
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a forced choice test. Instructions were given verbally. On each trial, participants

heard 2 words and were requested to choose the one that most likely was presented

during the experiment. Participants completed 8 trials for each of 3 contrasts be-

tween conditions, for a total of 24 trials. The contrasts between conditions were

”STD vs Dv1”, ”STD vs Dv2” and ”Dv1 vs Dv2”. Participants reported their

answers verbally and the experimented entered them through keypress.

5.6 EEG analysis

5.6.1 Data pre-processing

Details about the procedure used for EEG data preprocessing and cleaning can be

found in 2.2. Data was segmented into 2700ms long epochs starting 300ms before

word onset. After cleaning, data was divided into STD, Dv1 and Dv2 conditions.

Given that this experiment included an on-line deviant detection task, we only

included in the deviant datasets trials that were detected as such, and we only

included in the STD dataset trials in which no false alarm occurred. The final

result of this procedures was 1 dataset per condition, each containing 721 clean

trials.

5.6.2 Regions of interest

The regions of interest used for this experiment were spatially identical to the ones

used in Experiment 1 (see 3.6.2). Temporally, the Fronto-Central ROI spanned

over a 325ms starting at the point of deviance. With respect to word onset, this

covered from 325ms to 650ms. This ROI coincided with the region were a MMN

response [32, 77, 76] and a P3a response [21, 90, 32] could be expected. The Parietal

ROI extended temporally from 200ms after the point of deviance, to the end of the

epoch. With respect to word onset, this covered from 525ms to 2400ms. This ROI

corresponded to the region were a P3b response would be expected [21, 90, 32] (Fig:

3.2).
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5.6.3 Statistical analysis

Unless otherwise noted, statistical testing was performed utilizing the procedure

described in detail in 2.3. This nonparametric clustering methods offers a straight-

forward and intuitive solution to the Multiple Comparisons problem.

5.7 Results

5.7.1 Behavioural Results

The behavioural performance of the participants was assessed in 2 different ways.

During the blocks in which words were presented, participants reported the occur-

rence of deviants by performing a mouse click. This provided us an on-line measure

of deviant detection. At the end of the experiment, participants performed a forced

choice test that allowed us to measure preferences between the different conditions.

On-line deviant detection

Before analysing the on-line detection of deviant, we eliminated from the pool re-

sponses occurring before the point of deviance. These early responses represented

2.04% of the total.

Globally, participants had a mean hit rate of 90.61% (σ= 11.07%) and a mean

false alarm rate of 2.05% (σ= 5.31%). We eliminated 2 participants from the subse-

quent analysis due to having a hit rate more than 2 σbelow the mean. Without these

2 participants, the mean hit rate was 92.63% (σ= 6.77%) and the mean false alarm

rate was 1.38% (σ= 0.89%), which corresponds to a high discriminability index (d’

= 3.65).

By evaluating both deviant types individually, we could determine that while

Dv1 had a hit rate of 91.46% (σ= 8% ), Dv2 had a hit rate of 96.14% (σ= 4.39%).

To evaluate if this difference in detection rate was significant, we performed a custom

surrogate test.

First, given that Dv1 words were presented more frequently than Dv2 words

(13% and 4% respectively), we drawn form the pool of Dv1 trials, a random subset

matching the number trials in the Dv2 condition. Next we compared this two
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sets by means of a surrogate difference of means test with 5000 permutations. On

each permutation, the labels of the conditions were shuffled the difference of the

means of the shuffled conditions measured, generating in this way a distribution

of possible differences of mean under the null hypothesis of no difference between

conditions. A p value was calculated as the proportion of difference of means under

the null hypothesis that were bigger that the one observed in the original data. We

repeated this procedure of drawing a random sample of Dv1 trials and performing

the surrogate test 1000 times, and the final p value was defined as the mean p value

of these 1000 iterations. In this way, we could determine that the hit rate of Dv2

deviants was significantly higher (p < 0.001).

Following this, we analysed the reaction time for both deviant types. As the

distribution of reaction times was not normal according to a Lilliefors test (D(9886)

= 0.07, p < 0.0001), median was used as a measure of central tendency for the fol-

lowing analysis. Participants responded with median latencies of 788ms and 734ms

after the point of deviance for the Dv1 and the Dv2 conditions respectively. In

this way participants responded 54ms faster in the Dv2 condition. To determine

if this difference was significant, we followed a statistical procedure similar to the

one described in the preceding paragraph, but this time using difference of medians

instead of difference of means. The observed difference of median response times

resulted to be significant (p < 0.001), implying that participants responded faster

to the deviants that are presented less frequently (Fig: 5.1).

From these analysis of the on-line deviant detection task we can conclude that,

although the performance was close to ceiling for both deviant types, the Dv2

deviants, which were presented with less frequency, were detected faster and with

higher accuracy than the Dv1 deviants.

Forced choice test

The forced choice test performed at the end of the experiment allowed us to deter-

mine if participants had a preference for any condition in terms of considering it as

belonging to the words presented during the blocks. All results presented in this

section were corrected for multiple comparisons using the Bonferroni-Holm method

(See table 5.2).
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Figure 5.1: Experiment 3. Histogram of response times for Dv1 and Dv2 conditions.

X axis represents time in seconds after point of deviance. Y axis represents percentage of

responses.

Our analysis revealed that participants had a clear preference for STD words

over Dv1 deviants (87.13%, t(33) = 11.81, p < 0.0001) and over Dv2 deviants

(91.18%, t(33) = 12.4, p < 0.0001).

Besides showing a preference for Standard words over deviant words, participants

also displayed a preference for Dv1 deviants over Dv2 deviants (59.93%, t(33) =

3.33, p < 0.01).

Finally we performed a surrogate t test to compare the preference for STD

words over Dv1 deviants vs the preference for STD words over Dv2 deviants. This

comparison only approached significance (t(33) = -2.06, p = 0.067).

In brief, from these analysis we can conclude that participants easily discrimi-

nate STD words from deviants of both types. Additionally, they preferred the most

frequent type of deviant (Dv1 over Dv2 deviants). These results imply that par-

ticipants could keep track of the frequency of presentation of all stimuli categories,

and that the likelihood of considering a word as one of the words presented during

the experiment depended on its frequency of appearance.
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Contrast Pref. Statistics

STD vs Dv1 87.13% t(33) = 11.81 p < 0.0001

STD vs Dv2 91.18% t(33) = 12.40 p < 0.0001

Dv1 vs Dv2 59.93% t(33) = 3.33 p < 0.01

Table 5.2: Experiment 3 Behavioural Results. A forced choice test was performed

contrasting each condition against the other. The mean preference in each contrast was

calculated for each participant and a one sample t test was performed at the group level

to test against the null hypothesis of no difference from chance. Results were corrected

for multiple comparisons using the Bonferroni-Holm method.

5.7.2 EEG Event Related Potentials

In this section we present the results of our event related potential analysis. As in

the previous experiments, we will use the point of deviation as time zero.

Fronto-Central region of interest

The analysis of the Fronto-Central ROI (5.6.2) revealed that, as in the two pre-

ceding experiments, the presentation of a deviant elicited a MMN response. When

contrasting the STD and Dv1 conditions, we could determine that the presenta-

tion of the Dv1 deviant elicited a significant negativity starting at 47ms (t = 28.14,

p < 0.05). The topography of the difference between conditions reveals a fronto-

central negativity congruent with a MMN response. Following this first negativity,

we identified a second one starting at 251ms (t = 38.88, p < 0.05) (Fig: 5.2).

The results for the comparison between the STD and Dv2 conditions mimic the

ones obtained for the Dv1 condition. The presentation of the Dv2 deviant elicited

a significant negativity starting at 47ms (t = 118.8, p < 0.001). Once more the

topography of the difference between conditions reveals a fronto-central negativity

congruent with a MMN response. A second negativity starting at 207ms was also

detected (t = 77.2, p < 0.01) (Fig: 5.3).

As our analysis determined that both deviant conditions elicited a MMN re-

sponse, we proceeded to compare the deviant conditions to test whether the ampli-

tude of this response was modulated by the frequency of the deviants. We predicted

that the least frequent Dv2 deviant would trigger a stronger MMN response. In

65



CHAPTER 5. EXPERIMENT 3

Figure 5.2: Experiment 3. Grand average over Fronto-Central ROI. STD vs Dv1.

First and second vertical dashed lines indicate syllable onset times. Third vertical dashed

line indicates end of the word. Time zero indicates the point at which deviance occur.

Error bars denote 1 SEM. Horizontal light grey line delimits time window of interest.

Middle grey horizontal line demarks p < 0.05. Left: Topography of the difference wave at

the time point of maximum difference in the first significant cluster.

contrast with this predictions, no significant difference between the MMN responses

elicited by Dv1 and Dv2 was detected. However is worth noticing that the MMN

response elicited by the Dv2 condition is numerically more negative and extends

longer over time (Fig: 5.4).

Parietal region of interest

The analysis of the Parietal ROI revealed that both deviant categories elicit a

P3b response. The presentation of a Dv1 deviant evoked a long lasting positive

deflection starting at 247ms and extending till the end of the epoch (t = -2692.8, p

< 0.001) whose topography corresponds to a P3b response (Fig: 5.5).

In the same way, the Dv2 deviant evoked a long lasting positivity starting at

315ms and extending till the end of the epoch (t = -2380.1, p < 0.001), once more

corresponds to a P3b response (Fig: 5.6).

Since our analysis showed that both deviant conditions elicited a P3b response,

we compared across them to test if the frequency of the deviants had a modulatory

effect. This analysis revealed a modulation, but instead of finding a higher amplitude

for the Dv2 condition as predicted, we found that the P3b response elicited by the
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Figure 5.3: Experiment 3. Grand average over Fronto-Central ROI. STD vs Dv2.

First and second vertical dashed lines indicate syllable onset times. Third vertical dashed

line indicates end of the word. Time zero indicates the point at which deviance occur.

Error bars denote 1 SEM. Horizontal light grey line delimits time window of interest.

Black horizontal line denotes p < 0.01. Left: Topography of the difference wave at the

time point of maximum difference in the first significant cluster.

Dv1 deviants started earlier than the one corresponding to the Dv2 deviants (t =

122.58, p < 0.01). In terms of amplitude, both conditions peaked to the same level

(Fig: 5.7).

Next, we compared the responses elicited by both deviant types, but this time,

instead of locking to the point of deviance, we locked the signal to the point of

response. This allowed us examine the temporal dynamics of the processing of both

deviant types before response.

To do this, first we eliminated trials in which the response occurred either earlier

than 780ms or later than 2000ms with respect to word onset. We did this to ensure

that the remaining trials could be re-segmented from -1000 till 300ms with respect

to the time of response. We were able to retain 676 trials per condition (94%) for

subsequent analysis.

We could observe that for both deviants, the elicited P3b peaked precisely at

the time of response and reached the same final amplitude. As in our comparison

of the P3b component locked to the point of deviance, the analysis locked to the

time of response showed that even thought both P3b reached the same level, the

component elicited by the Dv1 deviants starts to rise earlier. This can be seen
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Figure 5.4: Experiment 3. Grand average over Fronto-Central ROI. Dv1 vs Dv2.

First and second vertical dashed lines indicate syllable onset times. Third vertical dashed

line indicates end of the word. Time zero indicates the point at which deviance occur.

Error bars denote 1 SEM. Horizontal light grey line delimits time window of interest.

during 2 consecutive significant temporal clusters, the first one starting 648ms before

the response (t = 104.98, p < 0.01) and the second one starting 468ms before the

response (t = 118.03, p < 0.01) (Fig: 5.8).

5.7.3 Linking prediction error to behaviour

As we anticipated in the introduction of this chapter, one of the goals of Experi-

ment 3 was to determine if the prediction error signals elicited by the presentation

of a deviant composed by an unexpected sequence of phonemes, can have a func-

tional role, by modulating behavioural responses. To answer this question, in this

subsection we present a correlation analysis between reaction times and features of

the MMN and P3b responses. All results presented in this subsection were corrected

for multiple comparisons using the Bonferroni-Holm method.

Fronto-Central region of interest

If as we propose, the MMN response is acting as an error signal that the brain is

using to determine if a prediction failed, the amplitude of this component could be

correlated with the reaction time in the on-line deviant detection task.

To test for this possibility, we first defined MMN amplitude as the mean am-
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Figure 5.5: Experiment 3. Grand average over Parietal ROI. STD vs Dv1. First

and second vertical dashed lines indicate syllable onset times. Third vertical dashed line

indicates end of the word. Time zero indicates the point at which deviance occur. Error

bars denote 1 SEM. Horizontal light grey line delimits time window of interest. Black

horizontal line denotes p < 0.01. Left: Topography of the difference wave at the time

point of the peak of the Dv1 condition.

plitude in a 148ms time window starting at the beginning of the significant cluster

found for both deviant conditions (i.e. 47ms after the point of deviance). Next,

we removed from analysis trials that contained a response before the point of de-

viance, or that had an amplitude 2 σ away from the mean. In this way, we kept 682

(94%) trials for the Dv1 condition and 685 (95%) trials for the Dv2 condition. As

the distribution of the response times was not normal according to a Lilliefors test

(D(9886) = 0.07, p < 0.0001) (5.1) we log transformed the reaction time data and

we performed a Pearson correlation between response times and MMN amplitude

for each condition.

We found a small, yet significant positive correlation for both, the Dv1 (rho(682)

= 0.10 p < 0.05) and Dv2 (rho(685) = 0.10 p < 0.05) conditions. More negative

(i.e. higher amplitude) MMN responses were associated with shorter reaction times.

This implies that the stronger the error signal elicited by a deviant, the faster the

participants can classify it as such and produce a response (Figure: 5.9).

Even though these correlations might appear small, it should be considered that

individual EEG trials (as the ones used in this analysis) are noisy, as it can be

appreciated in the broad range of amplitudes displayed by individual trials. To
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Figure 5.6: Experiment 3. Grand average over Parietal ROI. STD vs Dv2. First

and second vertical dashed lines indicate syllable onset times. Third vertical dashed line

indicates end of the word. Time zero indicates the point at which deviance occur. Error

bars denote 1 SEM. Horizontal light grey line delimits time window of interest. Black

horizontal line denotes p < 0.01. Left: Topography of the difference wave at the time

point of maximum difference at the first significant cluster.

reduce this noise, we sorted individual MMN values according to the reaction time

in the respective trial, and we divided them in 22 groups of 30 trials each. In this

way, MMN values recorded at trials with similar reaction times were kept together.

Next, we obtained the mean MMN value and reaction time from each group, and

performed a Pearson correlation for this mean values.

Once more, we found a significant positive correlation for both, the Dv1 (rho(22)

= 0.56 p < 0.05) and Dv2 (rho(22) = 0.52 p < 0.05). More negative (i.e. higher

amplitude) MMN responses were associated with shorter reaction times (Figure:

5.10).

Parietal region of interest

We tested for a correlation between P3b amplitude and reaction time, using the

same method described for the analysis of the MMN response. We first defined P3b

amplitude as the mean amplitude in a 300ms time window centred at the peak of the

P3b responses found in both deviants (467ms to 767ms from the point of deviance).

As before, we removed from analysis trials that contained a response before the

point of deviance, or that had an amplitude 2 σ away from the mean. In this way
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Figure 5.7: Experiment 3. Grand average over Parietal ROI. Dv1 vs Dv2. First

and second vertical dashed lines indicate syllable onset times. Third vertical dashed line

indicates end of the word. Time zero indicates the point at which deviance occur. Error

bars denote 1 SEM. Horizontal light grey line delimits time window of interest. Black

horizontal line denotes p < 0.01.

689 (95%) trials for the Dv1 condition and 685 (95%) trials for the Dv2 condition

were kept. Once more we log transformed the reaction time data and we performed

a Pearson correlation between response times and P3b amplitude for each condition.

This analysis resulted in a highly significant negative correlation for both, Dv1

(rho(689) = -0.21 p < 0.0001) and Dv2 (rho(685) = -0.21 p < 0.0001) conditions.

More positive (i.e. higher amplitude) P3b responses were associated with shorter

reaction times (Figure: 5.11).

Using the same procedure we followed for the analysis of the MMN responses,

in order to reduce noise, we sorted individual P3b values according to the reaction

time in the respective trial, and we calculated 22 mean amplitude values.

A significant negative correlation for both, the Dv1 (rho(22) = -0.62 p < 0.01)

and Dv2 (rho(22) = -0.64 p < 0.01) conditions was found. More positive (i.e. higher

amplitude) P3b responses were associated with shorter reaction times (Figure: 5.12).

71



CHAPTER 5. EXPERIMENT 3

Figure 5.8: Experiment 3. Grand average over Parietal ROI. Dv1 vs Dv2. Signal

locked to response. Error bars denote 1 SEM. Black horizontal line denotes p < 0.01.

Black dashed vertical line indicates the moment of response.

5.8 Discussion

5.8.1 Can the phonological predictive system evaluate more

than one candidate in parallel?

In the introduction of this chapter, we argued that evidence suggests that predic-

tion in speech can be considered as probabilistic phenomenon. Instead of predicting

only the most probable percept, different candidates could be evaluated in parallel

and weighted with different strength. For example, it is well established that the

amplitude of the N400 response is modulated by the probability of a word given

the previous context [70, 71]. This can be taken as evidence of evaluation of dif-

ferent candidate words in parallel. The first goal of the present experiment was

to test whether the phonological predictive system can evaluate different phoneme

candidates in parallel in a similar fashion.

To test this, we included in our OddBall design, 2 deviant categories that differed

in their frequency of presentation. Specifically, we predicted that the Dv2 deviants,

which were presented with a frequency of only 4%, would elicit higher amplitude

prediction error signals than the Dv1 deviants, which were presented in 13% of the
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Figure 5.9: Experiment 3. Correlation between MMN amplitude and reaction time

for Dv1 (Left) and Dv2 (Right) conditions. A significant positive correlation was found

for both conditions, implying that higher amplitude MMN responses were associated with

faster reaction times.

Figure 5.10: Experiment 3. Correlation between MMN amplitude and reaction time

for Dv1 (Left) and Dv2 (Right) conditions, taking mean MMN amplitudes of blocks of

30 trials with similar reaction time. A significant positive correlation was found for both

conditions, implying that higher amplitude MMN responses were associated with faster

reaction times.

trials.

Behaviourally, during the on-line detection task, the more infrequent Dv2 de-

viants were detected faster and with higher accuracy than the Dv1 deviants. In

line with this, the results of the forced choice test (5.7.1) at the end of the exper-

iment showed that participants considered Dv1 deviants (i.e. the most frequent

deviatn) as more likely to be among the words presented during the experiment,

when compared to Dv2. This implies that participants were able to keep track of

the frequency of presentation of the different deviant conditions. But despite this,

although the MMN response elicited by the Dv2 deviants was numerically more
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Figure 5.11: Experiment 3. Correlation between P3b amplitude and reaction time for

Dv1 (Left) and Dv2 (Right) conditions. A significant negative correlation was found for

both conditions, implying that higher P3b amplitude were associated with faster reaction

times.

Figure 5.12: Experiment 3. Correlation between P3b amplitude and reaction time

for Dv1 (Left) and Dv2 (Right) conditions, taking mean P3b amplitudes of blocks of 30

trials with similar reaction time. A significant negative correlation was found for both

conditions, implying that higher amplitude P3b responses were associated with faster

reaction times.

negative and more spread in time, a comparison of both deviants didn’t reach a

significant difference. A simple reason for this could be that the difference in the

frequencies of presentation used was of only 9%, which might not be enough to

generate a difference in MMN amplitude that could be captured in an EEG experi-

ment. A different rate of presentation, such as presenting STD words in 65% of the

trials, Dv1 deviants in 30% of the trials and Dv2 deviants in 5% of the trials could

result in a significant modulation by frequency of presentation. Because of this, we

consider that the data provided by Experiment 3 is inconclusive with respect to

this matter.
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In the case of the P3b response, we did observe a modulation by frequency of

presentation, but this modulation was in the opposite direction of our predictions.

We expected that the most rare Dv2 deviant would elicit a higher amplitude P3b

response, but instead the data showed that although the peak amplitude was the

same for both conditions, this positivity starts earlier in the case of the Dv1 deviant

(5.7). This earlier start of the P3b in the more frequent Dv1 condition becomes

more evident when the signal is locked to the moment of the response (5.8). Consid-

ering that we didn’t find a significant modulation of the MMN response, and that

the difference in frequency between deviant conditions used was of only 9%, the

interpretation of this P3b modulation remains elusive.

5.8.2 Functional role of prediction error. Correlations with

response time

Given that in chapters 3 and 4 we were able to show that the presentation of words

containing an unexpected sequence of phonemes elicit ERPs such as the MMN and

P3b responses, which could be interpreted as prediction error signals, one of the

goals of the experiment presented in the current chapter was to test whether this

prediction error can serve a functional role by modulation behaviour. To test this,

we measured reaction times by asking participants to response with a mouse click

each time a deviant was presented and we correlated this behavioural measure with

the amplitude of the MMN and P3b responses. Specifically, we expected that higher

prediction error (i.e. higher ERP amplitude) would lead to shorter reaction times.

The correlation analysis confirmed our predictions, showing that higher ampli-

tudes of both MMN and P3b were associated with shorter reaction times. This

is particularly interesting in the case of the MMN response. As we showed before

(4.8), this component indexes predictions that are deployed automatically, even if

participants are not instructed to perform any task with respect to the deviants.

The correlation analysis presented in this chapter suggests that despite this au-

tomaticity, the amount of prediction error elicited by an unexpected sequence of

phonemes can affect higher level processes such as stimuli classification. By showing

that the amplitudes of the MMN and P3b responses are correlated with reaction

time, this results support our proposal which states the phonological predictions
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deployed during the perception of individual words have a functional role.

5.8.3 Phonological prediction in a more complex stimulus

set

The stimulus set used in this experiment (5.3) allowed 3 alternatives after the first

syllable of each word. This alternatives were presented with different frequencies,

with one being the STD (83%), one being a more common deviant (Dv1 13%) and

the last one being a more rare deviant (Dv2 4%). In this way, the stimulus set

used in this experiment resembled natural speech, in which usually each syllable of

a word can be followed by several alternatives.

Even with a more complex stimulus set like the one used for this experiment,

when a word with an unexpected sequence of phonemes is presented, this elicits a

MMN response that can be interpret as an error signal, product of the violation of a

prediction [116]. In this way, the results of the experiment presented in this chapter

further supports our proposal which states that in speech processing, predictions

are deployed at the phonological level, even if the context does not include higher

level information.

76



Chapter 6

General Discussion

6.1 Introduction

As we argued in the introduction of this thesis 1, one of the strategies that the speech

processing system uses to complete the difficult task of handling the variability and

noisiness of the speech signal, is to generate predictions [67]. Predictions can be

generated at different levels [68], and as extensive communication occurs between

levels [34], information from any particular level can facilitate the processing of

incoming information at almost any other level [3, 98, 12, 11].

In the case of the phonological level, evidence show that the forthcoming phonemes

of a word can be predicted using syntactic [28], semantic [10, 66, 57] and phono-

tactic [23, 104, 119] information. We proposed that as prediction seems to plays

a fundamental role in speech processing [60, 80, 12], phonological prediction might

be possible even in the absence of this high level information. To test this, we per-

formed 3 electroencephalography experiments in which only phonological and word

form information was available to generate phonological predictions.

6.2 MMN as a marker of phonological prediction

Throughout the 3 experiments described in this thesis, the presentation of an unex-

pected sequence of phonemes, reliably elicited a MMN response [77, 76]. This event

related potential is a well established marker of violation of expectations which can

be interpreted as the result of comparing a prediction with the actual bottom-up
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input. In this way, the MMN response would act as prediction error that the system

has to minimize [20, 113, 54, 50].

Importantly, the deviant words used in these experiments were constructed by

cross-splicing standard words. Therefore, each syllable in a deviant word was acous-

tically identical to a syllable in a standard word. This represents an advantage

with respect to previous works on the topic of phonological prediction, where the

phoneme to be predicted was either omitted [10], or replaced by a non-linguistic

sound [66, 57]. In the case of the stimuli used in our experiments, the only feature

that defines a phoneme as deviant, was that given the phoneme Xn, instead of the

usual phoneme Xn+1, the phoneme Yn+1, which belongs to a different word, was

presented. In this way, the MMN response registered in these experiments, is not

elicited by a change in instantaneous low level auditory features, but by the violation

of an abstract rule [84].

The amplitude of this MMN response was modulated by the number of syllables

congruent with a standard word presented before the point of deviance, with higher

MMN amplitude (i.e. more prediction error) when 2 congruent syllables were pre-

sented instead of 1. This implies that phonological predictions can be constructed

using information from (at least) the 2 preceding syllables.

Experiments 1 and 2 differed in the attentional set held by the participants.

While in Experiment 1 participants were instructed to count the occurrence of

”mistaken” (i.e. deviant) words, in Experiment 2 they were not informed about

the occurrence of deviants and were simply instructed to attend to all the words.

Our analysis showed that the MMN responses elicited under these two different

attentional conditions were indistinguishable (4.8.1), which suggests that phonolog-

ical predictions are deployed automatically, even if the task at hand does not require

detecting abnormalities in the speech stream.

Finally, besides determining that the presentation of an unexpected sequence of

phonemes generates a predictive error signal, in Experiment 3 we were able to

show that this prediction error can influence behaviour, as we found that higher

amplitude MMN responses were correlated with faster reaction times in an on-line

deviant detection task.

Taken together, the MMN effects found in the 3 experiments presented in this
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thesis, suggest that even when no high level linguistic information such as syntax and

semantics is present, the human speech comprehension system can use phonological

information from (at least) the past 2 syllables to deploy phonological predictions

in an automatic way

6.3 The P3b. A marker of Phonological predic-

tion beyond the MMN?

The P3b response is a high level and relatively late component which amplitude and

latency are sensitive to several experimental parameters. This component has been

reported to reflect perceptual stimulus discrimination, memory processing [21, 90],

participants’ attentional set [90] and conscious access [85], although it can also

reflect subliminal processing [97]. Is modulated by task features such as stimulus

dissimilarity [31] or target to target interval [55], as well as response features like

accumulation of evidence [81, 109]. Considering this, the interpretation of such a

multiphasic component can be challenging.

In Experiment 1, participants were instructed to count the occurrence of ”mis-

taken” (i.e. deviant) words. Under such instructions, the P3b response amplitude

(as in the case of the MMN response) was modulated by the number of syllables con-

gruent with a standard word presented before the point of deviance. This suggests

that this component is indeed related to prediction, as its amplitude is enhanced by

a previous successful prediction.

A comparison between experiments 1 and 2 (4.8.3) revealed that this component

is modulated by attentional set. In the case of Experiment 2, where instructions

did not differentiate between deviant and standard words, this component was not

registered. This could imply that although the P3b response can act as a prediction

error signal, it might only be present when predictions are strategic for the task at

hand.

But in the case of Experiment 3, this component behaved in the opposite

direction than the one predicted (5.7.2). We expected that, if this component would

act as a prediction error signal, the Dv2 words, that were presented in only 4% of

the trials, should elicit a higher amplitude response than the Dv1 words, which had
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a presentation frequency of 13%. Instead, this component reached the same final

amplitude for both conditions, and it even ramped faster for the Dv1.

Further analysis showed that this component is maximal when the signal is

locked to the moment of response, therefore, we can consider that in the case of

Experiment 3, where participants were requested to respond to the presentation

of deviant with a mouse click, it acted as a decision variable that initiates response

when a threshold is reached [81, 109]. One possibility is that in this experiment,

participants might have use different strategies to respond to the 2 different deviant

types. While Dv2 words were infrequent enough to be treated as deviants, the Dv1

words could have been frequent enough to be learned, and considered not as deviant,

but as a target to which to respond.

As we argued at the beginning of this section, the P3b response is sensitive to

several experimental parameters. Even if in Experiment 1, where participants

were asked to count the occurrence of deviants, this component seems to act as a

predictive error signal, the change of response type to mouse click and the different

type of deviant manipulation in Experiment 3 might make impossible a comparison

with experiments 1 and 2. A likely scenario is that the P3b component might reflect

both aspects of prediction and of the way in which participants are executing the

response. Given that the deviant manipulation of Experiment 1, which consisted

in changing the number of syllables congruent with a standard word presented before

the point of deviance, was successful in modulating the P3b response, one possible

way to shed light on this topic would be to replicate Experiment 1, although using

the same type of response as in Experiment 3.

6.4 What next?

In this thesis we have shown that it is feasible to study phonological prediction using

electroencephalography experiments with an OddBall design. This opens a road of

research to approach several open questions on the topic. In this section we will

delineate some of them.
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6.4.1 How automatic is phonological prediction?

As we have shown, words composed by an unexpected sequence of phonemes auto-

matically elicits prediction error in the form of a MMN response, even if the task

at hand does not require deviant detection. A simple way to test the limits of this

automaticity would be to perform an experiment as Experiment 1, but instructing

the subjects to perform a concurrent task such as watching a silent movie. Even

thought the main generators of the MMN response can be located in the superior

temporal gyrus, a variety of additional generators, including frontal cortices, can be

recruited depending on the task at hand [76]. As the MMN elicited in this exper-

iments is the result of the violation of an abstract rule [84] (3.1), if participants’

attention is drawn somewhere else, frontal cortices might not be recruited and the

MMN response might not be present.

6.4.2 What is being predicted? Just the next phoneme or

an entire word form?

We have proposed that the speech comprehension system is able to build phono-

logical predictions where preceding phonemes are used to predict forthcoming ones.

In parallel to this, it is possible that preceding phonemes could be use to generate

predictions about actual full word form. The increase of prediction error for XXY

deviants compared to XYY deviants reported in experiments 1 and 2 could be the

result of a failure of a prediction at the word form level, instead of only quantitative

increase of prediction strength at the phonological level.

To test if this type of word form level prediction is possible, deviant words should

be constructed in a way in which they would share the same internal statistical

structure as standard words, so that each syllable presented could be expected given

the previous one, even though their combination at the word form level would be

rare.

Endress and Mehler [35] developed a stimulus set with this characteristics, com-

posed by 6 tree-syllabic words and 2 phantom words for which there was a word

sharing the first and the second syllable, a word sharing the second and third sylla-

ble, and a word sharing the first and third syllable (Fig: 6.1).
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If this phantom words would be use as deviants in an OddBall experiment, their

local transitional probabilities (i.e. from one syllable to the next) would be identical

to the ones of standard words, and they would only be defined as deviants at the word

form level. Therefore, if the speech processing system is only capable of performing

local phonological predictions, the presentation of this type of deviants would not

generate prediction error.

Figure 6.1: Stimulus set used by Endress and Mehler [35]. Stimuli were constructed

so that transitional probabilities (TPs) among syllables in words would be identical to

TPs among syllables in phantom-words. For each of the two phantom-words, there was

a word sharing the first and the second syllable, a word sharing the second and third

syllable, and a word sharing the first and third syllable. (The syllable that is not shared

between a word and the corresponding phantom-word is printed in light gray characters

in the figure.) In this way, TPs among adjacent and nonadjacent syllables within words

and phantom-words were 0.5. Figure reproduced with permission from the authors.

6.4.3 The eternal language question. Domain general or

domain specific?

Speech perception is a high level and very complex cognitive process that is sup-

ported by a vast network of brain regions involving temporal, parietal and frontal

cortices [47, 48, 49, 62, 99]. As such, it has extensive overlap both functionally and

structurally with several other cognitive functions [7]. Because of this, the ability

to generate phonological predictions could be language specific, or it could be a

domain general process that participates in the construction of complex auditory

objects [118, 102, 94]. Given that the MMN response, that acted as a prediction
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error signal in our experiments, can be elicited with a variety of non linguistic stimu-

lus, and that its main generators are located before processing streams for linguistic

and non-linguistic sounds diverge [99, 61, 62, 59], we are inclined to think that this

could be the case [116].

To test this, it could be possible to perform an OddBall experiment, in which lin-

guistic and non-linguistic blocks would alternate. Several methods exist to generate

non-linguistic stimuli matched in complexity with linguistic ones, such as temporal

inversion (i.e. backward speech) [74, 27], spectral rotation [46, 36] and noise vocod-

ing [114, 24]. Such comparison would allow to test if the brain is able to perform

the same type of predictions for non-linguistic stimuli.

6.5 Final remarks

The main goal of this thesis was to test whether the human speech processing system

is able to construct phonological predictions within a word, using solely phonological

and word form information. In 3 different electroencephalography experiments we

were able to show how the presentation of a word composed by an unexpected

sequence of phonemes, elicits a MMN response. This event related potential is

a well established marker of violation of expectations that can be interpreted as

prediction error, resultant of the comparison between a prediction and the incoming

bottom-up input.

Is worth underlining that in our experiments, participants’ brains constructed

predictions in an automatic way, with new pseudowords that were learned in a

period of minutes and without the aid of higher level information such as syntax or

semantics. This implies a formidable capacity and flexibility of the language system

to learn the sequences of phonemes composing new words and generate predictions

about upcoming phonemes based on the preceding ones. This capacity might play

a fundamental role in the difficult task of mapping a complex, variable and noisy

signal as speech into meaning.
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