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Abstract
This thesis deals with investigations in the field of higher dimensional CFTs. The first
part is focused on the technology neccessary for the calculation of general conformal
blocks in 4D CFTs. These special functions are neccessary for general boostrap analysis
in 4D CFTs. We show how to reduce the calculation of arbitrary conformal blocks
to the calculation of a minimal set of "seed" conformal blocks through the use of
differential operators. We explicitly write the set of operators necessary and show a
general basis for the case of external traceless symmetric operators. We then compute
in closed analytical form this set of seeds. We write in a compact form the set of
quadratic Casimir equations and proceed to solve them in closed form with the use of
an educated Ansatz. Various details on the form of the ansatz are deduced with the use
of the so called shadow formalism. The second part of this thesis deals with numerical
investigations of the bootstrap equation for external scalar operators. We compute
bounds on the OPE coefficients in 4D CFTs for theories with and without global
symmetries, and write the bootstrap equations for theories with SO(N)× SO(M) and
SU(N) × SO(M) symmetries. The last part of the thesis presents the Multipoint
bootstrap, a conformal-bootstrap method advocated in ref. [25]. In contrast to the
most used method based on derivatives evaluated at the symmetric point z = z̄ = 1/2,
we can consistently “integrate out" higher-dimensional operators and get a reduced,
simpler, and faster to solve, set of bootstrap equations. We test this “effective"
bootstrap by studying the 3D Ising and O(n) vector models and bounds on generic
4D CFTs, for which extensive results are already available in the literature. We also
determine the scaling dimensions of certain scalar operators in the O(n) vector models,
with n = 2, 3, 4, which have not yet been computed using bootstrap techniques.
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Introduction

The field of theoretical physics encompasses many and different realms of reality. From
the microscopic study of fundamental interactions to the understanding of massive
objects in the vastness of the universe, passing through statistical physics and the
study of condensed matter systems. The energy scales that these different fields of
study probe are highly disparate but a common denominator seems to govern the
behaviour of all of them: Field Theories. The history of field theories as tools to
describe nature is one of success. Ubiquitous nowadays, we have become accustomed
to their use for describing all types of phenomena, their power undeniable. Quantum
field theories (QFTs) in particular seem to provide some of the most accurate and
detailed descriptions of fundamental forces in the universe, providing a window into the
high energy behaviour of nature, one of the most relevant examples being the Standard
Model of particle physics.

One of the main guiding principles behind the study of QFTs, and field theories in
general, is the use of symmetries. The presence of symmetries proves to be one of the
most powerful tools available, as it dictates sets of constrains the theory must satisfy,
simplifying the task of finding solutions and restricting the allowed types of interactions
within the system. For example, the gauge symmetries imposed in the Standard Model
(SU(3) × SU(2) × U(1)) along with the lack of anomalies in the system basically
dictates the form of the theory. Thus the quest for finding new symmetry principles
has driven most of the research within the physics community. One of such principles
is that of scale invariance. The study of scale invariant theories has always played
a special role in theoretical physics. The absence of characteristic scales within a
physical system is a very studied phenomena. The study of renormalization group (flow)
within QFTs shows that in a generic quantum system interactions vary with energy.
The beta functions found this way describe the specific change of the couplings of a
theory at different energy scales, and in the specific case where these beta functions
are vanishing they describe critical points in the flow. One example being the deep UV
limit of Quantum Chromodynamics which is absent of divergences and thus a finite and
complete theory in its own right. It turns out that when a system is invariant under
scale transformations the symmetries of the system are generally enhanced to conformal
invariance. This surprising fact has been proven in 2D [1,2], and the general case is
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still being studied [3–5]. With this in mind we might start studying Conformal Field
Theories (CFTs) as a starting point instead of trying to flow theories by tuning their
parameters. The idea of studying CFTs as a starting point found its perfect realization
in the case of String theory, where it represents a basic pillar the theory is built upon.
Strings are described by 2D CFTs on the world-sheet, and most of the nice properties
that arise in String Theory find their origin in the CFT principles that determine the
consistency of the theory.

The relevance of CFTs does not end here. They play a very important role in describing
condensed matter systems such as that of the Ising phase transition in three dimensions.
Another relevant field where CFTs appear is that of AdS/CFT. The discovery of a
duality between CFTs in D-dimensions and quantum gravity in D+1 dimensions [6, 7]
provides a new setting where CFTs prove essential. Following this duality then we can
find certain CFTs as holographic definitions of Quantum gravity theories. It seems then
an interesting challenge to try to understand and classify all CFTs with the hope of
obtaining new insights in a multitude of physical systems.

The study of CFTs in D>2 has experienced a huge boost in recent years with the
advent of the "Conformal Bootstrap". This field of study has its roots in the work
of Ferrara, Gatto and Grillo [10] and Polyakov [11] in the 1970s. The idea behind it
was to "bootstrap" or constrain the space of consistent CFTs by means of symmetry
considerations alone. Conformal symmetry allows one to determine completely two point
correlators of local operators. The three-point functions of the system are determined
as well kinematically up to constants. It seems that Conformal symmetry is powerful
enough to allow this trend to continue. When considering higher n-point functions
the combined use of Conformal symmetry and the Operator Product Expansion (OPE)
allows one to determine any correlation function in terms of the CFT data alone, which
consists of the spectrum of operators in the theory as well as the three point function
coefficients.

The basis of the bootstrap method is to write a four point function of local operators 1

(we will refer to them as external) in several distinct ways using the OPE. This leads
to a "bootstrap equation", written in terms of OPE coefficients and conformal partial
waves, which is a statement about crossing symmetry. In the case where we have only
bosonic operators:

〈(
φ(x1) ×

OPE
φ(x2)

)(
φ(x3) ×

OPE
φ(x4)

)〉
=
〈(
φ(x1) ×

OPE
φ(x3)

)(
φ(x2) ×

OPE
φ(x4)

)〉

1Recent studies have shown that more powerful constraints appear when considering several four
point correlation functions at the same time [61].
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Where the OPE is taken in two distinct channels. Performing the OPE in both sides
the equality becomes:

∑
O

(λφφO)2WO(x1, x2, x3, x4) =
∑
O

(λφφO)2WO(x1, x3, x2, x4)

And WO are called Conformal Partial Waves (CPWs) which are functions fixed by
conformal invariance and contain the contribution of a tower of operators to the four
point function in consideration. They are labeled by O, the primary operators present in
the OPE. These CPWs are written in terms of (several for the general case) conformal
blocks, which are universal functions, in the sense that they do not depend on the
specific theory being considered. The fulfillment of this crossing symmetry relation is
highly non-trivial, for it depends on the possible operators entering the OPE and the
OPE coefficients. These ideas were applied in D=2 [12], together with the use of the
infinite dimensional algebra present in D=2, the upside being the fact that the allowed
primary operators in the so called "minimal models" render a finite set. The revival of
the program took place in the seminal paper by Rattazzi, Rychkov, Tonni and Vicchi in
2008 [9] where they studied 4D CFTs by means of scalar correlators. One of the main
ingredients used there were the closed expressions for the conformal blocks found by
Dolan and Osborn [13,14], resuming an infinite tower of operators for each conformal
block 2. The knowledge of the conformal blocks seems essential in order to carry on
the bootstrap analysis. Closed expressions for the conformal blocks appearing in four
scalar correlators are known in even dimensions [15]. The difficulty of finding closed
expressions for odd dimensions has not hindered the progress, however the clever use
of recursion relations for general D allows one to write approximate expressions for
the conformal blocks. As a matter of fact some of the most impressive results in the
bootstrap field come from studies in D=3 [101,103,105].

Most of the results arising from the Conformal Bootstrap up to now are based on the
study of four point functions of scalars. Although undoubtedly interesting, it opens the
question as to how to bootstrap tensor or even fermionic operators. For the case of four
external scalars the only conformal blocks contributing are those of traceless symmetric
operators (TSO) since those are the only ones present, due to symmetry, in the OPE.
This type of exchanged operators will be present as well when the fields entering the
four point function are tensors or fermionic fields, thus these new conformal blocks have
to be computed. There are also the conformal blocks corresponding to the exchange

2The conformal blocks gO contain the contribution of a primary operator O and its infinite number
of descendants. An extra difficulty in D ≥ 3 to carry the bootstrap is the existence of infinitely
many primaries.
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of all other possible types of exchanges (not TSO), these again have to be calculated.
A great deal of progress has been made, however [19] has shown how to relate the
conformal blocks of any four point function of external traceless symmetric tensors to
the known case of external scalars. This methodology takes the known scalar blocks of
Dolan and Osborn and treats them as a seed to generate higher spin conformal blocks.
The key concept behind this idea is the fact that we can relate conformal blocks where
an operator O is exchanged, with conformal blocks of higher spin external operators
where the same operator O is exchanged.This idea goes a long way. The existence of
these "seeds" simplifies the calculation of general blocks enormously. As an example,
the case of D=3 is especially relevant. Integer spin (bosonic) representations in D=3
are exhausted by TSO and as such only a single seed (the scalar blocks) is needed for
any correlator of external TSO. A practical application of this principle has been used
in [38] allowing one to bootstrap a four point function of identical fermions, whose
conformal blocks are again related to the scalar seed blocks. Furthermore the case of
D=3 requires only an extra seed in order to account for half spin operators exchange in
the OPE. The possible seeds in this case are the conformal blocks appearing in a four
point function correlator of 2 fermions and 2 scalars. The calculation of this last seed
has been performed in [37] allowing for the calculation of any possible blocks in 3D.

Given all this progress one may be interested in finding the set of all possible seeds in
general dimension D. However in D ≥ 4 the number of seed correlators to consider
are infinite3. With this idea in mind we will try to explore the specific case of D = 4.
Chapters 3 and 4 deal with the formalism necessary to obtain all possible conformal
blocks in D = 4. In Chapter 3 we show how CPWs of spinor/tensor correlators can
be related to each other by means of differential operators. We will show as well the
necessary "seeds" that we need in order to calculate any other CPW. We will proceed
in Chapter 4 where we will compute in closed analytical form the (infinite) set of "seed"
conformal blocks by solving the set of Casimir equations that the blocks satisfy.

Chapters 5 and 6 instead contain numerical investigations of the bootstrap equation
with four external scalars. In Chapter 5 we obtain bounds on OPE coefficients in 4D
CFTs by means of semidefinite programming, whereas in Chapter 6 we explore the
Multipoint Bootstrap method as an alternative to the more standard derivative method
that has been used so far. We show the validity of the method with specific examples
where we reproduce known results in the bootstrap in D=3 and D=4.

3Further progress for the case of bosonic operators in general D dimensions has been shown
in [39,42,43] where methods to calculate the possible seeds are presented.
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1 Chapter 1

CFT Primer

In this introductory chapter we will set the basic language that we will use throughout
the rest of the thesis. We will make an effort to explain the main tools and concepts
behind CFTs in higher dimensions, hopefully giving an overview that will render this
document self contained.

We will start in section 1.1 introducing the conformal group in higher dimensions,
analyzing the generators of the group and their commutation relations. We will analyze
field representations of the Conformal Group in section 1.2. The radial quantization
of CFTs will be presented in section 1.3, the understanding of which will be essential
in the following sections. Section 1.4 will show the constraints set by unitarity in
the allowed spectrum of operators in a CFT, an important result that will be used
throughout the whole thesis. We will introduce the embedding formalism in section
1.5 and quickly move onto the twistor formalism, very adequate for 4D CFTs, which
we will use heavily in the following chapters. We fill finish with section 1.7 which will
focus on the Operator Product Expansion (OPE) of great importance for CFTs and for
the bootstrap program in particular.

1.1 The Conformal Group

Conformal transformations in flat space can be defined in several equivalent ways. We
will adopt here an active point of view for coordinate transformations when analyzing
space-time symmetries. Consider a coordinate transformation in x→ x′ such that the
line element changes accordingly as ds2 → ds′2 where:

ds′2 = ηµνdx
′µdx′ν = Λ(x)ds2 (1.1)

The last equality is imposed as the constraint that defines conformal transformations.
We can study now this equation written as follows:

∂x′µ

∂xα
∂x′ν

∂xβ
ηµν = Λ(x)ηαβ (1.2)
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Let’s write the coordinate transformation at the infinitesimal level as x′µ = xµ + εµ(x)
and plug it in the previous equation to obtain the following general constraint:

∂µεν + ∂νεµ = f(x)ηµν (1.3)

Where f(x) is some function related to Λ(x). We can trace the above equation with
ηµν which allows us to write the expression for f(x):

f(x) = 2
D

(∂ · ε) (1.4)

Where D is the dimensionality of our space, and finally we can write Λ(x) = 1 +
2
D

(∂·ε) +O(ε2). There are several useful relations that can be derived from here on.
By applying ∂ν on equation (1.3):

2∂2εµ = (2−D)∂µf(x) (1.5)

Applying ∂µ and using the expression for f(x) we arrive at:

(D − 1)∂2f(x) = 0 (1.6)

We can see that for the specific case of D = 1 we obtain no constraints.

Let’s obtain another useful relation by applying ∂ν to the previous equation in combina-
tion with equation (1.3):

(2−D)∂µ∂νf(x) = δµν∂
2f(x) (1.7)

There is a final expression that will be useful in the following, to reach it we have to
take derivatives ∂η of eq (1.3) and permute indices to obtain:

∂ρ∂µεν + ∂ρ∂νεµ = 2
D
ηµν∂ρ(∂ · ε)

∂ν∂ρεµ + ∂µ∂ρεν = 2
D
ηρµ∂ν(∂ · ε)

∂µ∂νερ + ∂ν∂µερ = 2
D
ηνρ∂µ(∂ · ε)

(1.8)

Subtracting the first line from the sum of the last two leads to:

2∂µ∂νερ = 2
D

(−ηµν∂ρ + ηρµ∂ν + ηνρ∂µ) (∂ · ε) (1.9)

The case of D = 2 is of specific interest, and using the previous formulas (in Minkowsky
signature) we reach:
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∂0ε0 = ∂1ε1, ∂0ε1 = −∂1ε0, (1.10)

Which we recognise as the familiar Cauchy-Riemann equations appearing in complex
analysis. This then allows one to show the holomorphicity of ε(z) and carry on the
analysis for the 2D conformal algebra, steaming into a infinite dimensional algebra.
We are focused however in higher dimensions, so for D ≥ 3 the constraints reduce to
∂2f(x) = 0 which means this function is at most linear in x, which translated to ε(x)
means it is at most a quadratic function of x:

εµ = aµ + bµνx
ν + cµνρx

νxρ (1.11)

We should study now the various terms in this equation, which we can do separately
as the constraints of conformal invariance have to be independent of the position xµ.
The constant term aµ is not constrained from the previous equations and it describes
infinitesimal translations. The term bµν can be studied by plugging the general solution
into eq. (1.3) for which we obtain:

bµν + bνµ = 2
D

(ηρσbσρ) ηµν (1.12)

We see we can split bµν into a symmetric part proportional to ηµν corresponding to scale
transformations (x′µ = (1 + α)xµ) and an antisymmetric part which will correspond to
rotations. Finally the quadratic term cµνρ can be studied by plugging it into eq. (1.9).
We find out that it can be written in terms of a single vector as:

cµνρ = ηµρbν + ηµνbρ − ηνρbµ, bµ = 1
D
cρρµ (1.13)

This corresponds to Special Conformal Transformations (SCT) which have the infinites-
imal form x′µ = xµ + 2(x · b)xµ − (x · x)bµ. These transformations are slightly less
intuitive than the previous one. Their finite transformations are as follows:

x′µ = xµ − (x · x)bµ
1− 2(b · x) + (b · b)(c · x) (1.14)

Expanding the denominator for small bµ one can recover the infinitesimal version. To
gain further understanding of Special Conformal Transformations we can rewrite the
finite form in the following way:

x′µ

x′ · x′
= xµ

x · x
− bµ (1.15)
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From here we observe that SCTs can be understood as an inversion of xµ (xµ → xµ/x2),
followed by a translation bµ, and followed again by an inversion.

Let’s find the generators of the group corresponding to all the transformations we
found. Let’s consider the action of the group upon pure functions, or scalar fields. The
coordinate transformations can be written as x′ = g(x) (or x = g−1(x′)), so we have
φ′(x) = φ(g−1(x′)). Our generators act upon our functions as φ′(x) = e−iTφ(x) . By
matching both of these formulas and expanding both sides for transformations close to
the identity, we obtain the generators of the group:

Translations Pµ = i∂µ

Dilations D = ixµ∂µ

Rotations Mµν = i(xµ∂ν − xν∂µ)
SCTs Kµ = i(2xµxν∂ν − x2∂µ)

And the non-vanishing commutation relations are the following:

[Mµν ,Mρσ] = i(ηνρMµσ + ηµσMνρ − ηµρMνσ − ηνσMµρ)
[Mµν , Pρ] = −i(ηµρPν − ηνρPµ)
[Mµν , Kρ] = −i(ηµρKν − ηνρKµ)
[Kµ, Pν ] = −2i(ηµνD +Mµν)
[D,Pµ] = −iPµ
[D,Kµ] = iKµ

(1.16)

This corresponds to the SO(D,2) algebra, a fact that will be more clearly stated in
section 1.5.

1.2 Field representations of the Conformal Group

In the previous sections we found the space-time part of the generators corresponding
to conformal transformations. We are left with the task of finding how quantum fields
are affected by conformal transformations by finding the extra piece of the generator
that does the job. Consider a generic field φa(x) where a denotes possible tensor
indices and we demand our field is in an irreducible representation of the Lorentz group.
We start by studying the little group that leaves the point x = 0 invariant. In the
case of Poincare, we remind the reader, works in the following way. The little group
corresponds to the Lorentz group, and we introduce a matrix representation to define
the action of Lorentz transformations on our field φa(0):
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U(Λ)φa(0)U−1(Λ) = Sa b(Λ−1)φb(0) (1.17)

where the U are the unitary transformations corresponding to the specific transformation,
and Sa b is the matrix representation we define. Writing U(Λ) = e−

i
2wµνM

µν , and
expanding both sides for transformations close to the identity, for the x = 0 little group
we get:

[Mµν , φ
a(0)] = i(Sµν)a bφb(0) (1.18)

where the (Sµν)a b is the spin operator corresponding to our field φa. We could have
expanded for general x in equation (1.17), however for the following this proves more
direct. In order to get the transformation of our fields at a generic point x we simply
translate it:

[
Mµν , e

−ix·Pφa(0)eix·P
]

= e−ix·P
[
eix·PMµνe

−ix·P , φa(0)
]
eix·P (1.19)

And we evaluate eix·PMµνe
−ix·P by using the Baker-Campbell-Hausdorff expansion:

e−ABeA = B + [B,A] + 1
2[[B,A], A] + 1

3! [[[B,A], A], A] + ... (1.20)

Which in our case stops after the second term in the expansion. Our final expression is:

[Mµν , φ
a(x)] = −i(xµ∂ν − xν∂µ)φa(x) + i(Sµν)a bφb(0) (1.21)

Now the case of the conformal group is almost identical. The transformations that
make up the little group leaving invariant x = 0 are the Lorentz transformations
as before, plus dilations and special conformal transformations. We will denote the
operators corresponding to these transformations at x = 0, Sµν (as before), ∆ and kµ
respectively.

[D,φa(0)] = −i∆φa(0), [Mµν , φ
a(0)] = i(Sµν)a bφb(0), [Kµ, φ

a(0)] = ikµφ
a(0),
(1.22)

Now doing the same exercise, with the only difference that we must expand to three
terms equation (1.20) for the case of Kµ, we obtain:
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[Pµ, φa(x)] = −i∂µφa(x)
[D,φa(x)] = −i(∆ + xµ∂µ)φa(x)
[Mµν , φ

a(x)] = −i(xµ∂ν − xν∂µ)φa(x) + i(Sµν)a bφb(0)
[Kµ, φ

a(x)] = −i(2xµ∆− 2xλSλµ + 2xµ(xρ∂ρ)− x2∂µ − kµ)a b φb(x)

(1.23)

Notice that for the representations of the little group, since we demanded that the
field φa(x) belonged to an irreducible representation of the Lorentz group, D being
a Lorentz scalar, by Schur’s Lemma, must be proportional to the identity since it
commutes with all the generators of said representation. Thus the commutation
relation [D,Kµ]R = −iKµ requires Kµ(kµ) to vanish.
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1.3 Radial Quantization

A method of quantization more convenient for CFTs than the usual, where one foliates
space-time in equal time hypersurfaces, is that of Radial Quantization ( [85], see
also [22]). More familiar in the context of 2D CFTs and String Theory, the concept of
Radial Quantization translates to any dimension and allows us to have a clear picture of
the Hilbert Space of our theory. In this type of quantization we foliate our space-time
by using SD−1 spheres of various radii centered at x = 0. It is convenient to work in the
Euclidean. Mapping our space time (by a conformal transformation) to the cylinder we
can recover a more usual picture and our spheres slices become horizontal slices in the
cylinder with time translation invariance along it. The explicit mapping of coordinates
is τ = log r. We see that the τ parameter shifts under dilations r → eλr as τ → τ + λ.
We can use the usual Hamiltonian quantization with τ being our time coordinate.

Figure 1.1: Left: Flat space geometry RD foliated by SD−1 spheres. Right:The spheres
of constant r are mapped to horizontal slices in the cylinder, which corre-
sponds to SD−1 × R.

In this picture the dilation operator (in the Euclidean) becomes the Hamiltonian that
evolves our theory. States living on the spheres are classified according to their scaling
dimension and their SO(D) spin:

D |∆, `〉a = i∆ |∆, `〉a
Mµν |∆, `〉a = (Sµν)ba |∆, `〉b

(1.24)

Being D and Mµν the only commuting generators in the algebra.
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Let’s consider for a moment a state in the Hilbert space generated by the action of a
generic field at the origin acting on the vacuum of our theory:

|φ〉 ≡ φ(0) |0〉 (1.25)

The eigenvalue of this operator under the dilation operator, assuming our vaccum
is invariant under the action of the generators of the group, is simply i∆. Acting
repeatedly with the Kµ operator we notice we lower the dimension of our state:

D(Kµ |φ〉) = i(∆− 1)(Kµ |φ〉) (1.26)

Assuming the dimensions are bounded from below we must eventually hit zero (we will
see in the next section that indeed we can obtain lower bounds on the dimension of
states). These states, annihilated by Kµ are called primary operators and they mark
a "lowest weight" state in the representation. We can act with Pµ on our state and we
will raise the value of the dilation eigenvalue by one each time. These states are called
descendants. We see that we can classify representations of the whole conformal
group according to their Lorentz quantum number, and the lowest scaling dimension
∆, corresponding to a state annihilated by Kµ, all other states being descendants of
the primary and forming the whole (infinite) conformal multiplet. Notice as well that
operators away from the origin are not eigenstates of the dilation operator, but rather
a superposition of states with definite scaling dimension:

φ(x) |0〉 = eix·Pφ(0)e−ix·P = eix·P |φ〉 =
∑
n

1
n! (ix · P )n |∆〉 (1.27)

This mapping from operators to states is the so called operator-state correspondence.
We can define the Hilbert space of the theory by the insertion of primary states at the
origin. Any other state can be mapped back to the origin as shown and any state at
the origin can be put in correspondence with a local operator.

Another interesting fact that can be easily recovered from the radial quantization
picture is the fact that conjugation in radial quantization is related to the inversion
operation ( [22]). On the cylinder a reflection transformation θ : τ → −τ can be used to
understand conjugation. In the Hamiltonian formulation φ(τ,n) ≡ eτHcylφ(0,n)e−τHcyl ,
so for an hermitian Minkowskian field φ(0,n):

φ(τ,n)† = (eτHcylφ(0,n)e−τHcyl)† = e−τHcylφ(0,n)eτHcyl = φ(−τ,n) (1.28)

So 〈φ(−τ,n)φ(τ,n)〉 =
〈
φ(τ,n)†φ(τ,n)

〉
, corresponds to the (positive) norm of the
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state |φ(τ,n)〉. Mapping back to Euclidean space the reflection operator maps to an
inversion x→ x/x2. As such the conjugate of φ(x) |0〉 will be:

〈0| [φ(x)]† = 〈0|R[φ(x)] (1.29)

where R is the inversion operator. Operators inserted in an inversion invariant way
compute the norm of a state in radial quantization, this is called reflection positivity
and it is the Euclidean equivalent of unitarity. This fact translates into the conjugation
properties of algebra generators. The following is true in radial quantization:

P †µ = Kµ = RPµR (1.30)

As we showed in section 1.1 special conformal transformations can be recovered by an
inversion, followed by translation and a final inversion. In radial quantization it relates
both generators by conjugation.

1.4 Unitarity Bounds

With the use of the radial quantization formalism [78] we can obtain one of the most
interesting results in general CFTs, the unitarity bounds. This famous result, originally
presented in [90], tells us that the conformal dimensions of primary fields must be
bounded from below by a minimal value, which depends on the spin. Let’s see how we
can obtain it. Consider the following matrix:

Aν a,µ b = a 〈∆|KνPµ |∆〉b (1.31)

In a reflection positive (unitary) theory we should have only positive eigenvalues,
otherwise we would obtain negative norm states (we remind the reader that the
operator K is the conjugate of P in radial quantization). Using the commutators of
our algebra we obtain:

a 〈∆|KνPµ |∆〉b =a 〈∆| [Kν , Pµ] |∆〉b +a 〈∆|PµKν |∆〉b (1.32)

The only contribution comes from the first term since we are dealing with primary
states. The commutator will give us a term proportional to the eigenvalue ∆, the other
term will be:

Bν a,µ b =a 〈∆| iMµν |∆〉b (1.33)
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The condition that the eigenvalues λA ≥ 0 puts a limit to the dimension of the states
that depends on the maximum eigenvalue of this matrix B: ∆ ≥ λmax(B).

To compute the eigenvalues of B we can use a trick. Notice the following:

− iMµν = −i2 (δαµδβν − δαν δβµ)Mαβ (1.34)

Now the term in parenthesis is nothing but the vector representation of the Lorentz
generator V αβ

µν . Thus we can write the previous equation as (V ·M)µν where the
product is defined in the vector space as A ·B = 1

2AαβBαβ. We can compare this to a
standard problem in quantum mechanics where we have to calculate the eigenvalues of:

Li · Si (1.35)

In quantum mechanics the diagonalization is easily performed using the identity:

Li · Si = 1
2[(L+ S)2 − L2 − S2] (1.36)

And the operators S2 and L2 are Casimirs, so the eigenvalues are known ,s(s+ 1)/2
and `(`+ 1)/2 respectively. The operator (L+S)2 is the Casimir of the tensor product
representation `⊗ s and its eigenvalues are j(j + 1) where j = |`− s|, ..., `+ s

In our case we have a representation R , the vector representation V`=1, and the tensor
product representation R⊗ V . Thus the maximal eigenvalue is given by:

λmax(B) = 1
2[Cas(V`=1) + Cas(R)−minCas(R⊗ V )] (1.37)

As an example consider the traceless symmetric representations `, the tensor represen-
tation `⊗ V for ` ≥ 1 is the `− 1 representation. The SO(D) Casimir value in this
case is `(`+D − 2) and the bound becomes ∆ ≥ `+D − 2

Let’s focus on arbitrary representations in D = 4, where we have SO(4) = SU(2)×
SU(2), so representations are labeled by two integers ` and ¯̀. In this case [78]

∆ ≥ `+ ¯̀
2 + 2, ` 6= 0 and ¯̀ 6= 0 (1.38)

We can easily check we recover the bound for traceless symmetric operators when
` = ¯̀.
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1.5 Embedding Formalism

We will explore in this section an embedding of D dimensional space-time into a D+2
dimensional spacetime (this idea goes back to Dirac [74], and among the first that used
it were Mack and Salam [73], for recent papers on the subject see [18] and [66]). It turns
out that our conformal algebra is in fact isomorphic to SO(D, 2). For the case when we
stay in the euclidean this isomorphism maps the Conformal group directly to the Lorentz
group in D+2 dimensions SO(D + 1, 1). Thus conformal transformations acquire the
familiar form we are more used to of Lorentz transformations. The algebra we wrote at
the end of the previous section does not make this equivalence obvious at first sight,
but with a little rewriting we will see it very clearly. Let’s choose a set of coordinates
in 6D XA = X1, ..., X5, X6, for concreteness, which means we will be studying the
Conformal group in 4D. The metric of this spacetime is ηAB = diag(−1, 1, 1, 1, 1,−1)
and we will do a change of coordinates such that:

X+ = X6 +X5, X− = X5 −X6 (1.39)

The conformal algebra generators can be assigned in the following way to make the
connection with SO(4, 2) more obvious:

Lµν = Mµν , Lµ+ = Pµ

Lµ− = Kµ, L+− = D
(1.40)

And we can check that they satisfy the algebra of SO(4,2):

[LMN ,MRS] = i(ηNRMMS + ηMSMNR − ηMRMNS − ηNSMMR) (1.41)

Now that we have rediscovered the algebra in a more clear way, let’s push this trick
and try to embed our 4D spacetime in a consistent way into this 6D space. First
of all the action of the conformal group on coordinates will act linearly in 6D space,
XM → ΛM

NX
N , with ΛM

N being a matrix of SO(4,2). We need however a correct
mapping that respects all the degrees of freedom of our 4D space and reproduces
correctly the conformal transformations we found. Let’s restrict to a null cone in our
extended space:

X2 = 0 (1.42)

This constraint already reduces one coordinate degree of freedom, and we can solve it
for example by X− = −XµXµ

X+ . Finally we impose the following equivalence property:
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X ∼ λX, λ ∈ R (1.43)

This type of embedding is named "projective null cone" for obvious reasons. Given the
freedom of rescaling of our coordinates, we can "gauge" this freedom by choosing a
specific X+, this would give us a one to one correspondence between our embedding
and 4D. We will not do this but it simplifies the general analysis, for example we could
have chosen X+ = 1, this gauge "slice" is called the Poincare section. A transformation
Λ ∈ SO(4, 2) takes X to ΛX by matrix multiplication. To get back to the Poincare
section, we must further rescale ΛX → ΛX/(ΛX)+. This combined transformation
is precisely the nonlinear action of the conformal group on 4D. The standard 4D
coordinates are recovered with the following map:

xµ = Xµ

X+ (1.44)

We will not do the exersise in detail, but given these constraints and mapping one can
show that conformal transformations acting on xµ are mapped to Lorentz transforma-
tions acting on the "projective light cone" and viceversa.

What should we do at the level of fields? We can assign appropriate mappings to
any type of field as long as we impose sets of constraints such that we respect their
transformation properties and degrees of freedom. Let’s clarify this point by taking
scalar fields as an example. Take φ(x) a 4D primary scalar operator with scaling
dimension ∆ and Φ(X) the corresponding, to be, 6D field, which in the projective
cone should be an homogeneous function Φ(λX) = λ−nΦ(X) with λ ∈ R. It should
transform as a scalar under an SO(4, 2) transformation Φ(X) → Φ′(ΛX) = Φ(X)
with Λ ∈ SO(4, 2). We can assign the relation:

φ(x) = (X+)nΦ(X) (1.45)

Given this relation we can check that if n = ∆ then 6D SO(4, 2) transformations of
the Φ(X) field correspond to conformal transformations of our 4D field. This makes
the task of calculating correlations functions much easier, since we can work in 6D
and identify at a glance if a correlation function is Lorentz invariant (in 6D), the only
extra thing to do is to verify that correlation functions satisfy the homogeneity of
our fields Φ(λX) = λ−∆Φ(X) . Let’s see this with an example. Take the two point
function 〈Φ1(X1)Φ2(X2)〉, it is fixed by conformal invariance (SO(4,2) in 6D) and the
null condition X2

i = 0 to have the form:
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〈Φ1(X1)Φ2(X2)〉 ∝ 1
Xm

12
, Xij ≡ Xi ·Xj (1.46)

If we further impose the homogeneity of our fields we obtain:

〈Φ1(X1)Φ2(X2)〉 ∝ δ12

X∆
12

(1.47)

And if we want to get back to the 4D form we just have to use eq. (1.45).

The formalism works similarly with other types of fields, such as vectors, only this time
we have to impose additional constraints in order to reduce the number of components
of our fields as it was done in [66]. A further step was taken in [18] where they
developed a way to get rid of indices and simplify the calculation of correlators even
further. This "free index" formalism is quite powerful, however it is tailored for traceless
symmetric fields and as such it does not help with any other types of fields1. We will
not go through this formalism in this thesis, instead we will go with another formalism
more apt for the 4D case, such that it allows us to include all types of fields, such as
spinors and antisymmetric tensors and treat them in the same footing.

1.5.1 Twistor Formalism

Arbitrary 4D Lorentz representations can be built from products of spinors, meaning
that if we can uplift spinor operators to the embedding space, then we can uplift any
representation in 4D. Using the local isomorphism between SO(4, 2) and SU(2, 2) we
will achieve this in a unified manner. The spinorial representations 4± of SO(4, 2) are
mapped to the fundamental and anti-fundamental representations of SU(2, 2). Twistor
space consists of four-component objects:

ZA =
 λα

µα̇

 (1.48)

Spinor indices α, β... and α̇, β̇, ... are mapped to twistor indices A,B, .... We also have
the duals W̄A, and an invariant pairing W̄AZA under "twistor" (SU(2, 2)) transforma-
tions of the form Z → UZ, W̄ → W̄ Ū , where U is a transformation matrix satisfying
ŪU = UŪ = 1, and Ū ≡ ρU †ρ, ρ being the SU(2, 2) metric. In this language we
complexify our 6D coordinates as XAB ≡ XMΓMAB, with ΓMAB a chiral gamma matrix,
satisfying:

1It does however apply to any dimensions.
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{
ΓM ,ΓN

}
= 2ηMN (1.49)

where ηMN is our previously defined 6D metric, and the six dimensional Gamma matrices
ΓM are constructed by means of the 6D matrices ΣM and Σ̄M , analogues of σµ and
σ̄µ in 4D:

ΓM =
 0 ΣM

Σ̄M 0

 (1.50)

In our basis of choice the ΣM are antisymmetric, and its explicit form is given by:

ΣM
ab =


 0 σµαγ̇ε

β̇γ̇

−σ̄µα̇γεβγ 0

 ,
 0 0

0 2εα̇β̇

 ,
 −2εαβ 0

0 0

 ,
Σ̄Mab =


 0 −εαγσµ

γβ̇

εα̇γ̇σ̄
µγ̇β 0

 ,
 −2εαβ 0

0 0

 ,
 0 0

0 2εα̇β̇

 ,
(1.51)

where, in order, M = {µ,+,−}. The null condition X2 = 0 in this language implies
XX̄ = X̄X = 0, where X̄AB ≡ XM Γ̄MAB = 1

2ε
ABCDXCD. Given a spinor primary

ψα(x) with dimension ∆, it can be shown that the combination:

ΨA(X) ≡ (X+)1/2−∆

 ψα(x)
−(x · σ̄)α̇βψβ(x)


ΦA(X) ≡ (X+)1/2−∆

 φ̄β̇(x)(x · σ̄)β̇α

φ̄α̇(x)

 (1.52)

Transforms as a twistor under the conformal group [66], with the previously defined
map between 6D and 4D xµ = Xµ/X+. This choice satisfies a transversality condition
X̄ABΨB(X) = 0, which is essentially a constraint to match degrees of freedom, and
has degree −1/2 + ∆ in X. We can do a slightly better job of uplifting our spinors
by choosing a different (but equivalent) lift of ψα(x). One can always solve the
transversality condition X̄Ψ = Φ̄X = 0 as Ψ = XΨ̄ and Φ̄ = ΦX̄ since on the cone
XX̄ = X̄X = 0. In this way we associate our spinors in the follwing way:

ψα(x) = (X+)∆−1/2XαAΨ̄A(X),
φ̄α̇(x) = (X+)∆−1/2X̄α̇AΦA(X),

(1.53)

where X̄β̇B = εβ̇γ̇X̄B
γ̇ . The twistors Ψ̄(X) and Φ(X) are subject to an equivalence

relation,
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Ψ̄(X) ∼ Ψ̄(X) + X̄V,
Φ(X) ∼ Φ(X) + XW̄ ,

(1.54)

where V and W̄ are generic twistors. In this way the degree of our twistors is 1/2 + ∆
and we are essentially trading the transversality condition for a sort of gauge redundancy.
As an example, a two-point function of twistor fields is fixed by conformal invariance
and homogeneity to have the form:

〈
Ψ̄A(X)ΦB(Y )

〉
= δAB

(X · Y )∆+1/2 (1.55)

And thanks to the gauge redundancy we can discard terms of the form X̄ACYCB. We
can project using eq. (1.53) to obtain the correct form in 4D. This step however will
hardly be necessary and we will keep our discussion in 6D.

Now that we have a correct way to uplift spinors we can consider fields in arbitrary repre-
sentations of the Lorentz group. Consider a general primary in the (`, ¯̀) representation
of the Lorentz group and with dimension ∆

f β̇1...β̇¯̀
α1...α`

(x) (1.56)

where dotted and undotted indices are symmetrized. We can generalize the uplift from
eq. (1.53) and encode it in a multi-twistor field FA1...A`

B1...B¯̀ of degree ∆ + (` + ¯̀)/2 as
follows:

f β̇1...β̇¯̀
α1...α`

(x) = (X+)∆−(`+¯̀)/2Xα1A1 ...Xα`A`X
β̇1b1 ...Xβ̇¯̀B¯̀FA1...A`

B1...B¯̀ (X) (1.57)

And given the gauge redundancy any two fields F and F̂ = F + X̄V or F̂ = F + XW̄
are equivalent uplifts of f . We will adopt an index free-notation by contracting with
auxiliary (commuting and independent) spinors SA and S̄B:

F (X,S, S̄) ≡ FA1...A`
B1...B¯̀ (X)SA1 ...SA`S̄

B1 ...S̄B¯̀ (1.58)

In this language the gauge redundancy means that we can restrict S and S̄ to be
transverse:

X̄S = XS̄ = 0 (1.59)

And this can be solved as S = XT̄ , S̄ = X̄T for some T ,T̄ . Consequently the product
S̄S vanishes as well. Coming back to indices, this means that FA1...A`

B1...B¯̀ must also have
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a gauge redundancy under shifts proportional to δAiBī . The general projection to 4D is
as follows:

f β̇1...β̇¯̀
α1...α`

(x) = (X+)∆−(`+¯̀)/2

`!¯̀!

(
X

∂

∂S

)
α1

...

(
X

∂

∂S

)
α`

(
X̄

∂

∂S̄

)β̇1

...

(
X̄

∂

∂S̄

)β̇¯̀

F (X,S, S̄)

(1.60)

As we have mentioned before it will be hardly necessary to project back to 4D so
we will not stretch the discussion more on this point. From now on we will use the
"scalar" (under SU(2,2) ) form of the fields (1.58) and forget about indices altogether.
This will be extremely useful as we will be able to construct "scalar" quantities under
SU(2,2) and work with them maintaining all symmetry properties at every step of our
calculations.

1.6 Three-Point Function Classification

The calculation of n-point correlation functions in a CFT in the basis of pure symmetry
considerations is a key pillar behind most of our results and one of the most important
features of CFTs. Two point functions are entirely determined by symmetry as we
saw in an example in the previous section, focusing on the 4D case from now on. As
for three point functions, symmetry alone is enough to determine kinematically their
form up to a constant (one for each of the independent tensor structures satisfying the
symmetry constraints). These results will prove of great importance when we talk about
the Operator Product Expansion in the next section. General three-point functions
in 4D CFTs involving bosonic or fermionic operators in irreducible representations of
the Lorentz group have recently been classified and computed in ref. [31] using the
twistor formalism described in the previous sections. We will here briefly review the
main results of ref. [31].

The 4D three-point functions are conveniently encoded in their scalar 6D counterpart
〈O1O2O3〉 which must be a sum of SU(2, 2) invariant quantities constructed out of
the Xi, Si and S̄i, with the correct homogeneity properties under rescaling. Notice that
quantities proportional to S̄iXi, XiSi or S̄iSi (i = 1, 2, 3) are projected to zero in 4D.
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The non-trivial SU(2, 2) possible invariants are (i 6= j 6= k, indices not summed) [21]:

Iij ≡ S̄iSj , (1.61)
Ki,jk ≡ Ni,jkSjXiSk , (1.62)
Ki,jk ≡ Ni,jkS̄jXiS̄k , (1.63)
Ji,jk ≡ NjkS̄iXjXkSi , (1.64)

where
Njk ≡

1
Xjk

, Ni,jk ≡
√

Xjk

XijXik

. (1.65)

Two-point functions are easily determined again through the use of SU(2,2) "scalar"
quantities and the homogeneity properties of our fields. One has

〈O1(X1, S1, S̄1)O2(X2, S2, S̄2)〉 = X−τ112 I`121I
¯̀1
12δ`1,¯̀2δ`2,¯̀1δ∆1,∆2 , (1.66)

where Xij ≡ Xi ·Xj and τi ≡ ∆i + (`i + ¯̀
i)/2. As can be seen from eq.(1.66), any

operator O`,¯̀ has a non-vanishing two-point function with a conjugate operator O ¯̀,`

only. The proportionality constant in front of this expression can be fixed by rescaling
our fields appropriately, and it is a freedom we use to fix it to one for every two point
function.

The main result of ref. [31] can be recast in the following way. The most general
three-point function 〈O1O2O3〉 can be written as2

〈O1O2O3〉 =
N3∑
s=1

λs〈O1O2O3〉s , (1.67)

where
〈O1O2O3〉s = K3

( 3∏
i 6=j=1

I
mij
ij

)
Cn1

1,23C
n2
2,31C

n3
3,12 . (1.68)

In eq.(1.68), K3 is a kinematic factor that depends on the scaling dimension and spin
of the external fields,

K3 = 1
Xa12

12 X
a13
13 X

a23
23
, (1.69)

with aij = (τi + τj − τk)/2, i 6= j 6= k. The index s runs over all the independent
tensor structures parametrized by the integers mij and ni, each multiplied by a constant
coefficient λs which is undetermined by symmetry considerations alone. The invariants
Ci,jk equal to one of the three-index invariants (4.30)-(1.64), depending on the value of

∆` ≡ `1 + `2 + `3 − (¯̀1 + ¯̀2 + ¯̀3) , (1.70)
2The points X1, X2 and X3 are assumed to be distinct.
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of the external fields. Three-point functions are non-vanishing only when ∆` is an even
integer [31, 84]. We have

• ∆` = 0: Ci,jk = Ji,jk.

• ∆` > 0: Ci,jk = Ji,jk, Ki,jk.

• ∆` < 0: Ci,jk = Ji,jk, Ki,jk.

A redundance is present for ∆` = 0. It can be fixed by demanding, for instance, that
one of the three integers ni in eq.(1.68) vanishes. The total number of Ki,jk’s (Ki,jk’s)
present in the correlator for ∆` > 0 (∆` < 0) equal ∆`/2 (−∆`/2). The number of
tensor structures is given by all the possible allowed choices of nonnegative integers
mij and ni in eq.(1.67) subject to the above constraints and the ones coming from
matching the correct powers of Si and S̄i for each field. The latter requirement gives
in total six constraints.

Let’s look at an example. Consider the following three point function:

〈
Ψ(X1, S̄1)Ψ̄(X2, S2)O`,`(X0, S0, S̄0)

〉
(1.71)

Where we have made explicit the dependence on the auxiliary twistor variables. The
first operator would correspond to an anti-fermion in 4D and the second would be its
conjugate, these operators are contracted with a single S̄1 and a S2 respectively. The
third operator corresponds to a traceless symmetric operator in the (`, `) representation
of the Lorentz group, thus contracted with S0 and S̄0 (a total of ` times each). The
value of ∆` in this case is 0. Correspondingly the Ci,jk are simply the Ji,jk structures
and we can write the final result for ` ≥ 1:

〈
Ψ(X1, S̄1)Ψ̄(X2, S2)O`,`(X0, S0, S̄0)

〉
= K3(λ1I10I02J

`−1
0,12 + λ2I12J

`
0,12) (1.72)

By considering all the constraints previously discussed one can obtain this result. We
can also easily see at a glance these are the only structures allowed. We must build
tensor structures made out of: one S̄1, one S2 and ` number of S0 and S̄0. By looking
at the invariants at our disposal (1.61)-(1.64) we realize that in order to put the S0

and S̄0 into SU(2,2) invariants we can either pair one of each of them with the S̄1 and
S2 obtaining a I10 and I02 respectively, or we can pair them all between themselves.
The first case leaves us with ` − 1 number of S0 and S̄0 that we can package into
J0,12 structures. In the second case we pair all the S0 and S̄0 into J0,12 leaving S̄1

and S2 by themselves, which we can only pair them into a I12 structure. We have an
undetermined coefficient λi for each of the independent structures.
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Conserved 4D operators are encoded in multitwistors O that satisfy the current conser-
vation condition

D ·O(X,S, S̄) = 0 , D =
(
XMΣMN ∂

∂XN

) b

a

∂

∂Sa

∂

∂S̄b
. (1.73)

When eq.(1.73) is imposed on eq.(1.67), we generally get a set of linear relations between
the OPE coefficients λs’s, which restrict the possible allowed tensor structures in the
three point function. Under a 4D parity transformation, the invariants (1.61)-(1.64)
transform as follows:

Iij → − Iji ,
Ki,jk → +Ki,jk ,

Ki,jk → +Ki,jk ,

Ji,jk → + Ji,jk .

(1.74)

1.7 OPE

We have shown in previous sections that radial quantization allows us to understand
the Hilbert space of CFTs by inserting primary operators at the origin, the hamiltonian
evolution is done by means of the dilation operator and we have complete Hilbert
spaces in each of the spheres around the origin by evolving the states within each
sphere. Let’s take the product of two (scalar) operators Oi(x)Oj(0) at distinct points.
The action of this product onto the vacuum of our theory |0〉 generates a state on any
sphere surrounding both operators (by "dilation" evolution), and can be decomposed
as follows:

Oi(x)Oj(0) |0〉 =
∑
k

Cijk(x, P )Ok(0) |0〉 (1.75)

Since any state is a linear combination of primaries and descendants. The Cijk(x, P ) is
an operator that produces primaries and descendants and k runs over primary operators.
This is simply the statement that we have a complete basis in each Hilbert space at
each sphere surface. This expression is true as long as there are no other operators
inserted below |x|. By means of the state-operator correspondence we can simply write:

Oi(x1)Oj(x2) =
∑
k

Cijk(x12, ∂2)Ok(x2) (1.76)

which we can use inside any correlation function where the other operators are inserted
outside a sphere surrounding x1 and x2. In a CFT this expression becomes an exact
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formula, whereas in regular QFT it is understood in the limit where the two operators
are very close together, and as such it is only used in the asymptotic short-distance
limit. The understanding of this formula thanks to radial quantization in CFTs makes it
a very powerful tool. Conformal symmetry alone determines the functions Cijk up to a
constant (in the case of operators with spin we will see that we need several constants),
that from here on we will call OPE coefficients. Once we determined the OPE structure
(the explicit form of the Cijk functions) we can use it to express any n-point functions
as a sum of (n− 1)-functions:

〈O1(x1)O2(x2)ΠiOi(xi)〉 =
∑
k

C12k(x12, ∂2) 〈Ok(x2)ΠiOi(xi)〉 (1.77)

This fact is of great value, correlation functions of arbitrarily high order can be computed
by applying the OPE recursively and written as sum of two point functions. For this
we need to know all operator dimensions ∆i (and thus the content of the theory) and
all the OPE coefficients, which together form what is know as the CFT data. We will
see in the next chapter how the OPE can be used as well to constraint the CFT data,
in what it is know as the Conformal Bootstrap. Let’s briefly indicate a way in which
one could determine the precise form of the Cijk functions. We remind the reader that
three point functions are determined by symmetry alone, up to coefficients that multiply
each of the independent tensor structures allowed by symmetry, these constants are the
OPE coefficients. Schematically:

〈O1(x1)O2(x2)O3(x3)〉 =
∑
k

C12k(x12, ∂2) 〈Ok(x2)O3(x3)〉 (1.78)

where we have used the OPE between the first two fields. We can see now how
to determine the function C12k. First of all notice that the two point functions are
orthogonal, that is Ok (for real fields) must correspond to O3 in order for the two point
function to be non-vanishing. At this point the sum collapses to a single term. By
using the know expression of the three point function we can match terms in order
to determine C123, which will be multiplied by an overall coefficient λ123, the OPE
coefficient. For the scalar case this function has the following form:

C123(x, ∂) = λ123

|x|∆1+∆2−∆3

(
1 + ∆3 + ∆1 −∆2

2∆3
x · ∂ + ...

)
(1.79)

where the other terms correspond to higher order terms in x and derivatives. In actuality
the precise form of the OPE functions will not be needed during the rest of the thesis.

This connection we have seen, between three point function and the OPE turns out to
be extremely useful. As a byproduct of this connection we will mention the fact that
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the three point function does indeed tell us about the structure of the OPE as well as
of the allowed operators in the OPE (which are in reality equivalent statements). Thus
if we find vanishing three point functions, as a consequence of symmetries, then we
can conclude that any of the operators in the three point function is not allowed in the
OPE of the remaining operators, or equivalently the corresponding OPE coefficient is
zero.

Let’s finish this section by pointing out the fact that the OPE is a convergent expansion,
even at finite distance, we made the intuitive argument being a consequence of the
completeness of the Hilbert space, for more details we refer the reader to [22].
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2 Chapter 2

Conformal Blocks

At this point we have seen many interesting facts about CFTs. We learned about
conformal kinematics that allow us to determine two and three point functions (up to
constants) completely. We explored the radial quantization of CFTs and understood an
important fact that operators in the spectrum of any CFT must satisfy, the unitarity
bounds. We saw the Operator Product Expansion and its powerful application for
determining general n-point functions given that we have knowledge of the CFT data.
So far we have only mentioned this fact, it is now time to put it to practice. Let’s
consider the correlation function of 4 identical scalar operators (we will work in 4D
throughout this section) of dimension [φ] = d:

〈φ(x1)φ(x2)φ(x3)φ(x4)〉 (2.1)

We can invoke conformal symmetry and try to determine kinematically the form of this
correlator. Let’s introduce two parameters at this point, the conformal cross ratios:

u ≡ x2
12x

2
34

x2
13x

2
24
, v ≡ x2

14x
2
23

x2
13x

2
24
, (2.2)

where again xij ≡ |xi − xj|. These two combinations of coordinates happen to be
invariant under any type of conformal transformations. These types of parameters
appear first at the level of four point functions. We can see that under the Poincare
group |xi − xj| is invariant already so we only need two different points. Dilation
however, requires ratios of differences, so we need at least four different points to have
non-trivial ratios. We can prove that special conformal transformations also only require
four different points (had we worked in 6D the necessity of four different points would
have come as a consequence of homogeneity). At the level of four point functions, the
conformal ratios, previously defined, are the only invariants possible. We understand
the fact that these quantities exist, as the impediment to determine the four point
function kinematically. We can indeed find a structure that transforms accordingly
respecting the scaling of the operators and their tensor structures (none for the case of
scalars), however we will always have the possibility of having some arbitrary function
of both u and v.
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〈φ(x1)φ(x2)φ(x3)φ(x4)〉 = G(u, v)
x2d

12x
2d
34

(2.3)

where at this point G(u, v) is an undetermined function of the cross ratios. As we
mentioned already we can use the OPE to determine higher n-point functions in terms
of sums of two point functions. Let’s see how this works at the level of four point
functions. Let’s write again the form of the OPE for convenience:

φ(x1)φ(x2) =
∑
O

λφφoC̃φφO(x12, ∂2)O(x2) (2.4)

φ(x3)φ(x4) =
∑
O′
λφφO′C̃φφO′(x34, ∂4)O′(x4) (2.5)

where we have extracted the OPE coefficient from the Cijk, thus the tilde on top of
the new (completely kinematic) functions C̃ijk. The sums go through O and O′, all the
primaries allowed by conformal invariance in these specific OPE channels. In the case of
scalars it can be proven that the only operators present are traceless symmetric operators.
Introducing this into the four point function we obtain the s-channel expansion:

〈φ(x1)φ(x2)φ(x3)φ(x4)〉 =
∑
O

∑
O′
λφφOλφφO′C̃φφO(x12, ∂2)C̃φφO′(x34, ∂4) 〈O(x2)O′(x4)〉

(2.6)

Again, the two point functions have been chosen orthonormal, such that the double
sums become one:

〈φ(x1)φ(x2)φ(x3)φ(x4)〉 =
∑
O

(λφφO)2WO(x1, x2, x3, x4) (2.7)

The function WO resums the contribution of the primary O and its descendants to the
four scalar correlator. These functions are known as Conformal Partial Waves (CPWs),
and for the case of scalar correlators only a single set of them contributes to the four
point function. The number of them depends on the number of tensor structures
appearing in the OPE, we will discuss this point in more detail in subsequent chapters.
The CPW can be written in a form that resembles the four point function (2.1):

WO(x1, x2, x3, x4) = gO(u, v)
x2d

12x
2d
34

(2.8)

The function gO(u, v) is known as conformal block, thus we can write the function
G(u, v) appearing in (2.3) as:
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G(u, v) =
∑
O

(λφφO)2gO(u, v) (2.9)

We see that once we determine gO(u, v), which could be done by applying the operators
in (2.6), we have determined completely the four point function up to the OPE
coefficients, thus as said, the knowledge of the CFT data (OPE coefficients, and
spectrum of primary operators) allows us to determine any n-point function. With the
knowledge of the conformal blocks we can try to impose constraints on the CFT data,
with a procedure known as Conformal Bootstrap. We will outline the basic equations
necessary in section (2.3). We will focus in the next two sections on methods to obtain
closed expressions for the conformal blocks.

Let’s finish this section by indicating a change of variables that will prove extremely
useful in the following. The map is as follows:

u = zz̄, v = (1− z)(1− z̄) (2.10)

The new variables z and z̄ will prove essential when solving the conformal blocks in
closed form in 4D.

2.1 Casimir equation

Let’s review a method proposed by Dolan and Osborn [14] to obtain closed expression
for the conformal blocks in even dimensions. We will focus on the correlator of four
scalars. The heart of the method consists in finding and solving a differential equation
that each conformal block, corresponding to the exchange of a primary operator and
its tower of descendants, satisfies. We will be using the 6D embedding formalism to
simplify the calculations. Let’s first recall some facts about the action of conformal
generators, L̂MN upon fields, which act as differential operators:

[
L̂MN , φ(x)

]
≡ LMN(x, ∂)φ(x) (2.11)

In 6D the quadratic Casimir of the conformal group has the simple expression:

Ĉ = 1
2 L̂MN L̂

MN . (2.12)

This operator acting on primary operators gives the Casimir eigenvalue (and by definition
of the Casimir operator, the same eigenvalue applies to each of the descendants of the
primary):
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[Ĉ,O(`,`)(x)] = E∆,`O(`,`)(x) (2.13)

where

E∆,` = ∆(∆− d) + `(`+ d− 2) (2.14)

Let’s apply a conformal generator to the product of two fields:

[
L̂MN , φ1(x), φ2(y)

]
=
[
L̂MN , φ1(x)

]
φ2(y) + φ1(x)

[
L̂MN , φ2(y)

]
=(

L
(1)
MN(x, ∂x) + L

(2)
MN(y, ∂y)

)
(φ1(x)φ2(y))

(2.15)

Applying the second order differential operator

1
2
(
L

(1)
MN + L

(2)
MN

) (
LMN

(1) + LMN
(2)

)
(2.16)

is then equivalent to applying the Casimir operator to the first two operators

〈[Ĉ, φ1(x1)φ2(x2)]φ3(x3)φ4(x4)〉 (2.17)

By using the OPE and singling out a conformal partial wave corresponding to the
contribution of a primary, we can then achieve our final equation. We simply have to
apply the OPE to the first two operators, thus obtaining the action of the casimir into
the primary (and its descendants) as in eq. (2.13). Even though the OPE provides
us an infinite sum, all terms are proportional to the same eigenvalue. Now using the
differential operator form of (2.16) we obtain an equation for the specific conformal
partial wave WO. When acting on scalar operators at x1 and x2, the Lorentz generator
in 6D can be written as LMN = L1,MN + L2,MN , where

LiMN = i
(
XiM

∂

∂XN
i

−XiN
∂

∂XM
i

)
. (2.18)

After a bit of algebra to pass from conformal partial wave to conformal block we can
finally write the differential equation:

∆a,b,0
2 gO(z, z̄) = 1

2E∆,`gO(z, z̄) (2.19)

with a = ∆2−∆1
2 , b = ∆3−∆4

2 and
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∆(a,b;c)
ε = D(a,b;c)

z +D
(a,b;c)
z̄ + ε

zz̄

z − z̄

(
(1− z)∂z − (1− z̄)∂z̄

)
, (2.20)

in terms of the second-order holomorphic operator

D(a,b;c)
z ≡ z2(1− z)∂2

z −
(
(a+ b+ 1)z2 − cz

)
∂z − abz . (2.21)

It is possible to solve eq. (2.19) in a closed form, as it was done in [14]. This method
will be useful in what follows since it provides a differential equation for any conformal
partial wave once the OPE structure of the fields involved in the 4 point function
is understood. For a general 4 point function the equations that emerge from this
procedure are too cumbersome and highly complex. However we will see in Chapter 4
a direct application of this method.

2.2 Shadow formalism

Another method to obtain conformal blocks (CBs) in closed analytical form uses the
so called shadow formalism. It was first introduced by Ferrara, Gatto, Grillo, and
Parisi [86–89] and used in ref. [13] to get closed form expressions for the scalar CBs.
In this section we will go through the formalism using the recent formulation given
in ref. [21]. We will adopt a notation that will be used in the following chapters.
We will construct the conformal partial waves by seeking an object that satisfies
all the requirements to be a CPW: It satisfies the casimir equation. It satisfies the
homogeneity properties in all the Xi accordingly, and finally it is invariant under
conformal transformations. The heart of the method is to find a sort of "projector" that
once inserted into the four-point function, does the job of extracting the contribution
of an operator O to the four point function, what we have called the conformal block
gO(z, z̄). This projector takes the following form [86–89]:

∫
ddxO(x) |0〉 〈0| Õ(x) (2.22)

The operator Õ(x) is called the "shadow operator", and it is a non-local operator of
dimension ∆̃ = 4−∆. The generalization to operators with spin requires the definition
of an analogous projector, this time for the specific spinning operators we might want
to extract the CPW of. Once the projector is inserted into the four point function we
have to perform a "conformal integral" of two three point functions. We will be working
in 4D so it is convenient to use the embedding formalism in the twistor approach, in
order to deal with general representations of operators in a simpler way. The projectors
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we will use respect the gauge invariance imposed by the twistor embedding. The CPW
associated to the exchange of a given operator Or with spin (`, ¯̀) in a correlator of four
operators On(Xn), n = 1, 2, 3, 4 (in embedding space and twistor language) is given by

W
(i,j)
O(`,¯̀)(Xi) = ν̃

∫
d4X0〈O1(X1)O2(X2)Or(X0, S, S̄)〉i

←→Π `,¯̀〈Õr(X0, T, T̄ )O3(X3)O4(X4)〉j
∣∣∣∣
M
,

(2.23)
where ν̃ is a normalization factor, the projector gluing two 3-point functions is given by

←→Π `,¯̀ = (←−∂ SX0
−→
∂ T )`(←−∂ S̄X0

−→
∂ T̄ )¯̀

, (2.24)

and Õr is the shadow operator

Õr(X,S, S̄) ≡
∫
d4Y

1
(X · Y )4−∆+`+¯̀Or̄(Y, Y S̄, Ȳ S) . (2.25)

We can see clearly that this object does satisfy the Casimir equation, this fact is easily
seen by applying the Casimir operator, which goes through the integral and "hits" the
three point function. Being built out of scalar quantities in SU(2, 2) we have ensured
the invariance under conformal transformations and the homogeneity properties of each
Xi are inherited from the three point functions. The gluing projector in the middle is
the only choice respecting all the properties previously mentioned when acting on three
point functions, namely they respect the gauge invariance of our objects. Furthermore
the shadow operator is a non-local operator and as such it does not violate unitarity by
formally having conformal dimension ∆− 4. The factors of X0 appearing outside of
the three point functions (as well as the Y s in the shadow operator integral) are there
to ensure the correct homogenous behaviour for the conformal integrals.

In eq.(2.23) we have omitted for simplicity the dependence of On on their auxiliary
twistors Sn, S̄n. The subscripts i and j in 〈O1O2Or〉 and 〈ÕrO3O4〉 denote the three
point functions stripped off their OPE coefficients:

〈O1O2O3〉 ≡
∑
i

λiO1O2O3〈O1O2O3〉i . (2.26)

The integral in eq.(2.23) would actually determine the CPW associated to the operator
Or(X,S, S̄) plus its unwanted shadow counterpart, that corresponds to the exchange
of a similar operator but with the scaling dimension ∆→ 4−∆, which can be traced
back to the symmetry of the projector we used under O ↔ Õ. This fact is also
present in the form of the Casimir equation, which has a symmetry under the exchange
∆↔ ∆− 4 (see e.g eq(2.14) ). The two contributions can be distinguished by their
different behaviour under the monodromy transformation X12 → e4πiX12. In particular,
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the physical CPW should transform with the phase e2iπ(∆−∆1−∆2), independently of the
Lorentz quantum numbers of the external and exchanged operators. This projection on
the correct monodromy component explains the subscript M in the bar at the end of
eq.(2.23).

The basic objects we have to deal with are integrals in the projective null-cone since
we are working in the embedding formalism in 6D. These integrals are conveniently
"gauge-fixed" to match their projection to 4D, details on this procedure can be found
in section 2.3 of [21]. We will be using several common tricks for the calculation of
these integrals (which after gauge fixing become simply integrals in flat space). For
example a three point integral can be written as follows:

∫
DdX0

1
Xa

10X
b
20X

c
30

= α(a, b, c) 1
Xh−c

12 Xh−b
13 Xh−a

23
(2.27)

Where h ≡ d/2 and a + b + c = d so that the projective measure of the integral is
well-defined. Xij ≡ Xi ·Xj. And:

α(a, b, c) = πdΓ(h− a)Γ(h− b)Γ(h− c)
Γ(a)Γ(b)Γ(c) (2.28)

This comes from a couple of basic ingredients. First, the basic building block for all
our computations will be (see eq 2.17 in [21]), :

I(Y ) =
∫
DdX0

1
Xd

0Y
= πd/2Γ[d/2]

Γ[d] (Y 2)d/2
(2.29)

Which if used with Feynman/Schwinger parametrization to rewrite the denominator,
allows us to use eq. (2.29) to obtain eq.(2.27). It is also useful to have an expression
with open indices:

∫
DdX0

Xm1
0 ...Xmn

0

Xd+n
0Y

= Γ[d]
2nΓ[d+ n]

(∏
i

(∂Y )miI(Y )
)

= πd/2

Γ[d+ n]
Γ[d/2 + n]Y m1 ...Y mn

(−Y 2)d/2+n −traces

(2.30)

We simply used eq. (2.29) and took partial derivatives to obtain the necessary factors.
The analogous expression involving three distinct points is:

∫
DdY

YM1YM2 ...YMn

Xa+n
0Y Xb

Y 3X
c
Y 4

= πd/2Γ[d/2 + n]
Γ[a]Γ[b]Γ[c]

(∫ ∞
0

dxdyxb−1yc−1 XM1
x,y ...X

Mn
x,y

[2xX03 + 2yX04 + 2xyX34]d/2+n

)
− traces

(2.31)
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Which we wrote with the help of equations (2.30) and (2.29), and where we have
defined:

XM
x,y ≡ XM

0 + xXM
3 + yXM

4 (2.32)

Although this seems quite involved, in practical computations only a handful of terms
contribute. We have to subtract the traces of this object since it is clear that it is
traceless from the left hand side of (2.31). These formulas are only necessary for
the computation of the shadow operator/three point function, which in turn can be
determined up to a constant by conformal symmetry. We will make use of these
formulas to compute our blocks.

Let’s reproduce the conformal blocks for traceless symmetric operators in a four point
function of scalars in this formalism. We need the expressions of the three point
functions (stripped off the OPE coefficients), these are given by:

〈Φ1(X1)Φ2(X2)O(`,`)(X0)〉 = K3(τ1, τ2, τ)J `0,12 ,

where
K3(τ1, τ2, τ3) = X

τ3−τ1−τ2
2

12 X
τ2−τ1−τ3

2
13 X

τ1−τ2−τ3
2

23 , (2.33)

is a kinematic factor and
Ji,jk ≡

1
Xjk

S̄iXjXkSi (2.34)

is one of the SU(2, 2) invariants for three-point functions. The shadow counterpart is
simply:

〈Õ
(`,`)

(X0)Φ3(X3)Φ̄4(X4)〉 ∝ 〈O(`,`)(X0)Φ3(X3)Φ̄4(X4)〉
∣∣∣∣
∆→4−∆

= K3

∣∣∣∣
∆→4−∆

J `0,34.

This can be shown by using eq. (2.25) and performing the three point integral with
the use of eq. (2.31). After putting all together the numerator of the integrand inside
the expression corresponding to eq.(2.23) becomes:

N` ≡ (S̄X2X̄1S)`←→Π `,`(T̄X4X̄3T )`, (2.35)

Our Conformal partial wave is determined by:
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WO`,` = ν

X
2d−∆+`

2
12 X

2d−∆̃+`
2

34

∫
D4X0

N`

X
∆+`

2
01 X

∆+`
2

02 X
∆̃+`

2
03 X

∆̃+`
2

04

∣∣∣∣
M=1

, (2.36)

And ν is a constant depending on the dimension of our field Φ and the dimension of the
exchanged operator ∆ and its spin `. The next step is to evaluate the numerator (2.35).
One can show that it satisfies a recursion relation that identifies it with a gegenbauer
polynomial:

N` = (l!)4(−1)`s`/2C1
` (t) (2.37)

where we have:

s ≡ X12X34

4∏
n=1

X0n, t ≡
1

2
√
s

(
X02X03X14 −X01X03X24 − (3↔ 4)

)
, (2.38)

Expanding the polynomial C1
` (t), the integral (2.36) becomes a sum of basic conformal

four-point integrals. These integrals can be evaluated with methods similar to the ones
used for the three point integrals. It will not be necessary however since the integral in
eq. (2.36) has been shown to resum in a very compact form by Dolan and Osborn in
reference [13]. The result is as follows:

WO`,` = G∆,`(U, V )
X2d

12 +X2d
34

(2.39)

where U and V are the counterparts of u and v in 6D, and:

G∆,`(z, z̄) = (−1)` zz̄

z − z̄

(
k

(0,0;0)
∆+`

2
(z)k(0,0;0)

∆−`−2
2

(z̄)− (z ↔ z̄)
)
, (2.40)

expressed in terms of the function1

k(a,b;c)
ρ (z) ≡ zρ 2F1(a+ ρ, b+ ρ; c+ 2ρ; z) . (2.41)

This result will be of great importance in Chapter 4, where we will use equation (2.36)
and its closed form (2.40) in order to rewrite other CPWs in terms of this known four
point conformal integral.

1We adopt here the notation first used in ref. [9] for this function, but notice the slight difference in
the definition: kthereρ = khereρ/2 .
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2.3 Conformal Bootstrap

Once we have obtained expressions for the conformal blocks, we can start asking if we
can use these expressions to put some sort of constraints on our CFT. The answer is
indeed positive and it requires one more ingredient, crossing symmetry. In the case
of bosonic operators this crossing symmetry is nothing but the Bose symmetry of
our correlator. Sticking to the example of four identical scalars, one basic functional
constrain comes from the change x2 ↔ x4. Bose symmetry dictates that nothing is
changed, but at the level of the cross ratios u and v, this change induces u↔ v. The
whole change in our four point function (2.3) becomes:

G(u, v)
x2d

12x
2d
34

= G(v, u)
x2d

14x
2d
23

(2.42)

and after a small rewriting the final constrain reads:

(
v

u

)d
G(u, v) = G(v, u) (2.43)

Another condition comes from the change x1 ↔ x2, the constrain is:

G(u, v) = G(u/v, 1/v) (2.44)

Let’s focus on 4D for the rest of the discussion, and we will use the explicit closed
expressions for the conformal blocks (2.40). Writing our functions as:

G(u, v) =
∑
O

(λφφO)2gO(u, v) (2.45)

we can ask under which conditions our four point function is consistent with crossing
symmetry. One important point is that the coefficients λφφO are real, given that we
consider unitary (reflection positive in the Euclidean) theories [9], so their squares are
simply positive numbers. The condition arising from x1 ↔ x2 happens to be satisfied
block by block [13].:

gO(u, v) = (−1)lgO(u/v, 1/v) (2.46)

The spin dependence in this case is irrelevant since for the case of identical scalars
the only operators exchanged are traceless symmetric operators with even spin. The
demonstration of this fact is easily done by showing that these operators are the only
ones that have a non-vanishing three point function:
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〈
φ(x1)φ(x2)O`,¯̀(x3)

〉
6= 0, ⇔ ` = ¯̀ and ` even (2.47)

The first condition coming from x2 ↔ x4 gives however a nontrivial condition, which
can be written as follows:

1 =
∑
O

λ2
φφOFO(z, z̄), λ2

φφO ≥ 0 (2.48)

with

FO(z, z̄) ≡ vdgO(u, v)− udgO(v, u)
ud − vd

(2.49)

The left hand side term corresponds to the contribution of the unit operator to the
four point function. This term is fixed to be one, and it is a fact that can be traced
back to the three point function of:

〈φ(x1)φ(x2)1〉 (2.50)

This is nothing but the two point function, which by convention we normalize such
that the contribution of the unit operator to the four point function turns out to
be simply 1. Equation (2.48) is known as the bootstrap equation and it represents
a condition that our CFT must satisfy to be consistent, according to unitarity, and
crossing symmetry. The bootstrap equation imposes severe constraints on the allowed
spectrum and interaction strengths (OPE coefficients) of the theory, a fact that is
intuitively seen by understanding that the precise combinations of these in the right
hand side of eq. (2.48) must sum precisely to one. In Chapters 5 and 6 we will see
numerical applications of the bootstrap program, where we will put constraints to
the allowed spectrum of operators as well as to several OPE coefficients, by carefully
studying equation (2.48).

It is also worth noticing that the closed expressions presented in this chapter for the
conformal blocks have been found only for even dimensions (we have shown expressions
in 4D) 2. For odd dimensions the task of finding closed expressions for the conformal
blocks seems to be much harder. The most used formulas, as of today, have been
found by solving the Casimir equations recursively ( [54], [25]), with very powerful
recursion relations that allow the fast evaluation of general blocks. These expressions,
even though not closed, are still sufficient to carry on the bootstrap program and
offer a window into known CFTs in the realm of 3D and 5D, such as the 3D Ising

2For closed expressions in other even dimensions, such as 6D, see [14,15]

36



Model ( [101], [103]) which has become one of the most successful benchmarks of the
Bootstrap program in higher dimensions.
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3 Chapter 3

Deconstructing Conformal
Blocks in 4D CFTs

We have shown in previous chapters how to decompose 4-point functions in terms of
conformal blocks of primary operators appearing in the OPE in different kinematical
channels. Our examples have been restricted to the case of 4 scalars however. In order
to go further we need to address the case of “spinning" operators, that is, operators
other than scalars. In the 4D case, external operators can be in any representation
of the Lorentz group, and this manifests itself, first, as tensor structures allowed in
the 4-point function. Tensor/spinor correlators can be decomposed similarly to the
scalar case, but this time there will be a function of U and V corresponding to each of
the independent tensor structures allowed. These tensor structures are kinematically
determined and their number, N4, grows very rapidly with the spin of the external
operators. For each primary operator exchanged we will talk of Conformal Partial Waves
(CPWs) which encompass the entire contribution of a primary operator to the whole
correlator, given by several conformal blocks, one for each tensor structure.

We should start studying the OPE structure of different operators, for it is essential
when trying to understand the primary operators contributing to any 4-point function.
The first step is to find all possible 3-point functions and their classification, for
they are directly correlated, as we mentioned, with the OPE. This has been done
recently in [31] and reviewed in Chapter 1. Once we have understood the classes of
operators that contribute we can try to solve for the different CPWs by means of the
methods introduced in Chapter 2. However we will try a slightly different route. If it
is possible to relate a 3-point function to a simpler one by means of some operators,
then a relation between CPWs of different 4-point functions exists. By mean of this
observation, building on previous work [18], in ref. [19] the CPWs associated to a
correlator of traceless symmetric operators (in arbitrary space-time dimensions), which
exchange a traceless symmetric operator, have been related to the scalar conformal
block of refs. [13,14]. In 4D we will have however, CPWs associated to the exchange
of non-traceless symmetric operators. And even for the case of traceless symmetric
exchange, the work of refs. [18,19] does not allow the study of correlators with external
non-traceless symmetric fields. Thus in this chapter we will generalize the relations

38



between CPWs for the specific case of 4D CFTs which we will describe using the
6D embedding formalism in twistor space. We will show in full generality how to
use differential operators to simplify the calculation of CPWs for external traceless
symmetric operators. We will see that for the case of non-traceless symmetric exchange
this method deconstructs the CPWs to a series of “seed" CPWs which can then be
solved with the methods introduced in Chapter 2.

In section 3.1 we show in more detail how we can relate different CPWs to one
another, using the shadow formalism to clarify this point. We introduce a set of general
differential operators in section 3.2, and we show the basis of operators necessary for
our study case in section 3.3. Section 3.4 is then dedicated to introducing 4-point
function tensor structures and the simplest set of seed CPWs. We end the chapter with
some examples.

3.1 Relation between CPW

In 4D CFTs, for a given four-point function, CBs and CPWs are labelled by the
quantum numbers of the exchanged primary operator and thus they depend on its
scaling dimension ∆ and representation (`, ¯̀) of the 4D Lorentz group. The simplest
case of four-point functions involving scalar fields only is the best known. In any channel,
the exchanged operators have ¯̀ = `, i.e. they are all and only traceless symmetric
tensors. In this case CPW and CB are equivalent up to a kinematic factor and their
analytic form has been derived in a remarkable compact form in refs. [13,14] for any ∆
and `. Four-point functions involving tensor (or fermion) operators are considerably
more complicated because different tensor structures arise and more operators can be
exchanged. A generic fermion-tensor four-point function can be parametrized as

〈OI11 (x1)OI22 (x2)OI33 (x3)OI44 (x4)〉 = K4

N4∑
n=1

gn(u, v)T I1I2I3I4n (xi) , (3.1)

where Ii are schematic Lorentz indices of the operators Oi(xi),

K4 =
(
x2

24
x2

14

) τ1−τ2
2
(
x2

14
x2

13

) τ3−τ4
2

(x2
12)−

τ1+τ2
2 (x2

34)−
τ3+τ4

2 (3.2)

is a kinematic factor, x2
ij = (xi − xj)µ(xi − xj)µ, τi = ∆i + (`i + ¯̀

i)/2, u and v are
the usual conformally invariant cross ratios

u = x2
12x

2
34

x2
13x

2
24
, v = x2

14x
2
23

x2
13x

2
24
, (3.3)
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and T I1I2I3I4n (xi) are kinematically determined tensor structures. Their total number
N4 depends on the Lorentz properties of the external primaries. For correlators involving
scalars only, one has N4 = 1, but in general N4 > 1 and rapidly grows with the spin of
the external fields. For instance, for four traceless symmetric operators with identical
spin `, one has N4(`) ∼ `7 for large ` [31]. One can infer that the number of allowed
tensor structures in three and four-point functions is related:1

N4 =
∑
r

N12
3rN

34
3r̄ . (3.4)

All the non-trivial dynamical information of the 4-point function is encoded in the
N4 functions gn(u, v). As we mentioned, a bootstrap analysis requires to rewrite the
4-point function (3.1) in terms of the operators exchanged in that channel. In the
s-channel (12-34), for instance, we have

〈OI11 (x1)OI22 (x2)OI33 (x3)OI44 (x4)〉 =
∑
i,j

∑
Or
λiO1O2Orλ

j

Ōr̄O3O4
W

(i,j)I1I2I3I4
O1O2O3O4,Or(xi) ,

(3.5)
where i and j run over the possible independent tensor structures associated to the
three point functions 〈O1O2Or〉 and 〈Ōr̄O3O4〉, λ’s being their corresponding structure
constants andW (p,q)I1I2I3I4

O1O2O3O4 (u, v) are the associated CPWs. The sum over the exchanged
primary operators Or includes a sum over all possible representations (`, ¯̀) that can
appear in the 4-point function and, for each representation, a sum over all the possible
primaries, i.e. a sum over all possible scaling dimensions ∆Or . It is useful to define
δ = |¯̀− `| and rearrange the sum over (`, ¯̀) in a sum over, say, ` and δ. There is an
important difference between these two sums. For any 4-point function, the sum over
` extends up to infinity, while the sum over δ is always finite. More precisely, we have

δ = 0, 2 , . . . , p− 2, p, Or bosonic
δ = 1, 3 , . . . , p− 2, p, Or fermionic.

(3.6)

In both cases, the integer p is defined to be

p = min(`1 + ¯̀1 + `2 + ¯̀2, `3 + ¯̀3 + `4 + ¯̀4) , (3.7)

and is automatically an even or odd integer when Or is a boson or a fermion operator.
There are several CPW for each exchanged primary operator Or, depending on the
number of allowed 3-point function structures. They admit a parametrization like the

1We do not have a formal proof of eq.(3.4), although the agreement found in ref. [31] using eq.(3.4)
in different channels is a strong indication that it should be correct.
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4-point function itself,

W
(i,j)I1I2I3I4
O1O2O3O4,Or(xi) = K4

N4∑
n=1

g
(i,j)
Or,n(u, v)T I1I2I3I4n (xi) , (3.8)

where g(i,j)
Or,n(u, v) are the CBs, scalar functions of u and v that depend on the dimensions

and spins of the external and exchanged operators. Imposing crossing symmetry by
requiring the equality of different channels is the essence of the bootstrap approach. In
order to successfully bootstrap the correlator (3.1), it is necessary to know the explicit
form of the CPWs (3.8), in particular the CBs g(i,j)

Or,n(u, v).

The computation of CPW of tensor correlators is possible, but technically is not easy.
In particular it is desirable to have a relation between different CPW, so that it is
enough to compute a small subset of them, which determines all the others. In order
to understand how this reduction process works, it is very useful to embed the CPW in
the 6D embedding space with an index-free notation. We use here the formalism in
terms of twistors as reviewed in section 1.6. It is useful to consider the parametrization
of CPW in the shadow formalism [86–89]. It has been shown in ref. [21] that a generic
CPW can be written in 6D as

W
(i,j)
O1O2O3O4,Or(Xk) ∝

∫
d4Xd4Y 〈O1(X1)O2(X2)Or(X,S, S̄)〉iG〈Ōr̄(Y, T, T̄ )O3(X3)O4(X4)〉j .

(3.9)
In eq.(3.9), Ok(Xk) = Ok(Xk, Sk, S̄k) are the index-free 6D fields associated to the
4D fields Ok(xk), Or(X,S, S̄) and Ōr̄(Y, T, T̄ ) are the exchanged operator and its
conjugate, G is a sort of “propagator", function of X, Y and of the twistor derivatives
∂/∂S, ∂/∂T , ∂/∂S̄ and ∂/∂T̄ , and the subscripts p and q label the three-point function
tensor structures. Finally, in order to remove unwanted contributions, the transformation
X12 → e4πiX12 should be performed and the integral should be projected to the suitable
eigenvector under the above monodromy. We do not provide additional details, which
can be found in ref. [21], since they are irrelevant for our considerations. Suppose one
is able to find a relation between three-point functions of this form:

〈O1(X1)O2(X2)Or(X,S, S̄)〉p = Dpp′(X12, S1,2, S̄1,2)〈O′1(X1)O′2(X2)Or(X,S, S̄)〉p′ ,
(3.10)

where Dpp′ is some operator that depends on X12, S1,2, S̄1,2 and their derivatives,
but is crucially independent of X, S, and S̄, and O′k(Xk) are some other, possibly
simpler, tensor operators. As long as the operator Dpp′(X12, S1,2, S̄1,2) does not change
the monodromy properties of the integral, one can use eq.(3.10) in both three-point
functions entering eq.(3.9) and move the operator Dpp′ outside the integral. In this
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way we get, with obvious notation,

W
(p,q)
O1O2O3O4,Or(Xi) = D12

pp′D
34
qq′W

(p′,q′)
O′1O

′
2O
′
3O
′
4,Or

(Xi) . (3.11)

Using the embedding formalism in vector notation, ref. [19] has shown how to reduce,
in any space-time dimension, CPW associated to a correlator of traceless symmetric
operators which exchange a traceless symmetric operator to the known CPW of scalar
correlators [13,14].

Focusing on 4D CFTs and using the embedding formalism in twistor space, we will see
how the reduction of CPW can be generalized for arbitrary external and exchanged
operators.

3.2 Differential Representation of Three-Point
Functions

We look for an explicit expression of the operator Dpp′ defined in eq.(3.10) as a linear
combination of products of simpler operators. They must raise (or more generically
change) the degree in S1,2 and have to respect the gauge redundancy we have in the
choice of O. As we recalled in subsection 1.6, multitwistors of the form

O ∼ O +O(S̄X)G+O(XS)G′ , O ∼ O +O(X2)G , (3.12)

where G and G′ are some other multi-twistors fields, are equivalent uplifts of the same
4D tensor field. Eq.(3.10) is gauge invariant with respect to the equivalence classes
(3.12) only if we demand

Dpp′O(XiXi,XiSi, SiXi, X
2
i , SiSi) = O(XiXi,XiSi, SiXi, X

2
i , SiSi) , i = 1, 2 .

(3.13)

It is useful to classify the building block operators according to their value of ∆l, as
defined in eq.(1.70).

At zero order in derivatives, we have three possible operators, with ∆l = 0:
√
X12, I12 , I21 . (3.14)
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At first order in derivatives (in X and S), four operators are possible with ∆l = 0:

D1 ≡
1
2S1ΣMΣN

S1

(
X2M

∂

∂XN
1
−X2N

∂

∂XM
1

)
,

D2 ≡
1
2S2ΣMΣN

S2

(
X1M

∂

∂XN
2
−X1N

∂

∂XM
2

)
,

D̃1 ≡ S1X2ΣN
S1

∂

∂XN
2

+ 2I12 S1a
∂

∂S2a
− 2I21 S

a
1
∂

∂S
a
2
,

D̃2 ≡ S2X1ΣN
S2

∂

∂XN
1

+ 2I21 S2a
∂

∂S1a
− 2I12 S

a
2
∂

∂S
a
1
.

(3.15)

The extra two terms in the last two lines of eq.(3.15) are needed to satisfy the condition
(3.13). The SU(2, 2) symmetry forbids any operator at first order in derivatives with
∆` = ±1.

When ∆` = 2, we have the two operators

d1 ≡ S2X1
∂

∂S1
, d2 ≡ S1X2

∂

∂S2
, (3.16)

and their conjugates with ∆` = −2:

d1 ≡ S2X1
∂

∂S1
, d2 ≡ S1X2

∂

∂S2
. (3.17)

The operator
√
X12 just decreases the dimensions at both points 1 and 2 by one half.

The operator I12 increases by one the spin ¯̀1 and by one `2. The operator D1 increases
by one the spin `1 and by one ¯̀1, increases by one the dimension at point 1 and
decreases by one the dimension at point 2. The operator D̃1 increases by one the spin
`1 and by one the spin ¯̀1 and it does not change the dimension of both points 1 and 2.
The operator d1 increases by one the spin `2 and decreases by one ¯̀1, decreases by one
the dimension at point 1 and does not change the dimension at point 2. The action of
the remaining operators is trivially obtained by 1↔ 2 exchange or by conjugation.

Two more operators with ∆` = 2 are possible:

d̃1 ≡ X12S1ΣM
S2

∂

∂XN
1
− I12S1aX

ab
2

∂

∂S
b
1

,

d̃2 ≡ X12S2ΣM
S1

∂

∂XN
2
− I21S2aX

ab
1

∂

∂S
b
2

,

(3.18)

together with their conjugates with ∆` = −2. We will shortly see that the operators
(3.18) are redundant and can be neglected.
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The above operators satisfy the commutation relations

[Di, D̃j] = [di, dj] = [d̄i, d̄j] = [di, d̃j] = [d̄i, d̃j] = [d̃i, d̃j] = [d̃i, d̃j] = 0 , i, j = 1, 2 ,

[D1, D2] = 4I12I21

(
−XM

1
∂

∂XM
1

+XM
2

∂

∂XM
2

)
,

[D̃1, D̃2] = 4I12I21

(
XM

1
∂

∂XM
1
−XM

2
∂

∂XM
2

+ S1
∂

∂S1
+ S̄1

∂

∂S̄1
− S2

∂

∂S2
− S̄2

∂

∂S̄2

)
,

[d̃1, d̃2] = 2X12I12I21

(
−XM

1
∂

∂XM
1

+XM
2

∂

∂XM
2
− S̄1

∂

∂S̄1
+ S2

∂

∂S2

)
,

[di, d̄j] = 2X12

(
Sj

∂

∂Sj
− S̄i

∂

∂S̄i

)
(1− δi,j) , i, j = 1, 2 ,

[di, Dj] = −2δi,j d̃i , i, j = 1, 2 ,
[d1, D̃1] = 2d̃2 , [d2, D̃1] = 0 ,
[d̃1, D1] = 0 , [d̃2, D1] = −2I12I21d2 ,

[d̃1, D̃1] = 2I12I21d2 , [d̃2, D̃1] = 0 ,

[d1, d̃1] = −X12D̃2 , [d1, d̃2] = X12D2 .

(3.19)
Some other commutators are trivially obtained by exchanging 1 and 2 and by the
parity transformation (3.25). The operators

√
X12, I12 and I21 commute with all the

differential operators. Acting on the whole correlator, we have

Si
∂

∂Si
→ `i , S̄i

∂

∂S̄i
→ ¯̀

i , XM
i

∂

∂XM
i

→ −τi , (3.20)

and hence the above differential operators, together with X12 and I12I21, form a closed
algebra when acting on three-point correlators. Useful information on conformal blocks
can already be obtained by considering the rather trivial operator

√
X12. For any three

point function tensor structure, we have

〈O1O2O3〉s = (
√
X12)a〈O

a
2
1 O

a
2
2 O3〉s , (3.21)

where a is an integer and the superscript indicates a shift in dimension. If ∆(O) = ∆O,
then ∆(Oa) = ∆O + a. Using eqs.(3.21) and (4.27), we get for any 4D CPW and pair
of integers a and b:

W
(p,q)
O1O2O3O4,Or = xa12x

b
34W

(p,q)
Oa1O

a
2O

b
3O

b
4,Or

. (3.22)

In terms of the conformal blocks defined in eq.(3.8) one has

G(p,q)
Or,n(u, v) = G(p,q)a,a,b,b

Or,n (u, v) , (3.23)
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where the superscripts indicate the shifts in dimension in the four external operators.
Equation (3.23) significantly constrains the dependence of G(p,q)

Or,n on the external operator
dimensions ∆i. The conformal blocks can be periodic functions of ∆1, ∆2 and ∆3,
∆4, but can arbitrarily depend on ∆1 −∆2, ∆3 −∆4. This is in agreement with the
known form of scalar conformal blocks. Since in this paper we are mostly concerned in
deconstructing tensor structures, we will neglect in the following the operator

√
X12.

The set of differential operators is redundant, namely there is generally more than 1
combination of products of operators that lead from one three-point function structure
to another one. In particular, without any loss of generality we can forget about the
operators (3.18), since their action is equivalent to commutators of di and Dj . On the
other hand, it is not difficult to argue that the above operators do not allow to connect
any three-point function structure to any other one. For instance, it is straightforward
to verify that there is no way to connect a three-point correlator with one (`, ¯̀) field to
another correlator with a (`± 1, ¯̀∓ 1) field, with the other fields left unchanged. This
is not an academic observation because, as we will see, connections of this kind will
turn out to be useful in order to simplify the structure of the CPW seeds. The problem
is solved by adding to the above list of operators the following second-order operator
with ∆` = 0:

∇12 ≡
(X1X2)ab
X12

∂2

∂S
a

1∂S2,b
(3.24)

and its conjugate ∇21. The above operators transform as follows under 4D parity:

Di → Di , D̃i → D̃i , di ↔ −di , d̃i ↔ d̃i , (i = 1, 2) , ∇12 ↔ −∇21 . (3.25)

It is clear that all the operators above are invariant under the monodromyX12 → e4πiX12.
The addition of ∇12 and ∇21 makes the operator basis even more redundant. It is clear
that the paths connecting two different three-point correlators that make use of the least
number of these operators are preferred, in particular those that also avoid (if possible)
the action of the second order operators ∇12 and ∇21. We will not attempt here to
explicitly construct a minimal differential basis connecting two arbitrary three-point
correlators. Such an analysis is in general complicated and perhaps not really necessary,
since in most applications we are interested in CPW involving external fields with spin
up to two. Given their particular relevance, we will instead focus in the next section
on three-point correlators of two traceless symmetric operators with an arbitrary field
O(`,¯̀).
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3.3 Differential Basis for Traceless Symmetric
Operators

In this section we show how three-point correlators of two traceless symmetric operators
with an arbitrary field O(`3,¯̀3) can be reduced to seed correlators, with one tensor
structure only. We first consider the case `3 = ¯̀3, and then go on with `3 6= ¯̀3.

3.3.1 Traceless Symmetric Exchanged Operators

The reduction of traceless symmetric correlators to lower spin traceless symmetric
correlators has been successfully addressed in ref. [19]. In this subsection we essentially
reformulate the results of ref. [19] in our formalism. This will turn out to be crucial
to address the more complicated case of antisymmetric operator exchange. Whenever
possible, we will use a notation as close as possible to that of ref. [19], in order to make
any comparison more transparent to the reader.

Three-point correlators of traceless symmetric operators can be expressed only in terms
of the SU(2, 2) invariants Iij and Ji,jk defined in eqs.(1.61)-(1.64), since ∆` defined in
eq.(1.70) vanishes. It is useful to consider separately parity even and parity odd tensor
structures. Given the action of parity, eq.(1.74), the most general parity even tensor
structure is given by products of the following invariants:

(I21I13I32 − I12I31I23), (I12I21), (I13I31), (I23I32), J1,23, J2,31, J3,12 . (3.26)

These structures are not all independent, because of the identity

J1,23J2,31J3,12 = 8(I12I31I23 − I21I13I32)− 4(I23I32J1,23 + I13I31J2,31 + I12I21J3,12) .
(3.27)

In ref. [31], eq.(3.27) has been used to define an independent basis where no tensor
structure contains the three SU(2, 2) invariants J1,23, J2,31 and J3,12 at the same time.
A more symmetric and convenient basis is obtained by using eq.(3.27) to get rid of the
first factor in eq.(3.26). We define the most general parity even tensor structure of
traceless symmetric tensor correlator as


∆1 ∆2 ∆3

`1 `2 `3

m23 m13 m12

 ≡ K3(I12I21)m12(I13I31)m13(I23I32)m23J j11,23J
j2
2,31J

j3
3,12 , (3.28)

where `i and ∆i are the spins and scaling dimensions of the fields, the kinematical
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factor K3 is defined in eq.(4.29) and

j1 = `1 −m12 −m13 ≥ 0 ,
j2 = `2 −m12 −m23 ≥ 0 ,
j3 = `3 −m13 −m23 ≥ 0 .

(3.29)

Notice the similarity of eq.(3.28) with eq.(3.15) of ref. [19], with (IijIji)→ Hij and
Ji,jk → Vi,jk. The structures (3.28) can be related to a seed scalar-scalar-tensor
correlator. Schematically


∆1 ∆2 ∆3

`1 `2 `3

m23 m13 m12

 = D


∆′1 ∆′2 ∆3

0 0 `3

0 0 0

 , (3.30)

where D is a sum of products of the operators introduced in section 3.2. Since symmetric
traceless correlators have ∆` = 0, it is natural to expect that only the operators with
∆` = 0 defined in eqs.(3.14) and (3.15) will enter in D. Starting from the seed, we
now show how one can iteratively construct all tensor structures by means of recursion
relations. The analysis will be very similar to the one presented in ref. [19] in vector
notation. We first construct tensor structures with m13 = m32 = 0 for any `1 and `2

by iteratively using the relation (analogue of eq.(3.27) in ref. [19], with D1 → D12 and
D̃1 → D11)

D1


∆1 ∆2 + 1 ∆3

`1 − 1 `2 `3

0 0 m12

+ D̃1


∆1 + 1 ∆2 ∆3

`1 − 1 `2 `3

0 0 m12

 =

(2 + 2m12 − `1 − `2 −∆3)


∆1 ∆2 ∆3

`1 `2 `3

0 0 m12

− 8(`2 −m12)


∆1 ∆2 ∆3

`1 `2 `3

0 0 m12 + 1

 .
(3.31)

The analogous equation withD2 and D̃2 is obtained from eq.(3.31) by exchanging 1↔ 2
and changing sign of the coefficients in the right hand side of the equation. The sign
change arises from the fact that J1,23 → −J2,31, J2,31 → −J1,23 and J3,12 → −J3,12

under 1 ↔ 2. Hence structures that differ by one spin get a sign change. This
observation applies also to eq.(3.33) below. Structures with m12 > 0 are deduced using
(analogue of eq(3.28) in ref. [19])


∆1 ∆2 ∆3

`1 `2 `3

m23 m13 m12

 = (I12I21)


∆1 + 1 ∆2 + 1 ∆3

`1 − 1 `2 − 1 `3

m23 m13 m12 − 1

 . (3.32)
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Structures with non-vanishing m13 (m23) are obtained by acting with the operator D1

(D2):

4(`3 −m13 −m23)


∆1 ∆2 ∆3

`1 `2 `3

m23 m13 + 1 m12

 = D1


∆1 ∆2 + 1 ∆3

`1 − 1 `2 `3

m23 m13 m12



+4(`2 −m12 −m23)


∆1 ∆2 ∆3

`1 `2 `3

m23 m13 m12 + 1

−

1
2(2 + 2m12 − 2m13 + ∆2 −∆1 −∆3 − `1 − `2 + `3)


∆1 ∆2 ∆3

`1 `2 `3

m23 m13 m12

 ,
(3.33)

and is the analogue of eq (3.29) in ref. [19]. In this way all parity even tensor structures
can be constructed starting from the seed correlator.

Let us now turn to parity odd structures. The most general parity odd structure is
given by


∆1 ∆2 ∆3

`1 `2 `3

m23 m13 m12


odd

≡ (I12I23I31 + I21I32I13)


∆1 + 1 ∆2 + 1 ∆3 + 1
`1 − 1 `2 − 1 `3 − 1
m23 m13 m12

 .
(3.34)

Since the parity odd combination (I12I23I31 + I21I32I13) commutes with D1,2 and D̃1,2,
the recursion relations found for parity even structures straightforwardly apply to the
parity odd ones. One could define a “parity odd seed"

16`3(∆3 − 1)


∆1 ∆2 ∆3

1 1 `3

0 0 0


odd

= (d2d̄1 − d̄2d1)D1D2


∆1 + 2 ∆2 + 2 ∆3

0 0 `3

0 0 0


(3.35)

and from here construct all the parity odd structures. Notice that the parity odd
seed cannot be obtained by applying only combinations of D1,2, D̃1,2 and (I12I21),
because these operators are all invariant under parity, see eq.(3.25). This explains the
appearance of the operators di and d̄i in eq.(3.35). The counting of parity even and
odd structures manifestly agrees with that performed in ref. [18].

Once proved that all tensor structures can be reached by acting with operators on the
seed correlator, one might define a differential basis which is essentially identical to
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that defined in eq.(3.31) of ref. [19]:


∆1 ∆2 ∆3

`1 `2 `3

m23 m13 m12


0

= (I12I21)m12Dm13
1 Dm23

2 D̃j1
1 D̃

j2
2


∆′1 ∆′2 ∆3

0 0 `3

0 0 0

 , (3.36)

where ∆′1 = ∆1 + `1 +m23−m13, ∆′2 = ∆2 + `2 +m13−m23. The recursion relations
found above have shown that the differential basis (3.36) is complete: all parity even
tensor structures can be written as linear combinations of eq.(3.36). The dimensionality
of the differential basis matches the one of the ordinary basis for any spin `1, `2 and `3.
Since both bases are complete, the transformation matrix relating them is ensured to
have maximal rank. Its determinant, however, is a function of the scaling dimensions
∆i and the spins `i of the fields and one should check that it does not vanish for some
specific values of ∆i and `i. We have explicitly checked up to `1 = `2 = 2 that for
`3 ≥ `1 + `2 the rank of the transformation matrix depends only on ∆3 and `3 and
never vanishes, for any value of ∆3 allowed by the unitarity bound [90]. On the other
hand, a problem can arise when `3 < `1 + `2, because in this case a dependence on the
values of ∆1 and ∆2 arises and the determinant vanishes for specific values (depending
on the `i’s) of ∆1−∆2 and ∆3, even when they are within the unitarity bounds.2 This
issue is easily solved by replacing D̃1,2 → (D̃1,2 +D1,2) in eq.(3.36), as suggested by
the recursion relation (3.31), and by defining an improved differential basis


∆1 ∆2 ∆3

`1 `2 `3

m23 m13 m12

 = (I12I21)m12Dm13
1 Dm23

2

j1∑
n1=0

( j1
n1

)
Dn1

1 D̃j1−n1
1

j2∑
n2=0

( j2
n2

)
Dn2

2 D̃j2−n2
2


∆′1 ∆′2 ∆3

0 0 `3

0 0 0


(3.37)

where ∆′1 = ∆1 + `1 +m23 −m13 + n2 − n1, ∆′2 = ∆2 + `2 +m13 −m23 + n1 − n2.
A similar basis for parity odd structures is given by

∆1 ∆2 ∆3

`1 `2 `3

m23 m13 m12


odd

= (d2d̄1 − d̄2d1)D1D2


∆1 + 2 ∆2 + 2 ∆3

`1 − 1 `2 − 1 `3

m23 m13 m12

 . (3.38)

In practical computations it is more convenient to use the differential basis rather
than the recursion relations and, if necessary, use the transformation matrix to rotate
the results back to the ordinary basis. We have explicitly constructed the improved
differential basis (3.37) and (3.38) up to `1 = `2 = 2. The rank of the transformation
matrix depends on ∆3 and `3 for any value of `3, and never vanishes, for any value of
∆3 allowed by the unitary bound.3

2A similar problem seems also to occur for the basis (3.31) of ref. [19] in vector notation.
3The transformation matrix is actually not of maximal rank when `3 = 0 and ∆3 = 1. However,
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3.3.2 Antisymmetric Exchanged Operators

In this subsection we consider correlators with two traceless symmetric and one an-
tisymmetric operator O(`3,¯̀3), with `3 − ¯̀3 = 2δ, with δ an integer. A correlator of
this form has ∆` = 2δ and according to the analysis of section 1.6, any of its tensor
structures can be expressed in a form containing an overall number δ of Ki,jk’s if δ > 0,
or Ki,jk’s if δ < 0. We consider in the following δ > 0, the case δ < 0 being easily
deduced from δ > 0 by means of a parity transformation. The analysis will proceed
along the same lines of subsection 3.3.1. We first show a convenient parametrization
for the tensor structures of the correlator, then we prove by deriving recursion relations
how all tensor structures can be reached starting from a single seed, to be determined,
and finally present a differential basis.

We first consider the situation where `3 ≥ `1 + `2 − δ and then the slightly more
involved case with unconstrained `3.

Recursion Relations for `3 ≥ `1 + `2 − δ

It is convenient to look for a parametrization of the tensor structures which is as close
as possible to the one (3.28) valid for δ = 0. When `3 ≥ `1 + `2 − δ, any tensor
structure of the correlator contains enough J3,12’s invariants to remove all possible
K3,12’s invariants using the identity

J3,12K3,12 = 2I31K1,23 − 2I32K2,31 . (3.39)

There are four possible combinations in which the remaining K1,23 and K2,31 invariants
can enter in the correlator: K1,23I23, K1,23I21I13 and K2,31I13, K2,31I12I23. These
structures are not all independent. In addition to eq.(3.39), using the two identities

2I12K2,31 = J1,23K1,23 + 2I13K3,12 ,

2I21K1,23 = −J2,31K2,31 + 2I23K3,12 ,
(3.40)

this case is quite trivial. The exchanged scalar is free and hence the CFT is the direct sum of
at least two CFTs, the interacting one and the free theory associated to this scalar. So, either
the two external `1 and `2 tensors are part of the free CFT, in which case the whole correlator is
determined, or the OPE coefficients entering the correlation function must vanish.
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we can remove half of them and keep only, say, K1,23I23 and K2,31I13. The most
general tensor structure can be written as

∆1 ∆2 ∆3

`1 `2 `3

m23 m13 m12


p

≡
(
K1,23I23

X23

)δ−p(K2,31I13

X13

)p 
∆1 ∆2 ∆3

`1 − p `2 − δ + p `3

m23 m13 m̃12

 , p = 0, . . . , δ ,

(3.41)
expressed in terms of the parity even structures (3.28) of traceless symmetric correlators,
where

j1 = `1 − p− m̃12 −m13 ≥ 0 ,
j2 = `2 − δ + p− m̃12 −m23 ≥ 0 ,
j3 = `3 −m13 −m23 ≥ 0

m̃12 =

 m12 if p = 0 or p = δ

0 otherwise
.

(3.42)
The condition in m12 derives from the fact that, using eqs.(3.40), one can set m12

to zero in the tensor structures with p 6= 0, δ, see below. Attention should be paid
to the subscript p. Structures with no subscript refer to purely traceless symmetric
correlators, while those with the subscript p refer to three-point functions with two
traceless symmetric and one antisymmetric field. All tensor structures are classified
in terms of δ + 1 classes, parametrized by the index p in eq.(3.41). The parity odd
structures of traceless symmetric correlators do not enter, since they can be reduced in
the form (3.41) by means of the identities (3.40). The class p exists only when `1 ≥ p

and `2 ≥ δ − p. If `1 + `2 < δ, the entire correlator vanishes.

Contrary to the symmetric traceless exchange, there is no obvious choice of seed that
stands out. The allowed correlator with the lowest possible spins in each class, `1 = p,
`2 = δ−p, mij = 0, can all be seen as possible seeds with a unique tensor structure. Let
us see how all the structures (3.41) can be iteratively constructed using the operators
defined in section 3.2 in terms of the δ + 1 seeds. It is convenient to first construct a
redundant basis where m12 6= 0 for any p and then impose the relation that leads to
the independent basis (3.41). The procedure is similar to that followed for the traceless
symmetric exchange. We first construct all the tensor structures with m13 = m32 = 0
for any spin `1 and `2, and any class p, using the following relations:

D1

[
∆1 ∆2 + 1 ∆3

`1 − 1 `2 `3
0 0 m12

]
p

+ D̃1

[
∆1 + 1 ∆2 ∆3
`1 − 1 `2 `3

0 0 m12

]
p

= (δ − p)

[
∆1 ∆2 ∆3
`1 `2 `3
0 0 m12

]
p+1

(3.43)

−8(`2 − δ + p−m12)

[
∆1 ∆2 ∆3
`1 `2 `3
0 0 m12 + 1

]
p

+ (2m12 − `1 − `2 −∆3 + 2 + δ − p)

[
∆1 ∆2 ∆3
`1 `2 `3
0 0 m12

]
p

,
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together with the relation
∆1 − 1 ∆2 − 1 ∆3

`1 + 1 `2 + 1 `3

0 0 m12 + 1


p

= (I12I21)


∆1 ∆2 ∆3

`1 `2 `3

0 0 m12


p

. (3.44)

Notice that the operators D1,2 and D̃1,2 relate nearest neighbour classes and the
iteration eventually involves all classes at the same time. The action of the D2 and
D̃2 derivatives can be obtained by replacing 1 ↔ 2, p ↔ (δ − p) in the coefficients
multiplying the structures and p+ 1→ p− 1 in the subscripts, and by changing sign
on one side of the equation. Structures with non-vanishing m13 and m23 are obtained
using

4(`3 −m13 −m23 + δ − p)

[
∆1 ∆2 ∆3
`1 `2 `3
m23 m13 + 1 m12

]
p

− 4(δ − p)

[
∆1 ∆2 ∆3
`1 `2 `3

m23 + 1 m13 m12

]
p+1

=

4(`2 − δ + p−m23 −m12)

[
∆1 ∆2 ∆3
`1 `2 `3
m23 m13 m12 + 1

]
p

+D1

[
∆1 ∆2 + 1 ∆3

`1 − 1 `2 `3
m23 m13 m12

]
p

(3.45)

−
1
2

(2m12 − 2m13 + ∆2 −∆1 −∆3 − `1 − `2 + `3 + 2δ − 2p + 2)

[
∆1 ∆2 ∆3
`1 `2 `3
m23 m13 m12

]
p

together with the corresponding relation with 1↔ 2 and p→ p+ 1. All the structures
(3.41) are hence derivable from δ + 1 seeds by acting with the operators D1,2, D̃1,2

and (I12I21). The seeds, on the other hand, are all related by means of the following
relation:

(δ − p)2


∆1 ∆2 ∆3

p+ 1 δ − p− 1 `3

0 0 0


p+1

= R


∆1 + 1 ∆2 + 1 ∆3

p δ − p `3

0 0 0


p

, (3.46)

where
R ≡ −1

2 d̄2d2 . (3.47)

We conclude that, starting from the single seed correlator with p = 0,
∆1 ∆2 ∆3

0 δ `3

0 0 0


0

≡
(
K1,23I23

X23

)δ 
∆1 ∆2 ∆3

0 0 `3

0 0 0

 , (3.48)

namely the three-point function of a scalar, a spin δ traceless symmetric operator and
the antisymmetric operator with spin (`3 + 2δ, `3), we can obtain all tensor structures
of higher spin correlators.
Let us now see how the constraint on m12 in eq.(3.42) arises. When p 6= 0, δ, namely
when both K1 and K2 structures appear at the same time, combining eqs.(3.40), the
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following relation is shown to hold:
[

∆1 ∆2 ∆3
`1 `2 `3
m23 m13 m12 +1

]
p

= −
1
4

[
∆1 ∆2 ∆3
`1 `2 `3
m23 m13 m12

]
p

−

[
∆1 ∆2 ∆3
`1 `2 `3
m23 m13 +1 m12

]
p

−

[
∆1 ∆2 ∆3
`1 `2 `3

m23 +1 m13 m12

]
p

−8

[
∆1 ∆2 ∆3
`1 `2 `3

m23 +1 m13 +1 m12

]
p

+

[
∆1 ∆2 ∆3
`1 `2 `3
m23 m13 +1 m12

]
p−1

+ 4

[
∆1 ∆2 ∆3
`1 `2 `3
m23 m13 +2 m12

]
p−1

+

[
∆1 ∆2 ∆3
`1 `2 `3

m23 +1 m13 m12

]
p+1

+ 4

[
∆1 ∆2 ∆3
`1 `2 `3

m23 +2 m13 m12

]
p+1

. (3.49)

Using it iteratively, we can reduce all structures with p 6= 0, δ to those with m12 = 0
and with p = 0, δ, any m12.4 This proves the validity of eq.(3.41). As a further check,
we have verified that the number of tensor structures obtained from eq.(3.41) agrees
with those found from eq.(3.38) of ref. [31].

Recursion Relations for general `3

The tensor structures of correlators with `3 < `1 + `2 − δ cannot all be reduced in
the form (3.41), because we are no longer ensured to have enough J3,12 invariants to
remove all the K3,12’s by means of eq.(3.39). In this case the most general tensor
structure reads

∆1 ∆2 ∆3

`1 `2 `3

m23 m13 m12


p,q

≡ η
(K1,23I23

X23

)δ−p(K2,31I13
X13

)q( K3,12I13I23√
X12X13X23

)p−q 
∆1 ∆2 ∆3

`1 − p `2 − δ + q `3

m23 m13 m̃12

 ,
(3.50)

with p = 0, . . . , δ, q = 0, . . . , δ, p− q ≥ 0 and

j1 = `1 − p− m̃12 −m13 ≥ 0 ,
j2 = `2 − δ + q − m̃12 −m23 ≥ 0 ,
j3 = `3 −m13 −m23 ≥ 0 ,

m̃12 =

 m12 if q = 0 or p = δ

0 otherwise

η =

 0 if j3 > 0 and p 6= q

1 otherwise
.

(3.51)
The parameter η in eq.(3.51) is necessary because the tensor structures involving K3,12
(i.e. those with p 6= q) are independent only when j3 = 0, namely when the traceless
symmetric structure does not contain any J3,12 invariant. All the tensor structures
(3.50) can be reached starting from the single seed with p = 0, q = 0, `1 = 0, `2 = δ
and mij = 0. The analysis follows quite closely the one made for `3 ≥ `1 + `2 − δ,
although it is slightly more involved. As before, it is convenient to first construct a
redundant basis where m12 6= 0 for any p, q and we neglect the factor η above, and
impose only later the relations that leads to the independent basis (3.50). We start
from the structures with p = q, which are the same as those in eq.(3.41): first construct

4One has to recall the range of the parameters (3.42), otherwise it might seem that non-existant
structures can be obtained from eq.(3.49).
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the structures with m13 = m23 = 0 by applying iteratively the operators D1,2 + D̃1,2,
and then apply D1 and D2 to get the structures with non-vanishing m13 and m23.
Structures with p 6= q appear when acting with D1 and D2. We have:

D1

[
∆1 ∆2 + 1 ∆3

`1 − 1 `2 `3
m23 m13 m12

]
p,p

= 2(δ − p)

[
∆1 ∆2 ∆3
`1 `2 `3
m23 m13 m12

]
p+1,p

(3.52)

−4(`2 + p− δ −m12 −m23)

[
∆1 ∆2 ∆3
`1 `2 `3
m23 m13 m12 + 1

]
p,p

+ 4(`3 −m13 −m23)

[
∆1 ∆2 ∆3
`1 `2 `3
m23 m13 + 1 m12

]
p,p

+
1
2

(
2m12 − 2m13 + ∆2 −∆1 −∆3 − `1 − `2 + `3 + 2(δ − p + 1)

)[ ∆1 ∆2 ∆3
`1 `2 `3
m23 m13 m12

]
p,p

.

The action of D2 is obtained by exchanging 1↔ 2 and δ − p↔ q in the coefficients
multiplying the structures and replacing the subscript (p+ 1, p) with (p, p− 1). For
m13 +m23 < `3 the first term in eq.(3.52) is redundant and can be expressed in terms
of the known structures with p = q. An irreducible structure is produced only when
we reach the maximum allowed value m13 +m23 = `3, in which case the third term in
eq.(3.52) vanishes and we can use the equation to get the irreducible structures with
p 6= q. Summarizing, all tensor structures can be obtained starting from a single seed
upon the action of the operators D1,2, (D1,2 + D̃1,2), I12I21 and R.

Differential Basis

A differential basis that is well defined for any value of `1, `2, `3 and δ is
∆1 ∆2 ∆3

`1 `2 `3

m23 m13 m12


p,q

= η (I12I21)m̃12Dm13+p−q
1 Dm23

2

j1∑
n1=0

(
j1

n1

)
Dn1

1 D̃j1−n1
1

j2∑
n2=0

(
j2

n2

)

Dn2
2 D̃j2−n2

2 Rq


∆′1 ∆′2 ∆3

0 δ `3

0 0 0


0

,

(3.53)
where ∆′1 = ∆1 + `1 +m23−m13 +n2−n1−p+ q, ∆′2 = ∆2 + l2 +m13−m23 +n1−
n2 + 2q − δ, and all parameters are defined as in eq.(3.51). The recursion relations
found above have shown that the differential basis (3.53) is complete. One can also
check that its dimensionality matches the one of the ordinary basis for any `1, `2, `3 and
δ. Like in the purely traceless symmetric case, the specific choice of operators made in
eq.(3.53) seems to be enough to ensure that the determinant of the transformation
matrix is non-vanishing regardless of the choice of ∆1 and ∆2. We have explicitly
checked this result up to `1 = `2 = 2, for any `3. The transformation matrix is always
of maximal rank, except for the case `3 = 0 and ∆3 = 2, which saturates the unitarity
bound for δ = 1. Luckily enough, this case is quite trivial, being associated to the
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exchange of a free (2, 0) self-dual tensor [91] (see footnote 3). The specific ordering of
the differential operators is a choice motivated by the form of the recursion relations,
as before, and different orderings can be trivially related by using the commutators
defined in eq.(3.19).

3.4 Computation of Four-Point Functions

We have shown in section 3.1 how relations between three-point functions lead to
relations between CPW. The latter are parametrized by 4-point, rather than 3-point,
function tensor structures, so in order to make further progress it is important to classify
four-point functions. It should be clear that even when acting on scalar quantities,
tensor structures belonging to the class of 4-point functions are generated. For example
D̃1U = −UJ1,24. We lack a general classification of 4-point functions structures in 4D
CFTs at the moment, however we will give an overview of the formalism and the tensor
structures that can arise using twistor formalism.

3.4.1 Tensor Structures of Four-Point Functions

In 6D, the index-free uplift of the four-point function (3.1) reads

〈O1O2O3O4〉 = K4

N4∑
n=1

gn(U, V ) T n(S1, S̄1, .., S4, S̄4), (3.54)

where T n are the 6D uplifts of the tensor structures appearing in eq.(3.1). The 6D
kinematic factor K4 and the conformally invariant cross ratios (U, V ) are obtained from
their 4D counterparts by the replacement x2

ij → Xij in eqs.(3.2) and (3.3).

The tensor structures T n are formed from the three-point invariants (1.61)-(1.64)
(where i, j, k now run from 1 to 4) and the following new ones:

Jij,kl ≡ Nkl S̄iXkXlSj , (3.55)
Ki,jkl ≡ Njkl SiXjXkXlSi , (3.56)
Ki,jkl ≡ Njkl S̄iXjXkXlS̄i , (3.57)

where i 6= j 6= k 6= l = 1, 2, 3, 4; Ki,jkl and Ki,jkl are totally anti-symmetric in the last
three indices and the normalization factor is given by

Njkl ≡
1√

XjkXklXlj

. (3.58)
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The invariants Jij,kl satisfy the relations Jij,kl = −Jij,lk + 2Iij. Given that, and the
4D parity transformations Ki,jkl ↔ Ki,jkl and Jij,kl ↔ −Jji,lk, a convenient choice
of index ordering in Jij,kl is (i < j, k < l) and (i > j, k > l). Two other invariants
H ≡ S1S2S3S4 and H̄ ≡ S̄1S̄2S̄3S̄4 formed by using the epsilon SU(2, 2) symbols, are
redundant. For instance, one has X12H = K2,14K1,23 −K1,24K2,13.

Any four-point function can be expressed as a sum of products of the invariants (1.61)-
(1.64) and (3.55)-(3.57). However, not every product is independent, due to several
relations between them. We report in Appendix A a small subset of them. Having a
general classification of 4-point tensor structures is crucial to bootstrap a four-point
function with non-zero external spins. When we equate correlators in different channels,
we have to identify all the factors in front of the same tensor structure, thus it is
important to have a common basis of independent tensor structures. For specific cases
the task of finding an independent basis of structures seems possible and in the few
cases we will present that are revelevant for the discussion we have indeed found such
basis.

II

3.4.2 Relation between “Seed" Conformal Partial Waves

Using the results of the last section, we can compute the CPW associated to the
exchange of arbitrary operators with external traceless symmetric fields, in terms of a
set of seed CPW, schematically denoted by W (p,q)

O`+2δ,l(`1, `2, `3, `4). We have

W
(p,q)
O`+2δ,`(`1, `2, `3, `4) = D

(p)
(12)D

(q)
(34)WO`+2δ,`(0, δ, 0, δ) , (3.59)

where D(p)
12 schematically denotes the action of the differential operators reported in

the last section, and D(q)
34 are the same operators for the fields at X3 and X4, obtained

by replacing 1→ 3, 2→ 4 everywhere in eqs.(3.15)-(3.18) and (3.24). For simplicity
we do not report the dependence of W on U, V , and on the scaling dimensions of the
external and exchanged operators. The seed CPW are the simplest among the ones
appearing in correlators of traceless symmetric tensors, but they are not the simplest in
general. These will be the CPW arising from the four-point functions with the lowest
number of tensor structures with a non-vanishing contribution of the field O`+2δ,` in
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some of the OPE channels. Such minimal four-point functions are5

〈O(0,0)(X1)O(2δ,0)(X2)O(0,0)(X3)O(0,2δ)(X4)〉 = K4

2δ∑
n=0

gn(U, V )In42J
2δ−n
42,31 , (3.60)

with just
N seed

4 (δ) = 2δ + 1 (3.61)

tensor structures. In the s-channel (12-34) operators O`+n,`, with −2δ ≤ n ≤ 2δ, are
exchanged. We denote by Wseed(δ) and W seed(δ) the single CPW associated to the
exchange of the fields O`+2δ,` and O`,`+2δ in the four-point function (3.60). They are
parametrized in terms of 2δ + 1 conformal blocks as follows (G(0)

0 = G(0)
0 ):

Wseed(δ) = K4

2δ∑
n=0
G(δ)
n (U, V )In42J

2δ−n
42,31 ,

W seed(δ) = K4

2δ∑
n=0
G(δ)
n (U, V )In42J

2δ−n
42,31 . (3.62)

In contrast, the number of tensor structures in 〈O(0,0)(X1)O(δ,δ)(X2)O(0,0)(X3)O(δ,δ)(X4)〉
grows rapidly with δ. Denoting it by Ñ4(δ) we have, using eq.(6.6) of ref. [31]:

Ñ4(δ) = 1
3

(
2δ3 + 6δ2 + 7δ + 3

)
. (3.63)

It is important to stress that a significant simplification occurs in using seed CPW even
when there is no need to reduce their number, i.e. p = q = 1. For instance, consider
the correlator of four traceless symmetric spin 2 tensors. The CPW WO`+8,`(2, 2, 2, 2)
is unique, yet it contains 1107 conformal blocks (one for each tensor structure al-
lowed in this correlator), to be contrasted to the 85 present in WO`+8,`(0, 4, 0, 4)
and the 9 in Wseed(4)! We need to relate 〈O(0,0)(X1)O(2δ,0)(X2)O(`+2δ,`)(X3)〉 and
〈O(0,0)(X1)O(δ,δ)(X2)O(`+2δ,`)(X3)〉 in order to be able to use the results of section
3.3 together with Wseed(δ). As explained at the end of Section 3.2, there is no com-
bination of first-order operators which can do this job and one is forced to use the
operator (3.24):

〈O(0,0)
∆1

(X1)O(δ,δ)
∆2

(X2)O(`, `+2δ)
∆ (X)〉1 =

( δ∏
n=1

cn

)
(d̄1∇12D̃1)δ〈O(0,0)

∆1+δ(X1)O(2δ,0)
∆2

(X2)O(`, `+2δ)
∆ (X)〉1 ,

(3.64)

5Instead of eq.(3.60) one could also use 4-point functions with two scalars and two O(0,2δ) fields or
two scalars and two O(2δ,0) fields. Both have the same number 2δ + 1 of tensor structures as the
correlator (3.60).
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where6

c−1
n = 2(1− n+ 2δ)

(
2(n+ 1) + δ + `+ ∆1 −∆2 + ∆

)
. (3.65)

Equation (3.64) implies the following relation between the two CPW:

WO`+2δ,`(0, δ, 0, δ) =
( δ∏
n=1

c12
n c

34
n

)(
∇43d3D̃3

)δ(
∇12d̄1D̃1

)δ
Wseed(δ) , (3.66)

where c12
n = cn in eq.(3.65), c34

n is obtained from cn by exchanging 1→ 3, 2→ 4 and
the scaling dimensions of the corresponding external operators are related as indicated
in eq.(3.64).

Summarizing, the whole highly non-trivial problem of computing W (p,q)
O`+2δ,`(`1, `2, `3, `4)

has been reduced to the computation of the 2× (2δ + 1) conformal blocks G(δ)
n (U, V )

and G(δ)
n (U, V ) entering eq.(3.62). Once they are known, one can use eqs.(3.66) and

(3.59) to finally reconstruct W (p,q)
O`+2δ,`(`1, `2, `3, `4).

As a brief example of the power of this method we want to mention the simplification that
occurs when calculating conformal blocks for the correlator of four energy-momentum
tensors (for more details see section 6.2 of [36]). The exchanged operators can be
in the representations (` + 2δ, `) and (`, ` + 2δ) where δ = 0, 1, ..., 4. In the most
general case of four distinct non conserved operators, no parity imposed, one should
compute 11072 ∼ 106 conformal blocks, that are reduced to 49 using the differential
basis, Wseed(δ) and W seed(δ). For four identical spin 2 tensors, namely for four energy
momentum tensors, one gets N4 = 22+ + 3− tensor structures allowed in the four
point function ( [36])). The number of parity even structures agrees with what found
in ref. [69], while to the best of our knowledge the 3 parity odd structures found is a
new result.

Notice that even if the number of tensor structures is significantly reduced when
conservation is imposed, they are still given by a linear combination of all the tensor
structures. It might be interesting to see if there exists a formalism that automatically
gives a basis of independent tensor structures for conserved operators and the use of
the much larger basis of allowed structures.

6Notice that the scalings dimension ∆1 and ∆2 in eq.(3.65) do not exactly correspond in general to
those of the external operators, but should be identified with ∆′1 and ∆′2 in eq.(3.53). It might
happen that the coefficient cn vanishes for some values of ∆1 and ∆2. As we already pointed out,
there is some redundancy that allows us to choose a different set of operators. Whenever this
coefficient vanishes, we can choose a different operator, e.g. D̃1 → D1.
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3.5 Example: Four Fermions Correlator

In this section we would like to elucidate various aspects of our construction. We will
give an example in which we deconstruct a correlation function of four fermions. We
leave the domain of traceless symmetric external operators to show the generality of
our formalism. It might also have some relevance in phenomenological applications
beyond the Standard Model [58]. Our goal here is to deconstruct the CPW in the
s-channel associated to the four fermion correlator

〈ψ̄α̇(x1)ψβ(x2)χγ(x3)χ̄δ̇(x4)〉 . (3.67)

For simplicity, we take ψ̄ and χ̄ to be conjugate fields of ψ and χ, respectively, so that
we have only two different scaling dimensions, ∆ψ and ∆χ. Parity invariance is however
not imposed in the underlying CFT. The correlator (3.67) admits six different tensor
structures. An independent basis of tensor structures for the 6D uplift of eq. (3.67)
can be found using the relation (A.10). A possible choice is

〈Ψ(X1, S̄1) Ψ̄(X2, S2) X̄ (X3, S3)X (X4, S̄4)〉 = 1

X
∆ψ+ 1

2
12 X

∆χ+ 1
2

34

(
g1(U, V )I12I43 + (3.68)

g2(U, V )I42I13 + g3(U, V )I12J43,21 + g4(U, V )I42J13,24 + g5(U, V )I43J12,34 + g6(U, V )I13J42,31

)
.

For l ≥ 1, four CPW W
(p,q)
O`,` (p, q = 1, 2) are associated to the exchange of traceless

symmetric fields, and one for each antisymmetric field, WO`+2,` and WO`,`+2 . Let us
start with W (p,q)

O`,` . The traceless symmetric CPW are obtained as usual by relating the
three point function of two fermions and one O`,` to that of two scalars and one O`,`.
This relation requires to use the operator (3.24). There are two tensor structures for
l ≥ 1:

〈Ψ(S̄1)Ψ̄(S2)O`,`〉1 = KI12J
`
0,12 = I12〈Φ

1
2 Φ 1

2Ol,l〉1, (3.69)

〈Ψ(S̄1)Ψ̄(S2)O`,`〉2 = KI10I02J
`−1
0,12 = 1

16l(∆− 1)∇21

(
D̃2D̃1 + κI12

)
〈Φ 1

2 Φ 1
2O`,`〉1,

where κ = 2
(
4∆− (∆ + `)2

)
, the superscript n in Φ indicates the shift in the scaling

dimensions of the field and the operator O`,` is taken at X0. Plugging eq.(3.69) (and
the analogous one for X and X̄ ) in eq.(4.27) gives the relation between CPW. In order
to simplify the equations, we report below the CPW in the differential basis, the relation
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with the ordinary basis being easily determined from eq.(3.69):

W
(1,1)
O`,` =I12I43W

1
2 ,

1
2 ,

1
2 ,

1
2

seed (0) ,

W
(1,2)
O`,` =I12∇34D̃4D̃3W

1
2 ,

1
2 ,

1
2 ,

1
2

seed (0) ,

W
(2,1)
O`,` =I43∇21D̃2D̃1W

1
2 ,

1
2 ,

1
2 ,

1
2

seed (0) ,

W
(2,2)
O`,` =∇21D̃2D̃1∇34D̃4D̃3W

1
2 ,

1
2 ,

1
2 ,

1
2

seed (0) ,

(3.70)

where D̃3 and D̃4 are obtained from D̃1 and D̃2 in eq.(3.15) by replacing 1→ 3 and
2→ 4 respectively. The superscripts indicate again the shift in the scaling dimensions
of the external operators. As in ref. [19] the CPW associated to the exchange of
traceless symmetric fields is entirely determined in terms of the single known CPW of
four scalars Wseed(0). For illustrative purposes, we report here the explicit expressions
of W (1,2)

Ol,l :

K−1
4 W

(1,2)
O`,` = 8I12I43

U(V −U−2
)
∂U +U2

(
V −U

)
∂2
U +

(
V 2−(2+U)V +1

)
∂V +

V
(
V 2 − (2 + U)V + 1

)
∂2
V + 2UV

(
V − U − 1

)
∂U∂V

G(0)
0

+ 4UI12J43,21

U∂U + U2∂2
U +

(
V − 1

)
∂V + V

(
V − 1

)
∂2
V + 2UV ∂U∂V

G(0)
0 ,

(3.71)

where G(0)
0 are the known scalar conformal blocks [13, 14]. It is worth noting that the

relations (A.3)-(A.10) have to be used to remove redundant structures and write the
above result (3.71) in the chosen basis (3.68).

The analysis for the antisymmetric CPW WO`+2,` and WO`,`+2 is simpler. The three
point function of two fermions and one O`,`+2 field has a unique tensor structure, like
the one of a scalar and a (2, 0) field F . One has

〈Ψ(S̄1)Ψ̄(S2)O`+2,`〉1 = KI10K1,20J
`
0,12 = 1

4 d̄2〈Φ
1
2F

1
2O`+2,`〉1 ,

〈Ψ(S̄1)Ψ̄(S2)O`,`+2〉1 = KI02K2,10J
`
0,12 = 1

2 d̄2〈Φ
1
2F

1
2O`,`+2〉1

(3.72)

and similarly for the conjugate (0, 2) field F̄ . Using the above relation, modulo an
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irrelevant constant factor, we get

WO`+2,` = d̄2d4W
1
2 ,

1
2 ,

1
2 ,

1
2

seed (1) ,

WO`,`+2 = d̄2d4W
1
2 ,

1
2 ,

1
2 ,

1
2

seed (1) ,
(3.73)

where Wseed(1) and W seed(1) are defined in eq.(3.62). Explicitly, one gets
√
U

4 K
−1
4 WO`+2,` =I12I43

(
G(1)

2 + (V − U − 1)G(1)
1 + 4UG(1)

0

)
− 4UI42I13G(1)

1 + UI12J43,21G(1)
1

− UI42J13,24G(1)
2 + UI43J12,34G(1)

1 − 4UI13J42,31G(1)
0 .

(3.74)
The same applies for WO`,`+2 with G(1)

n → G
(1)
n . The expression (3.74) shows clearly

how the six conformal blocks entering WO`,`+2 are completely determined in terms of
the three G(1)

n .

61



4 Chapter 4

Seed Conformal Blocks

We have come a long way in the computation of general Conformal Partial Waves in 4D.
The procedure introduced in the previous chapter has shown how to relate, by means of
differential operators, mixed tensor CBs appearing in an arbitrary spinor/tensor 4-point
correlator to a basis of minimal mixed tensor CBs. These “seed" blocks arise from
4-point functions involving two scalars and two tensor fields in the (0, p) and (p, 0)
representations of the Lorentz group, with p an arbitrary integer ((1, 0) is a fermion).
Such 4-point functions are the simplest ones (i.e. with the least number of tensor
structures) where (`+ p, `) or (`, `+ p) mixed symmetry (bosonic or fermionic) tensors
can be exchanged in some OPE limit, for any `.

We are left with the task of calculating these "seed" CBs. Fortunately, we will show,
the use of the methods presented in the introduction, namely the shadow formalism
and the Casimir equation, will allow us to find closed expressions for the blocks.

We will start in section 4.1 with a summary of the last chapter, trivially generalizing
to the case when p is not only even, but odd as well. In section 4.2 we will write the
explicit form of the Casimir equation for the seed CPW. We will see that the Casimir
equation becomes a system of p+ 1 coupled differential equations for the p+ 1 CBs
G(p)
e . We will use the shadow formalism in section 4.3 to obtain some knowledge on

the analytic structure of the blocks, and in some cases obtain complete solutions. With
the insight gained from this exercise we will proceed in section 4.4 to obtain a final
solution to the system, using generalizations of the methods introduced in ref. [14]
(and further refined in ref. [15]) to compute 6D symmetric CBs for scalar correlators.
We write a proper ansatz for the solution that allows us to reduce a very complicated
system of p+ 1 quadratic coupled differential equations in two variables to a simple
algebraic linear system for some unknown coefficients cem,n. These coefficients are then
determined by solving the linear system. The set of non-trivial coefficients cem,n admits
a very useful geometric interpretation. They span a two-dimensional lattice in the
(m,n) plane. For each CB labelled by e, the shape of the lattice is an octagon, with p
and e dependent edges. For large p, the total number of coefficients cem,n grows like
p3 and their explicit form becomes more and more complicated as p increases. We
point out that a similar geometric interpretation applies also to the set of non-trivial
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coefficients xm,n entering the solution for the symmetric scalar blocks in even number
of dimensions.

4.1 Deconstructing Conformal Partial Waves

We have shown in the previous chapter that CPWs associated to an operator O(`,`+p)

(and similarly for its conjugate O(`+p,`)) exchanged in the OPE channel (12)(34) of
a 4-point function 〈O1O2O3O4〉, can be obtained from a single CPW W seed

O(`,`+p) as
follows:

W
(i,j)
O1O2O3O4,O(`,`+p) = Di12D

j
34W

seed
O(`,`+p) , (4.1)

where Di12 and Di34 are differential operators that depend on O1,2 and O3,4, respectively.
For even integer p = 2n, the seed CPWs are those associated to 4-point functions of
two scalar fields with one (2n, 0) and one (0, 2n) mixed symmetry tensor, while for
odd integer p = 2n+ 1, they consist of 4-point functions of two scalar fields with one
(2n+ 1, 0) and one (0, 2n+ 1) mixed symmetry fermion-tensor:1

〈φ1(x1)F2,α1α2...α2n(x2)φ3(x3)F β̇1β̇2...β̇2n
4 (x4)〉 , p = 2n , (4.2)

〈φ1(x1)ψ2,α1α2...α2n+1(x2)φ3(x3)ψβ̇1β̇2...β̇2n+1
4 (x4)〉 , p = 2n+ 1 . (4.3)

In the above correlators, in the OPE channel 〈(12)(34)〉 primary operators O(`,`+δ)

and their conjugates O(`+δ,`) can be exchanged only with the values of δ indicated
in eq. (3.6) and any `. There are several 4-point functions in which the operators
O(`,`+p) and O(`+p,`) are exchanged and in which the corresponding CPWs have a
unique structure. Among these, the correlators (4.2) and (4.3) are the ones with the
minimum number of tensor structures and hence the simplest. This is understood by
noticing that for any value of δ (and not only for δ = p) the operators O(`,`+δ) and
their conjugates O(`+δ,`) appear in both the OPE’s with one tensor structure only, since
there is only one tensor structure in the corresponding three-point functions:

〈φ(x1)Fα1...α2n(x2)Oβ̇1...β̇`+δ
α1...α`

(x0)〉 , 〈Oβ̇1...β̇`
α1...α`+δ

(x0)φ(x3)F β̇1...β̇2n(x4)〉 ,(4.4)

〈φ(x1)ψα1...α2n+1(x2)Oβ̇1...β̇`+δ
α1...α`

(x0)〉 , 〈Oβ̇1...β̇`
α1...α`+δ

(x0)φ(x3)ψβ̇1...β̇2n+1(x4)〉 .(4.5)

This implies then that the number of 4-point tensor structures appearing in eqs.(4.2)
and (4.3) is the minimum possible and equals to N4 = p+ 1.

Summarizing, the problem of computing CPWs and CBs associated to the exchange

1The previous chapter focused strictly on the even p case, but it is obvious that the same result
applies to odd p.
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of mixed symmetry operators O(`,`+p) and O(`+p,`) in any 4-point function is reduced
to the computation of the p+ 1 CBs appearing in the decomposition of W seed

O(`,`+p) and
W

seed
O(`+p,`) .

Despite this simplification, the above computation is still technically challenging. We
still have to deal with a complicate calculation, given we have to deal with several
tensor strucutres. A possible independent basis for the p+ 1 tensor structures appearing
in our seed correlators (4.2) and (4.3) can be obtained from the above 6D SU(2, 2)
invariant scalar quantitites:

〈Φ1(X1)F (p,0)
2 (X2, S2)Φ3(X3)F (0,p)

4 (X4, S4)〉 = K4

p∑
n=0

gn(U, V )In42J
p−n
42,31 , (4.6)

where K4, U and V are the 6D analogues of eqs.(3.2)-(3.3), obtained by replacing
x2
ij → Xij . We denote the 6D seed CPW associated to the exchange of the fields O(`,`+p)

and O(`+p,`) in the 4-point function (4.6) by W seed(p) and W seed(p), respectively. They
are parametrized in terms of p+ 1 CBs as follows:

W seed(p) = K4

p∑
e=0

G(p)
e (U, V )Ie42J

p−e
42,31,

W
seed(p) = K4

p∑
e=0

G
(p)
e (U, V )Ie42J

p−e
42,31.

(4.7)

For simplicity, we have dropped in eq.(4.7) the dependence of G(p)
e and G(p)

e on ∆ and
`. The CBs depend also on the external operator dimensions, more precisely on a and
b, defined as

a ≡ τ2 − τ1

2 = ∆2 −∆1

2 + p

4 , b ≡ τ3 − τ4

2 = ∆3 −∆4

2 − p

4 . (4.8)

For simplicity of notation, we no longer distinguish between even and odd values of
p, since we can consider both cases simultaneously. It is then understood that in the
corrrelator (4.6) F (p,0)

2 and F (0,p)
4 are 6D uplifts of 4D fermion fields for p odd.

It is possible to getW seed(p) fromW
seed(p), or vice versa, by using differential operators

introduced in chapter 3 and a parity transformation P . We have

W
seed(p) = P WΦ1F 2Φ3F4,O(`,`+p) , (4.9)

where

WΦ1F 2Φ3F4,O(`,`+p) = 1
22p (p!)2

( p∏
n=1

cn

)
(∇12d̄1D̃1)p(∇43d3D̃3)pW seed(p)

∣∣∣∣
a→a− p2 , b→b+

p
2

(4.10)
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is the CPW associated to the parity dual 4-point function 〈Φ1F
(0,p)
2 Φ3F

(p,0)
4 〉, and

(cn)−1 = (4 + 3p− 2a− τ − 2n)(4 + 3p+ 2b− τ − 2n) , τ = ∆ + `+ p

2 . (4.11)

However, we will not use eq.(4.9) to compute W seed(p), because we will find an easier
way to directly compute both W seed(p) and W seed(p).

Instead of eq.(4.6), we could have considered the alternative 4-point function

〈Φ1(X1)F (p,0)
2 (X2)F (0,p)

3 (X3)Φ4(X4)〉 (4.12)

to calculate an analogue seed CPW W̃ seed(p). Since eq.(4.12) is equal to eq.(4.6)
under the permutation 3 ↔ 4, the CBs appearing in the decomposition of W seed(p)
and W̃ seed(p) are related as follows:

G̃(p)
e (U, V ; a, b) = V aG(p)

e

(
U

V
,

1
V

; a,−b
)
, e = 0, . . . , p . (4.13)

The 4D CBs are directly identified with their 6D counterparts. One has simply

G(p)
e (U, V ) = G(p)

e (u, v) , G
(p)
e (U, V ) = G

(p)
e (u, v) (4.14)

where G(p)
e (u, v) and G(p)

e (u, v) are the 4D CBs entering the r.h.s. of eq.(3.8) when
expanding the 4D CPWs W seed

O(`,`+p) and W
seed
O(`+p,`) .

4.2 The System of Casimir Equations

In this section we derive the system of second order Casimir equations for the seed
conformal blocks defined in eq. (4.7). We will follow the procedure outlined in chapter 2
with the obvious generalizations. First of all the generalization of the casimir eigenvalue:

[Ĉ,O(`,`)(x)] = E0
`O(`,`)(x) (4.15)

Now we are considering general representations of the Lorentz group (no longer only
traceless symmetric operators O(`,`)), which we are parametrizing by ` and p. In this
case the eigenvalue takes the following form.

Ep
` = ∆ (∆− 4) + `2 + (2 + p)(`+ p

2) (4.16)

This is the Casimir eigenvalue associated to an operator in the (`+ p, `) or (`, `+ p)
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Lorentz representations. Using then eq.(3.5) one derives a differential equation for each
CPW, for any fixed ∆ and `.

The derivation exposed in chapter 2 can be generalized for CPWs entering 4-point
correlators of tensor fields. As we have seen in section 4.1, in the most general case
the exchange of a given field O(`,¯̀) is not parametrized by a single CPW, but by
a set of CPWs W (i,j), whose number depends on the number of tensor structures
defining the three-point functions (12O) and (34O). In order to derive the second
order differential equation satisfied by W (i,j) one has to properly identify the OPE
coefficients λi appearing in the generalization of the OPE with those in eq.(3.5). This
is not needed for the seed correlators (4.6) since the CPW is unique, like in the scalar
correlator. For each p, we have

CW seed(p) = Ep
` W

seed(p), (4.17)

where C is the explicit differential form of the Casimir operator to be determined and
Ep
` is as in eq.(4.16). An identical equation is satisfied by W seed(p). Contrary to

the scalar case, even in this simple set-up, the single differential equation (4.17) for
W seed(p) turns into a system of equations for the p+ 1 CBs G(p)

e . Let us see how this
system of equations can be derived for any p.

The action of the Lorentz generators Li,MN on tensor fields should include, in addition
to the orbital contribution (2.18), the spin part. Recall that SO(2, 4) ' SU(2, 2) and
at the level of representations 8spin ' 4 + 4̄, where 4 and 4̄ represent twistor indices.
Denoting by [ΣMN ] b

a and [ΣMN ]ab the generators of SU(2, 2) fundamental/anti-
fundamental (twistor) representations (see Appendix A of ref. [31] for details and our
conventions), one can label the 6D spin representations by two integers (s, s̄) which
count the number of twistor indices in the 4 and 4̄ representations respectively. The
Lorentz generators acting on generic 6D fields in the (s, s̄) representation are then
given by

[LiMN ]b1.. bs; c1.. cs̄a1.. as̄; d1.. ds = i(XiM∂iN −XiN∂iM)(δc1a1 .. δ
cs̄
as̄)(δ

b1
d1 .. δ

bs
ds

)

+ i

(
[ΣMN ]c1a1δ

c2
a2 ..δ

cs̄
as̄ + [ΣMN ]c2a2δ

c1
a1 ..δ

cs̄
as̄ + ..

)
δb1d1 ..δ

bs
ds
(4.18)

+ i

(
[ΣMN ]b1d1δ

b2
d2 ..δ

bs
ds

+ [ΣMN ]b2d2δ
b1
d1 ..δ

bs
ds

+ ..

)
δc1a1 ..δ

cs̄
as̄ .

We can get rid of all the twistor indices by defining the index-free Lorentz generators

LiMN = i(XiM∂iN −XiN∂iM) + i(SiΣMN∂Si) + i(S̄iΣMN∂S̄i). (4.19)

66



Given any 6D tensor O(X,S, S̄) , we have

[L̂MN , Oi(Xi, Si, S̄i)] = LiMNOi(Xi, Si, S̄i) , (4.20)

where L̂MN satisfy the Lorentz algebra

[L̂MN , L̂RS] = i
(
ηMSL̂NR + ηNRL̂MS − ηMRL̂NS − ηNSL̂MR

)
. (4.21)

The explicit form of the Casimir differential operator entering eq.(4.17) is obtained by
plugging eq.(4.19) in eq.(2.12). The single equation (4.17) for the CPW turns into a
system of second-order coupled differential equations for the p+ 1 conformal blocks
G(p)
e , e = 0, . . . , p, since the coefficients multiplying the p + 1 tensor structures in

eq.(4.7) should vanish independently. Schematically

(C−Ep
` )
(
K4

p∑
e=0

G(p)
e (U, V )Ie42J

p−e
42,31

)
= K4

p∑
e=0

Cas(p)
e (G)Ie42J

p−e
42,31 = 0 ⇒ Cas(p)

e (G) = 0 ,

(4.22)
where Cas(p)

e (G) are the p + 1 Casimir equations, in general each one involving all
conformal blocks G(p)

e . Determining the Casimir system Cas(p)
e (G) is conceptually

straightforward but technically involved. The main complication arises from the spin
part of the Lorentz generator (4.19) that generates products of SU(2, 2) invariants not
present in eq.(4.7). The new invariants are linearly dependent and must be eliminated
using relations among them. See Appendix A of ref. [36] for a list of such relations. This
is a lengthy step, that however can be automatized in a computer. When redundant
structures have been eliminated, one is finally able to read from eq.(4.22) the Casimir
system Cas(p)

e (G). Despite the complicacy of the computation, the final linear system of
p+ 1 coupled partial differential equations can be written into the following remarkably
compact form:

Cas(p)
e (G) =

(
∆(ae,be;ce)

2+p −1
2
(
Ep
`−εpe

))
G(p)
e +Ape zz̄ L(ae−1)G(p)

e−1+Be L(be+1)G(p)
e+1 = 0 ,
(4.23)

where e = 0, . . . , p,

εpe ≡ 3
4 p

2 − (1 + 2e) p+ 2e (2 + e), Ape ≡ 2(p− e+ 1), Be ≡
e+ 1

2 , (4.24)

and the coefficients Ep
` are given in eq.(4.16). In eq.(4.23) it is understood that

G
(p)
−1 = G

(p)
p+1 = 0. An identical system of equations is satisfied by the conjugate CBs

G
(p)
e . Interestingly enough, only two differential operators enter into the Casimir system:

the second-order operator already featured in the scalar case p = 0, with coefficients
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ae, be and ce given by

ae ≡ a, be ≡ b+ (p− e), ce ≡ p− e , (4.25)

and the new linear operator L(µ) given by

L(µ) ≡ 1
z − z̄

(
z(z − 1)∂z − z̄(z̄ − 1)∂z̄

)
+ µ. (4.26)

Another remarkable property of the Casimir system (4.23) is that, for each given e and
p, at most three conformal blocks mix with each other in a sort of “nearest-neighbour
interaction": Ge mixes only with Ge+1 and Ge−1. The Casimir equations at the
“boundaries" Cas(p)

0 and Cas(p)
p involve just two blocks. For p = 0, the second and

third terms in eq.(4.23) vanish and the system trivially reduces to the single equation
we discovered in the scalar case.

Finding the solution of the system (4.23) is a complicated task, that we address in the
next sections.

4.3 Shadow Formalism Approach

In this section we apply the shadow formalism, using the recent formulation given
in ref. [21] and outlined in chapter 2, to get compact expressions for W seed(p) and
W

seed(p) in an integral form for any p and `. Using these expressions, we compute the
CBs G(p)

e and G(p)
e for ` = 0 and generic p. We then provide a practical way to obtain

G(p)
e and G(p)

e for any ` in a compact form. We finally use this method to compute
G(p)
e and G(p)

e for p = 1 and G(p)
e for p = 2 explicitly.

Despite the power of the above technique, it is computationally challenging to go
beyond the p = 2 case. Moreover, as we will see, we do not have any control on the
final analytic form of CBs. In light of this, we will provide the full analytic solution
for G(p)

e and G(p)
e , for any p, only in section 4.4, where we solve directly the set of

Casimir differential equations by using an educated ansatz for the solution. The results
obtained in this section are however of essential help to argue the proper ansatz. They
will also allow us to get the correct physical asymptotic behaviour of G(p)

e and G(p)
e that

will be used as boundary conditions to solve the Casimir system of equations (4.23).
Finally, the explicit computation of G(p)

e and G(p)
e for p = 1 and G(p)

e for p = 2 using
the shadow formalism provides an important consistency check for the validity of the
full general solution (4.101) to be found in section 4.4.
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4.3.1 CPW in Shadow Formalism

Let’s write again the generic formula to obtain the CPW associated to the exchange
of a given operator Or with spin (`, ¯̀) in a correlator of four operators On(Xn),
n = 1, 2, 3, 4:

W
(i,j)
O(`,¯̀)(Xi) = ν

∫
d4X0〈O1(X1)O2(X2)Or(X0, S, S̄)〉i

←→Π `,¯̀〈Õr(X0, T, T̄ )O3(X3)O4(X4)〉j
∣∣∣∣
M
,

(4.27)

We use eq.(4.27) to get an integral expression of W seed(p) and W seed(p) in eq.(4.7).
The explicit expressions of the needed 3-point functions in this case (again stripped off
their OPE coefficients) are given by

〈Φ1(X1)F2(X2)O(`,`+p)(X0)〉 = K3(τ1, τ2, τ)Ip02J
`
0,12 ,

〈Φ1(X1)F2(X2)O(`+p,`)(X0)〉 = K3(τ1, τ2, τ)Kp
0,12J

`
0,12 , (4.28)

where
K3(τ1, τ2, τ3) = X

τ3−τ1−τ2
2

12 X
τ2−τ1−τ3

2
13 X

τ1−τ2−τ3
2

23 , (4.29)

is a kinematic factor and

Ki,jk ≡
√

Xjk

XijXik

SjXiSk , Ki,jk ≡
√

Xjk

XijXik

S̄jXiS̄k , Ji,jk ≡
1
Xjk

S̄iXjXkSi

(4.30)
are SU(2, 2) invariants for three-point functions. The “shadow" 3-point function
counterparts are given by

〈Õ(`,`+p)(X0)Φ3(X3)F̄4(X4)〉 ∝ 〈O(`,`+p)(X0)Φ3(X3)F̄4(X4)〉
∣∣∣∣
∆→4−∆

= K3

∣∣∣∣
∆→4−∆

K
p

3,04J
`
0,34,

〈Õ
(`+p,`)

(X0)Φ3(X3)F̄4(X4)〉 ∝ 〈O(`+p,`)(X0)Φ3(X3)F̄4(X4)〉
∣∣∣∣
∆→4−∆

= K3

∣∣∣∣
∆→4−∆

Ip40J
`
0,34.

Notice again the simplification we have due to the fact the three point functions have
a unique tensor structure. The calculation of our CPW is much simpler in this case,
having gotten ridden of the indices (i, j) in 4.27. Using the above relations, after a bit
of algebra, one can write

W seed(p) = ν

X
a12+ `

2
12 X

a34+ `+p
2

34

∫
D4X0

N`(p)

X
a01+ `

2
01 X

a02+ `+p
2

02 X
a03+ `+p

2
03 X

a04+ `
2

04

∣∣∣∣
M=1

,(4.31)

W
seed(p) = ν

X
a12+ `+p

2
12 X

a34+ `
2

34

∫
D4X0

N `(p)

X
a01+ `+p

2
01 X

a02+ `
2

02 X
a03+ `

2
03 X

a04+ `+p
2

04

∣∣∣∣
M=1

,(4.32)
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where

a01 = ∆
2 + p

4 − a, a02 = ∆
2 −

p

4 + a, a12 = ∆1 + ∆2

2 − ∆
2 ,

a03 = 4−∆
2 + p

4 + b, a04 = 4−∆
2 − p

4 − b, a34 = ∆3 + ∆4

2 − 4−∆
2 , (4.33)

and

N`(p) ≡ (S̄S2)p(S̄X2X̄1S)`←→Π `,`+p(S̄4X3T̄ )p(T̄X4X̄3T )`, (4.34)
N `(p) ≡ (S̄4S)p(S̄X3X̄4S)`←→Π `+p,`(S2X1T )p(T̄X1X̄2T )`. (4.35)

We will not need to determine the normalization factors ν and ν̄ in eqs.(4.31) and
(4.32). Notice that the correct behaviour of the seed CPWs under X12 → e4πiX12 is
saturated by the factor X12 multiplying the integrals in eqs.(4.31) and (4.32). Hence
the latter should be projected to their trivial monodromy components M = 1, as before.
Notice that eqs.(4.34) and (4.35) are related by a simple transformation:

N `(p) = PN`(p)
∣∣∣∣
1↔3, 2↔4

, (4.36)

where P is the parity operator.

We can recast the expression (4.34) in a compact and convenient form using some
manipulations. We define a couple new variables and remind the reader of the variable
s:

s ≡ X12X34

4∏
n=1

X0n, t ≡
1

2
√
s

(
X02X03X14−X01X03X24−(3↔ 4)

)
, u ≡ X02X03X34√

s
.

(4.37)
Then we look for a relation expressing the generic N`(p) with the known N `(0):

N`(0) = (−1)`(`!)4 s`/2C1
` (t) , (4.38)

where Cp
` are Gegenbauer polynomials of rank p. Starting from eq.(4.34), after acting

with the S and T derivatives, one gets

N`(p) = (`!)2(−→∂ S̄X0
−→
∂ T̄ )`+p

(
(S̄S2)p(S̄4X3T̄ )p(S̄ΩT̄ )`

)
, (4.39)

where we have defined Ωab = (X2X̄1X0X̄3X4)ab . In order to relate N`(p) above to
N`+p(0) in eq.(4.38), we look for an operator D satisfying

Dp (−→∂ S̄X0
−→
∂ T̄ )`+p(S̄ΩT̄ )`+p = (−→∂ S̄X0

−→
∂ T̄ )`+p

(
(S̄S2)p(S̄4X3T̄ )p(S̄ΩT̄ )`

)
. (4.40)
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By looking at eq.(4.40) we deduce that D should be bilinear in S̄4 and S2 and should
commute with (−→∂ S̄X0

−→
∂ T̄ ). In addition to that, it should have the correct scaling in

X’s and should be gauge invariant, namely it should be well defined on the light-cone
X2 = 0 and preserve the conditions (1.59). It is not difficult to see that the choice

D = (S̄4X0Σ̄NS2) ∂

∂XN
2

(4.41)

fulfills all the requirements. One has D(S̄ΩT̄ ) = 8X01X04(S̄S2)(S̄4X3T̄ ). Iterating p
times gives the desired relation:

N `(p) ∝
1

(X01X04)pD
pN`+p(0) . (4.42)

The operator D annihilates the invariants J42,01 and J42,30 and all the scalar products
with the exception of X12, in which case we have DX12 = X01 J42,01. The action on
the s, t, and u variables is

D s = X−1
12 s J42,01, D t = −1

2 X
−1
12 (u−1 J42,30+t J42,01), D u−1 = 1

2 X
−1
12 u

−1 J42,01 ,

(4.43)
and on Gegenbauer polynomials is

DCλ
n(t) = 2λCλ+1

n−1(t)D t. (4.44)

Using recursively the identity for Gegenbauer polynomials

n

2λ C
λ
n(t)− t Cλ+1

n−1(t) = −Cλ+1
n−2(t) , (4.45)

we can write the following expression for N`(p):

N`(p) ∝ s
`
2

p∑
w=0

(
p

w

)
uw Cp+1

`−w(t) Ip−w1 Iw2 , (4.46)

where
(
p
w

)
is the binomial coefficient and for compactness we have defined the dimen-

sionful tensor structures

I1 ≡ X03 J42,30 , I2 ≡ X01 J42,01. (4.47)
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Combining together eqs.(4.31), (4.32), (4.36), (4.37) and (4.46) we can finally write

W seed(p) = ν ′
p∑

w=0

(
p

w

)
1

X
a12+w

2
12 X

a34+ p−w
2

34

∫
D4X0

Cp+1
`−w(t) Ip−w1 Iw2

X
a01+w

2
01 X

a02+ p−w
2

02 X
a03+ p−w

2
03 X

a04+w
2

04

∣∣∣∣∣
M=1

,

W
seed(p) = ν̄ ′

p∑
w=0

(
p

w

)
1

X
a12+ p−w

2
12 X

a34+w
2

34

∫
D4X0

Cp+1
`−w(t) Iw1 I

p−w
2

X
a01+ p−w

2
01 X

a02+w
2

02 X
a03+w

2
03 X

a04+ p−w
2

04

∣∣∣∣∣
M=1
(4.48)

where ν ′ and ν̄ ′ are undetermined normalization factors.

4.3.2 Seed Conformal Blocks and Their Explicit Form for ` = 0

The computation of the CBs G(p)
e and G(p)

e starting form eq.(4.48) is a non-trivial task
for generic ` and p, since we are not aware of a general formula for an integral that
involves Cp+1

`−w(t) for p 6= 0. For any given `, one can however expand the Gegenbauer
polynomial, in which case the CBs G(p)

e and G(p)
e can be computed. After a discussion

on the structure of the CBs for generic `, we compute in this subsection the CBs G(p)
e

and G(p)
e for ` = 0 and generic p.

Looking at eq.(4.48) and recalling the definition of t in eq.(4.37), one realizes that the
Gegenbauer polynomials, when expanded, do not give rise to intrinsically new integrals
but just amounts to shifting the exponents in the denominator. The tensor structures
in the numerators bring p open indices in the form XN1

0 . . . X
Np
0 , which can be removed

by using eq.(3.21) in ref. [21], reducing the problem to scalar integrals in 2h = 2(2 + p)
effective dimensions, of the form:

I
(h)
A02, A03, A04 ≡

∫
D2hX0

1
XA01

01 XA02
02 XA03

03 XA04
04

∣∣∣∣∣
M=1

, (4.49)

where A01 +A02 +A03 +A04 = 2h. The capital A0i are used for the exponents in the
denomentaor with all possible shifts introduced by the Gegenbaur polynomial. This
integral is given by the following expression

I
(h)
A02, A03, A04 ∝ XA04−h

13 XA02+A03−h
14 X−A02

24 Xh−A03−A04
34 ×R(h)(z, z̄; A02, A03, A04),

(4.50)
where R(h) is given by

R(h)(z, z̄; A02, A03, A04) ≡
(
− ∂

∂v

)h−1
f(z; A02, A03, A04)f(z̄; A02, A03, A04),(4.51)

f(z; A02, A03, A04) ≡ 2F1(A02 − h+ 1, −A04 + 1; −A03 − A04 + h+ 1; z).(4.52)
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The derivative −∂/∂v in (z, z̄) coordinates is given by

− ∂

∂v
= 1
z − z̄

(
z
∂

∂z
− z̄ ∂

∂z̄

)
. (4.53)

In the case of ` = 0, all the above manipulations simplify drastically. The Gegenbauer
polynomial Cp+1

`−w(t) vanishes for all the values w except for w = 0, leaving only one type
of tensor structure Ip1 for W seed(p) and Ip2 for W seed(p). This leads to a one-to-one
correspondence between CBs and integrals:

G(p)
e ∝ Xp−e

13 Xe
34K−1

4 I
(2+p)
a02+ p

2 , a03+ p
2 , a04+e ∝ (zz̄)

∆+ p
2

2 R(2+p)(z, z̄; a02 + p

2 , a03 + p

2 , a04 + e), (4.54)

G
(p)
e ∝ Xe

12X
p−e
13 K−1

4 I
(2+p)
a02+e, a03+p−e, a04+ p

2
∝ (zz̄)

∆− p2
2 +eR(2+p)(z, z̄; a02 + e, a03 + p− e, a04 + p

2).

We have omitted here the relative factors between different CBs. They must be restored
if one wants to check that G(p)

e and G(p)
e in eq.(4.54) satisfy the Casimir system (4.23).

For generic ` the CBs are a sum of expressions like eq.(4.54) with different shifts of the
parameters A0i, weighted by the relative constants and powers of v (coming from the
Gegenbauer polynomial). Since all these terms have p+ 1 derivatives with respect to v,
the highest power in 1/(z − z̄) appearing in G(p)

e and G(p)
e is

( 1
z − z̄

)1+2 p
. (4.55)

The asymptotic behaviour of the CBs when z, z̄ → 0 (u → 0, v → 1) for ` = 0 is
easily obtained from eq.(4.54) by noticing that R(h)(z, z̄; A02, A03, A04) is constant in
this limit. We then have

lim
z→0, z̄→0

G(p)
e ∝ (zz̄)∆

2 + p
4 , lim

z→0, z̄→0
G

(p)
e ∝ (zz̄)∆

2 −
p
4 +e . (4.56)

By knowing that the CBs should be proportional to the factor in eq.(4.55), we can
refine eq.(4.56) and write

lim
z→0, z̄→0

G(p)
e ∝

(zz̄)∆
2 + p

4

(z − z̄)1+2p (z1+2p − z̄1+2p) , (4.57)

lim
z→0, z̄→0

G
(p)
e ∝

(zz̄)∆
2 −

p
4 +e

(z − z̄)1+2p (z1+2p − z̄1+2p) . (4.58)

Notice that the behavior (4.57) and (4.58) of the CBs for z, z̄ → 0 when ` = 0 is
not guaranteed to be straightforwardly extended for any ` 6= 0. Indeed, we see from
eq.(4.48) that for a given p, the generic CPW is obtained when ` ≥ p, in which case
all terms in the sum over w are present. All the values of ` < p should be treated
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separately.

4.3.3 Computing the Conformal Blocks for ` 6= 0

A useful expression of the CBs for generic values of ` can be obtained using eq.(4.42)
and the known closed form of W seed(0). Recall that

W seed(0) =
(
X14

X13

)b (X24

X14

)−a G(0)(z, z̄)

X
∆1+∆2

2
12 X

∆3+∆4
2

34

, (4.59)

where a and b are as in eq.(4.8) for p = 0 and G(0)(z, z̄) are the known scalar CBs [13,14]

G(0)(z, z̄) = G(0)(z, z̄; ∆, l, a, b) = (−1)` zz̄

z − z̄

(
k

(a,b;0)
∆+`

2
(z)k(a,b;0)

∆−`−2
2

(z̄)− (z ↔ z̄)
)
,

(4.60)
expressed in terms of the function k(a,b;c)

ρ (z) defined in eq (2.41).

Comparing eq.(4.59) with eq.(4.48) for p = 0, one can extract the value of the shadow
integral in closed form for generic spin ` [21]:

I` ≡
∫
D4X0

C1
` (t)

Xa01
01 X

a02
02 X

a03
03 X

a04
04

∣∣∣∣
M=1
∝
(
X14

X13

)b (X24

X14

)−a G(0)(z, z̄; ∆, `, a, b)

X
∆
2

12X
4−∆

2
34

.

(4.61)
Using the relations (4.38) and (4.42) one can recast W seed(p) and W seed(p) in the
form

W seed(p) ∝ DN1 ...DNp
X
a12+ `

2
12 Xa34

34

X
`+p

2
12

∫
D4X0

C1
`+p(t)XN1

0 ...X
Np
0

X
a01+ p

2
01 Xa02

02 X
a03
03 X

a04+ p
2

04

∣∣∣∣∣
M=1

,

W
seed(p) ∝ DN1 ...DNp

Xa12
12 X

a34+ `
2

34

X
`+p

2
34

∫
D4X0

C1
`+p(t)XN1

0 ...X
Np
0

Xa01
01 X

a02+ p
2

02 X
a03+ p

2
03 Xa04

04

∣∣∣∣∣
M=1

,(4.62)

where D = PD|1↔3,2↔4, as follows from eq.(4.36), D = DMXM
0 , D = DMXM

0 . The
tensor integral is evaluated using SO(4, 2) Lorentz symmetry. One writes

∫
D4X0

C1
`+p(t)XM1

0 ...X
Mp

0

X
a01+ p

2
01 Xa02

02 X
a03
03 X

a04+ p
2

04

=
∑
n

An(Xi) τM1...Mp
n (Xi) , (4.63)

where n runs over all possible rank p traceless symmetric tensors τn which can be
constructed from X1, X2, X3, X4 and ηMN ’s, with arbitrary scalar coefficients An to be
determined. Performing all possible contractions, which do not change the monodromy
of the integrals, the An coefficients can be solved as linear combinations of the scalar
block integrals I` defined in eq.(4.61), with shifted external dimensions.
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In this way, we have computed the CBs G(p)
e with p = 1, 2 and G(p)

e with p = 1 for
general ∆, `, a, b. We have also verified that the CBs G(1)

e obtained from G(1)
e using

eqs.(4.10) and (4.9) agree with those arising from the direct shadow computation.
There is a close connection among the CBs G(p)

e and G(p)
p−e, for any p. More on this

point in section 4.4. In all cases the CBs satisfy the Casimir system (4.23).

As mentioned at the end of subsection 4.3.2, the asymptotic behaviour of the CBs for
z, z̄ → 0 depends on whether ` ≥ p or not. For p = 1 we can expand the obtained
solutions, which for ` ≥ 1 read as

limz→0, z̄→0G
(1)
e ∝

(zz̄)
∆−`

2 + 1
4

(z−z̄)3

(
z̄`+e+2 − (z ↔ z̄)

)
, ` ≥ 1 (4.64)

limz→0, z̄→0G
(1)
e ∝

(zz̄)
∆−`

2 − 1
4

(z−z̄)3

(
zez̄`+3 − (z ↔ z̄)

)
, ` ≥ 1 , (4.65)

while for ` = 0 they obviously match eqs.(4.57) and (4.58). The above relations,
together with eqs.(4.55), (4.57) and (4.58), will allow us to settle the problem of the
boundary values of the CBs for any value of p and `, that will be reported in eqs.(4.74)
and (4.78). The explicit form of G(p)

e found for p = 2 using the shadow formalism
provides a further check of the whole derivation.

4.4 Solving the System of Casimir Equations

The goal of this section is to find the explicit form of the conformal blocks G(p)
e and

G
(p)
e appearing in eq.(4.7) by solving the Casimir system (4.23). In doing it we adopt

and expand the methods introduced by Dolan and Osborn in refs. [14, 15] to obtain
6D scalar conformal blocks. We will mostly focus on the blocks G(p)

e , since the same
analysis will apply to G(p)

e with a few modifications that we will point out.

Before jumping into details let us outline the main logical steps of our derivation. We
first find, with the guidance of the results obtained in section 4.3, the behaviour of
G(p)
e and G(p)

e in the limit z, z̄ → 0 in which the Casimir system (4.7) can be easily
solved. Using this information and eq.(4.55), we then write an educated ansatz for
the form of the CBs. Using this ansatz, we reduce the problem of solving a system of
linear partial differential equations of second order in two variables to a system of linear
algebraic equations for the unknown coefficients entering the ansatz. Then we show
that the non-zero coefficients in the ansatz admit a geometric interpretation. They
form a two-dimensional lattice with an octagon shape structure. This interpretation
allows us to precisely predict which coefficients enter in our ansatz for any value of p.
Finally, we show that the linear algebraic system admits a recursive solution and we
discuss the complexity of deriving full solutions for higher values of p.
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4.4.1 Asymptotic Behaviour

Not all solutions of the Casimir system (4.23) give rise to sensible CBs. The physical
CBs are obtained by demanding the correct boundary values for G(p)

e and G(p)
e . Possible

boundary values are given by considering the OPE limit z, z̄ → 0 of W seed(p) and
W

seed(p). The limits of G(p)
e and G(p)

e for z, z̄ → 0 could be computed by a careful
analysis of tensor structures. This analysis has been partly done in section 4.3, where
we have obtained the boundary values of G(p)

e and G(p)
e for z, z̄ → 0 for special values

of p and/or `. Luckily enough, there will be no need to extend such analysis because
the form of the system (4.23) in the OPE limit, together with eqs.(4.57), (4.64) and
(4.65), will clearly indicate the general form of the boundary values of G(p)

e and G(p)
e .

Let us then consider the form of the conformal blocks G(p)
e in the limit z, z̄ → 0, with

z → 0 taken first. In this limit

G(p)
e → Nez

λ(e)
z̄λ̄

(e)
, (4.66)

where Ne, λ(e) and λ̄(e) are parameters to be determined. For simplicity of notation we
have omitted their p-dependence. The differential operators (2.20) and (4.26), when
acting on eq.(4.66) give, at leading order in z and z̄,

∆(ae,be;ce)
ε → λ(e)(λ(e) − 1)− ce(λ(e) + λ̄(e)) + λ̄(e)(λ̄(e) − 1)− ελ(e) , (4.67)

L(µ)→ 1
z̄

(λ(e) − λ̄(e)) . (4.68)

Let us now focus on the specific “boundary" equation Cas(p)
e with e = p. In the limit

z, z̄ → 0 it reads

Cas(p)
p (G)→ Np

(
λ(p)(λ(p) − 1) + λ̄(p)(λ̄(p) − 1)− (p+ 2)λ(p) − 1

2(E`,p − εpp)
)
zλ

(p)
z̄λ

(p)

+2Np−1(λ(p−1) − λ̄(p−1))zλ(p−1)+1z̄λ̄
(p−1) = 0 . (4.69)

For generic values of `, we have λ(e) 6= λ̄(e). Hence we cannot have λ(p−1) + 1 < λ(p)

in eq.(4.69), since this would imply that the last term dominates in the limit and Np−1

vanishes, in contradiction with the initial hypothesis (4.66).

Let us first consider the case in which λ(p−1) + 1 > λ(p), so that the terms in the
second row of eq.(4.69), coming from G

(p)
p−1, vanish. It is immediate to see that the

only sensible solution for λ(p) and λ̄(p) that reproduce the known OPE limit for the
p = 0 case is

λ(p) = ∆− `
2 + p

4 , λ̄(p) = ∆ + `

2 + p

4 . (4.70)
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Notice that eq.(4.70) agrees with the asymptotic behaviour for the CBs G(p)
e found in

eq.(4.64) for e = p = 1 and ` ≥ 1. Consider now the equation Cas(p)
p−1. For z, z̄ → 0

we have

Cas
(p)
p−1(G)→ Np−1

(
λ(p−1)(λ(p−1) − 1) + λ̄(p−1)(λ̄(p−1) − 1) + (λ(p−1) + λ̄(p−1))− (p+ 2)λ(p−1)

−1
2(E`,p − εpp−1)

)
zλ

(p−1)
z̄λ̄

(p−1) + p

2Np(λ(p) − λ̄(p))zλ(p)
z̄λ̄

(p)−1

+4Np−2(λ(p−2) − λ̄(p−2))zλ(p−2)+1z̄λ̄
(p−2) = 0 . (4.71)

According to eq.(4.64), we expect λ(p−2) = λ(p−1) = λ(p), λ̄p−1 = λ̄(p) − 1, λ̄p−2 =
λ̄(p) − 2 in eq.(4.71). In this case the last term is higher order in z and eq.(4.71) is
satisfied by simply taking

Np−1

Np

= − `p

2(`+ p) . (4.72)

Notice that we have tacitly assumed above that λ(p) − λ̄(p) = −` does not vanish, i.e.
` 6= 0. For ` = 0, more care is required and one should consider the first subleading
term in z̄ in the expansion (4.66).

The above analysis can be iteratively repeated until the last equation Cas(p)
0 is reached

and all the coefficients Ne, λ(e) and λ̄(e) are determined. Analogously to the ` = 0 case
in eq.(4.71), all the low spin cases up to ` = p should be treated separately at some
step in the iteration, as already pointed out in subsection 4.3.2. Skipping the detailed
derivation, the final values of λ(e) and λ̄(e) are given by

λ(e) = λ(p) , ∀` = 0, 1, 2, . . .
λ̄(e) = λ̄(p) − (p− e) , ∀` = p− e, p− e+ 1, . . .
λ̄(e) = λ̄(p) , ∀` = 0, 1, . . . , p− e− 1 (4.73)

where λ(p) and λ̄(p) are as in eq.(4.70) and e = 0, . . . , p− 1. The asymptotic behaviour
of the CBs in the OPE limit is given for any ` and p by

lim
z→0, z̄→0

G(p)
e ∝

(zz̄)λ(p)

(z − z̄)1+2p

(
z̄λ̄

(e)−λ(p)+1+2p − (z ↔ z̄)
)
. (4.74)

We do not report the explicit form of the normalization factors Ne, since they will be
of no use in what follows.

We still have to consider the case in which λ(p−1) + 1 = λ(p) in eq.(4.69). By looking
at eq.(4.65), it is clear that this case corresponds to the asymptotic behaviour of
the conjugate CBs G(p)

e . We do not report here the similar derivation of the Casimir
equations for G(p)

e in the OPE limit. It suffices to say that the analysis closely follows
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the ones made for G(p)
e starting now from the equation with e = 0. If we denote by

G
(p)
e → N̄ez

ω(e)
z̄ω̄

(e) (4.75)

the boundary behaviour of G(p)
e when z, z̄ → 0 (z → 0 taken first), one finds

ω(e) = ω(0) + e , ∀` = 0, 1, 2, . . .
ω̄(e) = ω̄(0) , ∀` = p− e, p− e+ 1, . . . (4.76)
ω̄(e) = ω̄(0) + e , ∀` = 0, 1, . . . , p− e− 1

where
ω(0) = ∆− `

2 − p

4 , ω̄(0) = ∆ + `

2 − p

4 . (4.77)

The asymptotic behaviour of the conjugate CBs are given for any ` and p by

lim
z→0, z̄→0

G
(p)
e ∝

(zz̄)ω(e)

(z − z̄)1+2p

(
z̄ω̄

(e)−ω(e)+1+2p − (z ↔ z̄)
)
. (4.78)

4.4.2 The Ansatz

The key ingredient of the ansatz is the function k(a,b;c)
ρ (z) defined in eq.(2.41), which

is an eigenfunction of the hyper-geometric like operator D(a,b;c)
z :

D(a,b;c)
z k(a,b;c)

ρ (z) = ρ (ρ+ c− 1) k(a,b;c)
ρ (z). (4.79)

Using eq.(4.79) one can define an eigenfunction of the operator ∆(a,b;c)
0 as the product

of two k’s:

F (a,b;c)
ρ1, ρ2 (z, z̄) ≡ k(a,b;c)

ρ1 (z)k(a,b;c)
ρ2 (z̄), (4.80)

F± (a,b;c)
ρ1, ρ2 (z, z̄) ≡ F (a,b;c)

ρ1, ρ2 (z, z̄)±F (a,b;c)
ρ1, ρ2 (z̄, z). (4.81)

These functions played an important role in ref. [14] for the derivation of an analytic
closed expression of the scalar CBs in even space-time dimensions. In our case, the
situation is much more complicated, because we have different blocks appearing in
the Casimir equations. We notice, however, that the second order operator ∆ in
each equation Cas(p)

e acts only on the block G(p)
e , while the blocks G(p)

e−1 and G(p)
e+1

are multiplied by first order operators only. Since, as we will shortly see, first order
derivatives and factors of z and z̄ acting on the functions F can always be expressed
in terms of functions F with shifted parameters, a reasonable ansatz for the CBs is to
take each Ge proportional to a sum of functions of the kind F (ae,be;ce)

ρ1, ρ2 (z, z̄) for some
ρ1 and ρ2. Taking also into account eq.(4.55), found using the shadow formalism, the
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form of the ansatz for the blocks G(p)
e should be2

G(p)
e (z, z̄) =

(
zz̄

z − z̄

)2 p+1
g(p)
e (z, z̄), g(p)

e (z, z̄) ≡
∑
m,n

cem,nF
− (ae,be;ce)
ρ1+m, ρ2+n(z, z̄), (4.82)

where cem,n are coefficients to be determined and the sum over the two integers m and
n in eq.(4.82) is so far unspecified. Notice that all the functions F entering the sum
over m and n have the same values of ae, be and ce. Matching eq.(4.82) in the limit
z, z̄ → 0 with eq.(4.74) allows us to determine ρ1 and ρ2, modulo a shift by an integer.
We take

ρ1 = λ̄(p) , ρ2 = λ(p) − p− 1 , (4.83)

in which case the sum over n is bounded from below by nmin = −p. At this value of
n, we have m(nmin) = e − p. There is no need to discuss separately the behaviour
of the blocks with ` ≤ p. Their form is still included in the ansatz (4.82) with the
additional requirement that some coefficients cem,nmin should vanish. This condition will
automatically be satisfied in the final solution. In the next subsections we will discuss
the precise range of the sum over m and n and explain how the coefficients cem,n can
be determined.

4.4.3 Reduction to a Linear System

The eigenfunctions F± (a,b;c)
ρ1, ρ2 (z, z̄) have several properties that would allow us to find

a solution to the system (4.23). In order to exploit such properties, we first have
to express the system (4.23) for G(p)

e in terms of the functions g(p)
e (z, z̄) defined in

eq.(4.82). We plug the ansatz (4.82) in eq.(4.23) and use the following relations

∆(a,b;c)
ε

(
zz̄

z − z̄

)k
=

(
zz̄

z − z̄

)k(
∆(a,b;c)
ε−2k + k (k − ε+ c− 1)− k (k − ε+ 1) zz̄(z + z̄)− 2zz̄

(z − z̄)2

)
,

L(µ)
(

zz̄

z − z̄

)k
=

(
zz̄

z − z̄

)k(
L(µ) + k

z + z̄ − 2zz̄
(z − z̄)2

)
, (4.84)

to obtain the system of Casimir equations for g(p)
e :

C̃as
(p)
e (g) ≡ Cas0 g(p)

e + Cas+ g
(p)
e+1 + Cas− g

(p)
e−1 = 0 . (4.85)

We split each Casimir equation in terms of three differential operators Cas0, Cas+,
Cas−, that act on g(p)

e , g(p)
e+1 and g(p)

e−1, respectively. In order to avoid cluttering, we
have omitted the obvious e and p dependences of such operators. Their explicit form is

2Recall that the conformal blocks are even under z ↔ z̄ exchange, that leaves u and v unchanged.
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as follows:

Cas0 =
(
z − z̄
zz̄

)2(
∆(ae,be;ce)

0 + (1 + 2p)(2p− 2− e)− 1
2
(
Ep
` − εpe

))
−3p z − z̄

zz̄
×
(

(1− z)∂z − (1− z̄)∂z̄
)
− p (1 + 2p) z + z̄ − 2

zz̄
,(4.86)

Cas+ = Be
z − z̄
zz̄
× z − z̄

zz̄
L(be+1) + (1 + 2p)Be

z + z̄ − 2zz̄
zz̄

1
zz̄
, (4.87)

Cas− = Ape
z − z̄
zz̄
× (z − z̄)L(ae−1) + (1 + 2p)Ape

z + z̄ − 2zz̄
zz̄

. (4.88)

Notice that the action of ∆(ae,be;ce)
0 in eq.(4.86) on g(p)

e is trivial and gives just the sum
of the eigenvalues of the F± (a,b;c)

ρ1, ρ2 (z, z̄) entering g(p)
e . It is clear from the form of the

ansatz (4.82) that the system (4.85) involves three different kinds of functions F , with
different values of a, b and c (actually only b and c differ, recall eq.(4.25)).

Using properties of hypergeometric functions, however, we can bring the Casimir system
(4.85) into an algebraic system involving functions F− (ae,be;ce)

ρ1+r, ρ2+t (z, z̄) only, with different
values of r and t, but crucially with the same values of ae, be and ce. In order to do that,
it is useful to interpret each of the terms entering the definitions of Cas0, Cas+ and
Cas− as an operator acting on the functions F−. Their action can be reconstructed
from the more fundamental operators provided in the appendix B. For each function
F− appearing in the ansatz (4.82), we have

Cas0F −(a,b;c)
ρ1+m, ρ2+n(z, z̄) =

∑
(r,t)∈R0

A0
r,t(m,n)F− (a,b;c)

ρ1+m+r, ρ2+n+t(z, z̄) , (4.89)

Cas+F− (a,b;c)
ρ1+m, ρ2+n(z, z̄) =

∑
(r,t)∈R+

A+
r,t(m,n)F− (a,b+1;c+1)

ρ1+m+r, ρ2+n+t(z, z̄) , (4.90)

Cas−F− (a,b;c)
ρ1+m, ρ2+n(z, z̄) =

∑
(r,t)∈R−

A−r,t(m,n)F− (a,b−1;c−1)
ρ1+m+r, ρ2+n+t(z, z̄) , (4.91)

where A0, A− and A+ are coefficients that in general depend on all the parameters
involved: a, b, ∆, `, e and p but not on z and z̄, namely they are just constants. For
future purposes, in eqs.(4.89)-(4.91) we have only made explicit the dependence of
A0, A− and A+ on the integers m and n. The sum over (r, t) in each of the above
terms runs over a given set of pairs of integers. We report in fig. 4.1 the values of
(r, t) spanned in each of the three regions R0, R+ and R−. We do not report the
explicit and quite lengthy expression of the coefficients A0

r,t, A+
r,t and A−r,t, but we refer

the reader again to appendix B where we provide all the necessary relations needed
to derive them. Using eqs.(4.82) and (4.89)-(4.91), the Casimir system (4.85) can be
rewritten in terms of only the functions F− with the same set of coefficients: ae, be
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Figure 4.1: Set of points in the (r, t) plane forming the regions R0 (13 points), R+
(12 points) and R− (12 points) defined in eqs.(4.89)-(4.91).

and ce:3

∑
m,n

( ∑
(r,t)∈R0

A0
r,t(m,n) cem,n+

∑
(r,t)∈R+

A+
r,t(m,n) ce+1

m,n+
∑

(r,t)∈R−
A−r,t(m,n) ce−1

m,n

)
F− (ae,be;ce)
ρ1+m+r, ρ2+n+t = 0 .

(4.92)
The functions F− appearing in eq.(4.92) are linearly independent among each other,
since they all have a different asymptotic behaviour as z, z̄ → 0. Hence the only way to
satisfy eq.(4.92) is to demand that terms multiplying different F− vanish on their own:

∑
(r,t)∈R0

A0
r,t(m′ − r, n′ − t)cem′−r,n′−t +

∑
(r,t)∈R+

A+
r,t(m′ − r, n′ − t)ce+1

m′−r,n′−t

+
∑

(r,t)∈R−
A−r,t(m′ − r, n′ − t)ce−1

m′−r,n′−t = 0 , ∀m′, n′, e = 0, . . . p , (4.93)

where m′ = m + r, n′ = n + t. The Casimir system is then reduced to the over-
determined linear algebraic system of equations (4.93).

4.4.4 Solution of the System

In order to solve the system (4.93), we have to determine the range of values of (m,n)
entering the ansatz (4.82), that also determines the size of the linear system. By
rewriting the known p = 1 and p = 2 CBs found using the shadow formalism in the
form of eq.(4.82), after some work we managed to deduce the range in (m,n) of the
coefficients cem,n for any p (a posteriori extensively tested). For each value of e, the
non-trivial coefficients cem,n span a two-dimensional lattice in the (m,n) plane. For
each e, the shape of the lattice is an octagon, with p and e dependent edges. The
generic octagon is depicted in fig. 4.2 with all the dimensions. The position of the

3It is understood that c−1
m,n = cp+1

m,n = 0 in eq.(4.92).
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p p-e p
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m

p

Figure 4.2: The dimensions of the generic octagon enclosing the lattice of non-vanishing
coefficients cem,n entering the ansatz for mixed tensor CBs in eq.(4.101).

octagon in the (m,n) plane is given by

nmin = − p, nmax = e+ p, mmin = e− 2 p, mmax = p . (4.94)

For e = 0 and e = p, the octagons collapse to hexagons. The number N e
p of points

inside a generic octagon is

N e
p = 2p (2p− e) + (1 + e) (3p+ 1− e) (4.95)

and correspond to the number of non-trivial coefficients cem,n entering the ansatz (4.82).
The total number Np of coefficients to be determined at level p is then

Np ≡
p∑
e=0

N e
p = (1 + p)

(
1 + 17

6 p+ 25
6 p2

)
. (4.96)

The size of the linear system grows as p3. The first values are N1 = 16, N2 = 70,
N3 = 188, N4 = 395. For illustration, we report in fig. 4.3 the explicit lattice of
non-trivial coefficients cem,n for p = 3.

The system (4.93) is always over-determined, since we have more equations than
coefficients. It can be easily seen since the system (4.93) is spanned by the values
(m′, n′) whose range is bigger than the range of (m,n) ∈ Oct(p)e (spanning all the
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Figure 4.3: Set of non-vanishing coefficients cem,n (represented as black dots) entering
the ansatz for mixed tensor CBs in eq.(4.101) for p = 3 and e = 0, 1, 2, 3.
For e = 0 and e = p the octagons collapse to hexagons.

coefficients to be determined) due to the presence of (r, t) ∈ [−2, 2]. There are only
Np − 1 linearly independent equations, since the system of Casimir equations can only
determine conformal blocks up to an overall factor. The most important property of
the system (4.93) is the following: while the number of equations, as we have seen,
grows with p, the total number of coefficients cem,n entering any given equation in the
system (4.93) does not. This is due to the “local nearest-neighbour" nature of the
interaction between the blocks, for which at most three conformal blocks can enter
the Casimir system (4.23), independently of the value of p. More precisely, all the
equations (4.93) involve from a minimum of one coefficient cem,n up to a maximum of
37 ones. Thirty seven corresponds to the total number of coefficients A0, A+ and A−
entering eqs.(4.89)-(4.91) (see fig.4.1). The only coefficients that enter alone in some
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equations4 are the ones corresponding to the furthermost vertices of the hexagons,
namely

cp0,−p, c
p
0,2p, c

0
p,0, c

0
−2p,0 . (4.97)

It is not difficult to understand that. For instance, let us take n′ = −2− p and e = p

in eq.(4.93), with m′ generic. Since nmin = −p, a non-vanishing term can be obtained
only by taking t = −2. Considering that cp+1 = 0 and R− does not include t = −2
(see fig.4.1), this equation reduces to

A0
0,−2(m,−p)|e=p cpm,−p = 0 , ∀m, (4.98)

where m′ = m, since the point in R0 with t = −2 has r = 0. This equation forces all
the coefficients cpm,−p to vanish, unless the factor A0

0,−2(m,−p) vanishes on its own.
One has

A0
0,−2(m,n)|e=p ∝ (m+n+p)∆+(m−n−p)`+m2+ 1

2m(p−2)+(n+p)(n+ 3
2p−2) .

This factor is generally non-vanishing, unless m = 0 and n = −p, in which case it
vanishes for any ∆, ` and p. In this way eq.(4.98) selects cp0,−p as the only non-vanishing
coefficient at level n = −p for e = p. Notice that it is crucial that A0

0,−2(m,n)|e=p
vanishes automatically for a given pair (m,n), otherwise either the whole set of
equations would only admit the trivial solution cem,n = 0, or the system would be infinite
dimensional. A similar reasoning applies for the other three coefficients. One has in
particular

A0
0,2(0, 2p)|e=p cp0,2p = 0 ,
A0

2,0(p, 0)|e=0 c0
p,0 = 0 , (4.99)

A0
−2,0(−2p, 0)|e=0 c0

−2p,0 = 0 ,

that are automatically satisfied because the three coefficients A0
0,2, A0

2,0 and A0
−2,0

vanish when evaluated for the specific values reported in eq.(4.99) for any ∆, ` and p.

The system (4.93) is efficiently solved by extracting a subset of Np − 1 linearly
independent equations. This can be done by fixing the values (r, t) = (r∗, t∗) entering
the definitions of (m′, n′). There are 4 very special subsets of the Np − 1 equations
(corresponding to very specific values (r∗, t∗)) which allows us to determine the solution
iteratively starting from eq.(4.93). They correspond to a solution where one of the four
coefficients (4.97) is left undetermined, in other words (r∗, t∗) can be set to be (0,−2),
(0, 2), (2, 0) or (−2, 0). For instance, if we choose c0 ≡ cp0,−p as the undetermined

4Of course, this is clear only a posteriori after one has understood the pattern of which coefficients
cem,n are non-vanishing, as explained above.

84



coefficient, a recursion relation is found from eq.(4.93) by just singling out the term
with t = −2 in A0 and setting (r∗, t∗) = (0,−2). Such a choice leads to m′ = m,
n′ = n− 2, and one finally gets5

−A0
0,−2(m,n)cem,n =

∑
(r,t)∈R0

(r,t)6=(0,−2)

A0
r,t(m− r, n− 2− t)cem−r,n−2−t

+
∑

(r,t)∈R+

A+
r,t(m− r, n− 2− t)ce+1

m−r,n−2−t (4.100)

+
∑

(r,t)∈R−
A−r,t(m− r, n− 2− t)ce−1

m−r,n−2−t .

It is understood in eq.(4.100) that cem,n = 0 if the set (m,n) lies outside the e-octagon
of coefficients. The recursion (4.100) allows us to determine all the coefficients cem,n
at a given e = e0 and n = n0 in terms of the ones cem,n with n < n0 and cem,n0 with
e > e0. Hence, starting from c0, one can determine all cem,n as a function of c0 for any
p. The overall normalization of the CBs is clearly irrelevant and can be reabsorbed
in a redefinition of the OPE coefficients. However, some care should be paid in the
choice of c0 if one wants to avoid the appearance of spurious divergencies in the CBs
for specific values of ` and ∆. These divergencies are removed by a proper ∆ and `
dependent rescaling of c0. From eq.(4.93) one can easily write the three other relations
similar to eq.(4.100) to determine recursively cem,n starting from cp0,2p, c0

p,0 or c0
−2p,0.

We can finally write down the full analytic solution for the CBs G(p)
e :

G(p)
e (z, z̄) =

(
zz̄

z − z̄

)2 p+1 ∑
(m,n)∈Oct(p)e

cem,nF
− (ae,be;ce)
∆+`+ p

2
2 +m,

∆−`+ p
2

2 −(p+1)+n
(z, z̄), (4.101)

where cem,n satisfy the recursion relation (4.100) (or any other among the four possible
ones) and (m,n) runs over the points within the e-octagon depicted in fig.4.2.

A similar analysis can be performed for the conjugate blocks G(p)
e . We do not report

here the detailed derivation that is logically identical to the one above, but just the
final solution. We notice that there is a relation among the CBs G(p)

p−e and G
(p)
e . More

specifically, one has

G
(p)
e (z, z̄) =

(
zz̄

z − z̄

)2 p+1 ∑
(m,n)∈Oct(p)p−e

c̄em,nF
− (ae,be;ce)
∆+`− p2

2 +e+m,
∆−`− p2

2 +e−(p+1)+n
(z, z̄). (4.102)

5Now that the range of the coefficients in (m,n) has been established, there is no more reason to
distinguish (m,n) from (m′, n′).
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where
c̄em,n(a, b,∆, `, p) = 4ecp−em,n

(
− a+ p

2 ,−b−
p

2 ,∆, `, p
)
. (4.103)

Generating the full explicit solution from eq.(4.100) can be computationally quite
demanding for large values of p. While at the beginning of the recursion only a few
terms in eq.(4.100) are non-vanishing, for p ≥ 2 one reaches a point where all 36
terms in eq.(4.100) contribute. We have obtained fully explicit solutions for any a,
b, ∆ and ` for p = 1, 2, 3, 4. As we mentioned, we have alternatively computed
the blocks G(p)

e for p = 1, 2 and G
(p)
e for p = 1 using the shadow formalism and

found complete agreement with the solutions (4.101) and (4.102) obtained via the
Casimir system. By choosing specific values for the parameters a and b, we also have
determined the coefficients cem,n for p = 8, i.e. the value of p that is obtained in the
4-point function of four energy momentum tensors, see eq.(3.7). For concreteness,
we report in appendix C the explicit form of the 16 coefficients cem,n for p = 1 and
a = −b = 1/2. The general form of cem,n for p = 1, 2, 3, 4 can be downloaded from
https://sites.google.com/site/dskarateev/downloads.

It is important to remind the reader that the CBs G(p)
e computed here are supposed

to be the seed blocks for possibly other 4-point correlation functions, whose CBs are
determined by acting with given operators on G(p)

e [36]. The complexity of the form of
the blocks G(p)

e at high p is somehow compensated by the fact that the operators one
has to act with become simpler and simpler, the higher is p. An example should clarify
the point. Let us consider a 4-point function of spin two operators. In this case, one
has to determine conformal blocks associated to the exchange of operators O(`,`+p)

(and O(`+p,`)) for p = 0, 2, 4, 6, 8 (and any `). The conformal blocks associated to the
traceless symmetric operators are obtained by applying up to 8 derivative operators in
several different combinations to the scalar CB G

(0)
0 . Despite the seed block is very

simple, the final blocks are given by (many) complicated sum of derivatives of G(0)
0 .

The p = 8 CBs, instead, are essentially determined by the very complicated G(8)
e blocks,

but no significant extra complications come from the external operators. An example
of such phenomenon is the four fermion correlator shown (though in a less significative
way) in section 3.5. For any given 4-point function, after the use of the differential
operators introduced in Chapter 3, there is no need to compute the coefficients cem,n
for any a and b but only for the values of interest. This considerably simplifies the
expression of cem,n. In bootstrap applications, one might also consider to compute the
cem,n’s numerically by fixing a, b, ` and ∆. Needless to say, when the problem becomes
purely numerical, the coefficients cem,n are found immediately for any sensible value of
p.
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4.4.5 Analogy with Scalar Conformal Blocks in Even
Dimensions

It is worth to point out in more detail some similarities between the CBs G(p)
e for mixed

symmetry tensors computed above and the scalar conformal blocks Gd in d > 2 even
space-time dimensions. The quadratic Casimir equation for scalar CBs in any number
of dimensions is

∆(a,b;0)
d−2 Gd(z, z̄) = 1

2E`(d)Gd(z, z̄) , (4.104)

where
E`(d) = ∆ (∆− d) + `(`+ d− 2) (4.105)

is the quadratic Casimir eigenvalue for traceless symmetric tensors. The explicit
analytical form of scalar blocks in d = 2, 4, 6 dimensions has been found in refs. [13,14].
Subsequently, the same authors found a relation between scalar blocks in any even
space-time dimensionality, eq.(4.36) of ref. [15], that allows us to iteratively determine
Gd for any d, starting from G2. In particular, the d = 4 and d = 6 solutions found in
ref. [14] have the form

Gd(z, z̄) =
(

zz̄

z − z̄

)d−3
gd(z, z̄) , gd(z, z̄) =

∑
m,n

xm,nF− (a,b;0)
∆+`

2 +m, ∆−`+2−d
2 +n(z, z̄),

(4.106)
where a and b are as in eq.(4.8) with p = 0 and xm,n are coefficients that in general
depend on ∆, l, a and b. In d = 4 there is only one non-vanishing coefficient centered
at (m,n) = (0, 0), while in d = 6 there are five of them. They are at (m,n) = (0,−1),
(m,n) = (−1, 0), (m,n) = (0, 0), (m,n) = (1, 0) and (m,n) = (0, 1). These five
points form a quadrilateral-shaped (a slanted square) in the (m,n) plane, centered
at the origin. The explicit form of the coefficients xm,n is known, but it will not be
needed in what follows.6 It is natural to expect that eq.(4.106) should apply for any
even d ≥ 4, with a number of non-vanishing coefficients that increases with d.7 This is
not difficult to prove. From the first relation in eq.(4.84) we can get the form of the
Casimir equation for the function gd(z, z̄) defined in eq.(4.106), that can be written as
(1
z̄
− 1
z

)(
∆(a,b;0)

0 +6−2d− 1
2E`(d)

)
gd = (d−4)

(
(1−z)∂z−(1− z̄)∂z̄

)
gd . (4.107)

Using the techniques explained in subsection 4.4.3 and the results of appendix B, it
is now straightforward to identify which is the range of (m,n) of the non-vanishing

6En passant, notice that there is a typo in eq.(2.20) of ref. [14] where the block G6 is reported. In the
denominator appearing in the last row of that equation, one should replace (∆+`−4)(∆+`−6)→
(∆− `− 4)(∆− `− 6).

7See also ref. [27], where similar considerations were conjectured.
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Figure 4.4: The dimensions of the generic slanted square enclosing the lattice of non-
vanishing coefficients xm,n entering the ansatz for scalar symmetric CBs in
eq.(4.106).

coefficients xm,n for any d (see fig.4.4).8 In d dimensions, the minimum and maximum
values of m and n are given by

nmin = 4− d
2 , nmax = d− 4

2 , mmin = 4− d
2 , mmax = d− 4

2 . (4.108)

The number Ñd of coefficients xm,n entering the ansatz (4.106) for scalar blocks in
d even space-time dimensions is easily computed by counting the number of lattice
points enclosed in the slanted square. We have

Ñd = d2

2 − 3d+ 5 . (4.109)

For large d, Ñd ∝ d2 and matches the behavior of Np
e ∝ p2 for large p in eq.(4.95).

In light of the above analogy between scalar CBs Gd in even d dimensions and mixed
tensor CBs G(p)

e in four dimensions, it would be interesting to investigate whether there
exist a set of differential operators that link the blocks G(p+1)

e (or G(p+2)
e ) to the blocks

G(p)
e , in analogy to the operator (4.35) of ref. [15] relating Gd+2 to Gd. It would be

very useful to find, in this or some other way, a more compact expression for the blocks
G(p)
e .

8Alternatively, one might use eq.(4.36) of ref. [15] to compute Gd and then recast it in the form
(4.106).
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Let us finally emphasize a technical, but relevant, point where the analogy between
Gd in d dimensions and G(p)

e in 4 dimensions does not hold. A careful reader might
have noticed that in the Casimir equation for gd the term proportional to (z + z̄)− 2,
namely the third term in the r.h.s. of the first equation in eq.(4.84), automatically
vanishes. Indeed, if we did not know the power d− 3 in the ansatz (4.106), we could
have guessed it by demanding that term to vanish. On the contrary, no such simple
guess seems to be possible for the power 2p+1 entering G(p)

e , given also the appearance
of the operator L defined in eq.(4.84). As discussed, we have fixed the power 2p+ 1
by means of the shadow formalism.
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5 Chapter 5

Numerical Bounds on OPE
coefficients

In this chapter and the next we will proceed with some numerical studies of the
bootstrap equation. In the present chapter we will numerically study bounds on OPE
coefficients in 4D. We will only study scalar correlators, with the motivation of gaining
some insight into the behaviour of CFTs with large amounts of matter. We will focus
our attention on studying bounds on the coefficient κ of the two-point function between
two conserved currents associated with a global symmetry of a CFT, and as we will see
we can relate this to a specific OPE coefficient within the theory. Our main motivation
comes from theoretical considerations in the context of composite Higgs models, in
which the CFT is the hidden sector which gives rise to the Higgs, and a subgroup
of the global symmetry of the CFT is weakly gauged in order to get the Standard
Model gauge interactions. These composite Higgs models are related, through the
AdS/CFT correspondence, to Randall-Sundrum theories [96] with matter in the bulk,
which are promising solutions to the gauge hierarchy problem. Particularly interesting
are the models where the Higgs is a pseudo Nambu-Goldstone Boson (pNGB) of an
approximate spontaneously broken global symmetry of the CFT, which corresponds to
gauge-Higgs unification models in 5D warped theories. Neither the UV completion of
the 5D models nor the explicit form of the 4D CFT is known so far. Calculability of
the dual 5D models would require that the CFT is in some large N limit, but this is not
a necessary requirement. On the contrary, various phenomenological bounds tend to
favour models at small N, so we will not assume the existence of a large N limit in the
CFT. Constructing such a CFT is not a trivial task, so we look for possible consistency
relations. When the global symmetry of the CFT is gauged, the coefficient κ of the
current-current two-point function governs the leading contribution of the CFT to the
one-loop evolution of the corresponding gauge coupling. This contribution should not
lead to Landau poles for the SM gauge couplings. We also require that the CFT has
no relevant deformations, in order not to reintroduce the hierarchy problem. This leads
to the constraint that the dimension of the lowest-lying scalar singlet operator should
be ∆S ≥ 4. All our considerations apply independently of the pNGB nature or not of
the Higgs.
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Motivated by the above considerations, we extend the analysis of ref. [50], where lower
bounds on κ have been set starting from crossing constraints imposed on a four-point
function of scalar operators in the fundamental representation of SO(N) and SU(N),
in two ways. First, we see how the bounds found in ref. [50] are modified when the
lowest-lying singlet scalar operator is assumed to have a scaling dimension ∆S ≥ ∆min,
where we choose ∆min = 2, 3, 4 for concreteness. Second, we extend the analysis
to non-simple groups of the form SO(N)×SO(M). We study non-simple groups
because they easily allow us to generalize the bounds for the groups SO(N) and SU(N),
which are obtained by considering a single field in the fundamental representation of
the group, to multiple fields. Analogous to what was found in ref. [50] for singlet
operators, the lower bounds on vector currents for SU(N) groups that we find are,
within the numerical precision, identical to those obtained for SO(2N). Hence we only
report lower bounds for SO(N) and SO(N)×SO(M) global symmetries. We have
derived the bootstrap equations also for groups of the form SO(N)×SU(M), but no
bounds are reported for this case. Unfortunately, the numerical implementation of
these equations turned out to be too demanding for our computing resources. Given
the above equality between SO(2N) and SU(N) bounds, we believe that the lower
bounds for SO(N)×SU(M) should be very similar (if not identical) to those that we
have obtained for SO(N)×SO(2M). In addition to that, we study the constraints
on the OPE coefficients of spin ` = 2 and ` = 4 tensors coming from two identical
scalar operators φ, as a function of the scaling dimension of the tensors, in the general
case in which no global symmetry is assumed. In analogy to the vector-current case,
we analyze how these bounds change when one assumes a lower bound on the scale
dimension of the scalar operators appearing in the φφ OPE.

All our numerical results are based on semi-definite programming methods, as introduced
in ref. [50] in the context of the bootstrap approach, with a few technical modifications
which are discussed in subsection 5.2.

We will start this chapter by giving a phenomenological motivation for this study. In
section 5.2 we will briefly review how the bounds on OPE coefficients are obtained, for
more details on the specific techniques used we refer the reader to [50]. In section 5.3
we report our results for the OPE coefficients of tensor ` = 2 and ` = 4 operators.
Section 5.4 contains the most important results of the paper. We report here the lower
bounds on κ associated with SO(2N) (or SU(N)) vector currents, when the global
symmetry of the CFT is SO(2N) (or SU(N)) and SO(2N)× SO(M). 1 In appendix
D we report the crossing equations for SO(N)×SO(M) and SO(N)×SU(M).

1Results for SO(N) groups with odd N are analogous to those for SO(2N) and do not need any
special treatment.
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5.1 Motivation for a Gap in the Scalar Operator
Dimension

The motivation to consider CFTs with a gap in the scaling dimension of scalar gauge-
singlet operators comes from applications in the context of physics beyond the Standard
Model (SM) that addresses the gauge hierarchy problem. The latter can be formulated
from a CFT point of view, see e.g. ref. [9]. Neglecting the cosmological constant, the
SM can be seen as an approximate CFT with one relevant deformation of classical
mass dimension ∆H†H = 2, corresponding to the Higgs mass term H†H. Relevant
deformations grow in going from the UV towards the IR. If we assume that the Higgs
mass term is generated at some high scale ΛUV , we would expect from naturalness
that the Higgs mass-squared term is of order Λ4−∆

H†H
UV = Λ2

UV in the IR. There are
essentially two ways to solve this hierarchy problem: i) invoke additional symmetries
that keep the relevant deformation small in the IR (e.g. supersymmetry); ii) assume
that the Higgs is a composite field of a strongly interacting sector, in which case the
operator H†H can have a large anomalous dimension that makes it effectively marginal
or irrelevant.

A model along the lines of ii), conformal technicolor [97], where the strongly coupled
sector is assumed to be a CFT in the UV, was in fact the motivation for the pioneering
work [9]. Conformal technicolor is an interesting attempt to solve one of the long-
standing problems of standard technicolor theories: how to reconcile the top mass
with Flavour Changing Neutral Current (FCNC) bounds. In order to get a sizable top
mass and at the same time avoid dangerous FCNCs, one has to demand that the scale
dimension ∆H of the Higgs field H is as close to one as possible. In order not to
reintroduce the hierarchy problem, however, one has to keep ∆H†H & 4 at the same
time. The analyses in refs. [9, 50] have shown that generally these two conditions are
in tension and that one needs ∆H & 1.52 in order to have ∆H†H & 4.

An alternative, phenomenologically more promising, solution is to rely on a different
mechanism to generate SM fermion masses: partial compositeness [98]. To this end,
one assumes that the SM fermions mix with fermion resonances of the strongly coupled
sector. Due to this mixing, SM vectors and fermions become partially composite. In
particular, the lighter the SM fermions are, the weaker is the mixing. This simple, yet
remarkable, observation allows one to significantly alleviate most flavor bounds. The
Yukawa couplings are effective couplings that arise from the mixing terms once the
strongly coupled states are integrated out.

This idea is particularly appealing when one assumes that the strongly coupled sector is
an approximate CFT spontaneously broken at some scale µ. In this case, the hierarchy
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of the SM Yukawa couplings is naturally obtained by assigning different scale dimensions
∆i
ψ to the fermion operators mixing with the different SM fermions [99]. In particular,

there is no longer the need to keep ∆H close to one since the effective size of the SM
Yukawa couplings is governed by ∆i

ψ. One assumes that ∆i
ψ > 5/2 for all SM fermions

except the top, so that the mixing terms are irrelevant deformations of the CFT and
naturally give rise to suppressed Yukawa couplings in the IR. For the top, on the other
hand, one assumes that ∆t

ψ ' 5/2, corresponding to a nearly marginal deformation of
the CFT.

One might wonder whether CFTs with all the necessary requirements to give rise to
theoretically and phenomenologically viable composite Higgs models exist at all. A
possible issue might arise in weakly gauging the SM subgroup of the global symmetry
of the CFT. Since partial compositeness requires a fermion operator in the CFT
for each SM fermion, dangerous Landau poles can potentially appear in the theory.
Indeed, it has recently been shown that Landau poles represent the main obstruction in
obtaining UV completions of composite Higgs models with a pNGB Higgs, based on
supersymmetry [100]. It is then of primary importance to try to understand if and at what
scale Landau poles will arise. In theories with a pNGB Higgs, the relevant deformation
H†H can naturally be small, since it is protected by a shift symmetry. Moreover, it is
not defined in the UV, where the global symmetry is restored. Nevertheless, in order not
to introduce other possible fine-tunings, one should demand that any scalar operator
which is not protected by any symmetry, namely which is neutral under all possible
global symmetries of the CFT, should be marginal or irrelevant.

Summarizing, we can identify four properties that a CFT needs to have for a theoretically
and phenomenologically viable composite Higgs model with partial compositeness:

1. A global symmetry G ⊇ GSM = SU(3)c × SU(2)L × U(1)Y .

2. No scalar operator with dimension ∆ < 4 which is neutral under G.

3. No Landau poles for the SM gauge couplings below the scale ΛUV when we gauge
GSM.2

4. The presence of fermion operators with ∆i
ψ ≥ 5/2 in some representation of G,

such that some of its components can mix with each of the SM fermion fields.
At least one fermion operator should have dimension ' 5/2.3

Of course, these are only necessary but not sufficient conditions to get a viable CFT. In
particular, one might want to address the mechanism which gives rise to the spontaneous
breaking of the conformal symmetry as well as of the global symmetry in CFTs with a
pNGB Higgs.

2Ideally, we might want to have ΛUV ∼MPlanck.
3The right-handed top, in principle, might be directly identified with a field of the CFT.
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The consistency of a CFT which fulfils the above four conditions can be checked using
crossing symmetry of four-point functions of the CFT. The first and second condition
can be imposed by hand, assuming the existence of the global symmetry and that
the lowest-dimensional scalar operator in the singlet channel has dimension ∆S ≥ 4.
One can extract information on the third condition by analyzing the bounds on the
coefficients of current-current two-point functions. Finally, the fourth condition can
again be implemented by assumption. The ideal configuration would be to analyze
four-point functions involving fermion operators, which by assumption should appear
in the CFT, and to extract any possible information from these correlators. Although
this is in principle possible to do, correlation functions involving fermions in a non-
supersymmetric setting have not been worked out so far. Postponing to a future project
the analysis of such correlation functions, in this paper we start to address these issues
by replacing fermions with scalars with dimension 1 ≤ d < 2 in the third requirement.

Let us estimate how severe the Landau pole problem can be in the simplest composite
Higgs model where the Higgs is the pNGB associated with the SO(5)→SO(4) symmetry
breaking pattern. Let us consider the SU(3)c coupling gc, because it runs fastest and
possibly leads to the lowest-lying Landau pole, and let us denote by

βCFT = g3
c

κ

16π2 (5.1)

the CFT contribution to its one-loop β-function. Assuming that the only non-SM fields
which are charged under SU(3)c arise from the CFT, a Landau pole develops at around

ΛL ' µ exp
(

2π
(κ− 7)αc(µ)

)
(5.2)

for κ > 7, where αc = g2
c/(4π) and µ ∼ O(TeV) is the scale where the CFT breaks

spontaneously. Composite fermions coming from the CFT and mixing with SM fermions
must be color triplets and in representations of SO(5) that give rise to electroweak
SU(2) doublets and singlets. If we assume them to be in the fundamental representation
5 of SO(5), the fermion components in a given 5 can mix with both the left-handed
and right-handed components of a quark field. We then need nf = 6 5s, one for each
quark field, for a total of 6× 5 = 30 SU(3)c triplet Dirac fermions. In order to have an
idea of the scales which are involved, it is useful to consider the (unrealistic) limit of a
free CFT. In this case, we get

κfree = 2
3 × 30 = 20 , (5.3)

corresponding to
ΛL ∼ 200 TeV , (5.4)
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for µ ' 1 TeV. It is clearly very important to set lower bounds on κ in a generic CFT,
given the exponential sensitivity of ΛL on this quantity.

In the following, we will analyze bounds on the coefficients for SO(2N) (or, equiva-
lently, SU(N)) currents obtained from four-point functions of scalar operators in the
fundamental representation of the group in presence of a gap in the operator dimension
in the scalar gauge-singlet channel. In order to mimic the presence of more than one
field multiplet, we will also consider fields in the bi-fundamental representation of the
product group SO(2N)×SO(M).

5.2 Bounds on OPE Coefficients and Numerical
Implementation

The bootstrap equation (2.48) has originally been used to set bounds on the scalar
operator dimensions that can appear in a CFT. Shortly after that, ref. [45] has shown
how to obtain bounds on the OPE coefficient λO0 of an operator O0 appearing in the
φφ OPE. Let us assume that a linear functional α can be found, such that

α(Fd,∆0,`0) = 1 , α(Fd,∆,`) ≥ 0 ∀(∆, `) 6= (∆0, `0) . (5.5)

And are explicitely writing the dependance on the dimension of the external operators
[φ] = d as well as the dimension ∆ and spin ` of the exchanged operator. Applying
such a functional to eq. (2.48) gives

|λO0 |2 = α(1)−
∑

(∆,`) 6=(∆0,`0)
|λO|2α(Fd,∆,`) ≤ α(1) . (5.6)

The optimal bound is obtained by minimizing α(1) among all the functionals α which
satisfy eq. (5.5). One can use the functional α also to rule out the existence of
certain CFTs. For instance, if under a certain assumption on the CFT data one finds a
functional α and an operator O0 for which |λO0|2 < 0, then that CFT is ruled out.

The above procedure is easily generalized in presence of global symmetries. Let’s
briefly recap the form of the bootstrap equations in the case of global symemtries for
completeness. When the CFT has a global symmetry G, the bootstrap analysis can be
generalized using scalar fields φa (real or complex) in some representation r of G [48].
The symmetry implies that all the field components of the multiplet must have the
same dimension d. Moreover, it allows us to easily classify the operators appearing
in the φaφb OPE in terms of the irreducible representations appearing in the product
r ⊗ r. A similar analysis applies for complex fields in the φaφ†b OPE. It is useful to
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introduce another function, similar to the F of eq. (2.49):

Hd,∆,l(z, z̄) ≡ vdg∆,l(u, v) + udg∆,l(v, u)
ud + vd

. (5.7)

In presence of a global symmetry G, eq. (2.48) generalizes to a system of P + Q

equations of the form
∑
i

ηpF,i
∑
O∈ri
|λOi |2Fd,∆,`(z, z̄) = ωpF , p = 1, . . . , P ,

∑
i

ηqH,i
∑
O∈ri
|λOi |2Hd,∆,`(z, z̄) = ωqH , q = P + 1, . . . , P +Q .

(5.8)

Here, i runs over all possible irreducible representations that can appear in the s- and
t-channel decomposition, ηpF,i and ηqH,i are numerical factors that depend on G and λOi
is a short-hand notation for the 〈φaφbO〉 three-point function coefficient. Furthermore,
ωpF = 1 and ωqH = −1 if the singlet representation appears in the left-hand side of
eq. (5.8), and ωpF = ωqH = 0 otherwise. The explicit form of eq. (5.8) for the cases of
interest will be given in section 5.4 and appendix D.

Let us assume that we want to bound the OPE coefficient of an operator O0 with
dimension ∆0 and spin `0 in the representation r1. We look for a set of linear functionals
αm (m = 1, . . . , P +Q) such that

P∑
p=1

αp

(
ηpF,1Fd,∆0,`0

)
+

P+Q∑
q=P+1

αq

(
ηqH,1Hd,∆0,`0

)
= 1 ,

P∑
p=1

αp

(
ηpF,1Fd,∆,`

)
+

P+Q∑
q=P+1

αq

(
ηqH,1Hd,∆,`

)
≥ 0 , ∀(∆, `) 6= (∆0, `0) ,

P∑
p=1

αp

(
ηpF,iFd,∆,`

)
+

P+Q∑
q=P+1

αq

(
ηqH,iHd,∆,`

)
≥ 0 , ∀(∆, `) , i 6= 1 .

(5.9)

Applying such a functional to eq. (5.8) gives

|λO0 |2 ≤
P∑
p=1

αp(ωFp ) +
P+Q∑
q=P+1

αq(ωHq ) . (5.10)

In our paper, we will mainly be interested in the OPE coefficient associated with a
conserved vector current Jµ of a global symmetry, which has ∆0 = 3 and `0 = 1. We
shall denote this coefficient by λJ . As we will discuss in section 5.4 (see eq. (5.28)),
upper bounds on |λJ |2 turn into lower bounds on the coefficient κ introduced in
eq. (5.1).

Following ref. [9], we consider functionals that act as linear combinations of derivatives
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on a generic function f(z, z̄),

α(f(z, z̄)) =
∑

m+n≤2k
amn∂

m
z ∂

n
z̄ f(z, z̄)|z=z̄=1/2 , (5.11)

where amn are real coefficients. Due to the symmetries of the conformal blocks F and
H, the sum can be restricted to m < n and even values of m+ n when α acts on F ,
and m < n and odd values of m+ n when it acts on H.

We numerically search for functionals α which satisfy eqs. (5.5) and (5.9) by following
the method developed in refs. [46,50]. We refer the reader to these references for further
details. For this method, one approximates the derivatives of the conformal blocks
Fd,∆,` and Hd,∆,` in eq. (5.11) with polynomials Pmn

l (∆`(1 + x)), where x ∈ [0,∞)
and ∆` = `+ 2 is the unitarity bound on the scaling dimension for an operator of spin
l (∆0 = 1 for l = 0). The requirements in eq. (5.5) or eq. (5.9) imply that the linear
combination of polynomials of the form amnP

mn
` must be positive-semidefinite on the

positive real x-axis, for any value of `. There are two great virtues in setting up the
problem in this way. Firstly, there is no need to discretize the dimension ∆ and to put a
cut-off value ∆max, like in the linear programming methods used in ref. [9]. In particular,
we can probe all ∆ continuously up to infinity. Secondly, one can exploit numerical
packages that allow us to handle very large systems of equations quite efficiently. A
key variable in the numerical algorithm is the coefficient k entering in eq. (5.11). The
larger k, the larger is the space of possible viable functionals, and hence the stronger
are the bounds. Of course, the larger k, the more time-consuming is the numerical
evaluation. For our computations, we have chosen k = 9, 10, 11, depending on the
complication of the problem.

Let’s discuss a bit more in detail how this procedure works. Consider the simplest case
of an external singlet operator. The constraints that the functional α needs to fulfill in
order to get bounds on OPE coefficients are given in eq. (5.5). It is convenient to first
rescale the bootstrap equation by a (∆, `)-independent function g(z, z̄) (see ref. [50]
for more details). In particular, the positivity constraints on the rescaled conformal
blocks E+

d,∆,` ≡ g(z, z̄)Fd,∆,` then read

amn ∂
m
z ∂

n
z̄ E

+
d,∆,` ≥ 0 ∀(∆, `) 6= (∆0, `0) , (5.12)

where summation over m and n is understood and the derivatives are evaluated at
z = z̄ = 1/2. The crucial insight is that the derivatives of E+

d,∆,` allow for an
approximation

∂mz ∂
n
z̄ E

+
d,∆,` ' χl(∆)Umn

`,d,+(∆) , (5.13)

where χl(∆) is a positive definite function of ∆ and Umn
`,d,+(∆) is a polynomial in ∆.

97



We use 5 roots for this approximation (see ref. [50] for more details). An analogous
approximation can be found for the rescaled conformal blocks Umn

`,d,−(∆) ≡ g̃(z, z̄)Hd,∆,`

that appear when dealing with global symmetries. Making use of a theorem by Hilbert,
the positivity constraints in eq. (5.12) can equivalently be formulated as the requirement
that there exist positive semidefinite matrices A` and B` such that

amn U
mn
`,d,+(∆l(1 + x)) = XpA`X

T
p + xXq B`X

T
q ∀l 6= l0 . (5.14)

Here Xp ≡ (1, x, ..., xp) is a vector and p and q are determined by the degree of the
polynomial Umn

`,d,+. Furthermore, ∆l is the unitarity bound on the operator dimension.
The task now consists of finding coefficients amn and a set of matrices A` and B`

such that eq. (5.14) is fulfilled (additional constraints arise from e.g. the normalization
condition α(Fd,∆0,`0) = 1 in eq. (5.5) and the minimization of α(1) in eq. (5.6)). This
can be formulated as a positive semidefinite program for which there exist powerful
numerical codes. The existence of such coefficients and matrices guarantees the
positivity of the functional for all ∆ ≥ ∆` (corresponding to x ≥ 0).

The above algorithm, however, still requires to truncate the system at a given maximal
spin L. This is in principle a serious problem, because one might have

α(Fd,∆,`) < 0 for ` > L . (5.15)

If L is chosen sufficiently large, O(10) or more, we do not expect possible violations in
the semidefinite positiveness of α of the form (5.15) to be important for the numerical
value of the bound. Indeed, large spin ` implies large dimensions ∆ according to the
unitarity bound, and the contribution to the four-point function of operators with large
∆ is exponentially suppressed in ∆ [22]. Nevertheless, it would be more reassuring to
have more control on such effects. For parametrically large `, the conformal blocks
Fd,∆,` and Hd,∆,` and their derivatives allow for simple analytic expressions. For large `,
the terms involving the highest derivatives dominate. Using these analytic expressions,
we can find the value `max, which depends on k, for which the contribution of the
large-` conformal blocks is largest.

We use Mathematica 9.0 to calculate the coefficients of the polynomials Umn
`,d,± and to

set up the positive semidefinite program. The data is written to file and handed to the
numerical code SDPA-GMP 7.1.2 [129] (using their sparse data format) which solves
the positive semidefinite program. We use the same parameter set for the SDPA-GMP
as ref. [50] (see the table in their Appendix B). For the calculations, we have used the
Zefiro cluster of the INFN which is located in Pisa (Italy). This cluster consists of 25
computers, each of which has 512 GB RAM and 4 processors with 16 cores. For the
plots, we have calculated points with a spacing of δd = 3 · 10−2 or δ∆ = 3 · 10−2. In
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order to obtain smooth plots, we interpolate between these points.

The Multiple Precision Arithmetic Library (GMP) allows us to carry out calculations up
to high precision. This is necessary because the numerical values of the coefficients of
the polynomials Umn

`,d,± span several orders of magnitudes. An important source for this
spread are conformal blocks with large spins ` & 10. For these values of l, an asymptotic
expression for the conformal blocks and its derivatives is a good approximation. Taking
z = 1/2 + a+ b and z̄ = 1/2 + a− b, for l2 � ∆− `− 2 one finds [9]

∂2m
a ∂2n

b Fd,∆,`|a=b=0 '
const.

(2m+ 1)(2n+ 1)(2
√

2`)2m+2n+2e−c ` , (5.16)

where c = − log(12 − 8
√

2) ' 0.377 and const. is a positive constant of O(1) that
only depends on d. A straightforward generalization of this result allows us to also find
an asymptotic analytic expression for the conformal block H defined in eq. (5.7):

∂2m
a ∂2n

b Hd,∆,`|a=b=0 '
const.

(2n+ 1)(2
√

2`)2m+2n+1e−c ` . (5.17)

From the above two results, we find that the spread among the coefficients of the
polynomials for a given spin l & 10 is at least of order O(`2k+2) for conformal blocks
F and O(`2k+1) for H. In addition, these results allow us to estimate the value
`max for which derivatives of the conformal blocks have a maximum (in which case
potential violations of the positivity constraint in eq. (5.5) could give a large correction
in eq. (5.6)). To this end, notice that for a given `, the largest coefficients arise from
the highest derivatives with m+ n < 2k. Maximizing these coefficients with respect to
` then , for 2k � 1 :

`max ∼
2k
c
, (5.18)

where c = − log(12 − 8
√

2) ' 0.377. For k ∼ 10, eq. (5.18) gives `max ∼ 50 ÷ 60.
Ideally, one would include all spins from ` = 0 up to L = `max. This is computationally
quite demanding. Fortunately, we have found that it is sufficient to take L = 20 to get
numerically stable bounds. Changing L to L = 22 or L = 24 does not significantly
alter the bounds. Nevertheless, in order to have more control on the higher-l states, we
have included two other states in the constraints, at ` = `max and at an intermediate
value ` ≈ (L+ `max)/2.4 We have numerically tested that this implementation works
better than including states at very large values of `, such as ` = 1000, 1001 as done
in e.g. ref. [50]. We can always check the positivity of α a posteriori. We have found
that by imposing constraints at ` = 0, ..., 20, 1000, 1001 the functional often becomes

4More precisely, we include spins ` = 35, 52 for calculations with k = 9, ` = 37, 56 for k = 10 and
` = 40, 60 for k = 11.
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Figure 5.1: Upper bounds on the three-point function coefficient λ0 between two scalar
operators of dimension d = 1.6 and a scalar operator O of dimension ∆ calculated
at k = 11 with no assumptions on the spectrum (blue line) and assuming that
no scalar operator in the OPE is present below ∆0 = 2 (red line). For illustrative
purposes, we show the free-theory value for d = 1 (in which case ∆ = 2),
λfree

0 =
√

2, as a black dashed line.

negative for values ` 6= 0, ..., 20, 1000, 1001 whereas for our implementation α remains
positive for most of the ` that we have checked. In practice, however, we have not
detected deviations in the results among the two different implementations, confirming
that values of ` > L are numerically negligible.

An additional source for the spread arises from the approximation in eq. (5.13). The
functions χ`(∆) are numerically small for large spins ` and therefore increase the spread
among the various coefficients of the polynoms Umn

`,d,±(∆) ' ∂mz ∂
n
z̄ E

±
d,∆,` / χ`(∆) that

determine the positive semidefinite program.

In order to reduce the numerical spread among the polynom coefficients (which allows
one to reduce the required precision and thereby speeds up the calculation), we rescale
them by both an (m,n)-dependent factor and an l-dependent factor before handing
them to the SDPA-GMP. Both of these rescalings transform the positivity constraint
eq. (5.14) into an equivalent constraint. Indeed, the (m,n)-dependent factor amounts
to a redefinition of the coefficients amn, whereas the `-dependent rescaling can be
absorbed into the matrices A` and B`. Note, however, that e.g. the effect of the
rescaling on the normalization condition α(Fd,∆0,`0) = 1 in eq. (5.5) needs to be taken
into account when calculating the bound from eq. (5.6).
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Figure 5.2: Upper bounds on the three-point function coefficient λ2 between two scalar
operators of dimension d and a tensor operator O with spin ` = 2 and dimension
∆ calculated at k = 11. (a) Starting from below, the lines correspond to the
values d = 1.01, 1.1, 1.2, 1.3, 1.4, 1.5, 1.6. No assumption on the spectrum is
made. (b) For d = 1.6 with no assumption on the spectrum (blue line, as in
(a) for d = 1.6) and assuming that no scalar operator in the OPE is present
below ∆0 = 2 (red line). For illustrative purposes, we show the free-theory value
for d = 1 (in which case ∆ = 4), λfree

2 = 1/
√

3, as a black dashed line in both
panels.

5.3 Bounds on OPE Coefficients for Tensor
Operators

In this section, we report our results for the upper bounds on the three-point function
coefficient λO appearing in the OPE of two identical scalar operators φ of scaling
dimension d. The operator O is a traceless symmetric tensor of even spin l. The
coefficient λ is normalized such that its free-theory value is

λfree
O` ≡ λfree

` =
√

2 `!√
(2`)!

. (5.19)

We do not report the results for the ` = 0 case, which were first derived in ref. [45] and
subsequently improved in ref. [50]. Our results agree with fig. 10 of ref. [50]. These
bounds change if we assume that the first scalar operator which appears in the φφ
OPE has a dimension ∆0 > ∆`, where ∆l is the unitarity bound on ∆. As expected,
the upper bounds do not significantly change when d is close to 1, since by continuity
the theory is close to the free theory, where the only scalar operator arises exactly at
∆0 = 2. For values of d not too close to 1, on the other hand, the bound is significantly
improved and becomes more stringent as ∆0 increases. In fig. 5.1, we report the bounds
for d = 1.6 and ∆0 = 2.
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Figure 5.3: Upper bounds on the three-point function coefficient λ4 between two scalar
operators of dimension d and a tensor operator O with spin ` = 4 and dimension
∆ calculated at k = 11. (a) Starting from below, the lines correspond to the
values d = 1.01, 1.1, 1.2, 1.3, 1.4, 1.5, 1.6. No assumption on the spectrum is
made. (b) For d = 1.6 with no assumption on the spectrum (blue line, as in (a)
for d = 1.6) and assuming that no scalar operator in the OPE is present below
∆0 = 2 (red line). For illustrative purposes, we show the free-theory value for
d = 1 (in which case ∆ = 6), λfree

4 = 1/
√

35, as a black dashed line in both
panels.

Analogously, one can study the upper bounds on λ2 for generic tensor operators O
with spin ` = 2 and dimension ∆ ≥ 4. Upper bounds on the central charge c ∝ 1/λ2

2

associated with the energy-momentum tensor (the lowest-dimensional operator in the
` = 2 sector, with ∆ = 4), have been extensively analyzed in refs. [46, 47, 50], with
and without the assumption of a lower bound on the dimension of the lowest-lying
scalar operator appearing in the φφ OPE. In fig. 5.2 (a), we report the upper bounds
on the coupling λ2 between two scalar operators of dimension d and a tensor operator
O with spin ` = 2 and dimension ∆ for different d and as a function of ∆. As can
be seen, the larger d is, the less stringent is the upper bound, in agreement with the
naive expectation for which d− 1 can be seen as a measure (for d not too far from 1)
of how strongly coupled the CFT is. Like for scalar operators, the bounds change if
we make some assumptions on the CFT spectrum. As for the scalar case, the upper
bounds do not significantly change when d is very close to 1, but for values of d not
too close to 1, they become more stringent as ∆0 increases. For illustration, in fig. 5.2
(b), we report the upper bounds on λ2 as a function of ∆ for d = 1.6, assuming that
the lowest scalar operator appearing in the φφ OPE has a dimension ∆0 ≥ 2.

Similarly, one can analyze tensor operators at higher `. In figs. 5.3 (a) and (b), we
report the same as above for ` = 4 operators. As expected, the absolute scale of λ`
becomes lower and lower as ` increases, with the allowed values of λ` quickly decreasing
as l becomes larger. Notice that the maximal allowed value of both λ2 and λ4 is
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centered at values of ∆ that increase as d is increased.

5.4 Bounds on Current-Current Two-Point Functions

At leading order, the CFT contribution to the one-loop beta function of a gauge field
Aµ, external to the CFT, is governed by the coefficient of the two point-function of
the corresponding current. Denoting by

Lgauged = LCFT + gJµAA
A
µ −

1
4F

A
µνF

µν
A (5.20)

the total Lagrangian after the gauging, we can consider the effective action Γ(A)
defined as (in euclidean signature)

e−Γ(A) =
∫
DΦCFT e−

∫
d4xLgauged , (5.21)

where the functional integration is over all the CFT states and we have omitted color
indices. In general

Γ(A) ⊃ −1
4

∫
d4xZFA

µνF
µν
A , (5.22)

where Z = (1 + δZCFT) and δZCFT is the CFT contribution to the wave function
renormalization of the gauge field, which in turns gives us the one-loop contribution of
the CFT to the RG running of g:

βCFT = gµ
d

dµ

√
Z = 1

2gµ
d

dµ
δZCFT . (5.23)

By taking two functional derivatives with respect to AAµ (p) and ABν (−p) in eq. (5.21),
we readily get

δABδZCFT(δµνp2 − pµpν) = −g2〈JAµ (−p)JBν (p)〉g=0 , (5.24)

where the subscript in the correlator specifies that the two-point function is computed in
the unperturbed CFT setting g = 0. The normalization of the current is uniquely fixed
by Ward identities. Following the notation of ref. [50], we parametrize the two-point
function in configuration space as follows:5

〈JAµ (x)JBν (0)〉g=0 = 3κδAB
4π4

(
δµν − 2xµxν

x2

) 1
x6 . (5.25)

5Notice that the definition of κ here is not identical to that of ref. [50] which tacitly applies to
CFTs with one charged multiplet only. In general, κhere ∝

∑
i κ

i
thereT (ri) where i runs over all

the charged fields of the CFT in the representations ri and δABT (ri) = Tr(tAri
tBri

).
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The “vector central charge" κ is roughly a measure of how many charged degrees
of freedom are present in the CFT, similar to the standard central charge c being a
measure of the total number of degrees of freedom of the CFT. Modulo irrelevant
contact terms, the momentum space correlation function reads

〈JAµ (−p)JBν (p)〉g=0 = (δµνp2 − pµpν)
κ

16π2 δ
AB log

(
p2

µ2

)
(5.26)

and hence
βCFT = g3 κ

16π2 . (5.27)

We extract κ by rescaling the vector current so that it appears as the coefficient of the
three-point function 〈φiφjJAµ 〉:

λ2
J = ρ

κ
. (5.28)

Upper bounds on λ2
J turn into lower bounds on κ. The constant factor ρ is easily found

by matching the result with the free-theory case, in which both λ2
J and κ are calculable.

In what follows, we will analyze the lower bounds on κ for different vector currents that
come from the crossing symmetry constraints applied to four-point functions of scalars.

5.4.1 SO(N) Global Symmetry

We consider a four-point function of real scalars that are taken to be the components
of a single field in the fundamental representation of SO(N) with dimension d. The
crossing symmetry relations have been derived in ref. [48]. We report them here for
completeness:

∑
S+

|λSO|2


0
F

H

+
∑
T+

|λTO|2


F

(1− 2
N

)F
−(1 + 2

N
)H

+
∑
A−

|λAO|2


−F
F

−H

 =


0
1
−1

 .
(5.29)

Here S, T and A refer respectively to the singlet, rank-2 symmetric and antisymmetric
(adjoint) representations of the operators O which define the different conformal blocks.
For the superscript +, only even spins are included in the sum whereas for − only
odd spins are summed over. For simplicity, we have omitted the labels d,∆, ` and
the arguments z, z̄ of the conformal blocks F and H. Bounds on κ (as defined in
eq. (5.25)) in this set-up have already been found in ref. [50]. In this subsection we will
see how these bounds change if assumptions on the dimensionality of the lowest-lying
scalar operator in the singlet channel are made.
First of all, let us consider the free theory of a real scalar in the fundamental represen-
tation of SO(N) in order to fix the constant ρ in eq. (5.28). The free-theory values of
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the OPE coefficients in the three different channels read

λfree
A,` = 1√

2
λfree
` (` odd) ,

λfree
T,` = 1√

2
λfree
` (` even) ,

λfree
S,` = 1√

N
λfree
` (` even) ,

(5.30)

where λfree
` is given in eq. (5.19). We in particular get λfree

J = λfree
A,1 = 1/

√
2. Matching

eq. (5.27) with the one-loop contribution to the β-function of a scalar in an SO(N)
gauge theory gives

κfree = 1
6 , (5.31)

where we have taken T (fund.) = 1 (cf. footnote 5). From this it follows that ρ = 1/12
in eq. (5.28).

In fig. 5.4, we report our results in terms of lower bounds on κ. We have considered
the five different values N = 2, 6, 10, 14, 18 and report the lower bounds on κ for the
case where no assumption on the spectrum is made (the lines starting from d = 1)
and the case where the lowest-lying scalar operator in the singlet channel is assumed
to have dimension ∆S ≥ 4 (the other lines). The former bounds agree with previous
results (e.g. compare with fig. 18 of ref. [50]). Although it is not clearly visible from
the figure, we have checked that all the bounds consistently tend to the free-theory
value for d→ 1. The latter bounds start from a given dcr > 1 that depends on N . This
is of course expected, given the known results for the upper bound on the dimension
of the lowest-lying scalar singlet operator at a given d: CFTs at d < dcr are excluded
under the assumption of a gap in the scalar singlet sector. The values of dcr that we
find agree with the values given in the literature (compare e.g. with the dimensions d
for which ∆0 = 4 in fig. 4 of ref. [50]). The lower bounds on κ become significantly
more stringent when we impose that ∆S > 4. They also decrease less rapidly when d
increases compared to the unconstrained case.

In order to show how the assumption on ∆S affects the lower bounds on κ, in fig. 5.5,
we fix N = 10 and consider the three cases ∆S ≥ 2, ∆S ≥ 3 and ∆S ≥ 4. As expected,
the lower bound consistently becomes more severe as we increase ∆S. As before, the
bounds start at certain dimensions dcr which agree with previous results (compare e.g.
with the dimensions d for which ∆0 = 3, 4 in fig. 4 of ref. [50]).
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Figure 5.4: Lower bounds on the two-point function coefficient κ between two conserved
SO(N) or SU(N/2) adjoint currents as obtained from a four-point function of
scalar operators in the fundamental representation with dimension d calculated
at k = 10. From below, the lines which start at d = 1 correspond to N = 2
(blue), N = 6 (red), N = 10 (brown), N = 14 (green), N = 18 (black), with no
assumption on the spectrum. In the same order and using the same color code,
the lines which start at d ' 1.58, d ' 1.46, d ' 1.37, d ' 1.31 and d ' 1.29
show the bound which is obtained under the assumption that no scalar operator
in the singlet channel has dimension ∆S < 4. For illustrative purposes, we show
the free-theory value κfree = 1/6 as a black dashed line.

5.4.2 SU(N) Global Symmetry

We consider a four-point function of complex scalars that are taken to be the components
of a field in the fundamental representation of SU(N) with dimension d. The crossing
symmetry relations have been derived in ref. [48]. We report them here for completeness:

∑
S±

|λSO|2



F

H

(−)lF
(−)lH

0
0


+
∑
Ad±

|λAdO |2



(1− 1
N

)F
−(1 + 1

N
)H

(−)l+1 1
N
F

(−)l+1 1
N
H

(−1)lF
(−)lH


+
∑
T+

|λTO|2



0
0
F

−H
F

−H


+
∑
A−

|λAO|2



0
0
F

−H
−F
H


=



1
−1
1
−1
0
0


.

(5.32)
Here S, Ad, T and A refer respectively to the singlet, adjoint, rank-2 symmetric and
rank-2 antisymmetric representations of the operators O which define the different
conformal blocks. For the superscript +, even spins are included in the sum, and for −,
odd spins are summed over. We consider here the lower bounds on κ (as defined in
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Figure 5.5: Lower bounds on the two-point function coefficient κ between two conserved
SO(10) or SU(5) adjoint currents as obtained from a four-point function of
scalar operators in the fundamental representation with dimension d calculated
at k = 10. From below, the lines correspond to the case with no assumption on
the spectrum (blue) and assuming that no scalar operator in the singlet channel
has dimension ∆S < 2 (red), ∆S < 3 (brown), ∆S < 4 (green). For illustrative
purposes, we show the free-theory value κfree = 1/6 as a black dashed line.

eq. (5.25)) associated with the adjoint current.

As in subsection 5.4.1, we start by looking at the free theory of a complex scalar in the
fundamental representation of SU(N) in order to fix the constant ρ in eq. (5.28). The
free-theory values of the OPE coefficients in the four different channels read

λfree
Ad,` = 1√

2
λfree
` (` even and odd) ,

λfree
S,` = 1√

2N
λfree
` (` even and odd) ,

λfree
T,` = 1√

2
λfree
` (` even) ,

λfree
A,` = 1√

2
λfree
` (` odd) ,

(5.33)

where λfree
` is given in eq. (5.19). We in particular get λfree

J = λfree
Ad,1 = 1/

√
2. Matching

eq. (5.27) with the one-loop contribution to the β-function of a complex scalar in an
SU(N) gauge theory gives

κfree = 1
6 , (5.34)

where we have taken T (fund.) = 1/2 (cf. footnote 5). From this it follows that
ρ = 1/12 in eq. (5.28) as for SO(N).
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The six crossing symmetry equations (5.32) should reduce to the three equations
(6.41) when the group SU(N) is embedded in an underlying SO(2N) group. The
decomposition of the singlet, adjoint and rank-2 symmetric representations of SO(2N)
in terms of SU(N) representations reads

S+
SO(2N) = S+

SU(N) ,

T+
SO(2N) = T+

SU(N) ⊕ T
+
SU(N) ⊕ Ad+

SU(N) ,

A−SO(2N) = A−SU(N) ⊕ A
−
SU(N) ⊕ Ad−SU(N) ⊕ S−SU(N) .

(5.35)

If SU(N) ⊂ SO(2N), for each primary operator in the A− (T+) representation of
SU(N), there is a corresponding operator in the Ad− and S− (Ad+) representation
as follows from eq. (5.35). The OPE coefficients of these operators are related by
the underlying SO(2N) symmetry, λT+

SO(2N) = λAd
+

SU(N), λA
−

SO(2N) = λA
−

SU(N) =
√
NλS

−

SU(N).
It is straightforward to check with these identifications that eqs. (5.32) reduce to
eqs. (6.41).

As we have already mentioned, the numerical results for the lower bounds on κ for
SU(N) are identical to those for SO(2N), see fig. 5.4. This suggests that, given a set
of three functionals αm that satisfy eq. (5.9) with P = 2, Q = 1 and ηF,H as given
by eq. (6.41), one should be able to construct a set of six functionals α̃m as linear
combinations of the αm such that these functionals satisfy eq. (5.9) with P = 3, Q = 3
and ηF,H as given by eq. (5.32). It would be interesting to find such a mapping and
hence to understand in more analytical terms why the bounds on κ for SO(2N) and
SU(N) are equal.

5.4.3 G1 ×G2 Global Symmetries

The lower bounds on κ found in subsections 5.4.1 and 5.4.2 apply to CFTs in presence
of at least one scalar field in the fundamental representation of G1, where G1 = SO(M)
or SU(M). Of course, the CFT can contain additional charged fields, for example
a number N of scalars in the fundamental representation of G1, with dimensions
d1, . . . dN . In the free-theory limit of N decoupled scalars (real for SO(M), complex
for SU(M)) we would simply have

κfree = N

6 . (5.36)

The larger N is, the more constraining (and interesting) the lower bounds are. One
cannot naively rescale the results of fig. 5.4 by a factor of N in order to match the
new free theory limit, however, because the interactions among the scalars will not be
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Figure 5.6: Lower bounds on the two-point function coefficient κ between two conserved
SO(N) (or SU(N/2)) adjoint currents as obtained from a four-point function
of scalar operators with dimension d in the bi-fundamental representation of
SO(N)×SO(M), calculated at k = 9. We take N = 6. From below, the lines
which start at d = 1 correspond to M = 2 (blue), M = 6 (red), M = 10
(brown), with no assumption on the spectrum. In the same order and using the
same color code, the lines which start at d ' 1.34, d ' 1.28 and d ' 1.25 show
the bound which is obtained under the assumption that no scalar operator in the
singlet channel has dimension ∆S < 4.

taken into account in this way. A more constraining bound could likely be obtained by
studying the coupled set of four-point functions involving all N scalars. This is in general
not straightforward to do, since the crossing symmetry constraints are significantly
more involved in presence of fields with different scaling dimensions.6 A simple way to
mimic the presence of more fields charged under a given group, though at the cost of
assuming identical scaling dimensions d1 = . . . dN = d, is obtained by introducing a
further global symmetry group G2 and assuming that the N fields transform under some
representation of G2. This is the main motivation for us to consider global symmetries
which are direct products of two simple groups: it is a way to obtain lower bounds on
κG1 in presence of more than one field charged under G1. More specifically, in the
following we will consider fields in the fundamental representation of G2 = SO(N).

6See ref. [61] for very recent progress in this direction.
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SO(N)×SO(M)

Consider a CFT with global symmetry SO(N)×SO(M) and one real scalar φia in the
bi-fundamental representation of SO(N)×SO(M), a and i being SO(N) and SO(M)
indices, respectively. In complete analogy to the SO(M) case discussed in ref. [48],
we can impose crossing symmetry in the s- and t-channel on the four-point function
〈φia(x1)φjb(x2)φkc (x3)φld(x4)〉 in order to obtain the bootstrap equations. The operators
appearing in the φφ OPE transform under SO(N)×SO(M) according to the decompo-
sition of (N,M)⊗ (N,M), where N and M denote the fundamental representations
of respectively SO(N) and SO(M). This gives 9 different representations, consisting
of pairs (ij), where i, j = S, T,A refer to the singlet (S), symmetric (T ) and antisym-
metric (A) representations of respectively SO(N) and SO(M). Correspondingly, we
get a total of 3× 3 = 9 equations. We report them in eq. (D.2) in appendix D.1.

The SO(N) conserved current that we analyze is in the (AS) representation and
is the lowest-dimensional operator appearing in the functions FAS and HAS defined
in eq. (D.1). In fig. 5.6, we show the lower bounds on κSO(6) for the three cases
M = 2, 6, 10. While for the case of SO(N) or SU(N/2) considered before the lower
bound first becomes significantly more stringent with growing d and only from a certain
d onwards becomes less stringent, here a slight increase in the bound arises only for d
very close to 1 after which the bound decreases with d. The lines starting from d = 1
correspond to the case where no assumption on the spectrum has been made, while for
the other lines we have assumed that the lowest-lying scalar operator in the SS channel
has dimension ∆SS ≥ 4. The lower bounds for the latter case are stronger than for the
former, but the difference is less substantial than for the groups SO(N) or SU(N/2).
The lower bound d ≥ dcr on the dimension of φia above which the lowest-lying operator
in the SS channel can have a dimension ∆SS ≥ 4 is also weaker than what was found
for SO(N) or SU(N/2). This is expected, since this bound becomes the weaker the
larger the group is. The correct free-theory limit is obtained in all three cases. The
shape of the lower bound on κ with no assumption on the spectrum in fig. 5.6 resembles
the bound found in ref. [50] for SU(N) singlet currents (see e.g. their fig. 19). From
the SO(M) point of view, the SO(N) current is in fact a collection of N(N − 1)/2
singlet currents. On the other hand, for N �M , we find that the lower bound on κ for
SO(N) currents shows the characteristic bump of single SO(N) or SU(N/2) currents,
well above the free-theory value, as in fig. 5.4 (a). For illustration, we show the bound
on κ obtained for N = 30 and M = 2 in fig. 5.7. It would be interesting to further
explore these bounds and to understand the origin of their different behaviours in the
regimes N ≤M and N �M .

As a final application of our results, in fig. 5.8, we report the lower bounds on κ for
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Figure 5.7: Lower bounds on the two-point function coefficient κ between two conserved
SO(30) (or SU(15)) adjoint currents as obtained from a four-point function
of scalar operators with dimension d in the bi-fundamental representation of
SO(30)×SO(2), calculated at k = 9. No assumption on the spectrum is made.
The black dashed line corresponds to the free-theory value κfree = 1/3.

the group SO(6)×SO(120). We choose SO(120) because the contribution of 120
free complex scalar triplets to the SU(3)c ⊂ SO(6) current-current two-point function
gives κ = 20. This in turn is the same value found in eq. (5.3) for the number
of free fermion triplets which are needed to give mass to all the SM quarks in the
SO(5)→SO(4) pNGB composite Higgs model mentioned in section 5.1. We consider
SO(6)×SO(120) and not SU(3)×SO(120) because the latter case is computationally
very demanding (incidentally, in one of the models presented in ref. [100], SU(3)c was
actually embedded in an underlying SO(6) flavour global symmetry). Anyhow, given
the equivalence between the SO(2N) and SU(N) lower bounds on κ, we believe that
these results would also hold for the SU(3)×SO(120) case.

As we see in fig. 5.8, assuming the absence of a relevant scalar singlet operator in the
CFT does not significantly change the bounds. Furthermore, the most dangerous region
regarding Landau poles, which is the region close to d = 1, is not consistent with the
assumption of absence of relevant deformations. If we demand that no sub-Planckian
Landau pole arises, then we need d & 1.2, while for d & 1.25, αc remains asymptotically
free.
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SO(N)×SU(M)

Consider a CFT with global symmetry SO(N)×SU(M) and one complex scalar φia
in the bi-fundamental representation of SO(N)×SU(M), a and i being SO(N) and
SU(M) indices, respectively. We impose crossing symmetry in the s- and t-channel on
the four-point function 〈φia(x1)φj̄†b (x2)φkc (x3)φl̄†d (x4)〉 and the four-point function with
x3 ↔ x4. The operators appearing in the φφ OPE transform under SO(N)×SU(M)
in representations (ij), where i = S, T,A refer to the singlet (S), symmetric (T ) and
antisymmetric (A) representations of SO(N) and j = A, T refer to the symmetric (T )
and antisymmetric (A) representations of SU(M). This gives 6 different representations,
with even and/or odd spin operators, depending on the representation. The operators
appearing in the φφ† OPE transform in representations (ij), with i = S, T,A as before,
whereas j = S,Ad refer to the singlet (S) and adjoint (Ad) representations of SU(M).
Taking into account that SU(M) singlet and adjoint operators appear with both even
and odd spins, we get 12 different conformal blocks, for a total of 18 bootstrap
equations. We report them in eqs. (D.5) and (D.6) in appendix D.2. The SO(N)
conserved current that we are interested in transforms under the AS representation
and is the lowest-dimensional operator appearing in the functions F−AS and H−AS defined
in eq. (D.4).

As we have already mentioned, we have not numerically analyzed lower bounds on κ
in this case, because the large number of bootstrap equations makes the numerical
analysis computationally too demanding for our computing resources.
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Figure 5.8: Lower bounds on the two-point function coefficient κ between two conserved
SO(6) ⊃ SU(3)c adjoint currents as obtained from a four-point function of
scalar operators with dimension d in the bi-fundamental representation of
SO(6)×SO(120), calculated at k = 9. The line which starts at d = 1 cor-
responds to the case where no assumption is made on the spectrum, whereas
for the line which starts at d ' 1.19, the CFT is assumed to have no scalar
operator in the singlet channel with dimension ∆S < 4. In the green region αc
remains asymptotically free, while in the orange and red regions αc develops
trans-Planckian and sub-Planckian Landau poles, respectively.
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6 Chapter 6

Multipoint Bootstrap

In this last chapter we will analyze an alternative numerical method in order to obtain
constraints in general CFTs by means of the bootstrap equation 2.48. All numerical
bootstrap studies up to date have used the constraints imposed by crossing symmetry
on 4-point correlators evaluated at a specific value of the conformal cross-ratios,
u = v = 1/4, or equivalently in z-coordinates at z = z̄ = 1/2 [13]. This is the point of
best convergence for the combined conformal block expansions in the s and t channels.
Taking higher and higher derivatives of the bootstrap equations evaluated at this point
has proven to be very effective and successful in obtaining increasingly better bounds,
an example of this has been shown in the previous chapter. We will denote this method
in the following as the “derivative method". A drawback of the derivative method –
both in its linear [9, 103,106] or semi-definite [50,107] programming incarnations – is
the need to include a large number of operators in the bootstrap equations. This makes
any, even limited, analytical understanding of the obtained results quite difficult.

A possible approximation scheme is in fact available: ref. [22] has determined the rate
of convergence of the Operator Product Expansion (OPE), on which the bootstrap
equations are based. This allows us to extract the maximal error from neglecting
operators with dimensions larger than some cutoff ∆∗ in the bootstrap equations and
thus to consistently truncate them. These truncated bootstrap equations can then
be evaluated at different points in the z-plane. This method, which we denote as the
“multipoint method", has been previously advocated by Hogervorst and Rychkov in
ref. [25] but has not yet been numerically implemented. The aim of this chapter is
to provide such an implementation and study the resulting bounds. It is important to
emphasize that the method of ref. [25] combines what are in principle two independent
ideas: i) multipoint bootstrap and ii) truncation of the bootstrap equations. One could
study i) without ii), or try to analyze ii) without i). We will not consider these other
possibilities here.

We begin section 6.1 with a brief review of the results of refs. [22, 25, 41] on the
convergence of the OPE. We use generalized free theories as a toy laboratory to test some
of the results obtained in ref. [22]. In particular, we emphasize that in the kinematical
limit z, z̄ → 1, the behaviour of any euclidean CFT in d > 2 dimensions approaches
that of a generalized free theory, very much like what happens in the Lorentzian case
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in the limit z → 0 with z̄ fixed [23,24]. We then generalize the results of ref. [22] for
CFTs with an O(n) global symmetry. For concreteness, we study bounds on operator
dimensions and the central charge in 3D and 4D CFTs, with and without an O(n) global
symmetry (with no supersymmetry). For these bounds, extensive results are already
available in the literature (see e.g. refs. [46–48,50,54,58,61,101,103,105,108,115,116]).
In particular, we focus our attention on the regions where the 3D Ising and O(n) vector
models have been identified. We show how the results depend on the number N of
points in the z-plane at which we evaluate the bootstrap equations and the cut-off
∆∗ on the dimension of operators in the bootstrap equations. Using values for the
dimension of the operator φ in O(n) vector models available in the literature and a fit
extrapolation procedure, we then determine the dimensions of the second-lowest O(n)
singlet and symmetric-traceless operators S ′ and T ′ for n = 2, 3, 4. To our knowledge,
these have not been obtained before using bootstrap techniques. Our results are
consistent with those from analytical calculations using the ε-expansion [117,118] with
a mild tension with the result of ref. [118] for the dimension of T ′ in the O(2) model.
We notice from our results that the “kink" in the bound on the dimension of the
lowest scalar (singlet) operator in 3D Ising and O(n) vector models is already visible
for relatively small ∆∗, while the minimum in the central-charge bound is very sensitive
to ∆∗. For our numerical implementation, we discretize the spectrum and formulate
the bootstrap equations as a linear program which we solve using the optimizer CPLEX1

by IBM. Since we focus on the truncated bootstrap equations with relatively low cutoff
∆∗, double precision as used by CPLEX is sufficient for our purposes. More refined
implementations with higher numerical precision, possibly adapting the method and
optimizer of refs. [103, 106], are certainly possible. More details on the numerical
implementation are given in section 6.4.

6.1 Convergence of the OPE

We begin with a brief review of the results of refs. [22,41] (see also ref. [25]) about the
convergence of the OPE in a euclidean CFT in any number of dimensions.2 For more
details see the original references. Consider the 4-point function of a scalar primary

1http://www-01.ibm.com/software/commerce/optimization/cplex-optimizer/
2Bounds on the OPE convergence are obtained in an alternative way using crossing symmetry in
ref. [119]. Interestingly, ref. [119] sets bounds which are also valid for finite values of ∆∗ at
z = z̄ = 1/2, though they are relative and not absolute bounds. It would be interesting to explore
the approach followed in this paper further. We thank Slava Rychkov for having pointed out this
reference to us.
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operator φ with scaling dimension ∆φ:

〈φ(x1)φ(x2)φ(x3)φ(x4)〉 = G(u, v)
x

2∆φ

12 x
2∆φ

34
, (6.1)

where
u ≡ x2

12x
2
34

x2
13x

2
24

and v ≡ x2
14x

2
23

x2
13x

2
24

(6.2)

are the conformally-invariant cross-ratios (xij ≡ xi − xj). Applying the OPE to the
operator pairs φ(x1)φ(x2) and φ(x3)φ(x4) in the 4-point function, one can write

G(u, v) = 1 +
∑
∆,`

λ2
O g∆,`(z, z̄) , (6.3)

where u = zz̄, v = (1− z)(1− z̄) and the sum runs over all primary operators O that
appear in the φ × φ OPE with ∆ and ` being respectively their dimension and spin.
For each primary, the sum over all its descendants is encoded in the conformal block
function g∆,`(z, z̄). In a euclidean CFT, z̄ = z∗ and the conformal blocks are regular
everywhere in the complex z-plane, with the exception of a branch-cut along the real
line [1,+∞).3 If we impose unitarity (reflection positivity in the euclidean), the OPE
coefficients λO are real and thus λ2

O > 0.

Crucial for our considerations will be a bound on the remainder
∑

(∆≥∆∗),`
λ2
O g∆,`(z, z̄) (6.4)

of the sum in eq. (6.3) when it is truncated at some primary operator of dimension
∆ = ∆∗. To determine this bound, one first uses that

|g∆,`(z, z̄)| ≤ g∆,`(|z|, |z̄|) (6.5)

as follows e.g. from a representation of the conformal blocks in terms of Gegenbauer
polynomials [25]. It is therefore sufficient to estimate the remainder for real z = z̄. As
was found in ref. [22], the most stringent bound is obtained by using the coordinate

ρ(z) = z

(1 +
√

1− z)2 . (6.6)

The z-plane is mapped to the unit disk in ρ and the branch-cut is mapped to the
boundary of the disk. The conformal blocks in ρ are then defined for |ρ| < 1. In the

3The branch-cut is best seen in Lorentzian signature, where z and z̄ are two independent variables.
At fixed z̄ (z), g∆,`(z, z̄) is a true analytic function in z (z̄) with a branch-cut along the line
[1,+∞).
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manifestly reflection positive configuration with ρ̄ = ρ = r, the function G(u, v) in
eq. (6.3) can be written as4

g(r) = 1 +
∑
∆,`

λ2
O

∞∑
n=0

cn(∆, `)r∆+n , (6.7)

where cn(∆, `) are positive coefficients whose explicit form is not important here and
the sum over n takes into account the contributions from the descendants of each
primary. It is convenient to rewrite g(r) as

g(β) =
∫ ∞

0
d∆ f(∆)e−β∆ with f(∆) =

∑
k

ρk δ(∆−∆k) . (6.8)

Here β ≡ − log r, k runs over all operators (primaries and their descendants) which
are exchanged in the OPE and f(∆) is a spectral density with positive coefficients ρk.
Again, their explicit form is not relevant for our considerations.

The behaviour of g(β) in the limit β → 0 (corresponding to the OPE limit x3 → x2, in
which case z → r → 1 and 1− z → β2/4→ 0) is dominated by the exchange of the
identity operator and one finds:5

g(β) ∼
β→0

24∆φβ−4∆φ . (6.9)

Here a ∼ b means that a/b→ 1 in the considered limit. The key observation of ref. [22]
is that since the coefficients ρk are all positive, this asymptotic behaviour determines
the leading, large-∆ behaviour of the integrated spectral density

F (∆) =
∫ ∆

0
f(∆′) d∆′ (6.10)

by means of the Hardy-Littlewood tauberian theorem (see e.g. [120]):6

F (∆) ∼
∆→∞

(2∆)4∆φ

Γ(4∆φ + 1) . (6.11)

The remainder (6.4) can then be bounded as follows: We first note that
∑

(∆≥∆∗),`
λ2
O g∆,`(β) ≤

∫ ∞
∆∗
f(∆)e−β∆ d∆ , (6.12)

4For simplicity, we use the same symbol to denote the functions G(u, v) and g̃(r) = G(u(r), v(r))
etc. here and below.

5This is true in general only in d > 2 dimensions. In d = 2, one has to be careful since scalar
operators can have arbitrarily small dimensions. See also the discussion after eq. (6.23).

6It is in fact sufficient that the coefficients are all positive for operators with dimension larger than
some fixed value ∆0.
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since the r.h.s. contains contributions from all operators with dimension larger than ∆∗,
whereas on the l.h.s. only primaries with dimension larger than ∆∗ and their descendents
contribute. Using eq. (6.11), the r.h.s. can in turn be bounded as∫ ∞

∆∗
f(∆)e−β∆ d∆ = β

∫ ∞
∆∗
e−β∆(F (∆)− F (∆∗)) d∆ ≤ β

∫ ∞
∆∗
e−β∆F (∆)d∆

' β
∫ ∞

∆∗
e−β∆ (2∆)4∆φ

Γ(4∆φ + 1)d∆ = β−4∆φ 24∆φ

Γ(4∆φ + 1) Γ(4∆φ + 1,∆∗β) ,(6.13)

where Γ(a, b) is the incomplete Gamma function. Clearly, this bound applies for
parametrically large values of ∆∗, where eq. (6.11) holds. Using eq. (6.5), we finally
get the bound on the remainder

∣∣∣∣ ∑
(∆≥∆∗),`

λ2
O g∆,`(z, z̄)

∣∣∣∣ ≤ (− log |ρ(z)|)−4∆φ24∆φ

Γ(4∆φ + 1) Γ(4∆φ + 1,−∆∗ log |ρ(z)|) .

(6.14)
This is valid in any number d > 2 of dimensions for 4-point functions with identical
scalars.

It was pointed out in ref. [41] that the conditions for the applicability of the Hardy-
Littlewood tauberian theorem in both 3 and 4 dimensions are also fulfilled for the
rescaled conformal blocks

g̃∆,`(r) ≡ (1− r2)γg∆,`(r) (6.15)

with γ = 1. Repeating the derivation reviewed above for a remainder involving the
rescaled conformal blocks, it is straightforward to get the alternative bound∣∣∣∣ ∑

(∆≥∆∗),`
λ2
O g∆,`(z, z̄)

∣∣∣∣ ≤ R(z, z̄,∆∗,∆φ, γ) (6.16)

with

R(z, z̄,∆∗,∆φ, γ) ≡ (− log |ρ(z)|)−4∆φ+γ 24∆φ+γ

Γ(4∆φ + 1− γ)
Γ(4∆φ + 1− γ,−∆∗ log |ρ(z)|)

(1− |ρ(z)|2)γ .

(6.17)
For −∆∗ log |ρ(z)| � 1, eq. (6.17) can be approximated as

R(z, z̄,∆∗,∆φ, γ) ≈ 24∆φ+γ ∆4∆φ−γ
∗

Γ(4∆φ + 1− γ)
|ρ(z)|∆∗

(1− |ρ(z)|2)γ . (6.18)

We see that for |ρ(z)| not too close to 1 and ∆∗ & 8∆φ, the bound is more stringent for
γ = 1 than for γ = 0. It was furthermore shown in ref. [41] that in d = 3 dimensions,
γ = 1 is the maximal allowed value such that the Hardy-Littlewood tauberian theorem
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remains applicable, whereas it was conjectured without proof that the maximal allowed
value in d = 4 dimensions is γ = 3/2. Correspondingly we use eq. (6.17) with γ = 1
for the remainder both in 3 and 4 dimensions in our numerical implementation.7

The above derivations were based on the existence of a configuration for which the
function G(u, v) turns into a positive definite function of a single variable. The
remainder is then estimated using the Hardy-Littlewood tauberian theorem. One cannot
naively apply these arguments to arbitrary derivatives of G(u, v) w.r.t. u and v, unless
the resulting functions remain positive definite and derivatives can be brought inside
the absolute value in the l.h.s. of eq. (6.16). See the appendix of ref. [123] for a recent
discussion on how to estimate the remainder on derivatives of G(u, v). It would be
interesting to verify if this allows us to also study truncated bootstrap equations with
the derivative method.

6.1.1 Comparison with Generalized Free Theories and
Asymptotics for z → 1

The results reviewed in the previous subsection are based on eq. (6.11) which holds in
the limit ∆∗ →∞. Of course, for any practical use, we need to know the value of ∆∗
beyond which we can trust eq. (6.11) and thus the bound eq. (6.16). It is difficult to
determine this value for a generic CFT. But we can get useful insights by considering
exactly calculable CFTs, like generalized free theories (sometimes called mean field
theories) for which the CFT data are known and the function G(u, v) in eq. (6.1) in
any number of dimensions reads

G(u, v) = 1 + u∆φ +
(
u

v

)∆φ

= 1 + |z|2∆φ +
( |z|
|1− z|

)2∆φ

. (6.19)

For values of ∆∗ such that eq. (6.11) is no good approximation, the r.h.s. of eq. (6.16)
can clearly still overestimate the actual remainder, leading to no inconsistency. On the
other hand, if it underestimates the actual remainder, eq. (6.16) is simply wrong. We

7The fact that eq. (6.16) with γ = 0 is not optimal can be traced to using the inequality (6.12) in
the derivation. In order to make the bound more stringent, one could then alternatively use the
series representation in ref. [25] which includes contributions from primary operators and their
descendants separately. Using this series truncated at contributions corresponding to dimension
∆∗ instead of the full conformal blocks g∆,` would make the r.h.s. of the inequality (6.12) the
actual remainder to be bounded. This would thus make eq. (6.16) with γ = 0 more stringent.
Here, however, we choose not to follow this approach. The reason is that the representations for
the full conformal blocks g∆,` can be considerably faster calculated than (our implementation of)
the truncated series representation of ref. [25].
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Figure 6.1: η defined in eq. (6.20) as a function of ∆∗ in a generalized free theory in d = 4
dimensions evaluated at the symmetric point z = z̄ = 1/2. We have taken
∆φ = 1.5 and γ = 1.

define
η ≡ R(z, z̄,∆∗,∆φ, γ)∣∣∣∣∑(∆≥∆∗),` λ

2
O g∆,`(z, z̄)

∣∣∣∣ (6.20)

and check if and when η is smaller than 1, in which case eq. (6.16) is violated. The
denominator in eq. (6.20) is computed as

∑
(∆≥∆∗),`

λ2
O g∆,`(z, z̄) = G(u, v)− 1−

∑
(∆<∆∗),`

λ2
O g∆,`(z, z̄) . (6.21)

In fig. 6.1, we show η as a function of ∆∗ evaluated at the symmetric point z = z̄ = 1/2.
Notice that at the point of best convergence the actual remainder is always significantly
smaller than R, and that the ratio gets bigger and bigger as ∆∗ increases for large ∆∗.
In particular, η is greater than 1 for any value of ∆∗. We have performed comparisons
with GFTs in d = 3 dimensions with γ = 0, 1 and d = 4 dimensions with γ = 0, 3/2 for
different values of z and ∆φ within the unitary bounds, finding analogous qualitative
results. Somehow unexpectedly, we find that the bound (6.16) is never violated in
GFTs, for any value of ∆∗.

When z → 1, both the numerator and the denominator of η in eq. (6.20) blow up,
since the OPE is not convergent at z = z̄ = 1. Operators with high scaling dimension
are no longer suppressed and the remainder completely dominates the OPE.8 More
precisely, we have

R(z, z̄,∆∗,∆φ, γ) ∼
z,z̄→1−

24∆φ(− log |ρ(z)|)−4∆φ , (6.22)

8In this limit, the name remainder should actually be used for the finite sum of operators up to ∆∗.
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independently of γ. On the other hand, from eq. (6.19) we have

G(u, v) ∼
z,z̄→1−

1
|1− z|2∆φ

∼
z,z̄→1−

24∆φ(− log |ρ(z)|)−4∆φ , (6.23)

where in the last equality we have used that |1 − z| → (log |ρ(z)|)2/4 in the limit.
Interestingly enough, GFTs saturate the remainder R in this limit, for any choice of γ
and number of dimensions!

This finding has close analogies to the study of the light-cone limit of Lorentzian CFTs
performed in refs. [23,24]. It was found there that the spectrum of any CFT resembles
that of a GFT for parametrically large spin operators. In particular, in ref. [23], this
has been established by analyzing crossing symmetry in the limit z → 0 and z̄ fixed
for d > 2, where large twist operators are suppressed. In the euclidean, in contrast,
the twist does not play a role, and operators of any twist should be considered. The
two-dimensional case is more subtle, because there is no longer a gap between the
identity (which has the minimum twist zero) and the other operators. Indeed, the
results of refs. [23,24] and those of ref. [22] in the euclidean do not straightforwardly
apply for d = 2. We see here that for large scaling dimensions any euclidean CFT
seems to approach (or include) a GFT for d > 2. Expanded around the GFT CFT data,
the inequality (6.16) might be interpreted as an integral equation for the asymptotic
anomalous dimensions and OPE coefficients for parametrically large operator dimensions.
It might be interesting to see if some general properties of euclidean CFTs can be
extracted in this way.

6.1.2 Remainder for CFTs with O(n) Symmetry

The generalization of the OPE convergence estimate to CFTs with O(n) global symmetry
is straightforward. For concreteness, let us consider scalars φi in the fundamental
representation of O(n). The only non-trivial point is to identify a proper linear
combination of 4-point functions

〈φi(x1)φj(x2)φk(x3)φl(x4)〉 (6.24)

that leads to a positive definite series expansion, otherwise the Hardy-Littlewood
tauberian theorem does not apply. A possible choice is

Aη ≡ 〈φ1φ1φ1φ1〉 + |η|2〈φ2φ2φ2φ2〉 + η〈φ1φ1φ2φ2〉 + η∗〈φ2φ2φ1φ1〉 = aη(u, v)
x

2∆φ

12 x
2∆φ

34
,

(6.25)
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where for simplicity we have omitted the x-dependence of the fields. The parameter
η can in general take an arbitrary complex value, but it is enough for our purposes
to consider η = ±1. For ρ̄ = ρ = r and any η, this correlator is manifestly positive
definite, because it corresponds to the norm of the state

φ1|φ1〉+ ηφ2|φ2〉 . (6.26)

The leading term in aη(u, v) for x2 → x3 is given by the exchange of the identity
operator in the first two correlators and hence is independent of η. On the other hand,
expanding in conformal blocks in the (12)-(34) channel, we have [48]

Aη = 1
x

2∆φ

12 x
2∆φ

34

(
2(1 + η)

(
1 +

∑
S+

λ2
S g∆,`(u, v)

)
+ 4

(
1− 1 + η

n

)∑
T+

λ2
T g∆,`(u, v)

)
,

(6.27)
where S and T denote operators in the singlet and rank-two symmetric representations
of O(n), respectively. Both sums run over even spins. We can now repeat essentially
verbatim the derivation below eq. (6.6). For η = −1, this gives rise to the bound

∣∣∣∣ ∑
(∆≥∆∗),`

λ2
T g∆,`(z, z̄)

∣∣∣∣ ≤ 1
2R(z, z̄,∆∗,∆φ, γ) , (6.28)

where R is given in eq. (6.17). The factor 1/2 with respect to the non-symmetric case
arises because the identity operator is exchanged in two correlators but a factor 4 is
present in the second term in the r.h.s. of eq. (6.27). For η = 1 we similarly get
∣∣∣∣ ∑
(∆≥∆∗),`

(
λ2
S g∆,`(z, z̄) +

(
1− 2

n

)
λ2
T g∆,`(z, z̄)

)∣∣∣∣ ≤ 1
2R(z, z̄,∆∗,∆φ, γ) . (6.29)

Another positive definite linear combination of correlators is

Bη ≡ 〈φ2φ1φ1φ2〉+ |η|2〈φ1φ2φ2φ1〉+ η〈φ2φ1φ2φ1〉+ η∗〈φ1φ2φ1φ2〉 = bη(u, v)
x

2∆φ

12 x
2∆φ

34
,

(6.30)
corresponding to the norm of the state

φ1|φ2〉+ ηφ2|φ1〉 . (6.31)

Again, we consider η = ±1. In the (12)-(34) channel the correlator Bη can be written
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as9

Bη = 1
x

2∆φ

12 x
2∆φ

34

(
2(1 + η)

∑
T+

λ2
T g∆,`(u, v) + 2(1− η)

∑
A−

λ2
A g∆,`(u, v)

)
, (6.32)

where A stands for operators in the rank-two antisymmetric representation of O(n).
The first sum runs over even spins, whereas for the second one they are odd. As
before, the leading term in bη(u, v) for x2 → x3 is given by the exchange of the identity
operator in the first two correlators and is independent of η. For η = 1, eq. (6.32)
gives rise to the same bound given in eq. (6.28), while for η = −1 we have

∣∣∣∣ ∑
(∆≥∆∗),`

λ2
A g∆,`(z, z̄)

∣∣∣∣ ≤ 1
2R(z, z̄,∆∗,∆φ, γ) . (6.33)

It is straightforward to see that the bounds (6.28), (6.29) and (6.33) are the best that
can be obtained. Indeed, in the free-theory limit one has λ2

S = λ2/n, λ2
T = λ2

A = λ2/2
with λ2 being the OPE coefficients for a single free field (see e.g. eq. 5.30). The above
three bounds then reduce to eq. (6.16) which is known to give the best bound on
the r.h.s. of eq. (6.12) (see however footnote 7) [22]. Any potentially better bound
for O(n) theories should in particular apply to the free theory, but would then be in
contradiction with the results of ref. [22].

The above bounds will be used in the next section to bound the remainder of the
bootstrap equations in CFTs with an O(n) global symmetry.

6.2 Bootstrapping with Multiple Points

The bootstrap equation for a 4-point function with identical scalars φ with scaling
dimension ∆φ in any number of dimensions is given by the sum rule (see refs. [124,125]
for pedagogical reviews)
∑
∆,`

λ2
O F∆φ,∆,`(z, z̄) = u∆φ − v∆φ , F∆φ,∆,`(z, z̄) ≡ v∆φg∆,`(u, v)− u∆φg∆,`(v, u) .

(6.34)

9In our normalization conventions for the conformal blocks, the squared OPE coefficients λ2
S,T,A are

all positive.
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Splitting the sum into two parts, for dimensions smaller and larger than a cutoff ∆∗,
we can write

∑
(∆<∆∗),`

λ2
O F∆φ,∆,`(z, z̄) = u∆φ − v∆φ + E(z, z̄,∆∗,∆φ) . (6.35)

Using eq. (6.16), the remainder E of the sum rule is bounded by

|E(z, z̄)| ≤ Emax(z, z̄) ≡ v∆φR(z, z̄) + u∆φR(1− z, 1− z̄) , (6.36)

where we have omitted the dependence on ∆∗, ∆φ and γ. The truncated sum rule
(6.35) still involves a generally unknown spectrum of operators up to dimension ∆∗. In
order to make it amenable to numerical analysis, we discretize the spectrum and make
the ansatz10

{
(0, d− 2

2 ) , (0, d− 2
2 +∆step) , . . . , (0,∆∗) , (2, d) , (2, d+∆step) , (2,∆∗) , . . . , (`max,∆∗)

}
(6.37)

for the quantum numbers (spin,dimension) of the operators that can appear in the
truncated sum rule. For each spin `, the dimension runs in steps of size ∆step from
the unitarity bound ∆d,`

min ≡ `+ (d− 2)/(1 + δ`0) to the cutoff ∆∗ (or a value close to
that, depending on ∆step). Accordingly, `max is the largest spin for which the unitarity
bound is still below the cutoff, ∆d,`max

min < ∆∗. In practice, we vary the step size ∆step

somewhat depending on the spin and dimension. This is discussed in more detail in
sec. 6.4. We find that the bounds converge when going to smaller ∆step, meaning that
the discretization does not introduce any artifacts into our calculation.

We similarly choose a finite number of points zi in the z-plane where the sum rule
is evaluated. The details of our choice for this distribution of points are discussed in
sec. 6.2.1. Together with the discretization of operator dimensions, this turns eq. (6.35)
into the matrix equation

M · ~ρ = ~σ + ~ε . (6.38)

The elements of the matrixM are the functions F∆φ,∆,`(z, z̄) evaluated for the different
quantum numbers in eq. (6.37) along the rows and for the different points zi along the
columns. Furthermore, the vector ~ρ consists of the squared OPE coefficients λ2

O of the
operators corresponding to the quantum numbers in eq. (6.37) and

~σ ≡


|z1|2∆φ − |1− z1|2∆φ

|z2|2∆φ − |1− z2|2∆φ

...

 and ~ε ≡


E(z1, z̄1,∆∗,∆φ)
E(z2, z̄2,∆∗,∆φ)

...

 . (6.39)

10Alternatively, one could adapt the approach of ref. [103] to the multipoint method.
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Using the bound (6.36), we then obtain the matrix inequality
 M
−M

 ~ρ ≥

 ~σ − ~εmax

−~σ − ~εmax

 , (6.40)

where ~εmax is defined as ~ε but with E replaced by Emax. This is the starting point for our
numerical calculations. In order to determine bounds on OPE coefficients, we search
for vectors ~ρ which satisfy eq. (6.40) and extremize the entry corresponding to that
OPE coefficient. For bounds on the dimension of the lowest-lying scalar operator, on
the other hand, we make an assumption on this dimension and drop all scalar operators
with smaller dimension from our ansatz (6.37). This gap then allows for a consistent
CFT only if there exists a vector ~ρ which satisfies eq. (6.40) with the reduced ansatz.
By trying different assumptions, we can determine the maximal allowed gap. Both
problems are linear programs which can be solved using fast numerical routines. An
advantage of solving eq. (6.40) is that the vector ~ρ gives us the spectrum of operators
and their OPE coefficients of a potential CFT living at the boundary of the allowed
region. This has been used before in ref. [103].11

We also consider CFTs with an O(n) global symmetry. For an external scalar operator
in the fundamental representation of O(n), the sum rule reads [48]

∑
S+

λ2
S


0
F
H

+
∑
T+

λ2
T


F

(1− 2
n
)F

−(1 + 2
n
)H

+
∑
A−

λ2
A


−F
F
−H

 =


0

u∆φ − v∆φ

−u∆φ − v∆φ

 ,

(6.41)
where H∆φ,∆,l(z, z̄) ≡ v∆φg∆,l(u, v) + u∆φg∆,l(v, u) and we have suppressed the
arguments of the functions F and H. Splitting the sums in eq. (6.41) into two parts,
for dimensions smaller and larger than a cutoff ∆∗, we can write

∑
S+

∆<∆∗

λ2
S


0
F
H

+
∑
T+

∆<∆∗

λ2
T


F

(1− 2
n
)F

−(1 + 2
n
)H

+
∑
A−

∆<∆∗

λ2
A


−F
F
−H

 =


E1

u∆φ − v∆φ + E2

−u∆φ − v∆φ + E3

 .
(6.42)

Using eqs. (6.28), (6.29) and (6.33), we obtain the bounds on the remainders

|E1,2(z, z̄)| ≤ Emax(z, z̄) , |E3(z, z̄)| ≤ 2 Emax(z, z̄) , (6.43)

with Emax defined as in eq. (6.36). Discretizing the space of operator dimensions as
in eq. (6.37) and evaluating the sum rule at a finite set of points zi, we again obtain

11The data of CFTs at the boundary of the allowed region can also be obtained from the ‘dual’
method originally developed in ref. [9] by using the extremal functional method of ref. [109].
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a matrix inequality of the form (6.40). This is the starting point for our numerical
calculations for CFTs with O(n) global symmetry.

6.2.1 Choice of Points

An important choice for the multipoint method is the distribution of points in the
z-plane at which the bootstrap equations are evaluated. Using the symmetries z ↔ z̄

and z ↔ (1− z), z̄ ↔ 1− z̄ of the bootstrap equations, we can restrict these points to
the region Re(z) ≥ 1/2 and Im(z) ≥ 0 of the z-plane. The remainder of the truncated
sum rule is controlled by |ρ(z)| and |ρ(1− z)| (cf. eqs. (6.18) and (6.36)). Guided by
this, we introduce the measure

λ(z) ≡ |ρ(z)| + |ρ(1− z)| , (6.44)

and consider points with λ(z) ≤ λc for some constant λc. It is desirable to choose λc
and the distribution of points within that region in such a way that the obtained bounds
are as stringent as possible. We have performed extensive scans over different values
for λc and distributions with different density profiles and have found that a flat profile
leads to as good or better bounds than more complicated profiles. We therefore choose
the former and put points on a grid centered at z = 1/2. The grid spacing is chosen
such that the desired number of points is within the region λ(z) ≤ λc, Re(z) ≥ 1/2
and Im(z) ≥ 0. We have then found that

λc = 0.6 (6.45)

gives the best bounds for all cases that we have studied.12 In fig. 6.2, we show the
corresponding region in the z-plane and a sample distribution of 100 points.

In order to test the influence of the choice of measure on the bounds, we have
performed further scans with λ(z) ≡ max(|ρ(z)|, |ρ(1− z)|) proposed in ref. [25] and
λ(z) ≡ |z− 1/2| (for the latter we have removed points at or close to the branch-cuts).
We have found that, once the optimal λc is chosen, the bounds obtained with these
measures are indistinguishable from those obtained with eq. (6.44). This indicates that
the precise form of the region within which points are sampled has only a marginal
effect on the quality of the bounds.

12In more detail, we have considered bounds on the central charge and the dimension of the lowest-
dimensional scalar operator, in 3D and 4D, with O(n) and without symmetry, and with different
choices for the number of points N and the cutoff ∆∗. It is remarkable that λc = 0.6 (within
±0.02, the resolution of our scan) comes out as the optimal choice for such a variety of cases.
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Figure 6.2: The region in the z-plane with λ(z) ≤ 0.6 and a sample of 100 points in a
fundamental domain of that region. The crossed lines are the two branch-cuts
where the bootstrap equations do not converge.

6.3 Results

We now present the results of our numerical analysis. In subsection 6.3.1, we study
bounds on the dimension of the lowest-dimensional scalar operator in the OPE and
bounds on the central charge in 3D CFTs, focusing in particular on the regions where
the 3D Ising and O(n) models have been identified. In subsection 6.3.2 we then study
the same bounds for generic 4D CFTs. We analyze in particular how our results depend
on the number N of points chosen in the z-plane, and on the cutoff ∆∗. In subsection
6.3.3 we give a closer look at the spectrum of the 3D O(n) models and determine
the operator dimensions of the first two scalar operators in the singlet and rank-two
symmetric representation of O(n).

Before presenting our results, it is important to emphasize an important difference
between the multipoint and the derivative bootstrap methods. As mentioned in the
introduction, in the latter we do not have a reliable way of truncating the OPE series
defining the bootstrap equations at some intermediate dimension ∆∗, because we do
not have a reliable estimate of the resulting error. We are therefore forced to have ∆∗
as large as possible to minimize this error and can only check a posteriori if the chosen
∆∗ was sufficient.13 More than ∆∗ (or its analogue), the key parameter that controls
13We are a bit sloppy here in order to keep the discussion simple and get to the point. For instance,

127



the accuracy of the method is given by the total number of derivatives ND that are
applied to the bootstrap equations. Of course, the larger ND is, the better are the
bounds. The accuracy is then limited by the largest ND that allows the calculation
to be performed within an acceptable amount of time with the available computing
resources.

In the multipoint method, on the other hand, we can reliably vary ∆∗ due to the
bound on the remainder of the truncation discussed in sec. 6.1. In addition, we can
also vary the number N of points in the z-plane which is the analogue of ND in the
derivative method. The parameter region for the multipoint method corresponding to
the typical bootstrap analysis with the derivative method is then very large ∆∗ and N
as large as possible given the available computing resources. In this paper, on the other
hand, we are mostly interested in the regime where ∆∗ is not very large, with values
O(10)-O(20). We find that for this range of ∆∗, the results converge for N ∼ O(100)
and do not improve further if N is increased. This corresponds to the fact that the
rank of the matrix M in the discretized bootstrap equation (6.38) is then O(100).
Note that since CPLEX is limited to double precision, we also cannot take ∆∗ arbitrarily
large. Due to the excellent speed of CPLEX, on the other hand, we have found that
taking N large enough so that the bounds converge is no limiting factor.

6.3.1 3D Ising and O(n) Models

The most remarkable numerical results from the conformal bootstrap have been obtained
in 3D CFTs. One interesting bound to study is on the dimension of the lowest-
dimensional scalar operator appearing in the OPE. We denote this operator by ε and the
operator that is used to derive the bootstrap equations by σ. It was noted in ref. [101]
that the 3D Ising model sits at a special point, a kink, at the boundary of the allowed
region of ∆ε as a function of ∆σ. The Ising model is similarly special with respect to
the bound on the central charge c as a function of ∆σ, sitting again at the boundary
of the excluded region, at the point where c is minimized [101,103]. Note, however,
that the theory minimizing c does not actually correspond to the 3D Ising model, but
rather to some exotic theory with ∆ε < 1. Most likely this theory is unphysical (though
we are not aware of a solid argument to dismiss it). In practice this theory is removed
by assuming a gap in the operator spectrum such that ∆ε > 1. Independently of the
nature of this theory, the condition ∆ε > 1 is satisfied by the Ising model and can be
legitimately imposed if we are interested in this particular 3D CFT.

in numerical methods based on semi-definite programming one is able to include all operator
dimensions continuously up to infinity. The rough analogue of our ∆∗ in that case is the maximum
spin of the primary operators entering the OPE which are taken into account for the numerical
implementation.
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Figure 6.3: Bounds on ∆ε as a function of ∆σ for N = 100 points and different values of
∆∗. The regions above the lines are excluded. The black cross marks the precise
values of ∆σ and ∆ε for the 3D Ising model as determined in ref. [103]. The
curves and the labels in the legend have the same order from top to bottom.
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Figure 6.4: Bounds on the central charge c as a function of ∆σ for N = 100 points and
different values of ∆∗. A gap ∆ε > 1.1 has been assumed. The regions below
the lines are excluded. The black cross marks the precise values of ∆σ and c for
the 3D Ising model as determined in ref. [103]. The curves and the labels in the
legend have the same order from top to bottom.

In fig. 6.3, we show the bound on ∆ε as a function of ∆σ for N = 100 points and
different values of ∆∗. Notice how the kink shows up already for ∆∗ = 13 and converges
quite quickly as ∆∗ increases. In fig. 6.4, we show the bound on the central charge
c (normalized to the central charge cfree of a free scalar theory) as a function of ∆σ

for N = 100 points and different values of ∆∗. The gap ∆ε > 1.1 is assumed in
the operator spectrum. A lower bound on c is obtained even for ∆∗ = 10, but the
convergence when going to larger ∆∗ is now much slower than for the bound on ∆ε. A
minimum is visible starting from ∆∗ = 16 but even at ∆∗ = 22 it is a bit shifted to
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Figure 6.5: Bounds on ∆ε as a function of ∆σ for fixed ∆∗ = 16 and different values of
N . The regions above the lines are excluded. The black cross marks the precise
values of ∆σ and ∆ε for the 3D Ising model as determined in ref. [103]. The
curves and the labels in the legend have the same order from top to bottom.
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Figure 6.6: Bounds on the central charge c as a function of ∆σ for fixed ∆∗ = 16 and
different values of N . The gap ∆ε > 1.1 is assumed. The regions below the
lines are excluded. The black cross marks the precise values of ∆σ and c for the
3D Ising model as determined in ref. [103]. The curves and the labels in the
legend have the same order from top to bottom.

the right with respect to its actual value. We have still not reached the asymptotic
value for ∆∗. Unfortunately, we cannot get reliable results for much higher ∆∗ because
the numerical accuracy of CPLEX is limited to double precision. Nevertheless, it is clear
from comparing figs. 6.3 and 6.4 that the lower bound on c is more “UV sensitive"
than the bound on ∆ε. In both figures, the crosses mark the location of the 3D Ising
model, as determined in ref. [103].

In order to quantify the dependence of our results on the number N of points, we
show in figs. 6.5 and 6.6 the bounds on respectively ∆ε and c as a function of ∆σ for
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different values of N at fixed ∆∗ = 16. We see that in both cases the convergence
in N is quite fast, with N = 40 for ∆ε and N = 60 for c being already an excellent
approximation. Notice that for increasing N , the bound on ∆ε converges faster than
the bound on c, similar to the dependence on ∆∗. We have studied the dependence on
N also for different values of ∆∗ and have found as expected that the value N∗ beyond
which no significant improvement in the bounds is observed increases with ∆∗. The
dependence is however very mild for the central charge c and barely observable for ∆ε.
This is still a reflection of the different “UV sensitivities" of the two quantities. In all
cases, N∗ . O(100) up to ∆∗ = 24.

Let us now turn to 3D CFTs with O(n) global symmetry. We consider a primary
operator φ in the fundamental representation and denote the lowest-dimensional scalar
singlet operator in the φ× φ OPE by S. It was found in refs. [54,108] that these CFTs
have kinks in the bound on ∆S as a function of ∆φ similar to that found for the Ising
model. Moreover, the kinks coincide, for all values of n that have been studied, with
the values of ∆φ and ∆S associated with the 3D O(n) models. On the other hand,
a minimum in c no longer occurs for generic O(n) models and the lower bound on c
instead monotonically decreases for n > 3 (see ref. [54] for details).

In figs. 6.7 and 6.8, we show respectively the bound on ∆S and c (the latter normalized
to the central charge ncfree of n free scalars) as a function of ∆φ for different O(n)
symmetries, at fixed N = 80 and ∆∗ = 16. For the central charge, gaps ∆S > 1 and
∆T > 1 in the spectrum of respectively singlet operators S and rank-two symmetric-
traceless operators T are assumed as in ref. [54]. This assumption is satisfied for the
O(n) models and leads to more stringent bounds. The dashed line corresponds to
the leading large-n prediction. All the qualitative behaviours found in ref. [54] are
reproduced, though with milder bounds, as expected.14 In particular, the kinks in the
(∆φ-∆S) plane are not well visible at ∆∗ = 16. In figs. 6.9 and 6.10, we show the
same bounds on ∆S and c as a function of ∆φ at fixed N and n, for different values of
∆∗. We see the same qualitative behaviours regarding the “UV sensitivities" found for
3D CFTs with no global symmetry (the Ising model). In particular, in fig. 6.9 we see
how the kink in the bound becomes well visible at ∆∗ = 19 and its location is in very
good agreement with that found in ref. [54]. On the other hand, the central-charge
bound in fig. 6.10 is still monotonically decreasing for ∆∗ = 19. There are no signs of
convergence comparing the bounds at ∆∗ = 16 and 19, indicating the need to go to
larger ∆∗ to approach the optimal bound.

14Note however that no assumption on the spectrum was made for the bounds on ∆S presented in
fig. 6.7, in contrast to fig. 2 of ref. [54] where ∆T > 1 was assumed.

131



0.500 0.505 0.510 0.515 0.520 0.525
1.0

1.2

1.4

1.6

1.8

2.0

2.2

2.4

Δϕ

ΔS

20

10

6

5

4

3

2

no sym.

Figure 6.7: Bounds on ∆S as a function of ∆φ for 3D CFTs with different O(n) symmetries,
with φ in the fundamental representation of O(n). The regions above the lines
are excluded. All the bounds have been determined using N = 80 points and
∆∗ = 16. The curves and the labels in the legend have the same order from top
to bottom.
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Figure 6.8: Bounds on the central charge c as a function of ∆φ for 3D CFTs with different
O(n) symmetries, with φ in the fundamental representation of O(n). The regions
below the lines are excluded. All the bounds have been determined using N = 80
points and ∆∗ = 16 with gaps ∆S > 1 and ∆T > 1 assumed. The dashed line
is the leading large-n prediction. The curves and the labels in the legend have
the same order from top to bottom.

6.3.2 4D CFTs

All the above considerations can be repeated for 4D CFTs. There are no known
non-super-symmetric CFTs at benchmarks points but it is still interesting to study
general bounds on operator dimensions and OPE coefficients. See e.g. refs. [9, 45–48,
50,58,115,116], where bounds of this kind (and others) have been determined with
the derivative method using both linear and semi-definite programming.

In figs. 6.11 and 6.12, we show bounds respectively on the dimension ∆φ2 of the
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∆∗ for 3D CFTs with O(20) symmetry, with φ in the fundamental representation
of O(20). The regions above the lines are excluded. The black cross marks
the values of ∆φ and ∆S for the O(20) vector model as given in ref. [54]. The
curves and the labels in the legend have the same order from top to bottom.
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Figure 6.10: Bounds on the central charge c as a function of ∆φ for N = 100 points
and different values of ∆∗ for 3D CFTs with O(2) symmetry, with φ in the
fundamental representation of O(2). Gaps ∆S > 1 and ∆T > 1 are assumed.
The regions below the lines are excluded. The curves and the labels in the
legend have the same order from top to bottom.

lowest-dimensional scalar operator in the φ× φ OPE and on the central charge c as a
function of ∆φ for different values of ∆∗, at fixed N . The conclusions are the same as
for the 3D CFTs: the bounds on the operator dimension converge faster than those on
the central charge. The point of convergence of the bounds in N at fixed ∆∗ is again
N∗ ∼ O(100) and thus also very similar to that in 3D CFTs.

The analysis of 4D CFTs with O(n) global symmetry also closely resembles its 3D
counterpart. We again take the external field φ to transform in the fundamental
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Figure 6.11: Bounds on ∆φ2 as a function of ∆φ for N = 100 points and different values
of ∆∗ for 4D CFTs with no global symmetry. The regions above the curves are
excluded. The curves and the labels in the legend have the same order from
top to bottom.
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Figure 6.12: Bounds on the central charge c as a function of ∆φ for N = 100 points and
different values of ∆∗ for 4D CFTs with no global symmetry. The regions below
the curves are excluded. The curves and the labels in the legend have the same
order from top to bottom.

representation of O(n) and denote by S the lowest-dimensional singlet scalar operator
that appears in the φ×φ OPE. For illustration, we report in fig. 6.13 the bound on ∆S

as a function of ∆φ for CFTs with O(4) symmetry, at fixed N and for different values
of ∆∗. By comparing figs.6.11 and 6.13 we notice that the convergence in ∆∗ of the
operator-dimension bound in 4D CFTs with O(4) symmetry is slower than its analogue
with no global symmetry.
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Figure 6.13: Bounds on ∆S as a function of ∆φ for N = 100 points and different values of
∆∗ for 4D CFTs with O(4) symmetry, with φ in the fundamental representation
of O(4). The regions above the curves are excluded. The curves and the labels
in the legend have the same order from top to bottom.

6.3.3 A Closer Look at the Spectrum of 3D O(n) Models

In the last subsections, we have shown how previously determined bounds are reproduced
using the multipoint method. Here we present some new results for the spectrum
of O(n) models. To this end we assume, as previous analyses indicate, that the 3D
O(n) models sit precisely at the kink on the boundary of the excluded region in the
(∆φ-∆S) plane (∆S-maximization). The vector ~ρ that we obtain from solving the
linear program (6.40) then gives us the spectrum and OPE coefficients of the operators
that are exchanged in the 〈φφφφ〉 correlator of the O(n) models. Here we report
the scaling dimensions of the first two operators in respectively the singlet and rank-
two representation of O(n), S, S ′ and T , T ′, for n = 2, 3, 4. Scalar operators with
larger scaling dimensions are physically uninteresting, whereas S ′ and T ′ are important
in determining the stability of the fixed points of the O(n) models (being marginal
operators in the underlying UV 4D Landau-Ginzburg theory) [118].15 Actually, one
additional operator should be considered, denoted as P4,4 in ref. [118], but it transforms
in the rank-four representation of O(n) and hence cannot appear in the OPE of two
scalar operators φ in the fundamental representation. Its dimension might be bounded
(or computed) by considering a correlator involving, e.g., four T ’s. As far as we know,
the scaling dimensions of S ′ and T ′ have not been previously determined using the
conformal bootstrap. The best determinations of these parameters have been made

15See ref. [113] for a bootstrap approach to the study of the stability of fixed points in 3D O(n)×O(m)
models.
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n ∆φ ∆S ∆S′ ∆T ∆T ′

2 0.51905(10) [126] 1.5118+0.0012
−0.0022 [54] 3.802(18) [117] 1.23613+0.00058

−0.00158 [54] 3.624(10) [118]
3 0.51875(25) [127] 1.5942+0.0037

−0.0047 [54] 3.794(18) [117] 1.2089+0.0013
−0.0023 [54] 3.550(14) [118]

4 0.51825(40) [128] 1.6674+0.0077
−0.0087 [54] 3.795(30) [117] 1.1864+0.0024

−0.0034 [54] 3.493(14) [118]

Table 6.1: Scaling dimensions of the first two scalar operators in the singlet (S, S′) and
rank-two symmetric (T , T ′) representations of O(n) for n = 2, 3, 4 determined in
the literature.

n ∆φ ∆S ∆S′ ∆T ∆T ′

2 0.51905(10) [126] 1.5124(10) 3.811(10) 1.2365(16) 3.659(7)
3 0.51875(25) [127] 1.5947(35) 3.791(22) 1.2092(22) 3.571(12)
4 0.51825(40) [128] 1.668(6) 3.817(30) 1.1868(24) 3.502(16)

Table 6.2: Scaling dimensions of the first two scalar operators in the singlet (S, S′) and
rank-two symmetric (T , T ′) representations of O(n) for n = 2, 3, 4 determined in
this paper using ∆S-maximization, the values of ∆φ previously determined in the
literature (first column) and the fit procedure explained in the main text. The
quoted error corresponds to 1σ (68% confidence level).

using a five-loop computation in the ε-expansion in refs. [117] and [118].16

In table 6.1, we report the values of ∆φ, ∆S, ∆S′ , ∆T , ∆T ′ determined in the literature,
for n = 2, 3, 4. They should be compared with the values in table 6.2 which have been
determined in this paper as follows: We take the values of ∆φ for O(n) models with
n = 2, 3, 4 calculated in refs. [126–128] as input and determine the scaling dimensions
∆S, ∆S′ , ∆T and ∆T ′ using ∆S-maximization. We repeat this procedure for the lower,
central and upper value of ∆φ given in these references and for different values of the
cutoff ∆∗ ∈ [18, 23] and the number of points N ∈ [60, 120].17 At fixed N and ∆∗,
we then take the average over the scaling dimensions obtained with the different input
values of ∆φ. Sometimes the same operator appears twice in the spectrum,
at two different but close values of the scaling dimension. In this case we take the
average of these values, weighted by the size of the corresponding OPE coefficient. Let
us denote the resulting scaling dimensions by ∆O(N,∆∗) for O = S, S ′, T, T ′. Each
of these values is associated with an error, resulting from the averaging. The stepsize

16More precisely, ∆S′ has been determined also by other means, such as fixed-dimension expansion
and Monte Carlo simulations. On the other hand, since ∆T ′ has been determined only using
the ε-expansion, we have decided to omit the other results for ∆S′ . The interested reader can
find them, e.g., in table I of ref. [118], where the coefficients y4,0 and y4,2 give ∆S′ = 3− y4,0
and ∆T ′ = 3− y4,2. For completeness, we also report the relations defining ∆S and ∆T in the
notation of ref. [118]: ∆S = 3− 1/ν, ∆T = 3− y2,2.

17Our numerical precision does not allow us to take higher values of ∆∗ and N without having issues
with numerical stability.
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n ∆φ ∆S ∆S′ ∆T ∆T ′

2 0.51905(10) [126] ≤ 1.5145 ≤ 3.852 ≤ 1.2408 ≤ 3.678
3 0.51875(25) [127] ≤ 1.6004 ≤ 3.856 ≤ 1.2116 ≤ 3.588
4 0.51825(40) [128] ≤ 1.677 ≤ 3.908 ≤ 1.191 ≤ 3.528

Table 6.3: Upper bounds on the scaling dimensions of the first two scalar operators in the
singlet (S, S′) and rank-two symmetric (T , T ′) representations of O(n) for
n = 2, 3, 4 determined in this paper using ∆S-maximization and the values of ∆φ

previously determined in the literature (first column).

∆step of our discretization has been set to 10−4 in the region where the operators were
expected to be found (the resulting uncertainty in the scaling dimensions is typically
negligible compared to the other errors).

At fixed N , the results for different values of ∆∗ are fitted by a function of the
form aO(N) + bO(N) exp(−cO(N)∆∗), where aO(N), bO(N) and cO(N) are the fit
parameters. Such a dependence is roughly expected given the exponential convergence
of the OPE. Somewhat surprisingly, this simplified function fits the results extremely
well, see fig. 6.14 for an example of the extrapolation fit in 1/∆∗. Using this fit, we
have extrapolated the scaling dimensions for the different operators and values of N
to ∆∗ =∞. We denote the resulting scaling dimensions as ∆O(N) ≡ ∆O(N,∞) =
aO(N).

We have then extrapolated to N = ∞ using a linear fit in 1/N which seems to
well describe the behaviour of ∆O(N) as a function of 1/N . An example of this
extrapolation fit is shown in fig.6.15. We denote the resulting scaling dimensions as
∆O ≡ ∆O(∞).18 We do not have an analytic understanding of why the results should
scale as 1/N for parametrically large ∆∗. We simply take it as a working hypothesis.
We expect that possible deviations from the linear behaviour should be contained within
the errors of our determination (cf. fig.6.15). Note that having N as large as possible
is clearly important for high precision. However, at fixed ∆∗ the bounds saturate for
sufficiently high N and there is no gain in taking N larger.

We have noticed that, at least for n = 2, 3, 4, ∆O(N,∆∗) decreases as N and/or ∆∗
increase (this is obvious for S, but not for the other operators). If we assume that this
is true for any N and ∆∗, we may then set rigorous upper bounds without using any fit
extrapolation. These bounds are reported in table 6.3. Comparing them with the results
in table 6.2 gives an idea of the impact of the fit extrapolation on the final results. As
can be seen, all the scaling dimensions that we have determined are compatible with
previous results in the literature. The only exception is ∆T ′ for the O(2) model for
18A similar linear dependence in 1/N has already been noticed with great accuracy in ref. [63] for the

central-charge bound in 6D N = (2, 0) SCFTs (see their fig. 1).
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Figure 6.14: Extrapolation fit to determine the scaling dimension of the operator T ′ in the
O(2) model with N = 120 points at ∆∗ =∞ from the results for that scaling
dimension for different values of ∆∗. The vertical error bar associated with the
extrapolated point on the left corresponds to 1σ (68% confidence level).

0.005 0.010 0.015 0.020
1/N

3.75

3.80

3.85

ΔS'(N)

Figure 6.15: Extrapolation fit to determine the scaling dimension of the operator S′ in the
O(3) model at N =∞ from the results for that scaling dimension for different
values of 1/N . Each point corresponds to the value of ∆S′(N) extracted from
a fit in 1/∆∗. The vertical error bar associated with each point corresponds to
1σ (68% confidence level).

which our result has an approximate 3σ tension with that of ref. [118]. Our accuracy
in the determinations of ∆S and ∆T is comparable with that achieved in ref. [54],
though it should be emphasized that the results there do not rely on extrapolations.
Furthermore, our accuracy in the determinations of ∆S′ and ∆T ′ is comparable with
that achieved using the five-loop ε-expansion. This is an indication that a slightly more
refined bootstrap analysis will be able to improve the determinations of these scaling
dimensions.

As we mentioned at the beginning of this subsection, ∆S-maximization also allows us to
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determine the OPE coefficients λφφO. We have not performed a detailed analysis with
fit extrapolations as above to determine the asymptotic values of λφφO as ∆∗, N →∞.
Instead we just report λφφS as determined with the highest values ∆∗ = 22, 23 and
N = 110, 120 used in this paper:

O(2) : λφφS ≈ 0.686 ,
O(3) : λφφS ≈ 0.524 , (6.46)
O(4) : λφφS ≈ 0.428 .

We have not determined the error associated with these results and have instead
rounded them to the last shown digit. The results for O(2) and O(3) are in agreement
with the recent determination in ref. [105], whereas the result for O(4) is new as far as
we know.

6.4 Details of the Implementation

For the conformal blocks in d = 4 dimensions, we use the closed-form expression from
ref. [13], normalized as in ref. [48]. For d = 3 dimensions, on the other hand, we
use the recursion relation for the conformal blocks found in ref. [54].19 To this end,
we iterate the recursion relation up to some cutoff ∆rec. We choose this cutoff large
enough such that the resulting error in the conformal blocks is smaller than the error
from neglecting contributions of operators with dimensions larger than the truncation
cutoff ∆∗. In practice, we find that ∆rec = ∆∗ + few is sufficient to ensure this.

For the ansatz (6.37) of discretized operator dimensions, we closely follow ref. [101].
We generate the discrete spectra T1 to T4 (the latter only for sufficiently large ∆∗) in
their table 2, where we rescale the stepsizes δ by the factor ∆step/(2 · 10−5). We then
remove duplicates from the combined spectrum and restrict to operator dimensions
less than or equal to ∆∗. We have performed extensive scans using different stepsizes
∆step and have found that the bounds converge for sufficiently small ∆step. This is
in particular satisfied for ∆step = 2 · 10−3 which we choose for all the plots in this
paper. For the determination of the spectra in sec. 6.3.3 we add additional operators
with stepsize ∆step = 10−4 around the previously determined scaling dimensions for
the operators S, S ′, T , T ′ in the O(n) models. Furthermore, for bounds on operator
dimensions for which the plots extend to bounds ∆φ2 > 3 (the largest dimension of T1

19Alternatively, we can use the recursion relation also in d = 4 dimensions by setting d = 4 + ε (to
avoid double poles that appear at d = 4). However, Mathematica evaluates the closed-form
expression faster than (our implementation of) the recursion relation and we therefore choose the
former.
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of ref. [101]), we have included additional operators in the scalar sector so that the
smallest stepsize ∆step is used up to the largest bound on ∆φ2 shown in that plot. We
have also performed scans using different parametrizations for the ansatz (6.37) and
have found that the bounds become indistinguishable from the bounds obtained with
the ansatz discussed above for sufficiently small ∆step. This gives us confidence that
the discretization does not introduce any artifacts into our calculations.

We use Mathematica to evaluate the conformal blocks for the different operators that
appear in the ansatz (6.37) and for the set of points in the z-plane. The linear progam
(6.40) is then set up by a program written in Python and is subsequently solved with
the optimizer CPLEX by IBM using the primal simplex algorithm. Since this optimizer is
limited to double precision, it is important to reduce the spread in size of the numerical
values in the problem. To this end, note that we can rescale each row of the inequality
(6.40) separately by a positive number. Denoting a given row by R, we rescale its
elements by

Rresc
i = Ri√

min
i
|Ri| ·max

i
|Ri|

. (6.47)

Similarly, we can rescale each column of the matrixM separately by a positive number
if we redefine the corresponding (squared) OPE coefficient in the vector ~ρ. We again
choose

Mresc
ij = Mij√

min
i
|Mij| ·max

i
|Mij|

(6.48)

and correspondingly for ~ρ. This procedure is iterated three times in our Python code,
using precision arithmetric with 120 digits to ensure that no significant rounding errors
are introduced in the process (the conformal blocks have been calculated with the same
precision). Since we perform our own rescaling, we switch off this option in CPLEX.

We find that the above rescaling typically reduces the orders of magnitude in the
ratio between the largest and smallest numerical value in eq. (6.40) by about half.
Nevertheless, precision is a limiting factor and does not allow us to go to cutoffs ∆∗
much larger than 20. The fact that double precision is sufficent for smaller cutoffs, on
the other hand, makes our calculations (combined with the excellent speed of CPLEX)
very fast.
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Conclusions

In this thesis we have explored different aspects of CFTs in 4D. The first part of the
thesis has focused on the mathematical properties of 4D conformal blocks for general
representations of the Lorentz group (`, ¯̀). The computation of such blocks opens a
new window into the properties of 4D CFTs, allowing a rigorous investigation from the
point of view of the Conformal Bootstrap.

In Chapter 3 we introduced a set of differential operators, eqs.(3.15), (3.16) (3.17)
and (3.24), that enable us to relate different three-point functions in 4D CFTs. The
6D embedding formalism in twistor space with an index free notation, as introduced
in ref. [21], and the recent classification of three-point functions in 4D CFTs [31]
have allowed us to perform this task in a general setting. In particular, three-point
tensor correlators with different tensor structures can always be related to a three-point
function with a single tensor structure. We explicitly showed how to deconstruct any
four point tensor correlators of external traceless symmetric operators in terms of a
few CPW seeds. We argued that the simplest CPW seeds are those associated to the
four point functions of two scalars, one O2δ,0 and one O0,2δ field, that have only 2δ+ 1
independent tensor structures. The power of this method does not end here for it
allows us to deconstruct any possible four point tensor correlator in terms of the same
type of seeds including half integer values of δ (or as we called it in Chapter 4, for odd
or even values of p).

We continued in Chapter 4 where the computation of the general set of seed conformal
blocks is actually performed. The result of this chapter is a totally general expression
for G(p)

e for any e, p, ∆, ` and external scaling dimensions, obtained by solving the
Casimir set of differential equations, that can be written in the compact form (4.23).
The shadow formalism has been of fundamental assistance to deduce it and also as a
useful cross check for the validity of the results. The CBs are expressed in terms of
coefficients cem,n, that can be determined recursively, e.g. by means of eq.(4.100). For
each CB, the coefficients cem,n span a 2D octagon-shape lattice in the (m,n) plane,
with sizes that depend on p and e and increase as p increases. We have reported in
Appendix C the explicit form of cem,n for the simplest case p = 1. We have not reported
the cem,n for higher values of p, since their number and complexity grows with p.

141



These CBs open the door to the bootstrap of universal correlators in 4D CFTs. Some
obvious applications pertain the bootstrap of four-point functions of spin 1 currents or
even four stress tensors, that might lead to universal bounds on symmetry representations
(and central charges) and general bounds on any local CFTs.

The somewhat surprisingly simple form of the Casimir system (4.23), where at most
three blocks at a time can enter in a sort of local interaction, and the geometric
interpretation of the coefficients cem,n in terms of octagons, are perhaps an indication of
a more fundamental symmetry principle. This should hopefully allow us to gain a better
understanding of 4D CFTs or at least, less ambitiously, more compact expressions for
the CBs G(p)

e .

The last part of the thesis has dealt with numerical studies of the bootstrap equation.
We focused scalar four point functions with and without global symmetries.

In Chapter 5 we have numerically studied bounds on various OPE coefficients in 4D
CFTs by using standard methods based on semidefinite programming [50]. We have
first studied bounds on OPE coefficients of symmetric traceless tensor operators with
spins l = 2 and l = 4 as a function of their scaling dimension. Furthermore, we have
analyzed how an assumption on the dimension of the lowest-lying scalar operator affects
such bounds.

We have then considered 4D CFTs with a global symmetry G. When this group,
or a subgroup of it, is gauged by weakly coupling external gauge fields to the CFT,
the coefficient κ which enters in the two-point function of the associated conserved
vector currents governs the leading CFT contribution to the one-loop β-function of
the corresponding gauge coupling. In particular, if this contribution is too large, it
gives rise to unwanted sub-Planckian Landau poles. Motivated by physics beyond
the Standard Model, where GSM ⊆ G, we have numerically studied the lower bounds
on the coefficient κ. Possible hierarchy problems are avoided by demanding that all
scalar operators in the spectrum which are singlets under the global symmetry have
dimensions ∆S ≥ 4. More specifically, we have considered lower bounds on κ extracted
from four-point functions of scalar operators φi in the fundamental representation of
SO(N), or the bi-fundamental representation of SO(N)×SO(M).

The motivation behind this study was to gain some understanding on the application
of this setting in the context of composite Higgs models with partial compositeness,
where the CFT is assumed to have a global symmetry G and a set of fermion operators
with different dimensions. The next logical step would be to repeat this exercise in the
context of fermion correlators given that the conformal blocks are already known in 4D.

Chapter 6 has explored a new numerical method for the bootstrap analysis. Based on
considerations given in ref. [25] we studied the bootstrap equation at different points in
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the z-z̄ plane. We wrote a linear system based on this principle and numerically solved
for different assumptions of the CFTs under consideration. Using this method, we have
qualitatively reproduced various results20 that have been determined in the bootstrap
literature using the more common method of taking derivatives at the symmetric point.
In particular, this method can be useful at a preliminary stage when one wants to
qualitatively bound or approximately compute some quantities using the bootstrap. By
choosing a sufficiently low cutoff ∆∗, one can get qualitatively good results within
seconds of CPU time with a standard laptop.

We have shown how, using ∆-maximization, relatively precise results can be obtained for
the scaling dimensions of operators (though we relied on an extrapolation procedure). In
particular, for O(n) models with n = 2, 3, 4 we have determined the scaling dimensions
of the second-lowest-dimensional operators S ′ and T ′ in the singlet and symmetric-
traceless representation, respectively.

We believe that it should not be difficult to go to arbitrary precision and get rid of
the discretization of the spectrum (and the extrapolation procedure) by, for instance,
adapting the algorithm developed in refs. [103, 106] to multipoints. We do not exclude
that bootstrapping with multipoints might then turn out to be comparable to (or better
than) the derivative method for high-precision computations. From a conceptual point
of view, the multipoint method is more rigorous, since the crossing equations are not
truncated but bounded by an error.21

We have also discussed how the multipoint method is useful in understanding to which
extent a given numerical result depends sensitively on the high-dimensional operators.
In particular, we have noticed that bounds on operator dimensions are less sensitive in
this respect than bounds on the central charge.

Ideally, one might want to push the multipoint method to the extreme “IR limit", by
choosing a cutoff ∆∗ so low that an analytic approach may become possible. This is
certainly a very interesting direction that should be explored. Among other things, it
requires to improve on the estimate of the OPE convergence given in ref. [22] that
applies in the opposite regime, for parametrically large ∆∗. Perhaps the results of
ref. [119] might be useful in this respect.22

An important line of development in the numerical bootstrap is the analysis of mixed
correlators which so far are numerically accessible only using semi-definite programming
20In D=3 and D=4 and with or without global symmetries.
21Strictly speaking, this is true only when we are guaranteed to be in the regime where the Hardy-

Littlewood tauberian theorem applies. But all the evidence so far indicates that this is always the
case for ∆∗ & O(10).

22It should be mentioned that another method based on determinants has been proposed by Gliozzi [53]
to study severely truncated bootstrap equations. The method sometimes works surprisingly well,
but unfortunately its current implementation is not systematic or rigorous enough.
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[61]. It would be very interesting to implement mixed correlators in the multipoint
bootstrap, possibly by implementing Quadratic Programming solvers or variations of
the semi-definite programming techniques.
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A Appendix A

Relations between Four-Point
Function Invariants

In this appendix we report a partial list of relations between SU(2, 2) invariants entering
four-point functions that have been used in subsection 3.5.

The first relation is linear in the invariants and reads

Ji,jl = nijklJi,kl + nlijkJi,jk , (A.1)

where we have defined
nijkl ≡

XijXkl

XikXjl

. (A.2)

The 7 relations below allow to eliminate completely products of the form Ki,jkK l,mn

Ki,jkKi,jk = 1
2Jj,ikJk,ij − 2IjkIkj , (A.3)

Ki,jkK l,jk = √nijkl
(
niljkIjkJkj,li −

1
2 nikjlJj,ikJk,jl − 2 IjkIkj

)
, (A.4)

Ki,jkKj,ik = IijJk,ij + 2IikIkj , (A.5)

Ki,jkKj,lk = √nijkl
(
IkjJlk,ji + IljJk,ij

)
, (A.6)

Ki,jkK l,ij = −√nilkj
(
IijJjk,li + IikJj,il

)
, (A.7)

Ki,jkKj,li = √nilkj
(
IijJlk,ji − 2IikIlj

)
, (A.8)

Ki,jkKi,jl = −√nilkj
(
IljJjk,li + 1

2Jj,ilJlk,ji
)
. (A.9)

Another relation is

Jji,klJlk,ij = 4
(
IliIjk − nikjlIliIjk + niljkIjiIlk

)
+ 2niljk

(
IliJjk,li− IjkJli,kj

)
. (A.10)
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B Appendix B

Properties of the F Functions

In this Appendix we provide all the properties of the functions F (a,b;c)
ρ1, ρ2 needed for the

system of Casimir equations and more specifically to derive eqs.(4.89)-(4.91). We will
not consider the functions F± (a,b;c)

ρ1, ρ2 here, since their properties can trivially be deduced
from the ones below by demanding both sides to be symmetric/anti-symmetric under
the exchange z ↔ z̄.

The fundamental identities to be considered can be divided in two sets, depending on
whether the values (a, b, c) of the functions F are left invariant or not. The former
identities read(1
z
− 1

2

)
F (a,b;c)
ρ1,ρ2 = F (a,b;c)

ρ1−1,ρ2 −D
(a,b,c)
ρ1 F (a,b;c)

ρ1,ρ2 +B(a,b,c)
ρ1 F (a,b;c)

ρ1+1,ρ2 (B.1)(1
z̄
− 1

2

)
F (a,b;c)
ρ1,ρ2 = F (a,b;c)

ρ1,ρ2−1 −D(a,b,c)
ρ2 F (a,b;c)

ρ1,ρ2 +B(a,b,c)
ρ2 F (a,b;c)

ρ1,ρ2+1 (B.2)

L0F (a,b;c)
ρ1,ρ2 = ρ2F (a,b;c)

ρ1,ρ2−1 − ρ1F (a,b;c)
ρ1−1,ρ2 − (ρ2 + c− 1)B(a,b,c)

ρ2 F (a,b;c)
ρ1,ρ2+1 + (B.3)

(ρ1 + c− 1)B(a,b,c)
ρ1 F (a,b;c)

ρ1+1,ρ2 + 1
2 (2− c)(D(a,b,c)

ρ1 −D(a,b,c)
ρ2 )F (a,b;c)

ρ1,ρ2 ,

where L0 =
(

(1− z̄)∂z̄ − (1− z)∂z
)
and we have defined

C(a,b,c)
ρ = (a+ ρ)(b− c− ρ)

(c+ 2ρ)(c+ 2ρ− 1) , (B.4)

B(a,b,c)
ρ = C(a,b,c)

ρ C
(b−1,a,c−1)
ρ+1 = (ρ+ a)(ρ+ b)(ρ+ c− b)(ρ+ c− a)

(2ρ+ c)2(c+ 2ρ+ 1)(c+ 2ρ− 1) ,

D(a,b,c)
ρ = (2a− c)(2b− c)

2(c+ 2ρ)(c+ 2ρ− 2) . (B.5)
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The latter identities read

F (a,b;c)
ρ1,ρ2 = F (a,b−1;c−1)

ρ1,ρ2 − C(a,b,c)
ρ1 F (a,b−1;c−1)

ρ1+1,ρ2 − (B.6)
C(a,b,c)
ρ2 F (a,b−1;c−1)

ρ1,ρ2+1 + C(a,b,c)
ρ1 C(a,b,c)

ρ2 F (a,b−1;c−1)
ρ1+1,ρ2+1 ,

F (a,b;c)
ρ1,ρ2 = F (a−1,b;c−1)

ρ1,ρ2 − C(b,a,c)
ρ1 F (a−1,b;c−1)

ρ1+1,ρ2 − (B.7)
C(b,a,c)
ρ2 F (a−1,b;c−1)

ρ1,ρ2+1 + C(b,a,c)
ρ1 C(b,a,c)

ρ2 F (a−1,b;c−1)
ρ1+1,ρ2+1 ,

1
zz̄
F (a,b;c)
ρ1,ρ2 = F (a+1,b+1;c+2)

ρ1−1,ρ2−1 , (B.8)

(z − z̄)L(a)F (a,b;c)
ρ1,ρ2 = (ρ2 − ρ1)F (a,b−1;c−1)

ρ1,ρ2 − (ρ1 + ρ2 + c− 1)C(a,b,c)
ρ1 F (a,b−1;c−1)

ρ1+1,ρ2 + (B.9)
(ρ1 + ρ2 + c− 1)C(a,b,c)

ρ2 F (a,b−1;c−1)
ρ1,ρ2+1 − (ρ2 − ρ1)C(a,b,c)

ρ1 C(a,b,c)
ρ2 F (a,b−1;c−1)

ρ1+1,ρ2+1 ,

z − z̄
zz̄

L(b)F (a,b;c)
ρ1,ρ2 = (ρ2 − ρ1)F (a,b+1;c+1)

ρ1−1,ρ2−1 − (ρ1 + ρ2 + c− 1)C(b,a,c)
ρ1 F (a,b+1;c+1)

ρ1,ρ2−1 + (B.10)

(ρ1 + ρ2 + c− 1)C(b,a,c)
ρ2 F (a,b+1;c+1)

ρ1−1,ρ2 − (ρ2 − ρ1)C(b,a,c)
ρ1 C(b,a,c)

ρ2 F (a,b+1;c+1)
ρ1,ρ2 .

The relations (B.1)-(B.3) were first derived in ref. [14] (see also ref. [15]), while the
relations (B.9) and (B.10) are novel to this paper. It is straightforward to see that
eqs.(4.89)-(4.91) can be derived using proper combinations of eqs.(B.1)-(B.10). For
instance, the action of the first term appearing in the r.h.s. of eq.(4.88) is reproduced
(modulo a trivial constant factor) by taking the combined action given by ( (B.2)−(B.1)
)× (B.9)× (B.6). All other terms in eqs.(4.86)-(4.88) are similarly deconstructed.
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C Appendix C

The Conformal Blocks for p = 1

We report in this appendix the full explicit solution for the two conformal blocks G(1)
0

and G(1)
1 associated to the exchange of fermion operators of the kind O`,`+1 for the

specific values
a = 1

2 , b = −1
2 . (C.1)

We choose as undetermined coefficient c1
0,−1 and report below the values of the

coefficients normalized to c1
0,−1. We have

c0
−2,0 = (2 + `)

2 (1 + `) , c0
−1,−1 = − `

2 (1 + `) , c1
−1,0 = −(3 + `)

1 + `
. (C.2)

c0
−1,0 = (3 + `)(−1 + 2∆)(−1 + 2`+ 2∆)

8(1 + `)(−3 + 2∆)(1 + 2`+ 2∆) ,

c0
−1,1 = − (2 + `)(5 + 2`− 2∆)2(−7 + 2∆)

32(1 + `)(3 + 2`− 2∆)(7 + 2`− 2∆)(−3 + 2∆) ,

c0
0,−1 = −(−1 + 2∆)(−1 + 2`+ 2∆)

8(−3 + 2∆)(1 + 2`+ 2∆) ,

c0
0,0 = `(−7 + 2∆)(−1 + 2`+ 2∆)2

32(1 + `)(−3 + 2∆)(−3 + 2`+ 2∆)(1 + 2`+ 2∆) ,

c0
0,1 = − (3 + `)(5 + 2`− 2∆)2(−5 + 2∆)(−1 + 2`+ 2∆)

128(1 + `)(3 + 2`− 2∆)(7 + 2`− 2∆)(−3 + 2∆)(1 + 2`+ 2∆) ,

c0
1,0 = (−5 + 2∆)(−1 + 2`+ 2∆)(3 + 2`+ 2∆)2

128(−3 + 2∆)(1 + 2`+ 2∆)2(5 + 2`+ 2∆) ,

c1
−1,1 = − (2 + `)(5 + 2`− 2∆)(−1 + 2∆)

4(1 + `)(7 + 2`− 2∆)(−3 + 2∆) ,

c1
0,2 = (2 + `)(1 + 2`− 2∆)(5 + 2`− 2∆)2(−5 + 2∆)

64(1 + `)(3 + 2`− 2∆)2(7 + 2`− 2∆)(−3 + 2∆) ,

c1
1,0 = −(−7 + 2∆)(−1 + 2`+ 2∆)(3 + 2`+ 2∆)

16(−3 + 2∆)(1 + 2`+ 2∆)2 ,

c1
1,1 = −`(5 + 2`− 2∆)(−5 + 2∆)(−1 + 2`+ 2∆)(3 + 2`+ 2∆)

64(1 + `)(7 + 2`− 2∆)(−3 + 2∆)(1 + 2`+ 2∆)2
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c1
0,0 = 1

4(1 + `)(11 + 2`− 2∆)(−3 + 2∆)(−3 + 2`+ 2∆)(1 + 2`+ 2∆) ×(
576− 384∆ + `

(
627− 2`(−29 + 2`(7 + 2`))− 472∆ + 4`(−47 + 4`(3 + `))∆

+8(−9 + `(19 + 2`))∆2 − 16(−6 + `)∆3 − 16∆4
))

,

c1
0,1 = (5 + 2`− 2∆)

16(1 + `)(3 + 2`− 2∆)(7 + 2`− 2∆)(−3 + 2∆)(−3 + 2`+ 2∆)(1 + 2`+ 2∆) ×(
`(643− 14`(−3 + 2`(9 + 2`))) + 4`(−232 + `(−115 + 4`(1 + `)))∆ + 8(3 + `)

(−24 + `(17 + 2`))∆2 − 16(−7 + `)(3 + `)∆3 − 16(3 + `)∆4 + 27(9 + 4∆)
)
.

The asymptotic behaviour of the CBs for z, z̄ → 0 (z → 0 first) is dominated by
the coefficients with n = −1 and the lowest value of m, i.e. c0

−1,−1 and c1
0,−1. For

` = 0, the asymptotic behaviour of G(1)
0 is given by the next term c0

0,−1, since c0
−1,−1 in

eq.(C.2) vanishes. This in agreement with the asymptotic behaviour of the CBs found
in subsection 4.4.1. Notice how the complexity of the cem,n varies from coefficient to
coefficient. In general the most complicated ones are those in the “interior" of the
octagons (hexagons only for p = 1).
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D Appendix D

Crossing Relations for
SO(N)×SO(M) and
SO(N)×SU(M)

We report here the crossing symmetry constraints coming from four-point functions
of scalar operators with scaling dimensions d in the bi-fundamental representation of
SO(N)×SO(M) and SU(N)×SO(M).

D.1 SO(N)×SO(M)

Let φia be the scalar operator in the bi-fundamental representation of SO(N)×SO(M),
with a and i being SO(N) and SO(M) indices, respectively. As usual, we define
conformal blocks that contain the contributions of the operators appearing in the OPE
of φiaφjb in a given representation of the global symmetry. We have nine different
conformal blocks Gij, where i, j = S, T,A with S, T and A corresponding to the
singlet, symmetric and antisymmetric representations of SO(N) and SO(M). The first
index refers to SO(N), the second one to SO(M). The spin of the operators entering
in Gij is even if zero or two antisymmetric representations appear and odd otherwise.
In order to have reasonably compact formulas, we define the functions

Fij ≡
∑

O∈(i,j)−sector
|λijO|2 Fd,∆,l(z, z̄) , Hij ≡

∑
O∈(i,j)−sector

|λijO|2 Hd,∆,l(z, z̄) . (D.1)

150



In terms of these, the crossing relations read

FSS −
2
M
FST −

2
N
FTS +

(
1 + 4

MN

)
FTT + FAT + FTA + FAA = 1 ,

HSS −
2
M
HST −

2
N
HTS −

(
1− 4

MN

)
HTT −HAT −HTA −HAA = −1 ,(

1− 2
M

)
FTT + FTS − FAS + FTA −

(
1− 2

M

)
FAT − FAA = 0 ,(

1 + 2
M

)
HTT −HTS +HAS +HTA −

(
1 + 2

M

)
HAT −HAA = 0 ,(

1− 2
N

)
FTT + FST − FSA + FAT −

(
1− 2

N

)
FTA − FAA = 0 ,(

1 + 2
N

)
HTT −HST +HSA +HAT −

(
1 + 2

N

)
HTA −HAA = 0 ,( 2

M
+ 2
N

)
FTT + 2

N
FTA + 2

M
FAT − FTS − FST − FSA − FAS = 0 ,( 2

M
− 2
N

)
HTT −

2
N
HTA + 2

M
HAT −HTS +HST +HSA −HAS = 0 ,

FTT − FAT − FTA + FAA = 0 .

(D.2)

We have verified that reflection positivity is satisfied in the appropriate channels. The
values of the OPE coefficients in the free-theory limit d→ 1 read

λTTl = λAAl = λATl = λTAl = 1
2λ

free
l ,

λTSl = λASl = 1√
2M

λfreel ,

λSTl = λSAl = 1√
2N

λfreel ,

λSSl = 1
2
√
MN

λfreel ,

(D.3)

where λfree
l is given in eq. (5.19) and l is even or odd depending on the representation.

Consistency with the free-theory limit provides a further check on various signs appearing
in eq. (D.2).

D.2 SO(N)×SU(M)

Let φia and φī,†a be a scalar operator and its complex conjugate in the bi-fundamental
representation of SO(N)×SU(M), with a and i being SO(N) and SU(M) indices,
respectively. As usual, we define conformal blocks that contain the contributions of
the operators appearing in the OPE of φiaφjb in a given representation of the global
symmetry. Since operators in the singlet and adjoint representations of SU(M) can
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have both even and odd spin, we define

F
+/−
ij ≡

∑
O∈(i,j)−sector
l even/odd

|λij+/−O |2 Fd,∆,l(z, z̄) , H
+/−
ij ≡

∑
O∈(i,j)−sector
l even/odd

|λij+/−O |2 Hd,∆,l(z, z̄) ,

Fij ≡ F+
ij + F−ij , F̂ij ≡ F+

ij − F−ij , Hij ≡ H+
ij +H−ij , Ĥij ≡ H+

ij −H−ij .
(D.4)

Here i runs over the representations S, T,A of SO(N), while j runs over the singlet
(S), adjoint (Ad), symmetric (T ) and antisymmetric (A) representations of SU(M).
Distinguishing between even and odd spins, we have a total of 18 conformal blocks and,
correspondingly, a system of 18 crossing symmetry constraints. Six of these constraints
arise by imposing crossing symmetry in the s- and t-channel on the four-point function
〈φiaφ

j̄,†
b φ

k
cφ

l̄,†
d 〉. They read

FSS −
2
N
FTS −

1
M
FSAd +

(
1 + 2

MN

)
FTAd + FAAd = 1 ,

HSS −
2
N
HTS −

1
M
HSAd −

(
1− 2

MN

)
HTAd −HAAd = −1 ,

FTS − FAS +
(

1− 1
M

)
FTAd −

(
1− 1

M

)
FAAd = 0 ,

HTS −HAS −
(

1 + 1
M

)
HTAd +

(
1 + 1

M

)
HAAd = 0 ,

FTS + FAS −
( 1
M

+ 2
N

)
FTAd + FSAd −

1
M
FAAd = 0 ,

HTS +HAS +
(
− 1
M

+ 2
N

)
HTAd −HSAd −

1
M
HAAd = 0 .

(D.5)
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The remaining twelve constraints arise by imposing crossing symmetry in the s- and
t-channel on the four-point function 〈φiaφj̄,†b φk̄,†c φld〉. They read

F̂SS −
2
N
F̂TS −

1
M
F̂SAd + 2

MN
F̂TAd + F+

TT + F−AT + F−TA + F+
AA = 1 ,

ĤSS −
2
N
ĤTS −

1
M
ĤSAd + 2

MN
ĤTAd −H+

TT −H−AT −H−TA −H+
AA = −1 ,

F̂TS −
1
M
F̂TAd −

1
M
F̂AAd + F̂AS + F+

TT − F−AT + F−TA − F+
AA = 0 ,

ĤTS −
1
M
ĤTAd −

1
M
ĤAAd + ĤAS −H+

TT +H−AT −H−TA +H+
AA = 0 ,

F̂TS −
1
M
F̂TAd + 1

M
F̂AAd − F̂AS −

2
N
F+
TT + F+

ST + F−SA −
2
N
F−TA = 0 ,

ĤTS −
1
M
ĤTAd + 1

M
ĤAAd − ĤAS + 2

N
H+
TT −H+

ST −H−SA + 2
N
H−TA = 0 ,

F̂SAd −
2
N
F̂TAd + F+

TT − F−TA + F−AT − F+
AA = 0 ,

ĤSAd −
2
N
ĤTAd −H+

TT +H−TA −H−AT +H+
AA = 0 ,

F̂TAd + F̂AAd + F+
TT − F−TA − F−AT + F+

AA = 0 ,
ĤTAd + ĤAAd −H+

TT +H−TA +H−AT −H+
AA = 0 ,

F̂TAd − F̂AAd −
2
N
F+
TT + F+

ST − F−SA + 2
N
F−TA = 0 ,

ĤTAd − ĤAAd + 2
N
H+
TT −H+

ST +H−SA −
2
N
H−TA = 0 .

(D.6)

Reflection positivity fixes the signs in both the s- and t-channel for 〈φiaφj̄,†b φkcφl̄,†d 〉. By
interchanging the coordinates of the last two fields in the former four-point function and
c↔ d, this then also fixes the signs in the s-channel (the channel for which the φφ†
OPE is used) for 〈φiaφj̄,†b φk̄,†c φld〉. The signs in the t-channel for the latter four-point
function are in turn fixed by reflection positivity. The values of the OPE coefficients in
the free-theory limit d→ 1 read

λ
TAd+
l = λ

TAd−
l = λ

AAd+
l = λ

AAd−
l = λ

TT+
l = λ

TA−
l = λ

AT−
l = λ

AA+
l = 1

2λ
free
l ,

λ
SAd+
l = λ

SAd−
l = λ

ST+
l = λ

SA−
l = 1√

2N
λfree
l ,

λ
TS+
l = λ

TS−
l = λ

AS+
l = λ

AS−
l = 1

2
√
M
λfree
l ,

λ
SS+
l = λ

SS−
l = 1√

2MN
λfree
l ,

(D.7)
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where λfree
l is given in eq. (5.19) and l is even or odd depending on the representation.

Consistency with the free-theory limit provides a further check on various signs appearing
in eqs. (D.5) and (D.6). As a further consistency check, we have verified that eqs. (D.5)
and (D.6) reduce to eqs. (D.2) when SO(N)× SU(M) ⊂ SO(N)× SO(2M).
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