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Chapter 1 |

Introduction

Shock wave backgrounds have recently attracted an attention in field the-
ory mainly because they play an important role in scattering processes
at ultrahigh energies [1] and because they exhibit in some cases interest-
ing focusing phenomena which may be related to gravitational singularities
[2,3]. Two classes of these backgrounds are of particular interest namely
the Aichelburg-Sexl one [4] and the homogeneous infinite planar shell shock
wave [5], both parametrized by one real positive parameter. The former is
an exact solution of the Einstein equations in D dimensions corresponding
to a gravitational field generated by a massless particle of given energy,
while the latter to that generated by a planar shell of null matter with
constant surface energy density.

A behaviour of geodesics in these classes of shock waves was studied by
T.Dray and G.t'Hooft [5] and by V.Ferrari, P.Pendenza and G.Veneziano
[2]. In the case of the homogeneous infinite planar shell shock wave was
found an interesting focusing of families of null geodesics occuring in lo-
cation identical to that of the curvature singularity found in the head-on
collision of two homogeneous infinite planar shell shock waves [6]. It is
natural to believe [2] that focusing of geodesics is a sign of generation of
singularities in general. This fact lead to an interest on what changes would
suffer the geodesical picture at the quantum level and constituted itself one
of motivations of a work [3] in which a quantum field theory in a generic
shock wave background was exactly solved. It was found that in some
cases the indicated geodesical singularity survives at the quantum level,
but there are also cases in which the quantum effects cause a smearing of



the singularity.

Having known the behaviour of the null geodesics in the Aichelburg
Sex] metric t’Hooft was able to find an S matrix describing a scattering of
a quantum particle in this metric [1]. This result was rigorously derived in
ref. [3] and it is of a considerable importance, since it applies to an ultrahigh
energy scattering of two particles due to gravitational interaction. Indeed
in a reference system in which one particle is very hard, the motion of
the softer one may be described as that of a particle in a gravitational
field generated by the other one, which is nothing but the Aichelburg-Sexl
metric. One then expects that the t’Hooft’s S matrix should be obtained
in some approximation from a correct theory of quantum gravity which
is eventually supposed to be the string theory. A relevant string result is
due to Amati, Ciafaloni and Veneziano [7] who found the S matrix for a
superstring scattering at ultrahigh energies (in a flat spacetime theory).
A connection between the works of t’Hooft and of Amati, Ciafaloni and
Veneziano was established in a paper by Amati and the author [8] who
solved the nonlinear supersymmetric o-model that describes a superstring
in a shock wave metric with an arbitrary profile. An exact operatorial
expression for the S matrix (S,) was found. It coincides, for a profile
given by a tree string amplitude in the impact parameter space, with the 5
matrix of Amati, Ciafaloni and Veneziano, indicating thus an emergence of
a non trivial curved metric as an infinite genus effect of the flat spacetime
treatment. The corresponding shock wave profile has the Aichelburg Sexl
form for large distances but it differs from it for shorter ones. This short
distance string generated softening eliminates - by the way - the direct
channel poles in the t’Hooft S matrix.

It is worthwhile to note, that all three results are nonperturbative and,
in the ultrahigh energy region, also exact. This fact may serve as a con-
sistency test of the validity of the string theory predictions. Indeed, using
three completely different languages and techniques the obtained results
match perfectly each other showing that in the appropriate limit the string
theory confirmes the expectations of the field theory. From the mathemat-
ical point of view to solve the field theory or the string motion in the shock
wave backgrounds amounts essentially to solve a generally covariant field
equation and the nontrivial quantum field theory (the o-model) respec-
tively. To provide an exact solution of such problems may be interesting
by itself. For instance the generally covariant Klein-Gordon equation in



an arbitrary shock wave background can be solved, rather remarkably, by
using the path integral techniques, providing thus an interesting example
of a situation in which a non-Gaussian continual integral can be exactly
evaluated giving the same result as the more ”conventional” procedures
do. v :
In the second chapter of this thesis we show how to obtain the shock
wave solutions of the Einstein equations, in particular the Aichelburg-Sexl
" metric. We provide two ways of solving this problem. One, more "math-
ematical”, by directly solving the Einstein equations with properly cho-
sen righthand side, the other in turn, more "physical”, by boosting the
Schwarzschild solution. Both methods help to elucidate physical interpre-
tations of these backgrounds. We will finish the chapter by finding the
null geodesics in the shock wave metrics, generalizing the results of the
references [2,5] to nonaxisymmetric wave profiles.

The third chapter deals with the field theories in the shock wave back-
grounds.A scalar massless theory is solved and expectation values of the
energy-momentum tensor in the scattering states are explicitly provided.
Then the rigorous derivation of the t’Hooft S matrix is given and the quan-
tum focusing phenomena are discussed in the case of the homogeneous
infinite planar shell shock wave and also for the sourceless waves [3].

The fourth chapter is devoted to the exact solution of the nonlinear
supersymmetric o-model. The bosonic and the supersymmetric versions are
treated in detail and the comparison with the results of Amati, Ciafaloni
and Veneziano and of t’Hooft respectively is provided. Finally we draw
conclusions and provide a brief outlook as well.



Chapter 2

Shock Wave Solutions of the
Einstein Equations

2.1 Boosting the Black Hole Solution

A gravitational field of a massive neutral point-like particle at rest is de-
scribed by the Schwarzschild metric

- 2
a5t = - (1= L2)a’ + (- 22 4 ol (211

Boosting the solution (2.1.1) one obtaines a field created by the particle
moving with a constant velocity, which is, of course, smaller than that of
light. To obtain a gravitational field generated by a light-like particle we
may perform an infinite boost going with m to zero in such a way that the
3-momentum of the particle remains finite. Explicitly

= Zpe'G/ u'= (¢-2) =c ) v'ie (Hiz1) = e';a/

Since

P = (maq0)



we have

pr= (k3o 0,0 s o) = frg0p)

S3—r oo

Now we boost the metric (2.1.1) to the unprimed coordinates. This may
be done most easily by rewriting it in a form (see [11])

g
ds’ = dete 208 (cde)” +
K% (Fw)?
S (et f s
e
+
H=v x’z—f-{(fwyz) [X’z-r’- (r.’w’}z) i
2
b [(X?a’x’) + (x.’w’)/dx.’w’)] (2.1.2)
where
| W = (//0/0/ 0)
In fact |

2 Z

e W)= r (a)’a’x’)z = ot

2
[ar) + )arl)] = o

Note, that the factor (1 — 2m/r')7" in (2.1.1) is expanded in the geo-
metrical series, which is allowed, since m — 0.

7



To boost this expression amounts to erasing the primes over z’,dz’ and
w’. It is convenient now to study the limit 7 — 0 separately for cases u # 0
and v = 0. For u # 0 one has

2 2 2
s’ = dr® + % A (2.1.32)

whileas for u =0

g
as? = ar? o Ll (2.1.3b)
/¥/

where & denotes the transverse coordinates. To study the divergence in
(2.1.3b) it is convenient to rewrite the expressions (2.1.3ab) in a form valid
for all u, e.g.

2
st = Yol — i - dF, (=0
’\/qz_"o(?}xz
(2.1.4)
Perform now a transformation
V= v + (8 ) -Qlu) o ln 1/t wxize (2.1.5)

where 6, is some regularization of the usual step function. Going to
o — 0 one gets the Aichelburg-Sexl metric

dst = ~aud? ~ §olu (171/c )Slu)der® + 0 (21

8



where C is an irrelevant scale.

2.2 General Shbck Wave Solutions

Call the gravitational shock wave any metric of the form

4 = ~diud + f(F)Ile) i + &7 (2.2.1)

with an obvious notation, but # denotes now (D-2) transverse coordi-
nates. The metric (2.2.1) corresponds to the shock wave moving along the
positive z-axis with the wavefront u = 0. Following refs.[2,5] one finds the
only nonvanishing component of the Ricci tensor to be

Rus = - £ RI(2) Sa) (2.22)

where A is the Laplacian in the transverse coordinates.Thus, unless the
function { is "too singular”?, the metric (2.2.1) is always a solution of the
Einstein equations with a source given by

7:“ = 0(@)dl) (2.2.3)

where

Pr) = - —L—Z‘:\.f/?) | (2.2.4)

1670 G

and all other components of 7, being zero.(We restored also the grav-
itational constant G that was set G = 1 in the preceding section.) Given
a particular wavefront energy density one obtains a corresponding profile
modulo some sourceless shock wave, as may be called any solution of the

!We do not need for our purposes to specify the allowed singularities of the function f.
We note, however, that f need not be, in general, regular. This happens, for instance,for
the Aichelburg Sex]l metric.



homogeneous equation (2.2.4).( It is easy to see that the profile of the
sourceless shock wave is some traceless quadratic form.) If one puts

(i
fle) = /oofM),p | (2.2.5)

the solution of eq.(2.2.4) is proportional to the Green function of the
- Laplace equation, namely

7)) = - 0706//4 (}z?//c)) D=4 (2.2.6a)

/2

20
(F) = = LRETL p>¢ Q = = oo
d 000,57 7T rrpey Y

We see that for D = 4 one has the Aichelburg Sex] metric (2.1. 6).
Another interesting class of the shock waves is that of homogeneous
planar shells. In this case the wavefront energy den31ty is given by

£ ) 7] < R
(¥) = (2.2.7)
o , I¥}=R

For R finite (R — o0) one has the finite (infinite) planar shell. In
what follows we shall need the explicit form for the infinite case. One has
immediately

f[x) —akts 4, , a — 6P (2.2.8)

For definiteness we put f, = 0, where the subscript ”s” indicates the I
is a sourceless wave.

10



2.3 Null Geodesics

We turn now to study the null geodesics. Their importance is at least
twofold. Their knowledge provides an information, which enabled t’Hooft
to find the phase shift of a wave function of the quantum relativistic test
particle in the shock wave backgrounds. Supposing that this is the only
change that the wave function suffers (which was shown in ref.[3]) one de-
rives the correct S matrix for the scattering on the shock wave. The other
reason lies on the fact that for some particular wave front profiles interest-
ing focusing phenomena occur. As was argued in [2], it is natural to believe
that focusing of geodesics is a sign of the generation of gravitational singu-
larities, since the matter is getting concentrated to a point. This infinite
energy density should generate a singularity of the curvature tensor. In-
deed, in a head-on collision of two homogeneous infinite planar shells [6]
the curvature singularity occurs, which les exactly at the location of fo-
cal point of the family of null geodesics perpendicular to the wave front
of one planar shell. One sees, quite remarkably, that nonlinear effects did
not spoil the singularity picture found in the geodesical computations. We
postpone a more detailed discussion to the chapter 3, in which the focus-
ing phenomenon will be studied at the quantum level. Here we provide a

classical picture.
The Christoffel symbols of the metric (2.2.1) read

/—,a’q = ’IzZ 7 /‘/f) dlu) (2.3.1a)
Fui = — ) Sha) | (2.3.1b)
[ = = (7)d(u) | (2.3.1¢)

Thus the equation for null geodesics is

dx* YT’ ac”ar® _ (2.3.2)
e 7 Fxs i a7 0/1?“'3’ ar zz = ¢

11



Since d’u/dr? = 0 and the geodesics are null we may choose directly u
to be the affine parameter. So we have

dj/'- / ’ >'\, :
= £ ¢ ) dl) (2.3.32)

/) ~ ~ ,
5;5 = J)dVla) + 2 /r/J/O)f;Z/L (2.3.3b)

and the constraint

| .
L {(5)dt) - (%) = (2.3.4)

Note that the equation (2.3.3b) is a consequence of eq.(2.3.3a) and
(2.3.4). Since for u 7 0 these equations are those for the flat space time
one has immediately

A’; (u) = 6; + U (2.3.5a)
Ve (a) = zg_ + /a;g (2.3.5b)
pe = (pl)” (2.3.6)

where the subscripts <, > indicate v < 0 and u > 0 respectively. The
problem is to find out quantities (v > 0) in terms of the in ones. This is a
simple matter. Since z*(u) is continuous at u = 0, integrating (2.3.3a) one

has

il

l. . /‘ ~ I' ,. »
2 2 +2{0§ (), '= b = 4 (2.3.7)
Integrating as well (2.3.4) we obtain

vy = i+ &) (2.3.8)

12



Due to (2.3.6) we know also p” and the problem is solved.

Let as consider now the homogeneous infinite planar shell shock wave
(2.2.8) and a family of geodesics,for which at v = —w (w > 0), v(—w) =
z'(—w) = 0. Thus the geodesics of this family are parametrized by p'. From
(2.3.5-8) one has for u > 0 :

YI-[l() = /7/6{) —1‘-/0"//—4“))6{ (2.3.93)

Vi) = ,ozw (1- aew) + pife- aw)i, . (2.3.9b)

We see that for up = w/(aw — 1) the focusing of geodesics occurs which
is real or virtual depending on the sign of ur. w and up fulfil, quite re-
markably, the perfect lense equation [2]

£ L £
Y w

1
A\

(2.3.10)

Another focusing occurs when initially (u < 0) all geodesics in the family
are colinear, e.g. vg is fixed, p* = 0. Then for u > 0

Yte) = ' - ar'u (2.3.11a)
' ~ 2 2,2 »
Viel = -4k + a¥‘a (2.3.11b)

The focusing occur for up = 1/a.
We finish this section with a brief discussion of a ”partial” focusing

taking place for the sourceless shock waves e.g.

S 4. =0 (2.3.12)

!/

) = - Z qnt

/

13



Fixing vo, p* = 0 and all z} = 0 except mg one gets

Klu) = 5 - q/-x;’a (2.3.13a)
= gl 2 2 (2.3.13b)
Vi) = G + 9 o

The indicated subfamily gets focused for u = 1/a’ hence some (milder)
concentration of energy occurs.

14



Chapter 3

Field Theoryﬁ in a Shock Wave
Background

3.1 Introduction

In the previous section we have discussed in detail the focusing of geodesics
in some special shock wave metrics. It is of obvious interest to obtain
a field theory picture of corresponding phenomena i.e. the field theory
in these background metrics. Such information would be obviously more
complete simply because the geodesical picture should be reobtained in
some appropriate limit. This is not the only reason, however, why to pursue
such a program. Since the dynamics of the general relativity is described
by the Einstein equations, the field theory language should provide more
relevant information on the problem of creation of curvature singularities.
It may also happen that one finds no energy density singularity at the
quantum level (the indicated "geodesical” singularity would be smeared
due to wave or quantum effects.) It cannot be said, however, that in these
cases the creation of singularity is excluded. Large enough energy density
at the scale of the Schwarzschild radius for the given energy may create
a singularity as well. Nevertheless we shall see that in some cases the
indicated geodesical singularities do survive in the framework of the field
theory while in others are smeared by the quantum effects. As an example
of the former there is the homogeneous infinite planar shell wave the latter
is represented by the finite planar shells.

Another reason why to study the focusing phenomena at the quantum

15



level is also a need for a quantitative expression for the energy density,
which is obviously the energy momentum tensor. We may thus model
the family of the classical geodesics by some quantum state and calculate
expectation values of energy density in these states. The singularity of this
density suggests an appearance of a curvature singularity via the Einstein
equations, if we study in the first approximation the backreaction on the
metric.

Besides the investigation of the focusing phenomena there is also a mo-
tivation to solve the problem of the scattering of the quantum relativistic
particle on the Aichelburg Sex] metric [1]. Having supposed, that the only
change which the relativistic wave function suffers in crossing the wavefront
is the change of its phase (which may be found knowing the geodesics of the
metric), t’Hooft found the S matrix. We shall show from the first principles

that his assumption was correct.

3.2 General Formalism

To build a quantum field theory on a general curved background is some-
what intricated task (for a detailed discussion see f.i. ref.[9]). The main
problems are connected with a possible nontrivial topology of the mani-
fold (see f.i. the Hawking effect [10]), with a physical interpretation of the
quantum modes if the curvature of the background is non-zero and also
with renormalization of the energy momentum tensor, which, by the way,
is the basic quantity needed for our discussion of the focusing phenomena.
Fortunately enough we are not forced to enter these difficult problems here
since the shock wave backgrounds are particularly simple. Indeed, they are
topologically trivial and almost everywhere flat, so for instance the renor-
malization of the energy-momentum tensor outside the wavefront does not
constitute any problem.

The general strategy for formulating a quantum field theory on the
shock wave background is in our case simple. One must find two complete
sets of solutions of a generally covariant field equation, which look like the
free ones for u < 0 (in-region) and u > 0 (out-region) respectively. The
Bogoliubov transformation which connects these two sets then follows and
the dynamical content of the theory is fixed e.g the S matrix elements and
expectation values of observables may be found in terms of the Bogoliubov

16



coeflicients. Our shock wave treatment will be a simple illustration of this
procedure.

For simplicity we will consider the scalar massless theory, since we wish
to mimick the classical picture of null geodesics. We note, however, that
generalization of our results to the massive case is trivial as will be clear
from what follows. The Klein-Gordon equation in our background reads

¢ - J/A«)«///)9 g + z,i -0 (321)

%' ov

The in-modes must look like the free ones

e 0,5 (147) = W cap[i(-bv - by +d5)]  (322)

for u < 0. Here kp_;,k are the components of the (D-1)-momentum, kg
is the energy,

éf = E/_ /[0 z ‘éﬂ—f) (3.2.3)

and

| -4
A [ (20)77 24 ) o (3.2.4)

W

The normalization factor IV, ensures the usual normalization of the
modes and, hence, of the annihilation and creation operators with respect

to the measure dk_dk (note that dk_ dk = (k- /ko)dkp. 1dk) so that

Yle) = Jab o /41 ) + //)/

@r

17



with

+ B |
[ar,a ] = FEE)5l-e) (23

/

If we happen to know how the in-modes look in the out-region it is easy
to decompose them in terms of the out-modes, to compute the correspond-
- ing Bogoliubov transformation between a;,, af, and agy,a},; operators and,
consequently, the S matrix elements and various expectation values of the
field observables.

We will look for the in-solutions of (3.2.1) of the form

Gom (@4 %) = W oewo i) ¥, (47) (26

From (3.2.1) one sees that the functions ¥y ;, must fulfil the Schrédinger
equation

i Yoy = (A - @)Y, G2

All information about the dynamical evolution of a quantum mechani-
cal system is contained in the kernel G(z"”,u",&',u’) of the equation (3.2.7).
Knowing this kernel it is a simple matter to continue a solution from the
in- to the out-region. Moreover, since the evolution is that of the free sys-
tem unless u = 0 in fact we need to know just G(z",0%,%',07) We provide
two simple ways of determination of this quantity, using the operatorial
language and the path integral formalism. This is quite remarkable in view
of a fact that the integrand is not Gaussian. We shall see that both meth-
ods give the same result, thus having a new example of an exact result
obtained by means of continual integration. Let us start with the ”classi-
cal” operatorial approach. One regularizes the é-function in (3.2.7) by an
expression

5{ (u) = | -Z—z(- (é’ (et ) - O [a- :}/ (3.2.8)

18



thus having

i Y = Al = (- B gl ) 100 )20

A solution ot (3.2.9) must be a continuous function, since the right hand
- side is bounded. Now the only nontrivial propagation occurs in the interval
—€e < u < ¢ and one has

Yon (618 = [ elegp -ty to)26)]f5 Y led) (210

because in this interval the Hamiltonian is time-independent. Perform-
ing a limit € — 0 we obtain

Y 7)) = %, (0F eto ik F(F) (3.2.11)

G (&0 0P o) = I *)e&”’/ f(F) (3.2.12)

We turn now to the continual integration formalism starting with the
well-known: Feynman formula for the kernel i.e.

G e Ry - 1050 epp (; /a’z//;" 7 g7 )-
y'/u'/ =&
y/tr’/-,r

= f@f{a} erp /'é_//f/o}) etp ’ f/,m [7"/4«} =

= c/d’.r @(/oz—// {/4’2,7 é/” /"‘”4)/1/ﬂ/ /,E' ,r,z/y

(3.2.13)
19 -



where ¢ = 1 in order to recover a correct expression for the f = 0 case.

Thus
G0, 8,07) = dUP" ) ewp id f17)

that coincides with (3.2.12).
Substitute now to (3.2.11) in-mode ¥y ;, i.e.

1/;//21 (0,7) = e4p + (€F - £ 7)) (3.2.14)

It is not difficult to see from (3.2.6) and (3.2.14) that the energy k_ + k.
remains positive for all out-modes in the decomposition of the in-mode.
We can therefore conclude that no particle production is seen, or in other
words,the in- and out-vacua are identical. It is easy now to find the Bo-
goliubov coeflicients. Indeed, we look for a function (or a distribution)
@(k__,/;,l_,i) with a property ( foru > 0 )

[ae dt ¢/é, ¢) Y Fowr = % i (3.2.15)
and hence
%, out = [ Pl ) %G, £ (3.2.16)

Clearly

Ple ) dl.-2.) 55/4, Z) (3.2.17)

]
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Thus
/IZ ¢/4/ ¢) efp /'»(\,y'*’ = edp ,/:é;’\'-#,(/_/ﬁt}/ (3.2.18)
and

"y / A, A, ALy AL
Ple, ) - P8 /cﬂli’QzW iU E)P [_//f'_}/ (3.2.19)

Knowing ®(k,!) one may compute the S-matrix elements. For example

+ ya
<0M(p./,(~ow 0(0_{,27;, 10> = 7/;7" ﬁ/‘(/l) ar// —/;) (3.2.20)

Note that the factor k_/+/kolo is needed to make a transition from the
light-cone formalism to the usual one.

As an example let us shortly discuss the Aichelburg-Sexl metricin D = 4
i.e.

//1”) = = bpb lu (77c)° (3.2.21)

The basic quantity @As(k,l) reads

7- /'{}al_ &

5 /é,l) _ L [7//"9,0(_@) 4
AS 47 /‘7/,4/,04 ¢) (i~ 7)? (3.2.22)
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which is the t’Hooft’s result.

Thus we solved the field theory on an arbitrary shock wave background
reducing the problem to a mere integration. In the next section we shall
study the expectation values of the energy-momentum tensor.

3.3 Expectation Values of the Energy Den-
sity

We shall be interested in the expectation values of the energy density in
the scattering states. In other words, having prepared the system in a one-
particle state with a sharp value of the momentum k_,k we want to know
the mean value of the energy momentum density in the out-region. As we
already have mentioned we do not have the problem of the renormalization
of this quantity. Indeed, the energy momentum tensor as a local quantity
must be given outside the wavefront by the same expression as that valid in
the flat spacetime background. Hence we adopt the usual normal ordering
renormalization (which in our case is the same with respect to in- as to out-
operators). In what follows we shall always consider a situation outside of
the wavefront, so our formulas will be those of the flat spacetime. We have

Tuy (x) = Q@) elr) '217"” 7"755.{0/;)% @/X) : (3.3.1)
and

Cix) = [a 4k (g W+ a” fowl) (3.32)

% cnfous) “ 74 {out) % infowr) “% iufout)

Putting (3.3.2) into (3.3.1) and taking the expectation value in the scat-
tering state | k_,k > in the in-region one obtains

.
01y Tay (1) @i l0> = (A &y ~F 0w 7))

#

x (4 i (¥) 4, e le) + c c.) (3.3.3)
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We know the in-modes look in the out-region from the formula (3.2.15).
We see that all information is again contained in the basic quantity &)(k, l)
given by (3.2.19).

We provide explicit computations for the case of infinite homogeneous
planar shell shock wave and for the sourceless wave, since in both cases we
may observe an interesting phenomenon of the focusing of geodesics (see

section 1.3). Thus we put

f7) = /47' 2 (3.3.4)

where A is some symmetric matrix. If Tr4 = 0 the wave is sourceless,
if A;; = —aé;; the profile (3.3.4) is that of the infinite planar shell, with the
wavefront energy density given by

(D-2)a

Y (3.3.5)

We shall always work in a coordinate frame in which the matrix 4 is
diagonal. Moreover we shall understand det4 # 0 since otherwise the inte-
gration in (3.2.19) would give rise trivially the §-functions in the transverse
momenta corresponding to the zero eigenvalues of A. Thus put

/4/.. = 0/ 0’{7

(3.3.6)

and compute

&/4/ ¢) = 72%—)0'2 //XNZJP ([ t=2) 7+ /,'0/- f/’z]) =

—/0'2)/2——-—————7 ,, Tf ) 'Z
=) Anta”" erp (- %
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Consequently, for u > 0

=(0-2)/2
(4ai) et Ay

Yin (Gu4r) = N &%

Aty

,(/4/1@,,/9[ {4{ c/,,-)-/-—zz—#-—/Z/zé_ - ’{/]

(3.3.7)

where 1/a; = —up..
The integration in (3.3.7) is simple. Unless u = up, for some j it gives

. )~ ) —
U (%) = f ¢ V/ et Aot t )e//”"’f-é%f-)*

Y@,{/[[ Z ///' S5 ] (3.3.8)

here R(u)ij = (u — uF;)6;;.

If u = up; for some j, the integration is again trivial, nonetheless the
result is somewhat cumbersome, therefore we do not list it here in the gen-
eral case. One gets typically a producf of §(z; — k; jur;/2k_) (no summing)
and of expressions of the kind (3.3.8). There is a partlculal case, however,
which we do present, because it is directly connected to the very purpose
of these computations, namely to the focusing phenomena. It is the case
of the full degeneracy i.e. up, = up for all j. Then for u = ur one has

N /4:/ —/0—2}/2
Yyin (1, b, v) = ) // c//ﬁ/ ¥

Xe,t)o[; ]J/“’ ._/_-’/_a) 3.3.9)

24



Loosely speaking we observe a "focusing” of the in-mode on the line
U = up, T = I;:uF/2k_ and v arbitrary. Finally having the explicite ex-
pression for the uy;, we can compute the expectation values of the energy-
momentum tensor from (3.3.3). Though being straightforward the compu-
tation is a bit tedious. Our interest lies mainly in the head-on scattering
state | k_,k = 0 > since for the family of the geodesics perpendicular to the
wavefront we obtained the full focusing ( see (2.3.11ab),(2.3.13ab)). The
result reads :

o+
<O) al—,{: O,n 729 /’Y) 0(_/4‘:01/-” /0> = (3310)

- 5l 2
28, | det Rt)A) " | L27%) + & Z/Z;—'-—‘,’u e +) J
-4

unless u = ug; for some j. We note also that for 4 — 0 (3.3.10) gives
2NZk? e.g. the free field result. The formula (3.3.10) will be our main tool
in exploring the focusing phenomenon at the quantum level which we shall
do in the next section.

3.4 Quantum focusing

Before a discussion of coincidences and differences between the classical and
the quantum pictures let us first use (3.3.10) to provide an explicit formula
for some concrete examples. We start Wlth the homogeneous infinite planar
shell shock wave i.e.

{(r) = - Fz/zfp ) 4 = /_ﬂ—z)/mclf)_f (3.4.1)
Then

D-2
Kk,0] Too (X)) k0> = ) -
oo “ Ju-qpr?? ©
(0-2)* 2
x | 474/ — 3.4.2)
4 (4- 4 )? "4 ([a—l(;)‘ ) (
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for v # up, u > 0. Using (3.3.3) and (3.3.7) we may obtain also a
formula for v = up, explicitly

0 , ¢#0
<k, 0l Ty (x)]b0) = (3.4.3)
| ooy f" 0

In the derivation of this formula one must take care of the usual damping
regulator needed for computing the Gaussian integrals. The infinity in
(3.4.3) is an ill-behaved expression due to multiplication of distributions.

As another example we consider a sourceless shock wave in D = 4 with
the polarization matrix 4 given by

a 0

AN
i

) a > 0 (3.4.4)
0 -gq

Putting now ur = 1/a one gets from (3.3.10)

' 2
Lk 01T, (60 k. 0y = %! p
Nt Y+ 4,))

x[ u’ L’ 5 7
+4. + #4
(a-tie P (vt )} / (wtye)?  (a-ap)? ) (3.45)

for u >0, u = up.
We see that the divergence in w = up is milder than in the previous
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case of the infinite planar shell, or, in other words, the focusing is only
partial. Such result, of course, might be anticipated from the behaviour
of geodesics.It is interesting to note as well, that in (3.4.5) we observe a
quantum virtual focusing. Indeed, the pole u = —up is not physical, since
the formula is valid only for u > 0. Speaking generally, for all sourceless
waves must exist these virtual focal points, as may be seen directly from
(3.3.10), since TrA = 0 and some up, are negative. This fact may be
understood also physically. TrA measures in a sense global attraction or
repulsion of the matter scattered by the wave. For example since the planar
energy density p in (3.4.1) is positive, the infinite planar shell wave attracts
the matter, as it should. For sourceless waves TrA = 0 thus the focusing
in some direction must be balanced by a defocusing in some other, which
is precisely the state of things which we obtained.

After this short digression about the sourceless waves we shall discuss
in detail the infinite planar shell wave, in particular we will study an inter-
play between the classical and the quantum pictures of the focusing phe-
nomenon. Thus we remind the result from the section 2.3. If one chooses u
as the affine parameter for the family G of geodesics perpendicular to the
wavefront there was obtained

1

riu)

6 - b (uly.)Elu) (3.4.6a)

Vi) = - (6% )Bla)+ (443 )0 Ol) + o (3.4.6b)

Cla) = &, | (3.4.6¢)

Here b (b = zo in the previous notation) is the "impact” parameter, r
the transverse radial coordinate, ¢ the set of angular coordinates, a is the
"initial position” on the v-axis and f(u) the usual step function. If we now
fix a and vary b from (3.4.6) follows that such subfamily of G gets focused
at

[{F / y = a ) ,{"\_ = O (347)
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Varying also a one spreads the focal point (3.4.7) over the v-axis. More-
over, no geodesics from G touch the points u = up, £ = 0, but one sees an
"accumulation” of geodesics with large impact parameter b near the plane
u = up. We observe that the described geodesical picture corresponds very
well to the quantum results (3.4.2-3). We must clarify, however, in what
sense the family of geodesics G is a classical limit of the state | k_,0 >.

Generally speaking the classical limit of the quantum field theory is
the classical field theory and the geodesical picture is geometrical optics’
approximation to the latter. So, in the strict sense, to study the geometrical
optics limit of the field theory we should consider an expectation value of
the quantum field in some many-particle state with a property that this
mean value would look locally like a plane wave with an eikonal giving rise
to the family G. This is obviously not our case since we have considered only
one-particle state in which mean value of the field operator is simply zero.
There are other reasons , however, why the quantum results (3.4.2-3) are
analogous to the classical ones (2.3.11). Probably it is not very suprising
at the first sight since the state | k_,0 > is a translationally invariant state
and as such it models at the quantum level a family of colinear geodesics.
Yet there is a deeper connection between both pictures and relies on the
important role played by the Schrédinger equation (3.2.7) in our analysis.
From (3.2.2), (3.3.8) and (3.3.9) one sees that the u-dependent potential
term in (3.2.7) has an amusing property, namely it changes in the course
of evolution the state with a sharp value of the momentum into the state
with a sharp value of the coordinate z at the "time” u = up. One has for
u<0

. - |
%,/'” /";/L) = @r/& /-/Z.‘i_- o +/‘»éf) = Zf/a/' 5/{';\1;/7(3.4.8)

and for v > 0

~ 2
-m 0’-—&//")‘/:)
2
‘f" QF

=4 QI/O/'S)/}";”/?)

(3.4.9)

%,/h (‘//"}/ = A@JP’
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here m = 2k_, § = (k/m)ur and A does not depend on .

The point is, that the functions S(:E,u.,ﬁ) and S'(Z,u,q) are both the
full integrals of the Hamilton-Jacobi equation (HJE) for a free particle with
a mass m (not to be confused with the mass of the quantum field,which
we set zero at the very beginning). Having some full integral of the HJE
2(Z,u, &) it is easy to find trajectories by expressing £ as the function of

‘u, & and B from the equation

—gg— (P u&) =4 (3.4.10)

where (3 is canonically conjugated variable of & Hence giving a full
integral of HJE, fixing & and varying the canonically conjugated variable 3
the family of the classical trajectories is defined. Thus one may say loosely,
at least in our special case, that a quantum eigenstate of the observable &
”contains” all classical states with & fixed and § varying. If, in particular,
one considers the full integrals S, S’ (given by (2.4.8),(2.4.9) respectively)
for k = 0 ( and, consequently, § = 0 ) one finds that the corresponding
family of classical trajectories is precisely the family (3.4.6) with varying
impact parameter b and ¢y. Thus the behaviour of the phase of the in-mode
W, is dictated by the behaviour of the beam of all classical trajectories
with the incident momentum k. In the same spirit the "geodesical content”
of the state | k_,0 > would be the full family G with varying position in
both v and #-axis, namely varying a, b and ¢ in (3.4.6). In this sense, the
scattering state | k_,0 > corresponds to the family G, therefore our results
may said to be the quantum version of the geodesical focusing obtained
before.

This just performed analysis finds another immediate applicition, namely
it enables us to say something about the status of the singularity for the
homogeneous finite planar shell shock wave (p =0for |Z |> R). Foru > 0
trajectories with large transverse momenta are not present in the family
G since the trajectories with large impact parameters (b > R) are only
slightly deflected (slightly because they still "feel” the null matter in the
domain | £ |< R). Therefore the corresponding quantum state cannot be a
true position state in which, as we have seen, all momenta must be present
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(and for u > 0 the momenta here play the role of the parameter B in eq.
(3.4.10)). Thus from the Heisenberg uncertainty principle one expects a
spreading of the focal point over the scale h/A, where A is the momentum
cut-off.

We conclude this section with several remarks connecting the subject
with the string theory. Though not transparent at the first sight the interest
in the phenomena occuring in the shock wave backgrounds was motivated
" by the recent active research in this field, in particular in connection with
the gravity limit from the strings. In principle the string theory should
account for the quantum gravity phenomena, in its present form, however,
one may calculate only scattering processes, so if one wants to make a link
between the ”"old” and the "new” physics there is an obvious motivation to
try to compute the scattering process at the level of the field theory. This
was, in fact, t’Hooft’s approach, which uses explicitly the shock wave back-
ground. Remarkably enough, a ”track” of the shock wave background was
found directly in the relevant string computations, namely Amati, Ciafaloni
and Veneziano [7] have found that for large impact parameters the wave
function suffers the Aichelburg-Sex] phase-shift, as was assumed by t’Hooft.
In a more detailed study of the shock wave backgrounds by Veneziano [12]
and by Ferrari, Pendenza and Veneziano [2] was discovered the geodesical
focusing in the shock wave backgrounds which we described in the second
chapter (see also ref.[13]). This fact may lead back to an interesting problem
in the string theory, namely : ?What can the string theory say about status
and character of the gravitational singularities? Hopefully they should be
smeared at the distances comparable with the string scale. It is difficult,
however, to treat the problem from the technical ( and, perhaps, conceptual
as well ) point of view. Therefore it is very important to have an example
of a classical curvature singularity which can be relatively easily controlled
technically and which occurs in a process admitting a treatment within the
present days’ framework of the string theory. The scattering singularities
occuring in collisions of shock waves ([6,14,15,16,17,18,19,20,21,22]) may be
good candidates because scattering processes, at least in some kinematic
domain, can be addressed in the string picture ([7,23,24]). As we have seen
some information about the status of singularity can be obtained even with-
out entering the full collision problem, simply by exploring the behaviour
of the physical system in the shock wave backgrounds. Therefore a motiva-
tion is arising to find the string motion in these metrics [8]. As we will see
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in the next chapter, the result turns out to make an interesting connection
between the works of Amati, Ciafaloni, Veneziano and t’Hooft. It may be
considered as interesting by itself since the solution of the (supersymmetric)
nonlinear o-model is provided.
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Chapter 4

The Nonlinear os-model

4.1 The Bosonic String

In this section we shall treat the string (both bosonic and superstring) in
an arbitrary shock wave background metric in D-dimensional spacetime.
We shall show that this theory may be exactly solved and provides - at the
quantum level - a nontrivial S-matrix explicitly given in an operatorial form
in terms of the shock wave profile. First we shall find a classical motion of
the string in the shock wave background. If g,.,, is a background metric the
action S is that of the nonlinear o-model i.e.

$= fz}zf /dra’z//—q—é X?QA,X"%X}M” (r) (4.1.1)

To be closer to the usual free string formalism we change the normal-
ization of the light-cone coordinates and set the shock wave metric in the
form

&5t = - Qdudv f)du)da’ + av’ (4.1.2)

32



where

w = (¢-2)/7

(4.1.3)

<
il

(erz)/VT

with a corresponding redefinition of f(Z). The action (4.1.1) then be-
comes

= [ b ok B I 2610 003,0)
(4.1.4)

We fix the conformal gauge h** = *#. The equations of motion read

ov= o0 (4.1.5a)

at., = Z’&L,f(f) dv)q vy (4.1.5b)

OV = L4218 vav + 2,£(7)3 1 5
(4.1.5¢)

and the constraints (vanishing of the world sheet energy momentum
tensor)

. . ’\;2 N’Z ~ .
0V -0V - X4 +(//x)J/u)/aiy’zj.—p(z;.l.sa)

-V XX VR I = 0 aie)
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where, as usual, dot and prime represent derivatives with respect to
T and o respectively. One may simplify considerably these equations by
noting that U fulfils the free equation, hence we are allowed to go to the

light-cone gauge by setting

Vinz) = pr ) (4.1.7)

The remaining equations of motion then become

oy G,z) = —_2—//0 "5,"//)7)0’/2) (4.1.8a)

Ly (ge) = -'21 VT ) = Q4 (P)¥ Jr)  (a18v)
and the constraints

Zp”V i+ Y’Z+ /)"//,P)G'r 7) (4.1.92)

|

~ ~)

/”1/) = X (4.1.9b)

where, from now on, f(Z) = sign(p*)f(2).

Since (4.1.8a) and (4.1.9) imply the V equation of motion (4.1.8b), we
shall solve (4.1.8a) for the transverse coordinates X® and then obtain V
from the constraints (4.1.9). For 7 # 0 the problem is the same as in the
usual flat space-time, and we shall denote modes and solutions in terms of
the free ones for 7 < 0 and 7 > 0 with subscripts < and > respectively.

Thus for open string, for instance,

! . . .
o~ — .ﬁ . / / —/’72‘
v . 4 oV e

Vﬁ (F,f) = ‘;4 +/0§ c + /'%0 ) nyg e corss (4.1.10b)



where
v 4 R . .
d = - d ! I/V__ Ly
"ﬁ‘ ?/a" g d*mg dhg ) ﬂ/og = /05_' (4.1.11)

The problem is to find the out-quantities p%,zl ol v, as functions
of the in- ones p¥,z’ o} and v.. We start by inserting in (4.1.8a) the
- following ansatz '

XI/E;Z") = ¥(7) +/'AZ ;/'ﬂ:,l/t") coshs =
‘ s 0

i

Ye) + th Ll = o)) wsnr  (41.12)
>0

The equation for the zero mode z*(7) becomes

7
-y — S / ~
n@w = - FLp* / ,—7—0/ oF /!/59/)/{) dr)  (41.13s)
and for other modes n > 0
L&) - (- ) =

7
= -Zf/”/;;é/z////é,‘ajjcomrdr) (4.1.13b)

From these equations immediately follows that

(4.1.14)

and
’. I' . "
(4> - o5 ) = (4. - Awc) ,4>0  (41.15)
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Then integrating the equations (4.1.13ab) one has

/ A & N
= p }%- f F (X150) a5 (4.1.16)

and

. . . ) A
/ ! - ' P 4 e
(da; + Oon 5 )" (0//« +0lne ) = -g-p/i/[,"/@‘p//cami’a’f

(4.1.17)
Putting together (4.1.15,16,17) we get for all n
2,
O(m’> = dnre * 20 /ZV‘/!/&,‘D)):DJ e Al (4.1.18)
g

Then we obtain o from the equation (4.1.11). There remains to deter-
mine v . One uses the constraint (4.1.9a) that may be integrated directly
yielding

v, (0) = Y (50) « LJ(70) (4.1.19)

For the zero mode of (4.1.19) we thus obtain

b = ¥ -+ zé D/a’r//f/r,o}} (4.1.20)

It is not difficult to check that the nonzero modes of (4.1.19) are satisfied
by o’ given by (4.1.11) and (4.1.18).
For the closed string case we proceed analogously having

/ . . .
X (6‘2‘ - ,qu, / a _{_ M =dimE o el ~ ol
é’) % /Dgf—fz}%”ﬁ;gg —0{:56 z/

4.1.21a)
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and
0,Z) = of
Vg (52) L+ AT

; AN 24 —?wt‘ v 297 .-7m0"
_/.2‘% w (%ug e oo /e (4.1.21b)

The ansatz reads

/. . . \ s ‘ -G
X' Gr) = I’(Z‘)V-f-é% L& ) -a, (2) %7 (41.22)

Then the equation (4.1.8a) becomes

(4.1.23a)

-¥c) = - 2!/’" /ﬂ’/'/év‘/f/é;o})a’f) d(z)

and for n # 0

_2'_,; [A,-,, - o(,,, )- Z"’.["f(:'n - d/'—ﬂ)" "/oﬂ//i e ?Mr
(4.1.23b)

As before we find

o 7 Z r
= Ayre + 72‘ /?'//f/FD}/e— “
= e + 12 b/;//f/m))/”'r
(4.1.24)

T /%/P/é;a})/r
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At this point we finish the classical treatment. After solving the super-
string case in the next section we shall provide a quantum version of the
model. '

4.2 The Superstring

In the covariant gauge the action of the superstring moving in a generic
shock wave backgroung is that of the nonlinear supersymmetric o-model,

e.g.
(= ;;— /dm’m’éﬁ 7”0/%,,,,, v) (4.2.1)
where
Yw(m,e) = X”'/o;z) + B¢ 1) - 2—/ oL k)  (422)

# and ¥'™ being the 2-dimensional Majorana spinors, B™ the auxiliary
field and D, D the usual covariant derivatives i.e.

D= 992 -/ @9« ) D= —9—92 +/9—f‘24, (4.2.3)

with the 2-dimensional Dirac matrices

P- [ ) ‘. (0 4
F o , f F o (4.2.4)
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In our specific case we have

$ = acds (5014, +OYDY3(1)E(r)  (w2s)
and the equations of motion read

(0, 07- D7Dy )Y = 0

(057~ 502) Y + DYOY'L (V) (Y90 @26

0, D7-D%,)y " - '(Dq[f/yf/a/yvj)a"’y" (4.2.6b)
+ (D7LH )3ty 0) 0y = Brov“s(vdS (v = 0 (w20

Since we obtained for the components of the Y* supermultiplet the free
equations of motion we can go to the light cone gauge for which

Vir) = pr, ¢'lrz) - 0,8z =0 (4.2.7)
The equations (4.2.6bc) now written in the components become
ox = - 2’2}’/?)/"0‘72) (4.2.82)
OV = _ 1 40)5%) - 370700 er) (4.250)
e ¢ = 0 (4.2.8¢c)
i = 2—/ QLR 0V dlr) (4.2.8d)
R =4V =0 (4.2.8¢)
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We observe that, rather amazingly, the bosonic equations of motion
remain untouched by the presence of the fermionic modes. There remains
to compute the (super)constraints. In the light-cone gauge they are

, L2 f\_)zb o~ *
WV = X X-£ ¢, =50 4 P)p*dtr) (42.92)

1

) = 287 - £ (%t » 82,)¥ (4.2.9b)

'P‘lfofk’qll/: qudylﬂj XI. (4_29(:)

Again, as before, having solved the transverse equations of motion
(4.2.8ac) and the (super)constraints (4.2.9), the ¥Y* equations of motion
i.e. (4.2.8bd) are automatically satisfied. We observe that the transverse
fermionic modes are not influenced by the presence of the shock wave and
the equation (4.1.20) for the zero mode v by the presence of the fermionic
degrees of freedom in the constraint equation (4.2.9ab), from which was
derived. Finally the superconstraint (4.2.9¢) gives us ¢” in terms of the
in-modes. With these remarks we finish the classical discussion and shall
turn to the quantization at the next section.

4.3 Quantization and Interpretation

To quantize the classical theories discussed in the previous two sections is
now a simple matter. We may do it in terms of the in- or the out-modes,
both satisfying the canonical (anti)commutation relations e.g.

[x’;/of] = idV J [V//a“]____ -

~y ) .

O(M I“"j] = JJW J“'*‘?

‘[%l.(‘T,D), %j (5)o)} = WJ';"GQG g(c-v’) (4.3.1)
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These two sets of modes should be related by a unitary transformation
which is by definition the S-matrix. For all cases previously considered
i.e.bosonic, super, both open and closed, the S-matrix is given by

: 72 .
§ = e [ ] "/a’f//%/o;a))j (4.3.2)

We observe firstly that the S-matrix does not contain the fermionic
degrees of freedom. This is so because the transverse fermionic modes fulfil
the free equation of motion (4.2.8c). We shall formally prove that the
S-matrix (4.3.2) correctly transforms the in- into the out-modes without
entering possible ultraviolet problems in its definition. For the open string
one has directly

: 9 ~
g};«f =/o~/ Jj,,-,f =X S v +2—§//f//x/o;0)/ (4.3.3)

To compute the transformation of the o modes is slightly more in-
volved. We start with a trivial formula

* ’. /. I. 7
$%, 8§ = o - [d s7/S (4.3.4)
There remains to evaluate [o!, S*]. First one realizes that

[%’}V'/,F/r,a))] = - QF(P150) i cosnr (4.3.5)

Now from [#'f, f] = 0 it follows [[a?, f], /] = 0. This information en-

ables us to write

. .0
[06,', ekp -5 ,o"p/ Ay /X/qo))] = (4.3.6)

o n o 7
= [‘_’(nll - "/dr//f/é,‘o){]@(/o ';’f/”’f//k/‘/—”/)
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Thus

+ 0
Sa'S = o - [ L p /m//x/m)]w

9
/ 124 ,. A
o P D/%‘ (¥ 150)) cos s (4.3.7)

I
S

. Putting together (4.3.3) and (4.3.7) we observe that the equations (4.1.14a),
(4.1.18) and (4.1.20) are reproduced as they should. For the closed string

one has in the same spirit
[oc,', £ XG0)] = -+ e P (Pl50) (4.3.82)

[ 0(”'., 02y 0))] = - ;_/‘ e Zmo}% (¥150)) (4.3.8b)

and

7
(’ P .
S § = dni w45 [9AFl0) ey (4390

o~ N P g
Sdui S = dy + f;: [ ot (P 1501)e ot (3390)

This result reproduces the formulas (3.1.24). We notice also that at the
quantum level an ambiguity in the operator ordering arises. For instance,
it is not difficult to see that the normal ordering in the exponent of (4.3.2)
causes the normal ordering in (4.3.3),(4.3.7) and (4.3.8). This fact will

find an application soon in a discussion of a physical interpretation of our
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result. Before this, however, we provide several particular examples of the
general formula (4.3.2). To make a connection with the ref. [3] we give the
exact S-matrix for the homogeneous infinite planar shell shock wave (e.g.
f(z) = —az?, a > 0)

/ ~ ~ . ~F .
$-apl-3pa(r% > LG -2 )6 - )] 4310

H#£0

We have considered for concreteness the closed string case. It is inter-
esting to discuss (4.3.2) in a regime, in which we consider the string zero
mode z,i.e. the string position, to be large with respect to the string scale.
In this regime one may decompose f(X(,0)) in (4.3.2) in a Taylor series
in X, where X denotes the non-zero modes’ contribution. At the lowest
nontrivial approximation one has (again for the closed strings)

(2) i
$ = ap £y ) +
* 2{53'9/'//7)“% z;f; [or(:,'—a(,"’y/p?;"{ a/,,’.)j/z (4.3.11)

where the superscript (2) indicates that the approximation is quadratic
in the non-zero modes. For them one obtains

(~) ~) . : - ~)
(2)+ (2) NS % (~)
S, § =y Z:.L 93///;)@, _%_)/ (4.3.12)

A 7

= of,

i.e. a Bogoliubov-like transformation. The S-matrix in the quadratic
approximation was found for other backgrounds as well [25] but without a
knowledge of an exact expression. Indeed, to provide the exact solution is
an unusual feature of the shock wave backgrounds.

In ref.[7] Amati, Ciafaloni and Veneziano (in what follows ACV ) have
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computed the S-matrix (Sacv) for the direct channel scattering of two
superstring low level excitations.It is given (in the impact parameter space)

by

§= etp /2/f afs b+ ,r%— o)-¥ @0}); 0’@4’@) (4.3.13)
/4 Wz

where a(s,b) is the string tree amplitude

¢ .b’//y-fwz)
alse) = S o/zz z 6 /a’fe’fz‘ y lps (4314

Here /s is the energy of the process, b the impact parameter, X¥(oy, 0)
and X4(oy, 0) the nonzero modes transverse position operators of the strings
(denoted up and down) participating in the process. We remark that the
S-matrix of eq.(4.3.13) coincides with the one obtained by a noninteracting
string moving in a shock wave metric generated by the other string with a
profile f(y) related to the function a(s,y) of (3.3.14). Explicitly

,
q[{y} = 7:/55 ca /J‘,f—Xd/o;;o)): g’:"—’ (4.3.15)

where ¢" is the momentum of the other string (or the other incoming
particle) impinging in the v-direction, that creates the shock wave. In other
words, the string "up” moves in a shock wave profile f given by (4.3.15),
where b = z* — z¢ is the difference of the zero modes and s = 2p“¢®. That
this should have been the case was already anticipated in ref.[26]. For very
large y the profile (4.3.15) becomes

v 1671 € {
(0-4)02, , ///0"'

) = 9

(4.3.16)

44



where

2, = 20/ (a)

which is the Aichelburg-Sex] metric. Moreover the S-matrix (4.3.2) in
the particle limit (no string modes excited) gives precisely the t’Hooft S-
matrix. For smaller y, however, the metric differs from the A.S. one. It
developes an imaginary part thus indicating the presence of inelastic chan-
nels. The real part for small y avoids the singular A.S. metric behaviour
and, consequently, the poles found by t’Hooft [1] in his scattering amplitude.
Finally let us remark that the S cv-matrix does not contain the fermionic
modes even though it was computed in the framework of the superstring
theory. This fact fits well the irrelevance of the shock wave background for
the fermionic degrees of freedom in the o-model treatment. Thus we may
say that coincidence of both S-matrices i.e.S4cv and S, shows the genera-
tion of a nontrivial metric in superstring collisions at ultrahigh energies in
the flat spacetime background.
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‘Chapter 5

Conclusions and Outlook

In this thesis we have discussed in detail the behaviour of various dynamical
systems in the shock wave backgrounds of an arbitrary profile. The results
found to have applications in discussing the ultrahighenergy scattering of
particles or strings and in the study of interesting focusing phenomena
which may be related to the generation of gravitational singularities. There
is a pleasing feature of these results namely they are all exact. This is quite
a rare situation in field theory on a curved background and even rarer
for the quantum string dynamics in curved target space where a nonlinear
o-model has to be solved.

From the point of view of physical interpretation of our results we ob-
tained the remarkable coincidence of the S-matrix of the shock wave super-
symmetric o-model with that obtained by Amati, Ciafaloni and Veneziano
from the full-fledged string theory . This coincidence holds for the partic-
ular profile of the shock wave which for large impact parameters has the
Aichelburg-Sexl form. Since the ACV result was obtained by exploring the
infinite loop superstrings amplitudes in the flat spacetime background the
coincidence of both S-matrices indicates the generation of curved geometry
as an infinite genus effect of the flat spacetime string theory. Moreover the
particle limit from the o-model S-matrix (e.g. no string modes excited)
gives precisely the t’Hooft S-matrix for the quantum relativistic particle
scattering on the Aichelburg-Sexl shock wave. This shows that, as ex-
pected, the string theory results coincide with the field theoretical ones in
the appropriate limit. The other application of our results concerns the
focusing phenomena in the planar shell shock waves discovered by Penrose,
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Veneziano and Ferrari, Pendenza and Veneziano who studied the behaviour
of null geodesics in these backgrounds.They had a motivation that such
geodesical focusing would indicate the generation of curvature singularity if
the dynamical effect of the "test” matter, which would follow the geodesics,
were taken into account. That such generation of curvature singularity does
occur in the the head-on collision of two infinite planar shells was shown by
Dray and t’'Hooft. The field theory on the shock wave background provides
the quantum information about the focusing phenomenon. We have shown
that at the quantum level the indicated geodesical singularity does survive
for the infinite planar shell but is smeared for the finite one suggestmg thus
that the curvature singularity may be avoided in this case.

There remain open important questions, however. First of all the con-
formal anomaly problem in the non-linear o-model. We have solved the
o-model in the light-cone gauge. In the case of the flat background the
light-cone gauge theory exhibit the Lorentz anomaly unless D = 26 (we
speak for concreteness about the bosonic string). In the curved background,
however, no Lorentz symmetry is present even at the classical level so we
cannot judge the consistency of the theory from this point of view. Hence
the conformal symmetry plays a fundamental role in exploring the consis-
tency of the quantum string motion so we canot avoid the problem. The
difficulty is that the shock wave o-model is "more nonlinear” in the covari-
ant gauge exhibiting very complicated ultraviolet behaviour. One may try
to obtain soma relevant information about the conformal anomaly working
directly in the light-cone gauge. There is a promising hint [27] that such
program may be carried out at least for a particular subclass of the consid-
ered o-models. We conclude this chapter by noting that another interesting
problem may be a formulation of the string field theory in the shock wave
background with the possibility to study the focusing phenomenon in this
dynamical framework.
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