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1 Description of the Bak and Sneppen model.

Bak and Sneppen (BS) [1, 2] introduced perhaps the simplest model describ-
ing mutations of an ecology of interacting species. This model is intended
to provide an illustration of the basic mechanism leading to intermittency
and scale invariance in natural evolution. In a coarse grained simplified de-
scription, to the i-th species of the ecology a single fitness parameter, z;,
(0 < z; < 1) is associated. The fitness z; represents the ability of species 7 to
survive: the higher z;, the higher the barrier to overcome in order to switch
a mutation in the species. A genetic mutation changes the barrier of the
species and modifies also the barriers of the other species interacting directly
with it. This interaction should represent the fact that two species, e. g.,
take part in the same food chain. Sites of a lattice can be used to represent
the species: in this case nearest neighbor (n. n.) sites can be assumed as
directly related biologically, and thus interacting.

In the BS model the various mechanisms are governed by the following
dynamical evolution rules. Starting from an initial fitness landscape, the ¢
with lowest T, imn, is selected and its fitness «;_,, is modified ( as a conse-
quence of mutation) into a new one, chosen at random in the interval (0,1).
Due to the interaction, also some neighbors of i, undergo mutation and
get modified z’s. In the case of a linear chain with n. n. interactions this
implies that, e. g., x; . 1 and z;_, 41 are replaced by new randomly chosen
T’s.

This simple model shows interesting features that can give an explanation
of similar observations obtained from the analysis of paleontological data such
le.:

e Fitness probability distribution function has the shape shown in FIG.1;
the system self-organizes in such a way that the probability of survival
for species with fitness under a critical value is 0, while it is uniform
over this value;

e When the system has arrived at the stationary condition (it is self-
organized) distribution of activity is intermittent (FIG.2 shows inter-
mittency patterns measured in an ecology consisting of 512 species);
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e Distribution of avalanche size is critical with power law behaviour as

shown in FIG.3.

2 Biological reasons for considering Bak and
Sneppen Model

The concept of punctuated equilibrium was introduced by Gouldberg and
Eldredge [3][4] as a possible model for biological evolution. The main goal of
this new explanation of evolution patterns is to explain efficiency of natural
selection in adaptation of life to biosphere evolution. A simple Darwinian
mechanism, in fact, would require, to explain observed morphological differ-
ences, an evolution time longer for some orders of magnitude with respect to
the observations (340 mys instead of 3 mys).
The new model can be essentially characterized as follows:

e evolution and morphological adaptation concerns with species as spatio-
temporally discrete and independent reproductive lineages while ge-
netic mutation concerns with single organisms;

e evolution takes place through bursts that give evidence to ”punctuation
” in the evolutionary patterns, that is presence of long periods of stasis
alternated with sudden, quantal morphological changes.

Bak and Sneppen model is asked to show in a simple model how interplay
between interaction of species in the same ecology and genetic mutation can
give rise to punctuated equilibrium as claimed by Gould and Eldredge.

The main idea is that if we can consider every species through a single
value that represents the average probability for survival in the population
called barrier, the "weakest ” species (that for which adaptation is at a min-
imum value) will modify its adaptation barrier in a random way (mutation);
this will generate random modifications also in the barriers of species ”bio-
logically” interacting with them; this will imply an avalanche like process in
the evolution until a sort of stationarity is restored; distribution of evolution
bursts becomes then critical; scale invariance of extinction events is in fact
shown by paleontological data.



3 Theoretical motivations to investigate bio-
logical evolution models.

Numerical Evidence of Self-Organization in a large number of dynamical
critical systems has been pointed out by Bak, Tang and Wiesenfeld [5]. In
their papers it has been argued that a common underlying mechanism could
relate criticality with stationarity in these spatio-temporal non-equilibrium
systems; this relation would explain the presence of critical correlations in
a large number of natural systems such sandpiles, biological equilibrium,
markets etc.

The analytic approach to the description of these systems has shown some
difficulties due essentially to the necessity of considering the close relation-
ship between spatial and temporal correlations [7]. Most of the literature on
this subject, in fact, considers alternatively only the temporal [6] or the spa-
tial critical behaviour of the self-organizing systems (in the sandpile models
a general conservation argument predicts critical spatial behaviour) and in
general there’s no uniformity in the analytic treatment of different models
even at the mean field level.

Here we intend to suggest a common framework at the mean field level
valid for all the self-organizing critical systems.

A common requirement in all S.O.C. systems is a local dynamics, that
is: propagation of activity from site to site depends on the values of the
site variables only in a local way; self-organization in these models consists
on the fact that the bursts of activity due to a single, local excitation give
raise to a long range, power law slowing down. The final goal of a 5.0.C.
theory is to describe how these bursts, so to speak, tune themselves toward a
critical relaxation. The problem involves together spatio-temporal degrees of
freedom in such a way that usual approaches fail (in general if one considers
a Lagrangian approach to these problems non local, quite intractable terms
appear). Bak et al. [5] argue that the right probabilistic description of bursts
can be suggested from the following fact: the stationary state of these non-
equilibrium systems can be characterized from a probabilistic point of view
as the critical state of an equilibrium statistical system (the state of a system
that is suffering a second order phase transition).



4 Mean Field and Branching Processes

Following [5] way of thinking we have to identify an equilibrium system that,
at the critical point, describes propagation of activity from site to site. We
will consider the system in an equilibrium mean field approximation; that is
we neglect spatial fluctuations and we consider the propagation independent
of the site where it happens. Moreover, since we want to describe stationary
state properties we suppose that parameters describing propagation are time
independent (we neglect temporal fluctuations: mean field in a dynamical
sense ).

These two approximations allow for defining a common phase space for
such processes: the behaviour of a site is completely determined specifying
the probabilities p; for the number of directions of propagation when the
site has already been activated. The problem stated in this way is from a
mathematical point of view equivalent to a classical probabilistic topic [8][9]
called branching process. In terms of random variables the problem can be
stated in this form:

Let X1,....., Xy N integer random variables equally dlstrlbuted with a
generating dlstrlbutlon function of the form:

= ipim" ” (1)

=1
and N itself a random variable; let us consider what happens if we gen-
erate a succession N in the following way:

A )
N® =X, + ... + Xpy-n -

Then we can interpret the random variable N™ as the number of branches
generated from a common ancestor if in every step each branch ramifies
independently and the number of branches is the random variable X.

If we take the correspondence between sites activated and branches then
we obtain some useful results:

e The branching process undergoes a phase transition:

The extinction of the activity is the event that starting from an arbitrary
n N = 0 ; the total probability of extinction g is given as a soluticn of the
fixed point equation:



q=Q(q) (3)

this result is easily obtained observing that the probability of extinction
at the n-th generation ¢(™ is given by the recursive formula:

1) =
q(n) (_J__ Q (52—1)) (4>

Since for P is monotone, for 0 < py < 1 the succession of ¢(™ is growing
and the limiting value is given by the solution of 3. We can discuss the
solution observing that the graph of @ (z) is a convex curve starting at the
point (0, pg)and ending at the point (1, 1) on the bisector. Only two situations
are possible:

i. The graph is entirely above the bisector and the only solution of the
equation 3 is given by ¢ = 1; in this case it is easily to observe that Q' (1) <1

ii. The graph intersects the bisector at some point o < 1 so ¢™ — ¢ as
n — oo and @' (1) > 1.

Let us observe that A = @' (1) is the expected number of directly acti-
vated sites; we obtain therefore that the extinction probability is 1 if A < 1;
while it is o if A > 1.

e The total number of sites activated has a critical distribution when
A = 1: asymptotically the probability of having s sites activated in a
single process has a power law distribution:

P(s)~sTT (5)

Let us define the random variable Y, = 14+ Z; +--- + Z, it will equal the
number of descendants up to generation n; the generating function for the
distribution of Y, that we will call P, (z) obeys a recursion formula of the
form:

Py () = 2Q (Pa-1) () (6)

The sequence of P,) (z) decreases monotonically and is limited from be-
low so it converges to a function P (z) that is the root of the algebraic
(Watson’s equation):



t=2Q(t) (7)

It can be proved [8] that the P (z) is the generating function of the random
variable total number of activated sites Y during a relaxation process.

Solving for t in 7 we obtain an explicit form for the probabilities P(s) of

having s descendants; the asymptotic estimate of these coefficients is given
to be [9]:

P (s) ~ A°s™% + higherorders (8)
When A = 1 the process becomes critical and the moments of this distribu-

tion diverge.

Let us give an explicit example of how the calculation can be carried out:
Let Q (t) be the function :

Q (t) = po + pit + ot (9)
The extinction probability for A < 1 is the solution of:

g =Dpo+pq + pag®

_ 1-p1—+/(1-p1)2—4pop2 : (10)

1= 2p2
It is easy to note that when A =p; +2py — 1, ¢ — 1.
Let us now calculate the generating probability distribution function

P (z):

P(z) = (1-mz) - \/(1 — p1z)” — 42°pops (1)
2pox
Now the asymptotic estimate of the coefficients of the series expansion
of P(z) can be obtained observing that P (z) has a singularity for z — 1~
such that expanding around 1 we obtain:

P(m)=1—{-a(1——a:)%+a1(1—33)+... (12)
and, as usually, we can relate the behaviour of P(s) with the leading
singularity [10] term:

Plz)=14+a(l—z)"" +... (13)
so we obtain the estimate for A =1, P(s) ~ 573,

7



5 Dynamical mean field.

We have thus obtained a minimal description of a critical process that can
describe the stationary state of a Self Organized system in a mean field ap-
proximation. Obviously determination of the stationary state is only the
first part of the task, since we have to identify very general physical condi-
tions that give rise to a 'reasonable dynamics’ attractive toward this critical
condition.

Strictly speaking, since the branches are non-interacting, we have lost spa-
tial correlations and this fact has important consequences when we analyze
non-stationary behaviour because approximations on temporal correlations
have to be consistent with this approximation (SMFA).

What ”consistently” means is still an open problem that we want here
briefly describe.

The most significant system in which the dynamical mean field problem
has been treated analytically is the Bak and Sneppen model [6][2].

The main approximation in these treatments assumes that propagation
of activity goes through a randomness annealed in the system in the sense
that the neighbours to update are chosen in a random way between all the
sites at every time step.

This approximation has the main advantage that in this way we can
consider the probability distribution of the barriers independent of the site,
this is obviously consistent with the SMFA

We can now define the quantity of interest as the probability distribution
function of the barrier heights p(z,t) and correspondingly the distribution
of the smallest barrier:

p1(z,t) = Np(z,t) Q¥ (z) .
Q(x) = [1di'p (+) 14

at the stationarity.
We simply quote the results from [2] where it is deduced from the master
equation given by:

p(m,t+1) =p () — —py (2,8) -

& K= (b - @) + 3¢ (15)

N -1
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that the stationary distribution function p(z) is of the form:

p(z )NK for 1/K —z >> O(1/N)
p(z) ~ % for 1/K — 2 << O(1/N)

>¢z

(16)

Increasing N (going toward an infinite system) p(z) converges toward
a step function with the step at 1/K .This implies that with probability 1
barriers are higher than 1/K. This fact corresponds to the assumption that
only a finite fraction (not growing with N) of sites will have at every time
step height smaller than 1/K.

In FIG.4 it is shown the equilibrium distribution barrier values p(z)
for simulated random neighbour model (full curves) and mean field values
(dashed curves).

Moreover let us analyze what happens at every time step when the system
is stationary: the probability of having a site with a barrier smaller than 1/K
is 1, so we almost certainly take away a value smaller than 1/K and other K —
1 values distributed as p(z) and substitute them with K values chosen from
a uniform distribution. Stationarity requires that p(z) remains invariant
under time evolution; this imposes that new values will be distributed as
follows(as stated in [2]): the mean number of values chosen smaller or equal
to 1/K will be 1 while K — 1 values on the average will be chosen greater
than 1/K. We are now able to establish a connection between dynamical
and static mean field: propagation of activity (updating of the site when the
barrier is the lowest) will "usually” involve sites recently refreshed; we can
make the assumption that, given K the number of sites updated at the last
step, there exists a time independent probability p; that 7 sites (0 <i < K
) will take part to the same burst of activity ( they will be updated before
inert sites, roughly speaking are the sites with a new barrier lower than 1/K;;
this fact is under current investigation). '

Since the mean number of sites with height smaller than 1/K is exactly
1, this imposes the condition on the p; that:

> opi=1 (17)

i=1
but this is the condition of criticality for the SMFA. We have been able to

show (at least from a physical point of view) how Bak and Sneppen dynamics
provides an explanation of the link between stationarity and criticality; still

9



remains unsolved the problem of relating spatial criticality with mean field
criticality, since spatial correlations are neglected in the SMFA.

6 Boundary effects at a critical point.

It is a well known fact that geometrical properties influence the universal
behaviour of critical systems (critical exponents are different in different ge-
ometries).

It is a difficult task to describe this critical behaviour on particular ge-
ometries; there was a great debate if a mean field approach can be used to
describe these critical properties, a result due to [?] shows as in an Ising
model the boundary mean field exponent can be obtained in a seminfinite
model and a diverging correlation length appears showing spatial critical
properties. Qur purpose is to show that in Self-Organized Critical systems
presence of boundary effects (modification of the critical behaviour of P (z))
and some type of diverging correlation length appears due to the same dy-
namical reason that gives bulk criticality.

Let us consider now a semi-infinite sequence of species on a chain. To
each species is associated an integer coordinate k = 0,1,2,..... In a n.n.
model the presence of the boundary clearly requires to allow for a k depen-
dence of the avalanche probability distribution: some Fy(s) or Pk(z) will
describe avalanches starting at site k along the chain. This situation can still
be described within what we call inhomogeneous Branching Process. Since,
as a consequence of a mutation at k¥ > 1, at most 3 species can be further
involved in the avalanche(K = 3), probabilities pg, p1, 2, and ps will describe
the possible outcomes of such a mutation. The model can be further spec-
ifled assuming that with probability pg, no further mutation takes place in
the avalanche; with probabilities p;/3 and p,/3 the avalanche propagates,
respectively, in any one and any two of the species in the set k — 1,k, k + 1;
finally, ps is the probability that the avalanche involves all three species. Our
assignments assume full equivalence between the central species, k, and the
lateral ones, kK — 1 and k + 1. This choice is only dictated by convenience
and it is not strictly necessary for obtaining the final results. Notice that it
is sensible to assume k-independence for the p;’s as long as k > 1. These
probabilities, in a MF description, are naturally treated as local interaction
parameters. Of course, there should be different probabilities for £ = 0,

10



where the boundaries imposes i.e. py =0.

A possible choice made below is to assign py = po+p1/3, Py = p1/3+p2/3
and py = pa/3 + p3 at k = 0, again implying equivalence of k =0 and k =1
with respect to single branch outcomes.

With the above assumptions, Watson’s equation is replaced by a full
hierarchy of equations:

Py(2) =z (ph+ 71 (Po(2) + P (2)) + 7 (Po (2) i (2)))

ﬁk~(z) - zg(po 4 (%]:Dk_l(zg + Py (2) f )
+E (Pk—l (2) Poar (2) + Fi (2) Pea (2) + Poa (2) B (z))
o (o (9P )P 9)

The solution of egs.(18) should converge to the bulk solution of eq.(7),
for k approaching infinity. It is useful to adopt the following ansatz for the
solution of egs.(18):

Pi(2) = P(z) + A(2)e™ ™ 4 st (19)

where ¢ is an inverse length and P is the solution of the eq. (7). As shown
below, the assumed k-independence of A and ¢ is consistent, as corrections to
it would only involve subleading singular terms for 2 — 17. By substituting
eq.(19) into egs.(18) one can deduce the singularity behaviour of F and gq.
We are looking for such a solution that, for z — 17, A(z) ~ (1 — 2)* and
q(z) = (1 — 2)?, with o and 8 suitable exponents. After substitution in
eqs(18) for k > 1 one gets

A (2)

1= —7
2

wl N

(1 + 2coshg(z)) (G' (P(2))+ G" (P (z))) +1.s.t.. (20)

Taking into account that P has the form (12) with 7 = 3/2, the leading
singular terms in eq.(20) lead to:

3qc(f )(i) + —;-A(z) ~ a1 — )12 (21)

where a = (2/G" (1))% . The same kind of substitution in the first of eqgs.(18)
leads to:

Az) ~a(l — 2)Y2 +bA(2)q(z) + L.s.t. (22)

11



with b = ———&j,ﬂ—,— if only leading terms are taken into account.
1—2(p1+p2)

Eq.(21) and eq.(22) are such to determine both « and f. In particular
the singular behaviour of Py(r) takes the form

Py(2) = P(2) + A(z) 22 1+ b(1 — 2)*/* (23)
According to eq.(13) this singularity is clearly consistent with
Py(s) = 574, (24)

Thus in present MF description the BS self organized critical state is
characterized by a boundary scaling with an exponent different from the
bulk one. Boundary avalanches of course suffer more rapid extinction and
their distribution decreases more rapidly for large s. It is interesting to notice
that 7, = 7/4 has been obtained recently within a MF approach to Abelian
Sandpile Models (ASM) with Dirichelet boundary conditions, exploiting the
analogies with magnetic systems [11].

Thus our result leads further support to the idea that also in ASM a BP
description underlies the statistics of avalanches in the MF limit,for which
also 7 = 3/2 holds.

A further consequence of egs.(21),(22) is the singularity of g:

g(z) ~ (1— z)1/4. (25)

Thus, the penetration length of the border disturbance, g™, diverges for
2z — 17. In standard MF trearments of inhomogeneous equilibrium models,
lengths of this kind show the same divergence with temperature as classical
correlation lengths. Here it is not obvious how to associate an avalanche ex-
ponent to 3, because z has no autonomous physical meaning for the avalanche
problem. By interpreting z as a standard fugacity in a polymer, one should
deduce from eq.(25) a correlation length diverging like (1 — 2)~Y/#, which is
indeed the classical v exponent of branched polymers. Of course definition
of a v exponent for a SOC system requires to identify physically meaningful
parameters describing approach or departure from criticality.

We have thus obtained meaningful results on the nature of the stationary
critical state; we can summarize them as follows:

o The Mean Field Critical state predicts also some sort of spatial criti-
cality;

12
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e Presence of a boundary modifies critical behaviour of the system.

We will see that the mean field prediction is qualitatively correct for the
real Bak and Sneppen model.

7 Numerical investigations and experimental
data.

To verify whether boundary scaling occurs beyond the MF domain, we also
performed numerical simulations on open chains of different lengths (N =
100, 500 and 1000) with n.n. interactions. Even if the system dimensions are
small compared with the works present in the literature, one has to consider
that in this case we are interested in the avalanche starting from boundary.
This means that only a vanishing small fraction of the starting processes has
to be taken into account. The global properties of the model are not affected
by the introduction of the two boundaries. Also in this case for the BS the
distribution of barriers self organized itself over the critical value B, ~ 0.67
as indicated in Fig.5.

The avalanche instead displays a different behaviour with respect to the
distance of the boundary. An avalanche is the ensemble of subsequent muta-
tions through barrier below a certain threshold. The avalanche is character-
ized by its size s, that is the number of mutations under the threshold and
the seed, that is the site of the first species that start the reaction.

The distribution of avalanches sizes displays the power law. If one con-
siders the bulk sites, the exponent is 7 = 1.05 £ 0.02 in agreement with the
value obtained in the original definition of the model with periodic boundary
conditions [1]. The addition of boundaries introduces a different behaviour
as known for other model of SOC[11]. In fact, for sites belonging to the
external surface we find a value of 74, = 1.25+0.02. This behaviour is indi-
cated in Fig.6, where, to avoid statistical noise, we have used the integrated
distribution probability P! _(s) = [g™ Paur(s)ds.

It has also to be noticed that the behaviour of the sites in the bulk of
system is quite different and we find a value of 7 = 1.05 £0.01. Furthermore
different sizes of the system do not change remarkably this behaviour, but
avoids the finite size effects in the bulk avalanches.
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