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about these theories, coming from the perturbation theory, ap_
plies onlv to the‘weak coupling region., Recentliy considerable
effort has been made with the aim of extending ocur perturbative
knowledge to non perturbative phenomena. Because of non renorma
lization theafems,'relaticns between masses hold true at anv
order in perturbation theorv, once they are set at the tree
level. Only non perturbative phenomena avoid these theorems
and may provide an explanation wav these mass scales are so
widely separated, if supersymmetry were broken dynamically,
One possible mechanismcould be provide by the non perturbati_
ve quantum fluctuations of the instanton type in the vacuum.
L]
In lover dimensions, as for example in supersymmetric cuantum
mechanic , instantons have been shown to spontaneosly break
supersymmetry. However in four dimensions, Witten has been pro_
ved that supersymmetry is unbroken in many interesting theories,
as SU(N) gauge theories with any number of massive chiral mat_
[2]
ter fields, but nothing has been proved for massless quarks.
Instanton effects was studied in the contest of non supersymme_

[4]

tric gauge theories, a long time ago. The interest in instantons
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arose because of the discovering of an exact finite action
solution to the classical Yang=Mills equatiors in euclidean
space=time and the realization that the existence of that
finite action field configurations indicates that the structure
of the vacuum in a gauge theor is much more complicate that
one would have from streichtforward perturbation theorv. In a
Yang=Mills gauge theory there exists an infinity of degenerate
classical ground states, characterized by the integer topologi
cal charge. Instantons provide a description of gquantum mecha
nical tunnelling between ground states of different topclogical
charge, thereby contributing non-trivially to the vacuum energy
densitv. However when massless fermions are present in the gauge
theory, the picture changes drastically. Due to the zero modes
of the Dirac operator in the topologically non-tr¥ial background,
the quantum tunnelling between classical vacua of different
topological charge is completelv suppressed., Therefore, in
supersymmetric Yang-Mills theorv, where we have maésless fer
mions, single instantons (or anti=-instantons) do not contribute
to the vacuum energyv. These cannot break supersymmetry and the
vacuum energy stavyat zero.

In ordinary QCD we are also interested on the problem of what

are the global symmetries preserved by the instanton. In the

presence of massless quarks the instanton effect can be repre



3.
sented in terms of an effective lagrangian that violates the
chiral U(1) invariance ané that can also provide = a mechanism
for the dvmamical breaking of the chiral part of the SU(NF)XSU(NA}
f £
symmetry group. Here the same analysés is applied to super

symmetri

(@]

gauge theory: from the computation of certain Green's
functions at short distances through a single instanton cal
I8
culation, we obtain a condencate which allows us to identify
the patterns of the spontaneous symmetry breaking of the glo_
bal symmetries of the original theorvy.,
For definiteness we concentrate on pure supersymmetric Yang-Mills
theory with SU(N) gauge group, where the gluino-gluino conden-
sate impliesthespontaneous breaking of the discrete ZQNrsym_
[¢]
metry dowvn to 22 .
However it has been clear that same degree of care must be taken
with instanton analysés in supersvmmetric theory. In many cases
instanton effects would appear to produce supersymmetric brea
king, even where such breaking is prevent by Witten's index
theorem. For example, the *t Hooft effective action , which des_
cribes instanton effects, only involves fermions. If this was
& complete representation of the instanton effect, then super_
. &
symmetrv would be manifestly broken. To recover supersymmetry
it is absolutely necessary to integrate over all collective

K
- R . . . .
coordinates. Since fixing the instanton size would violate
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supersymmetry, a supersvamstric gaure theorv cammot be thought
of as having only small instantons, This is a conseguence of

the conformal invariance of the theorv. There is no analogue

3

of this phenomenon in ordinarv QCD and this might indicate that

¢

dynamie. inherent to supersymmetric theories is gquite specific,

The outline of this thesis is the following:

In section T the notation is fixed and a class of Green's
functions suitable for instanton calculation is definite;

In section II instanton techniques are recalled and the dif
ferential instanton contribution to the vacuum energy is
computed. The{?-funetion for n-extended supersymmetric Yang-
Mills theory is found here from a purly “classical" conside_
rations.

In section III the computation of a - simplest n-point Green
Function contribuited by instanton is performed. The result is

not vanishing; the implication of it and comparison with the

QCD result are discussed,



I. INSTANTON CONTRIBUTED GREEN FUNCTIONS

By supersiymmetric QCD we will mean a supersymmetric theorv with

A

a SU(N) gauge group and with Nf flavours of guarks. The N,

I

o

.

guark flavours correspond to Nf chiral superfields Qal (a=1scee,N
i:w,ﬁ,;,Nf) in the N representation of the gauge group and

N, in the N representation, 6;1 (hicher and lower indices, a,b,
i,j, are meant to indicate that the field belongs, respectivelv,
to fundamental or its conjugate representation of the gauge
group~ or flavour symmetry group). In terms of component fields

— . ai -
the Nf fermionic quarks and antiquarks, W and Efai’ are

accompanied by scalar ‘partners Yﬁl and ﬁfai

@ = ¥ +yz 6 4 + 85 F the came for Q
&
= (1)
N . =. T ol ; Q
o _ '\« ] /‘a; ; ‘ 4 o r ‘ ¥ ¥ il
Yor®  Tay * V2 qbé‘ah Yooal

where o «=1,2 is a two valued spinorial index.

. A 2 . .
The gauge fields Ay (A=1;ese,N =1) are accompanied by gluinos

2]

A . — A
A s their fermionic partners. The strength tensor F,, and the

A
spinor A are embedded into the chiral superfield

=

I3

—ol ,

: : [ MY r \, Z_u 7)
Wo = i, B D, s B AT 2

. A, CAh Jar
where we have used the notation %¢=W£AT ; F o= %/Aw-—%fﬁﬁ+4ﬁﬁﬁrﬁgl

/V" ¥
The covariant derivative is defined as D, = 6@ + i {A A A,
SUMN) / 4

where ZA are the generators in the appropriate representation
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the superfiel V, in the Wess-Zumino gauge where we are working,

is given by

4, . Zd, M. 2 Tl -
Ve - Ol VA 8 0n e
In this gauge, when the lagrangian (3 ) is written in components,

it contains the usual gauge invariant kinetic: terms Ffor Ffermionic

and scalar quarks and for gluons and gluinos:
_ = DT N s v J ¥+ ype+rv pe
2z =1 T T B e d P4 Dy blm,“( 7 Dﬁ
ki 2 “ ()

there is also the Yukawa coupling

=~ * ~ T ook
ORI o SRV (5)

Jukawa
The lagrangian (3 ) is gauge invariant and supersymmetric;the

supersymmetry trdsformations for the gauge invariant fields are

o F,, = ”L[EG‘ADT*E-G\"’D/J]_GA-»:d>

2 MM » P
Jf‘) = 4 ED + E/W ‘g}mué‘ (é)
iD= é"sjﬁbﬂ,:} e 5.0, d

Classically this theory has an U(NE)LX U(Nf)RxU(1}rglobal'sym;
metrye. The U(NE)XU(Nf) symmetry is just like that of the usual

. . T . -
QCD corresponding to separated rotations of the @ and 0 fields.
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The U{1)% is an R-invariance, a symmetrv under which the com

ponents of a given superfield tré%form*differently. Its existence
is related to the presence of the massless gluinos, Under

this symmetry: ,
A — € A
. -1e
Q—" |

e ¥
—tol ¥
e Y

—7

In terms of superfields this tramsformation corresponds to
] Vol
WD —s o “WiBe”)
RY) Ve ,
0(9) N ek @ (@-6 > (same for Q)

Since the anticommuting paramehaﬁéis rotated under this

(%)

symmetry, it does not commte with supersymmetry,

At the quantum level, however, both the axial U(1) current

and the U(1),
( “

UA(1)x UZ(1) which is not affected by anomaly; it is denoted

are anomalous, but there is a_subgroup of

by U(1)x z,, " " m)
W(g)— ¢ WOt
~ l{"-LH‘NC 7 id‘
u(1): RO — e T @loe ) (8)
vt t”:ﬂB{ o vl
Jo)— e @(8@) |
) v oL B b e
or in components: A=y ¢ A | Yy ¢ &Z [Ty [

(same for ¥ andd ), and 2 N‘is the discrete subgroup of U (1)

2
given by & =2 k/2N in eq. (3 ).

The Green's functions which are possible candidates Ffor instan_



n

ton effects must satisfv the chirality selecsior = s Zwmrze

n

by the anomalous Uk{?} symnetry and must be alsc irvariarnt

1

under theé non anomalous 0(1) symmetry,
Also, in order to avoid complications associated sitr the
explicit brezking of supersymmetry due to gauge fixing terms
and ghosts, we shall consider gauge-invariant n=-point functions
only. Moreover, in the classical case supersvrmetr: transforma_
tions are also assumed to be accompanied bv same gauge trans
formations, ?hen from the tradfomration rules of the Ffields
under qx(1) and 6(1), we get
= i V \
){\A -+ V\j\[‘p N . (‘3)
“Npwg Hv\i + (4= Mr) hy =2
wvhere ng . n\{é "N aTe respectively the number of AA, ¥¥, éii
pairs appearing in the Green's Pfunctions that we want to cal
culate and v is the winding number.,

In particular, for the supersvmmetric Yang-Mills (Nf=0) a

candidate for a single instanton contribution is

G (X, 0 X, ) = <OIT(ANED Aacy) o AAR))loy  (10)

§

for the SU(N) gauge group.

Now we focalize on the propertv and on the computation of G.

In fact this Green's function has the remarkable property of
being space~time independent as a consequence of supersymmetry,

since it is made of lowest components of a chiral superfield,
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In fact, et o = A; ~w28 U, +9 F.  be chiral superfielcs,
i .
then
M (K . Y
. o7 Lo/ A A otxsY .o X X;O =
‘g;{“‘& 7y L O é‘i.l‘g(‘;{i,}“’ F AR Am( m )/ > (51K}

. . . ] j -
= 01T A b ay A”m)}w? =0

W

if the Ai commite at egual time and Q] = 0 frecall that{é,A;j =0),
This property allows us to compute Green's functions of this
type at short distances {xi - xjk<ff), %here the semiclassical
instanton approximation is reliable. In fact if at short dis_
tance we find for G(xq,.,c,xN) a non zero constant, then the
result will also be non zero at 1argelxi - xji separation
because of eq. (41), TIn section III we will see that in fact
& (¥,.., X/ ) in the instanton approximation is non zerc,
finite and constant. after the integration over the collective
coordinates, It is very interesting that in this case the in
tegration over the dilatation collective coordinate is, unlike
the tvpical QCD case, infrared convergent,
The constancy of G(Xjnyéc,XN) allows us to use the clustering
at large distances., The cluster decomposition leads tdacon”
densate <Aa> different from zero and finite. This of course
cannot be explained directly by instantons, since the one-
instanton contribution to <AA) is vanishing due to ZQN sym_

metry preserved by the instanton. (or in other terms, the fer:

mions are not enough:tc cancel the fermionic zero modes).
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In ref., L6&] Rossi and Venezianoc claim thet contributions
. y b . Da .
with W # 1 and/or other non-perturbative effécts are neaded

to have consistency With the clustering.

"hig

iz

[§2]
n

ituation is not so different from the massless (CD.

-

This theory has #n high symmetry: it is formallv invariant
under UV<Nf) p'e UA(NE) but the axial U(1) is broken by the
Adler-Bell=Jackiw anomaly and hence by instanton effects.
This is an explicit breaking since the instanton contribution
iﬁfm)éﬁﬂﬁ)is different from zerc already at finite

volume, The remaining symmetries are preserved unless sponta
necus breaking occurss so at finite volume we expect that
SU(NE) ple SU{NFS is unbroken. In order to see if the épontaneous
symmetry breaking of the axial part of SU(N) occurs, we have

to formulate the theory on a finite volume, then the symmetry
breaking is determined by the dependence of the correlation
Functions on the boundary conditions in the infinite volume
limite, This is the same as introducing an external field which
breaks the symmetry explicitely as a mass term and taking

the limit m —» O after the thermodynamical 1imit has been ta_

ken:

by i < Q?Qf>
W= V""'? # frev

wvhere <i§&izm is calculated in the perturbation theory,

An other possible procedure is to consider correlation functions
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vhich are different from zero alreadv at finite volunme,
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Ctherwise 1f one computes directly the condensate in a com

Pletelyv symmetric situation one gets zero and obviously it

remains zero also in the V—»® limit., This is due to the

fact that we are computing the expectation value of G 4 in

a state which is a mixture of the possible vacua of the theery,

Just like in a ferromagnetic system in a symmetrical situation

(s%{>=0, i.e., there is no spontaneous magnetization also

below the critical temperature. Even here in order to define

the spontaneous magnetization we have to follow a well defined
141

procedure such as, for example, introducing an external

magnetic field H
. =
W= livaa L -—I- < & 5, >J-=f
3 H~sot V—ran vV !
or, equivalently, without magnetic field, from the correlation
function
, .
W = G <5y SJ 70

for spins separated by distances going to infinity when Vv

goes to infinity,



I1I. INSTANTON MEASURE

o k4T

Following t'Hooft, " we compute the One-instanton contribution
to the effective 1lz granclan in a supersvmmetric Yang-Mille
theory (Nszﬂ, with SU(2) as e gauge group.

The classical solution
et

?amv (-2,
- x) =
%MH\- éﬁ('

z
‘2« [o- 2t + )" (1)

A= A =0
is a saddle point of the euclidean action: %M and ® are the
center and the size of the instanton; /?Q/M/are the t'Hooft
coefficients.
We consider the vacuum=-vacuum amplitude in the presence of

the instanton normalized by the same amplitdde in the absence

of it:

o - Shad o]
J(J%ﬂ )( :Ha (Z)

fgasydas (dao)..e S[LAS A ]

where the dots :gtand for the gauge-fixing term and the ghosts.
The one loop approximation to W is obtained in the same way
of non supersymmetric theories. Here we expand the action S

. . . inst

in the numerator around the classical minimum 5# = ;M ’

Y4 = 0 and S in the denominator around the normal vacuum

A/AzO, retaining terms which are almost gquadratic in the



luctuations and performing the resulting gaussian

.
<
u
t
<
=
Hy

es ¥ as a product of determinants of the

V.G,F,8 - o . . .
operators ‘1| "' "7 , describing the quantum fluctuations in
the classical solution, raised to variou powers depenging on

the statistic of the field involved, divided by the same ex_

()
pression using the operatcr din
=l s
2 v e 1A < Lo F L
» __,g?l/g?-{dz}tm'[f LM dtM wf?’ﬁs (3)
= 8 ' : TIoAF T
W= e MY | agme Ll &,

V, Gy F;, 8§ stand for vector, ghost, fermion and scalar res
pectivelv, The determinants can be computed bv solving the
corresponding eigenvalue eguations. It has been shown that
these equations reduce to the eigenvalue equation for the
quadratic Casimir of the total 0(5) group and the eigenvalues
can be computed using group theoretical methods. The determi
nants in eq. (3 ) are actually infinite and one must regula
rize them. S me of them also contain .zero modes which must

be carefully treated. A very interesting way of regularizing
the determinants in eq. (3 ) is the 3 - function regulari_
zation procedure. It consist of defining the generalized

§; - function associated with the operator II] as follows
(WQA i 25 . _ .
vhere ﬁm are the non-zero eigenvalues of‘nz ¢ Then one can

defines the following regularized formula for the determinant
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vwhere}A is the momentum scale subtraction point and ¢ 1is
the instanton size; ¥ is the the rumber ©of seroc modes and

the factor I

I = 1lim LT
&~ — imat
is a carefully defined limit over the product of the Zero

eigenvalues and is to be replaced by a suitable integration

over collective coordinates.
i N }
Computing §; and ?; for the operators (I}, one gets

7(1 y i3]

the following expression for W
3150 A

Ml e T et (4]
L

Where Sdc is the integral over the collective coordinates,

0
s

~ (%) ~ (V- 6) (¥}
\ e . - -\
Az 8- CMN TN, (T)+ 8 (1) -2N 8, (T
- &) = ()
~ ) (V=€) ~,(F) Lo (8) S
N TY+ N & +
Bz B ) -28 5 ()N B ()

g;(T) is the difference between the % ~function in the back_
ground instanton‘field and that in the vacuum; eight is the
number of bosonic zero-modes (five for the fluctuations around
the instanton obtained by infinitesimal traslations and dila_
tation on the classical solution; the remaining three zero

modes are due to the fluctuations of the ghost around the



vacuum and thev are a direct conseguence that the gauge con

dition A'A = 0 does not fix the gauge uniquely ).

fao

c(T) = = T(T+ 1)(2T+1) is the number of the zero eigenstates

(a3

of the fermionic 0pérator; T labels the representations of
the SU(2) gauge group.

‘bupersymretric Yang-Mills theory is the particular situation
where there is only one fermion which belongs to the adjoint
representation as thé gluon (T = 1), The real difference is
that here the spinor is a Wevl (or Majorana) spinor not
Dirac as in QCD.

In euclidean space a Weyl spinor A ,as well its hermitian
conjugate.4+, trasforms according to the same representation
of the Lorentz group and even the kinetic energy cannot be
constructed without introducing additional fields. To circum

vent this difficulty we will use the fermion doubling proce

—~—
-

dure” * . We complete the VWeyl spinor A performing a linear

change of variables:

4 ( T A
AL =18, |
o Z '
Aﬁ>
so0 as to obtain a four components Dirac spinor ?ﬁ‘:(’f*

then the fermion determinant is defined as L/
g ~ = Z.

—§A;<§ga;‘bﬂ%(\
W

?‘hwx\oh !

2 =%(@9Q>§§ e

where ?Mare the euzlidean Dirac matrices
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— (e 4

PR \ g:m ={ 4%, “I

v €= ) ;o=
T4 M \ 6;) E—;A = | TAN, E J

In the instanton calculation we obtain the fermion contri
bution first considering the spinor as a Dirac spinor: this
gives the usual ﬁf = 1 QCD fermion factor, then we have *o

extract the squere root of it. This amounts to make the re_

scaling ¥_— 1 N_. in eq. (5 ), (€)

F £
. A 14] |
As i1t waS'%shqwn‘by DiAdda ‘and Di Vecchia ™ 7, ‘the eigenvalue
equations for the Ffluctuations of the scalars, fermio#ns,
gluons have the same spectrum of non zero eigenvalues, if

the fields trasform according to the same representation of

the gauge groupi in this situaticn one gete:
-t ~7 \j v

( ()
§mfﬂ =2 §m('r> :“"m:z € ) (#)

L1
there is a factor two because the fermion eigenvalue are
twice degenerate with respect to the scalar. Also each vector
eigenvalue is four times degenerate, but two components
are killed by the Faddeev=-Popov ghost, so that only the two
physical components of the gauge field give actually a |
contribution. Inserting eqs. (€ ) and ( ? ) ineq. (5 ) we

obtain Ffor the supersymmetric Yang-Mills theory (stol T .=1)

£
B=0 A=8-2=5¢ (8)
therefore the coefficient of the term containing the subtrac_

tion point M is given only in terms of the zero modes of



partition fumnction becomes extremelv simple

(1 “3@@ é
W o= ?dgjg “é&g} (?)
S5

The collective coordinates that specify  the eight zero modes
associated with the traslational invariance, scale invariance
and the residual gauge freedom are the center, the size and
the gauge corientation of the instanton. For the four fermio_
nic zeroc modes we introduce anticommuting collective coordi

1
nates ﬁé s 23 (&,«=1,2), since they are associated

with the supersvmmetrv and superconformal invariance of the

theorv
‘ & 55 — ~ A
1 i ( .
5 - = T,y Epuv 3 '&
s //V M ﬁ; ' (}C’\
a S¢ ,1’5 _ '}k w— s
SA T 5 R ST EenT e e
where G:W, = ;’;‘6}. Sy ~ Sy é;',\) and € 1is the

parameter of the supersymmetry trasformation and (X_Z»E. is
the x-dependent parameter of the superconformal one., In fact
when these trasformations are applied to the classical

solution ’

e

(41)
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wve geit- z
3 _ , .
I 5 i ¥ Q\/“ Faud
g 55 L 2 - NS
Aw{/ = 7 s r w =2 [=
¢ [preiest] (12)
-; . .
= C 2 - fs H \ -3
o J (@) BT )
'\, (¥l = “‘"é e S ) -z //y‘)(é@ /%
= G =T e L& {
T x-S J
K

Sc S I N -
— L 17 < VU N B Y, =
s# ?DM R S TP L/J AT
/
& _‘.\ﬁf,/b ¥
FoA e RS =3 ALEEN - DT @ z
=2(¢ T -o € - € Jo Tp e TR
A
B M "7 —
1 L v o
- (;r)“ﬁn * = < [%J 9/5
= & D Fre'® Yy
since for a self-dual field QMEQVW=Q by Jacoby identitv.
&
. Y - . s
In the same way one can prove again that A satisfies
o

s,

= S
the Dirac operator: @?&Uvzi Also, from the QZ generators

we do not obtain new zero modes, in fact

J— .\.,”‘y% }Av’
e =0

=8

e
-
X 5

§

.
e *
;15
because of the self-duzlity of the instantor (as it
must be since the degeneration of the fermionic zero

modes is fixed by C(T=1) = 4):

Assembling all this considerations, the one instanton contri



rd
- c1s
%8 g T dfrds T2 ( 1 1 \
s f- " - iF o ¢ &l o 8 ) (o!""
W = N & 2 = ¢ ¢ éf,"“*} éf’O{, 2%
Sy H ) -

where ¥ is a numerical factor.
Let us mention that the integration over the fermionic col_
lective coordinates makes the vacuum energy exactly gzero,
according to the standard rules of integration over the
. . 2 2= 40 . . “

Grassmarnn variables Eé Poft = (it is a zero of the
fourth order that reflects the existence of four fermionic
zero modes).

4 . . . L]
The factor ¢  in eq. (13») regquirsé 8ame explanation, The
expression { 4 ) holds for normalized eigenfunctions. The
zerc modes obtained by supersymmetry tragformation, instead,
are proportional to 1/g and when we make the expansion of

the fermionic fields on unnormalized eigenfunction ¥the mea

sure for the functional integration becomes:

[de]be] —>T ddal

A Y Y
- - + o
LF‘SQQM %H %ﬁ%aw “
14
where | &/ is the norm of & _ . Then we get a factor g2 for

any fermionic zero mode. Since there are four of them and

since the result must be raised to power 1, the total factor
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As we have stressed before at one-loop order the power of
is determined bv the zero modes zlone, since in a supersym
metric theory the degensratior of fermionic and bosonic
fhen we can assume that the exact
cancellation between non zero modes holds for all orders of
perturbation theory so that the explicit /ﬁ-—dependence of
-(1) g i 1 5 3
W 1s giver exactly by the factor /A « This allows us to
find the exact Gell-Mann-Low function of the supersymmetric
(1 )[‘16]
Yang-Mills tkhecry from the one~instanton contribution to W
In fact ¢ and‘f& are not independent parameters: the renor
malizability of the theory implies that the explicit /M-
dependence may be absorbed in g, so that the observable

. . (1) .
guantities, like ¥ s are independent on/}* ; as usual the
renormalization group fixes the f“dependence of the coupling
constante.
Taking the deﬁlvatlve with respect to log/n of the logarithm

ey

wve get:

ez [6 1% fg £
O: - ;’:_3 M g - —— -+
¢ Plgu YA 39//‘

giving the Gell-Mann-Low function

. 23 (14)
Al = é“g%f}é

for the SU(2) supersymmetric Yang-Mills

. _ 69> _ (45
/Z’(?)“‘EE?TZ 1- %2

o 47t 2
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zero modes, In this case these numbers are:

Moo=
o] .

En
g
N
S

Vl;{:: 2 Nm

and the fA-dependence of the vacuum energv is given by the
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Reguiring that the explicit -dependence may be absorbed
1 I \;

in g we get:

"ﬂz - ——
(_,M\szm)s’ /q,('@,*}+iéxz /z)(@) o (4N N ) = O
pe 303,2»
then
o >= (h-4) N 23, ’ . (17)
? (qm)? i-(2-»y &

ez
vhich reproduces the vanishing of the (5-£unction for the

n=4 case, For n=2 it reduces a single term; this result is
in agreement with the explicit calculatioqfin Pact the two-
and three-loop contribution to-f%'vanisha For n=1 the eq. (/%)

. . 2 .
can be expressed as a series in g° in order to make a com_

parison with the perturbative calculation; they égeesonlv



up to the second term, but the other termc are rencrmali

zation scheme dependent., The formula (|% ) for /1 has
}

been -
~ . s Thm ™ o . 3 ol
also recently chbtained in Ref.[[*) by the axial and the

trace anomalv together with the Adler-Bardeen theoremn,

r
The instanton calculation is also supersymmetric, althouch

the instanton contribution to the vacuum energy (42 ) car be
considered as an effective interaction with Four fermion
legs and therefore it apparently violate supersymmetry,

This can be proved . ewplicitly from the change of the
collective coordinates under supersymmetry trasformations.
Fermionic and bosonic solutions of the classical equations
¢f motion can be embedded into a vector superfield, making
a traslation in the superspace of the ‘*initial? superfield
containing only the bosonic solution ( 11 ) and no Fermion

components -~
- HOD 4 T ‘
) P2 '“9@*5/”\/(% o 8 ec@q’v‘sﬁ)&_tf%

\/(%,f’, Of)=¢ e = Tt (13)
where Q and § are the generators of supersymmetric and
superconformal trasformation, respectively, and P is the
generator of traslations, Using the supersymmetric algebra,
we find that supersymmetry trasformations with parameters &
and € “on the instanton superfield induce, the following

change of the Zy © s O ”é'parameters
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Then the instanton measure that appears in W
I ’YZ_ !;2 g &=
) = é-’é dj‘. o @d/é

is invariant under this shift since
2'_" e ' =Y g
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Note that the invariance of the measure is due to a simul_
taneous change of ¢ and{% that make the product © >
invariant., Then the notion of an instanton of fixed size

. . (& .
cannot be supersymmetric, since the\ng) trapsformation

induces also a change Of.f e



III. TIRSTAKTON COMPUTATION OF GCREEN FIECTIONS

% N ! ~ si§ \‘
@( xy X, ) = <Ol T/ %(xi‘\. gAY :""{5"2\} 2 n&z) 110 (1)
[

»,

- Lt

3\ h ! N . » 1 -
where dn(¥iis a shorthand notation for & @A, A =) . We

expect this correlation function to be a constant, since

h

it is made of lowest components of the chiral superfiel
wé (see secty I ); it receives a contribution from the
one instanton sector since it contains all spinorial fields
necessary to eliminate the fermionic zero modes. we compute a
Green's function=made of the combination 3;A since it
stays unrenormalized. This can be shown in the background

[18]
field method. In this approach it is not necessary to re_
normalize the quantum fields (including the ghosts) since
therrenormalization constants cancel between propagator and
vertices so that there is only a wave function renormaliza.
tion for the background gauge field ( Z ) and a coupling
constant renormalization ( Zg Yo Also manifest background
gauge invariance is mantained at the quantum level, so that
the only counter term needed is the background field action

(for the n=1 supersymmetric Yang=Mills this action can be

written as as a full superspace integral so this counterterm
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is alloved | For exampie %;v is remormslizea by
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B = LN -2 A g2 7 A0

"ss

Tnis wili only take on the gauge~covariant form of = con_

stant time it

and the combination g?ﬁ stays unrenormalized., Then we
compute Green's functions made of this combination since
they are good candidates to obtain a renormalization group
invariant result. A result of this kind is not trivial in
fact in the opefator product expansion of the composite
operator gvk@ﬁgA%}other combinations will appear which may

destroy such property. From the instanton calculation, we

shall see that it does not -happen.

Using the instanton measure (Sect. II, (4%3) ), the explicit

calculation of ( 4 ) is

where the numerical factor is the same as one finds in

Ref. [13] for the pure SU(2) vYang-Mills theorv; Ass and
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and ;}sc are the fermionic zero modes, Theyv &iffer Ffrom

¥ - 2

those of the Sect., II of a factor defined so as to neormalize

lize them to 1/g |

z w 2 4
A =4 2 = ! Tz S« 7
* me  [Orewtel
} N\
(3)
Q. SC’ @f:ﬁ '\JA}':’/‘ k - ;
S vpws L o I e
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and the sum is over the possible permutatiorn: of theése
medes. We need then to compute gauge invariant composite

operator AGNAG) Ffor each pair of zero modes
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plus ancther similar term with }c7 — x2 ;

.

) 2V
g2t o) mm (FEaPE, 2
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there are also the permutation A &N A K14 Gy (F2)
. 33 .5
and the two other terms correspondlng to A —3 A
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which give an analogous contritation,

Putting evervthing together we find
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Using the integration rules cover Grassmann variables
2. YAV s
Jd'odp 67 p%s 2

the Green's function (2 ) becomes
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U 4 Je = €r, S .2
lr2e™d [d%dr . %% (cu) £
Cdlan)s 2 BT FF M
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The power of the subtraction point mass scale /ﬁ is the'
First coefficiert of the ﬁ-function, b,= 3N =6 .

When this factor is combine%&ith the classical action

exp -B?f?gg and with the factor g_4 » we obtain the

renormalization group invariant combination

ra
8T
- ,/gé - /\

6.3_%/’46' =

(A has not to be confused with 2 cutoff: it ie the in



completelv for the physical dimencion of ©(x

then the rest must be a dimencioniess function and, since
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the integration is not vanishing,
The integration over the instanton position can easily
; 4 . ."A~ z?“i
be evaluated by looking at ﬂ?\ 3 S as a

particle propagator and intrcducing the Fevnman parameters
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Then the final result is

ct

h

e inte

e

Of the previocus calculztion we want stress that

1)

gration over the € collective ccordinate is fallvy conver_

gent, with the most important contribution coming Ffrom

+J

instanton cize ffvfki'“xﬂ « This givesus some confi

dence gn the instanton calculation since it is perfectly

consistent bv it self; it respects

19}

upersvmmetry; is both
ultraviolet and infrared stable and stands true to any
order in perturbation theorv.

The result - ( # ) prove not only that the combination

is renormalization group invariant, but also that the
composite operator 9gd 94 &)  have this property . This
is a verv special result but not: so surprising since one
of the most striking features of supersymmetric field
theories is that they are less ultraviolet divergent that
their non-supersymmetric counterparts.

Following the general discussion given in Sect.I, when
the eqe {3 ) is combined with the cluster decomposition

at large distances lx1 - le——VvO it implies a non zero

finite expectation value for the order parameter
' /

T ¢ ®
l ’ (3 X \n
<«§n3r¥>= };%-'"7&4%@(3% (%)7] .
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& L .

metry preserved by instantons). ii“éé} £ 0 breaks
the 24 symﬁetry spontaneosly down o 22; this implies the
existence of two degeneﬁate vacua characterized by plus
or minus the value [ 8 } for the gluino condensate, This
degeneration is in agreement with the value of the

N
Wwitten's index " /A = N = 2. The instanton calculation
( %) being 24 invariant corresponds to averaging
over the two wvacua.
We want also étress that :the gluino condensate does not
imply the supersymmetry breaking . Veneziano and Yankie
lowicz  have argued that ZAAY # 0 can be embedded
in a supersymmetric effective description of the
supersymmetric Yang-Mills theory. This effective theory
is constywcted in terms of an effective chiral multiplet
whose components are gauge invariant composite operators.
since AR is the lowest component of this multiplet, it
Can never be obtained as a commutator of the supersymmetry

charge with same other components, then it can have non-

zero expectation value, without break supersymmetry.



32.

T penyapy e 2 o v L p - » : Y
How w= want mar¥e g comparison of the supersymmetric result

oric condensate of the non-supersymmetric

In QCD when we focus con the problem of chiral svmmetrv
- o o~

breaking, we look at correlaticon functions which are Finite,

- e A - . -
and ccupling & (M) . In the massive QCD the combina
tion W &% ¢ has a finite expectation value and
< T0 vy &, O W, (/)Y goes to zerc linearly with.

the masses; therefore we define

Ne
e | . < T v G tx) 4 e
o= < -{C?ﬁ(m}%‘vcmﬁ‘: e y
10 s () (io)

\;

in the limit ‘' —>» 0 .Eyoa)is expected to be dependent
only on the running coupling constant and it is the cor_
relation function which wve are interested, since it is
symmetryc under SU(N?) X SU(Nf). This correlation fun-
ction receives contribution from the one-instanton sector.
In the semiclassical instanton approximation it is given

by an integral over the instanton size and position of

the instanton measure multiplied by the product of the
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where %, is the zerc mode
3
by ' «2)
%ﬁ(#) = " i (}
T(‘_,\?'?é,’i"};/z
Lot
subtraction

point mass scale and b1 is the fir-

coefficient of the QCD ;%~function
I

5
/% = —~f£i_~ 64 . 2 bz
: (am)® )’ (%)
= {.l N~ 2
éi 2 sw Ve
, 1 (34 0~ 1BNAWN + =
., = 4 (34 W+ 5

However the integral over the instanton size cannot be
done, due to infrared divergences., A way to avoid these
divergences is to formulate the theory on a finite volume
as for example on a sphere of radius R. This makes the
computation possible and gives for . finite R a finite

resulit.

Let us briefly describe the actual computation Of the one=

instanton contribution to the eg. (40) on the sphere,

Reallv the computation on the sphere follows 4n the same

of the flat space one, except that the eigenvalues of the

vay
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quantum fluctuation operazToms gre Those computing
sphere oOf fixed radius R. ¥e can express this calculation
: 5 - - . - - N r
in terms of the flat one making a Wevl transformation of

the metric

z \ =~
.a - ‘!p/ dk’m \ Z a Y,
g =316) G T L xeant s

to a flat metric jﬁp = fu, together with a suitable

trasformation of the fields. Since the Wevl symmetry is

brcken by quantum effects, the Fflat instanton measure

b (uh TelF | kS
?na 3&)( T (/Me i 3
e .
Then E
Ne -4 -8%; 4y dr (g H) 4
(T EmOL) =g ¢ =
&
rest (2
b MT}@ J QEMN Ne ~37
gnris T ¢ f ["m CHRILH]
x € § T HOVLO T -

where %ﬁ, is the flat zeroc mode Lizﬁ. Then we introduce

a set of 0{(5) covariant parameters

Ao - syt
T =
(%‘+ 14k )

s (U rieart)

= — - R
(4 an)

1
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In terms of these variables the mesgurrs herameo
- &
[ . f o 1 p—
o 93] R N
_é - Zg¢ j____i,. o
v o e
€~ o
where z ig P— @
.21 —
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{C,,"Y’

8 4 — fl:"" “":; \:‘a' ! (L;.-..l\\f e (1w
e %QX’fv'ﬁwv o 560 = = = be=lilo? 222 (2]
por- 1 e [y W
o~ ) J &
-2
& » "‘7 Pl
To(x ) L) = z ;r-z-rr +1-2) 2T -6
Q_‘: \r) __,:3 2{?_4 H L3
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wherewve have chosen the position X, on a common great )
circle and the 6& parametrize these positions. Putting

everything together after same algebra, we find

N an -8z AN Ny
¢TL G o0 i 3 £ o T fd% (-2)" 4%
b

~
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T

LARNT ]
™
L&

T o

bo F(2) :N&s T
z ()V“'fxi Do de TL

™,
~
[4:)
e
[N——
-
™
p—g

wvhere

the integrand in eq. (|4 ) can be done numerically Ffor
fixed positions, for example chosing the f% equally

spaced on the circle, since it is slightly dependent on
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{ /.. %7 is the running coupling constant
G \
- ' H £ =
S vo ol (-2 le(fn s R) (15D
15 o ok, lelA, R+ 22 le (-2 15(Nos )
&z g R <7 ’
G

; . . . P .
and /EQLD is the momentum scale involved in the renormali
zation procedure which must be done in order to cure the

ultraviolet divergences,

In particular when Nf = N, b1 is equal to 3N and, at the
one loop order the R-dependence of 52 coming from eq. (I5)

N .
3 in eq. (14 ), so the result

cancels exactly the factor PR
becomes indepentent on R , i.e. in this case there are not

infrared divergenceSat the one-=loop order and the result

Ne | A 2N
T g g by = Fon ¥ R

remains the same also in the limit R -—% ™ , making pos_
sible a definition of the fermionic condensate as
Ne He.
o 21 .
Lddys |lm <M gy
27w /
However when we go at two loop order we have logarithmic
corrections coming from the substitution of the expression
of 52 at the two-loop order (45 ) in the classical term as
— =4N .
well as from the R-dependence of ¢ « Unlike the

supersymmetric case where these two contributions cancel
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znZ the gluino-gluino condensate is stable 2t all hicrer
orders corrections {(indeed it is exact), in this case thev

do not cancel and there is a dependence o©f the gquark

Ne N
~ T e d (x Tk o (R 7 "
¢ TL 2,600 = Radgrn A 198 Ages)
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