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§ 1. INTRODUCTION

Supersymmetry fj ] is the only non trivial extension of the
Poincaré invariance consistent with general requirements of re

lativistic quantum field theory [2 |. It comnects states with
different statistics or half-integral spin particles with in-

tegral spin particles.

ﬁ% IS
Supersymmetry generators ave spinorial charges (da , A

I

(dz:4/2j s whose algebra is chavracterized by the éolicwznw

anticommutation relation:

ip being the generator of space-time translation, the energy-

momentum four-vector. In a supersymmetric theory there can he

) 5 (4) . i . T
one or more supercharges g; i=1,...N {(generally N & 3

i

b vl

5o,
}w}? one speaks of N-extended supersymmetry.

Moreover the parameters of the transformations implemented

by the supersymmetry géne?atowg

space-time; in the former case we have to do with local super-

symmetry, in the latter one we have to do with global supers

There has been recently a growing interest in

as a framework where some long standing problems
t

‘particle physics might possibly find a solu

dard (gauge) theoretical viewpoint and observation, but rathe
in difficulties concerning the thecretical picture itselfl,
. ~ s e o oy 7 k Y . N . P
Standard SUBI X SUZ)XUM)  podel and grand unified

theories [3] contain a high number (~ 20) of undetermi

Eo

rameters. They do not provide an understanding of




of elementary particles and in particular of the existence of
three (or more) families of quarks and leptons. They ignore
gravity. Grand unified theories are affected by an additional
problem, called the hierarchy problem, related tc¢ the existen
ce of two widely separated mass scales in the theory: the grand
unification mass qu o~ 4@ e

SU3) x SU(2)Xx U{1) breaks into SUB)X U], , My 100 GV
Gr

and Unification do not provide an explanation of the origin

'S

of these two mass scales. Even worse, even if the scales are
put by hand intc the theory, this requires at any order of per
turbation theory an incredible and innatural adjustment of the
relevant parameters, which is technically unacceptable.

Can supersymmetry cure some of these troubles?

Since supersymmetry connects bosons witﬂ fermions and henc
the corresponding sectors in a supersymmetric gauge theory, one
may expect that this fact reduces the number of arbitrary para-
meters in the theory and puts some order in the particle spec-
trum. Actually this Dhope has not been realized (at least with

N=1) because for each known particle, the supersymmetric theory

o7

réquzh@% a partner of opposite statistics with the same quantum
numbers which unfortunately, cannot be identified among the particle
at disposal: so, generally new degrees of freedom come into a
upersymmetric theory.

Now come to The good points. One of the most appealing featur
of globally supersymmetric theories is their remarkable ultra-
violet behaviour [4~]B In N=1 supersymmetric theories, for instan
ce, a softening of the divergences originated by perturbation

theory occurs due to cancellation between fermion and hboson loops:

actually no quadratic divergences arise in perturbation theory



(with few expections).lLess renormalization constants are re-
quired with respect to the generic quantum field theory and
some parameters (tipically masses, scalar and Yukawa couplings)
receilve no renormalization (independent of a common wave func-
tion renormalization).

Ultraviolet properties of the extended supersymmetries are

even more remarkable

Y

ot
)

U

of the hierarchy problem finds a solu-

bt

The technical aspec

b

tion. Just because of the good renormalization properties of

g

]

" !v‘* i
supersymmetric theories, relations between masses such as ;W%‘mgg

¢

are stable against radiative corrections and, once they ave set

Ftd

at tree level (why this has to happen is still an open problem)
they hold true at any order of perturbatio§ theory.

Local version of supersymmetry {(or supergravity) {gq} provides
an appealing description of the gravitaticnal interaction and

s .

. . i 2 vy ] .
sre ambitious program N=8 supergravity makes an

]

with an even m

-~

n
attempt towards the unification of gravity with the other funda
mental interactions.

In spite of these promising features, no direct experimental
evidence exists that supersymmetry has something to do with par-

ticle physics. Scalars with the same quantum numbers of the known

fermions have not been discovered at present energies and this
indicates that if nature is described by a supersymmetric theory,
supersymmetry has to be broken. According to the oury atti
tude this has to happen spontaneously.

er th

At this point one may think thaaoat.eqerﬂ es much small

the Planck mass scal K/W%W V/C) GeV , gravity could be ne-




Then the possible models mugt,haveiﬂsi , that is only one su-

percharge. This follows from the fact that fo&i@?

i
m
v}
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®
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Qs
e
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O
o
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re available for fermions, which

traddiction with the experience. Morveover a hierarchycal global

o
N 7 s o §
(from N to N7 N Y ois

lps where local

a;'g?

metry 1s preferable. This is the origin of the interest

spontaneous breaking of Nz41 global supersymmetry,
main subject of this thesis.

It goes beyond the aim of this work ro review
of the various unified models based on N=1 sp
broken global supersymmetry f93} Anyway one must

3

of them run intc non minor difficulties. A mass

which holds at tree level, creates some problems

scalar supersymmetric paritners of quarks and lepte

tely high mass., In these models the breaking scales

- A i 5 T H . A E
symmetry ranges from F@ngngvw 100 ﬁﬁw TO{Wg-

(This is possible because the phenomenoclogical rel

£

which

tity, namely the mass splitting between a boson and

related by supersymmetry, does not depend only on !
with ?ﬂngfﬂW {

¢]
unwanted flavour-changing neutral currents, eca,.

~

8] suffer from seri

which work better seem to require
. T 'r‘ . . - o /‘\’)i
near to the Planck mass iPe .
This fact may induce to think that gravity can

A%
to physics even at energy scales much below ?Xfik

TS -

the

i

1




4

’\,l‘ . . “ - . [ . .
[ lps which tends to infinity have been taken 0] . An effective

B

low energy theory arises from this procedure. It has the struc

resymmetric tTheory plus explicit but soft

{D

ture of a globally sup

oot

supersymmetry breaking terms as last surviving af:
gravitational, interaction. This motivates the study of such

type of breaking 1] which is also discussed in the thesis.

The plan of the thesis 1s the following: the analysis restricts
to N=1 globally supersymmetric theories. ,
In § 2 some general properties (definitions and criteria) of

spontaneous supersymmetry breaking are reviewed.

In § 3 the spontaneous breaking of supersymmetry is studied

in models describing only particles of spin 0 and spin

Pt

o

In § 4 spontaneous supersymmelry breaking in gauge models is

Anvestigatﬁ'

In 8 5 some aspects of the ultraviolet behaviour

metric theories both with and without supersymmety
illustrated. Soft breaking of supersyvmmetry 1is also discussed.
iven to those properties of supersymmetri

Ty B o o e
Emphasis 1s

which do not depend on the choice of a particular model

ingtance: renormalization properties of supersymmetric

both in discussing the impossibility of breakin

ot

hrough higher order corrections and in anaiyzing

symmetry breaking; invariance of the superpotent

formation of the complexification Gr of the gauge

- a criterium for supersymmetry breaking in supevsymmetric

<

=
{1

0

511 these features are then exemplified in fwo models
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University Press, 1983. The formulae used most frequently are

collected in a final appendix.
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§ 2 GLNERAL FEATURES

In this paragraph we review some general results about Spon-
1

taneous supersymmetry breaking. These results are independent

to a certain extent, of the particular model one can consider.

2.1 DEFINITION OF SPONTANEOUS SUPERSYMMETRY BREAKING.

Supersymmetry is

spontaneously broken if there exists a
T

of theory W(L) with the property:

mmx

£ - — ‘
i o ", PN 7Y
Bx (] L) v > = U L
| GL Lol ~ Sl
- J / T
where {%Mq{%j is the supersymmetric curvent of the theory.
fﬂrmantgz
(i) ccludes the possibility that supersymmetry
oken through a non vanishing
iation of a composite field,
tainly interesting toc investigate. However
we shall not commilt ourselves with this poss
we retain the above definition.
{i1) Due to the spinorial character of the current f%ma{;
o
and the invariance of the vacuum under proper Lorents
formation, the field Y must have spin one half and so in the
i

above formula we can forget the commutator.



oo

(’\'"5 B
. . o~ ;
{(4iii) The supersymmetny charge CQ@ ~—Mjwfx éﬁyi%}
does not need in general to exist and make sense as an
operator.
However in the following we shall make repeatedly use of

expressions like

s YN
<\ 1 Qm{ kf?ﬁ "Bj / ecc,

which are to be understood as referring to corresponding
meaningfull expressions like

or gome other appropriate limit.

2.2 SPONTANEQUS SUPERSYMMETRY BREAKING AND VACUUM EXPECTATION

_—

YALUES OF AUXILIARY FIELDS.
Let us consider a theory involving chiral (scalar)
/ v‘&}

and vector superfields

A useful criterium for the spontanesous

of the theory can be derived looking at the susy transformation

law of spinor fields:

~ ST . - i—«m%i}i L SR

i G ¢ Q 4 Uv’} 1 e = e e G Al
4, %m @ g‘ A \\%}O{ S \i{:}:’w g-&! % i ¥ ,2 As WL J%’ ; « # &X‘ Ty
- Rt - 4 LA,



Taking vacuum expectation val

From the above 51008

oy

Supersymmetry is spontaneously broken i

ues

=2

We oo

O

auxiliary field of the theory acquires a non vanis hing vacuum
expectation value,

We recall that spontaneous break king of other symmet:
(internal or gauge,...) is characterized by a non vanighing
vacuum expectation value of physical scalar fields.

50 we expect that all the possibilities, (breaking of super-

breaking

take place.

SUPERSYMMETRIC EXTENSION

Spontaneous supersymmetry

presence of a massiess state
or dstino.

Sol

OF THE GOLDSTONE

breaking
of spin 3

[ Ea N

supersymmetyy is spontaneously broken. Then an
say an F field for definiteness, must have a
vacuum expectation valiue. From (3) we can write

o g T
vanisning

e

L

S



On the other hand making use of the local conservation of the
. A .
supersymmetric curvent ( O 3ﬁﬁi%)fﬁg )
we have ’
A R VRN =
L Yop 8, Ya(0) )=
,, 7

N {4 T PY N .ot R .\ .
Sy kﬁx(ﬁ! 0 €1)4%m}}%~&
7/

ﬁ/

. ( FRIN Ak S T 5 1 . I
P fdse 9T L 1 (0) ) = 2 €40<

or in another form:

U, q*(d% T bpp ) Yal0) )T € (Fio) .0

G >0

.n;i-
-

1 [ e - £ P T ; % / . e s 4 o A o o
o Tthe Two point function <5 gﬁ?[x}QEg%}> there must be a

which 1g referred to as The

st

o
5

S
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2.4% SPONTANEOUS SUPERSYMMETRY BREAKING AND VACUUM ENERGY
DENSITY

ltonian H

5..;
=
)..J .

In a N=1 globally rsymmetric theory the

%)

and the supercharges C}ﬁ are related by the following

2
H 1T Q. r
r o :.!,.,, ":)Q% ( 5
L o
which can be easily derived from supersymmetry algebra.

Since its appearance in the literature this relation gave
i £y

rise to a popular criterium for the spontaneous breaking of
supersymmetry.
The formal argument goes as follows: -

(5) tell us that the hamilteonian is a non-negative definite

Now suppose that a supersymmetric state exists, namely

with the p?speﬁtv:CQaMKE::C>ﬁ Then from (5} it imme-
PR 1 - %J 0 - - cimee 0 Sa s oot ot
diately follows that and, since H 1is non-negative defini
¢ . 3 ; E s “ e, O -
te, AL is the gpounc state of the theory. Clearly in this cass

supersymmetry is not spontaneously broken.

Vice versa suppose a supersymmetric state does not

supersymmetry is spontaneously broken (simply because

H A . . e a -, L , N A . N i S e
Hioy= O would 1mply<032fﬁﬁiﬂ)::Zmﬁ(lgo}ﬁ = () that is Ji0yzld,
o o
So we can state that:
(i) Supersymmetry is spontaneously broken if and only 1if & super-
gymmetric state does not exist;
and
(%) Through this section the Majorana version of supercharges

el
s
o
o0
]
oy



(ii) supersymmetry is spontaneously broken if and only 1

energy of the vacuum is positive.

In this respect supersymmetry is completely different from

ordinary symmetries. Spontaneous breakdown of the latters implies

i o~

the existence of

0]

gy than other, non

0

a supersymmetryi

One must say thatthe connection between the energy and the su-
persymmetric charges is still an open problem. Even if conclusion
(1) and (ii) above seem to be confirmed in most of the perturbatively d
they encounter some non minor difficulties to be set in a more pi-
gorous fashion. Let us briefly review some criticism.

Needless to say, if supersymmetry is good, relation (&) holds

true and the supersymmetry invariant vacuum has zero energy.

Jl

But suppose supersymmetry is spontanecusly broken. Then, ac-

cording to the authors of reference 351 the vacuum expectation

3
SO N e . e
value of the operator L. Wy (defined with a suitable limiting
=
procedure since the global charges <¥@ may not exist) diverges

as a volume. Since translation invariance requires finite

#

- W 7 . : A
energy, the operator 2 W, cannot converge to the generator

=4
of the time translation H. Therefore, in the case of spontanecus
supersymmetry breaking, relation (5) breaks down. So one cannot
- e . . . .4
use the spectrum of the hamiltonian to decide ity subersymmetry iz

spontaneously broken or not. Indeed the Lorentsz invariance of

_,
2
B
ot
»
N
ol
%w..
o
o
o
i

vacuum always requires a vanishing vacuum expectatic
the hamiltonian.
Also Lopuszanski ﬁ&} ¥

theory reaches the conc

broken the anticommutat




no more related to the energy-momentum vector.

On the other hand in most of N=1 global supersymmetric models

o

criteria (i) and (ii) works very well. As we shall see the tree

i
s

[
A

b T
LWL

(\

L

{

level scalar potential of a gauge invariant mod

. L R . Ty ) i
(scalar} superfields Wooand vector superfields \/ reads:

N Y
ey (t (L a Doy DYl
\/(Qf} P F 19 ‘*?} e L (“f} (R)
2 F;, . —Djﬁ D‘ﬁ“ )

- . i Lt L

where V = \%} and - ‘% are the
equations of motion of the auxiliary fields; having denoted by ¥
1

collectively, the physical scalar fields.

If susy 18 not spontaneously broke then none of the auxilia

vy fields I and ./ acquire a non vanishing vacuum expectation

vatue and so, at least at tree level, the minimum of V is zero.

\’D
A
-t

Conversely if supersymmetry is ”DOﬁtQDPCU“?/ broken, the:

, . £ %
Least one among the auxiliary fleldsgn andzp develops a non

vanishing vacuum expectation value and relation (6) shows that

i this case the minimum of V is greater 1h@z Zero .,

One possibility of explaining this remavkable property of per-

turbatively defined models is the following.

3

As suggested in reference 18] , most likely in the models de-~
fined by perturbation theory (like gauge invariant F"fiéiobai¢§
supersymmetric ones) what one is really working out is not the
hamiltonian H, meant as the generator o
but a functional which differs from H by s

So, even if, strictly speaking, the hami

vacuum expectation value, nevertheless 1

the particular form of the pot

o
n
®

modelds we can

at least at classical level if supersymmetfry is spontaneocusly



4.
§ 3. CHIRAL SCALAR SUPERFIELDS.

In this section we shall discuss the occurrence of sponta-

neous supersymmetry breaking in supersymmetric models describi

only particles of spin 0 and spin 2.

3.1 GENERALITIES.

h
o)
K
o3

The supersymmetric action
superfields <@L (w= .M can be written in the followi
way :

Az fdmd 0Pl | [end® §0) | [dedBf (0)

4 g

v interacting chiral (scalar)

(73

; | . . . e )
where %g@ﬁ 18 a function of thefﬁ& called superpotential. Renor-—

malizability requires %«O@) to be at most a cubyc polynomial:

»

§0) = a + APy 4 % iy .05 4 1 L G- 05 Pue

3&7
(m.. and g.. can always be taken completely symmetricl.
1] 17k y
In terms of component fields the action (7) can be thought

referring to the following lagrangian:

i
o
j;”f
O\
k4
—<
>
e
[
|
>
é&»
na
ok
1
A

.ff m~ 1 v I, z ~x'“ YRR
P TR wyy
% T{}‘ :\, ) ¥ «

+ a four divergence.

[ Re]

T
(&)

St



where the first line

hand side in (7).

does not contain

The tree level

correspond to

derivatives

~ s these can be eliminated from (9) through

+
A

NS oA | .
VIAAT) - Dy 2k
A \ o .
IRL  TAL
This scalar potential is non-negative. Some of the auxiliary
Fields [ acquire a non vanishing vacuum expactation value (
is supersymmetry is spontaneously broken) if and only if V at
minimum is positive {(see (10) and (11)), or equivalently if a
only if the system of equations:
L e %
© i 4
,,?_..i;—n ‘;:;@ { A= *’?}M, Yo
does not admit solutions,

o]

wd

3

.2 SPONTANEQOUS SYMMETRY

BREAKING

system (12) has solutions (it can
tions or a continuous infinity of

are massless

THROUGH

at tree level or in ot
wave a discrets number

of

15,

he first term on the right

B
[N

{
A

IS
o

St




o
fay

The following questions rise:
(1) can high order corrections remove the degeracy of minima ?
(ii) can high order corvections 1ift the absolute minimum of

the potential above zero so to induce spontaneous super-

gsymmetry breaking ?
The answer to these questions is no as can be seen in the

following way.
To any order of perturbation theory, the effective ‘action for
a supevrsymmetric theory involving only chiral (scalar) super-

t

fields, denoted collectively byi@ , has the form:

™ 4 - | 3 3 ) B
0,07} |3 (A dt e [dY0 Gl L)

o,
2.4

[
-

] ]17 .o : ) . e 3 R
.LO'{J»’?X,D"" iC@,ﬁi Asn, L (%LKQ}! ;,)& Q}('}f_&!tﬁ}mi

. S - 1 - a3

This result can be proved very easily in the context of a mani-

o

festly supersymmetric formulation of the Feynman rules for super

I )

We see that the integrand in (13) is local in

-

5

¥
" Y TN C ¥ 1*B
of a single ¥ ) and is integrated with a'v ., not &

»

We recover the effective potential from the effective action
by setting spinor fields and spacetime
(13). At this point the only {) survi

T s . . . -
F‘{F )components of chiral (antichiral’

*

-

AR i . .
vaf and B0 % . Now imagine to performe
23

4

The only terms in the integrand giving

those bilinear in F%, F since they onl
)

{:}‘“m ‘
7 U factor.

Since we are interested in the classical x~indepe

of the effective potential, let us consider the



functional obtain

ed
x—~independent fields

namely:

where h,. 15 a
P
pe S |

so, for

x-independent fields

the eff

with the above procedure to the

A,F [18]. It will be a bilinear

active ential has the form:

“‘ N g -
\\,/O%, —e oA g:;; . F %,{, {A} %',;J %; {A} .
w— P (CET A A%
+ E/L Fé, @v;é vt //’i/,&A / ‘

where :

If we
O
respact to i

2A

O 2V F A =S N ek = A
Oz 2V - P gy Fyivg T Fy 20
* ~ T

and:

<
o

[

+ theip

“ / i SN o
S ST NS N SR S
- x % -

, to any order of pertyrbation

o,

b

S

e
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A D,

is not spontaneously broken at the tree level, and let fk:fﬁ

/&g:ﬁﬁ be a solution of the tree level counterpart of (16}

It is clear that hg:%} 5 wa:kJ is also a solution of
equations (16).

Therefore:

(1) A possible vacuum at the tree approximation is a possible
vacuum to all order of perturbation theory,
Moreover observe that the consider solution still

\Y =0

crr0 S0, if we believe that vacuum energy is not negative
2

our solution is an absolute minimum of the effective potential

and we conclude that :

(ii) Supersymmetry remains unbroken to all orders of perturba-

P get
tion theory.

Few comments are in order:

=
oy
8]
s
0]
ot
‘...L
ot

“he positivity of the

®

ffective potential (which is
indeed crucial for the statement (ii)} ? As we have seen in a
previous section it seems difficult +o prove this property on
heless there are strong indications in its

favour for mode hation theory. Barly works

an effective

f >
o
o]
O
=
ol
o
bant
0

119,20,21 | find for a class of supersymmetric

-k

potential which, at the 1-loop approximation, vanishes at the

symmetric minima of the classical potential and ig complex

™~

elsewhere, complexity being interpreted as instability of the

[41e]
[
o]
e}
~+
[ N
O
o]
i
"
[

]
~*
m
!
-

3

2e
&
v

corrisponding field config



the complexity of the potential to some oversempliification of

§-.z.
f‘xr
r.}
o3
}_l
—
oo
s}
fot
=
I
3
8

the procedure followed for derivin

0g
L
~+
S,’lﬁ
o
&
=
[

di
carefully this procedure, obtains a 1 loop positive contribution

-

to the effective potential in a simple supersymmetric model.

We have seen that higher order corrections do not remove +he

very different physical properties, giving rise, for instance, to

Moreover this vacua can be connected by continuous transform

~rey N~ v, com aodun fn 3 e s oo
arise at tres level and

8]
2]

"
Q
"
(o
.

}
fot
0
£

tions in which case massie

C}

remain massless to any order of perturbation theory.
In all these respectsthe situation for supersymmetric models

fferent from the ordinary (non supersymmetric) ones,

i
( [}
k‘—’?
[
l...J 3

3.3 SPONTANEOUS SUPERSYMMETRY BREAKING AT TREE LEVEL.

We have seen tha

spontaneously broken is that this happens at tree level, since

higher order corrections cannot perturb a supersymmetric

Thus let us suppose that supersymmetry is spontaneous

at tree level which means that the system (12):

has no solutilons.



A number of interesting properties

spectrum of such a model can be derived on general [E8aletisy

Wi

N

Spontaneous supersymmetry breaki

iassless fermion {gol

=

a

for s

already seen that thisg is eral feat

an SU*JF“T"*C?V"THRG Yy,

-

o]

1s we are dealing with we can

v}

minimum of the scalar potential V

(11) the extremum condition gives:

’ M - 2—5 l o
fjiﬁ J wévﬁwmw | o O (19
Vmoa ~ A

J /A0 B’!"}\,g F\;}Aﬁf !A:W

2
i N
But, in two component language DAL A, A=A

is just the fermion mass matrix whic ch, according to (19), must

have a vanishing eigenvalue.

(1i) Spontaneous supewrsymmetry breaking is associated with the
presence of a massless complex scalar in the tree tevel spec
trum.

This is an interesting direct consequence of O'Raifeartaigh

, 8T a9 o ER e {E}ffi } . "y e

! lemma 12| as observed in reference 22, . Let us sketch the

proot

suppose only for simpliﬁify,AKzﬁ and recall the explicit
expression (8) of the superpotential,

Then condition (19) takes the form:

AL My = O
d

of the tree level

;.3

1.
th the
£
QX

e
NI

<

B



2

1.

*
with A;_#:C) (1) otherwise supersymmetry is not spontaneously

broken.
R i st )
OTRaifeartaigh 1°° lemma says that if

which the matrix mwj 1is zero, a necessary «
IE 3

ry condition for Ay — O

to be a local minimum of the scalar potential V ig:

- i .
Since T belongsto Ll

write:

2
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nimum we

From (20} and (21) we obtain:
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thus along the line ﬁxgzzé,AQ :

equal to its minimum value. This implies

complex scalar at tree level.

(iii) A general mass formula holds

o o ‘ ,
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where m_ is the mass of the {(real) phvsical particle of =zpin J
[u ks

1
and The sum is understood over all

w*MQ& is the subspace on
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Relation {(22) follows

and

of the boson {(M_}
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Therefore the trace of the square of the mass matrix M
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and defining
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F“é; = dm %Lé\A}
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e

where ﬂ

ig the unity 2x2 matr
Therefore:
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The trace of the square of the fermion mass matrix is:
A /\f’ ? PR
b Me = fy(AY §y (A)
comparing (24) and (27), formula (22) immediately follows.
Thig derivation doeg not exploit the spontaneocus supersymm
breaking and in fact, in theory with unbroken supersymmetry.,
lation (22) is trivially satisfied for each supermultiplet.

Here the main point is

that the

particles of a theory with spontaneously br
cannct be arbitrary but has to respect & pa
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3.4 O'RAIFEARTAIGH MODEL.

As an interesting exemplification of the properties stated

above, let us consider the OfRaifeartaigh model [mj, It con-

sists of three chiral scalar superfields f@o,g% ,CPZ ., with
E '
r-characters '
Mo — /3 ,Yb/ifjo "YLQ,:/? (28)

and the following discrete transformation law:

b — O
Cp‘l s _,m(pﬁ (29)
P — -

The most general superpotential giving rise to a renormalizable

model and invariant under R and (29) transformations is:
A 2.
A —a
%(‘4/0 - A “’rf)l (Pc- + M @4 CD?. + Szcbaq}% {30}

For simplicity we shall take real parametersfifw%} e, q .

(#) R-transformation on a scalar superfield (p{%ﬁ€3!@> is
defined as follows:

— R 2mad L g EE
P,0,8) —— o @)zﬂg,g G, 7 )

¥

The F-term of the product of several chiral superfields is R-in-

variant if and only if the sum of the R-characters is 1.



In the model defined by (30), A O  ,mM%0  imply
spontaneous breaking of supersymmetry at tree level.
In fact the system (12) ,EiL - Q reads:
VA
H
|

L

%o (\A) = /1 '%"% ’A‘:’ =0
%4 (;3‘\5 = v 'ﬁ"?, + 2% /A\o,‘&\q = O
7 @%J:: Wﬂ;%\q ii (3

<

which, for ;%#”3 and M # O is clearly incompatible.

The minima cof the scalar potential :

2

\/wfa+3i%?F%$MA2+Z%AOAJZ+?W%AA§ (3
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e
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oceur according to the following scheme:
. N .
A, In the region 5213/{ ; <m , the minima are:
{r/%Q oL Vv oany value
j ¥ (33)
4{ Ay =0
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) 2
- £3 v
B, In the region Z-,’A < “ g . the minima are:
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1 J o 'y
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{ 24q°
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(‘, A, = _ 23 Mo/

YL



- . ')/{> z ..
C. In the region ¢_% m the minima are:

Lad
(G
o

Let us concentrate for instance on the case A. We immediately
observe the continuous degeneracy of the minima of the tree level

potential. In this case:
(Fop = -4 .
F,>= ©

Fy= O

and the potential is constant on the plane:

v

%\,,;:; t {F.p te ¢

Ay
o
S

as ilhdeed we expect. (Degeneracy along (36) can be easily cheched
in cases B and C, too). Thus there must be a complex scalar, massiess

at tree level.

Let us consider the tree level mass spectrum. As easily recogni

zed expanding the scalar potential around one of The minima (33)

and retaining only the quadratic terms, the square of the scalar
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at the tree approximation.
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The spinor field
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since 1t

which develops a
supersymmetry.
With Majorana
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is massless

gpinocrs the fermion mass
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non vanishing vacuum expectation value, brea
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{Goldstino), as expected

foprm:

One question arisesabout the degeracy of minima of the tree

level potential: is the degeneracy unremovable a

oy
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A0

the

unbroken supersymmetry, or is it only a tree level phenomencn

which disappears once

the energy i

not, as we can
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of {Aoy= 4 s th
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{39) above.

higher order corrections are

S
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Since at tree level we can choose |y| arbitrarily

ken into

is worthwhile to point out that although



in this limit, the particle ;Aﬁhas a

the theory can have at tree level an
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breaking, shows one loop
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R-invariance [25

physical scalar fieldswhich do
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Hence one loop approximation for O
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30.

As far as higher order corrections *to the mass formula (22)
are concerned, they have been investigated in the O'Raifeartaigh
mode 1 Eiﬂy and although the mass formula is expected to receive

-

ase finite corrections, nevertheless it remains exact

.

in this

{

to first order in the supersymmetry breaking parameter A
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§ 4 SUPERSYMMETRIC GAUGE THEORIES

In this section we examine the occurence of spontanecus super

symmetry breaking in o

0]

oy

=

na

The relevant formulae are col

.1 GENERALITIES

ij/j
i
Let us indicate with Jfg that part of a lagrangian density o

which depends only on the scalar fields and moreover does not

contain derivatives of these. For a supersymmetric gauge theovry
\ 4

describing a vector supermultiplet V coupled to scalar super-

s Wi which transform according to a certain, in general

reducible, representation T of the gauge group G, we have:
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Some explanation is necessary. The gauge group G we have in min
is the product of several simple factors times several abelian (1)

factors. f(A) is again a cubic polynomial:

s oA ) A
FAL= AL AL L Loy A 4 5
) b :‘ZA é{ / ",‘) ij ("“

arve totally symmetric invariant TPnSQ?S with

o 6. { Ay# O only for the components of J} which are

For each simple factor of G, T are the generators of that
ntation according to which CﬁA +rransform .
A2 are the auxiliary fields of the vector supermultiplet associa
d the corresponding coupling constant.

Tor each U{1) factor of G Y $E>éﬂﬁiq have an analogous
3 Y e

\
-
meaning.
We finally observe that, unlike simple factors,

each abelian factor can contribute to @65} with a term of the
kind RD which is simul taneocusly supersymmetric and gauge invariant.
As we shall see,the main novelty of the supersymmetric gauge
theories with respect to the chiral ones is the presence of this
D~term which is a possible source of spontaneocus supersymmetry
breaking. M

and D (auxiliary) fields do not have kinetic tevrms and

i

As wusual

v
can be eliminated from d@gthrough their own equations of motion:

P
LA g

T o oA e s e,



So one obtaing the scalar potential of the theory:

/ HoaN +*
VAT A) = fA) L (A) +
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haclons
. (:?,‘_..nu &

I'he tree level scalar potential is non negative. Supersymmetry

,
-

is spontaneously broken if and only if some auxiliary field
develops a non vanishing vacuum expectation value and hence, at

tree approximation, if and only if the scalar potential is

tive at the minimum, which means that the system:

At T A - (41

Iy

e

T
k >
[
¢

RADIATIVE

s

.2 SPONTANEOUS SUPERSYMMETRY BREAKING THR
O

ONS 7

Let us begin by supposing that st

broken at tree level or, eguivalentl

sodutions.

As in the case of pure chiral supersymmetric

our discussion on a general result of perturbati

To any order cf perturbation theory the effective action for



3k,

a supersymmetric gauge theory has the form:
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with non-zero

and spacetime derivatives equal to

Now the main point
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a tree leve
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that the corrections of The sc
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least quadratic in the auxiliary fleld
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In the following we shall concentrate on this possibility
which is the only one for supersymmetry to be spontaneously

broken through radiative corrections.

q

Let us ask: which are the D fields which can possibly break

supersymmetry through the mechanism suggested above 7

Only those which are connected by a supesrgymmetry transfopr-

mation to a massless fermion, a possible candidate goldstino,

-

entire

Since supersymmetry is good at tree

in particular the g

fde

supermultiplet will be massless;
boson U, has to be massless and so the subgroup » of the
gauge group G, which is associlated (through a generator ! } to

this vector supermultiplet, must be unbroken in lowest order.

o~

. e o . .

The only D auxiliary fields which can cause supersymmetry

breaking are those related to unbroken (at lowest order) gauge
Lol L) Lo

subgroups.

kg

0
o
0
@
n

Now we distinguish two

5

(1) The gauge group G is semisimple (i.e. it does not contain

In this case the terms linear in D's generated by higher or-~

T
N " . ) - PR L
der corrections must have the following structure {Qﬁ: 1D ods
k .

associated to a generator T of the gauge group & then

multiplies scalar physical fields which are not singlet under the

Now, if T" is the generator of an unbroken subgroup of © - the

only case we are interested in - these physical
cannot develep a non vanishing vacuum expectation value, just

because they are non singlet with respect to an unbroken

D cannot acquire a non vanishing expectation value or,



[oW]
(82]

[
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in another way, the equations of motion of auxiliary fields
the extremum conditions of the effective potential ave not af-

fected by such a term.

In conclusion: if G is semisimple, then a term linear in D

v
o

generated by higher order correction cannot cause supersymmety

(i1} The gauge group G contains some U(1) factor (it is not

semisimple).

Let us consider the possibility of a term linear in D, the
auxiliary field of the vector multiplet associated to a U{1)

which we suppose unbroken.

N

This term may have the same structure of those considere
previously, in which case it will not modify a supersymmetric

classical situation.

FJ a
Ty

ase D is itself gauge invariant & new

&T«\
)
g
)
m
=
o0
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]
b
Y]
o
o
t
o
H w
w
(e}

bility shows up. Namely, that of a term of the form:

€D

( ¢ is some constant coefficient). This term can be present
already at classical level since it is supersymmetric and gauge

invariant (see eq., (40))and at that level may be a source of su-

persymmetry breaking as we shall see on a concrete example. In this

discusgsion we are supposing that it is not present in the classi-~
cal potential.

o

This term, originated by higher order corrections modifies
the equations of motion of the auxiliavy field D possibly causing
supersymmetry breaking. It happens That the classical super-

symmetric solutions of the equations of motion



o
~J

of the auxiliary fields and the extremum conditions are no more

solutions of the corresponding equations corrected by the new

Determ.

Thus the possibility arises that there are no supersymmetric

In reference ﬂ tailed study of the occurrence of a si-

milar D-term is performed in a unbroken U(1) gauge theovry. It

is shown that this kind of term cannot be generated in any or-
der of perturbation theory except at the one loop level. At this

level the graph giving rise to such a term is the following:

\'/ AN N @ \ T

Evaluating this graph one obtains :

v, (e (4B Vpeo05)
o ’

where Q_ 1s the U{1) charge of the chiral superfield

sum is extended over all chiral superfields.

From (47 ) we see that the coefficient is quadratically divergent

and proportional to Tr Y (Y is the generator of U(1) in the repre-

sentation according to which G&Jiransfﬂrmfg

{1

Thus in any theory with a U(1) factor in the gauge group this

D-term can be generated by one loop corrections even if it is not
present at tree level, unless it is forbidden by some symmeipy

{a discrete parity, for instance).
However, we observe that, in the case of grand unification when

our gauge group 6 containing a U({1l) factor is embedded in a simple



group G(”> (say an SU(N) or an SO(N) group), the U(1) generator

NN ETY .
Y becomes a genevrator of G . since all generators of & are

. t

traceless, Y is itself traceless and the corresponding D-term

In conclusion:

if 6 contains some U(1) factor, a quadratically divergent D-term
arises in perturbation theory. His contribution to the effective
potential is such that supersymmetry can spontaneously break even

if it is good at classical level. Models with grand unification

&N

at a higher energy scale or suitable discrete symmetries are pro-

tected against such an occurrence.

H.3 SPONTANEOUS SUPERSYMMETRY BREAKING AT TREE LEVEL.

Let us now investigate the possibility that in supersymmetric
gauge theories the supersymmetry is spontaneocusly broken at tree

level.

I na
<.
——
I
e
il
@]

J;\

admits no solution.

In this case, whatever can be of that part of the scalar po-

¥
byt

tential which originates from the gauge interaction (last two

lines in (43)), some auxiliary field r develops a non vanishing

ot

vacuum expectation value and supersymmetry ig spontaneously broken.
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2. Suppose that the system (48) admit

Is it possible for supersymmetry to be spontaneously broken through

the non-vanishing vacuum expectation value of a D auxiliary field?
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In other words: can the system

"
=g
(]
R

be inconsistent or incompatible with the equations f,(A)=07
i

Remarkably enough, in the case of gauge groups G not containing

U({1) factors, this cannot occur: if equations (48} have a solu-

tion A, then equations (48} together with the system (49) (without
the last line) admit a common solution A’ [18]. Let us briefly
sketch the proof (#) for this.

For definiteness consider a simple gauge group 6.

If the solution of eguations (48) is A=0, then this is also
the solution for the system (49) and nothing must be proved. Hence
suppose . A£D.
The following property of supersymmetric theories reveals
useful for our purpose:

the superpotential f{A) is invariant not only under the gauge

group G but also under the complex egteﬂgi@nfgb of

‘::S

rators but parameters which can take complex values) |

We this property fto find a new point A', obtainsd from A

0
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with a transformation of Gﬁ,? such that:

<
)
s
ft
{
Sy
?«} -
o
et
5]
8]
-
et
oy
]
O
%»}
o3
ot
i
m

L. PosAn .
On the other hand in A’ 5:(%; are still

~,
T
4
i
&
T
s,
[

f'x
e

(#} This proof is due to GF. SARTORI, private communicatil



It can also be expressed in the following way:

A =t (Ho)

i

with:

=3
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e G
{(we take hermitian generalors T with the

Since H(A) belongs to the Lie algebra.% of the Lie
can be diagonalized by means of a simila

zed by an element g of G
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Cn the other hand, as can be easily checked, for H'{A)

following expression holds:
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Since H'(A) is a diagonal element of

restricted to th

1

e diagonal elenments 1 ;
o] ~ "
basis in a Cartan subalgebra C of {%» { € 1s the dimension of

]
C I

\ < @, [ A - e J 2
- a}‘:/j.c /é{;\ ~ !/“if (56)
4 o= 0 d
[‘/‘
Let us now perform on f\% the following transformation of the
o
complexification <ﬁb of the gauge group G:
/
’ PR A
JA\ = c(4) /’“\C}
5 j
with: .
£
Ao R o )Q)” (‘”\éf
1Y ‘} . N
%C ) = exp o~ (57
{ sy 2 R
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where -1 are real parameters. From (56)
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and (57} we get
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below. Hence at the point A where it reaches its minimum value

e

(if necessary at infinite A ) we have: .

2 %M/Aa}" = 0O
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(at least as a 1imit).

Ll (A7)
vq /

Here [} g vanishes together with:
: 4

| AU
o . e \:}"
= E—_{A‘/%WT@A? j = C}

a,
as we had promised,

F
. A - . . .
The point f\% solves contemporarily eguations (48) and (49)
and we can conclude that supersymmetry is unbroken.

Supersymmetric gauge theories whose

auge

tors do noet share this property and., as ai




Let us summary the various possibilities of breaking spon-
taneously supersyvmmetry at tree level in a supersymmeiric gauge

“heory.

(13} 1f no U(1) factor is contained in the gauge group &, as we

have seen the only available mechanism 1n order

taneously® supersymmetry is that the system of e

admits no solutions. So to speak, thisg is & breaking a

ta O'Raifeartaigh.

Moreover in this case the mechanism requires the presence of
a singlet with respect to G among the fields A.. Otherwise both
the T and the D auxiliary fields would be guadratic in the A sc
lar fields (once expressed in terms of these) and A.=0 would

trivially solve equations (48) and

{49y,

(ii) if G contains some U{1) factor, all of the following mec!
1. system (48) has no solution;
2. system (49) has no sclution:
3. systems (48) and (49) are incompatible.
are in principle available to break spontaneously supeysymmetry
0 however that the situations 2. and 3. can only occur ir
the presence of some 1) factor: it is Just the k-term related
to this factor which is responsible of 2. and 3.
We shall see this in detail working out the Fayet-Iliopoulos
model.

anisms:



4 MASS FORMUL

In a large class of supersymmetric gauge theories with spon
taneously broken supersymmetry the following mass formula holds
at tree level {?}:

< 23 (5741 ~
=) (2J+x11my — O
b (5
N
where the sum ig extended over all the particles, now including
gauge bosons.

Let us refer for definitness to a U(1l) gauge group. Then the
condition which must be fullfilled for (58} to hold is that the
U(il)~charges of all chiral superfields add up to zero.

The proof of {(58) goes along the same lines as that of (22),
the corresponding, identical formula for the chiral case. One
has to compute the trace of the square of the mass matrices for
the spin 0, spin 4 and spin 1 sectors. At tree level these can
he vead from the action of the theory (see the appendix).

The square of the scalar mass matrix comes from the scalar
potential, which, in the U(1l) case is given by:
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where Wk 1s the U{1l)-charge of the field 7k and k comes from
Y
A
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the SN AT LR \ term of the action.
The square of the scalar mass matrix for complex fields is
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where the

potential.

¢

of /'\/‘ aL

(One must

5 L

particles,

-
i

:’/\/\ o

derivatives are taken at the minimum A=A of the scal
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From (59) and (60) one can easily caleculate

‘he square of the mass matrix for real scalar fields
emember that, in order to refer the result to real
one has to double the trace of (60)). We obtain:
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Converting Weyl spinors into Majorana ones; choosing a basis

for Dirac matrices such that:
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and defining the new matrices:

(63) reads
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where'ﬂ is the unity 2x2 matrix.

Therefore the square of the mass matrix for fermions is:
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The vector boson mass term is:

and so the masgs of the real vector field is:
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From (613, (70) and {72} it follows:
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So, in the U{1l)} case thm right-hand side of (58) is equal to
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zero if and only if the U{l)-charges of the superfields add

zevo. This is in particular true if there are no axial current

joa

in the theory since in this case charged chiral superfields
P

in pairg of opposite U(l)-charges: one

component while the other provides the conjugate of the right

handéd component tc a given Dirac spinor. L

If the gauge group G is non abelian the proof of (58) is qui
similar. The term which in the U(1) case contains the trace
the U(1)-charge now contains a combination of the traces of
generators T% of G in the representation according to
transform. So the vanishing of{%wygnow guarantees the

of (58,
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.5 THE FAYET-ILIOPOULOS MODEL.

. . .. . . TN . Taall
In this paragraph we describe the Fayet-Iliopoulos model ﬁzé

as an example of supersymmetric gauge theory with
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spontaneously broken. The gauge group & of the model ig Ul1) and
indeed the r@§ponsable of supersymmetyry breaking is the k-term

related to the U(1). This term produces an incompatibility
between equations (48) and (49) which admit only separate solu-
tions. Invariance of the superpotential under the complex exten-

sion of U(1) cannot be used to rotate away the D field at the

The model is discussed in various pregions of the space of
parameters where only supersymmetry is spontaneously broken or
both supersymmetry and the gauge symmetry break.

The mass formula (58) is esplicitly verified in these diffe-
vent "phases'. Also the Goldstino field is id tified. Another
interesting feature of supersymmetric gauge theories with spon-

taneously broken supersymmetry 18 presente

ed:
classical minima of the scalar potential which is typical of

{
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purely chiral models is here removed simply by the occ
the gauge interaction.
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I'he model describes two chiral superfields (s and (), of opposite

U(1) charges +e and ~e minimally coupled to a vector super fiel
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U(1) gauge transformations. The corresponding la

component fields, evaluated in the Wess-Zumino gauge, reads

(see formula A.18 of the appendix):

0
~ A A AV . g ‘
‘vA\, - AV L I o /\L &7 ’g}/u A + 7 D .

4 Z

3

7% s T ke s
. A!‘ D]K‘»\/g + fav) DA; + ,thju \%/;16} h\%)ﬂ‘ +

a mw..d 14 o Eﬁtﬂ
du Vo MY, 4+ Ty Fﬁ { :

A E

/ P —— ;
- i/ A4 . ALY s )
Leur L WEY A RE Y, L AT A
1 Z 2

"ﬁ‘/ ] B ﬁé.\! B '\%.\ ‘\
o fl\’? Y 12 “.;&{aa fl)’\\‘x }/Z“i,, + 2 {?’““%2‘ }AZ } +
2 -2 2z /
/ 1 Y '% £ #*
A€ gl f/'\‘»a) %; AE’? WE A/ﬁ /“h “+ A” A u"j?* % e
- = /

F

\ - - " / * 7
B - UMy {f%?f%Q% :

A

s

N

i
7
P



50.

Note the presence of the supersymmetric and gauge invariant

kD term.

from (75) one easily derives the equations of motion for the
auxiliary fields F F

F,, I', and D:

-
"
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_ DL (ATA-ATAL k20
2.
These equations can be substituted in (75)

giving rise
following scalar potential:
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can realized that

owing to the presence of
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away the D(A) term, since the only golution to FalA) = el
N - A A . . s .
is just Ay = A2z 0, which cannot be mapped in anything else.
Had we been in the non-abelian case, A=z0 would have also solv

D{AY=0, but the U(1} related k term makes this impossible.

Minimization of the scalar potential

The conditions for the extrema are:
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Let us concentrate on solutions (i) and (ii). A study of the

stability of the extrema (i) and (ii) leads to th

e following
conclusions:
The solution

i) 1s a local minimum of V

V for
Fhel vt
i;f;\m
toa |

The value of the scalar potential at (i) is:
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\/(4} g ”% QRJ

7

The solution (i1) which already requires :
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iz a leocal minimum in this region with
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Let us observe that in each of the regions considered here only

one minimum occurs. In purely chiral models the spontaneous

!.J *
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breaking of supersymmetry is accompained w
of degenerate minima which is removed only taking inte account
higher order corrvections. Here no such degeneracy takes place.
This is a common feature of supersymmetric gauge theories wi
spontaneously broken aupersymm&?fy¢ﬁgjﬁ When supersymmetry is
spontaneously broken the gauge interaction fixes unambigucusly

the vacuum expectation value of the scalar fieldsat tree level

Let us now discuss the particle spectrum of the theory in t

two cases in (i) and (1i).

(i2
N o o g - _— . . ’é‘k ﬂ -3 o
We have no shift of scalar fields since M=z Mg,z U at the

B ° - P o~ - i » -
minimum. Thevefore the vector field bﬁ remalns massless and
the U(1) unbroken. Only supersymmetry is spontanecusly broken

in this phase.
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the mass term for scalar is:
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So we have two complex scalar fields of masseg’ﬂkvrﬁﬁﬁiauuj?mﬁ;%a?a

or four real scalar fields, two of masses m% ke/2 and
‘ mé. ke/2 3
two of masses - 8= . The absence of degeneracy among

the minima reflects here in the absence of massless scalar

Fermion masses come from:
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setting: Y4 i T Ag - T
7z 2!

and converting Weyl spinors into Majorana ones (82) becomes:
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50 we have two Majorana spinors - each of them has four real

components - of mass é? .

~

Note that /i has zero mass. Indeed:
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SUSY

and taking vacuum expectation values we have:
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which identifies A as the Goldstino field.
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splitting of the masses among the components
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Nevertheless this splitting obeys

can be easily seen.
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Now the minimum of the scalar potential oc

with ¢

eVt {mzw@é\'}
PR 7/

where ¥ is taken to be real (otherwise we pa

with a gauge transformation). Since

supersymmetry and gauge symmetry to be spon

-
The mass term for the: vector field LJA

of the scalar fields and is given by:

- 3 - “
Thus the real field 1jp has a mass:
Ve

Therefore the U(1) spontaneously breaks.

for
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e mass formula (58),
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of supermultip
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1y we observe that supersymmetry breaking has induced a
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(92) can be put in a diagonal form:

- 7 /4 A
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fﬂﬁ . QLC}Q (o p 3”11. m? / v (91)

g - 4

and:
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50 we have one veal A Y AR ;o one complex
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scalar of mass 2™M f%ﬁ ; and one real scalar of mass VY €7 @

(A, +AL) AT

Note the occurrence of a massless real field. It corresponds to

Ypar

a Higgs particle eaten by the gauge boson Wjﬁ
of freedom for a massive wvector field.

to reach the cor-

rect number of degrees

The fermion mass term is:
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the Goldstone spinor as one
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5 ULTRAVIOLET BEHAVIQUR OF
BREAKING OF SUPER
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and, remarkably, some paran

theory receive no venormalization.

tributions which are bilinear auxiliars

3
i

potential do not receive any renormaliza
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or finite, independent of the wave function rencrmalization.

Observe, in particular that :

co - . . s .
(i) At of perturbation theory, no guadratic diver-
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which is proportional to the trace

In this case a quadratic divergence

P S ) e iy ey - - o = { R AR o R,
~appears in the theory, as we sow in (47} discussing

radiative

or not supersymmetry

thecries do not give

5.2 SOFT BREAKING OF SUPERSYMMETRY.

Recently there has been sc

‘his kind of breaking can

can correspond to The low energy

<ing of local supersy

phenomenological

spontanecus breaking of global supersymmetry.

& &

By definitilon an explicit breaking

to be. gsoft when it preserves the good

supersymmetric theories, namely when

guadratic divergences in perturbation theory.

Two questions arise:

1. In a general globally supersymmetric theory what explicit
breakings are soft 7
7. What are the counterterms required fo {logari

soft breaking term 7
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infinities induced by



In order to answer these questions, we

lowing procedure Lﬁ}

rom a supersymmetric +l
divergences) involving vector and o
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fashion,
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Since supersvmmetry cons:

superspace, one can break supersymmetry by
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Feynman rules in superspac
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will give rise to some divergences which
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zed, lowering again the degree of divergence of the
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After having extracted all these factors we

te the dimension of the integral included in
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to do with soft breaking terms we expect at most a dimensionless
logarithmic divergent integral.

Let us now list the allowedfléﬂ breaking terms together with
the induced counterterms (we shall not consider here divergences
corresponding to insertions of only spurion fields into vacuum
diagrams).

If we restrict momentarily ourselves to breaking terms made
of chiral and antichiral fields only we at soon realized that the
poseibilities are few. Integrated with Cy?@ , only, the combination
(qu) can give rise to soft divergences; the relevant spurion su-
perfields must have dimension zero. Integrated with d*0  the in-
teresting combinations are q>i and d)% multiplied by spurion
fields of dimensions 1 and 0 respectively.

The X -independent, dimension 0 and 1 syurion fields at our

disposal are:

7 272
_ .t d-o
%wﬁﬁ U;faﬁg ( )

) (1127
/Kz/ul,a (d=4)
(fx is some mass)
Hence allowed soft breaking terms are :
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Actually Zﬁgio is just the counterterm required to cancel

one of the infinities genevated by zxgi% sfor instance in

graph:
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¢/ \\f\\@+ q}%
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v A
50 we take as independent terms &01‘»“? 5 ﬁsiz and d 75{%

Let us briefly comment each of these terms.

1.

Zlgﬁq = Jé%@fhg' &QD:

v I,’s
where the expressicn of LB 4 1n terms of ccmponent fields is

obtained by making the E}~integration {see alsc (A.7) in the a

pendix).

the

&

Then a renormalization of the term itse.f is required as one

can understand by looking, for istance, at the following graph

and applying the above explained power couniing machinepry:
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But other counterterms are regquired as one can see by the

inspection of the following graphs:

U @*/’/ \¢ | Py o (1186)
e (D

oy ® \/
@k\\mmwuwﬂf/igi\/Lfv\J“\\f (117

Graph (116) reguires a counterterm of the kind:

U

AL ~ jdf@/\/\”\](@*@%‘) ~ NZM(A%A%} (118)

{M coming from the propagators <Qﬂ§> and <¢ﬁfpf> )

Graph (117) requires a counterterm like:
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(the combination]> \W; being present because of gauge invarian-
ce}

2.
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ANV . . .
AXdﬁ‘generates the new divergence corresponding to the diagram:

0 ot .
/K £ @ w§~ £\1,é.
NS
which requires as counterterm:
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New divergences and corresponding counterterms can be read off

the following graphs:
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which induces:
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which induces:
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which induces:

AL - (#0497 OO~ e ATA

/

The analysis for soft breaking terms containing vector super-—

(123

R—y

(124)

fields goes along the same line as described above and leads to

these. conclusions: the following soft breaking term is allowed:
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(It 1s a mass terms for the gaugino/{ ). The new (logarithmic)

divergences which originates from this term are of the same type
i i * AL

as those induced by the term vy

Thus the required counterterms are (122), (123), {(12u) and (125)

This concludes our discussion on soft breaking terms. We want

end this section with an example of a term which explicitly break
5

supersymmetry but is not soft. A mass term for the

a chiral multiplet q} provides such an example:

AL - [de ;98 (D PID.D)

2% -ch/d
b W

The Feynman rule in superspace for this vertex consists in six

. ~ . . . .
factors oflll,y thus leading to quadratic divergences,

o
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APPENDIX:
SUPERSYMMETRIC GAUGE THEORIES

1. ABELIAN CASE

Consider a set of chiral (scalar) superfields Q}K(xieﬁﬁ)
together with a vector superfield \/(1,9,9) . By definition

they satisfy the relations:

Dy Ow =0 : (A.1)
AVARY (A.2)

Ilijlk are the spinorial covariant derivatives, whose expression

in the so-called vector realization is given by:

D= P+ i 64087 (A.3)

—_— A
j)a S PRy v, 6@agﬁ (A %)

—

/
Fundamental algebraic relations between E)g and D's  are:

(85
ot

{D« /F.D?E ::{Ba j:ﬁ(«)} =0 o (A

{Dg ;D;,(} =~ 24 04 (A.6)

The expansions of the solutions of constraints (A.1} and (A.2)

/
in powers of @55 look like:

-3
Qs

L0662 . N — (A
Do = e " (A +@ e +00Fk) ‘

I TR
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where/x& s W& 3F¢ ,Tjk ;%-,ID are functions of A alone, called

component fields.

U{1) gauge transformations on ng and \d are defined by:

¢ __Lt&/\ d)

\// \/+ Ju(/\_“z/\f>

i

(a.10)

t&,is the U(1) charge of d}& 5 /\ is a chiral scalar superfield.
A gduge exists, the Wess-Zumino gauge, where the terms indicated

by dots in (A.8) vanish.

The most general renormalizable action involving these superfields
and invariant under the U(1) gauge transformations (A.9), (A.10),

as well as under N=1 global supersymmetry is given by:
A::ﬁWM*‘AG*!Ac%“AFI (A.11)

with :

P )

Mo = 2 W5 dBWW 4 [de DWW :

-4—:* J [}‘A -) \A~c»§.2}

Ao - [dmde OF =V,

(A 13
J (A.13)

A
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- dh T (0) 4 hc
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{

/’\CI —~ nyx 49 2 &\ (A.15)
here:

NV; ~ _ A Tiztb\Jh (A.16)

is the field strength;
bﬁ@), the superpotential, is forced by renormalizability to be

at most a cuby polynomial:

{3((0 g+ 4.0 +~~— A(}CD @ 1 %"ék@i@(}@% (A.17)

In the Wess-Zumino gauge, the action (A.11) can be thought as re
ferring to the following lagrangian density for the component

fields:
L “J UMY A6 %A 1 D
2
A\,sg D?A\& v;m;‘v?pgjk, 6)#{{/,&, + F,@Q*FQ +

HWM(. G 57V ,_f,eAw Ak _ z}i@.ﬂi)/’\w%

(A.18)

i
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ta (A d Y - Al AW), te DASAL
i |

t,g& U’“A /\;ﬂ N

%

4
4
» B | N
L R 4 L (A) i) o (AT RT %5;,; (A) Wy
+ 2D

+ a four divergence.



here:

U/\,u — 3, Uy _ v U, (A.19)

In discussing the Fayet-Iliopoulos model we have taken 'tquﬁu@
and J‘Cz:wfrl "

In discussing the general feature of a gauge supersymmetric
theory - formulae (40) to (49) in the text - we have extracted
from t&, the U(1) gauge coupling constant:y{by defining the U(1)

generator \{ in the following way:

9y Y = j?: OL:C?g (e, tow) (A.20)

2. NON ABELIAN CASE

Let G be a compact simple gauge group. Gauge transformations
on a multiplet of chiral (scalar) superfields QDE {(bkj and on

¢ - Q@
the multiplet of vector superfields {\/ } are now given by:

/ A /\
@ = L d @ (A.21)

29V’

L, -

Lt a
Q,&Z N :»_c;\f w%’/\

e 2 (A.22)
here g is the gauge coupling constant;

,//\ - /\GL T (A.23)

a,
where *r are the generators of G in the representation according
to which the supermultiplet (D transforms. They are propely norma

lized:
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tw T T 7 - % ¢ (A.21)

s
_/\ is a set of chiral scalar superfields:

\[ : “\/““T% (A.25)

The most general renormalizable action involving these super-
fields and invariant under G as well as under N=1 global super-

symmetry, is given by:

/A\ = AYM + Ae« t Ac “*‘?6)

with: | \
A M(/Jd‘%cdﬁ@\/\/\/\/j»fcf'xdg@ W@)
4%% \ | (A.27)
oV
Ag = ji"’xdq'@ @+@,23 0 (A.28)
Ac = [dadd (@) e (8.29)
here

g |
Do (A.30)

is the field strength; %Uﬁ) is the G-invariant superpotential
(see (A.17)).
In the Wess-Zumino gauge, the lagrangian density giving rise

to the action (A.286) reads:
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Cﬁ _ i fjjaﬂ\/fv—a/uu 3 ,‘{, /{ 64,09/0 /}V . %D»’VDQ

4

Jay fTT AT AT
2
+ A,;j A, + 4 (%@Q)@“%ﬂ + E;f Fr v

L q VL WEr Ty
5 " (A.31)

P (ATTO WA T Y TOA) «
u%wﬂ(/x\“‘TQQMA» 2, AT A )+
- ’82’7}’“ v, ATTTYVA 4 %Da ATT AL

+ %UME,% b (A vy o kf(k)ﬁ*__ %%;?(A)“%qj; +

+ a four divergence

with:

. abe o c :
) = 2.V v _ EV‘Lri'%'é%,% qj’ﬁ vy (A.32)

Q
/IJV
Observe the absence of the Fayet-Iliopoulos term (A.15) in the

non-abelian case.
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