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I. Introduction

Abcut 60 years ago Kaluza made an attempt to unify gra-
vitation and electromagnetism by introducing the 5-dimensio-
nal space-time with the additional dimension taken to be
a circle with a very small radius. In this way one can obtain
the effective . 4—dimensional theory in which U{) gauge field
is present. In a very similar way one can get an arbitrary
nonAbelian gauge thecry - just by enlarging a space-time

by additional compact épace on which Killing vectors act

f-41.

During last three years Kaluza-Klein type theories have
been a subject of a growing: interest since they represent
the hope for unifying all the known interactions in a unique
theory. This interest is connected with an idea of spontane-
ous compactifications which was put forward by Cremner,
Scherk, Horvath and Palla tSl , and with a construction of
supersymmetric models in more then four dimensions -~ espe-
cially D=11 supergravity. In what follows we will not dis -
cuss supergravity theories. We only want to mension an inte-
resting paper written by Witten [6] in which he observed
remarkable feature of number eleven which is simultaneously
the upper bound for supergravity theories and the lower
bound for models in which SUBxSURKU{) can be realized as
a gauge symmetry. & lot of authors analyzed in detail simi-

lar models (e.g. seven-sphere compactification) [7]

If we want to use a mechanism of spontaneous compacti-
fication and if we want to get a more interesting topology
of the compact space { neither N-torus nor K3 [4] ), we
must introduce at a very begining some matter fields. There

are at least two possibilities: either to start from super-



gravity theories, the best known example of which (Del1l)
containsg three index totally antisymmetric field, or to

start from Einstein-Yang-Mills theory. The second possibili-
ty at a first sight seems to be in contradiction with the
original Kaluza-Klein idea, but it has its own very impor-
tant advanteges: there is no cosmological constant problem
and one can get massless chiral fermions in complex represen-
tations of gauge groups (Witten.ﬁA] showed that in purely

Kaluza-Klein theories it is impossible).

We say that spontaneous compactification occcurs if some
theory in D=4+N dimensions has a solution of equations of
motion which factorizes the space-time into MAXBN where B
is a compact space and M4 is a Minkowski space or, as in
supergravity theories an anti-deSitter space. We don*t con-
sider a possible dynamical mechanism which could be respon-
sible for a compactification. Our interest is concentrated
on an effective theory which results from calculating fluctu-
ations arocund the backpground . solution. First of all
we are interested whether the effsctive theory is classically
stable ie whether there are no ghosts and tachyons in the

mass spectrum. A semiclassical stability is dissusséed in ﬂ9]-

The classical stability was for the first time investi-
gated by Randjbar-Daemi, Salam and Strathdee [8] who made use
of harmonic expansion technique developed by Salam and Strath-
dee [21 . It is also a basis for calculations presented in

this report.

The problem of stability is not yet generally solved.
A list of models which were investigated is not long and in
all of them a compact space B is taken to be a N-sphere. The

first such model was D=6 dimensional Einstein-Maxwell theory



which compactify to 52, « A background soclution for sM¥ax-

well field was taken as a magnetic monopole configuraibn ({5].
It was shawn that the effective theory was stable and fe
massless modes were shawn to coreespond to a gravitonad
SUPxUQ) gauge bosons,., Later the same authors discovereithat
if a starting point was Einstéin—Yang—Mills SUB) theorw then
stability could be lostdue to formation of tachons (9.

The next stable model to be found was D:8 dimensional En-
stein-Yang-Mills SUQ) theory with l-instanton configurasion.
f10] . Recently Schellekens made an attempt to formulaizsome
general conclusions for a class of similar models @l,ﬁ] -
but again only for compactification to spheres. Firstiyhe
investigated the coqactification to N-spheres of Einstdn-
Yang-Mills SOQN) systems with standart background solutim for
S0 Yang~-Mills fields egual éo the .connection 1-form maSN
%2,13}. His conclusion is that all such models except ¥om
W=3 are stable. Secondly he considered a compactificai®dn to
a homogeneous space G/H with H embedded in a gauge grm K.
Schellekens obtained a classification of all the stabls

¥ ooy .

We see that there are no well defined rules for mmstruc-

models for which G/H=S

ting stable Kaluza-Klein theories. However the chancesare

maximalized when we take K as equal to H (or a subgromof H)
and a background solution for X gauge fields to be toplogi-
cally nontrivial. These two conditions are fulfilled Ima mo-
del which will be discussed in this report: SUB&UQ)YaEQMills
fields plus gravitation in D=10 dimensions cogpactify # CPRE)

taken as SUBYSU@KUQ). The answer for stability questiomis po-



sitive. It is verified thét the massless modes in D=4 di-
mensional spectrum correspond to graviton and SUdxUQ) gauge
fields, Moreover the effective SU@)coupling constant is c¢al-
culated.

If we want to get a‘realistic D=4 dimensional theory
from some Kaluza-Klein model one of the main obstacles is
connected with fermions which should appear as zero modes
and correspond to complex representations of SUBkSURKUQ) .
There is a general theorem [14] that in the absence of ele-
mentary gauge fields Dirac and Rarita-Schwinger operators
on compact homogeneous spaces cannct have zero modes in com-
plex representations of a gauge group. Also in any case a
number of dimensions must be even. So the theories of a type
which will be discussed;have, due to topological properties
of the background, remarkable advantage. In this report we
don't introduce fermions since we are interested mostly in a
stability problem. But an important motivation to investigate
this particular model is connected with fermions. Witten [14]
showed that the simplest anomaly free model is O(6) theory in
D=10 dimensions. SUBKUQ} can be embedded in O{6) and one of
possible compactification is to CP{).

The report is organized as follows: In section II we
introduce notation and try to describe a logic of all the
calculation techniques involved. In the section III we decribe
a geometric construction which enable us to get a very conve-
nient background solution. In the section IV we discuss
main steps of calculations and analize the particle§ spec-—

trum.



IT. How the garticles‘snectggm is calculated

The starting point is a gravitation and SUBxUL gauge

fields in D=1€© dimensions with a cosmological constant A

= 10 _ani? & iz **‘-»E e - s y (1)
g = ~xﬂ.gii -2) (*; * 4ol o B * ad 'Fm};e )

We introduce an artificial constantfin order that gauge

. S T % . . . .
fields and constants w=w,e,4 have usual dimensionalities
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e and g are U{l) and SUQB) coupling constants respectively.

%ﬂw are SUB)structure constants, they are taken to be
totally antisymmetric gtk =1, ¥
#N,.. run from O to 3 and from 5 to 10 - they are world in-
aices
a,a .. run from 0 to 3 and from 5 to 10 - they are orthonor-
%al frame indices
Az(a,&) a run from 0 to 3
o run from 5 to 10
2”: (::,%r)
Equations of motion are:
\ *‘L
Ruw = T 9, R = -3 C- >3 ‘MNB
where .- i;_ (3.“ \'5...‘ - L oa, %m.e’u) R

‘ .y | (2)
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The first point is to find a solution of equations of mo-
tion which inducesspontaneous compactification. We want the
D=10 dimensional spacetime to factorize into M4 x CPQB) where M4
is a Minkowskil space and CP3)is a homogeneous space
CP(3) = SU¥) /su3xUQ) . (CPR).is a set of directions in 4-dimen-
sional complex space ie. is a set of points (z,x,y,w) with
equivalence relation (z,x,y;w) =(az,ax,ay,aw) for every
a¢C -fo}] . It is easy to see that SU4) acts on CP@) transitiv-
ly and that stability group of a point (z,0,0,0) is SUBKWL .
Let us remark also that CPQ@) can also be viewed as other homo-
geneous spaces like eg. SOBYSOExUR) )

Let us introduce SUW) algebra generators QA-Qﬂq...,IS
with totally antisymmetric structure constants e;;g such
that T Rz®z = - Jap

Let us also choose SU@xU1) subalgebra

%Qé, Q‘ri = iQ;} :at,...,?,\f

We divide all the SUW generators into two sets

Q31 = (@l v fazl o= 3,19

They have the following properties:

Tog, egl= Cgzp ©y (CPB)is reductive)

Tauw @l = Cuy @5 (cPB) is symmetric )



For such spaces it is easy to find a so called standart
solution of the eguations of motion (2) (2,13,163 . We need to
construct coset representatives ie functions L:G/H-»G with
a property = L:idG/H where W is a projection G -=»G/H.

More details of the construction will be given in the
section III, For a moment it is only important to know that
symmetry properties induce the embedding of the H group in
SO group (in our case SUEXUJ) & SOE) ).

Having the backgroud solution we can construct the effec-
+ive D=4 dimensional theory by expanding all the fields
around their background values and collecting bilinear terms

in the action.

We put

%MM = QHN + }C..L‘H'J
: - . (4)

A: = AHD + wwa

E’H = EH - VH

In orthonormal basis our bilinear action has now the

following form:

3 i
A= a gd‘% % T3 v;\"nﬁvc_\",\; P Yebana vc““m;° I‘ka\"msve,"'cc_‘

\
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T s N o.,i- % -3 ) o.;l- \'n‘& WA (7Y

i _ .
e Cave mTv) (B bne - LR bg,)

+ B (g.w s _o Py [ o —
A - W & - A &
Bt « €A » L LT 9 ;q; \"Tse§

- L 'y - — sl .
_L\nms‘qc,a (QAC.@,Q et $AC(§$° - = F:(aeg) E




Now we make use of the background sociution {details in
‘the secticn ITI), we explore SURBKUY) embedding in S0F) and
choose & light cone gauge. After all this is done we arrive
at the bilinear action in which all the fields belong to

some irreducible SUBKUQ) representation.

J" = S&g% g' é e ('11‘71) bge * ‘2 Leg (A% 2 0% 000 ‘:—f(""ﬂ') Lo
‘li\"-"s (a‘&ﬂ‘-m‘~§m"' C-v1) Wi + \Aé.;_ (.,’1*91-,%7. ,’L‘a‘v
v g by (et vﬁ} P ® ,;;t Vi (Rleotyv ,,j;t Wovi (319 wip
PEMETTE S Gy g (ot - 2ty
TR we (P g+ 2w (Aot e bt

& L+ .
g e T i) W b

Cogr V5 Wise - b VW, + by, D W

s Mo vi - bV W 1

LA T
+ L W .

g v (Vouwiaopwgy - 3 Bes (Uowg woi0) -

(6)
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‘ .
Y e (T -viuny Y

4+
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A
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T (v vy ) w wie (9v - T wg)
- % vy (Zuvg -ve Vf))
(14#3

Qﬂ V., *\dvgy-g

Indices j,k run 1,2

Indices r,r run 1,2,3

‘s T is a free parameter in the theory. It has a range

(O 3/9] and its appearence will be discussed in the next sec-
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2 is a U{l) magnetic monopole number on CPB}, which values are
restricted to be 3n/4 where n is arbitrary integer;

wa is the inverse of a lenght scale on CP@3).

The transformation properties of fields present in (6)

are the following:

Vs B, Y transform like EO
HO‘V)VVJWV _3_1
o
bie, Vi, wy 37,
- -
Wivi, Wivi ‘ 8,
by 5,
Yok 6*2
Wy 6_,
Weg é?
Wk 15,
Woig léfl

These are all the SUBKUQ) representations present. Accor-
ding to the general rule [2] we can expand all the fields in
series of harmonics on CP@). Expansions will contain all the
irreducible SUY) representations equal to a given SUBKUL) re-
presentation on a restriction to it. In order to find all
such SUWY) representations in a systematic way Gelfand-Zetlin

notation is very useful [17] . In this notation SU@)represen—

tations are described by four integers (ml,mg,mﬁ,md) such
that m,» m, 3 m;» m,and a representation (m1+k,m2+k,m3+k,

m_ +k) is equivalent to (ml,m

4 ,mA) for k integer.

2 M3
In the section IV we will discuss a problem of SU3xUQ)

embedding in SS%)in the language of Gelfand-Zetlin patterns.



\_!‘—

Now we only want to state results. There are ten series of
SU@) representations in which SU@BKUl) representations given in
(7) are contained. In the table I we summerize their field
content. We classified all the fields according to their
helicity. The classification given in the table I is a natu-

ral one since the symmetry of the background is SUd)x Poin-

A

care.
Table I

SUl4) representation “Helicity © ) - 7= _Heélicitiés 1 and 2
(n,0,0,-n) "i‘ss)"z Var W Wik by We Wex Wi Wie Vi barars Wie | g
(n,1,0,-1-n) fa My Wy b e Wis Wigx bir Wie
(n+1,0,~1,-n) by Vax Wik b ¥ W Wi Wi bjon Wye
ﬁn+1,2,0,-3—n) Ve, Wi

{n+3,0,-2,-n) bew, Wew

(n,1,-1,-n) hesWerWen Wip W Wis
(n+2,-1,-1,-n) WE

(n,1,1,-2-n) W

(n+1,2,-1,-2-n) Wy

(n+2,1,-2,-1-n) Wicw

Now we have almost everything to be able to calculate
particles spectrum. We only must to learn how to calculate co-
variant derivatives. According to [2,16] covariant deriva-
tives are equivalent to algebraic manipulations with Gelfand-
Zetlin patterns. Similarly - the values of Laplace operator
are given as differences of two quadratic Casimir operator

eigenvalues for some representations of SUM) and SU3xUQ.
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Due to orthogonal properties of SUl) harmonics equations
of motion factorize for all the sectors (different SU@\re—
presentations) and it is enough to discuss them separatly.
Finally we must diagonalize some mass metrices. From techni-
cal point of view it may be quite difficult since in the
sector (n,0,0,-n) we work with 10x10 matrix. Instead of cal-
culating precise values of masses we rather formulated a ge-
neral criterion for nonnegativity of eigenvalues of a given
matrix. We showed that this criterion is always fulfilled.

It this way the stability of the D=4 dimensional theory is
proved. We recognized massless helicity-1 modes corresponding
to SUMXU{} symmetry és well as helicity—z modes corresponding
to a graviton. No massless scalars are present. Moreover,
there are a lot of towers of massive modes. All of them are of
order of m2. Since effective coupling constant for SU@) theory
is of order mw where ﬁizlﬁﬁ'G ; G - gravitational constant,
we deduce that m is very large(if coupling constant is to be

of order of 1).
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III. Background solution

In this section we want to discuss in more detail a geo-

metry of a background scolution of classical equations of mo-

tion {2) and its symmetry properties. In our exposition we will

follow papers {2,13,20]

There is a very simple way of construction of a set of co-
variant basis on the homogeneous space G/H

Let L(y) be a function L(y): G/H -» G such that
Fel = 1

dG/H where ¥ is a canonocal projection ¥:G -G/H

(we take G/H to be a set of left cosets).

Let us construct Lie algebra valued 1-form

elg) = Utd dlly) = eftgy @z (8)

where @z are generators of a Lie algebra of G with structure

¥

constants Cag

3
Ca;,e¢1 = cazp’ &3 (9)
The 1-form e(y) fufills a Cartan-Maurer equation

de (4) = - ¢ () A2 e (1)

{10a)

(10b)

Let us divide Rz into two subsets: Qz corresponding
to the Lie algebra of H and @, - the rest.

To be specific: In our case G=SUM) and H=SUBKUIL). Our choice

of generators is
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a : oy 0O 4 ﬁ:\zG a : . O)
z = L0 oo - -to vO Z -
4% 4 \ oo 0o &“ﬂ ° o o0 - b "‘ﬁ(oho
[~1R I~ 2o @0
\ L+ B o o JVi . : o
Qo= - ©co o z - <. )
2 < ©coeo Qi alt o "--.“- {(11)
LV ~ B =

® 4 are taken as antihemitian. Normalization is such that

Tr Q2&;=-U33 for Qaglggi C;@g ; structure constant are

totally antisymmetric. SU3xUQl) embedding in SU@)is chosen

in such a way that ®:-9:1.¢ are genarators of SUB) and @,

is a generator of Uf).

We can check that

LRz, = caz® @f
(12)
CQ‘*)Q;-}: C"‘FY QK

We see that CPB)is symmetric. For such spaces there exist

a standart background solution:

Brw B2 AT T S OO AT AT v 9 (a) dy aygY

Ry, = O

°3,m (g) = wt Vg g;‘ gvﬁ' (m = is a length scale of CP{3)
- - - (13)

A s “ = -

&eﬁ% constitute an orthonormal coframe on G/H. If we look

now for a torsion free connection on G/H we find

L [R i (14a)
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Curvature tensor is

ot = ot ¥
%2 P Mp + EK A ﬁ:f‘

ol 1 . et 5
Ropge = “oF Cor (

{14b)

R m1' vu"'

dp = ~ _Z— 3’4‘,, 3 R = '--1—: ™ (N-o\-‘w\-;-.m'omw-ta g_g G,IH\)

2 . .

m is proportional to the scalar curvature of G/H.

Also in orthonormal frame F;; T o~ C:;

— -—

We have taken A;' egual to%:since it fulfills equations
of motion for a Yang-Mills field. But at this point we must
be more carefull. Our coset representatives L(y):G/H —-G
are only local functions on G/H. It is well known however
that there are manifdlds which cannot be covered by a single
map. The example of such manifold is CP3)-we need four maps!
We must show that connections intreduced by four different
patches differ from each other by some uﬂ transformation.

So we write ﬁ:$$=f %ﬁaand look for a constraint on values of
f . Values of i clearly depend on the normaligzation of U{l)

charge. Later on we will use a normalization in which

4 =3 + 1

. In this normalization one can show that
/4 —~3/4

[

1 = i-m ( I wish to thank S.Randjbar-Daemi for showing me
his calculations of magnetic monopole number on CHN).

Our background solution in orthonormal basis has a form

o - .
Eﬁ“’ T e C C'dd.‘s Cd ¥y 4 C“—"P C‘rxa—B
Fip = wat Ce).f\-c( F 2 2w (15)

B.Lﬁ = \g\ﬂlm Q"\’ﬁﬂ‘\ B = ‘{QMQ
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Einstein equation give us now:

& (16)

When we put back back all these equations to (%) a lot of

terms will drop out. However

1 = - E6 =o
T L Y T
Y T e g (17)

There are new terms in bilinear action due to nonconnectivity
of the gauge group. These terms contain a free parameter of

the theory - we call it Y

T 3
ve =X = o . (18)
g L2
q'% ‘,(.&}
We see that range of Y is 0€Yg3/2 and
Y — 0 correspond to limit in which ¥a> e
Y —» 3/2 correspond to limit in which Sy&x e

Finally we want to discuss some symmetry properties of
the background solution.

Under the action of the group G

gl(y)=L{y)h g«G h ¢ H (19)

h and y‘ depend on g and y

L-‘('n‘)&‘. (‘0‘\ - e.a('o‘) Q: = \ L:‘(‘ﬁ)';;‘ (MJL(53k-‘ -« 3&\.(\3‘) 7).‘ +

+ 3“(\3) d‘\"_‘) = (20)
) - 2 - ~4
= UMY gldg Ly W s b et Rz W L Lo

We introduce matrices of the adjoint representation of G
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- £ (21)
§ @z = D3 ()Q@g
) \ - ~ S i’ s = & g:“ Dr-? (\.."} ~ +Q,,¢;C.‘ <
L6 n & .y - a 2 -
€l = e (D) DI (W) + (Bl )PPy (LW
- - = = . B = -y (22)
TPy = ()T + e T DTy a(glag) Py (L)
Let us consider x dependent (local) transformations.
\3‘=\0‘ (’()‘3\ 0\5\" = a"‘av On‘f' . Ax“' @_a\,‘d
. Q%V Q%\ﬁ
So
Py aqY (23)
o'y = _:a_ B -1
Q/“ ) AT e, () Di:‘ (w )
2
(24)

Teay. 290 (UF F a3
€= (e, ) Pz (W) + (W) )

2k

ot
We can see that € 1s invariant under the action of G up
to tangent space rotation induced by h and that %;‘ really

transforms like a connection form on G/H.

Equation(23) is particulary important becouse it fixes

embedding H ¢ SON
Infinitesimally we have

h’z 4Tyt ez

£ ol (25)

= +

ot oy o ¥
Dib(u)- Ta *¥w - C o Y

-t;‘-s

Since it is SON) transformation it follows that

{(26)
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¥Ye have performed explicité calculations in order to get

SUEUY) content of SO06) vector. Results are

&, - &,
%
Lhe, -od, transforms like 3 with UfY) charge -1
& 2
é’n . d’m

Qﬁ.yb cdyo

TN transforms like 3 with U{l) charge +1
¢\\ b ‘b\a

(remember: the normalizafion is since now such,that the funda-

= 3 +

mental SUW@) repregentation 4 transforms like 4 1 .
€ repres = -  ~1/4 = -3/4

For the sake of completness we can also identify the set
of Killing vectors for the right action of G on G/H.

Lgwg = Cre¥5azd L, (-7u% 0g)

33»QﬁLn = V" Qg L YL Qg

Vb”grﬂal t%’%*L;‘ Qa\"ﬁ -U\,.-‘QI :USuD:P(Li}GF_ (28)
-vwt e
Yot - v® b (Ly Yo e Ty o . 2o
v Y =Ty Ba iy 9 FYa7 Bp (Lg) e (o) = Vot W )
\<’: ()- D“ [
ot = Do (L) ey ()

In zgeneral a metric which was already shown to be left

invariant can also have symmetry connected with the action on

cosets from the right. The group of additional symmetry is

N(H)/H where N(H) is a normalizer of H in G [18]

geN gHg = H

For CP@E) N(H) = H so nothing new is obtained.
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iv. Detsils of calculations

In this secition we want to explain in detail calculation

techiques used and analisis of the particles spectrum.

A. Gelfand - Zetlin patterns 171

In the language of Gelfand - Zetlin all the irreducible
representations of SUW) are described by four integers
(ml,mz,ms,ma) such that mly.mzz,maz,mA . (ml,mz,ms,ma) and

(m1+k,m2+k,m3+k,m4+k) decribe the same representation. Simi-

larly three integers (nl,n ,n3) correspond to a irreducible

2
representation of SU3) .
Dimensionalities of these representations are given by
formulas
Ny 3 ey 0 0s 2500y Cnpmay o)) Lov SU()

{29)

3
Ny = \; ( My T e b ) Cwy Sy =23 (w“ -“‘4"'3) (v'“'-.“"'b +1) Cw‘t' Wng® 1‘) ("";""\t‘ *1)

fov su(a)
(for a genaral formula look {17] )
We see that (1,0,0) is a triplet and (1,0,0,0) is a
guadret representation.
A given SUY) representation containg as basic vectors all
the possible Gelfand-Zetlin patterns which can be built accor-

ding to the following rules

W, wap W, Wig a2 la P ey
vi w i
4 z
= MWD, Ky v T g By
4 123
! * e 2 2, wAa W, D (30)
Ay 13 Vg2 w3 Mg WMy g D wag




A problem of finding all the SUW4) representations which
contain a given SH3| representation is trivial. For a given
SU3) representation (nl,nz,na) one easly finds all the

(ml,mz,mg,mA) which fulfill (30). Additiohal restriction is
given by a value of a Ul charge. The problem arises how to des-

cribe Ufl) charge in terms of Gelfand-Zetlin patterns.

Again, a solution is easy to find. As we remember we nor-

lized harge i h that 4 = 3 1
ma ed UQ) ¢ ge in such a way 4=3,,,%1 35/,
A
‘' q \O A
3%

There are simple rules for values of A'j generators of
GL(4,R) while acting on Gelfand —Zetlin‘patterns. Using no-

tation(30)

h‘u (wm) = Ly ()
Ay, (=) = (\(.A«k.‘_ -La) (w)
Aay (w) = ((uarmaeny) - Geed) () (31)

Aag (WY = (_L-\.‘; Wy * ey twag) - [n,«-ul-tu,,)) (_m)

Q\r = ‘2 (_A\\"’Au“'a'\s "”'\Qq\
(Having a representation of GL(4;R) we can construct a repre-

‘sentation of SU4) )

The action of Ul generator is hence

Q (=) = % @"4‘"‘1“’“‘5\ = ‘:’ (“"u"““'&““‘"s“‘“‘f-)) (‘“) (32)

Using this formula the table I from chapter II can be sys-

tematically reproduced.
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B, Covariant derivatives and harmonic expansion

There s well known for mathematicians Peter-Weyl theo-
rem stating that functions on a compact Lie group G may be ex-
panded in a series of all the matrix elements of all the uni-
tary irreducible representations of G. In our problem we have
functions on a homogeneous space G/H belonging to some irredu-
cible representation of H ( embedding of H in SON)). For such
functions the expansion into all the matrix elements of all the
irreduble representations of G must be constrained. Relevant
representations of G are only those containing a given represen-

tation of H on a restriction to it. [2,16)

. T 08 (O
Polorz TTANT P b

b (ua) = ‘D;°~ () éé (=) (33)

n numerates § representations

i is H representation index

d ,dD are dimensionalities of n and D representations of
n

G and H respectively

-1
A given g&« G may be written as g = hLb

©lq) = 0, =) %, )
(34)

“\‘V- ®, = d:' e =t -
- PR R

Now we must learn how to calculate covariant deriva-

tives.
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In the action there are full covariant derivatives contai-

ning Riemanian connection on G/H and Yang-Mills connection for

H (of H is nonAbelian). Due to embedding He&SON) however these

two connections may be substituted by a single cne.

v . b K )
w«Voleg) = e, ?/“’q“. -3 g"CNﬂ ‘Dcé‘ r(zﬁv) N'é {(35)
, < L ap
We know that Q- > Cusp z
. " < eMe T D..(a- .
'{7_" Neos v R ey e Xb.n»(aty r+0
L) tmy -t s - ; vy v -
Since G% DT %ﬁ D" (@;) © (LQ

] -1 el bl v )
Va BT = TR (Qay B ) (36)

The problem is reduced to a calculation of D:,(annd it
¥

is purely algebraic exercise.

Explicité calculations may be performed knowing the

action of generators of GL(4;R) on Gelfand-Zetlin patterns

7l

Let us introduce a notation like in [17]

[~ -
A, o . WA Vi
s TSN} b % et g
(wy = B
(37)
Wiig W
M
\ J .
Let Akl be nxn matrix defined as(Aleij = B’ki‘slj
w-t . .
— )
Ag, Gy = T &l G W
'y
(38)

g

w) = S ~ oo
A e (=) = 2 b‘vl {w) wan .
8
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& . . .
where v w-, 5 @ pattern in which a number " e 15 re-

placed by wi

~
5W,~\ and kn:ﬂ is a pattern in which a number
Wi wn 18 replaced by wy,, , + 1.
w - Y2
A~ ‘:3 (L\'s‘,-L"‘(—Q #5) ‘::l CLC;‘-I -La \t.ﬂ)
a -y (vn) = = — .J
\.._;‘. LLCu—x 'Ldu-{ +4) ( Aoy = L )
b
— [ w-T Hy (39)
N Uy (‘L\:K L) rs,-:‘ ("“"'l "Ly um -4)
}Q e L“’\ = - =
S. (L{u-‘-ks‘t-l’) (LCK_. - Ll.‘;""" ’A)
by

Now we must find a correspondgnce between generators of
irreduble SUQ) representations and Gelfand-Zetlin patterns.

Result is the following:

1o © 100 1o o
$, = Vo d’lz[‘cl dv.bz[oo}
t 3 o

e.
-y
L

]

&
>
2

[ {
——
"o
o
—d
&
o
o
[
"0
0'
[W—

(40)

,e,.

>

[{
-
=]
o, 0
L
[ommE——

!
oll-
oy
ooO
°
FA—
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_We can express generators of SUW) algebra in terms of ge-

nerators of GL{4;R) algebra.

We need Q.

9,...,14 or rather after the

change of wvariables

! i
Qd‘ i(aq“.ato\ Q}\"’}'l(c}g“QmB

Qt = éi (Q“-&C Q\‘L) Q"b ".‘{'ﬁ (Qu“-' Qr\.)

(41)
By = %ﬁ. (Qn * R &, = :".:L(_Q%-‘-&m)
Looking at our choice of SUW) generators
R, = ;-& Aia @, = '7-:4:1. R
< T -
@ = an P Qs AR e (42)
G, = = Py g Qy = _:‘—ﬁ By
¥e are now able to define covariant derivatives - but
we must remember about dimensionalities and introduce a
-1
length scale of G/H namely m
Finally
WA
v, = %-,_Z' Avg
(43)
"?;,—. LZJ"‘:L Aqw

Eigenvalues of Laplace operator are given by the diffe-

rence beitween values of two quadratic Casimir operators for

appropriate represantations of SU{) and SU@xU1. The values are

given in the table II.

SU(a) raptsenkabiow €, SU(3) v enenAbon €.
C py Y

\ﬂ\Q,O,-\n) - _c; Cwtesu) 3, ""1\.'4

Lt -l * -

(\a ‘O,Iv\\ - ‘:;:_ (“\1‘4\4*3\) 2o ;M'L
thi)t,-i }-’L-,‘) - w_a‘l- Cunta Gh"'\\) E?’ - %m"'

= -w-2) -~ V‘_;L( WS +7) S_-‘ _——
1 1 - 1

(= 1,0,-3-u) - g (W 7h aa) s, £ w

Q”ﬁll “)'u}

kA
- (_v\“t':.,-&z)
=
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Let us consider an example of calculations.
A typical expansion is { for SUB x UQ) scalar )

Lanty 0,8 1w} Lomt, 0,0, W)
v {sae1) — E * . ¢
s -
V (")‘3) = Z z :— - Do‘.‘ (’L‘O y vésv» (0 (44)
wmT
Q9,040
Vow means a matrix element corresponding to the vector

and some other vector labelled by m .
(™40,0,-w) Lo, 2,0m) (SN ERLD!

vv vé""ﬁ\ -~ E ‘)o.' LAVA) Dn.w Gy v‘)w ()

f

{n,o,c,—n) (ey0,0,5Y (10, 0,2} ( 45 )
= ¢Y (A"“§ Dvm (L-‘) véwn("‘\
[CIT-N- TN Y EeYTY
Dy, (Ava) may be calculated to be = .
(10, 0,-w) (w0 c\-«)
wi} T N :
V., V; Goa) & = “i-i‘- \E 1| R T b, () V(o
b {46)

C. Eguations of motion and spectrum analysis

Now we can write down eguations of motions, perform har-
monic expansion and calculate - derivatives. After
doing it we will arrive at series of equations of motion for
different harmonic components {8,10] . We will analyze thenm
systematically sector by sector ( by a sector we mean irredu-

cible SUM) representation.). Before discussing our CP(3) model

we will give a simple example in order to ilustrate how the

particles spectrum is obtained.
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E. Example. D=5 dimensional Kaluza-Klein model

in the original Kaluza-Klein model we start from gravi-

tation in D=5 dimensions

S = - gd."-z Gt (47)

e >

Drn = Vimn SR ARYY ) U = (- AT AT RIS

The background solution is

A

O

Aancn T

The actin bilinear in fluctuations reads:

i \
S = - So\‘xa..s C 2 Vehan Veban T 5 Dchan Dobgn t
+ L Q \ (48)
2 VRt Va b ~ I Yaban Dr_"’m.>
Az (afs)
In the light-cone gauge ba. =0

\ T 1 1 ‘: AW 14-'0_1 %
ot = g“*q"d") g.z\"du (SRR LIS | I 'yv.\‘og’3 P bys (49)
T 1 <
¥ -9. L‘Oa (’a * (1)\"\(& ‘i

o\k = 1,2
In this case harmonic expansion is trivial

Vilseig) = % \ﬂ(“’(x} exyp ::_?. W (s0) = 4 (g 'L.Fv)
- LA v
(50)
Egquations of motions for hjk’ hj5 and h..  are the same

(what is important: there are series of egquations of motion

for all the harmonic components of them).

“'L LN Y
Yo (2" = Gayr ) Ve (0 =0
(51)

The  srew for by el Ly

We see that for n=0 there are zero modes for h'k {he-
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licity 21}, hjS {helicity 1) and hjj {heligity 0). For n#0
there is a tower of massive modes - the same for helici-
ties 0,1,2. The particles spectrum is: massless particles
ie graviton, gauge boson and Brans-Dicke scalar; massive

particles - a tower of spin 2 particles { they‘eat‘degrees

of freedom with helicities O and 1.

C. Continuation

Sectors (n+1,2,-1,-2-n) and (n+2,1,-2,-1i-n) nz21l

Only one field, namely W, (or W, ) is present.

Bguation of motion is

kS W}
Q."&l _‘:“.‘ (_\,\14—6\4*9)) wﬁ’ x) = O (52)
T
Masses are ;i («'+ 6w +%) for n) 1.
Sectors (n,1,1,-2-n) and (n+2,-1,-1,-nj) n>1
Only one field is present, namely We (or Wex )
Equation of motion is
Q’al- ‘:}(“{4?..-\—4)\) \.4:: (= = O
a = (53)

S
an
— 1
Masses are _ (w+%w+9q ) for n3 1

Sectors (n+1,2,0,-3-n) and (n+3,0,-2,-1-n) n2 1

Two fields are present, namely hek | Wew (or hg |, W

Equations of motion are

v o)

1w a wa't [2RY
(-2 o) S+ EE G Wi = o

Y w‘ b o
(2= T 7w Y, ) . “5:_‘} TS50 W ()= O (54)
1w =
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One can easly check that for Y €(0,3/2) two eigenvalues

of the mass matrix are positive. In this sector it is trivial

to calculate them bec&use the mass matrix has dimensionality

two. But for other sectors we will be only able to cktain

gualitative results that eigenvalues of the mass matrix are

all positive-without calcutating their values. So for this

2
sector we don't calculate M It is enough for us to know

2 . 2
that M h are of order of m where m is the inverse of the
P

length scale of CPQ@)

Sector (n,1,-1,-n) n 3> 1

In this sector there are helicity O as well as helicity

1 states. Fields which are present may be read from the

table I (page A4 ). Equations of motion are:

’x ak - ) _
Lq A s 2w =-11) Wie o= O

L ) wa g (]

(="~ E— (abs B 1)) Wor (23 = a8 Vosaea L‘! )= O
- T %
[N ] L=}

(AL (wle3m =) Wk () 4 ‘”“—;-* (G Tay by ) =0
- e -

(55)
(- oty W ¥
9-._(_.,,. L Y & =y «

Tt
(AT () Wity 4 T
- ‘

(43
T &l. (n:q3n~1) L‘l (=)= O

.

(=)
\S'l {M‘blh'l) L‘.‘_ (‘) =0

T

(-2 (W tn+6-37)) \,,u'\(,‘) a Wy w‘")-vwm .
-y " ¢ X T ( L &)

L A2

=y (S
sy WYy {-—tw LW n&s
— mis B g ap® = Ve ) = O
Masses of helicity 1 states are®*w

\M’L

2"‘ (v\‘-t-'ﬁrm"‘)
The mass matrix for helicity O fields is

S A A ) -2 A
A Tt o o) O o
Moa R (o] ?-ng Yo o}
o o o ?t- My © (56)
-5 o o S




wa ey

v s ———) e
where = — x}?.(u“»-sn*‘a‘) -B= \L&»g.,-q'
T J @Iy w
L p T 2
Det M = (At-tmgy (@-ri)(2%-m)y -2A - 25 h

ks
Values of ® for which Det ¥ = 0 are for sure real ( M is

hermitian). If we write

~ ~ L3
By (- EEY = ((ateby (ately —2at-net)

S Ned T, T 1 2

120 + = Mt~ TAT U 20
T *

A A AR R 2 0

These are in fact necessary and sufficient conditions

for all the solutions to be positive. Conditions of that

kind may be generalized for matrices of higher order and are

very useful in proving the stability of a spectrum.

In our case

<
T ¥ ~—— Cuterza-1) (wPe 3, G‘%Y)
&
natsal = o Tats Gu"L)
So Myb, 3 2ATe 2Rt for ¥ € 4 what is always true.

We must be careful since for n=1 only three fields are

present: hg  Wg y Wegx . Mass matrix is now
2t 'f; A A
[ ?1”’4 O
A ‘ (57)
t
A ) 2ty j
. - . 2
Stability condition is M1M2 2 2k what means Ygav§
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Sector (n,1,0,~1-n)

The following fields are present: by Wy
b 3 Y A
\!}.,wE y My, WeR  wie e, Wie ) b
Eguations of motion are:
+ an % 5’ [ M wen 3 r"‘———"\ . -
() - = (w*r@ueBy)y by o+ oo Ywraly wy, ¢ )

Cate = (o) gy + 028 {0iand Wiy =0
< & wl

Y (3-2A0)

(fa"-ﬁxﬁuﬁ--&qm 7)) ":1?_\4)\/3 - _"_é_____-—-——-—— W, o~
b > - -z.i}‘g -

Jnt‘duus \-\! Ll

-1 e - e
-~ mr0e 2 T L =0
R R 1 =

(.ra‘t_-i" (=44.) 'EW“‘>W1 - w

‘ (58)
T Vi ¢ T2 AT by owvg
wl'g Bige Al ISR \“i:D
* SO 7}
(,b'!._ % (“1‘4“ .,‘7) ;_:_hl‘{} L" - wa )’L r—-—-———\“.l“qw"_5 V3 & MY5

L g

\in"-&-éu(b Wy
S
-—-..:"_ ‘Sh""“u*’:‘ W‘! -
T v -

L R gy

wma Y A ¢

4*-—&; 2(mran) Wipw b %(v\‘“hw?') Wir =0
= @7 e -

T %

(_’31- % (““4-\ .\) ] W

wi(v-2vl e
Z “(‘) \'I_g_ + __g____—-——- ,S whe du- \‘lg + s
AR § -~ 4 e

Jowaas W, +
m YW
&
e YA e = O
(% = (atran) W - Yy
= “ g anes by = O
3 rej k4

The mass matrix has a form:

- ""zz My Ll © ° © M
R T LI o] © e
& T
F-my Mg LT L O
M= At hg o o (o)
A g o o
U 3
? HG Mc-,
'Z"-n.}
1=
Mo ow MY M° MY MY KT ,MT ,MT 3 O
= ’ 1 5 2 y 3 e L ’ g "7 7
7 :‘: C 1adq M ran
B - a bt fn e 3) ; ” ,!“1’4“':; Fov W™,
™ bt S&'vb.'l.-'-k.a
M .
Yoy 4 M) wudikion g
— \\vv\l*Q\n‘s . Q‘l-: (“l’q“)
<t et J <

Y <€\o
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2w Y (-2}

%
My, = .,__....T-—--— ‘
w2 K
Ng:= =t ﬁmc'&} r—r— H;‘ a — (u"# 4..‘7) - waly
2 4 < kY
LT kY 't 1 T il
H‘;“ {om® & s~ ¥) - (._"'v-,r) By = Y (‘""“) * > Y
-]
“ A3 T
H,.,}tz (s Gues) ::—-—:' H;' = W (v:‘*qn#?\ -X v
LY -1 « @
&y *
Mv’;z {wls an-¢Yy =2 MJ-, w (wte du)
Wl
< 5 wa Y ‘
t,s = (T4 anen) bl 1, ™ catan)
¢ =M™ Y (u\ a Qo
Vig ¢ 4 (60)
T 1 wa Ty 1
™~ = (wtedn) 2= 1. = 1 vl
1N 4 v ‘Hv = .Z (“*4“-\3-& z A4

3
Mad = (Wrau-r) =07
g5 oA

wn® M-S
6q

H‘.;L = (Ml-b- 4,,4-‘5)

It is not easy to calculate det M. But as mentioned be-
fore we are only interested in showing that there are no
tachyons in the spectrum. Necessary and sufficient condition
for it is that

et w1 = @Y - " a o+ @Y - - 6
(61)

A‘B) -",G' > O (62)

Let us now observe that Det M contains a term
1 * 1 T 2 T 2
(2-tm, J {2 -#y) ... (2-17) all ijo
In all the other terms two or more (QxNZ) factors
are replaced by M'k terms with possible opposite sign. We
i Poesrb=
. 2.2 2
see now that if we show that MiMjﬂpMi_, we can be sure that
J

the condition (82) is fulfilled.

2 2.2
We have checked that W, . / MiM‘ are at most of order
i J

1/10 what proves the stability in this sector.
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Sector {(n,0,0,n)

The following fields of helicity 0,1,2 are present:

There is only one helicity 2 field,equation of motion

for which is:

1 =) T

(2" - = (w'e3m)) by (3= O (63)

In the sector (0,0,0,0) there is a masless mode which
we interpret as gravitom.

In the sector (n,0,0,-n) for n)l there are massive
helicity 2 particles with masses
‘-%? C\A‘*‘s\ﬂ)

The mass matrix for helicity 1 fields is (for n3yl)

e e 2 LG e m e G D
At T Gt ° WoTaey VT Tan T Y
B
A e L. - By
5 ~ (e 3n) = ‘S’:; Cntedny - % Y L)
e 64)
w e {3-W) wi hi >
= Rpwoyey *-?.‘ =]
Ry wg i ' T %(n‘ﬂ-‘; ? < Cate sy o
-2 e (v) ", e —————— >
AR rEEEe S s
L ' b

a_ \:ﬂ_t' “wlebe 1. :‘ Detm T ')1- \:._" C\—\‘(&u‘-—":) _
Det M = (= qcnx)((qqg.sﬂ(_ > )

(At =2 (wleda =3)) =0 (a-24) (WPe3a)
- z Mt D~ Tz
x
- (AN T (W) Y L) w3

One can see that for n=1 ( adjoint representation of
SU@D there is a massless mode. We interpret it as the SUE)
gauge boson.
In the sector (0,0,0,0) there is only one massless
(o,9,9,3)

field V, which is the gauge boson of the unbroken

ufl) symmetry.
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The mass matrix for scalar fields is: (=T )

.

atomt o [»} (e LY R T LI -4, o o
et o o Mag  mMap Mgy mHa, Mag -y
Tt
(AR L B, [») . LT © Py O Mg o)
1
-8 -
* ° io T s © T O -ta
%~Hf (&) h<'7 [»] o fol
B4 albgt -ty © o
= ,31.'_‘_,1 o o o
7 1 65
ot o o |(69)
L Py o
2t
L
where a
fae = 2t ey
=2
A (n-) .
Wl T iy Mol YOO e
AT -4 3
1
T =
wra TEY ety mE s F ey
v7 4-2G v
. T Lt 24 =YD
4 - W, = -
LT :‘__..(_}_z) (Ve ) “
X t
o H:: M“'L: w (win w4 &’4',\()
tay = hd (mteBm) N
a4t Hr1__HQ1= %lcnt"sn*"‘)-’im“{
et or 2wy (Weta-a)
b i M;x = M‘I = ‘:_L L"""”i""gs*iu}‘{
. <4
MKI = w (3D (w3 9)
' bl = ML= ‘%" Cate3a-n)
gt = EX (wlena-q)
%S¢

Using the same argument as before, by evaluating

2

2 2
M_j/M_M, which are all € 2/7 ( the value 2/7 is for

i i J

i=3 and j=5 in the limit Y-=0) we proved the stability

of the spectrum.

Effective SU(4) coupling constant

We have calculated the effective SUWY) coupling constant

using the method described in (8] ( zero-mode limit)

It is a good moment to emphesize an important feature
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of the similar class of models. In original Kaluza-Klein
thiory gauge fields are obtained from the metric tensor in

D dimensions, more precisely from its nondiagonal part by

a

putting %ﬁftﬁmy = A“F(A)kafﬁn)s\(f is a Killing vector
for the symmetry group G. In the mcdels éimilar to one which
is investigated here SU@\gauge group fields are some linesar
combinations of fluctuations of all the helicity 1 fields
which are present. It is clear from the discussion of the

sector (1,0,0,-1).

Let us write the zero mode ansatz

E -8 = d~’n.w FMQ (x)

~

e = 't1&%” %;‘~x.&mﬁ'%., D;
ATe st 2% (2T et wE 0l ) -
AS = dxn” w“«" P PRV Sf Dé
There are three SUM4) vectors %f )LAf , gf ult) vector V.,
and SUQB) vector \N: . The motivation for such ansatz are trans-

formation properties of under sulg) which result §rom it.

We remember that gL(y) = L{(y)h

~ "9@\( ~
Let h = h e h e suB)

-t

€% ug) = EX Gug= BT vy ol (W
s : . ~ay ~ ~ot 3
A8 (am) > AY (hy) = AT v B2 (o7'y + (Gau™h)

AT (ngy = AT (g = AT Gig) T ¥ 8¥ (67)
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Y

=t

i':‘h(x) = Eg(ux‘, !}‘; (3“} vl {'5‘&"’;}

12 z a . 2 (68)
STy = STy P ) m o — Casgh

In the action we have:

- 1 o “ o # g% -
Br & v 4eieg Gunioealiewztel .

c(2nt -oa2 S e 2027 Cpeg) (89)

1 < :‘f 2%
AR = L aa” aant (Ve s cpag R Ta Of mww¥UMLD;
T % - - P tal
- el Y ggag ML EL PG ) (70)

- o A - 2 _.x
SLEHET WY Cuap v ST AT gy % 0 (R -uwl)

x

. . - ni' L -~ -~ :\ ; B
A At -‘3. Ca, a3 = ll&:r."fs Axt (wed -we S D% = Ww Cgag c"v.—.%mbg"

~ - - -

< o 2 - “ L Tate R
*M’L&‘chz‘; 2“. %_’ Da Cé‘tw W, =~ ™ Comn S, S W

fTam G o 60T DF - Wl g o1 2T DY 0% L S
+ .}Lg",\e(‘ - Gt e A EP (Cé*pm}n (%‘._:- S:) D=
- Cgue TSNS W S
Like in [8] we expact that amcng the fields Z,S,U
7-S and Z-U are massive and some other independent (ortho-

gonal) linear combination of them is massless.

We take

Gz * 6%w * U,

solve it for Z,S,U and put back into (6S-71).

We calculated a coefficient standing at

3

-~ ”~ ol 1
(Q@G: - "},.G: AV C;zé;i G: G': )



Then by recaling G we obtained a canonical form of a gauge
field kinematical term with a coupling constant which was

calculated to be

Lo = R (73)
o L G W rvavs ®

G is 4-dimensional gravitational constant

Resume__
As an example of a mechanism of spontaneous compactifi-
cation Einstein-Yang-Mills SUQxUQ) theory compactifying to
M4x CP@)was investigated. It was shawn that for a canonical
compgctifying solution of equations of motion and fer any
value of a magnetic monopole number for Ul) field on CH3)
no tachyons are present in the spectrum of particles. S U4k
Ull) gauge bosons are identified and effective SUl) coupling
constant is calculated.
Introduction of fermions is possible (because c¥3) ad-

mits a spinor structure)and will be investigated in a futu-

re.

I wish to thank prof. J.Strathdee for formulating the

problem for me and for his important help while the work

was done.
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