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I. INTRéDUCTION

The quantitative experimental detection of surface state
energies on clean semiconductor surfaces has become possible
in the last decade mostly by means of photo-emission(l) and
also optical(2) and energy loss(3) techniques.

At present,these experimental results are being compared
with very elaborate self-consistent one-electron calculation
s(4) ,also in order to learn about the surface geometry,which
is generally unknown. The implication is that effects not cg
ntained in one-electron calculations,notably many-body effeg
ts and electron-phononkcbupling,can be disregarded which is
not always obvious. While some works have been directed to
investigating many-body effgcts(5) and lattice relaxation ef
fects(6),there seems to be no discussion available of polarg
n effects on surface states.

Tﬁié is a preliminary report of a first attempt to study
some effects produced by coupling of the surface state elec-
trons( and holes) to the vibrating surface lattic;. For spe-
cificity,and also because of its high current interest,we hg
ve chosen the clean Si(111)2x1 surface as our working examp-
le. Since at least two widely discussed models--the buckling
model and the chain model--are available for this surface,we
have decided to consider both of them. This was done also in
the hope that our predicted behavior could be sufficiently
different for the two cases so as to allow some conclusions
to be drawn from a comparison of these predictions with exist-
ing or with future experiments.

This paper is then organized as follows.

We first construct the model Hamiltonian suitable for our
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purpose ana fix the parameters used. This is done in sec.2.l
for tﬂe buckling model,and in sec.3.l for the chain model. In
sec.2.2 and 3.2 ,We calculate for the twoAmodel respectively

-2 the energy shift and the lattice deformation that occurs

when one extra electron--or one hole=-is injected in a surfa-
ce state,otherwise at equilibrium. This is what we shall call
a surface state polaron.

Since our main interest will be in optical absorption,we
next want to consider the electron-hole pair creation at a s5e-
miconductor surface. We do this by neglecting at first the la-
ttice coupling,in sec.2.3 and 3.3 respeetively. The lattice re
laxation that occurs when such an optically excited electron-
hole pair is present is then calculated in sec.2.4 and 3.4, In
these sections one also extracts the overall Huang-Rhys factor
S(7),which characterizes the strength of the exciton-lattice
coupling. We calculate in sec.2.5 and 3.5 the predicted tempe-
rature dependence of optical absorption between surface-states
»for the two models. Finally,critical comparison with existing

'

evidence and future developments is given in conclusion in sec.

L.
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2. BUCKLING MODEL
2.1 The Model and The Parameters
The buckling model of Si(111)2x1 reconstructed surface was
jproposed by Haneman(8). It consists of alternating rows of ra-

ised and lowered atoms,as indicated in Fig.2.1l.

(R 134 @ e Q R

¢ — ¥ V.- — —‘f——-—»-% i
_ @ O,
Top VIEW
T T

Fié.a.l. Surface geometry of si(111)2x1l buckling model:Alter "~ .~
nate rows of surface atoms(circles) are displaced in and out
as shown schematically by arrows. also shown is'the surface
Brillouin zone.

Tach surface unit cells,labeled by n,consists of one bucx-
led up atom,labeled by n,l,and one buckled down atom,labeled
by n,2. The dangling oond(DB) atomic orbital on each atoms,de-
noted by ln,%>,is s combination of S orbital | s,i) and Pz or-
bital le,i> of the same atom with coefficients which depend
on the perpendicular distance Hﬁ;% of that atom. Hn,i is mnea-

sured from the subsurface layer,as also shcown in Fig.2.l.

As shown in Appendix A,

miy=l fd |00+ [1-b(Hut)*| By, i) (2.1)
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and its atomic orbital energy

£(Hni)= bHn £ +[1-6(Fi) ] E,
=T - & (Hed) (2.2)

a

where a is the surface lattice constant,a=3.854 for Si(1lll)2xl
surface,and Ep,ES are the s and p atomic orbital energies,res-
pectively. We take Clementi and Roetti's atomic data($)of Si,
which is cited in Table I,for EP-ES¥6 ev. While

C= iZ(Ep‘Es) =72 eV

Alot of elaborate work hnas been done on this bucxling mg
del(4). All of them found out a large charge transfer the amo=
unt of which depends somewhat on the degree of reconstruction.

For simplicity,we assume-a fixed charge transfer occured only
from the "down' atoms to the "up'" atoms,keeplng the top surfas

ce layer neutral on average.

SIL{TTNM L{2riit333542v3242), 39
TeZ =2 =3 23803555 +33 PLZ,==3,%3761 722202073 ,5,= {,283%083500+33 4 4T .=-Cs 0: 2IT 0L
S 1S 23 3s
BAS |5 /OR8 ¢ ~53,53056% -5, 348z -0.42232 B
i$ 83.57453 ~3.35720 q.30082 CL.oTds 2@ 4,3723%
s 28 "',:5103’3 -3 309 ~1.04174 -3,29:22 3P 1.42841
55 1.63829 330 2.30C35 1.32578 '

Taple 1. Atomic data of Si cited from (9).
Assuming a neglegible overlap between DB orbitals,we may
construct the filled DB band(hereafter referred to as ''valence

band")%Wannier state located at unit cell n as
M = 1) + o2 n,2) (2.3)

o

and the corresponding empty DB band(nhersafter referre

Q.
ot
o}
o
n

),

DI‘\
W
0

conduction oand") Wannier state,being orthogonal to f
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N> = —cly |4y +ola |0, 2) (2.4)

with i + aif.:l.

The coefficieﬁts,dh andcza,describe the amount of charge
transfer,and in our present work they are taken to becii:O.BS
tlz 0.15. It is in general agreement with the works by Pandey
(4) and Casula and Selloni(6).

The model Hamiltonian of the surface states 1s then assu-

med as follows:
(V) t))]

H= Z_(MV)>E ml_Hn >E§\C)‘<1“)U +’%_}(’\:_)M \n :+

m: i n.n.o)[ nth Gl

+2* L()<nu)l

m: the n.n. oj. nth Calt

En ..o(, E(Hn, +°( £(Hn,2)
,EP 1[04 Hm + ol Hn).)J 2.6)

d) bQ_EG%n)‘fd &(Hn,2)
=B - [t 4 o ()] B

)) is the hopping integral between valence(conduc-

2..5)

where

gn
(n n)( (u -n

tion) band Wannier states. We take into account only the near-
est neighbor hopping integral. To reproduce the general feature
of the elaborate calculations by Pandey and by Del Sole and

Chadi(4),the hopping integral inTJ dirsction is taken as

w)__£¢)_'o 05 eV

- N N . - . .
and that in TJ directlon as
i‘/) _kC)

Sty =-0.04eV

In‘prlnc1ple,all the nopping integzrals depend on H 4 ,ma-
bl

inly via the atomic ortitals zn,L>. Tor Qur purposs,nowsver,
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the pfimary properties of t's 1is their order of magnituae re-
lative to other energies. Hence,for simplicity,their Hn,i de-
vendence will be neglected. %We also neglect the intra-atomic

interaction and the Madelung energy.
The energy of the valence band Bloch state with wave vec-
2N f{-k..)
tor %, %R 2€¢ |a4is then given by
- w? wr ] V) W) i v) )
P = MKy g R A2 Cos (B A ) A2 Coslpa)

W)
=L, ~ 0.08 Cos U3 4¢ )+ 0.10Cos (4 Q)
¥ x ! (2.8)

) N . ‘ © i) i-—¥?§\ L
While that of conduction band Bloch state,%~;ﬁr%€ lﬂﬂ Ry

EOD) =4l MY ) = AT B A 2 Cos (T3 A 0) 413> 2 Costhya)

ST 40,08 Cos B dea) +0.10 Cos(@) 9 9)

- In the following,the values of EX and Eg are determined
as follows.
At the ground state,within Born-Oppenheimer‘adiabatic app-
roximation,the adiabatic energy of ‘the system which consists
of 2N valence electrons and 2N surface atoms(N being fhe num-

ber of unit cells) can be expressed as

¢ 2 N v
£33 Lkt + 25 F (D)
vz o V) .
=§h22_' %! hnj +2% E, (2.10)

Wil t e i - :
Vnere the factor of 2 takes care of the spln; hn,i“Hn,i HO is
the displacement of the (n,i)atom from Hy which is to be deter
mined below; [ is the force constant of the top surface atom a-
long the direction perpendiéular to the surface,which repre-

sents the interactions of the back-bonds and the bulk on the
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top surface atoms.

By eq.(2.6),eq. (2.10) can be expressed as
da
a Q_E ——%M/‘nA‘*')—ZLEF cez. L (Hot2Hohan) —

—_g.:.a%i &-f,,+3H An;)] (2,11)

I1f we consider each surface atoms as an oscillator and put the

factor in front of hnai in the above eg. as
H

2
X-208i/8% - LM we
2 2
where M is the atom mass, Rw, should then be about the surface
phonon energy which is experimentally measured as around 0.055

ev(10), hw,=0.055 ev.

To determine [ ,we takeciiz§;§=O.5(corre5ponding to the i-
deal non-reconstructed surface) ,then
yar=Ma*w, +C =370¢eV (2.12)
Remember a=3%.85A. f
t equlllbrlum,

SE5m _ ;En
2 Hni =0= YAh“’kl "

From (2.6) and (2.13), we get

2
20 Ho v
AhAI: l(‘Q (Ha*h“») = L g% (2'14)
’ ya* Ya*-2Co,”
We determine H by considering the un- reconstructcd ideal sur-

(2.13)

face. In which case,&luciz_O .5 and HY l:H%,Z:Ho+h%,l=Ho+hn,2:
0.79A, Putting in eq.(2.1y) ,we get

H,= 0.b4A

H, would be the position of surface atoms if no electron were
presgnt in the DB state.
The equilibrium positions of the buckled surface atoms,u-
sing eq.(2.lk4),are then ‘
hn,i:_O.BlA , HA,;=H0+;\»,1=O.9(:A
hny= O.04A Moo= Hotho,s 20684
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Finally,the valence and conduction band Wannier state ene-

rgies,EX and Eg,using eqs.(2.6) and (2.7),are determined as

(”==EF“2~O7€V (2.15)

E:):E?—ivlgév . (216)

The surface state energy band structure obtained is shown

in Fig.2.2.

5.2 Electron Polaron and Hole Polaron
2.2.1 General outline .
When one electron is added to the surface,the system is
then composed of 2N surface atoms and (2N+1)electrons with full
valence band and one electron in the conduction band. The elec-
tron in the conduction baﬁd is subjected to competition of two

opposing tendencies :one to delocalization and the other 1O
loéaiization. The former is characterized by B,the maximum e-
nergy released when the electron perfectly localized on one
cell is allowed to extend throughout the surfac%;ln our case,

B is just the energy difference between the conduction band
Wannier state energy Eg and the energy of the bottom of the
conduction band. The later--the localizing interaction--is-cha-
racterized by the relaxation energy ER of the deformed system
due to the localized electron.

In the absence of transfer,the electron would be localized
on one single cell and the system would be stabilized by ener-
gy ER as the lattice is distorted to new equilibrium positions
,as shown schematically in Fig.2.3%a. In the presence of trans-

fer and the absence of lattice distortion,the electron would

move freely throughout the lattice with Dband energy (k) as
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s |
‘ 0.25 1
0.33 Strah?ly Eim{tng 2xciten $
o]8 hole glectyon
PoLaron e-h palarom . Polaren
|
;ED.B(:; !

Fig.2.2 Simplified surface state energy of the buckling
model calculated by>our parameter, Bhe energy levels of

~ . , . , v
nyglence band" and lconduction band" Wannler snate,En and

Eg, of electron-, hole-, e-h pair-polaron and of qxciton
r'; .
are also shown. . Eq¢a N\ Ay

£ , L — A
Fig.2;3 Schematic diagram - e igi:ij:éj B;\\gﬂﬁ)
— S ——4\\\—':»-;\ — "“)_‘
. . £v\ o - &7
showing the competition be- el VRN
. : \\#;%& k\“€3<;25$

tween localization and de-

localization of an electron N

in deformable lattice. gy = I — —
" H“;Al H%’.“.‘} k-—)
(o) P )

Fig.2.4 The configuration-coor-
dinate model with interaction
mode, the Franck-Condon prin- ¥
ciple,and the absorption line

shape.

AbsoRpTiON
COe{fchehf
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shown.in Fig.2.3%3c. Referred to the perfectly-localized state
with energy Eg,the electron would be stabilized with energy B at
the conduction band bottom.

A very rough conclusion from the above argument is that the
electron will be localized by inducing lattice distortion arou-
nd itself or will be delocalized in perfect lattice according
to EREiB,as shown schematically in Fig.2.3%b where two extreme
types of relaxed states are denoted by S(Self-trapped state)

and F(Free state).

2.2.2 Electron Polaron

If the surface lattice is frozen at ground state equilibri-
um configuration,Hn,l=0.96A and Hn’2=0.68A,and if the injected
electron spread;throughoué the whole surface lattice,this elec-
tron will then be stabilized at the conduction band bottom,which
is at K point in our model,with energy lowered by 0.18 ev refer-
red to Eg, o

ER)=En - 0.18ev : (2.17)

as can be seen from Fig.2.2.

On the other hand,if the excess electron is perfectly local-
ized at one particular cell,say cell O,the adiabatic energy of
the system which now consists of (2N+1) electrons and 2N atoms,

before lattice relaxes further,is

EMM' YZ (Hm )l'f")s%E:“(/ln,;)—}-Ef;)(/lo'*') (2,18)

2N+ T Ly

c -
v . .
where En(hn,i) and Eo(ho,i) are given by eqs,(2.15) and (2.16),
After the surface lattice relaxeS,the surface atoms take

new equlllbrlum positions,denoted by H .(or hi i),which is de=-
adia il

Elh’-ﬁ

termined by =0. For the O-th cell,in which the injected

AL




P.11

electron 1s located this condition gives

(e gE QE“)
!/""/4“-‘2 ;A&) + EZT%_) :O
e Cadi+olf ) Ho -
o7 hoy = S22 )Be =g 36 )
! For—( (235 +7) 3
te> C (202 4a*) Ho i
h = 2 = 0. ]%54
o YQ‘—C(J.JH'J ) l
For the other cells hn,i remain unchanged and equal hn e
The minimum of:adiabatic energy in the relaxed configuration
) A Feloax (€)2 (e; (€, &’
is gm,..*z/\ $2 S (hni) +Eo Lhos)
e
with €y le) +}F’) )2 (Ho+/1o23
Es um)= Lo Hethonl "y )
- _1 ’[Tev oL 2oy
\€
) 2 (Hy +ho, )l L (He+ ko)
E, (/1“)— R

E 231 eV (2.19)

@),
The lattice relaxation energy ER is then
a) wnrel )'C.l

R 2NH bt (VJ &

= r Lu\of "}l(eo);z) +(/\O 2 A(:)}_Z)J"' ). [ED /\uﬂ.) E o, A)]‘f' (/‘04) (A(G)

= O_)_}_QV
).

ER is larger than the energy 0.18 ev gained.if the electron
was allowed to spread throughout the frozen lattice. Thus the
electron will prefer to be localized at some cell.

By including transfer as well as lattice distortion,the lo-
calized electron will tend to spread out. In Appendix B,assum-
- ing rigid valence band electron distribution,we solve this pro-
blem by the perturbation method up tO second order. It turns
out that the probability amplitude of finding the electron in

the neighboring cell's Wannier state is

O = Aon . _ Fon
- R4 —
. n .El()(ﬁo ) - E“ )( /‘”‘(.) 'E Polapow
Yhere E (ho j.) and E° (h ) are the conduction band Wannier sta-
b3

‘te energy before and after 1attice relaxation,respectively,and
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are given in egs.(2.16) and (2.20). EC(ho’i)—Ec(hS,i =Eg01arOn

may be called the electron-polaron binding energy. In our case,
an=0.05/0.q8=0.10,which means only 1% electron spreads into each
neighboring cells. It is therefore a good approximation to con-
sider the electron being perfectly self-trapped and forms a
small polaron. Its energy level is also indicated in Fig.2.2.

If the actual position of the (n,i)th atom is represented
by Qn’i‘while hn,i denote the equilibrium position of that atom
in the ground electronic state,the adiabatic potential energy
can then he expressed as

oL > T0=C2d Qo - hn ) 4 £

=45 1 (Qui-hnai)* + Eo (2.22)
where

¥tz var—a et =24 bV
rar = rat-2cdy = 348.4eV

PN

(2.23)

the corresponding phonon energies are

lﬁ) g
W= £ = 0.050e Y
g . G (2. 24)
{9) o .
h‘.wg; :,{}K%— OOS9QV
The electron-phonon wave function of the ground electronic

state at T=0°K is given by

E?-_ﬂ_xtﬂ)(&hl b \> R.25)

N M Qs whini)” )
where X? (Qu,i=hn i) = ( 4 e 1x (2.26)

is the ground state wave function of the oscillator.‘o>dendtes
the electronic ground state.

The adiabatic potential energy in the presence of an excess

electron self-trapped in the (k)th cell are

adia i) e (e )
(Apc)-
E;_,W, -:%“‘ZI (Gn,s An4)+ Z)’ (52;‘ /l; ‘) J-E ‘*’I:. Ani) E,g
(2.27)
Where Eg)glven in eq.(2.21), 1s the relaxation energ E; is the
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ground state conduction band Wannier state energy,givenin -eq.

(2.16),while
(C)L J/ﬂ-—((loz;‘rd )-—_2_36gev

2.28)
G&e)azs raz_ C(.lol;ﬂ'ali ) =28T.2eV
The corresponding phonon energies are
AW = 0049eV
(2.29)

Ly = 0.054eV
The corresponding electron-phonon wave function is

30 =TT X (G Ao, %)X”(@,‘,i ncd [H> )0y (230)
Where X@QQA,A:U (fMJUZ GXP[ MuJ ‘ @))J (2, 31)

The local distortion (h, °© ) has tne effect of reducing

k, i~ k
the hopping integral between (k) and £°(k') by a factor of

2 ¢ 2 { e
T % i) X Qe A s T X G A X uirhic B
19, e A g € B
1%3(7157% e 7:);.1 ofror) (A ex-Ae; ]2 099971

= 0.01¥4 (2.32)

Corréspondingly,the effective mass of the phonon-dressed elec-

1]

tron--electron-polaron--increases by about 2 ordergof magnitude
which is practically immobile and the band pictlre breaks down.
In the case of f?é f?ithe factor in the exponent in the abo-
ve equation is just the T=0 Huang-Rhys factor(?7) S which charac-
terizes the strength of the electron-phonon coupling. Therefore
5€=4,.25 also means that the electron-phonon coupling is quite

strong in the buckling model.

2.2.5 Hole-Pclarcn
If the hole is allowed to spread throughout the whole fro-
zen lattice,the hole will he in the top of valence band,which

X X . . - v
in our model is at J' point,with energy mV(J’):En+O.186V,aS can

be seen in Fig.2.2.
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In the case that the hole is perfectly localized in one par-
ticular cell,say cell p,the adiabatic energy of (2N-1) electrons

plus 2N atoms in the ground state equilibrium configuration is
anre( r ) -ri) )
Eopr =15 (Hn,,—Ho) +). Z (Hn) + B (Ap.c) (2.33)
. v - —0.¢
with En(Hn,i) given in eq.(2.15) and Hn,1.0.9oA,Hn’a_O.08Aa

After the lattice relaxed,the adiabatic energy becomes

grt {%(Hf; W42 E, I Ho )+ Ep (H) (2.3¢)
The new equilibrium p051t10ns Hn,i is determined by ,2§£%i~—o .
It turns out that HE 1= Hn l:O.96A,Hg,2:Hn’2:O.68A (for n;p),and
I8 2
”1;’,)1*5&%;}'{':“2 =0.1274 .
ﬁ;; :—Siiﬁé- = O.OlqA
rad}

E(V)(}-/ck)) Ef EJZ,ZM-“L):J:M ]:%‘l.S?ﬁy (.2.3‘5)

The relaxation energy in this case 1s

th)y unre( rel
Ep = Cane 201 . v b
{R) li .
=Lk +hpa A, At ) E; (Hoi ) - E/, (f/f,d)
=0.36 eV ' (2.36)
Eh is much larger than the energy 0.1l8ev that the system

R
would gain if the hole would spread over the whole frozen lat-

tice. The hole will therefore prefer to be localized,as in the
case of the electron,with negligible spreadto the nearest neigh-
bor cells even when the transfer i1s switched on.

The effective force constants of the atoms of the cell in
which the hole is perfectl& localized can be calculated in the

way similar to the case of electron-polaron. It turns out that

1Vt rat- etz 308.2 eV

rf’a‘zm‘-ul =359.2eY 3 (2.37)

The corresponding phonon energies are

4= 0.056ey , FoM= 0060 eV (2.38)
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and tﬁe Huang-Rhys factor at T=0°K for the hole-polaron 1is
sP=6.4
The energy levels of electron-polaron and nole-polaron are

schematically shown in Fig.2.2.

2.2.4 Electron-hole Palr

When a conduction electron and a hole are localized on the
same cell,say cell O,then the electronic distribution is Just
that of the ideal 1x1 surface,e.g.,one electron per atomic site
. After relaxation,the atomic positions of that cell take the
©desl surface values,0.79A. The relaxation energy Eg " is there-
fore given by

E; A)—--——[Ao,*/’(o;_"l)([o 79 0.b4) )-{-E:’»f@t)_l [E _:% )L:!

=0.3% eV (2.39)
The energy level of the e-h pair in the same cell is also

shown in Fig.2.2.

2.3 EXCITON
Denote the creation and the annihilation operators of the
. . c . c+ c
conduction band Wannier state ln } of spin ox by 2 o and an o
respectively. While agtm and ag’m denote the corresponding ope-
rators of the valence band Wannier state !nv> of spinov. Intro-
H

duce the hole operators by definition
W)

+ \v)‘i’
dn,m‘ana\ dnm“

n, o
The optically generated 51ngLet state(total spin=0) exciton
with the electron in the (n)th cell and the nole &n the (m)th
cell will then be described by the following wave function

w0y oy +00 diy ] [0

Where IO> denotes the electronic ground state.
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Aé shown in many text-ocoks(ll),the Coulomb and exchange
interaction between the electron and the hole in singlet strong=-
ly localized exciton state is given oy

nnnn non nn .
Ea—k:‘[w(v ccv)'—zw(v ¢ V()J (2.40)
Where the screened Coulomb interaction is
WS Tev =Jd nc‘r’:)aw?? %:—,-,a‘“mm ()dnhar

f{a,‘ezl [l({’(ﬂ R "4t 7.- Rn,)(l+ [pL R 16, (FiRn, ) J+
+02‘4M(T.’Rw)‘ l[f;‘(r{fzn.dl +02 ‘fg_({} “Rn, ;J{ l(ﬁiﬁ_ -Rx, (){ }m dr)d}"a.

= o 8@7( + ') E o (2.41)

and the screened exchange interaction is
¥ ¥ <)
W T3 [a0 ) TR g E) 8y (R) o 4T,

/ﬂno& [W f’feb')] l?.(ﬁ'ﬁm}] 'f}‘f;,{_"'k»ﬁf'[?’;(g.*h L>""
=14, F-Ra) [ B Rl =[G Fa)) | 1% R

a1

dL_

H

oL\ &Jf -2l Ei

Because of the large separation(3.85A) between surface atoms
and because of the well-localized nature of the DB orbitals as
can be seen from Table 1,the Coulomb interaction gcoul between
two electrons centered at two atoms can well be'approximated by
the interaction of two point charges centered at each atom sites
. This is confirmed by Kotani's table(l2). The surface dielec-
tric constant € takes into account the screening of back bonds
and bulk electrons,and is estimated to be (éb+l)/2 (5),where €y
is the bulk dielectric constant,e.g. €=6. It turns out that
£Coul=0.6zev.

To calculate the DB state Coulcmb self-energy Eseif’we use
Takle 1 data and take the DB orbitals corresponding to the ideal

(1x1) surface configuration,¢.g. H_  .=0.,79A. It turns out that
© rTee n,i
“+3

ése f“ .1l%ev.

Finally,we gel the e~n interaction energy Ea_h
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EU“'-) = ollzolf anf - (|+).°zltalzl)£(:oo.£
-0.25 eV (2.43)

it

e.g. the binding energy of the strongly localized exciton is

0.25ev.

2.4 EXCITONIC POLARON

When the electron-lattice coupling is switched on,as point-
ed out in sec.2.2.4,the atoms of the cell in which an exciton
is localized will relax to the positions of the ideal 1x1 sur-
face,Hn,izO.79A,and the relaxation energy Eg"h is given there
to he 0.3%8ev.

The effective force constants of the atoms of cell in which
the exciton is localized can also be evaluated as

x‘k—ua; - r:e-l\)az. - 3’0’: C =293V (2.44)
and the corre5poﬁding!phonon énergies are
B T S % S WYY L

The S factor at T=C°K for exciton-polaron is calculated as

Se_h=6.98. This means that the exciton-phonon coupling is strong

in our model. The exciton will be practically immobile and the

exciton-polaron bandwidth is extremely narrowe.

2.5 EXPECTED OPTICAL,ABSORPTION LINE SHAPE
In the adiabatic and Condon approximation,the normalized 1i-
ne shape function,for transistion from electronic ground state
(g)to exciton state (ex)as shown schematically in Fig.2.4,can be
written as(13,14) |
l},:,x(.E) = A*‘f% ‘<?”q“‘/£>lz J( EQ,Q"E;,K'E) (2.45)
Where (g,kl and <ex,l|'are the vibrational wave functions for

the electronic ground and exciton states,respectively,and satis-
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by: [Tv + E4Q)Ep Q) = Eip Hpl@) (2:46)

_Ar 3°
TA/ 5 M }th{ (2.47)

Where(i,p)stands for either(g,k)or(ex,l). TN is the atomic ki-

netic energy operator.Q represents the atomic coordinate. %F
stands for a thermal average over initial vibrational states

and g; for a sum over final vibrational states. E?dlab

is the
adiabatic potential corresponding to the electronikstate i.

is given by eq.(2.22)

For the electronic ground state Egdiab

and yé,k is given by

4[; 2 Q)= X,( Qn:—Ani) (2.48)

Where the harmonlc 0501llator wave Lunctlon)ﬂg) (Qn i n.l) is
given by ke )
@) Mg e 2R Mwl-’ AL
X (Q"l/h "»l-')"'(ﬁ tﬁ‘) (lk {41))}/)_ H‘&l(_t——) (&‘”-A: A“"'ﬂ
(2.49)

H (f) is a Hermite polynomial.
The energy eigenvalue of élg’k(Q) is
Ega= 2T Uasr D) hul + E, '2.50)
For the strongly binding exciton localized'at cell m,the

adiabatic potential can be written as

Eot 15 T Qi ki )4 Z T Qo hek ) Lot B Chin ) Chii)-

niEm) & {e-h
- Fe 4 Beay
(?) (e /\-) -
=13 TG m IR Q) S Bt 015 5,

. c .
t ™ <

Where “n(hn,i) and En(hn,i) are the ground state conduction band
and valence band Wannier states energies,respectively,as given
by eqs.(2.15) and (2.16). Eg_h is the relaxation energy for e-h
pair and is given by eq.(2.39). E._n is the interaction energy

between the electron and the hole,as given by eq.(2.43).

The corrasnonding vibrational W&Ve function is given by

X) -
Zl‘xx,z‘ Tf' u (Q.,.M"A(e:;) Ul T X &n, hn.i) (2.52)

hign) t‘l




P.19

Where :(l is given by eq.(2. 49) whlle}& is given by

. e % G ~Amz ) i
X Qs e ) = (5 )* & el %((ﬂ&)ﬁ(&m‘ i })

wh
) (Tﬁ‘ (21.1-1)/;_ ( :
2453)

The eigenvalue of Z/ex is

Eax g = S+ DR +z: z.ﬂ,,,*n.)ﬁw "+, +0l15eV

At temperature T,an osc1llator with frequency W) is excited
to its (k)th excited state with probability

Pla k)= € AT (1- @7 T )

So that the line shape function (2.45) has the following form
lj) 3) _ {2%) (2-h)
Lyax(®=F 3 T AP, A7) K Qi) Ky G A
S[ (’p"‘l «pm;)i&wm) hlﬁw"’£h,‘7tlw"+0;5e‘/—E] (,2.5‘»‘)
Where m labels the particular unit in which the exciton is lo-

calized.

We have calculated numerically the line shape function Ig ox
. 3

for T’equals 2,152,502 and L52 K with cut-off in summation over

o

km,i up to 5 and with separation in energy step=0.02ev. The pro-
bability of our oscillator(hw=0.05ev) at its (6)th excited state
at T=L52,P(6,0.05),is about 5.5x10 7. This justify our cut-off
procedure. |

The results is plotted in Fig.2.5.

It is found that the position of the peak does not move with
temperature,while its heigh lowered when T increases. As shown
in Table 2,its half-maximum width obeys quite well the

[? th(lﬁT] 1/2 formula,as mentioned by Chiarotti in his lecture

notes(14).
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Fig.2.5 Expected optical absorption line shape of

si(111)2x1 surface state

152 K, 302 K, and L52 K.

s in buckling model at 2 K,

Table 2. hKE: 0.055ev. H: Half-maximum width.
T 2 76 302 w52
H(ev) 0.35 0.35 0.39 O.uh
H/H 1.00 1.00 1.11 1.26
(Cth%—‘;’%)’é 1.000 1.000 1.128 1.283




3. [ ~BONDED CHAIN MODEL
5.1 THE MODEL AND THE PARAMETERS

In the]l ~bonded chain model proposed by Pandey(4),the sur-
face atoms are each bonded to two other surface atoms and form
zig-zag chains similar in bonding topology to the Si(110) sur-
face. The chain structure can be obtained easily from the ideal
bonding topology by moving the type 2 atoms(Fig.3.l) from the
subsurface layer into the surface layer and at the same time
moving the type 3 atoms from the surface layer into the subsur-
face layer. An important feature of this chain model geometry
is that the surface atoms are nearest neighbor(d=2.354A) to each
other. This feature is responsible to the large dispersion along
TJ(the chain direction).

A lot of elaborate works have been done on the surface state
energy band structure for this chain model. For our purpose,it
is much mimpler to isolate the top surface layer from the bulk
underneath it and calculate the band structure by tight-binding

~ e §
<

method.

LA N~ L7 <

4 O 0 sy k
- B . e
; 3’ ﬂ// 2 3 (‘i
4 N ﬁf"() alzﬁx?

@. &

3 2 1
) Lot 2 - -,
1 C ———— el

aﬁﬂgﬁg

Fig.3.1 Surface geometry of Si(111)2x1 dimerized 7W-bonded
chain model. Also shown are the primitive surface vectors and

the surface Brillouin zone. 0:Surface atom. e :Subsurface atom.
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The surface has a rectangle as its unit cell which contains
type 1 atoms and type 2 atoms each. After dimerization,the long-
er bond alternates with the shorter ones along a chain,as shown
in Fig.3.1l.

Denote the DB atomic orbitals,which are mostly p, orbitals,
of type 1 atom- and that of type 2 atom in unit cell n by [n,i}
and In,%> srespectively. The Bloch state of wave vector'ﬁ can
be expressed as a linear combination of Bloch sums with the

same wave vector k, 17
DI **‘*"z e"“" [n, 1) + d"(’{)}: e M2y

:azi(&)é;g,i +L ()37, (3.1)

The matrix elements of the one-electron Hamiltonian H hetween

Bloch sums are then —~ -
- R (Rn~Rom )

Hig=(BraHIZga) =525 ¢ {ndlH]m,1)
=ntHin 1y =g

HLI-Hgl- ‘“-; .

Hi,2= éiilﬂlﬁg 2.)“ﬁy%’%€7£.(R"-R")<n,1[“”rﬁ.l>
zindlHn2y +e a”(nimln—l 2)= 7&,+;2.e‘zaz

Hag = (H,, )" (3.2)

Here we take into account only hopping integral between nearest
neighbor atoms and & denotes the atomic orbital energy;tl and
t2 stand for the hopping integrals between atoms connected by
short bond and that connected by long bond,respectively.

Solve the Schrodinger equation Hf%k)—~(k)§{k), and get

ER)=E1t |kttt
- E_‘t (Jf‘l +/{')_ +24 tz.COS _{a\z
The Bloch state then has the following form:

i”i?) _;.Zed“k.\[d (ﬁ)[ni>+o£ (&)In ).)] (3.4)

%
) (3.3)

(®:Y orc)
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with thewrelatlon between;(;]‘_(k) ando(j(—-k; as
o (&3: L+t et + -Ae(ﬁ) + . v
g (R * ‘i\“'tz "7'“‘{ ==€ (Tifr o)
P t S()\ IQI
where 6&) 2 - 04
t (i‘.-ht,_C Szaz.) @( y)

To construct Wannier functions it is necessary to choosera

suitable phase for Bloch states. w.Kohn(IB) suggested to choose
the phase such that

g%fo):Real and positive
If we put the'origin of the coordinate on the middle point of
lo,1> site and |0,2) site,the Bloch state in the following form

will then has the required property,

3ét‘v)(") =N Ze‘z'i.;‘ob(ﬁw(m [nd) +e—i6(£J/2 l”*l>)

R B BEY, - 0R&)L
G C“"-%HM/LMD”ﬁ 4n.2))

The Wannier functlon can be constructed as
Y 1 ,, A& R r(\r) Py
d r Rx) N 4 &" (r)

(BB )+ OF)
3‘.;%[6 TR ) 0F) In, 1)+e AR ReRa /)

L[ CU-m)|n 1y +d -, L}]

C(Q—n)—m( -n)
*[ (m0>+1n.2)+ = o]
Where C{f n) _ % Kf& Y- GM/)

N{Z- -;x[{; }l ) BM}/Z] Z e“"{x (Xg-Xn)

_1_ 5 -x[kj% “Yn) - 6(#7,%_]

:M::

I
:M

(M:*,) 1;{ N 2n)An) g, ( h S";‘j:ﬂ )J
— - N+ T2 2
= @A+t j‘z_‘_ﬂi * A1+t Cos ldi'

~—'~*i\+)_§. Cos[ 2~ ) g [ RS i)

and T @) 2N 1+XLC052T’, Wy

" a7 (R-n) -\ A, SnEH
)= — C r__l__———- 2P+ )
CMQ g * (I+ = Lane) +'2't (fl-i"}zcoszﬂ-u)



cells along the chain,psinggil:TO.SQev and t2:-0.498v. The re-
sult is shown in Table3:, Tt turns out that the Wannier state
av(r) is almost entirely Composed of the bonding state on the‘
Same cell with aboyt 1.8% antibonding state Ol each nearest neij-
ghboring cells along the chain direction, While the conduction

band Wannier_state

QQ?—@):%’%—[((Q-:‘«)[&A) —di-n)[n, 2]

- 4- -n) -n)—cl(4-n)
= %%{ I n)‘:-d(f n [ln,i}—}n)lﬂ"‘%[m’iﬂln’lﬂ}

as opposed to av(r),is almost entirely composed of the antibond-

ing state on the Same cell.with agbout 1.8% bonding state on each

It is therefore g 800d approximation to consider av(r) and

ac(r) as the bonding ang antibonding stateg on the same cell,

respectively: 0'(F-B) = L (In, 1) Fin2)) (3.3)

(n1ln,2) €008
While that betweep ln,@} and !n-l,%> is more less than 0.08,be-

Dormality of tpe approximate Wannier function then ig preserved,

En =<Q TR0 |H[Q" (7R, )
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fable.B The bonding component[c(j)+ d(jﬂ /2 and anti-
vonding component [c(j)— d(j))/a at j=th cell of a
Wannier state ag(r) centered at o-th cell.
3 ) T P 3 Iy 5
[c(3)+d(i)j/2 | 0.961 5.006 | 0.007 |-0.004| 0.002 | -0.00L

[c(j)-d(j)]/Z 0.0 ~0.136 |-0.037 0,014 |-0.006 0.003

Fig.5.2 The geometry

of dimerized chain

]

model. Fig.5.3 The simplified surface state ¢ -
energy bands of the chain model along TJF
direction. Also shown are the electron-
polaron and hole-polaron energy levels,
h

ES and E..
iy P
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=2 [ Al Ly +4n 2| 2 +{n, A2y H a2 D)
:-}_—{2?_ +)_£‘(n)) :g}i‘(n) (3.'[)

While that of electron in the conduction band Wannier state
c .
a (r-Rn) is
~C_/_ € ¢
°=(a% (r-R}) |5]a®(r-r )
ﬂﬁ2[§n,1‘H|n,i>+<n,2‘Hln,%>-<n,l!ﬂln,é>-<h,2lHln,%ﬁ
=1/2 [23-21;1(:1)] =§-t, (n) (3.8)
Where § is the atomic orbital energy;tl(n) is the hopping inte-
gral between atoms separated by short bond 4 ; 1n the (n)th
3
cell.

From the slab calculation of S8i(111l)2xl by Selloni(16),as

<

far s the dimerization is not too large,say ‘(dn -3 /4,
: . 9

O.lB,tl(n) can be represented quite well by

tl:to'eXp(-F(dﬁ,l—do) ):to- eXp(—{}Adn,l) (3.9)

'Adn,lzdn,ludo (3.10)
Vhere do is the un-dimerized bond lemgth.. = ==
Similarly,the hopping integral between atoms of different
type separated by long bond dn pscan he expressed as
H
to'eXp(—PAdn,Z) (3.11)
Consider now the equilibrium ground state of the surface.

t2:

where

The system consists of 2N (N being the number of unit cells) suf
face atoms and 2N electrons. Simulating the interaction on the
atoms along the bond direction by a force constant I and neglect
ing the inter-chain interaction,the elastic energy of the lat-

tice is then
_ 2
Celastic™ i’/2§[(Adn,l) +(Adn,2)2J : (3.13)
The summation is over all unit cells.

In the ground state,the ON electrons will fill the valence
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band fully and leave the conduction band empty. Within Born-Oppen
heimer adiabatic approximation,the adiabatic potential energy
then equals the lattice energy plus the electronic energy which

depends on the atomic configuration,

ib clatt, celect
€§§'=5a #8557 e, )

The electronic Hamiltonian can be expressed in terms of the

(3.14)

second quantization language as

=2 2L E ay, an+§%t2/2(an a,~a, &, (3.15)

felec YR ¢

m: the neighboring cells of n
along chain direction

Yhere n labels the unit cell; m labels the band;The factor -of 2
takes care of the spin. é;+ and af are the creation and the an-
nihilation operators of M band Wannier state,respectively.
it2/2 is the hopping integral between Wannler states of
neighboring unit cells along chain direction,as. can be verified
as follows:
(o (x-R) [E]a" (2B )
=ﬁ2BﬁJ¢H“nﬂj;9+éhlﬁ‘m&n,$+éham mau;9+

+<§,2}Hr(n+1),g>}

Hl(n+l),£> =t,/2

=1/2 <n,2
Remember that tzis the hopping integral between atoms connected
by long bond and that we neglect the hopping beyond nearest nei-
ghbor.

Denote the ground electronic state byt%g>‘with the well-
known properties:

a§l§o>=0 ,and agjé O>:O.

The electronic energy in the ground state 1s then

elec o T v
2N =<§%lﬁele4§éd>‘ 2%; By (3.16)
From egs.(3.7),(3.9);(3.13) and (3.16),eq.(3.14) can be ex-
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presséd as
8ad1ab X/EZ [{Ad l) +(Adn 2)] +2£L€+toexp(-ﬂz&dn’l)]
" (3.17)
Ad 1 wmiAdﬁ ,2 are not independent to each other in dime-
rized T -bonded chain model. In Fig.>3. 3,it is shown that the bond
angle is 109.5° in the case of undimerized chain and this angle
will not change much as long as the dimerization is not too
large.
Under uniform dimerization,tne followin geometric relation
holds: ‘
da-_-a{(do/a)2+(Adl/2)2-2~(do/z) (IBa,l/2) 005109.5°J 1/2
=d (l+l/5~’Adl}/d )
Ad d d_l/BAd (3. 18)

‘But notice that if we just change one particular bond length,say

d,] l,then d
s 24 2;2 1/6 - aAd.ri 2
B Ad’.)'i 2 Adj)i

and all the other bond lengths remain unchanged. So that
aEQ&hb d d 2 Adn, 2 d 5 ad +
2CaN = () =) |AQngtA +A cabatia T2 2T
2Adn4 0 [ e nL 22adna4 nd2 Admi T2 2 adnt

- |D/9‘ rﬁdn.i _l'ﬁto'exP('ﬂAdn,i) (3.19)

The abuve equation shows the dependence of dimerization pa-
rameter Adn,l on |, B and t,.

It seems that we have a lot of parameters to be determined,
but actually there are only three independent parameters in our
model,either ty,t, and Y orY,p and t . Below we first deter-
mine tl and ta through the experimental curve obtained recently
by Lith(3),which is reproduced 1n Fig.3%.h4,

In his wavevector-resolved electron-energy=-loss experiment,
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Lith obtained the band dispersion along I'Jd and J'E directions
and band gaps at J and K points,as shown in Fig.3.s b and c,by
assuming equal electron and hole effective masses. From Luth's
curve curvature,we obtain that me:mth.Q8mo. Compared with our
model's dispersion,eq.(3.3),we obtain

f4 07 R o7 g 095 eV

3 A-t. T2me
Not the same as Luth's interpretation,we explain the "band

gap"(0.43%ev at J point and 0.59ev at K point) as the exciton ex-
citation energy. Since O.L3%ev is much closer to the Chiarotti's
(2) optical absorption peak position(0.L7ev)than 0.59ev,we. take
O.i4%ev for our parameter determination. Aéﬁ%giculated in sec.
3.3 and 3.2,the exciton binding energy is 0O.3L4ev and the elec=--
tron-polaron binding energy is about 0.03ev,the actual band gap
at J point in our interpretation will then be about 0.8ev. In

our notation,the band gap at J point is 2ltl—tal,thus

Z-Itl—tﬂ =0.8ev (3.22)
Combining eqgs.(3.21) and (5.22),one gets
tl=-0.89ev " (BtZB)
t,==0.49ev (3.24)
From eqs.(3.9),(3.11) and (3.18),we get
tl/tazeXp[;ﬂ(Adn,l—Adn,aﬂ :exp(—%ﬂbdn,l) (3.25)
pAdn’lz—gan(tl/ta):—0.448 (3.26)
bo=tyexp(pad, 1)=-(t3 ct) Y 40,576y (3.27)

In recent paper,Pandey(4) showed the total energy dependence
on intra-chain bond length that we reproduced in Fig.3.5. We es-
timate the curvature of the curve £,

C=5.29ev/A2=qg,5ev/a2 (a=3.854) (3.28)

In our notation,it corresponds to
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. 2
C= f/2+tof5 /2

or fa2=2Ca2~tOl§2a2 (3.29)
From eqgs.(3.9) and (3.19),we get
Ny 2 225020804 )/t
10/97 pAd, 1=2p7t) or BZa"=gla"(fad, 1)/t (3.30)
Combined with eq,(3.29),finally we get
(:2=116ev ' (3.31)
242=32.41  or Ba=5.69 (3.32)
Ad, 1=-0.3034=-0.0786a (3.33)
b o
1
Ady o=-3 Ad, 1=0.104=0.026a (3.34)

The surface state energy band structure obtained is shown

in Fig.3.4.

5.2 ELECTRON-POLARON AND HOLE<POLARON
3.2.1 Electron-polaron
As shown in sec.2.2.l,the localization or delocalization of

an excess electron is roughly determined by the ratio EE/B,where

tron and B is half the conduction band width and equals to t‘2

is the relaxation energy due to the localization of the elec-

in the present model., If EE)E,then the electron will be locali-

zed.

a) First we calculate the relaxation energy Eg in the case of an

excess electron perfectly localized in one cell,say cell O.
Denote the dimerization parameters before lattice distortion

by d d_ .,and those after lattice distortion by dﬁ 1 a®
b

) n,l’> "n,2 n,2
. Within adiabatic approximation, the adiabatic potential energy

before and after lattice relaxation are

£l e T Eladg) 4 Egladog)  0439)

| )2 €2 @ C (€)
¢ Ll T L) HELL) 53y
n
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Because of perfectly localization,the bond lengths that
. . . e)
chsnge after lattice relaxation are dg 1.9 2 and do_l,z. add

rel .
can be determlned by mlnlmlzlng E2N+l with respect to do,l'

rel
48
:Em;; ;0:3'[.& a,1+Ado,). aAdn +A{‘ic.‘ = ML}"’ 37& 10)

Ada,i EYS 2 3Ad%, QAdoi

_ 1o € -

—-"9‘3'.'1&0,1 "P*ce Pados (337)
pgd§’1=—o.17 (3.38)
Ad 1='O .1154=~0.03a (3.39)

A1l other Adh 1 unchanged and are glven by eq.(3.33).
$
e _ 4t _ 1 e e _ _ 1
A8 =MG 15 = z(ha ;o Ado_l,l>-o.07A_o.O-8a (3.40)

The relaxation energy is given by

e unrel _ rel
SRT L 2N+1 2N+1
- Ado( - Ada;
—l’Ads]+Ad0)_+Ad0 -1 2}"“[&&01 Ado)_ +A —\)J_] +k ‘8 F )
=0.13%evVv '(5.41)

While half conduction band width is

_ e
tzl = 0.49ev. Ep th\,
so that the excess electron will not be localized. Instead,the

electron will spread over quite a large number of cells and forms

a large polaron on surface.

" b) Secondly,we consider the case when the eXcess electron on
surface state forms a large electron-polaron.

Assuming the electronic wave function of the surface with
one excess electron as 4 »

§_ C+\§o> - (3.42)
Where\ > is the ground state wave function with full valence
band and empty conduction band. ¢, is the amplitude probability
of the excess electron being in cell n. The normalization con-=

dition then requires

Z\cn\zzl (3.43)
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The electronic energy of the system 1s

elec _
2N+1 7 <§C‘Helec\§c>
_ v 2:C_ *
= E;En’r %[Cnl Ec- t,/2 X Cpy . (3.44)
. . . m:the n.n,ngr\ﬁl,on? chain
and the adiabatic potential of the system 1

adia_ é‘lat+ elec
2N+17 2N+1

2 2 _ 2
=§§[(Adﬁ’l) +( Adl‘el,a)] +(2N+l)€+%(2- ]cnl Yty -
E o
~t,/2 % Cply (3.45)

di m :khe n.n. o4 N along chain
By minimizing Edy,; With respect to ¢, 08¢ would get the

2N+1
As far as the extrema of the adiabatic potential are concerned,

sdisbatic potential & 25-%[ad 1.) as a functional of Ad; ;1 -
s 1 3

however,one can take a much simpler way by converting the order

. . . C s di .
of extremization:For fixed c,sone minimizes E§N+i with respect
adia

to Adi,i - 2&wy —
2bds))
_yl0,5€ 2 e
= '@Adn,l- F(Z— [Cn‘ )toexp(—ﬁAdn’l) (%.46)

; € 4 ur(oRAGE
Remember t = tovxp( ﬁAdn,l) . )
We expand ti to successive powers inlcn\ and keep to only

the first order,

e_ _ e _ 2. ___
7= t exp( padg 1) =t A lcn\ +
- 2 z 1,
= t exp(-BAd, 1) * .A|cn‘ (3.547)
th A a(ioe PAJIMI) pl(fu e‘ﬁAG(n,l)‘?‘
en = =
SAG) ljal=0 — Srtapihered
Sl (5.48)
= = 3.48)
Where Ad, 1.%y denote the dimerization parameter and intra-cell
3

hopping integral without the excess electron,wnile Adg l,ti de-
3
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note £hose with the excess electron.

In principle,this Adz’l as a function of Fnla should be put
in the eq;andggﬁ‘}_i‘ should be minimized with respect to ‘lcnl 2.
But it is too difficult to do that directly. instead,we follow
Holstein's paper by considering the Schrodinger eq. of that ex-
cess electron in the distorted lattice,ignoring for the moment
the presence of the valence electron. Since we neglect inter-
chain hopping, the prdblem reduces to one chain problem.

The one-electron Hamiltonian and wave function of the excess

electron are:

£ ol g (o e - o) Dol

2
4‘3:}; ¢ [n%) and ;lcnj =1
From Schrodinger eq. H® ;[e__: gg ¥C ,one get

c c
B, Gt t/2(6 1+ Chiq)=C Oy (3.49)
Substitude the difference by diffential

d Cn
n-1* Cna1 20 = rre

and from eqs.(3.8) and (3.47) we have

C

= € =t] = £-ty-alc 2,

eq.(5.49) then becomes

(g.C_ ¢ +tl+A!Cn! Sot,)eC = t /2 i i" (3.50)

(350)xdc"+(3’a’0)xdc",we get

*
+ dly ) (3.51)

dh d_; dC
(€C+ AIC xz)i‘—l: t /2"‘"‘(7‘
b n dn 2" " dn nodhn
In eq.(3.51), energy is measured from the bottom of conduction

band. (Note that (£-t1+tp) is the unrelaxed energy of the bottom

of conduction.) Integrating eq.(3.51), one cbtains
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( 2
./C A 2 . d —_ rd -~ \
(EP + élcn‘ ) Cnl - tZ/EIET;‘ = Const., (3.52)

As discussed by Holstein(18),for localized solution,e.g.

Crl'““-? Os

%%‘““90 for n—e0,it is necessary that tine constant in

eq.(3.52) equels zero and C  be all real. C  therefore satisfy

the following eq.

9Cr C (lE; + AC"l -

Aoy ¢ (3 ; ) (5.53)

2
N ¢
28 \h 28 2 =
C =1~ ) ;SQCA- (ﬂ'no) (jo‘)#)
5 [
vl
) 2
From the normalization condition, ‘/Q\dn =1, we have
-®

j}}:,i - 037 (3.55)

21,

EI’C :éﬁﬂ ——0.03%eV | (3.56)

The polaron radius is 1/0.37 £ 3 unit cells. The distribu- -
tion of that excess electron is shown in Fig.ﬁ.i. The polaron

binding energy is 0.033ev.

[PIPReS

4—-———?To£a£i£i{y

o5

0oL

Fig;é.é. Distribution of electron in the electron-polaron.
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Note that here we have neglected the changes uwue to lattice

distortion in the elastic energy and in the total valence elec-
tron energy. By the 1attice distortion (less dimerized) due to
the excess electron,we lLoss some€ energy in the valence electron
energy and at the same time gain some in elastic energye. These

two almost cancelleach other as can be seen below.

Ew«u& Yz(Ad,‘u) =+ %_— radpy) = ,-— z_(i 8(3‘?.

e) |2

EM :{2—7‘.@ u‘;) :5_";1‘-9 Lrbﬂn\)—'qrz[og(l‘ ){Sf ]
Z(L8ph) -0~ A 2]

T

The change in elastic energy

A = £ gl = Sugphy T U0 hyel

]

= LB -2hy =072 ey

:2-A
For the valence electron energy part
,unr.»(
=2 Z (e+4)

£ 2y 2 (e+h”)
The change in the V.e. energy ‘

Ag,, =g g It s (A A =2 Z4¢ =2h FoT2eY
gnd the total change A8t + A £y 20
3.5.2 Hole—PélarOn

A hole in the valence band can be considered as a carrier
in the valence band w1th charge, momentum,spin, cffective mass
and especially energy as opposite to those of the electron in

the same state.

For example, a hole perfectly l1ocalized in cell n will have

energy h v
E= ~Bp= “'£+-toeXp(—PAdn,l) ’

apart from a constant, Eh has the same dependence on dimeriza-=
tion parameterr&dn 1 as conduction Wannier state enersgy E
3
+ -
8 toexp( ﬁAdn,l)'

Therefore,a hole wiil have exactly the same eftfect as a con=
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ductién electron has,as far as the electron-lattice coupling is
concerned,in our model. As an excess electron in conduction;a
hole will not be self-trapped and will spread to the extend of
about 3 unit cells with polaron binding energy 0.033%evVe.

The energy levels of electron-polaron and of hole-polaron

are also shown schematically in Fig.3.4.

3,3 EXCITON

When an electron-hole pair 1is optically created on the sur-
face states,the electron and hole will interact through the
screened Coulomb force and bind together to form an exciton.

Denote the creation operators of a conduction electron and
that of a hole in Bloch state at wave vector'ﬁ with spino~ by
c§?>and d;’a_,respectively,and the corresponding annihilation
operators by Cg,m and d E; . Neglecting the termé representing
interactions between conduction electrons and between holes

which are irrelevant in our problem, the Hamiltonian including

the screened Coulomb interaction can be expressed as

H EE *JC CM'I'Y d,wd,go.)ElﬁJ"

— "gla'; 272 I "
4‘.,%1,&}{,“/( N ﬂr Rf) G- & d? Ai +

Y T P ﬁ;a Ay +
ﬂ%:&;,iywl Vo ¢ v )CL Cfs«%dfﬂ‘ c!ﬁ."‘d (3.57)

Where Ec(k) and Ev(k) are the Bloch state energies gkven in eqg.
(‘&\‘rl #LG-}. ‘;5'“_2 *45‘,
)' }z }3 }"4
¥ . ¥ .
jg){‘h 3 yyu Y90 zw(“w‘dn

(3.3) ,and

”‘eu-r;
In optical exc1tatlon since we neglect inter- chain hopping

the electron and the hole generated will be on the same chain.

The generated exciton 1s a singlet state(total spin:O),Q(kh,k&),
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3{(4& £e) ) =55 [C* idr W_J §> (3.58)

with total momentum K= % -_h,whlch is a good quantum number. As

eXxc

shown in many textbooks(1ll),the matrx element of H exists

only between state; of the Same total momentum,and is given as
(FRT,2)| 274 X2 D)
e D -E- K)]J'zz +2W|

g
V.V C/(3, 58)

aA.»

R )-w

mﬁhl«
. "

V

Where £C>is the energy of the ground state with full valence
band and empty conduction band. The Coulomb interaction between

Bloch states can be transformed into that between Wannier states

"‘“,__—‘ e )+ ) (
W(*R K+‘<K4€ /;Z 7);/“;?{1)(“‘Hlal“(r‘);lf}),)df,an

‘R£|+(«£ k)/?k “(Z ) " TR N o ()=
"‘/é-z €A[ ’ ’& ‘K 10]/ )(: ‘)ﬁz-f': j')C“" r]a(rjs)qu’jﬁ)‘
,PJJL,O;Q;I . d_Fu O”':.
(3.60)

Neglecting the overlap between Wannier functions in different

Cells,the above equaulon,becq.ES .
A{' A ey iv)
W(ﬁ iv* 1\7 f) Z gttt Lot ]ﬂa“w.—JnJ {avm,mé, ’df.olr

:7& zﬂ—,((zé)ﬂ/la““‘;ul A q? d A

Ve SRBVF
=yze Vi) (3.61)
- N

Where V({) is the screened Coulomb interaction between electron
-
and hole in the Wannier states separated by [t .

Similarly,the exchange interaction of electron and hole in
Bloch states can also be expressed in terms of Wannier states,
in neglecting the overlap between different cell's Wannier func-

tion,as follows
V)=

W 7 fi 'f' XV ',é'UGmt&n O ) G u&) a ch)

== ot dT, y 4
¢ \

él
W)

. ¥
L) d‘in)ama(rfnum—!) 2 dlav,
Feo },4q
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-N e X(.»Q)
2 (%.62)
% (%) ,which is of short range and of small value,is the exchange
energy between electron and hole separated by X .

We are interested in exciton state with total momentum K=0.
Putting in K=0, the Coulomb and exchange energy terms then be-

mee: w(FEE)-w(EVEE)

(3.63)
Where W(k) is the Fourier transform of V(%) with V(0) modified
to [v(0)-22 x@) .
The exciton wave function with total momentum ®=0, é(ﬁ:@),
can be written in general as the ¢ombination of,gfk;i):
F(k=0)= ZC(*’)E‘Z %) - (3.64)

the coefficients C(k) are to be determined from the set of egs.:

%(5{ A D)) (T =Ecd)
(e ¥,—2 N - Z. __
or [ (&~— E‘HE_ @-F'R)) a7 + Wk-4 )]C[ )=0 (3.65)
Tt is better for our purpose to represent the exciton wave func-
tion in '"Exciton representation” which is related to the Bloch

state representation by the 51mple unitary transformation,

YED) ,—Ze‘z‘}{

(3.66)
Then, %(fg:o) =%cu}‘)_2_,£(g=o,ﬂ) (3.67)
with d@):ize“”’c@) (5.68)

Relow we Calculata first V(k) and then solive eq.(3.65) .
) s

XUZ):fG e 7)a %3 @ cni)z‘a\ﬁ,dﬁa’%
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_/[ AP R, ik P T zm] RPTR s+ L PUT e“]é‘,_,,
[2 TRy )+ QLT u][;$ﬂnk,ﬂﬂayu;g!9]dran

- oZ“f gcp(};i,,;;-‘;w'r:-;‘z,,,>)‘+1(((?21:';)( | (g -—Wtr,—ko,;)] | (u-Re, )| =

- JeE R | YRR éi Py ‘”‘d (3.69)

It turns out that,forj~£ 0, X(}) is the combination of the Cou-
lomb interactions between atomic orbitals centered at various
sites. The atomic orbital of DB is mostly PZUELItis mostly 3P,
Slater orbital as can be seen from Table 1. Its decay factor is
not less than 1..,284 a.u..While nearest neighbor sites are'se-
parated by 3.84 a.u.(2.03A) in dimerized chain model. It is
therefore a good approximation to consider the atomic orbitals
as point charges centered at each sites as far as inter-site
Coulomb interaction is concerned. It is also confirmed by Mo-
lecular table tabulated by Kotani et al(l2).

For j =0, X(0) is a self-interaction term which we calculate
directly using Clementi's atomic data(see Table }). One point
to be pointed out is that the dielectric constant € is taken to
be (QuKH%ﬁ=6 (5) for inter-site interaction while for intra-site
self-interaction,we take €=3 by considering central-cell cor-

rection. X(?) is tabulated in Table 4.

£ .0 +I +2 ;xu)

X(X) (ev)|1.205 | =0.03 ~-0.008 1.13

Table 4. The exchange energy between electron and hole

separated by £ .

Similarly,for Coulomb interaction between electron and hole

in Wannier states separated by , V(Z),we have




V(f):]i

TR Y \a

?‘Fl

sy

dV

= o("’/[l‘P f-Re ) QU Rad| >+ [P (1 =Rg2d || U Ro )|

G Ry|* wm Rea)] |0 T Ryt QL /z,,,)er (¥ dY,
( .70)

We get V(0)= 2.38ev,and V(0)~ 2> X(8)= 0.1l2ev. We plot in Fig.
3,7 the Coulomb and exchange eneﬁgy in R space V() {with V(O)
replaced by V(0)- 2%3((!) ).
Solving the Schrodinger eq. (3.65),we obtain C(k) and trans-
torm it to d(f),which is shown in Fig.3.8 ,according to eq.(3.68)
. The exciton binding energy obtained is U.34ev which 1s closed

to 0.4ev obtained by Del Sole and Tosatti(5).

vid)
@)
ok d(e)
0.5
0.5 e | ®
o4 - —“°‘q'
@ L]
L 4
o3 | 103
. ® 0.2 ®
ek T
El ° 0.1 *
ol . Y T 4
. . ® ® ® e
. " — b bt T 7 T T T T [ i .
0 2 2 b 3 o g -0 -g  -f & -2 © 2 4 & ]

Fig.3.7 The Coulomb and Fig.3.8 Thé coeffients of the

exchange interaction be- exciton wave function in the "
tween electron and hole in excliton representation'',
a singlet state exciton

with total momentum K=0O.
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3.4 EXCITONIC POLARON ( tentative)

Unlike the case of the strongly localized exciton in the
buckling model,the surface exciton in the chain model is a
Wannier exciton which can transfers throughout the chain. The
Wannier exciton also interacts with the lattice as the local=-
ized excitation does;However,this instantaneous interaction
will more or less be averaged out because of the translational
motion of the excitation. It can easily be shown that the elec-
ton or the hole in the exciton has the same probability ﬁo stay
in any cell,and thus no local distortion on the lattice occured
.0f course,there is still exciton-phonon interaction,as will Pe
derived below.

As shown in sec.3.l,the band gap depends on the dimerization
parameters Adn,i' If we denote the equilibrium values of the
dimerization parameters and the band gap by Adn,l’ Adn,a and
Eg,respectively,and denote the variation of Adn,i by a,

’ -5l dh, Qn) -
E;-"llt-b'l = 2 | g, o et ) |

Salg, e gy M| 2 2 Uy A O p 300

. ,then
al’

=2 ‘L’tz"F(ft Ih,l 'il 9-h;z) l: l'}l"fz '/31&,1 (h+ %fl)

:‘EJO’Z/Q l*\'*'-_!;"fl"in};

Remember that from the geometry consideration, g,= a%ql (see
Fig.3.2).

By quantization

_ + L'?'-Eh
B = g, 5 e b0 €

W +
fhere bk and bk

tors,respectively; M is the reduced mass of atoms and eguals

are the phonon creation and annihilation opera-
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M/2,Mis the atom mass. Here the optical phonon is assumed to be

as Finstein model with frequency W o Wo can be determined by

the following relation

and ‘ﬁuo= 0.048ev.,

The excitation energy of the exciton with total momentum'ﬁ

is o &lk _c* KK
Er E? Eb lm;>( —_— EO + lmzﬂ
Where EEX =0.34ev,is the exciton binding energy as calculated

in secCed.5- Moy is the exciton mass and M= me+ m, = O.96mé,as
‘determined from Luth's electron-energy-loss experiment curve(see
sec.3.1l) .
el —

If we denote the exciton state with total momentum K by 1 K>
,then the exciton-phonon interaction Hamiltonian H' can be ex-
pressed as

‘ -t —ly

H! =%’]K)H}{:K,<K'}

where H'. = \k= + 4
kk' vk" ( L—ETT‘{’ ' Lﬁ_‘k‘l)

Vig = —z/z{},+3; )mu’ =2 . 0.1F¢ &Y

projecting on the subspace of one-clectron excitation,the

with

exciton Hamiltonian can be expressed as
Heyx= % ‘i>£§ix<§‘
and the Hamiltonian.of the phonon field is
Zhw bab—-
To sum up,the Hamlltonlan of the interacting exciton-phonon
system can be written as

H= Hex+ HL+ H?Y
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3,5 EXPECTED OPTICAL ABSORPTION LINE SHAPE (tentative)
As derived by Toyozawa(1l8) with single exciton band assump-

tion,the line shape function of our model will be of the Lorent-

zian form given by

TE) R e

(E- £€:'-A.,>‘+ R*
The polaron shift Ao is given by

° P
= 2o ] [nthig)+ ‘J'g;-t%‘_»f@ i Mm“‘)é‘:"—e;'wt@r:»

Where P stands for the principal part of the integral; n(ﬁGK)
__r

= C‘N%’T i

temperature T.

,is the thermal average number of phonon hQK~at

Very roughly,we replace the summation over K by s'—é Na'jdﬂ
(remember that we neglect the inter-chain transfer,so that the

problem reduces to the one-dimensional ones) ,and get

0. 137: ( tg@r '+‘) eV
The polaron shift for various temperature is listed in Table 5.

The hal f-maximum width is given as

2T =270 2 Ve {[n (hapy+ (e 67 AR ;m)S(z o)

\_)

By replacing <z;—a .fzm ,we get approximately

lr# = 0 279 *0451, '

The -vatues of 2[’ at various temperature are alsc listed in

Table 5.
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Table 5. The polaron shift and the hal f-maximum widthoof

the absorption spectrum at T= 2K, 150K, 300K, 450K and 600K.

T 2 150 300 450 600
A{D(eV) -0.137 -0.140 -0.163 -0.194 -0.227
2Tb(ev) 0. 0.007 0.051 0.113 0.181
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L. DiSCUSSIONS,AND OUTLINE OF FUTURE WORK

We can summarize the conclusions of the work done so far as
follows:
a) In the buckling model of Si(1ll)2xl,the electron-polaron,
the hole-polaron and the e-h polaron are all small polérons
with 8%=4.25, sP=6.4 and 5°7"=6.98.
b) In the chain model,the electron-lattice coupling is substan-
tially weaker,with electron-poiaron binding energy Jjust about
0.033ev.
c) The comparison of the results of the two modelg with optical

absorption experiments at room temperature is not conclusive.

d) The main test should be the study of the temperature-depencent
shift of the abs®drption. In the buckling model,one expect no
shift due to polaron effect( though-there may of course be a
shift due to the thermal lattice relaxation). In the chain model
,Wwe expect a polaron red shift with temperature.

The works in sec.3%.4 on excitonic polaron aﬁd in sec.3.5 on
optical absorption line shape were done tentatively and very
roughly. They should be improved by considering multi exciton
bands and by doing the summation more precisely. By doing so,it
is expected that the energy shift Ao,will not be so large in mag- -
nitude,the half-maximum width 2r0 will be wider and the line
shape obtatfied will be comparable with experimental curves(2).
The same is for the line shape calculation in the buckling model
. By using some proper Gaussian to replace the histogram used,
the line shape will be more smooth. These works are to be done

in the near future.
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APPENDIX A
Dependence of Dangling Bond Orbital and Energy on Vertical
Position of Top Atom
Fig.Al. The circle denotes the
top atom,dots denote the second
layer atoms. 901,({72,73 arg-3 éack..
bondss yh“isﬂthe dangling bond.,

As shown in Fig.Al,the 3 back=-bonds are directed from the
tOp'surface atom to the other 3 second layer atoms underneath
it,the dangling bond is directed outward perpendicular to the
surface. To maintain the correct bond directionsand the ortho-
normality condition among them, ?ﬁ, Yo ?B and V@ ;should each
be a proper hybridization of l@),lpx),pr> and!p£> orbitals:

¢ = |8y + B [Sin¥ [Px} - Cosy [Py

# = s> + 1 (S 1 (4|4 E [1) = Cost [P2)
b, = o |S) +/5’| ['Sm r (—‘_‘;‘_I Fx)—ff-_- f‘}‘/)) —CosY %FQ)
b = g s>+ By |P> "

withotheznormality condition
2 2
A *‘ﬂl =1
2 2 _
L'+ py = 1

and the orthogonality condition

(Pl y=0 =L+ /z,z (-4 Sen’Y 4 Cos?t)
{@ilyy =0 =ity =B oy CosT

With the above condition,the remaining orthonozmality conditions

are automatically satisfied.

It is easy to obtain from the above egs.

ch:JE,Coi‘yzsz%%

ﬁy:ii—d{;’(
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Denote the atomic Hamiltonian by gatom

Hatomls> - Esls>
gatom [pz> - Ep lpz>

and the dangling bond orbital'energy

Ep= (%Iﬁato‘“l%) = ds Bt BL E

then

= - 652 (g-
= Ep- 6(3)° (B,-Ey)

Where C= 12-(E =E ).
p s

APPENDIX B.
Perturbation Approach for Small Electron-Polaron
The excess conduction electron wave function can be express-
ey _ c
ed as Y= %anln> (B.1)
with normalization condition

2 ;
%!anl =1 (B.2)

The one-electron model Hamiltonian is,as given by eg.(2.5),

H 5:( Ihm>Em<Y\wi + , (:)>Eh< (c)' )+Z[ﬁf,:,hm}(mml +
*“l lc0)<mcq) (B.3)

. © w. .
The schrodinger equation'l{4zzﬁ}¥ gives

Ea_= ) .4 A
an n n+,,%',} nm m ' (B 2
and  E= 3 |, | B z ) ¥ o (B.5)

{an is the eigenvector of real Hermite matrlx and can always
be chosen as real.

Assuming éc; small compared to the relevant energy( this is
to be justified afterward) and use éiﬁEgD and Eg)to denocte

the i-tn order contribution to an,Eg and E,respectively,e.g.




w; uJ @23 A3
‘E=E +E 4+ --

(B.8)
«©) K)(O) Hw (::)(2)
En =En E EP\ ) .
(B.2}"
) @
Q= QL 00 + Gyt -
(B-B)(
" The normalization condition,eq.(B.2),requires:
o2
=1 (B.9)
23y
< o)
2 - O (Bol
28nt 8,
o)2) @2, _
%(Zan%+ a, )= 0 (B.11)

Suppose the excess electron is essentially localized in cell
P O é' J‘ . »
e = where is the Kronecker
0O, we then start fjom a, n,o ° r n,o0 s

delta function.

1

Eq.(B.10) then gives: éo

0

Each order of eq.(B.4) can be exXpressed as

(2L Eg‘o’).a‘gé 0 (B.12)
Y ody (o), o) db (1. (0) (B.13)

(E(l' En ) (E( )) 2n %h;nm am

(2LE%2) . Ok (glth) Ll (RLERY L 2 =Tt (B.14)

Q)

Eq.(B.12) ,because of a ;tg ,gives ﬁbL Egb).
El E ,2while for n# O,gives

Eq.(B.13),for n=0,gives

(l) j_nlo - *'\) 4]
an= Em EC(O) - Ecco Ecw)
Combined with eq.(B.1ll),we get q%) ELQ;)l Z: Fno
n

nee) E LS

{>)
Using eq.(B.l4) for n=0, Be is given by
2) (€x2) p ¥
E( _E +Z am}’m,a

30 (o) SleItd)
while for n#Z O,we vet( ) BN

a(:)z [M{* )t‘mam (Equ_ E:u))]/( o) ,Ecun)

Eg and its various order covtrlbutlons can he determined as

follows. First minimization of the adiabatic energy
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S

i

Eg(kn,; )1+z§ £+ ga; 1 J%j,m G .

with the normalization condlflon,eq (B.2), ylelds
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Where Ais the Lagrange s multiplier and we have made use of

eq.(B.4) and eq.(B.2) to eliminate the last summation in the

above eq. With EZ and Eg given in egs.(2.6) and (2.7),we get

by = S22 G - Cly
ra*—c(2d1a2l2) rat-Cfa
3
Hai = +Ho =4y
i }I"" ? Yo - € Pn, °

kh , = C(ldf‘i"&éo{{")Ha _ C/an,l. H
’ - — [}
Yor=C (245 +Q28) Y&*-CPn, 2

ra?
Hrno= hntHo = ra*-cp, ; Ho
Where fn,l: 20{§+ ai.o(g

2, 2,2
Pa,2= 2A5% gl ]
are the total amount of electrons on DB state of (n,l) and (n,2)
atoms,respéctively.

2

and series of each order
as f%,l and /%,2 can be expanded as a a

contributions

qnz- - (Q(:} l)‘}‘{l aw)a(l)) (a“”'—f' la\o)a(z))+ e
Pra= (274 O 402 ) H2 0 0ot )+ [1a 24 208702 ) ol |+ - -

) {21

= /0“‘(‘:) +[)"‘+P""+“’
Pm; 2dl+am; )+(l@” MJ )+&‘(Qw{+

to} t) (z)

= Fh,)_ +[)r\;_ Pnz_'l‘"'
Finally,from
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E ) (m C/"”) (ra i)™ t
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2p_rer 1 20pR (rartcpat) )43 Pu, 2
+ o (o)
rea _cio“'l- (re\t cf(o))g_
From the above egs.,we see
) )
él: cﬁ 0
and EOb)is the energy of the conduction band Wannier state at

(o]
the cell in which one conduction electron is perfectly localized
| . . .
,as given by eq.(2.20). While Egonw1th n£Z0,is just the conduct=-
ion band Wannier state energy in the ground state,as given by

eq.(2.16),

) )
Egb-Egb :(Ep-l.??eV)¢ (Ep—l.29ev)

==0.48ev
In sec.2.l,we have estimated t=0.05ev. So that
*50
Fo - Ex®

This Jjustify our perturbation method for small electron-polaron

= oo}y

problem in our buckling model.
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