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INTRODUCTION

0 <
Let H C‘(Rz&ﬁﬁ) and let J be a simplectic matrix (I 0 ], where I- identi
. d
ty in RV, set H'= grad H, z= (p,q)eC‘( R, RQN), z= E% cand consider the

Hamiltonian system
(H-S) -Jz = H'(z)
with N degrees of freedom.

This equation creates a lot of problems connected with existence of perio-
dic solutions. We can divide resalts in two groups: the first one states the
existence of solutions on a prescribed energy surface, the second one the exi§
tence of solutions of a prescribed period.

As we can see in the following example}not a1l Hamiltonian systems have pe-

riodic solutions.

Example O.1.
Let us consider the equation
(0.1) ~ x= F(x) , where F satisfies
(F1) FeC*( R™ R™ , F(0)= O.
If we want to find small oscilations near the equilibrium x= 0, we should
require, first of all, that F'(0) has a pair of imaginary eigenvalues T icw™*.
However this is not sufficent, in general, for (0.1) to have periodic soltions

near 0. Let m= 2 and

Ay = o=y = x (xP o xE)
(0.2) . 3 9
Xp = X "X (xp ¥ Xy)

One has that F'(0) has *i as eigenvalues, while from
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A y i
ﬁ’: s (ad e xd) = x %, t XXy

it

2,
~(x}+ x3)
it follows that the solutions of (0.2) are not periodic because

A
2t +¢C

2 2
Xy ¥ Xy o= -

Liapunov has shown in a celebrated theorem{22] that (0.1) possesses
pericdic solutions near O provided it has.an integral FeC*( R™ R) with % (0)
non-singular, that is:

Theorem 0.0.

Suppose F satisfies F1) and F'(0) has iw* as eigenvalues with (algebraic )
multiplicity 1. For all ke %, k# X1, ikw* is not an eigenvalue of F'(0).
Moreover suppose (0.1) has an integral FeC?*( B™, R) veryfying (F(x), F(x))= 0
and such that 3”(0) is non-singular. Then (0.1) has a family of Eg; periodic

solutions x. with ixw!m————-»o as (@—w*. x

One can see that (H-S) has the prime integral i.e. exists such &x) that
(JH' (%), F(x))= 0 and it holds for F(x)= H(x). There is a sense to look for
solutions on prescribed energy level, because H(z(t))= constant for every solu-
tion z(t) of (H-S). Weinstein in [25] and Moser in [ 23] eliminated the non-re-
sonance condition from the Liapunov Center Theorem ifi the following way:

Theorem 0.1.

Let Hbe C% in a neighbourhood of z=0, H(0)=0, H'(0)=0 and suppose the Hessian
H''(0) be positive definite. Then for every &0 small enough (H-S) has on

H(z)=& at least N distinct periodic orbits.

These both results are local, the general one was obtained by Weinstein
[26], who proved:

Theorem 0.2.

Let & be bounded, convex domain in R  such that £ =38§, where EfzﬁxeﬁzN:Fﬁx;:4}‘

and suppose H'{z)£ 0, \/zeff. Then (H-S) has a periodic orbit on & .
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This result was improved by Rebinowitz [24] whe weakened the convexity
assumption on & taking & star-shaped with respect to some point X € R*M . His
result was as follows:

Theorem 0.3.

Suppose H'(z)# 0, VzeX, &= H.'”"(l) and that £ is radially diffeomorphic to

3B= [ xe R™ :|x|=1}. Then (H-S) has a periodic orbit onJf.
I

Then the result concerning multiple periodic solution of (H-S) on a pres-
cribed energy level was stated by Ekeland and Lasry [17]. They proved:

Theorem 0.4.

Let J=2&2, $2 bounded, convex domain in R*M. Suppose there exist r, R >0 with
R%*< 2r* such that B;zSECBQ. Then (H-S) has at least N different periodic or-
bits on &= H"4(1).

This result will be written lateriwith more details as’Théorem 1.3.2.

In this direction there are two results: by Berestycki, Lasry, Mancini,
Ruf [12] (in this case X lies between two ellipsoids i.e. if & is given ellip-
soid such that for suitable & B>0,dE€cflc BE, where {2 is star-shaped and compact
then there are at least N distinct solutions of (H-S)), the another result is
by Girardi and Matzeu (19] see Theorem 4.1.4.

In the investigation of glosed orbits on an energy surface, Rabinowitz
[24] introduced a device which translates the given problem into the problem
of finding periodic solutions having prescribed period for a related Hamilteonian
system, a problem which is in interest in’itself. The basic result iis: the

following:



Theorem 0.5,
Suppose He C'( RZN, R) and satisfies H(z)= O(Iz!z) at z=0, H» 0 and
O<CH(z )¢ @(Z,Hz)ﬁw for |z|¥ r, ©€]0,%(. Then ¥T>0 there exists a non- cons-
tant T-periodic solution of (H-S).

A-simple example 0.2 shows, nevertheless, that T in the above period ,
is not in general the real period of the solutions he finds: it could be as

well T/2 or T/3 and so on.

Example 0.2.

Let H(x)= CP([X{Z), PeC®, ' (2)> 0 ¥z, and &' (0)=1, &' b@)=00. The energy sur-
faces are spheres and the solution of (H-S) (at the energy level H(z(t)) =h)rare
W(hk}igwstt #nsiny(hlt, geiny(hlt - neosylhlt) |
where 2%§RN, f gli ,Qtl=1sqk=¢55 y(h)=2/¢'(h), The corresponding periods are boun
dea from above. Thus, a periodic solution of "long" period T given by Theorem” Ow5,
could be a solution of minimal period T/k & T,-
On the other hand in the search of geometrically distinct crbits, informé
tions about the minimality of the period are crucial. ~A=first result was obtained
by Clarke and Ekeland [14] , see Theorem 1.2.0. , they proved that for every T3>0
(H-S) has a periodic solutdon having T as a minimal period, provided H is convex
and “subguadratic". A partial result for H convex and '"superquadratic'" was given
by Ambrosetti and Mancini [57, they used a dual variational functional constrai-
ned to a suitable manifold, however they have to put some restriction on the G"-
the second derivative of Fenchel conjugate of H, i.e. (é'(y),y)} AG"(y),y)
for some suitable constant AY1. A differentkmethod was used by Girardi and Matzeu

in [197 to show the existence of N distinct 'periodic solutions with minimal period
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T>0 (see Theorem 3.1.3) when H is "superquadratic" and not necessarly convex. They
developed the idea of finite dimensignal approximation in the direction of 'pseudo-
iindex" theory.

The last result of " prescribed minimal period" is given by Ekeland and
Hofer 116] . Their result is another progress of that obtained by Ambrosetti and
Mancini and contain both '"sub- and superquadratic" cases,i.e.

Thecrem: 0.6.

Let He;qz ('RQH,R) and satisfies

a) H"(x) positive definite for x#£0

b)  H(x)Mxl®*——0 when |xl—0

c) dr>0, dsy2 : (H'(x),x) 3 BH(x) for fxlyr.

then for every T2 0 there exists a periodic solution X of (H-S) with minimal

period T.

To prove this theorem they used a combination of: an index theory for pe-
riodic solutions of Hamiltonian system and a complete description of ¢C ¢ functio-

nals near critical points of mountain-pass type ( see Hofer {21} ).

In the first part of this paper I give some ideas and examples of '‘dual
variational method" and "Lusternik- Schnirelman critical points theory" (c.f. [7,
13; 17, 14, 51 ) and so called "direct‘method"( c.f. {11, 8, 10] ). In the second
part I sketch the approach given by Ekeland and Hofer in the proof of Theorem 0.6.,
i.e. the cnnection between the Morse index and the order of an isotropy group which
gives the possibility to find a solution with prescribed minimal period T. In the

third part I discuss results obtained by Girardi and Matzeu in [18] and [19] .
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I give also in that secticn some improvements of their results to obtain N distinct
golutions with prescribed minimal period T under more general conditions on H, a
kind of ellipsoid conditions. In the last section there willibe presented some results

concern the existence of periodic orbits on any given energy surface { c¢.f. [ 19, 6,

12, 247 ).



I. METHODS USED TO STUDY HAMILTONIAN SYSTEMS IN THE PRESCRIBED

PERIOD CASE

§1. Preliminars and notations.

Throughout the paper we shall use the following notations: if x,ye.RN

then x-y denotes the Euclidean scalar product, 1xiz = x-x, By = ix e r*M. |x|< R}

*

We shall assume He C'( RgN, R), 2 := {xe:th’: H{x) = l}. If E denotes a Banach

space then{* 7, will denote a pairing between E and E', I -l denotes the norm in
E. Let A be the operator defined on domh = { Z € H&d(O,ZW; BzN):z(O)zz(Qﬁ)} .
by
g™ =1, &L, BY0, by the equation Az=—Jz. Let E= {uer®0,om; ®N) . 5u=0}
o

and denote by i+ #§ the norm in Ld(O,ZW; RN, A, as an operator from domA E into E
has a continuous inverse, which we'll call L. Note that ker A= RZM and L is a com-

pact operator from E into Ld(0,2ﬂ; EZN).

Remark.1.1.1.

Let z(t) be a T periodic solution of (H-S), then v(t)= z(At) is a 2% periodic so-
lution of (H-S)

(H-8), =Jv = AH'(v),

where A= T/2% .

hence instead - of looking for a T pericdic solution of (H-S) it is sometimes more

convenient to lock for a 2% -periodic solution of (H—S)A.

Definition 1.1.1.Let f be a functional defined on a Banach space E, let M be a sub-

manifold of E of class CZ We say that the pair (f,M) satisfies the Palais-Smale



condition {P-8) if :

(P-8) .&;{LAS € M such that f(u ) is bounded and f' (u )———— 0 as n—s3 oo
nineN n M "n

3{u

Remark 1.1.2.

which is converging.
nk} ke N g &

It is easy to see that along the solution z(t) of (H-S), the Hamiltonian function

is constant, i.e., if z(t) is any solution then hZ:=4H(z(tJ) = const. “t.

In the next we will use also the following notations: let f be a func—

tional f: {RZN—-—-&R s, Ce&R ,

(1.1.1.) £%= {ze B™: flz)gc |

(1.1.2.) KC = {ze R*™: f(2)= ¢ and £'(z)= 0 }

A sphere of radius r >0 will be denote as Sr i.es Sr:={:ze&$”: fz| = 1} .

y ‘
In the next sections we shall use the space H'(ST, RZN).

Remark 1.1.3.

HQ(ST, RzN) is a space of 2N tuples of T pericdic functions which possess a deriva-

tive of order J%. In other words let zeC®™ R, B*M) pe T-periodic, then z has a

Fourier expansion z =2:z exp{ikt/T} with z e c™ and z =z . FE = (s _,
ey K K k -k T

closure of the set of such functions, under the{Hilbert) norm:

1,
( Z (slxhiz | )" .

ke




§.2 Dual variational principle.

If H is convex and (' it is nossible to define the Legendre transform §
of H in the following wav:

NDefinition 1.2.1.

(1.2.1) G(u)= sup {u-z - H(z) ; ze R*™].
G inherits from H some properties [see for example 14 ).It is easy to see that
G'(u) = z<¢=H'(z) = u

Remark 1.2.1.

It is well known that the solution of (H~S)A coincide with the critical points of

the functional K, defined onkt as

w (‘1-%’
Ko(z) =% j0<z,Jz> dt - 2‘%H(z)dt .

T?e‘duél variational method is used in the case when there are cdifficulties to
find critical points of Kﬁ(z). For instance when H is supercuadratic KQ(Z) is neiE
her bouncdeé from below nor from above. In dual variational method K}(z) is repla-
ced by its'"dual functional® {A(z) and thanks to "better! properties of {%(z) it is
- possible to find critical points of {A(Z)' A clear illustration of that method is
the proof of theorem'2.2. from {57 (given by Ambrosetti and Mancini) which will
be sketched later, another example can be find in [4]) - the proof of the Weins-

tein's theorem.

-+
Dual variational principle: Let A¢R be given, if ue E~{0} is a criti-

cal point of

2 (
(1.2.3) £.(u) = -2 5(u,Lu> + JGu) , ueE
% o

then 2= G'(u) is a 2W ~periodic sclution of (H-—S)£
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oF 27
¢
In fact: from - %j(v,Lu) + \L {G'{u),vy =0 Vv'eﬁg it follows that there exists
0

N such that

%GR
(1.2.4) —ﬁh1+GWu}=§.

Let =z =QLu + ¥, then z is a solution of (H-—S};x , because -Jz = Au, on the other

hand =z

G'(u), and hence we deduce that -Jz =Au = AH'(z).

First of all I would like to present a result proved by Clarke and Ekeland
[14] . They found a solution with prescribed minimal period, provided H subguad-
ratic and convex.

Theorem 1.2.0.

Let:?iéC’(iRZN, R) be convex and H(0) = 0, H'(0) =0. Moreover holds

(%) H(g
ﬁ;?& 0 os ¢}, 'T;ﬁz —> 00 ot |gj——s 0.

Then ¥'T >0, (H-S) has a periodic solution having T as minimal period.

Sketch of the proof:

25 n
Using duality method they have  f,(u) =-%J<u,Lu> + J G(u) is bounded from
27 o 0
below, because here Be J1,21, so 5G(u) dominates the quadratic part of the func-
o]
tional for large u. From compactness and convexity they obtained that f)(u)
2
achives its negative minimum at some u. Moreover helds 5‘(u,LG'>>O. To prove that
o ,

u has a minimal period equals 2% , let by contrary it will be 2% /k for some k22
keZ and let v(t):= u(t/k). They obtained a contradiction showing that v(t) gives

fA(u) a strictly lower value than does u thanks to the following facts:
17

Ir_ - bag _ pail
[ ¢vivy = kJ:(u,Lu)>O and
[}

G(u) = X G(v) , hence

&

Pl w In _ -
Lvy= —%l'(V'Lv} + fG(v) C -—% SO a,Lay -h&o G@) = f,(a),

(u)= min £, (u). So G'(u(t/A ))is a solution of (H-S) with
uek

which contradicts that f3

minimal period T = 27 /4
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Theorem 1.2.1. [ 5]

Let HeC¥( ERN,EU and there exist a,, a,, a3, >0 and B>2 such that

B

3
i) a,lz] € H(z)C a,dz] ¥z e p*N
[\ B3-2 :v’. 2N lvl LN =
H \z)fg»fs },ab!zf z e R and geR™, |gi=l;
ii) BH(z) £ H'(z) =z ze RN
""*ii) 3?/&6]0,11 such that Yue R2N, u # 0 it results G"{(uu-ug I.A,G'(u)»u .

Then ¥T>»0 (H-S) has a periodic solution having T as minimal period.

Remark 1.2.2.

Due to the assumptions i) and ii) we have that H is strictly convex and super-
guadratic at zero and infinity.

Sketch of the proof:

The proof is based on "dual action principle", unfortunately since H is superquad-
ratic f is not bounded from below nor from above. We are looking for stationary

points of f as a saddle pcints. So, here is introduced a submanifold M on which f
has a minimum, which appears to be a solution having T as minimal period. Due to

Remark 1.1.1. and using the fact that A plays no role in the arguments we will
or pait

take :K=l, so f= —%\fu~Lu + |G(u), where G is a Legendré transform of H. As a ma-
Y 0

nifeld M we take M = {u eE, uf0; {f'(u),uy=0 }, where E is as in preliminars.

The pair (f,M) satisfies (P-S) condition ( thanks to compactness of L and conti=':
oy

. [ 1), moreover Jdu el such that 5 uLuyo
0]

. 8 P
nuity of H': L ——s L

(E = (g sint, gcost); geRN, §¥ 0) and assumptions on H and G" give us that f}M
achieves its minimum in a point veM. Such v is a stationary point of f on E, i.e.

f'{v) = 0 and holds

i 5 2 = {%ﬁ'
iv) g v-Lv = max { 5u-Lu cuek ug0, jG(su)é g@(sv} Vs?O) )«amm S
0 0 21 0 U O

< ((G(W‘v> }‘
JL')
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Using the last characterization of v it is possible to show that 24 is a mi -

nimal period of v. If not let 2% /m be a minimal period of v, md»1, meZ .
xS i3
Set v*{t) = v{(t/m), such v*e E, and iG(sv*) = LG(SV) ¥s>0, and
w {ﬂ' 5 o (%
j Gr{ve),v*)y = } (G'(v),v) , but Sv*‘Lv* = m\Lv-Lv ; since J v-Lv>0 we
0 ~o [} 0

£ &

have J‘v*-Lv*> S‘V-LV which contradicts the iv). For details see [53 .
0 o
L]

Ekeland,in his paper [15] , under a bit different assumptions relatively
to the Rabinowitz's theorem 0.5 (i.e. H is convex , grows slowly at infinity and
quicly near the origin), obtained a similar result. To prove it,he looks for cri-
tical points of mountain-pass type(see Definition 2.1.), using the theorem of

Ambrosetti and Rabinowitz [7) . His result is following:

Theorem 1.2.2.

N

Let H: R"———R be convex, # has minimum at (0,0), H(0,0) = O and let there is a

constant ©e€[0,% [ such that ¥ A>1 and ¥z = (p,q) £ (0,0) it holds

H(Az) > %29

H(z) > 0. Then V‘T ? 0 Ja non-constant T-pericdic solution of Hamil
tonian equation Jz e 9H(z(t)) a.e., where 3H is a subgradient of H, such that
(1.2.5) 0 < H(z(t)) =h and h £ C/TF D

where C is a constant depending only on © and the minimum value of H at the SE;

Sketch of the proof. First Ekeland proved the thesis in the case H is strictly

convex and differentiable, thento obtain a general result he approximated H by a

sequence of suitable strictly convex, differentiable functions. Since H is convex

he used dual variational principle , studying the following functional: flp,q) =
§

= \LG(J(;}‘,(;)) - Tp.q)dt. He showed that f satisfies: (P-S) condition, 70,0) = 0,

f is bounded away from zero on the boundary of some ovpen ball B and is zero again

at some point (e,f) outside B. Under these conditions the Ambrosetti-Rabinowitz's

theorem holds [7] which guarantees the existence of a nen-trivial critical point
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of f. Then using: the inequality; H(p,q)¢ 6&(p Hé(p,q) +q Hé(P,Q)), the equivalence
(p,q) & 9G(r,s)&pr + gs ;”égégq) + G(r,s andthe censtancy ofrH along the trajec

tory he got c¢ h(faf—l). From the last inequality and definition of critical le-

vel ¢ ( c:= ég; Ozgg f(c(t)) where C is the set of continuous path such that c{(0) =

= (0,0}, c(1) - (e,f) , see (2.5)), he obtained (1.2.5).

§3. Lusternik- Schnirelman critical points theory in the presence

1
of 8 symmetry.

When we want to calculate the number of distinct solutions on a fixed
energy level a '"mormal'"way is to use the idea of "index" (or "genus'"); in more
complicated cases even 'pseudoindex" ( for instance for indefinite functionals )
c.f. [17; 9 ], which permits the classification of invariant sets.

: i 1 o ‘
Let E be a complex Hilbert space. The generic element of S will be denote by s
is , . . 1. .
(seR/21WZ) or by e - Let The anunitary representation of 3% .in E, that is

T € Isom(E) is defined for all s, §T ull = ul, Yuer, T =T T (hence T = id,
s s s+s' s s' o
-1
T =T ) and s ——T is continuous.
-5 s s

Definition 1.3.1.

a) A representation R of Sl in Ck(or an Sl—action on ¢ ) will be called regular
(or is said to acts freely on E) if it only has a trivialkfixed point space i.e.
FixR = {O} s in other words Rsu ~u¥s = u=20.

b) A set X¢E is said to be invariant (under T) if TSX = X, ¥s.

c) A functional f: E—>R is invariant if f(TSu) = f(u), WueE, ¥s.

d) A mapping $: E——>ck is said to be equivariant with respect to (T,R) if

$eT =Rod ¥s.
S s
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Example 1.3.1.

. . ich i, ®

Given o = (g, - -, ock)ezk, let for ¢=(%1).. ., G, R:cg:z (et 45%4 ,.,..,el“"hL Sk)’
1

R%is an S —action, it is regular if and only if &“""dk, are all nonzero.

1 .
Moreover,due to the Peter-Weyle representation theorem, any S -action.on €% is of

the form RX for some k-tuple in some orthonormal basis.

Let Mk(A;R) = Ceq(A, CE \{0] ) be the space of all continuous maps & :A—sC5% {0}
which is equivariant with respect to (T,R). We dencte by E° the space of fixed
points of T : E° ={uek: Tsu = u, ¥seR/232 }. We assume that E° is finite
“dimensional. Let us define two classes of subsets of E:

(1.3.1) I

{Xc:E: X nE°® = @, X is closed and invariant under T }

It

. = (Xel' : X is compact }

Definition 1.3.2.

For Xel" we define:

(1.3.2) i(X):

It

1 :
inf{lce@h there exists a regular S -action R on C* with Mk(X;R)¢® }‘i

i(@):= 0

i(X):

il

+eoo if X#£ § and no such kel can be found.

Properties of index i are included in the following

Lemma 1.3.1.

1) XeYy=pi(X)<i(y)

ii) P(XuY) g i(X) + i(Y)

iii) if  we((X,Y) is equivariant with respect to (T,Id) then i(Y)pi(X)
Siv) if X 1is compact. then i(X){eoo and J&8)0 such that i(X) = i(Né(X)) ;

where Né(X) denotes the & neighbourhood of X.
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Remark 1.3.1.

n n

Let S denote the following T-invariant set in E : S = { u#{xcost + ysint, xsint-
n

~-ycost): x,ye RN, !x[2+ !yfa = 1} , then i(S) = n.

Remark 1.3.2.

Let h be T-in&ariant, heC*(E, R), M = { uek, uf 0, h(u) =0 }. Suppose M is a

smooth manifold in E and look for critical points of f constrained to M, i.e. the
points ué€E such that f'(u) =wh'(u) for some «weR.

In Lusternik-Schnirelman critical points theory we proceed in the following way :

for every jg¢i(M) (notice that Mel') we define Mj to be the class of all com-

pact XeU , X<M, such that i(X) 2 j; suppose Mj £ @, ¥jgi(M) and set

(1.3.3) ¢c.:= inf  sup f(u)
J Xe MJ ueX
We have C4<Cyg Cy eevr ; Cc@ and ¢,y -oo if f is bounded from below on M,
J

suppose also the pair (f,M) satisfies (P-S) condition and M is a smooth manifold

then it is possible to show that every Cj is a critical level for f i.e. there

M

exists at least one ue M such that f(u) = cj and f'M(u)z 0. Moreover if

§

C.= ...=C = ¢ then i(K ) » r+l, where K is given by (1.1.2).
c c

Remark 1.3.3.

If v is a critical point of f on M then every veCTul):= {Tsu: se.{O,ZGTE}is a
critical point, too. From the above discussion follows that

i) cj # c; then the coresponding critical points uj, u, are such that ﬁ(gﬁ#(j(UiL
ii) if c¢. = ... =¢ = ¢ then at level c¢ there are at least r+l1 critical |

1 1+r

k =0,...,r such that (u. . ) are mutualy distinct.

int
points ul+k' 1+k

As an example of using dual action principle and Lusternik-Schnirelman

critical points theory we present a proof of the thecrem stated by Ekeland and
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Lasry [17] , here Theorem 0.4. Now we give sketch of the proof of that theorem.

The idea of the proof is following: the existence of periodic Hamiltonian
trajectories on follows from existence of solutions of related Hamiltonian system,
having a prescribed minimal period (as in [4]). Then they look for critical - ..
points of a functional on a suitable manifold M. It is possible with precise

. . 1 . .

estimates to pick out a part of M where the S -action is free, then they applicate

the index theory and this gets the result.

Stepl. Instead of studying (H-S) with any given H , using convexity of & we can
8 +

replace H by H defined as H(z) =a for B>2 arbitrary, where aeR is

: : : IN + . =

found in the following way: YzeR , 240 ZaeR and a unique =z e 2 such

that z = az. A has properties: HeC*RZN, R) is strictly convex, . * ze S

j{(z) =1 and H'(z) # 0, the Hamiltonian system

(1.3.4) -Jz = Ur(z)

has on 2] ~the same periodic orbits as (H-S); for details see {47 .Let 2z ,...,z

be n distinct periodic solutions of (1.3.4) with minimal period 24T . Set

hizz H(zi(t)) = const. (Remark 1.1.2) and
w (t) = h_'ﬂ‘?’, z,(h_(?r%.t)‘
i i i i

From the B-homogenity of H follows that wiare solutions of (1.3.4) satisfying
1{(wi(t)) = 1. Since H'(z) # 0 V¥zeZ, then wi are periodic trajectories on 2.
Such trajectories are distinct: in fact if hi% hj for some i,j then wi# wj {(be-
cause zi# Zj); otherwise the claim follows from the fact that minimal period of wi
is 23rh§2'%

Step 2. Let G be a Legendré transform of H . G is strictly convex and d.-homoge-

neus (£ '+ B~%= 1). We shall look for N— distinct critical points of £ on E having
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2N as-a minimal period , where

20 &

flu) = =% j‘u Lu + j'G(u)
o 0

(1.3.5.)

The minimal period of a stationary point v.of f is 2% when it is so of z,

z = Lv-rg . %eﬂiw.

2

Step 3. Now we define a manifold M in E. Let h{u) = {f'(u), u) = - 5 u-Lu +

— ¢}

r r A P4
-kw‘%G’(u)-u = - J‘u-Lu + £ J G{u) . Set M:= {LléE; u# 0 : hiu) = O} . For M
(o] 0

bracs wm - 26

it follows that {(h'(u), ud = ~2~f u-Lu + d§~g Glu) = L{& ~ E)J; G(u) . Hence
0 0

{(h'(u), u) #0 ¥4uE.M . M is a smooth manifold in E. Moreover if v # 0 is a
critical point of f constrained on M it results
(1.3.8.) f*(v) = wh'(v),

for some @J€R+. From (1.3.6) it follows:
(1.3.7) £ (v),v> = Aadlnt(v),v) .

The left-hand side of (1.3.7) is equal to h(v) = 0, the right hand-side gives
{h'(v),v) # 0, thus w= 0. Namely v # O is a critical point of f on E if and

only if v 1is a critical point of f on M. Note that

(1.3.8) 2-c (m 2-o& (7
e {iw\(u) == | Gw) = " J u-bLu
0 [¥)
and also
2 :
(1.3.9) AweM, w#£0 iff /‘\L"‘CJWva = 4| elw).
g

0
In particular there is a T-equivariant map % : SM~—~—~§ M defined by w(w) =Aw

with A given by (1.3.9). Here it suffieces to note that My (defined in Remark 1.
3.2) is not empty, because ﬂy(SN)C.MN. In fact qKSN) is compact and i(ﬂy(SN))}
> i(SN) = in view of Lemma 1.3.1 iii) and Remark 1.3.1.

Step 4. The pair (f,M) satisfies (P-S), moreover from (1.3.8)it follows that f is



bounided from below on M. So we are in the position to apply arguments from Remark
1.3.2. i.e. Lusternik-Schnirelman theory.

Since (f,M) satisfies (P-S) then f attains its minimum on M, let denote it by m and

let m:= f(v). Let M* Be a set of points ueM such that u =.2% uhkexp(ihkt) for
ke

some integer h» 2. The following lemma holds:

Lemma 1.3.2.

min { £(u) : ueMr] = £(27%.5) = 2% o,

The proof of that lemma is carried out by using (1.3.8) and (1.3.9), can be found
in [8] .

Step 5. Let m* = min {f(u) TueM* ) and’ M= { ueM: f(u)< m*}, it is easy to

see that every critical point of f such that » € M will have 23Tas minimal pe-

M

riod. In order to find N- distinct critical points of f!Mlying in M we first state

Lemma 1.3.3.

Under the assumption of Theorem 0.4 it follows that “W(SN)C,E.

Using the result from Lemma 1.3.3. the proof of Theorem 0.4 can be easily
completed. In fact ﬂy(SM)c:MN, it follows that ¢, = inf sup f{u) < sup flukd m*.
| xeMN veX q&sﬂ

Hence the result follows because of Remark 1.3.2 and Remark 1.3.3.

Sketch of the proof of Lemma 1.3.3. From B-homogenity of “¥(z) and definition of 57

one has

-B B
(1.3.10) R "|x|7 ¢ "Hz) € r "|x|", hence one. has an estimate:
m -~ -,
a,r%* < jG(u) £ az,}%‘pd for ¥ ue 2!, a,= 2ja,, where a;= %C B 'g’f.
0 o
— - - 2 - -
Now let v =2Aw , well. Set b = max {Z 5 u Lu }, one has b = % j u Lu, where
0 0

GE.Sn. Using (1.3.9) and (1.3.10) , and definition of b one gets
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(1.3.11) m=fF(Aw) Y asr?“f:‘? » where a;= —g%’-c- (\—&) %“d. a? - pz’i-zr
ar
Let u =Y (w) with wes", from u = Aw, b = %J w.lw YwegV , (1.3.8) and
) ‘
2
(1.3.10) it follows f(Yy(w)) £ a,R"#% , hence
9 &
(1.3.12) fi= max f{y(w)) < aKR -«
we S” =
ol
fi< a2 1 rZéa and by (1.3.11) A <2%%m = m*.

The condition R=>< 2r? implies

Therefore M & m* as we wanted to show.

§4. Direct method.

The aim of this paragraph is to introduce the definition of pseudo-index

and to give theorems which will be usefull to study directly a functional in the

case when H is '"superquadratic" and to find the critical points of this functional.

Example 1.4.1.

The following functional f(z) = -% j\Ji zZ - ﬂ\YH(z) is neither bounded from below
nor from above, moreover there doesn't exist a weakly continuous function & such
that f + & would be bounded or from belcw, or from above. The critical points of
f(z) (if exist) are of saddle type with both .stable and unstable manifolds infini -

te dimensional.

If we assume something more asbout H: H" (z) is bounded Vze’RZN or H is
convex,then we can apply respectively methods of Amann and Zehnder ( T1;:2, 31, a
kind of Liapunow-Schmidt finite dimensional reduction method), or the one introduced
by Clarke and Ekeland [14] . To avoid these two restrictionsit is necessary to stu-
dy a suitable functional f(z) directly.

o
Let H be "superquadratic' and moreover let {H!'{z)]| ¢ ky + kl!zi for



—20-

some k,, k2)>0, then the functional f is Fréchet differentiable in the Hilbert

%, 1 N h
space E = W (S, R“) (see Remark 1.1.3). We shall study a functional f(z)

(1.4.1) f(z) = ¥<z,Lz) - jH(z) Yzek,
where v,Lwd = I'{w)(v) Mv,weE and I is the extension of the functional
- ‘
fv-Jx} from c‘”(sT; R*) into E.
0

+ - )

let now E=E @E @&E be the orthogonal decompositiom of E with respect to the
O

action % {v,Lv) , E = ker L = R?M. To introduce the pseudo-index in this particu-

lar case let us define the group of linear homeomorphisms M, from E into itself as

(1.4.2) H={U=e" ter].

+ + +
Note that E is L-invariant under Xi.e. UE = E VU&E?%.
Let #* be a class of mappings from E into itself such that
. 1 . .

- heW , h is S -equivariant

. . . . . tL .
- h 1is a homeomorphism from E into itself of the kind h = e + P with ¥ compact

I i , A .

Let | be a class of closed, S - invariant subsets of E. Following Benci [9] we

shall define a pseudo-index i*:

Definition 1.4.1.

+ oz
(1.4.3) i*(a):i=min 1(h(A)AE nSe) MNael ;
hed*
~where 1 is the index (1.3. 2). We call a couple (¥*, i*) a pseuddo-index theory.
There are some advantages which gives us a pseudo-index. We remark that
, ) 1
i{X) = +e0 if XaFix(T ) # @ ( where T is a unitary representation of S ), and
= s »
this implies ¢, = inf sup f(u) = - , provided f is not bounded from below.
Wk uek
Moreover the pseudoindex is invariant under the deformation flow g , if only mey%

The pseudo-index is a map i* :P-—~7Nu{+m&with the following properties:

i*)  i*(A)gi(A) Wae



ii¥) if AcB then i*(A) £ i*(B) %A, Bel
1iin) i*(A~EB) » i*(A) - i(B) Ya,Bel

fv*) i*(h(A)) = i*(A) Yhe s Yael,

Theorem 1.4,1. [9]

+ +
et H =E

- + -—
, H el be linear subspaces of E such that E =H @©H .

. + ( . - . - + -
Suppose that le(TS)r\H = {0}, le(Ts)C-H , dim(HN H )<+ and that H

is invariant for every Ue¥. Then

(1.4.4) i*%(H) = %(dim(H AH)).

Definition 1.4.2.

If feC'(E, R) and c,, Cw€ Ri ( with ¢y¢ ¢ ), we say that £, Cos Cq »
satisfies the property (P) with respect to | I'W'jif
c
a) f, K €l and KC is compact for every ce [cys cul,
c

b)  ¥oeloocwl o ¥N=Ng(K) Fe30and qelir such that n(e Ny e 78

The property (P) is strictly related to (P-S) condition and in our case it/is po=
ssible to comnstruct such q'gﬁv as1a flow which is related to a vector field being
a suitable approximation of the vector field f!'.

Lemma 1.4.1. ( Deformation lemma , [97)

Let feC'(E, R) be a functional which satisfies fadlowing assumptions:

£f1)  flu) = % {Llu,u) + $(u), where L is bounded,.selfadjoint operator and =<'
is compact.

£2) f satisfies (P-S) condition with f(un)—~———9c €coConl

Then ¥ celco,cnl , WN = NS(KC) 3e>0 and 3 1= e—éL -;'\y { where §70 is a

constant and ¢ a compact operator) such that

(1.4.5) (£t Ny ¢ 78



Moreover if
£3) fis T - invariant
s

then " is Ts—equivariant, i.e. Qa?ﬁﬂ

Remark 1.4.1.

"The functional (1.4.1) related to H superquadratic satisfies assumptions f1)-f3)

Now having a deformation lemma we are able to state some multiplicity
results.

Proposition 1.4.1. [12] .

Let f satisfies £1)-f3). Define
(1.4.6) c = inf sup f(u).
k P(Nyk ueX

Assume futhermore that for some k,meWN, exists such Xel : i*(X) > k+m-1 and

that 0O = c = - =
at 0 de=c=¢c “kam—1

£+ oo .
If KC Ia Fix(TS) = @ then ¢ is a critical value of f and i(Kc) > m.

Proof of this proposition use standard arguments connected with deformation lemma ,
Since ch\ Fix(TS) = @ and Kc is invariant and compact by (P-S), K;.P and i(KC)
is well defined and finite. Futhermore 3 4&>0 such that NE(KC) verifies
i{NB(KC)) = i(Kc) due to (1.3.1 iv)). Moreover, by deformation lemma we are 1
able to constru ct for any &30, £€«<f small enough a flow rL:Ev~—aE. To prove the
proposition we argue by contradiction and supposeythat i(KC)é,HFl. By definition

of = ¢ there exists A with i*(A) 2 k+m-1 such that max f(x) £ c+¢€ ,

c
k+m-1 Xe &

£ —
i.e. ac et . Now let B = Q,(A\‘Né(KC))' By the following property of 7 :
n{x) = x ¥x such that |f(x) - ¢|» E we know n(0) = 0, since n is an equiva-

riant homeomorphism, it is clear that Be& I'\[0]. By property iii*) we know
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i*(B) 2 i*(A) - i(NS(KC))' Hence, since i(Né(KC)) = i(KC).$ m-1 and i*(A) >»
W kam-1 yields i*{(B) » k.

C—
On the other hand from a property (1.4.5) we infer that Becf £ Wwhich is the con

radiction to the fact ¢ = c, as i*(B) » k .

From:the viewpoint of applications it is crucial to have conditions which
will a priori guarantee that the ck;constructed by {(1.4.6), k=1, 2;... satisfy
9] <'Ck & + . We want to prove this in our concrete case; thus let HE be a 2k
+ 1 . . + + - _ - o}

dimensional subspace of £ , S -invariant, and put H =E , H = H§<® E ©E

Then,due to Theorem 1.4.1 one has i*(H‘) =k .

Proposition 1.4.2.

, + _ B
Let feC'(E, R) satisfies f1)-f3). Let H and H be as above, E = H' ®H ,

and let f be bounded on H from above. Then ¥k & k c, is finite.

Proof. It follows from the definition of Ck' We have

{c- = inf_ sup f(u) £ sup flu)
=% T FNrK uex HE

Propositionl.4.3.

+

Let f be as in Proposition 1.4.2 and be strictly positive on E n Sg for some.
g}O. Then Ck > O for every k € N.

Proof. It follows from the definitions of i%* and Ck' We have

0 < inf f(u) £ inf sup f{u) =c_ g
SgnE* X34 ueX 1
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II. RESULT BY EKELAND AND HOFER

The aim of this section i1s to present a recent result obtained by Ekeland
and Hofer [16] .They approached in a original way to the problem of finding solu-
tions with preécribed minimal period wusing Morse index and a déscription of moun-
tain-pass type critical points. Their result for Hamiltonian system in superquad-
ratic case:is the following:

Theorem 211.

Suppose He CLHR™, R) satisfies

(2.1) H"(x) is positive definite for x # O

(2.2)  H(x)lIxl">—>0 when Hx}—>0

(2.3) dr>0, 3By 2:H(x)x B H(x) for Ix{>»r .

Then, for any T > 0, there exists a periodic solution x of (H-8) with minimal

period T.

The assumptions of this theorem are as in the Rabinowitz's one ([227 ,
here Theorem 0.5}, but the assumption (2.1) which states in particular that H is
strictly convex. Note that Rabinowitz's result is weaker than this one mamely he
proved the existence of solution for any period T which need not be minimal (see =
example O0.1). First Ekeland and Hofer state some abstract results, then they make
an application to super- and subquadratic Hamiltonian systems.

Let us put the same notations as in [16] :

" He CH{R2N, R) is strictly: convex
(AD) H(x) > H(0) =0 for all x #£0

Hx) Jx s v+ 0 as fxj——+ @



Denote by G: R™——>R the Fenchel conjugate of H,

T
LY := {uer*co,7; R . judt = o} with 1< of < + 00
o 0

. .
(2.4) flu) := X (%(Ju, Tu) + G(=Ju))dt where TTu is the primitive of u in Ld.
o) [¢]

Suppose that & and H stisfy:

He (Il & e iy 1™ + ¢,
(A1)

./
ColE 0l € e “xi?éq+ c , where c,;, 1 =1,...4, are any constants.
L 3 4 i

Remark2.1l.

Under the assumptions (AO) and (Al) +to find T-periodic sclutions of (H-S) is equi
valent*to find critical pecints of the ¢4 functional f (2.4) on Li ( due to "dual
variational principle"). To do the latter one uses Ambrosetti-Rabinowitz theorem
{71 (see the proof of Ekeland's theorem, here Theorem 1.2.2.). From this theorem
it is possible to obtain the existence of at least one non-constant T-pericdic so-
lution. The guestion is when T is a minimal period, so we have to know something
more about the critical points which are found in this way. This was achieved by
Hofer [20] who gave the following definition and theorem.

Definition 2.1.

Let GE’L: be a critical point of f. We say 5 is of mountain-pass type (m-p), if
for all open neighbourhoods U of u the set % ueU : £(u) < £(u) } is neither
empty nor path connected.

Proposition 2.1.

Let f satisfies (A0), (A1), (P-S). Let us ul,e Lj, uo# u1 and define

(2.5) c= [ceco(L0,1],L%) : ¢(0) =u, (1) = u,
o o 1

2.6} d = inf fle(t)

< F ol T

(2.7) e = max {f(uo), f(ul)j



T

If, moreover d>e then Kd contains either a local minimum or a critical point of

{(m-p) type.

The following theorem is the crucial one:

Theorem 2.2.

Assume (AO) and (Al). Let %be a T-periodic , non-constant solution of (H-8), and

assume there exists a neighbourhood U of %#([0,T1) in R™ and a constant k>0

such that
(2.8) H'(x)y.y » kiyl® Vxeu, ¥yer™.
. d® . ) ') Py L
Set u<=4EE~, a critical point of f in LO. If 418 a local minimum or has (m~p) type

then R has minimal period T;

Idea of the proof. Ekeland and Hofer define index mQ) of the critical point {

and they prove that if 4 has (m-p) type then m(%) ¢ 1. If f were 62 and 4 "nonde-
generate", m(X) would be simple Morse index and the inequality m(&) £ 1 would
follow from the Morse lemma. Unfortunately f is C* and { may be degenerate, to - -
deal with this difficulty Ekeland and Hofer introduce a finite dimensional reduc -
tion and achieve the result using a lot of technicalities. -

Then they prove that m(R) + 1 } 0(R), where O(X) is the order of the isotropy
group of ®. If @ is a local minimum then O(%) = 1, so %X has minimal period T or

T/2. The second possibility is then eliminated due to the definition of (m-p) type

1
point and S -invariancy of f.

Now we are going to give some mere details of the proof.Let us consider
the following problem:
x = JH'(x)

x{0) = x(T)



Definition. 2.2.

A solution R of problem (I) will be called admissible if it is non-constant, and
if H"(%(t)) is invertible for all t. It follows that the condition (2.8) is sa~
tigfied.

Lemma 2.1.

“~

L ~ dx 3 :
Let " be @n admissible solution, and set O = g Then there exists a unique

symmetric bilinear map Q : Li x L§ ——3 R such that:

(2.9) Qlu,,u,) = Sor(a + Syuy + Syu,)

g
654 [+ E-7S
for all wandu in L .
o

pA
We obtain that Q@ has a form: Q@ = K + L , where K is compact , L is equivalent

to the standard norm on L§ .

Definition 2.3.

a) Q is called the Hessian of f at 4.
b) The Morse index m(%) of £, where ¥ is a critical point of f is equal to
the dimension of a maximal negative eigenspace of Q({d) (i.e.the dimension of
maximal subspace VcE such that: Q({}v-v <0 Yv eV, v £ 0 ).
oy . o 1
c) We say that O0(%) is the order of the isotropy subgroup of & for the S
action as on T-periodic functions: a x(t) = x(t + sT) if O(X) is the greates
s
integer k such that % is T/k -periodic.
The relation between m(%) and the behaviour f{u) near critical point G
is given by the following theorem:
Theorem 2.3.
axg

Assume (AO) and (Al).heL Xbe an admissible solution of problem (1), and Q= gl

Then i is a critical point of f and:
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a) if 0 is a local minimum then m(%X) = 0O

b) if 4 is of (m-p) type then m(%) = 1

c) if m(X) = 1 then there exists an open neighbourhood W of @i such that the
set {11&&/: flu) < f(4) } has at most two path components. 1f they are exactly

two, say & and &, and if we denote by A, the negative eigenvalue of Q and v, the
agsociated eigenvector, we have for all Q>(3 sufficently small

(2.10) 4 + v, € ?1 , 4 """LVzC?z

Ekeland and Hofer proved this theorem using the extension of the Morse
lemma to the case when critical points i occur in manifolds ( and hence are degg
nerate )’following Gromoll and Meyer [20]] and a finite dimensional reduction i
tpobtain the result for feC' (not C? ).

Proposition 2.2.

The following relation holds:

(2.11) 0(x) ¢ m{®) + 1.

~

In the proof of this relation is used the idea of conjugate points:

Definition 2.4,

Let X be an admissible T -periodic solution. We say that ﬁ(tz) is conjugate to
ﬁ(tl) with tl < tz, if the linear problem :

(t = t )
y( 1) v ( o)

has a non-zero solution. The multiplicity of the conjugate point ﬁ(tZ) is the

number of lineary independent sclutions problem (2.12) possesses.

These points satisfy the following properties.:
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Proposition 2.3.

a) If & is a T-periodic solution of (I) then #%(kT) is conjugate to R(0)
for ¥k eZ.

b):If % is an admissible T-periodic solution. then its index m(&) is equal
to the number‘of times se [0,T] such that 2(s) is conjugate to %(0),.each

counted with its multiplicity.

Having the last property it is possible to complete the proof of Theorem
2.3. We can easily see that for an admissible T-periodic solution & Proposition
2.2. holds (i.e. 0(%) { m(R) + 1 ). In fact, say % is T/k periodic, then there
are at least (k - 1) points conjugate to £%(0) on the arc [0,T], namely
T/ky.e., (k = 1)T/k , by Proposition 2.3 m(%) 2 k.- 1.
8

Corollary 2.1.

m

a) If m{%) 0 then & has minimal period T.

b) If m($):

k then the minimal period of % cannot be smaliler than T/(k + 1)
Now we return to the proof of Theorem 2.2, If {i is a local minimum then
m(X) = 0 ( by Theorem 2.3.a)), so % has as a minimal period T ( Corollary 2.1).
If 4 is of (m-p) type either m(%) = O (then a minimal period is T ), or
m(X) = 1 and R has a minimal period T or T/2. Fortunately the second possibi-.
lity doesn't hold under the assumptions (AO) and (Al).Using the characterization
of (m-p) type point, from Theorem 2.3.c) and Definition 2.1 we can find an open : .
neighbourhood % of i which is not path connected and has exactly two components
. N . N S : -
5§ and 3;. Since f is S -invariant we have that also §> is S -invariant. As QO
is T/2 -periodic then it is possible to construct a path which connects as(ég)
. 1 X . . .
with a ( 3&). s €8, which means that ¥ is path connected and gives a contradic
S

tion.
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ITI. PRESCRIBED MINIMAL PERIOD IN “NONCONVEX CASE".

§ 1. Results obtained by Girardi and Matzeu.

For H nonconvex there is a result given by Girardi and Matzeu {187 and
then a more general result in [19] . There is a possibility to slightly improve
both these results.First we write down their theorems.

Theorem 3.1.1.

Ha) HeC'( R™, R)

H2) H(z) > 0, VzeR®™, H(z) =0 iff z =0
H3) 3 gr2, pH(z)C H'(2).z

H4) 3 2, > 0 : [H' (z)] & azfzfﬁ—l

H5) H(z) ZvaIIZIB for scme a % 0.

Let H1)-HS) be verified, then there exists an integer number n 2 2 depending on

al, a2, B such that for every T > O there exists a solution z of (H-S) and

an iteger m € {l,..e, n -1 } such that 2z has minimal period T/m.

As a consequence of this theorem Girardi and Matzeu proved the following

Thecorem 3.1.2.

+ 4+
Let " H be convex and H1) - H5) be verified. One can determine a function g:R——R
with g(8) > 8, B » 2 such that =z has minimal period T. Further cne has

(3.1.1) lim (g(B) = B ) = + o0
B-» o0

They improved their result [197] stating:

Theorem 3.1.3.

Let H satisfies H1),:H3), H4), HS): and let the further hypothesis be verified:

HE) a2/a1 < V2 8.



Then for every T > O, there exist at least N distinct periodic solutions of

(H-3) having minimal period T .

Theorem 3.1.3. is more general than 3.1.1 , but its proof is partly based
on the proof of Theorem 3.1.1. We shall only point out the steps of proofs of
these theorems. Details we'll gi#e in the improvements of Girardi's and Matzeu's
results stated in III.§2.

Sketch of the procf of Theorem 3.1.1. Let

1
(3.1.2) E={zeH ([0,T1; R™): 2(0) = z(T)}.
The solution of (H-S) coincide with the critical points of the functional f de

fined on E as
T T

(3.1.3) f(v) = % jv(t)-J{i(t) dt - jH(v(t))dt Yv ¢E.
Q [o]

Lemma 3.1.1. (Wirtinger inequality)

Let zeE has minimal period T/m , meWN. If 2el%( [0,T1, R*™)  then

T .
(W-1I) ‘a\Zu,Lg £ T m “ZHLZ

Proof. The expansion of =z in its Fourier series is given by

z(t) = 2, z exp(i2srmkt/T) te {0,T],
kez K
hence Z(t) = 27im/T ‘:Z;k 2, exp(i2grmkt/T) te[0,T] , so
€
- 2\ ¥ 2 & _ :[__ .
e 42 @) <(E k@a?)* =g 1zl
]

Lemma 3:1.2.

If H1) -~ H5) are satisfied then zero is an isolated critical value of F .
Lemma 3.1.3.

There exists a minimum.positive critical value of f , say cT.

Lemma :3.1.4.

Let zeE be a solution of (H<S) with h_ = H(z(t)) ¥te [0,T]1 .Then. ene has:



K,

(3.4.4.) h, 7 ﬁrgmiggs ,  Wwhere
PAe-2)
.1.5 K = 208 Z .
(3.1.5) 1 al( ar al/a2 )
Lemma 3.1.5.
Llet zeE be a soluticn of (H-S) with hz as above, such that f(z) = C e Then
one has
Ble-2)
A (g
(3.1.8) hz £ Ky (ﬁq , where
~ 2
2 (ar) Ap-»)
) = I | —
(3.1.7) Ke = 355 »

To obtain this estimate Girardi and Matzeu used the result obtained by Rabinowitz
in [24] .Having all these lemmas we are able to complete the proof of Theorem 3id.
{3.1.8) Let n ::nﬂn{vm&N: nyz2, >Eéﬁjrraé } , Where K4 and K, as above.
Let z be a critical point of f such that cT = f(z) is a minimum positive criti-
cal value of: -f (which exists due to Lemma 3.1.3;). If T is not the minimum period

of z , then let meZ, m» 2 be such that T/m is a period of z : we want to

show that m < n. By contradiction,if m Z,E then one would have from (3.1.8.)

K, \B%s K. )(9”"77‘5 K, Sa‘z‘)/% ~ (Ka (?j};
< T(g) 4@1 A -

but now applying lemma 3.1.4 to z as a solution of period T/m one has

(K,,‘T% T

1
13

and (3.1.6.)

(3.1.9) -

m
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(3.1.10) , which contradicts (3.1.9)

Remark 3.1.1.

-
In the proof of Theorem 3.1.2 Girardi and Matzeu showed that ( \ %1< 2 , where K,
is an estimate due to Ekeland [15] for H convex. The theorem is still true also

in nonconvex case, with a different g(B) and az/a1 £ 4.
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Remark 3.1.2.

We can assume without loss of generality that a1 =1 in H5Y (Remark 1.1;1)

Sketch of the proof of Theorem 3.1.3. Let E and f be as in I.8§4. Under the hy-

pothesis of this theorem Lemma 3.1.2 still holds and Lemma 3.1.3 is a consequence

of Proposition 4.3. Moreover the following ineguality is true:

P \Ya- 4\ He-
(3.1.11) Conin 2 -Ei__z__ \g—‘gzg.)}é 2) (:l:)/{ﬁ 2y , where
c _i= min | £(v): veE, £'(v) =0, f(v)> 0] =c_.
min T

To obtain the minimality of a peried T Girardi and Matzeu proved the crucial

Lemma 3.1.6.

Let veE be such that f(v) » 0, f£'(v) = 0. 1If

st ) ;%:4?-_ {40"% %’2) 4 2{5'2)
(3.1.12) T vy < B) \Qi ) (\'{:)

b2 (tx2)f, (18
zZ \ ot T ’

then v has minimal period T . We define g(8) :=
To obtain N different solutions Girardi and Matzeu use direct method
(the idea of pseudoindex ). Let E be decomposed like in I§4. We choose HE and
- . . . . B
H in the same way as in I8§4. We can easily see that for H{z) = lz| (due to

Remark 1.4.1.), Propositions : 1.4.1, 1.4.2 and 1.4.3 hoid. If F is a func -

B F .
tional related to H(z) = |z| and ’Ck are defined like in (1.4.6) then we have

FOF F F B2 (2 V6D (g
0<01$02$ ....$CNSC_ = h(B) := 7 (ﬁT} . (ﬁ)

min

Moreover for critical points related to f we have ci £ ¢, , s0O

F
(3.1.13) c . & ¢ & c = h(B), k=1,....,N.
min k k

Now let =
' i€ E, i=1,....,N be such that
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(3.1.14) f(z)=c, Mz )=0 |,
i i .

where c, is defined as in (1.4.8). If c, = Cj’ for some i,je W, i # i then

there exist infinitely many points satisfying (3.1.14).

We must only to show that each such z, from (3.1.14) has as minimal period T.

By contrary, if not, then one would have , by (3.1.12)

%, ,
{3.1.15) c. ¥ h(B) - (%X (8-2) .2*%/(@3.}

but taking into account (3.1.13) the constant a, should satisfy a2>'ﬁ? B,

which contradicts H6)

§ 2. Some improvements of results given by Girardi and Matzeu.

Combining the results obtained bv Girardi and Matzeu i.e. the Theorems

3.1.1 and 3.1.3. it is possible to state the following

Theorem 3.2.1.

Let geRZN, @=(%U“W§W§NM)"W§QQ’CoieR’ i=1,...,N, are such that
0L £ ... 4 uﬂN
K1) He ' { R®M, R)
K2) BH(g) & H'(g) g YgerN, 5> 2
. N . %)
K3) H(g) > a ( Z 5 (g Pagr))

[

N ] N . (B-4

K4) Wl <a) ( % e+ ')
K5) a2< \}‘wN B

If K1) - K5) is verified then ¥ T > 0 (H-S) has at least one solution having

T as minimal period.
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Remark 3.2.1.

From K2} and X4) follows that

G 3 Z_,N i \?/
K6) H{§) = ""_; ’ vw—T (5:4 = (%7;: + %e‘z'm ) =
f (¢) £ L H'(¢)g < LIiH ()] lel¢ & (ZN Qi (g2 2 )(3'95, .
in fact H(g & -(g (g) N @ e %' g‘\ 2NEY Z LA SIS ) : ‘$1

Remark 3.2.2.

The assumptions K1) - K5) are more general than these given in Theorems 3.1.1.
and 3.1.3. Notice that for w .= 2 for every i =1,..., N they reduce to

i
the assumptions H1) -H5).

Remark 3.2.3.

As it was ealievr mentioned we can put al = 1 (see Remark 3.1.2)

Proof is civen in two steps,..due to Pronosition 1.4.3 which guarantees
the existence of a strictly rositive, minimal critical value of f, since 0 is

an isolated critical value of f (this we are going to prove).

1

3
Let E = HZ(ST, RL”); critical points of the functional £ are T-perio
T
dic solutions of (H-S), where f(v) = %<v,Kvy - f H{v) , K is defined as L
o

in (1.4.1). We are going to show:
Lemma 3.2.1.
0 is an isclated critical value of f .

Step 1. Let v be such that f(v) > 0 and f'(v) = 0 , if

: - Ly o \ P62 [\ Ps-2)
(2.2.5) fovy < ‘EE£ (“ﬁ€L> . (ﬁ?) =: q ()

then v has T as . minimal period {( comnare with Lemms 3.1.8).



B

Step 2. A minimum positive critical value satisfies:

(3.2.6) c ¢ B (43 \Mpn o\ YED)
min @ \QNF AT

(compare with Lermma 3.1.7)

Proof of Lemma 3.2.1. Let

z(t) be a solution, h

H(z(t)); from the defini-
tien of f(z)

one hasg
(3.2.7) flz) 5 £2Z n 7

2 zZ
If 0 is not an isolated critical value, then there exists a seguence

{ z | € E~N{0] such that : Jz
n inew

H' ) nd f } ——s 0. >t = A
(zn an (zh Le z (g,

\t!

ces M := ma
) n max

>: . -2
'(Z’% ((Ci\n)z “‘(?4'231)2))”2 P} ’ hence we have
tel8T]
. ) v\ R-2)/B
(3.2.8) Mo (hy) ve £ (-%—f—(-z—"-}-}
n ®-2)T | ?

where h = H(z (t)). Now we estimate Mn using Htlder and Wirtinger inequalities
n n

(Lemma 3.1.1.) and K2), K3), K4). Let v =

¥ + c, where v ig a solution and ¢
T
is such that f $dt = 0, c € BLN.
©
T T T 2z - 2 T A
. . & _ 1 A o
B iﬁ(v) 5: gJV -V é 5 " J“Lz_ ?_JT“JV “Lz ’ZJT“H’(V) NE é-
0
T N TN B
T L2 Wi B T e W z 2 72
CH @SN ¢ FamEg (gegi)
o ¢
T
(o]
éjg%aé M oH(v) , where
N %, B-2
(3.2.9) M= max [(3 @i 2 46t
{QLD‘T] =4 & ((gt %VPN‘)) :

Hence

: 20T p
3.2.10 =

which is alwavs strictly positive. The same estimate as

2.2.10} holés for avery

M, 80 M doesn't go to zero, that means also z doesn't converge to zero.
n n n
[ ]

Proof of the step 1. If v has not T as minimal period then I meZ, m2> 2



such that T/m is a minimal period. In that case due to the (W-I) (Lemma 3.1.1).

(3.2.11) Pole <37 Wil

Using the same notation as in the proof of Lemma 3.2.1, moreover:

K2), (3.2.11),

definition of M (3.2.9), inequality (3.2.7) we are able to write the following

inequalities:

T T T T 2 %
3y Rigi - - f _ e & T y __.»‘T.‘_ Ty VA
BL H(v) £ lvH (v) = gV fov RS “Jv“l_,_ =% I (v}i\Lz £
CEE (12 S iy e 2w (12 90 gm0 12
= 4‘:’7 a@ JO ‘Zj": E&vﬁ; + [fi*N é 431. a2 M Oli:) -i(cgi“'cgﬂ?’h ! é
- 2 T
-
g 43{_ 32 M go H(V)9
hence
o A Aue
(3.2.12) Mo WlT -
Since
. bup |\ e
H(v) » y B > (Q,;_fi) . one has
Z'l
B-2 (4pp\UhEn (4 %ED
f(v) % 7 (‘Eé‘) : T
¢ s \ 2

Procf of the step 2. Let us introduce the following notations:

N 2
Hp = (2 2 (of + g2 )"

izt

F(v) =%<{v,Lv) - jT-H (v)
"o 2N s ©

. + .
c?. = 1nf{c:eR : £ (z) =c and f'(z) =0,
min o o
c® = inf sup f (z)

Foosk zeX ©

Since, by K3) one has
(3.2.13) £f(v) ) flv) Vves

o, 0
(3.2.14) cp > ck

Now we are going to give an estimate for c°;n from above.

mi
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On:'the complex plane (H~-S),with H = Ho’ can be written as

¢ = i H , wh ¢N 2N
<§ i I—io(g) where ¢e
. S o, 2 B4
Since Hc’)(g) = (..., wj‘B/Z (f.; 2(q7 * Givn )) gj,...) , Wwe have
(3.2.15) ¢ = 1w 82 (0 () .
7 j o h

If 4 is a solution then HO((g(t)) = const = ho . Solving (3.2.15) we have

(B~
g, = bi exp (i ij/Z h %t) , Where bj and ho are constants ,
j o

o

which will be found in the following way:

i) as 4. 1is T periodic, then holds

(-
152)/[_5 = 2% ; hence

w8 hy 2
_(4m ) Hep-2)
o - \wj(bT

ii) from B-homogenity of H , we have for g, = b (z
o) J J =J

~ B B 7%
- - N o w
h =H (b, gj) = bJ_ HOL J.) = bj (_ia) hence

\""Z

()

Using these results (i), ii)) we can finaly write:

A

"3‘_7) exp (i(2J¢/T) t)

W(
(!

.2.16 = h
(3.2.16) 4 = n

Claim. fo(gﬂ) < g(B) , where g(B) is given by (3.2.5). Due to the previous step

this claim finishes the proof. We have

.7 T
fo(fgj) = -:12 Eo ?j'g‘j - So Ho (‘g‘}\, from (3.2.16) we obtain
A AL 1 % om - 2r Yo 2\
(3.2.17) fo((gj) = '% .go ho (%Al‘zrl QXP("'-?{ £)- oﬁ(ﬁj\ 'EXP(L')":‘;H ~The =
T g e oy _
=4l WTEE -Th = WE T =

%“ - . Ph e \ - -t
”(%j z}(%g)%z)(%_% “/f>= (i) Ap )%'%)Wn&z' %%_ ‘
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Obvi ly we h £ > c°® .
viously we have o(gj) y Cin

Let now j =N ( notice that wy is the hightest frequency ) , then

-2 ®ip-1)
= {40 . b-2 (4T
r(80 = (F) 52 (QN \,

B,

. g2
Since a, <oy -p we have g(B))(%}% a‘-&,}(ﬁ;‘%} that means

£ (g,) < g(B).

Remark 3.2.4.

Thanks to inequalities 0<@,& .....£ N one has from (3.2.17)
fEW € T (e )& . &F (g)). To obtain £ (g;)<g(B) ¥i=1,...,N it is
enough to change the condition K5) to the more restrictive:
K5') a, { Vwa 'p
2
Now let us state the similar result to this one given by Girardi and Matzeu
(here Theorem 3.1.3.)

Theorem 3.2.2.

Let all assumptions of Theorem 3.2.1. be verified but K5), and let K5') holds
then ¥T > 0 (H-S) has at least N distinct solutions having T as minimal
period.

In the proof we use the results obtained in the proof of previous theorem.

We follow also the proof given by Girardi and Matzeu.

Proof. Let E = E+>@>E_ @ E°, where E+, E , E° are subspaces of E:

g E' = span{(sinjt)ek —(cosjt)ek (cosjt)ek +(sinjt)e : JeN, 1$l<élﬂ}

+N; k+N

-(sinjt)e : jeN, 1¢k<N}

(3.2.18) E = span&(sin‘]t)ek +(cosjt)e ; {cosjt)e aN

k+N k

E° = ker L & g2V

Let L be an operator defined in 1I.§4. .



. Tem

We want to show the existence of N distinct T-pericdic soclutions for a functio -

N .
nal fo which is related to Hamiltonian H = (5%9%“(%?-»gf;ﬁ\)e&. As one can

easily see such fo satisfies conditions f1) - £3) from Lemma 1.4.1. Hence Propo

+
sition 1.4.1 holds. Since we can find a subspace HQ of E :

(3.2.19) H§ = HN = EVN(t) = (gcos(Em/T)+ Qsin(ZmVT); gsin(2x/T)- Qcos(zﬁ/T}):

(ﬁg,at)é RM<R N }

and due to Theorem 1.4.1 we have that i*(H ) = N, where H =E @ E° @ Hy» SO

also the thesis of Proposition 1.4.1 holds.

We can also find such ¢ >0 that fo(v) )»CO > 0 for vk = ¢ and ve ET

+
In fact from definition of E we have

T T N ) 2
0y it [ P (e (8 gt

[

4 T &
Z LRI M T A SRV (587 cpuu®

% B
since H”® is continuously embedded into L, there exists cB> 0 such that the

last inequality holds. For { v | sufficiently small the right-hand side is bigger

than zero, so there exists ?,}O and cO > O such that
(3.2.20) £f(v) 2 c > 0.

o o
Hence thanks to Proposition 1.4.3 c; >0 for every keN.

Moreover f is bounded from above on H . In fact, let veH ,
o

v=vytv +v°, where veE , vogE°, Vi is like in (3.2.19) :then one has
T T 2 T
; CUlvtvgy = 4 [ v, - 428 | I [jv?
/2, (V,LV)‘\ 4<VN!LVN\} 2 N VNJVN 2 T o IVN’ é —-r »O'V|

Now from Holder inequality

T (g-2 T e, 7 -2) T /e
% <V’LV>$:§T'T P )/s(j‘o vi®) é g;_-ﬁ? /® 2 '(§ v ) 7®
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Hence

.
3 . T LG T 2
(3.2.21) 0 =%y - fn g Iog & (LR (@ )

TN B/ -
- L(- Z (‘55*‘6;‘1”)) £ %5‘(\%)%’2) .(fﬁl)b’(ﬁ’“

bp=A

+
The last inequality follows by noting that the maximum value on R of the func-

- 2 B
tion b: R-——>R defined as b(x) = %g%uj‘%é‘x - X coincides with the

 \¥e2)
right-hand side of (3.2.21). One obtains the maximum of b(x) for x =l4I,)"77%
This fact gives us that for every' ks;g 5 Ck is finite ( see Proposition 1.4.2).

We have that Ci< C; ¥ i , where ci is a critical value related to the
functional f (ci as in (1.4.6.)), in particular ey & cy - Moreover
sup {fo(v) : veH-}z h(B) (see (3.2.21.)). Due to Proposition 1.4.1 (notice that
i*(H ) = N) we have at least N distinct solutions; the minimality period T we
obtain following exactly the calculations which are made in the proof of Theo -

rem 3.1.3.
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IV. PERIODIC SOLUTIONS OF HAMILTONIAN SYSTEMS ON  PRESCRIBED

ENERGY LEVEL

§1. Results.

The first existence result was established by Weinstein {261 (here Theo -
rem 0.2). then Rabinowitz [18] weakened the convexity assumption on &2 taking
52 star-shaped with respect to some point‘ xoe R*M (see Theorem 0.3 ). The next
problem concerns the number of periodic orbits on a given energy level. In this
direction the first result was obtained by Ekeland and Lasry [17] , here Theorem
0.4, the next by Ambrosetti and Mancini [67 i.e.

Theorem 4.1.1.

Let &2 be a compact, strictly convex subset of RZN, with interior £ containing
+
O and C 2 boundary & . Assume further there exist r, ReR and ke Z,
2<& k¢ N with R« ~k'r, such that B ¢ L2 ¢ BR. Then there exist at least
r

[n/(k—l)} distinct periodic Hamiltonian trajectories on 57 ([a] = min{ke:Z: agk})

The problem,which appeared next, was following:"Is it possible to obtain a
result similar to Theorem 4.1.1 1in the case of 5 star-shaped?" The answer is po-
sitive and given recently by Girardi and Matzeu 197 and by Berestycki, Lasry,
Mancini and Ruf [12) . The last resuit is also a generalization of Theorem 4.1.1
in the sense that J is not only star-shaped but also ""connected between' two
ellipsoids. To state this theorem let us introduce the following notations:
let K be a matrix defined by

W 0

.wN

K= “1
0,



~d 3w

+ .
where . eR, 1 =1,...,N. The set &={%¥xx =2 & (%} +x;sn¢tldefines  an

=l

ellipsoid in R,

(4.1.1.) Let HeC*( R™, R) , H'(x) #0 for all xe 2 and let & be a C% -
manifold strictly star-shaped with respect to the origin and bounds the
set ‘SQ= { xe R¥Y ¢ H(x) < 1} , which is compact.

(4.1.2) Let LE cQ c¢pE& for some 0 <L oAL<p

From these conditions follows the existence of g?) 0 which is the largest posi-

tive real such that

(4.1.3) sz nBg = ¢ ¥xel

where B% is the interior of a ball.

Theorem 4.1.2. iz

Given & , there exists a constant &= 6(?2?3&% - )CON) > 0 such that (H-S)
possesses at least N distinct periodic orbits on any surface & satisfying

(4.1.1) = (4.1.3) with P/L<1 + §

Before presenting the result given by Girardi and Matzeu in [19] there are
necessary some preliminaries.
et 2 Dbea C%- regular manifeld of iRiN, strictly star-shaped, 0Oe &L ,2 =3.L0.
Let R:= max“z! : ZEE} , Pi= min{!z[ tzeSl , a:= minid(z) czeX §
wvhere d(z) = z-n(z) is the distance between the tangent hyperplanes to <& at
the point z and the origin of R?M. Let a(z) be a "gauge" function related to
2, itvis known that ae C3( R*™ {0} , R) n C*( R*N , R) and
I = {z ¢ B*V : a(z) = 1}. Moreover one has:

z1) Lzl ¢atzi¢ Flzl  Vzer?®



Y.

z3) max {la'(z)f zel } = g

B
If the Hamiltonian function is defined as H(z) = (a(z)) , ¥13>2, then the

following conditions are verified:

&'0) Z=1ze \RZN:H(Z)=1}

B
=) wlzl <R ¢ 4, 1zl Vze R
=2y BH{z) = z-H'(z) ¥z e g2
Z'3) (2] & B {2f®

Now it is possible to state

Theorem 4.1.3. [19]

Let & be as above and let

(4.1.4) R* ¢ {2'rd

Then Z carries at least N distinct periodic Hamiltonian trajectories.

§2. Proof of Theorem 4.1.3.

‘rom Theorem 3.1.3 follows

Corollary 4.2.1.

Let H be defined as in 81 and let
3 B-1

(4.2.1) R £ {2'ar

Then YT >0 there exists at least N distinct periodic solutions of (H-8)

with H:= H having minimal period T.

Proof. It is easy to see that all the assumptions of Theorem 3.1.3.are satisfied

. A
with a, = ;} and a2 = g%h;q~

Proof of Theorem 4.1.4. From (4.1.4) it follows that for £ % 0 sufficiently




-l e

small one has

(%:)Hi ey

Hence, since one can always suppose (maybe after rescaling) that r>1, one has

2+ 2LE +2¢
R L A2 dp!

Putting now B =2 + 2g the thesis follows from Corollary 4.2.1 and Theoren

W
b=
w
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