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NOTATIONS

In this work, we use metric signature (-,+,+,+). We also use (almost) throughout
geometrized units, i.e. G = c = 1. Greek indices take the values: 0,1,2,3; and
are used to denote time and space components in 4-dimensional spacetime, while la
tin indices are used to denote purely spatial‘components.

The following special symbols are used throughout:

Vie or ;u covariant derivative
ol adjoint of the operator &
In natural logarithm
k or Ks Boltzmann's constant
A 12 (£ 7
~§+ , fﬁ‘ future and past null infinity
A future and past timelike infinity
e spatial infinity
k

surface gravity



I. INTRODUCTION

a) INTRODUCTORY SURVEY

From the first philosophers, Plato (~428 to 348 B.C.) and Aristotle
(~384 to 322 B.C.) the universe was considered stationary: "...is always in the
same state" said Plato, and "...we find no trace of change either in the whole
of the outermost heaven or in any of its proper parts....the shape of the hea-
ven must be spherical...'" said Aristotle |1]. This stationariness means that
the relative distance between the cosmic bodies is constant in time. The univer
se of Aristotle was geocentric (i.e. Earth centered) which corresponds to the
anthropocentric conception of the Greeks. The Earth was located at the center
of the universe and the Moon, Sun, planets and stars were fixed to translucent
heavenly spheres that revolved about the Earth. Subsequent elaborations of this
system culminated in the Ptolemaic system of about A.D. 140.

The Middle Ages (~500 A.C. to 1500 A.C.) were a continuation and ade-
quation of geocentric ideas to religions. Christians, Hebrews and Moslems were
"hlessed" with a "rational and well-organized'" universe "in which they had ut-
most importance in a finite and unbounded Aristotelian universe that revolved
about the Earth" [2].

Nicolaus Copernicus (1473-1543) achieved the transition from the finite
geocentric universe to the infinite and centerless universe. Based on observa-
tions he proposed in the middle of sixteenth century, an heliocentric (i.e. Sun
centered) universe. He stablished the basis for modern cosmology. Afterwards
Johann Kepler (1571-1630) established his laws for planetary motion in the be-
ginning of the seventh century. Galileo Galilei (1564-1642). contributed to the
development of the astronomy incorporating the telescope and establishing the

observations as the true scientific method. What Galileo saw through his teles-
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cope was not in accord with Ptolomeo's theory. His observations provided support
to the Copernican theory, and in 1610 he interpreted the Milky Way as a collec-
tion of stars. Isaac Newton (1642-1727) lived in the company of brillant scien-
tists who made systematic the threads of ideas of great thinkers since the Middle
Ages. He constructed the theory of Gravitation for cosmic bodies,independently
of the matter which the bodies in interaction are composed. "From his mind emer-
ged the Newtonian universe governed by equations and gquantitative laws of nature"
|2]. According to this theory the universe is centerless and edgeless, and made
secure the idea of an’infinite universe. The Newtonian universe is stable on the
cosmic scale, but inestable in finite regions where local gravity would cause
irregularities of matter to condense into cosmic bodies. These bodies, infinite
in number, are uniformly distributed and at rest relative to each other, which
do not fall towards each other because there is no preferred point of condensa-
tion. But this infinite, unbounded, uniform and static universe though solves
the problems created by old theories, raises a number of new ones. For example,
the gravitational potential of the whole universe would be infinite. In an a-
ttempt to save the Newtonian theory was postulated that the Newtonian law of a-
ttraction should be weakened at large distances; this is achieved introducing a
"cosmological term'" to Poisson's equation. However, something graver were in the
Newtonian's theory grounds. This was the Newton's conception of space. He said,
"Absolute space in its own nature, without relation to anything external, remains
similar and immovable". Bishop George Berkeley in 1721, in a work entitled "Mo-
tion'" attacked the idea of absolute space. Berkeley instead said that ''space by
itself was emptiness, i.e. nothing', its only property is extension, and without
matter there is no space, therefore absoluteness was meaningless, contraryly to
that proposed by Newton. He also proposed that the inertia of any body is deter-
mined by the distribution and masses of all other bodies in the universe.

Ernst Mach, an Austrian physicist of the nineteenth century, expressed
ideas essentially similar to those of Berkeley. Berkeley claimed that the motion,
uniform or accelerated is relative, Mach developed this theme and proposed what

is known today as Mach's principle: "all inertial forces are due to the distri-



bution of matter in the universe'.

Albert Einstein (1879-1955) some years after incorporated this princi-
.ple to the theory of general relativity. However, this is not the case '"because
the Einstein equations admit many solutions, including the flat Minkowski metric
which contain no matter at all" [3]. In 1917, Einstein tried to‘épply his field
equations (1915) to cosmology. In accordance with the then state of knowledge,
he started from a static cosmological model. But in order to get a static model
of our universe, he had to introduce the "cosmological term” /&}%y into the
field equations, similar tentative to that made by Newton years ago. But in 1930,
Hubble discovered the expansion of the universe, thus no longer was the cosmolo-
gical term necessary. Afterwards Einstein called the cosmological term: "the big
gest blunder of my 1ife". After this, he abandoned it and returned to his origi-
nai geometrodynamic field equations.

In 1922, A. Friedmann (1888-1925) showed that the Einstein's equations
admit spatially isotropic, homogeneous solutions representing a uniform distribu-
tion of expanding matter. These solutions do not require a cosmological term to
balance the gravitational attraction of matter, becaﬁse‘the matter is not statio-
nary, as the observations provéd. In this models the universe had a beginning at
a singularity at finite time in the past, and is now in expansion. At present
there are Friedmann cosmological models with "cosmological term'" which yields
stationary and non-stationary universes, hence the uniqgue way to decide which is
the realistic model that represents our universe is via accurate observations.
The conclusion that the universe is evolving was strengthened by the discovery in
1965 of microwave background radiation with a thermal spectrum at 3°K. The only
apparent reason for this radiation is that it is a remnant from an earlier hot,
dense phase of the universe, the so-called 'big-bang", which represents the sin-
gularity origin of our universe.

The fact that the Friedmann's models do not reflect the local irregula-
rities such as stars and galaxies were pointed out, and in 1946 Lifshitz improved
this models using a linearized aproximation, finding that small density enhance-—

ments would grow, but only rather slowly. A class of deviations from the Fried-



mann's model, which can be analysed beyond this linear approximation, are those
which are anisotropic but spatially homogeneous. But the observed isotropy of

the cosmic microwave background radiation limitates any large-scale anisotropic
model. Between the possible reasons that explain why the universe is so isotropic
now, '"even if it began in a chaotic state, include particle creation in the very
early universe and neutrino viscosity at a slightly later epoch" |3].

In 1939, J.R. Oppenheimer and H. Snyder showed that a possible outcome
in the life of a star should be to undergo a "gravitational collapse'". This means
that the internal structure of the cosmic body can no more support the pressure
due to gravitational forces, therefore the star contracts. What happens after
that depends on the initial conditions and of the internal structure of the star.
This will be treated in detail in Chapter II.

The problem of gravitational collapse leads to another important question:
What does happen if the collapse goes on indefinitely? Then, the star collapse
to a singularity. An approach to the ocurrence of singularities was done in 1965
by R. Penrose. He used global geometrical constructions of spacetime, converting
asymptotic calculations into calculations at finite points, Jjust bringing "infi-
nite" into a finite distance. These global methods were extended and applied to
cosmology by Hawking and Geroch at the end of the sixties. But, a satisfactory
definition of a boundary of spacetime (singularity?) appears only in 1970 and was
given by B.G. Schmidt |1]. In 1970, Hawking and Penrose proposed their "singula-
rity theorem'", according to which, if: (i) the spacetime satisfies the causality
condition (the manifold M contains no closed timelike curves), (ii) the energy
condition is satisfied, (iii) the manifold M is "general', i.e. not too highly
symmetric, and (iv) the manifold contains a trapped surface; then the spacetime
representing the universe should contain a singularity, which would be a beginning
of time for at least some timelike or null geodesic. The generality of the theo-
rem does not allow one to conclude that this is true for all timelike or null
gecdesics. However, "it seems likely that this is the case in generic solutions"
[3].

Always in the frame of classical general relativity, this singularity



theorems (for details see |6|) also imply that a singularity is inevitable in
the gravitational collapse of a star, once it has passed a '"point of no return".
As the star collapses, the density increases and the gravitational field becomes
so strong that it drags back any further light eventually emitted by the star
when the "point" is reached. However, to a distant observer in the outside world
the falling star never attains the singular state. The gravitational redshift
gets progressively greater and the star appears to fall more and more slowly. As
the star approaches the '"point", the redshift approaches to infinite. The star
reddens, darkens quickly into blackness and remains forever at the "critical si-
ze", which is called the '"event horizon". The collapsed star to a singularity,
which lies inside the event horizon,is called a '"black hole". Thus, the event
horizon is the surface of the black hole where the spacetime falls inward at the
speed of light. Nothing, not even light, can now escape to the outside world.
The ultimate fateof gravitational collapse is hence concealed from the outside
world: a no-naked singularity is developed.

Suppose that some information could escape from a collapsing star, then
the singularity would become visible "in all its nakedness" to the outside world.
Naked singularities of crushed matter to "infinite density", go beyond our under-
standing of known laws of physics, are so appalling a prospect, at least classi-
cally that, a criterion for its non occurrence has been developed; it was called
"cosmic censorship' by Penrose. It says that "all singularities are cloaked from
the view of the outside world by event horizons and that nature conspires in eve-
ry way possible to avoid naked singularities" |2]. despite considerable effort,
the cosmic censorship hypothesis remains undecided, because one does not wish to
consider inessential singularities caused by bad choices of coordinates or matter
singularities that reflect the failure of a phenomenological description of the
material content. According to W. Israel |4|, there are two versions: the "weak
cosmic censorship", which postulates that all singularities formed in a gravita-
tional collapse are enclosed within event horizons and hence invisible to a dis-
tant observer; and the "strong cosmic censorship", which requires any generic

singularity to be spacelike, hence invisible to every observer unless and until



he actually encounters it. But at present the belief is that "Thorne's hoop con-
jecture'" is likely the better criterion. It says that an event horizon will form
whenever a mass M is compacted within a region whose circumference in every direc
tion is less than 2T (26M/c*)

In 1971-1972, Hawking concluded: "all stationary black holes must have
a horizon with spherical topology, and they must either be static (zero angular
momentum) or axially symmetric or both! Some years before, 1967-1968, Israel a-
ffirmed that all static black holes are characterized uniquely by his mass M and
charge Q, and they have the Reissner-Nordstrdm form. B. Cartér in 1970 arrives
to the following important result: all uncharged, rotating black holes fall into
distinct and disjoint families with each black hole in a given family characte-
rized uniquely by M and S (angular momentum). Finally, in 1982, P. Mazur genera-—
lized this result for the case in which the black hole is charged (Q # 0). The
extract of these results is what is called "no-hair theorem", roughly speaking
it says that when a system undergoing gravitational collapse settle down to a
stationary (S # 0) black hole, then the stationary state is described by the
Kerr-Newman family of solutions which depends only on three parameters: the mass
M, the angular momentum S and the electric charge Q of the black hole. A real
black hole interacting with the rest of the universe will not be in an exactly
stationary state, but in many cases it can be treated as a small perturbation
from the Kerr—Néwman solution.

In 1971 Hawking showed that the surface area of the event horizon can
never decrease with time, assuming that the energy density of matter is non nega-
tive and a version of cosmic censorship. Bekenstein in 1972 connected the proper-
ty that the area of the event horizon can never deérease with the fact that in
a thermodynamic system the entropy also can never decrease. He claimed that the
area of the event horizon could be regarded as the entropy of the black hole.
However, to assign a finite entropy to a black hole would imply that it should
have a finite temperature and that it should be able to remain in equilibrium
with thermal radiation at the same temperature. But, how can a black hole gmit

and absorb radiation if clasically (and this is the point!), i.e. according to



classical general relativity, a black hole can only absorb and never emit radia-
tion?

In 1974, Hawking |83| discovered that applying quantum mechanics to ma-

tter fields in the background geometry of a collapsing star which settles down

to a stationary black hole, produce a steady rate of particle creation (from va-

cuum state) and emission to infinite. Although this final steady rate of emission

does not depend on the details of the collapse, in order to produce it, it is ne-
cessary that a collapse occurs (see Chapter III) and, in order to understand this
phenomena "it is essential to consider not only the quasi-stationary final state
of the black hole, but also the time-dependent formation phase" ]54[ . The emitted
particles would have a thermal spectrum with a temperature proportional to the
"surface gravity'" (a measure of the strength of the gravitational field at the
event horizon; for a Scharzschild black hole it is }A;M ) of the black hole.
This emission answers the above question, because it enables the black hole to re-
main in equilibrium with thermal radiation at the same temperature.

There are several ways to explain this thermal radiation, but the easiest
to understand is the one given by Hawking |3|. His arguments are the followings:
the Uncertainty Principle implies that the "empty space" is filled with pairs of
"virtual particles and antiparticles' which appear simultaneously at the same point
of spacetime, move apart and then come together again and annihilate each other.
If a black hole is present, one member of the pair may fall into the hole leaving
the other without a partner with whom to annihilate. The forsaken particle (or an-
tiparticle) has two possibilities either to fall into the black hole too or to
escape to infinity where it will appear as a particle (or antiparticle) emitted
by the black hole (see Fig. 8 ). This will be treated in detail in Chapter III.

The fact that the radiation is "thermal" (note that a true thermal radia-
tion means an interchange of energy between the body and his medium, while in this
case, as we will see later, the black hole only absorb negative energy; in the
future we will omit the quotation marks) means that it has an extra degree of ran-—
domness or unpredictability over the one normally associated with quantum mecha-

nics. Unlike in classical or quatum mechanics, in the case of particles emitted



by a black hole, one can definitely predict neither the position nor the veloci-
ty.

For solar masses black holes (M, = 1.47 x 1O5 cm = 1.98 x 1033 g) the
predicted temperature is only about 10_7 K, so the radiation will be completely
negligible and swamped by the 3K microwave background. However, the so-called
"primordial or micro-black holes" formed by the collapse of inhomogeneities in
the hot early stages of the universe, which have a mass of about lOng or less
and a radius of about 10_13cm, would emit energy-at a rate of about 6x103mega~
watts, mainly in gamma rays, neutrinocs and electron-positron pairs. The emitted
energy would be balanced by a flux of negative energy through the event horizon
into the black hole.

The most probable final stage of a black hole is its complete disappea-
ring (evaporation?) leaving just the thermal radiation that it emitted during its
""evaporation". In this case, one would have non-conservation of baryon numbers
because the disappearence would be so quick that the temperature of the black ho-
le could not be so high as to create baryon-antibaryon pairs. At low temperature
it will radiate only zero rest-mass particles like neutrinos, photons and gravi-
tons. The lifetime of this micro-black holes is about the age of the universe, i.e.
~«lOlOyr, thus in this moment black holes of mass less than lOng would have prac-—
tically disappeared. Measurements of the cosmic gamma-ray background around 100
Mev. fix an upper limit of about 200 per cubic light year for the average density
of micro-black holes. "To do better than this one would have to try to detect in-
dividual black holes by the burst of very rapid emission that they would produce
at the end of their life" |3].

The work that will be described is based, as we shall see, on classical
general relativity and quantum field theory on a curved spacetime background. At
the moment a consistent quantum theory of gravity or quantum gravity does not exist,
thus we shall consider the "semiclassical aproximation" in which the gravitational
field is treated classically, while the matter fields are quantized in the usual

way.
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b) INTRODUCTORY REVIEW AND GLOBAL STRUCTURE OF SPACETIME

In the theory of general relativity, we need basically two "things'":

(i) A model for our physical world: a spacetime denoted by (M,g#,) which consists
of a four-dimensional manifold M (representing the physical events), plus a sym-
metric 2-form g,, called a metric, of Lorentz signature equal to m-2 = 4-2 = 2
(representing the results of measurements of spatial distances and elapsed times).
(ii) A glue between geometry and matter, which is achieved with the field equations
Ruv - %gﬁ,R = 8w T, , a realization of the genius of A. Einstein. The left-hand
side of this equation represents the geometry of the spacetime background, and

the other side the matter part.

Experiments carried out by Galileo, Edtvos, Dicke,Bragisky and Kreuzer
indicates that gravity couples only to the energy content of a body; therefore ma—
tter is involved only through its energy-momentum tensor T,..s . The above equations,
called field equations because as is universaly accepted the interactions are de-
veloped using the field as an intermediary, have some remarkable features:

(i) Einstein's equations tend to Newton's equations if we are dealing with small
masses, large separations and low velocities.

(ii) The incognite of this equations is the metric g..v » which they determine up
to a coordinate transformation, given initial data on some spacelike surface.

(iii) They are divergenceless, i.e. T*¥ jv = 0. This implies local conservation

of the energy-momentum tensor. The curvature of the metric, in general, prevents
them from being integrated globally. The divergenceless property implies also that
test bodies move along geodesics (world-lines) of the metrics.

However, Einstein proposed a solution to the problem of the non-localiza-
bility of gravitational energy, provided that the metric g,.v tends to ¥ pw= diago-
nal{-1,1,1,1) whenever x = x*= (t,x,y,z) tends to the spatial infinite (i.e. if
the spacetime we are dealing with is asymptotically flat) |3].

The "global structure of spacetime" refers to certain features of such
models, including for example, the issue of what is the underlying manifold, the

qualitative behavior of the light-cones, the possibilities for oriontation of them,
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causal structure and possible causality violations, the existence and properties
of spacelike surfaces, etc.(for details and usual conventions about this, see for
example [5]).

What the underlying manifold of our universe is? This is genuinely an
experimental question in that, if one had access to all regions of our spacetime,
then one could determine the answer. Since at least some observations have been
made on our universe, one might hope that some information might be obtained about
its underlying manifold. Unfortunately the observational effects due to the under-
lying manifold seem to be completely dominated by the observational effects due
to the fields on that manifold. For example the solutions representing collapsing
spherical dust clouds, the static fluid ball solutions,the open Friedmann solu-—
tions and Minkowski spacetime, all have the same underlying manifold: B4. The ma-—
ximally extended positive-mass Scharzschild solution ('a wormhole connecting two
asymptotically flat regions'), the negative-mass Scharzschild solution and the
Reissner-Nordstrom solution all have the same underlying manifold: S x R . The
underlying manifold for the closed Friedmann models is 83x R . In these examples,
spacetimes have different physical characteristics; none the less they have the
same topology. Even such great features as singular behavior, or the presence of
one or many asymptotically flat regions, does not seem to be recorded in the topo-
logy. In short, at least as far as physical effects are concerned, the geometry
dominates the topology |5].

For our purposes, we shall assume that '"manifold" means without boundary,
Hausdorff, connected and paracompact. Let's see why it is so?: the boundary of a
manifold would represent physically an '"edge" to spacetime, while such edges have
never been observed; a non-Hausdorff manifold is a manifold in which there are two
points (at least) which cannot be separeted by disjoint neighbourhoods, and such
behavior would perhaps violate what we mean physically by "distinct events'; in
a non-connected manifold communication could never be carried out between the se-
parate non-connected components; and in a non paracompact ﬁanifold some connected
components could not be covered by a countable collection of coordinates patches.

According to |6|, if the paracompactness requirement is given, then the
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structure of affine connections can be constructed. This structure gives the co-
variant derivative operator.

We further suppose that our spacetime is space and time orientable, and
stably causal (hence admits achronal slices |5|). We are also assuming that these
concepts and those of: past and future, slices, domain of dependence, domain of
influence, Cauchy surface, Cauchy horizon, singularity, asymptotically flat spa-
cetime and event horizon, are true in the sense of |5].

With respect to the interpretation of the metric, related to the ques-
tions of:

(i) explaining how the coordinates could be observed, or
(ii) predicting coordinate-independent relationships between observable invariants,
there is the practical compromise of using coordinates which are fairly well de-

fined and using relationships which seem to be meaningful.



IT. GRAVITATIONAL COLLAPSE

a) GENERAL REMARKS

The problem of gravitational collapse arises because gravitational for-
ces are attractive. There are two features of these gravitational interactions
that distinguish them from other interactions |[7]:

(i) extreme weakness, and
(ii) great universality.
If we compare for example, the electrostatic force and thé gravitational

force, we find that:

. ~ 36 z
Gwi _ 0.8x10 €
=== = (11.1)

i.e. the gravitational attraction between two protons is O.8xlO-36 less>than the
electric force. We can also define something which corresponds to the fine struc-
ture constant « , namely the gravitational fine structure constant g - Since =~
10 , we find that |7]: nxG_= O.5x10—38 , this is an exceedingly small number

and therefore we conclude that on the elementary particle level, the gravitatio-
nal force is completely negligible. Furthermore, comparing the gravitational po-
tential VG between two electrons and the weak potential VW, we find that for dis-
tances r >10~7cm the gravitational force dominates over the force we get from

weak interactions. Therefore, for large enough distances the gravitational force
will win over the electromagnetic and weak forces.

By universality we mean the universal way in which it is coupled to all
other particles. The fact that all the objects are subjected to the universality
of gravitation implies that they influence the observable metric of spacetime.
For cosmic bodies, this universality makes the action of gravity sum constructi-

vely to such an extent that it dominates the electric and nuclear forces. What is

the parameter that indicates when gravity starts to dominate the other forces?
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It is N, the number of particles. Let's calculate it roughly. The gravitational

energy of N protons of mass m, in a volume V is of the order of

EG,,V':ﬁiﬁlﬁLiﬂl: - - G wf'ﬁ@yéﬁj fﬁé

: = N (II.2)
% =N .
VAL Y,
The total electrostatic energy is of the order of
PN P - e Ee
Be ~ -6 N7 = 050 (11.3)

. 2 2.3/2 54 . .
and we see that if N ~ (e /Gm ) ~ 10, then gravity starts to dominate the

electrical force, i.e. the Newtonian potential supplants the Coulomb potential as
the determiner of the structure. In a larger body, gravity crushes the atoms to-
gether and the matter turns into a highly compressed plasma |8].

The life of a typical star will consist of a long (AJlOgyrs) quasi-static
phase in which it is burning nuclear fuel and supporting itself against gravity
by thermal and radiation pressure (remember that the pressure in matter comes
from the electrons, while the protons give rise to the energy density). However,
when the nuclear fuel is exhausted, the star will cool, the pressure will be re-
duced and so it willvcontracts. Now, suppose that this contraction cannot be stop-
ped by the pressure before the radius becomes less than the Scharzschild radius
and indeed, this happens if the mass of the star is greater than a certain criti-
cal value, then (we assume throughout that the star is spherically symmetric, thus
by Birkhoff's theorem the solution outside the star is the Schwarzschild solution)
there will be developed a closed trapped surface 7" around the star (see Fig. 1)
and, by a theorem of Hawking and Penrose, 1970 ([6]|, p. 266) a singularity will
occur provided that causality is not violated and the appropriate energy condition
holds. Even if the star is not exactly spherically symmetric, a closed traped sur-
face will still occur providing the departure from spherical symmetry is not too
big. The existence of a trapped surface is implied by the fact that the gravita-
tional collapsé has proceeded beyond a certain point. Physically, under certain
circunstances this point is in fact a point of no return.

In a hot body there will be, in addition to thermal and radiation pres-
sure, the degeneracy pressure of electrons. In cold matter, at densities lower

14 -3 .
than that of nuclear matter (~ 10 g.cm ) the only significant pressure will ari-
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Fig. 1. Collapse of a spherical star |6].

(a) Finkelstein diagram ((r,t) plane).
Each point represents a two-sphere.

(b) Penrose diagram of the collapsing fluid ball.

(¢) Eddington-Finkelstein diagram of the collapse
with only one spatial dimension suppressed.
7 is the closed trapped surface.
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se from the quantum mechanical exclusion principle.

For large bodies self-gravity will be important, and will compress the
matter against the degeneracy pressure. Considering only Newtonian arguments we
obtain easily approximative orders of magnitude. Consider a star of mass M and
radius r, . The gravitational force on a typical unit volume Gv(M/r%)n.mn) will
be balanced by a pressure gradient (A»P/ro), where n is the number density of
fermions, mn is the nucleon rest-mass and P is the average pressure in the star.
If the density is sufficiently low, so that the main contribution to the pres-
sure is from the degeneracy of non-relativistic electrons, then (n.mrl = M/r? is
the mass density):

z 3 -t iz ypH 4/
F =% n'Tme =‘F§’ Yw/ W (I1.4)

n
Such stars are known as'white dwarfs? While, if the density is so high that the

electrons are relativistic, then:

Y

g/ 2/3 7 */3
F=‘Yn‘i/\-i/3='- M n

/
? Wi, (1I.5)

From this we obtain a limit mass of the star ML’ which is able to support by the

degeneracy pressure of the relativistic electrons the gravity force. This upper
limit mass is:

2 -

P i

ML= &5ma = 15 (1I.8)

In fact, when the electrons become relativistic, they tend to induce inverse be-

ta decay:
e+ p — Ve + VL

producing in this way neutrons. This denudes the electrons and hence reduces their
degeneracy pressure, there causing the star to contract. This is an unstable situa-
tion, and the process will continue until nearly all the electrons and protons ha-
ve been converted in neutrons. At this stage, equilibrium is again possible with
the star supported by the degeneracy pressure of the neutrons. Such a star is ca-
lled a '"neutron star". Again if the neutrons are relativistic, the star must have

a limit mass Mi.. Considering an ideal neutron Fermi gas and using the relativis-—
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tic equation of hydrostatic equilibrium, Oppenheimer and Volkoff |9| found:

M‘L ~ 0.7 Mo (11.7)

for non-rotating models. More recents results, with other equations of state gi-

ve a range of values for the maximum mass between 1.3M, and 2.7M, |10]. The con-

clusion is that a cold star of mass greéter than ML (ML) cannot be supported by

electron (neutron) degeneracy pressure. To see this rigorously, see for example
|6], p.304; and to see more references about this problem see j11].
There are three types of gravitational collapse |12]:

(i) Stabilized collapse, occurs when matter congulates under the influence of
gravity to form relatively stable objects such as galaxies, stars and pla-
nets which evolve in quasi-static ways.

(ii) Catastrophic collapse, occurs when matter is in (or nearly) free-fall with
increasing density. The mathematical model of this is given by the Oppen-
heimer-Snyder solution which we shall study later. Some models of the uni-
verse terminate in a catastrophic collapse; and expanding models have a ti-
me-reversed collapse at the beginning.

(iii) Dynamical ccllapse, closely related to the catastrobhic collapse, consists
in a phase of nearly free-fall which is eventually terminated by the forma-
tion of a central mass which again undergoes a phase of quasi-static evolu-
tion. Of this type are the supernova theories.

The most important role in the study of gravitational collapse of fluid

masses is played by the equation of the state.
b) GEODESIC EQUATION

The most efficient method to obtain geodesics is to use a variational
principle, equivalent to the geodesic differential equations, and proceeds to des-
cribe the solutions (geodesics) by techniques adopted from Lagrangian mechanics.
However, the Euler-Lagrange equations which arise from the variational principle
SL =0 (where L :JIng,(dx’u/d,l)(c:lx‘)/d>--)]y2 d> ) are not quite the geodesic

equation. This is because L is invariant under arbitrary changes of parametriza-—
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tion of the curve, A ——s f(X) ; whereas the geodesics equations determine the
curve parameter A to within a linear transformation A —3 a3 + b. To have a
variational principle which imposes this restriction on the parameter and gives

the right equations, we should take 4I = 0, where

| VLS T 3] (II.8)
Izﬁz_f?w.x X dA x’a dx
N
and then obtain
.s ° D e g
X+ 07,0 x"% = o (II1.9)

the geodesicAequation. This equation is important for the following: we know that
the world-line of a free-falling particle is just a geodesic. Many of the most
interesting features of gravitational collapse can be studied in the problem of
free-falling test particles, in the gravitational field of a central mass (cos—
mic body) as described by the Scharzschild metric.

The Scharzschild metric is:

-

7 - \Z =t Y- - 2
dst = — (A =2ME)dE (1202 ey e (II.10)

EA 2 .2 z i . ;
where dSL=d® + Sin © d 4 (r,@,¥) are the usual spherical coordinates. The

integral to be varied is I =fol” dX , where % = dt/dx and

7
A AL T2 <

O TR / oM u‘"!";%?— /’1~2‘;\I‘\x"‘ri -2 a?.?:‘l% I \f.J;
‘ Ciu;;‘(’(} KX ="'<]“‘~‘ L R : J T+ 2 by luey (11.11)
@
The conjugate momenta are P = 5“/gkﬁ and the "Hamiltonian" is equal to & |11]:

We=poxt -2 =2 (11.12)

i
We remark that M is not necessarily related to the energy, because . 1is not
the kinetic minus the potential energy. We thus use the hotation Hamiltonian or
Lagrangian between quotation marks. Furthermore, X is not the time, unlike in
Lagrangian mechanics.

Note that the "Lagrangian" 2 is independent of ‘# . Therefore the con-

= a?f/: - e ¢
Py = ¥ ¥ (TT.13)

is a constant of motion. Actually, the "Lagrangian" has full spherical symmetry,

Jjugate momenta
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and by considering the 3-parameter group of rotations one could find three angu-
lar momentum constants of motion, and prove formally that any solution of the geo-
desic equations lies in the "plane'" equivalent to the "plane" 8 = W /2. We shall
set © = T /2 from now on, in order to simplify the computations, without loss of

generality. Then:

A L < comt. (II.14)

- 2T¢ =(4-2Mf‘)£=mmt, (I1.15)

i

Py

f=-p
But: ){ :"&gg;~, which gives X = const., i.e. constant of motion. By rescaling

i

il

the curve parameter A in any particular solution ( A —> a X ) one can change

-2

the value of M. correspondingly ( ¥ —sa MW ) to achieve the standard values

normally chosen:

2 X = Xtk =021, (II.16)
By using A and ¥ to eliminate ¢’ and t , the normalization equation (the last

one) can be written:

. L2
(fi—sz“‘){-g@+ \;?-) 4+ J(/Yt = =1 (11.17)

in the case of a time-like geodesic. Rearranging terms we obtain:

zZ . D ond et Copr o~
X,l % {i - 2Ny ;(4 + A7y | (IT1.18)
This is not only a simple first-order differential equation for r( X), but also

that it has the form

E =4m < Vi (I1.19)

of the equation for a particle moving in one dimension under the action of a po-
tential V(x). The qualitative description of the solutions of Eq.(18) (Eqg.(18)

means Eq.(II.18)) follows from the analysis of graphs V . versus r, where
e

\/J;}L = ;’—J\\r ) ’%*rir ) | (II.20)

and considering large, critical and small values of the dimensionless angular mo-
z 2 2z 2
mentum parameter X7/ M. Thus, in Fig. 2, we contemplete the cases L7 v w12,

2 2 z 2 2, 2 . .
£5=12M and A <12 u |12|. When A/ M % 12 we find the usual Newtonian
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Fig. 2(a). Case l>®?»ll. If | »°- 1] << 1 the
orbits are Newtonian like in classi-
mechanics, but a strictly relativis-
tic energy Xl>\&#yMMtx>4 gives a co
llapse orbit in which the fall conti

nue to r = O.

8/? o e e e S i
:'fl{
/ Vg
/ i
/ C&n___?

Fig. 2(b). Case L =1Zw'. For an energy'mzzrié
there is an unstable circular orbit.
Other energy orbits spiral in to r=0.

.2 2
An angular momentum as small as (= {Zm
cannot prevent collapse at any energy.

Fig. 2(c). Case L% {2 wt. There are no circular or
bits. All orbits spiral in to r=0.

Fig. 2. A plot of \ég vs. Y, |12].
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classification into elliptical, parabolic and hyperbolic orbits, although an ex-
act solution would show discrepancies from the precise geometrical forms. However,
at strictly relativistic energies X£>}1, a new type of orbit is possible in
which the particle penetrates the centrifugal potential ii/érl so deeply that it
feels a relativistic '"gravitational collapse forc" —(ﬁéf’rS and is pulled on into
r = 0. At the smaller angular momentum shown in Fig. 2 (b) and (c), it does not
require high energies for this collapse force to dominate, because the centrifu-
gal force is very small.

Up to now we have studied cosmic bodies (stars) with only one parameter
characterizing it, i.e. his mass M. The situation can be generalized by conside-
ring that this body has also charge Q and angular momentum L. Some of the featu-
res will be different, but others (just in which we are interested), can be (mo-
re or less) directly generalized, as for example, the Birkhoff's theorem |[1]| can
be generalized to the case in which the star has charge Q, or the Scharzschild
metric can be extended to the Kerr-Newman metric (]1,48|). In the case of parti-
cles interacting with collapsing stars, the general case (i.e. considering the
Kerr-Newman metric) is treated in |13]|. The particle motion in a Kerr field is
treated in |14].

The collapse of dust spheres in a Scharzschild background will be trea-
ted in detail later. The collapse of charged dust spheres require the use of the
Reissner-Nordstrdm metric |6| and is treated in detail in |15-25| and for charged

thin shells in |26-29|. Regarding the oscillatory character of the Reissner-Nord-

strom metric, the basic references are |[30-32|. The collapse of rotating bodies
using the Kerr metric and related topics, like the possibility that the angular

momentum of the star can stop the collapse are discussed in |33-38].
c) HYDRODYNAMIC'S EQUATIONS

A perfect fluid is by definition one in which there are no shear stresses

and no heat transfer. This means that in a suitable local Lorentz frame the stress-—

energy tensor will have the form: A diagonal( 4 ,p,p,p), since 7" components
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could be interpreted as an energy flux heat flow, and if the space components T 6 =

1]
p §. . were not a multiple of the unit matrix, the distinguished eigenvectors of
1J

T  would be principal axes of shear stresses. To represent this tensor in some

1]

different frame, we must explicitly recognize the time axis u? = (1,0,0,0) of the
Lorentz frame in which T4 was diagonal as a physically specified spacetime direc-

tion, as the 4-velocity of the fluid, and then define in this special frame the

stress-energy tensor

T2 2 ufu’ + p( ™+ ur W (11.21)
CN g

which holds in all frames |39|, now that we have stablished it in one frame. The

tensor equations:

i iy o= Q - (1I.22)

are the laws of local conservation of energy and momentum for any small element
of fluid. They follows from the Bianchi identities and the Einstein equations |40,
1].

The total baryon number for the fluid, i.e. the number of baryons minus
the number of anti-baryons, is a conserved gquantity (as the elementary particle

physics has shown under the most extreme conditions known). This conservation law

is written

- e = (T1.23)

where n is called the baryon number density or simply the matter density. The re-
lativistic formulation of the hydrodynamics of a perfect fluid is then based on

Egs.(21),(22) and (23) supplemented by knowledge of the termodynamics properties
of the fluid.

. v . JEIRS K L8
From Egs.(21) and (22) we obtain, with the notations ¢ . ¢ R La;ghi
) A H H
Ealae T A T O NS U PR B - A (II.24)
; ;o= (TR L e W] PR L R =0
thus, using u”u, = -1 and uy‘u*\;g = 0 , then the equation —um‘fﬂg;g = 0 reads

) e A (I1.25)
VAR -2 B A =
f A = A M O
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which represents the local energy conservation law of the fluid. Considering the

. . . . v . .
contraction of T*Y;y with the projection tensor h .= gaﬂ~+ u?’ Uu , we obtain:

. oy i
(P+P) W + }\’%Fw = O (I1.26)

which represents the local momentum conservation law. This equation, also called

Euler equation of relativistic hydrodynamics, shows that the pressure gradient,

and not gravity, is responsible for all deviation of flow lines from geodesics,

as we will see more explicitly.
Egs.(25) and (26) must be completed by the specification of an equation
of state in order to obtain the equation of motion of any element of the fluid.
As an application, regard the case of dust, which equation of state is

p = 0 . From this and Eqg.(25) we obtain:

. ~ a0 ~
Ut . LYY o (I1.27)

- "hm

L
which shows that the flow-lines of the matter (i.e. dust) are geodesics, as we ha-

ve stablished before. From the state equation and Eq.(26)

(p;{‘)} _ (II.28)

) ',
;- /).r)_\./

which express the conservation of the total mass-energy density ji(measured in
the rest system of the matter).
Consider a spherically symmetric mass of fluid, sustained in static e-—

quilibrium against its self-gravitational forces. We have:

— L 3

~
i
= )

¥ s BN (II.29)

= 4
- A

-
47 A <

where rg is the radius of the star. Thus, we are considering the vacuum outside
the star and therefore the solution of the Einstein's equations outside is the

Scharzschild exterior solution , Eq.(10), where

.‘f
Miri= | <irydrrdr (I1.30)
Ja -
is the total mass (or energy) inside the sphere of circumference 2mTr. Of coarse,

for r > r_ , M(r) = const.= M(rg). In the interior of the fluid, ‘the pressure F{T?

S

L

and energy density £ (r) satisfies the Oppenheimer-Volkoff equation:
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. -3
3p PLb , _M+dmpr
== = rt (II1.31)

and where M = M(r) is given by Eq.(30). This equation generalizes the non-relati-

vistic fact that:

What are the conditions that determine that a star is free of physical
singularities? i.e. what are the features of a star which is living "peacefully"?
In order to answer to this question, let's suppose that, in Eq.(31), f(r): const.

#0 forr <01 The reasonable boundary condition is that p(rg) = 0. With the

S
definition r = a SinX, where a is a constant, X< [0,7/2], we find:

P = 7 Sxi T ep s (T1.32)

Lo~ o=
RO S A

Lo, H
N el [——

From this equation we can see that the maximum pressure is achieved at r = 0. Thus,

p(0) = p. » p(r), for all r < rq and:

We see that, since

/

>

i

f: Y, A S =S

{C — r

(IT.34)

]
O

SL'Z L. = ZELL

in order to avoid physical singularities, the radius and mass of the star must
satisfy:

2Ms o & ~r )
& < I s/ (11.35)

e ~
- 7

- [\1\

(W3] i\S:

This means that the star surface must be outside the Scharzschild radius ZMS .
If the pressure p(r) can not satisfy Eq.(31), then it is not possible

to have static equilibrium and the star collapses. In order to see this process

analitically, let's consider a spherically symmetric, homogeneous star, and out-

side the vacuum again:

o= P # i , ©F
(II1.36)
f=o0 } F = 0 e

Therefore, the solution inside the star corresponds to Friedmann's solution and
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outside the star corresponds to the Scharzschild's solution. At the surface of‘

the star, a 3-dimensional hypersurface t=const., we find the problem of match both

solutions. This problem of junction conditions was treated in the general case by

A. Lichnerowicz |41] and by W. Israel |42| in the spherically symmetric case, af-

ter that this had been studied previously by S. 0'Brien and J.L. Synge |43].

According to Lichnerowicz, from the mathematical point of view the sim-

pler and satisfactory expression for the matching conditions is the assumption

that there exists a coordinate system called "admissible" in which the metric ten-

sor satisfies the continuity conditions:

(i) the precise continuity of the metric up to the third derivetive in a finite
number of subdomains, and

(ii) the continuity of the metric and its first derivatives across each 3—-dimen-—
sional space separating two subdomains.

However, it is not always easy to find admissible coordinates in which express

the solution. Israel gave the junction conditions for the metric in the case of

curvature coordinates, i.e. for which the line element is

> a

ds’ = = Atrt)der~ v d s « Biesr Az

[

which are not admissible because they are derivable from admissible ones by a
Cl—transformation; then he establishes junction conditions that are actually wea—
ker than those proposed by Lichnerowicz. What has been done by C. Leibovitz |44]
is to find some conditions to be imposed to the metric, considering comoving coor-
dinates, so as to ensure the existence of an admissible system of coordinates ob-
tainable by a coordinate transformation.

What continuity properties must the energy-momentum tensor and the metric
(and its derivatives) have, in order that one can meaningfully speak of a solution
to the Einstein equations? Consider qualitatively the results that we expect: if
certain components of the energy-momentum tensor are discontinuos (but they exist!),
then because of the field equations, the components of the curvature tensor are at
worst discontinuous. But since the second derivatives of the metric are at most dis

continuous, then the metric and its first derivatives must be continuous. Let's put
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these arguments quantitatively in a |45|
Proposition.—- Assuming that:
(i) the coodinates xi are continuous across the junction hypersurface, and we
use the same coordinate system on both sides of the hypersurface,
(ii) the hypersurface is not a null surface,
(iii)the energy-momentum tensor can indeed be discontinuous but should contain
no —function singularities (i.e. surface layer structure should not occur),

(iv) the induced 3-metric g b on the junction hypersurface is continuous, that is:
a

€b(in) ~ Zab(out) (II.37)

(v) the induced 3-extrinsic curvature K b is also continuous through the bounda-
a
ry surface

Kab(in) - Kab(out) (II.38)

then in the same coordinate system xi, the curvature tensor RdF}LJ is continuous
through the junction hypersurface.

Remark.- Eq.(37) (Eq.(38)) ensures the equality of the intrinsic (extrinsic) cur-
vature on both sides of the boundary surface. Remember that, if n” is a normal
vector of a non-null surface then szg = - Nao is defined as the "extrinsic cur
vature" of that surface, i.e. of the curvature in relation to the surrounding spa-

ce in contrast to the "intrinsic curvature" which is characterized by the 3-dimen-

sional curvature tensor R b of the surface alone.
abc

d) OPPENHEIMER - SNYDER SOLUTION

The Einstein's equations for the Friedmann universe are

. =
- £
5 _f_fi%fg._ = 8“} (1I1.39)
g

— 2 v i 2

T e T

= =7 (II.40)

—

where 1 = dr/dt and X is a constant which tell us if the universe is closed (K> 0),
flat (KX =0) or open (K<O0). The case K >0 means that the universe will collapse in

a finite proper time, K = 0 means (in a time-reversing picture) that the universe
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starts to collapse at rest with infinite radius, and K< O means that the universe
starts to collapse with finite velocity and infinite radius. This cases can be
seen in Fig.3 (b), in Kruskal-Szekeres coordinates.

From Eq.(40) we can obserb that a possitive pressure produce extra-gravi-
ty because it contributes negatively to T , then in a collapsing body, p>» O favors
the collapse. With this argument we see that our physical system (that defined by
Eq.(36)) is even qualitatively well analysed if we, for simplicity, consider the

state equation:

F) = O (I1.41)

i.e. if we consider that our star is made of "dust". Thus our star is an spherica-

1ly symmetric, homogeneous sphere of dust, in the middle of the vacuum universe:

S ol By b5 o= : LT
J .

g ‘ -

(II.42)

e =

S o= D .- = o= O : Ty T
Therefore, in absence of pressure the star collapses. This problem was first trea-
ted by J.R. Oppenheimer and H. Snyder in 1939 |46]|. They confront this problem
because in a previous article, Oppenheimer and Volkoff [9| studied the gravitatio
nal equilibrium of neutron stars, as we have see above. They found that if the
mass of the star is greater than 3/4 M, then there are no static solutions for a
spherical distribution of cold neutrons. Thus, if the star mass exceed this limit
and it have used up their nuclear sources of energy, then the star will collapse
under the influence of its own gravitational field.

However, them approach is not the best one because they assumed, for sim-
plicity K = O, hence their results are rather poor, but historically important.
Now we follow the approach followed by Stephani |45| (see also |47]) and consider
the three posibilities for K. Our model, Eg.(42), is not a trivial one because it
yields an exact solution of the Einstein's equations which is valid in the Whole
space (inside and outside the star). Moreover, it satisfies the requirements of
the proposition above, thus the match of Friedmann solution (inside) and Schwarz-
schild (outside) on the boundary surface is well performed and free of mathemati-

cal singularities.
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for the cases K > 0O, K = 0, and K < 0.

/
| — SURFACES OF THE

._..——7 COLLAPSTNG STARS
—
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Fig. 3. Different types of Friedmann collapsing
stars, depending on the value of the para
meter K.
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As the starting point we need a line element which express the spherical
symmetry and a coordinate system which satisfy the requirements of the above pro-
position. Thus we carry out a transformation of the usual Schwarzschild coordina—
tes (t,r,®,%) to the comoving coordinates (T,r , 9,%), where t = t(T,r) and
r = r(T,r). Thus the coordinate T is the proper time of a particle at rest in the
coordinate system ('r,E,e,tf), and the curves r = const., © = const., ¥ = const.

are geodesics. But from Eq.(27) we saw that the flow-lines of dust particles are

geodesics, therefore the curves ;,<9, @ = const. represent the flow-lines of dust

particles.

The line-element is therefore:

Fg =l FA 2 z
s= € AR ¢ riedl st~ de (II.43)

The field equations are the Einstein's equations

S “jf?/uﬁ = &8ri v
cons = .
where the only non-vanishing component of T, is T a = —-f('t,r), then with the
notations: "= S/Qf , '= 9/>F we obtain:
R P S el S U o (II.44)
1 - = = T - Lz 2
2 v " i r

R% - B R -fa(F -2 S B oo e
2 Z ’ 2 2 4

2 - L m e T = - BT (II.486)
= v Y ey r vroov
° : 2\ ® >\ la
s 1 \ r
/Q — _)\_L‘ VY o = A :.-LLL = € = - (IT1.47)
" i v 1-£10m)

where € = 0,1,-1. The relation between & ande is the following:
£ =X/ |K|] if K £#0 and €=K=0 if K =0
and where f(r) is and arbitrary function of r. Substitution in Eq.(44) leads to:

.2
If now one choose r as the independent variable and u = r as the new dependent
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variable, then one obtains the simple linear differential equation

gr(ru) :__&g)cz‘ —> v"l:-'gfz-p-_f.%_f_}_ (II.49)

From Egs.(49) and (46) we obtain:

}
erflr ¥) = r{frl (II.50)

and, for & £ 0 we can introduce dG =_(f(;)/r)d and transform Eqg.(49) into:

(—g—g—) = f;: —ev? (II.51)
and solve it considering r as a parameter, obtaining r as a function of T and r:
_Fir) ,ﬂ (6) -
Y o= —_— e 5 -
1{_‘1/9_) N /‘\ G A g 25‘.1 (11.52)
ﬁ/ ——
T ol a3 + {—((; ‘44 6) ) ﬂg\é} B s 2 o~
- Laif - ars{r) J—Vv\f:\i:}"é iﬁ_:_g
while for € = 0 we have:
=T ._1/ z 3/3
T - TlF) = = -§. (h”) r L £ =0 (11.53)

The general spherically symmetric solution of the field equations for

the case of a collapsing dust sphere (p = 0) is

—2
dst (9_\;) dr pre T de A (1I.54)
oV et
Py, F'(F)
gmw flt,v) =TTy o (II.55)
i1 ’i/§F>

where r('t,;) has to be taken from Eq.(52) or Eq.(53). The solution Egs.(54) and
(55) is known as Tolman's solution (1934). Of the three functions F(;), f(;) and

To{(r), at most two have a physical significance, since the coordinate is de-
fined only up to scale transformation r = ; (;). Of course one cannot simply spe—
cify the matter distribution j: = f (t‘,;) and then determine the metric, but ra-
ther through a suitable specification of f(r),F(r) and Tu(r). Since the layers
of matter which move radially with different velocities can overtake and cross one
another, one must expect the occurrence of coordinate singularities in the como-

ving coordinates used here.

Let's apply the Tolman solution to an star of finite radius ;0 . To do
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this we must to obtain an interior solution ( f # 0) and an exterior solution

( £ =0) and then join these two solutions smoothly at the surface of the star

(the junction 3-dimensional hypersurface r=const ) r = ro
We obtain the simplest "interior solution'" when
position (i.e. § # )D (r))

does not depend upon
and r has for a suitable scale the form:

r(t,7) =7 R(7)

(I1.56)
Considering Egs.(39) and (40) we obtain:
P= __j’_’:_)__ (11.57)
(e2)
thus, for the case p = 0, we have:
SIS H
jQR{A; - QSVL‘}t, P h‘;% (I1.58)
From the fact that f # f (r) we find that, using Eq.(55):
- -3
F(F) = er M'F (11.59)
=z

With a dimensional analysis, from Egs.(52), we conclude without loss of generali-
ty that

f(e) =71

(I1.60)
and finally we assume that:

G(r) =0

.y
e

(I1.61)

With Egs.(56-61) we find the interior solution of the Friedmann's star expressed
in comoving coordinates:

- z . i 2 —2 ‘\:_\ >
ds"= Ro) § dr___ + oA drf (I1.62)
Ul1-e7
where:
(6-Jon 221
[ ERARY e‘, ; k4
{a} -9 MG y c=0 (II.63)
RKQEZ Sw’rq’ﬁm"”) T= ; { A ) ‘ $ /C )
G A i
Uend G =6 5=t

The interior of the star, r = r, , is a 3-dimensional space of constant

=
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curvature (positive, zero or negative curvature, depending on the value of £ )
whose radius R depend on time (note that r is a coordinate, thus the coordinates
of the surface are (t‘,;D,e ,9 ), while roR is the physical 3-dimensional radius
of the star, i.e. a great circle on the surface has radius roR(r)). Because of
the time dependence of R, the star either expands or contracts (see Fig. 3(a)).

The solution in the exterior space is, as we have stablished, is the
Schwarzschild solution; since the Tolman's solution holds for arbitrary mass den-
sity f , it must contain the exterior solution ( f = 0) as a special case.

We have stated that the flow-lines of dust are geodesics, hence the dust
particles on the collapsing surface moves along geodesics. The radial equation of

geodesics, in Schwarzschild's metric take the form:

comparing both geodesics at the boundary surface r = ;0 for all times T, then
F = 2M (I1.64)

The necessary condition for join smoothly the interior and exterior so-

lutions at the stellar boundary surface is, from Eq.(56):

—_— — !
[ v, e
i [

clToE = e 7T (I1.65)

If we choose the origin of time in the exterior metric so that T}(;O)z 0, then
for & # 0 (and from Eq.(53) we can arrive to the same conclusion for the case

€= 0) we can put r from Eq.(52) and R from Eq.(63) into Eq.(65) to obtain:

(M =8mpi RIo) (II.66)

where we have used f(;o) = ro , according to Eq.(60). Thus, if Eq.(66) is satis-
fied, then the metric is continuous on the surface of junction and the extrinsic
curvature is continuous on the surface too, as can be directly verified. That is,

the conditions of the above proposition are satisfied then it applies, and we can
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conclude that the curvature tensor, expressed in the comoving coordinate system
( f,; » @, @) used above is continuous on the junction hypersurface which separes
the interior to the exterior spaces.

The mass M used in Eq.(64) is Just the mass m that we associate with the
source of the Schwarzschild exterior solution in the Newtonian gravitational theo

ry (2M is the Scharzschild radius), i.e.:

3
wo= M 2 P (IT.67)
3

Conclusion.~ The solution found here shows that in the interior and exterior of
the star no singularities occur when the stellar surface ; = ;o lies
inside the Scharzschild radius 2M, only at R(T ) = O does the inte-

rior field become singular.



ITT. QUANTUM FIELD THEORY IN CURVED SPACETIME

a) INTRODUCTION

In the last fifteen years great effort has been done in the construction
of a unified theory of the forces of nature. With the Weinberg-Salam theory | 49~
50| the electromagnetic and weak interactions forces have received a unified des-
cription, and on the other hand Grand Unified Theories (GUT) incorporates the
strong interaction and describe it in the frame of Quantum Chromodynamics |51/,
But gravity resists till now to be putted in a Quantum framework. "Until now, a
completely satisfactory quantum theory of gravity has been not achieved, although
the quantization of the gravitational field has been pursued with great ingenuity
and vigour over the past forty years" |53].

In this frame, what can we say about the influence of the gravitational
field on quantum phenomena? The problem with gravity is not the first of this ty-
pe. In the early days of quantum mechanics, the electromagnetic theory causes the
same troubles. In this case, the electromagnetic field was considered as a classi-
cal background field interacting with quantized matter. Such approximation, called
"semiclassical', concords completely (for low frecuencies) with quantum electrody-
namics. For this reason we shall considér the gravitational field as a classical
background, while the matter fields are quantized in the usual way, as we have
said in Chapter I.

Max Planck (1858-1947) in 1913 showed that the constants G, ¢, and h can
be combined in a unique way to give natural (fundamental) units of length, time

1

3.4 -33 .
and mass. The "Planck length" is: (G h/c )" = 1.616 10 cm, the "Planck time" is:
5% -44 . % -5 ) .
(G h/c )" = 5.39 10 s, and the "Planck mass" is: (h ¢/¢)7 = 2 10 gr. This defi-
notions are important because they mark the frontier at which a theory of quantum

gravity is applicable: if length and time scales of guantum processes are less
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than these values, we need a non-perturbative theory becéuse in this case the
concept of small perturbations break down; and if the length and time scales of
quantum processes are much greater than the Planck values then we invoke a semi-
classical theory.

But, according to what was said in Chapter IT, one of the most importat
features of gravitation is its universality, i.e. all form of matter and energy
couple equally to gravity. This to say that in any case we cann't ignore gravity.
However, so long as we remain for away from Planck dimensions the "semiclassical
approximation should work.

Important gravitational effects occur in quantum field modes for which
the wavelength A (»J10—13cm) is comparable with some characteristic length, for
example the radius of the black hole. But, i of such size is only available for
micro-black holes, which have a mass M < lOngr, and 1in the earliest epochs of
the big-bang.

One of the most important features of Hawking's result on particle ‘crea-
tion is that it establishes a strong connection between black holes and thermody-
namics |55|; and ultimately the suspection is that there is a strong relation be-
tween black holes and solitons |56].

Direct investigations of particle creation effects in a background gra-
vitational field really began in the late 1960's with Parker (see also Sexl & Ur—
bantke, 1969 |57|), followed by the investigations of Zel'dovich and collaborators.
In the mid-seventies some techniques involving renormalization were developed for
computing { T*“>>because is formally infinite. "An essential feature of these tech-—
niques is that they all yield a covariantly conserved (i.e. divergenceless) < T”Q>NF:O

which is therefore a suitable candidate for the right hand side of a '"semiclassi-

. . . . A e R mae TN
cal" Einstein equation" (i.e. Ko g o= S ) |83,

Is < T""5% , = 0 compatible with particle creation? Hawking |58]| showed
that a conserved <T"" >, subject to the dominant energy condition (basically that
energy and pressure should always remain positive |4]) was incompatible with par-

ticle creation. However, since spacetime curvature can induce negative stress—ener—

gy momentum in the vacuum, the dominant energy condition is violated ]59|, then
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Hawking's conclusion cannot be followed. Thus, particle creation is compatible
with a conserved { T.u)> .

In this Chapter we shall discuss the quantum field theory of a real sca-
lar field in a curved but flat spacetime outside a compact region. We are léd to
a unique quantum scattering theory which is completely well behaved mathematically
provided that a certain condition is satisfied by the operators which describe the
scattering of classical positive frecuency solutions. In terms of these operators
we derive the expression for the state vector describing particle creation from
the vacuum state, afterwards we arrive to the S-matrix which is unitary, as should
be. We consider the case when a horizon is absent and the case when it is present.
In the later case we will get the state vector \% describing the steady state emis—
sion at late times for particle creation during and after gravitational collapse
of a star which settles down to a stationary Schwarzschild black hole |54,60|. In
this treatise we shall not consider the part of the spacetime corresponding to the
interior of the star because as have been showed by Birrel and Davies |53, con-
sider the part of the metric inside of the star is irrelevant for the steady state
flux of particles at jﬁ+at late times. The density matrix formed from %’, descri-
bing emission of particles to jfi by the Hawking's particle creation effect |54,
83| was found by Wald [60| to be very similar to that one of black body emission.
Thus, black hole emission looks like a black body emission at temperature k T=4g/z7.

Hawking and Wald used the semiclassical approximation. It seems reason-—
able that this semiclassical analysis of particle creation by gravitational collap-
se at very least give a good indication of the type of effect which will occur in
an exact quantum treatment. Since the full information is contained in the vector
state 4’, the treatment which we will follow will permit to extract many proper-—
ties of the final state of the quantized field, between them the expected number of
emitted particles to infinite {N> (first calculated by Hawking, with and without
spherical symmetry gravitational collapse, for particles emitted in each mode at la-
te times) and the density matrix b .

In the attempt to construct a complete description of the quantum mechani-

cal particle creation effect from vacuum state (and the subsequent gravitational
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cattering process) by obtaining the explicit expression for the vector state, we

follow the approachs given in |60,61,54].

Our assumptions are:

(A) The gravitational collapse is spherically symmetric.

(B) The spacetime is flat outside of a compact spacetime region, i.e. the curvatu-
re of the spacetime has compact support.

(C) The spacetime is globally hyperbolic and Ca)ld].

(D) The states of the quantum field are characterized as particle states (i.e.vec—
tors in the Fock space), both in the distant past ("in states") and distant
future ('out states"). The quantum field operator is assumed in the distant
past (future) to reduce to the standard free-field expression in terms of the
"in'"" ("out") annihilation and creation Fock space operators. At early times
the quantized field is assumed in the vacuum state.

Remark.- To define "in" and "out" states in quantum field theory in curved space-

time we need a notion of "positive frequency" in the asymptotic past and future.

Since we are assuming (B), the spacetime becomes flat in the past and in the fu-

ture, thus we can define the "past positive frequency" part of a solution by look-

ing at its data on a Cauchy surface in the flat region in the past and decomposing
it by the flat spacetime formula. The "future positive frequency" is well defined

at future null infinity jf+since one has an asymptotic time translation parameter

defined there, with respect to which we.can take Fourier transforms.

Condition (A) is taken for simplicity, conditions (B) and (D) in order to
have a mathematically well behaved scattering theory. Condition (C) guarantees the
existence and unicity for the global Cauchy problem. A globally-hyperbolic space-
time is one for which there exists a global time coordinate t such that the equal-
time surfaces t x fz(where € is a 3-dimensional manifold) are Cauchy surfaces.

Topologically, such spacetimes are then necessarily of the form R x f.|62,63].
h) QUANTUM FIELD THEORY IN MINKOWSKI SPACETIME

Consider a free real scalar field ‘# coupled to a Minkowski spacetime.

In the quantum theory of this field, the Hilbert space of states should have par-



- 34 -

ticle interpretations. We would like that the quantized scalar field be a self-
adjoint operator on this Hilbert space, satisfying the corresponding wave equa-

tion:

F ol ) Px) = O

(B (II1.1)

where CEM = W”uQQH‘AV , %”Md is the Minkowskian metric tensor,vthe subscript M re-—
fers this situation. However, as is well known the attempt to define ¢> for each
point x in Minkowski spacetime runs into serious mathematical dificulties (even
for a free field, the expression obtainable for the field operator does not make
mathematical sense as an operator defined at each spacetime point due to the fact
that the field cannot be measured at a single point, only averages of the field
over spacetimes regions are physically well defined). There are overcome by '"smear
ing" # with ¢~ test functions of compact support f, thus making i an operator val

/
ued distribution @ () |64-66|. Thus, instead of Eg.(1) we require:

qé(eg? = O | (III.2)

for all = of the form
(II1.3)

where f is a test function |60].
< 2
We take the Hilbert space of one particle states X = L (M,) where M, is
the positive mass shell (i.e. M, is the submanifold of Fourier transformed Minkows-

ki spacetime defined by k”k; + m? = 0, with k” future directed). The Hilbert space

P

d A e

of states is taken to be the symmetric Fock space ./ ¢/ defined by:
eV ¢ =~ o j’ S 7 z /;'(; } i) f) '/E Py J.{ S ,:\ R -
T s L Haellle 2 A

where the subscript s denotes the symmetric tensor product.

PR

The dual (complex conjugate) Hilbert space will be denoted by ;{ . Thus,
al T . . .
if j5~£,%gﬁy, it will be written:

i
]

=<, 205 5 e (II1.4)

My
]

A .
1 b ;-
wherecs@,éé,‘/{,cJ £ %

A, etc. An element of L will be denoted: 7; ¢ A .

J—

P N . . — gL . .
Because .+ and .: are naturally isomorphic, for everyzrlg,}(, exists a unique
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o e l(. Thus, a contraction of indices, e.g.gxii will denote the complex num-
ber obtained by applying 7. to & |39|,7and is the same as the scalar product of
g™ and &~

For every element 7 ¢ iz.(fbr simplicity we denote %i\by T and 7+ by & ),
we define the annihilation operator & (T ): ;rfﬁfj-—éb;ﬁﬁéjas follows: for every
£ ¢ Fit)we nave |
T 2%,

oy

abe

o(T) P - (%

r\)i

Sl

o, e ) (III.5)

-~ -+ . . b : f ot 2 AEY
Similarly, for every ¢ £ 1{ we define the creation operator @ (07 ): ?[Y;(>___> T{«gj

by the rule:

EN s

AT e =(0,cT™ Ty & izag o (I11.6)

where the round brackets around the indices denotes the symmetrized tensor product.
Then Of(ﬁ‘) is indeed the adjoint of a (7). of course, O»(??) and £+(§”) are un-
bounded operators, defined only on a dense domain.

It will be useful to establish some correspondences between solutions of
the classical Klein-Gordon Eq.(1), states in A and test functions. Let F and G be
two solutions of the Eq.(1). The Klein-Cordon scalar product of F and G is defined
by: py

(F & o= [F Suf =5 bAE (I11.7)

—

where 2 is an asymptotically flat spacelike hypersurface. This scalar product is
positive definite on the space of positive frequencies solutions. We note the fo-
llowing correspondences:

1) Every positive frequency solution F of finite Klein-Gordon norm is associated

in a one-to-one linear manner with an element = of 1 via:
— L C/ Loous
—~ = Ve AT o (KR, W) (I11.8)

= ol
~ .

where * means Fourier transform. Furthermore

M

6/ . = (T8 <o ] (I11.9)

where (77, 7. ) means the scalar product in Hilbert space .+

7

2) Similarly, every negative frequency solution F of finite Klein-Gordon norm is
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associated in a one-to-one linear manner with an element (e & 1{ :

A
_——J . ?‘
FL/ ) = x‘!’;(K’“} g(:fk‘*é.\va—\m (ITI1.10)
Furthermore:
(Fyé)m:‘ﬁ prg}="((€)c’;) (II11.11)
SR

where (5i-,52 ) denotes the scalar product in ¢ .
3) To every test function f we can linearly associate an element PR l@ by Fou-

rier transforming f and restricting f to the positive mass shell to get an ele-—

2
ment of L (M+).

Finally we define the field operator ?g(f ) 7‘(?£§ For e-

very test function f we define:

/o p e 5 "L £ Y
P = () A ey (I1I.12)

= AL y,
1

afterwards, the discussion of the free field is complete. We must observe that
Eq.(1) can be writted in a more familiar (though less elegant) form as follows.
Let {ﬁjl?be an orthonormal basis of j{ and let {Fi> be a complete orthonormal set

of positive frequency solutions ( {Fi§ being the negative frequency solutions) of

the Klein-Gordon equation (1). Writting 4;=3 (7)) and & = & (77), then

“ R B S I G S LI R (I11.13)

The Fi and Fi , also called '"mode solutions" [53!, satisfy:

(F. F }[-\ --{FF o=y (F: F | = (III.14)

i.e. they are orthonormal. The meaning of Eq.(13) is to be understood as follows:

Jom o
:

P "...- i \‘\ - e 2D
o ;;(T-f For o & /Z.J:i e

R
i N - H H - E 3 3 £
LT Lo L) S/ U R R

(I11.15)

Yo,

/

\(\7

for every test function f and where the integrals are taken over Minkowski space.
Seiler |67]| treated the quantum theory in flat spacetime of spin zero and

spin one half fields coupled with an external potential V. This approach serves us

to construct the quantum theory in curved spacetime, because in some sense curva-

ture acts as a potential in a flat spacetime.



- 37 -

c) QUANTUM FIELD THEORY IN CURVED SPACETIME WITHOUT HORIZON

Consider now the real scalar field #’ coupled to the gravitational field
) R __\_7 1 Vo
of th curved spacetime via the operator O = }’W i?/u U’; = \AC:‘ /2 éu&“;}/?‘i’,'u “

0; l"v'"..s
and such that f# satisfy the corresponding wave equation:
o 2 o
(O + wm ) ¢x)=0 (III.16)

Every field ‘# , has two parameters: the spin—Weight s and the mass m |68|. Thus,
we are dealing with mass scalar field (m,s=0), bﬁt we can extend many of our re-
sults to the massless scalar field (0,0), neutrino field (0,%), electromagnetic
field (0,1) and graviton field (0,2).

We assune that conditions A,B,C, and D are valids; thus our spacetime is
flat outside a compact spacetime region. The Klein-CGordon inner product is now de-
fined as in Eq.(7) but with the covariant derivative %u instead of Jdy . One can
show that the value of this inner product is independent of X ; using the Gauss's
theorem |6,§2.7].

By analogy with the free field case, we want a theory where ‘% is an ope-
rator valued distribution f#{}?}, acting on some Hilbert space of states ?Zﬁ%j(the
subscript ¢ means that now we are dealing with a curved spacetime). Now we forma-
lize assumption D : we require there to be an isomorphism (i.e. a unitary map)

c Tas T sar Y - /Y .
7 ;,AWL where 7, i +., ! (and afterwards f,(&mg) is a copy of the free

field Hilbert space defined before and,:iﬂy and ;;Mrare the Minkowski single par-
ticle Hilbert space (defined in section b) also) isomorphic one to the other but
taken for convenience as distinct spaces; such that for every test function f with

compact support in the distant past we have:

=1 L +

! PR
Arey ] ’ . ; oAty
) PHILU = aw (£ = Qlap) + {7} (I11.17)
i i b ’
. Looan T EANEIE .
where the field operator gﬁéjfijlﬁi{j“_——“a 72\ /and the free field operator

L 7o = e =g L . .
P+ Ting ety i 7L and we denoted the annihilation and creation opera-—

SN
IN

E . .
tors on %;G%w}by % and & . Similarly, we require there to be another isomorphism
! Y
7, such that for every test function f with compact support in

the distant future, we have:
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g —

N 1 . . \ +‘, -
W P& W= qéour('f) =b6(&G)+b () (I11.18)

where the field operator ?imff}:;ﬁ;(ﬁﬂwg~*¥?;jzég’and we denote the annihilation

and création operators on 2§T@%be 2 and E+ .

Remark.- For spacetimes which are only asymptotically flat, for massless fields,

we can perform the decomposition of the positive frequency at past null infinity
jf': provided that Jf‘is a good initial data surface for the field |69]|. Similar

asymptotic prescriptions will also undoubtedly work for massive fields (except

that now non-zero rest mass particles does not arrive to ﬁgéand J;M, we will re-—

turn to this point later) if the curvature is required to fall off sufficiently

rapidly in the past. However we have a useful proposition which generalizes the

mathematical construction of this section to cases with any definition of '"past

positive frequency" |[61]:

Proposition.- Provided that

(a) the Klein-Gordon inner product is positive definite on the subspace of past
positive frequency solutions,

(b) any solution of Eq.(16) with initial data of compact support can be expressed
as the sum of a past positive frequency solution and the complex conjugate of
a past positive frequency solution (= a negative frequency solution), both of
which have finite Klein-Gordon norm,

(c) each negative frequency solution has vanishing Klein-Gordon inner product with

any positive frequency solution, i.e. (F,@) = 0, F is any positive frequency

KG
solution of Eg.(16) and G is any negative frequency solution,

(d) the past positive frequency solutions obtained by decomposing solutions with
data of compact support are dense in the Hilbert space of all past positive
frequency solutions;

then the results of this section will work with any definition of '"past positive

frequency".

Given the notion of "past positive frequency", the one-particle '"in" Hil-

bert space:lim is taken to be the past positive frequency solutions with finite

Klein-Gordon norm. The Klein-Gordon inner product is positive definite on the spa-
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o / 4
ce of positive frequency solutions. Denoting jgmr< }XKN) = ;f; (:L( ) , the
sut ° outT

ouT
states 9%,{ﬁﬂfand_227£%7 are interpreted respectively as the incoming and outgoing
particie states.
The scattering matrix or S-matrix yields the relation between these two
ways of characterize the states, i.e. "in'" states and "out" states (see Fig. 4).

~1
wu .

]

The S-matrix is defined as the field operator S : ;5;{}(}~——€>§£;§§§}, S

Our task is now to solve explicitly, for %‘ , the equation:
?b = S ¥ (I11.19)

where %fg;?gj | is the in-vacuum state and %E}i;&(}is the out-state. From the defi-
5:'\{ WA 4 55 h

nition of S, and using Egs.(17)-(18) (for details see |60|) we obtain:

g [ I

-
. -} . e

; - b #
N ( J frusnnd =

\ FR—

o
Gy
j\

4

5 (ITI.20)

=/

L

where the operators C and D are defined as follows. Let ¢ < #iw and let 7. be the
solution of Eqg.(16) which coincides with some solution F of Eq.(1) in the future.
Let 7 be the positive frequency part of F—, and let ¥ be the negative frecuency part

g . 7 ) 7
of 7 . We may view 7 as an element of‘}gu and { as an element of i{mw. Then we de-

-
fine: Co¢ =1 and Dv = ¥
Definition.- We define the operator E : f{uf “5*j?;ﬁ, as the complex conjugate of

the operator DC—l, i.e. E =D ¢!t
Remark.- This operator is very important, as we will see, between other things it
will tell us the negative frequency part that a wave packet pick up when it is pro-
pagated through a collapsing star.

The operator E satisfies the following properties |60,61,64]:
(i) the operator E is symmetric, i.é. Et = E ,
(ii) tr(E*E) < <o i.e. E is a Hilbert-Schmidt operator.
A consecuence of the fact that E satisfies this two properties, is that we can
construct quantum field theory which satisfy our requirements; otherwise our goal
could not be achieved.

Applying both sides of Eg.(20) to yQ » and using Eq.(19), we can solve

it for ‘?’ and find an important result: particles are created only in pairs. The
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Fig. 4. Relationships between the Hilbert spa-
ce of states % {1{} and the Hilbert spaces of
states in the asymptotic regions. The S-matrix
Just relates this "in" and "out" regions.
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solution of this equation is unique up to a phase factor.
The covariant quantization of the theory is implemented by adopting the

commutation relations:

-
{
L

Cai®, ] =gl |, [a@,ad] = [a%0) aim]=0

These relations are useful in the proof of the following

Proposition.- If condition B is assumed, then property (ii) above is satisfied.
Then the S-matrix exist and it is unitary.

Remark.- What this proposition tells is that the sufficient condition (and also a
necessary one if the operators describing classical scattering are everywhere defi-
ned) for the existence of the S-matrix is Jjust property (ii). For a rigorous proof,
see |60-61].

Geroch |69| propose an example of a asymptotically flat spacetime, well

behaved globally, which however admits a nonzero field (a Maxwell field), with ze—

r o
ro source having zero incoming radiation from past null infinity ¥ . The resulting

"particle creation' uncontrollable from null infinity, would make ambiguous the S
operator. Thus, in order to avoid physical sifuations under which fields could en-
ter the spacetime without their having been recorded asymptotically, hence giving
a bad behaved scattering theory, we must to strengthen our assumptions, requiring
that "every maximally extended past directed null geodesic reach past null infini-
ty" f69[. Unfortunatelly, this condition eliminates other patological spacetimes,
but the one mentioned above it does not.

Dimock and Kay |70| treated the massive scalar field (m,s=0) using a di-
fferent approach, namely, the algebraic formulation. They construct a quantum sca-
ttering theory assuming that: (a) the spacetime is globally hyperbolic with surfa-
ces x'= const. as Cauchy surfaces, (b) the metric is asymptotically stationary (this
condition is needed in order that the energy of the solutions is bounded in time),
and (c) the metric becomes Minkowskian at space—like infinity or/and at time-like

infinity. This method and his results can be generalized to other external field pro
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blems. However, the results are only valid for the case m#0. They do not deal
with the horizon problem. Dimock |7l|, following a general framework given by
Wightman |72,73| in which the advanced and retarded fundamental solutions of the
differential operator play a key role, treat the massive or massless (m » 0) sca-
lar quantum field case in an external gravitational field. He also arrives to a
well-behaved mathematically scattering theory. One step further was done by Kay
|74,75|, with an algebraic approach, considering spin-zero quantum fields in an
external gravitational field and in an external scalar field V (also called poten-
tial field); i.e. the equation considered was: (O + w»*+ V’?ﬁé =0 . Fields
which, apart to be coupled to an external gravitational field, are self-coupled
are treated by Birrel and Ford [76]|. These fields are a scalar and an electromag-
netic ones. For a survey about the physics and mathematics of guantum field theo-
ry in curved spacetimes, see |77-82].

Concluding this section we stress the importance of the following

Spin Statistics Theorem.- No reasonable quantum field theory in curved spacetime

S

(or in an external potential) with symmetric statistics (i.e. the fact that in ?ﬂg&w

we have taken the symmetric tensor product of Hilbert spaces <l5 ) exists, if the

conserved inner product for c-number solutions is positive definite for all solu-

tions.
d) QUANTUM FIELD THEORY IN CURVED SPACETIME WITH HORIZON

We must do some modifications to the precedings results in order to ap-
ply them to the problem of particle creation from vacuum, occurring when a spheri
cal body undergoes complete gravitational collapse and forms a stationary black
hole, one of his most important characteristics is to posses a horizon. In this
sense this section can also be entitled: Particle creation by black holes. As ha-
ve already mentioned, this was first treated by S. Hawking |83,54|, and thence it
has attracted considerable interest, between other reasons by his potential appli-

cability to astrophysics.
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Again we assume that assumptions A,B,C and D are valids. Condition A,
by Birkhoff's theorem, implies that the black hole formed by the collapse is a
non-rotating (and we assume moreover that it is an uncharged) Schwarzschild black
hole, this means that outside the hprizon the spacetime is the Schwarzschild one.
We do not consider the region of spacetime inside the collapsing star because it
is irrelevant for our goals (see Fig.5 ).

In this Schwarzschild spacetime, consider the quantum field theory of a

massless real scalar field ?‘, which obeys the covariant wave equation

Oo® =0 (I11.21)

[

where: [} E,(*-gﬁ e Li-a) 7] . The reason for consider a massless

field is the following: solutions of Eq.(21) in the spacetime we are considering,

are presumably determined (and we assume it) by their data at past null infinity

3r‘or by their data at future nullinfinity J and the future event horizon, while

this is not true for massive fields |54,60|. This will allow us to speak in preci-
se terms of the asymptotic beha&ior of the field. As discussed previously, the

quantum theory should be such that the states of the quantum system are represesen
ted by vectors in the Hilbert space ?rfgfj , and the field :i is represented by an

operator-valued distribution ;i ;} , acting on this Hilbert space (<é5??: Ll R
~*~9':f{jff) and satisfying Eq.(21). Moreover, in the distant past the states of
the system should asymptotically "look like" states in the free field Hilbert spa-
ce ?:,Ql}5, and the field operator ?é should approach the free field operator ¢g4
The fact that Qé satisfies Eqg.(21) and agrees with f%w in the past, im-

plies that ¥ takes the form:

f 4 R - L A
N A Sl s a.a St
U U =2 laa+G Ay (III.22)
where A, = 2 (7. ] A, = ol lJ% | , and where the meaning of this equation is to be
L t “ i i g q

understood in the same way as Eq.(13); where Gi are the solutions of Eqg.(21) which
agrees in the past ( 97“) with the free field solution F;, appearing in Eq.(13).
However, in the asymptotic future the situation is different from that

of the section c¢). When no horizon is present all classical wave solutions of Eq.(21)
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Fig. 5. Diagrams |54].
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propagate out to the future null infinity and in quantum theory it is natural to
assume that in the asymptotic future all states can be interpreted as free parti-
cles propagating out to infinity. However when a horizon is present (and we would
expect that a collapsing star which gets a black hole, would develop an event ho-
rizon |84| which justly hide from us the black hole), part of the classical waves
can propagate into the black hole and never reach future null infinity. Hence, in
this case it seems moét natural to assume that states of the system have interpre-
tations in terms of free particles at infinity and particles which have gone into
the black hole. This suggests that the "out" Hilbert space in this case should be

4

f PN F. . . .
Fo a2 J{;U‘ , where { is the usual single particle free field Hilbert spa

et

[
o el

ce ("particles at infinity") and ﬁ{lis the single particle Hilbert space of par-
ticles which have entered the black hole; i.e. the "out" Hilbert space should be
the symmetric Fock space of the Hilbert space of all possible one-particle states.
We must use basis solutions that distinguish the positive frequency so-
lutions from the negative ones. Such a distinction can be made only if the concepts
of positive and negative frequency have meaning in the spacetime under considera—
tion. For these notions to have meaning the geometry must be stationary (i.e. inde-
pendent of t), or in other language, spacetime must possess a global timelike Ki-
lling vector field. It may not admit the Poincaré group but it must admit at least
a one parameter group of timelike motions. In the case of a static, vacuum Schwarz—
schild black hole ( i.e. one not created by gravitational collapse) there is a ti-
me translation parameter v running along the future horizon, thus enabling one to
define unambiguously positive (and negative) frequencies on the horizon. However,
in the case of a black hole formed by gravitational collapse (our case), can hap-
pen two situations:
(a) if the collapse is spherically symmetric, then the horizon is the static
Schwarzschild horizon only outside of the collapsing matter, and
(b) if the collapse is a generic one, then the horizon is only asymptotically sta-
tionary.

Since we are assuming condition A, we are dealing with situation (a) above and so
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we do not have a time translation vector defined everywhere on the future horizon.
This results in ambiguity in the definition of positive frequency. However, as g
work hypothesis, we take’the following definition of positive frequency ]60[ (see
also |54]):
Definition.- Choose a set of solutions {Ki} of Eq.(21) which vanish at §£4-, which
are orthonormal (with positive norm) in the Klein-Gordon scalar product, and are
such that the {Ki} and their complex conjugates {Ei) span all solutions which va-
nish at §;+. A solution df Eq.(21) will be called "positive frequency at the ho-
rizon" if it can be expressed as a sum of the {Ki} (without using their complex
conjugates).

Due to the considerable ambiguity in the choice of the {Ki} , is useful
and necessary to formulate the
Proposition.- All predictions of the theory with regard to measurements made at
infinity must be (and actually are) independent of the definition of positivg fre—
quency at the future event horizon. ’

The term "positive frequency" is well defined at future null infinity 3T+,
since one has an asymptotic time translation parameter u defined there with respect
to which one can take Fourier transforms. Then, vectors in Zﬂi can be put into one-
to-one correspondence with positive frequency data for classical solutions of Eqg.
(21) at future null infinity, and then it is natural to associate ﬁf‘ with positi-
ve frecuency data for classical solutions of Eg.(21) at the horizon.

So, according to the above arguments, it is natural to postulate that the
field operator'fé » when brought to the "out" Hilbert space f%:,by the isomorphism

1 7
W , will take the form (classical solution means free solution or sol. of Eq.(1)):

/ -1 ; T v F
W W e Z(,L;L. Lo+ Ho L+ ,\(;ct;H‘QC,;) (III.23)
- L
where Hi is the solution of Eg.(21) with the same data at 557>as the free field so-
lution F, and vanishing data on the horizon, and where ¢y and C; are the annihila-

tion and creation operators for the state in j%[ associated with the "positive fre-

guency" solution K.
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One is primarily interested in the results of measurements at infinity,
thus, to describe them one constructs a density in the following manner:

The out Hilbert space ;ZLT ( iﬂ ?5‘) is naturally isomorphic to the
Hilbert space Z{;{.)& };“(ﬁ) as follows: let ]DM: c(\g“‘ ,{;C and let

| b..
sa . BN AL, ..
é vx; H jg » 1.e. f is an n-particle "infinite state" and 7

YL ot
O.dL‘

is an m-particle 'horizon state'. Thus, the natural isomorphism is:

(ann 2 &l 2Y g

/2 e a2 st LT
Fluoy')st 72 = ims\") o @7 5?[%1"@?,(56‘) (II1.24)

ouT

This map is ea51lv seen to be norm preserving on these vectors. Since the vector

(- z') .
states ]D G’ » are dense in 7{,’4”@ /{ / » whereas the vector states
5 oAl & a2 ) ) ; p! ‘ .
T @7 » are dense in f (/ffy 7 {A"] , then we have indeed defined an
isomorphism.
e Dl A Y
Let P € k== et ) 0 To get the density matrix in g}if{) associa-

e F . Fo F e Tilia /] . =7
ted with 51.5 we consider the state @ ) e ,{%(f{['@ fé ,) ® i ,g,,: & RS and

Ldi

—
25 7
[

use the isomorphism given by Eq.(24) to view it as an element of [?r-4 & :jiﬁﬁgéy

el aTluar . .
y~bi€9xg> i /'R ; - One then takes the trace of this element with respect to

: T/ T/ Fil) - .
a basis of (eii to get a vector in g;(f{fa@ é}{i / , which one views as an o-
L T . . : Ty
~-t=U}, called the density matrix. If S Al ey

®

" o i
perator - : 7 Z{

i -,
i

S

PO |
o4y = (4B (III.25)

S0 the density matrix & gives one complete information concerning the results of
measurements at infinity. An important feature of the density matrix j; is that
for measurements at infinity it is indeed independent of the definition of positi-
ve frequency on the horizon.

Our aim now is to calculate explicitly the state 7L = ;Zkr {ﬁ{ﬁ@ j{
which results when the complete gravitational collapse of a body occurs with no par
ticles initially present, i.e. starting with the vacuum "in" state. The result, af-
ter solving Eq.(20) (using Eq.(19)), is |60]:

b od
o S b g b ed) ) III.26
L]L = %// \“.J'D/‘ = C {1 O , e £ ) {_’}}{\(3.1,/{ ‘)-Z)JC & »c;"’ ( : )
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where ékg is the 2-particle state associated with the operator E: (1(@>1€‘)~——-
““"’(;{CB }ﬁ‘) ; now this operator E even satisfy the properties stablished a-
bove. Now we want to determine explicitly ,
The first step is to introduce an orthonormal basis for 11_ and an ortho
normal basis for J%! as follows: for each w, 1, m, let P wlm denote the solution ge
1

-%
nerated by the data w ° exp(iwu) Y1,(6,¥) at future null infinite. Fix a real

number A with: 0 < A « 1’ ang define:

y EPRETERUN ) |
IDJHJ?}V\ = A" / K‘/K/D <— 27lh "’J//Z—\— ) Cudw G (1IT.27)
18
then the state Pinim € jﬁ » with j > 0 yield a basis for all solutions generated

from positive frequency data on jﬁ+and they are orthonormal in the Klein-Gordon
inner product. The one-particle states Pjnlm represent wave packets made up of
frequencies within 4 of w = J4& . They are beaked around the retarded time u=:iwn/A
and have a time spread ~ 27/an ., We denote ﬁf a typical element of the basis
{Pjnlmé » where the index i stands for Jnlm, instead the index a tell us that
Fre X

For the vacuum Schwarzschild solution one can construct a similar basis
{anlm} for the horizon states iéi , by precisely the same procedure starting
from the solutions Oy1m generated by the data w—y2 exp (iwv) Yi(Z2,%) at the fu-
ture horizon, v being the usual advanced time. For large n, i.e.for late times, the
ambiguity in defining QJnlm resulting from the ambiguity in defining v will be ne-
gligible. We will use our freedom in choosing the elements of the positive frequen

Cy basis ¢ Kl> at the horizon so that the [QJnlmr for large n form part of this ba-

sis. We will use the symbol U'? for a basis element corresponding to anlm

ey

Now we construct late time basis elements of iﬁ‘@ & . Let X deno-

Jjnlm
te the solution generated by a prescribed data at the past event horizon and in a

&

similar manner let anlm be the solution generated by a prescribed data at
Assuming that the transmission angd reflection amplitudes t = tlm(w) and r = rlm(w)

vary negligibly over the frequency interval A sy we have:
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ijzm = t H’ni\m - r Qmi‘m (I11.28)

and

T - P
i . . N
Y Indm ~ L jwdwa T R I A

(IT11.29)

Using the basis elements (states), corresponding to each of these solutions, we

have:
o a, o
Ne =il +nq; (III.30)
and
1~ T L FT
y& ——T-V(L + ‘K:_ fu (III.BI)
At late times (i.e. for large n), if we propagate the wave packet anlm correspon

ding to the state g7 backward in time, it will be almost entirely scattered back
to §f"by the static Schwarzschild geometry, hence it cannot pick up any negative
frequency part and the resulting wave packet at ?h—will be the purely positive
frequency wave packet anlm‘

On the other hand, at late times, the wave packet ﬁp+r@.corresponding to
l? will be almost entirely scattered through the dynamically collapsing body and
thence back to ﬂfv. The major effect which occurs is that the wave will suffer a
very large blueshift upon entering the collapsing body (near the formation of the
horizon, see Fig. 6). This blueshift will not be compensated by a correspondingly
large redshift when the waves leaves the body since the body is in a less collap-
sed state at earlier times. Since the effective frequency of the wave is very high
(wavelength very small) when it enters the collapsing body and propagates to _f_ s
then the geometrical optics approximation will be valid in this regime. Almost all
of this wave packet will reach ﬁﬁ‘just prior to the advanced time v, corresponding
to the formation of the event horizon (see Fig. 7). In fact, in the geometrical op-
tics approximation it follows that the v dependence of the wave packet at ~g_.is
given by:

P
A4

. a . .
s (—los L/AY ibw (/2071 , V< Ve
1
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where w = (j+%) A is the effective frequency of the original wave packet at §-

and the future horizon, and L. = 27n + (A/r ) In(ve=v), where K is‘the surface

gravity of the black hole. Consider now the "time reflected" wave packet Zjnlm at
‘SU’ iven by: Lo " —~ —_
& Y . JL/X_/D ('—LL'JL.,/&) lb‘v\.(L/?—>/L ; vV Vo
\> Lannd
ZJV\.MM 2 O , V<& Vo
where T = 2mn + (A/k) In(v-v,). The {ﬁ}nlm | are also orthonormal (because { ZjnlmB

are orthonormal), but with negative unit norm since the time reflection changes the

sign of the Klein-Gordon scalar product. Suppose now, we propagate the wave packet

Zjnlm into the future; the geometrical optics approximation will be valid as this

wave packet propagates toward the collapsing body since the effective frequency of

—~

Zjnlm is as high as Zjnlm“ The original wave packet Zjnlm arrives at the center of
the collapsing body Just prior to the formation of the event horizon. However, the
wave packet Zjnlm arrives just after the formation of the horizon and in the geo-

metrical optics approximation it propagates entirely into the black hole. Let Jjnlm

denote the data for this wave packet at the future event horizon. We use our free-
dom in defining positive frequency at the horizon to take the set ijjnlm} as part

of our positive frequency basis {Ki‘ (this is because the wave packets Jjnlm have

negative Klein-Gordon norm). We shall denote by Tf"the horizon state associated

e

with the wave packet Ejnlm' To understand the role of XT', T: , Zjnlm and'Ejnlm,

look at the Fig. 7.b . Using the action of the operator E on the basis vectors,

Wald |60| found the 2-particle state associated with this operator:

{ .

T 2. ap (MW 0 ) 2 X T

i ik

T &, (III.32)

LRl tad
e

where 5ZL is orthogonal to all the late time basis vectors {,Xﬁ}, %3*?} and the
early time horizon states <171}. Physically E:L gives the pair creation part of
\# which reachs infinity at early times while the summed term gives the final
steady state emission.
Eq.(32), together with Eq.(26) gives the solution for the state vector
/

¥ which results from particle creation starting from the vacuum during gravita-

tional collapse.
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Fig. 7(a). The solution X. of the wave eq.
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When the wave packet corresponding to
the state M7 is propagated backward in
to the past, it gets scattered through
the collapsing body and produces the da
ta at /7. The data Z,..,at 7 is the
time reflection of Z; . about v,.

Fig. 7. Diagrams |60].
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According to the previous section, E must be a Hilbert-Schmidt operator
in order that the theory were consistent, i.e. that ikb and %’(éﬂv be normalized
states and hence that the theory make rigorous mathematical sense. But, it is clear
from Eq.(32) that in this case E&A does not have finite norm since even for fixed
J and m one has terms of finite norm (bounded away from zero) for infinitely many
n and 1 (remember that the index i means jnlm). This infinity we get in the norm
of 6“5 results from the steady rate of emission in all modes over all time. Howev-
er, if we restrict attention to measurements of a finite number of modes, then in
a well defined sense the infinite norm factor (due to the infinite of other modes)
factors out and we can obtain well defined predictions.

The fact which permits us to reduce the state vector VL(Eia to a form
where it can be easily interpreted is the following:

Lemma.- Let 2, and J@a be Hilbert spaces and let fa$ € ( ;&\g'if } , %155

, abk et o g A
(H#,  H.) . Consider the state 9 (U~ ) e F e 1L,) defined by

Bty = (1,0, 27" 0, (v/ur)u

ok cd)
0') (ITI.33)

&L_ Oﬂfﬁ"‘ ob . .
where /U- = Y % . Then under the natural 1somorphlsm (Eg.(24)) between

LY 7 -
?3{4{145 e, ) and /‘(¢441 2 *‘(ffa} the state ca(iA / is mapped into the
DZL
{

simple product state 92{

) ® 5 ﬁ / , where
7 g . ~i ok { o A {ab , pca ;
P (¢ )-:C'?zriﬁ,li’“%//*;@,{S’,- ‘%.?)’Eﬁﬂ [f ) (I11.34)
6 A ’ -ty ab B ¢ k- ‘/2‘ Viié “cc{) \
‘;_:,_'/i'f‘a/j _ (\}«" _: 1{ ; :\S‘,f'»,: 1 , OJ:,H{‘, (III,BS)

oo eb -t g
Applying this lemma to our vector state V/{éa‘}, setting ﬁi(? equal to

A . PV
the two dimensional Hilbert space generated by the vectors A ; and T.c and i{;_:(?iu

we obtain:
,d-.’n . R (6“ l’)\ P
‘7L(z ) = .7LL (J/xp(“”’w‘;/%)i?\m ) ® ?Lf’g’““) (III.36)

where
}

1

.

, Ll b S 5 ;
(imp (-Toy/k )2 AT ) =(1,0.2 Lepp (2N T 9, (I11.37)
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o~

and where &°° is defined by the same Eq.(32) except that the single term
)4706—HW99/K)2 itTi) is omitted in the sum.

Suppose that we are interested only in measuring emission in the i-th
mode. Since the state vector ﬁb(E‘L) is of the form of a simple product of a sta-
te vector ‘%}(-) for the i-th mode énd a state vector for modes orthogonal to the
i-th mode %’(E“i) » then the density matrix for emission in the i—th mode is the
same as that of the pure state vector y% . Thus, we have established the following
Proposition.- Emission in Ehe various modes is independent, i.e. there are no co-
rrelations between measurements of particles emitted in different modes. Each mo—
de has its own state vector ‘f& , defined by Eq. (37).

Continuing the reduction process on yﬁ(é?$} » W€ may symbolically express

bie™) as

' ) foy N ; ab
%(s““’) = () @b e 7[/(50) (I1I.38)

where{?av)x is the vacuum state of the Fock space generated by the one-dimensio-
nal Hilbert space spanned by 32} . This is due to the fact that the wave packet as-~
sociate to the state Jﬂf is entirely scattered to 5r-and hence it cannot pick up
any negative frequency part and therefore there is no particle creation. Thus, the
state vector describing particle creation during gravitational collapse decomposes
into a product of a state vector %YE?% describing the early time emission multi-
plied by a product of state vectors describing emission in the various modes at la-
te times.

The natural physical interpretation of each state vector %%-&) is that it

describes multiple pair creation in which one of the particles, namely €7 , in

each pair enters the black hole Jjust after its formation while the other particle

- A ae . . . . .
inthe pair, namely )\c='5£jﬂ + Yo O ; , reaches infinity with amplitude t: or gets

scattered back into the black hole with amplitude ¥; at late times (see Figs.7 and 8).

We have mentioned (for the proof see |60]) that the density matrix des-
cribing emission to infinity is independent of the choice of the definition of po-
sitive frequency on the future horizon. To find the density matrix for particles in

in the i-th mode which reach infinity (at late times), we view y% (.} as an e-
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i Wf/-—r i } 2 . . - .
lement of ;r/;Q?}Q§ f’(}f{ J  where ‘l{L is the l-dimensional Hilbert space
a p i . o
spanned by—.ft , and ;(g is the 2-dimensional Hilbert space spanned by 0 and

—

( F‘. The density matrix (as was already said) is the operator 555 :?7?&}—*>}:?¥J,

and to express it explicitly we use the definition of density matrix (i.e. ii =

Z:N P f%@;ﬂi§§£ where [%y > represent a pure state). Because the f?’are l-parti-
<

cle pure states for the i-th mode, we have ?@ =i2M fz as the N-particle pure

states, therefore the density matrix for emission to infinity in the i-th mode is:

B = z [t\“vxp-wzwaﬁ#}‘ﬁ@# (II1.39)

where lt[f{mﬁﬁ(«»ALzﬁb#ﬁc) = PN is the probability for observing N particles
at infinity iﬁ the arbitrary mode whose transmission amplitude is t: £ 1. Notice
that each emitted particle has a probability of Itﬁz of reaching infinity. Since

[f}fa is the classical absortion cross section of the black hole for the given mo-
de, this means that a black hole placed in a thermal cavity at temperature K| = %5$ﬁﬁ‘
would absorb precisely as much thermal black body radiation from the cavity as it
would emit via quantum particle creation effects. For a mode with ¢;= 1 (i.e.xt: f?),
Eq.(39) gives us precisely the density matrix for black body thermal radiation in
the i-th mode, with temperature X! = # & /5
Remark.- The quantum spontaneous particle creation process always produces particles
in a pure state (¢ = 0), it is only because some of these particles go down the
black hole (¢7¥ # 0) that one gets a mixed state for emission to infinity. Even so,
it is quite remarkable that one gets a steady rate of uncorrelated emission at la—
te times.

The results of all possible measurements on these particles at late times

can be obtained using Egs.(25) and (39). Thus, the expected nuber of particles crea—

ted and emittel to infinity in an arbitrary mode i is:

Ny y = 2 (aplami/ia) = 1) (T11.40)

What is the origin of this created particles? Let me put the issue in the
following manner. In a region of spacetime which was flat or asymptotically flat,

the appropriate criterion for choosing the {Fi} is that they should contain only
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positive frequencies with respect to the Minkowski time coordinate. However if one
has a spacetime which contains an initial flat region 1 followed by a region of
curvature 2 then a final flat région 3, the basis {Fliy which contains only posi-
tive frequencies on region 1 will not be the same as the basis {FSiB which contains
only positive frequencies on region 3. This means that the initial vacuum state
will not be the same as the final vacuum state #Qs. Then, one can interpretet this
as implying that: (i) the time dependent metric or (ii) the gravitational field has
caused the creation of a certain number of particles of the scalar field. But, ac-
cording to what was said before, a gravitational collapse will produce a black ho—
le which settle down rapidly to a stationary symmetric (assuming condition A) equi~
librium state characterized, in the most general case, by its mass, angular momen-—
tum and electric charge. It has therefore become a common practice to ignore the co-
llapse phase and to represent a black hole simply by one of these solutions (e.g.
Kerr-Newman in the most general case). After the collapse phase, these solutions
are stationary, then there will not be any mixing of positive and negative frequen-
cies and so one would not expect to obtain any particle creation due to the reason
(i) above. Now we can explain the meaning of the terms in Eq.(32): the first term
correspond to part (ii) above (i.e. gravitational field cause particle creation)
and the second term is due to part (i) above (i.e. the time dependent metric in the
collapse phase cause particle creation). To understand how the particle creation
can arise from mixing of positive and negative frequencies, it is essential to con-
sider the time-dependent formation phase. But, in the spirit of the "no-hair" theo—
rems, the rate of creation and emission of particles at late times (i.e. after the
collapse phase) does not depend on details of the collapse process except through
the mass, angular momentum and charge of the resulting black hole |53,54|.

Remark.- What happen if we consider fields of non-zero rest mass? Well, fields of
non-zero rest mass do not reach };*and, f‘i because these are just past and futu-
re null infinity. Thus, according to Hawking |54], one has to describe ingoing and
outgoing states for these fields in terms of some concept such as the projective

infinity of Eardley and Sachs |86| and Schmidt |87|. However, if the initial and
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final states are asymptotically Schwarzschild or Kerr solutions, one can describe
the ingoing and outgoing states in a simpler manner by separation of variables and
one can define positive frequencies with respect to the. time translation Killing
vectors of these initial and final asymptotic spacetimes. In the asymptotic future,
there are no bound states and in the asymptotic past there could be. But the rate
of particle emission in the asymptotic future is not affected by the possible exis-
tence of bound states in the past, it will be again that of a body with temperature
i\K/Eﬂ‘. The only difference from the zero rest mass case is that the frequency

q
-1

in the thermal factor (ﬁ«f{zﬂ’w/ﬁ}-— 1 ) now includes the rest mass energy of the
particle. Thus, there will not be much emission of particles of rest mass m unless
the temperature wR/ 2 is greater than m.

What about the spherical symmetry? Hawking ]54] has demonstrated the fo-
llowing
Proposition.— The results on thermal emission do not depend on spherical symmetry.

What happen if the collapsing bedy was rotating and/or is electrically
charged? Then the resulting black hole would settle down to a stationary state
which is described, no more by the Schwarzschild solution, but by a Kerr-Newman so-
lution characterized by the mass M, the angular momentum S, and the charge Q. Next
we must consider a wave packet of the classical scalar massless field of charge e
with frequency w and axial quantum number m incident from infinity on a Kerr-Newman
black hole.

There is a classical phenomenon called "superradiance" in which waves in-
cident in certain modes on a rotating or charged black hole are scattered with in-
creased amplitude. This effect is independent of the thermal emission and was known
before. On a particle description this amplification must correspond to an increase
in the number of particles and therefore to stimulated emission of particles. In
other words, the black hole will lose energy to the wave packet which will therefore
be scattered with the same frequency but increased amplitude. Thén we would expect
that there would also be a steady rate of spontaneous emission in these superradiant

modes which would tend to carry away the angular momentum and/or charge of the black



- 54 -

hole [54].

Then the difference in the results from thermal emission of a Scharz-
schild black hole and superradiance (plus thermal) emission of the Kerr—-Newman
black holes is that the frecuency w in the thermal factor is apropriately repla-

ced as follows:

Reissner-Nordstrom black hole: W——> W - e P
Kerr black hole W————s w - mQ (II1.41)
Kerr-Newman black hole W———— s w-—e? - ma

where ? is the electrical potential, £ 1is the angular velocity of the black

hole, w is the frequency and m is the azimuthal number of the wave.
e) PHYSICAL ASPECTS OF BLACK HOLE EMISSION

At first sight, black hole radiance seems paradoxical, for nothing can
apparently escape from within the event horizoﬁ. Birrel and Davies |53]| shown that
the average wavelength of the emitted quanta 1s proportional to M, i.e. comparable
with the size of the hole. As it is not possible to localize a quantum to within
one wavelength, then it is meaningless to trace the origin of the particles to any
particular region near the horizon. The particle concept which is basically global,
is only useful near

The thermal emission to infinity cause the mass of the black hele to de-
crease, this in turn implies that the area of the horizon would have to go down,
thus violating the law that, classically, say that the area cannot decrease. The
violation must, presumably, be caused by a flux of negative energy across the event
horizon which balances the positive energy flux emitted to infinity. Heuristically,
the continuous spontaneous creation of virtual particle-antiparticle pairs around
the black hole can be used to explain this negative energy flux. Just outside the
event horizon there will be virtual pairs of particles, one with negative energy
and one with positive energy. Virtual particle pairs created with wavelength X se-
parate temporarily to a distance ~ A . For X ~ M , the size of the black hole,

strong tidal forces operate to prevent reannihilation. The negative particle (i.e.
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negative energy particle) is in a region which is classically forbidden but it can
tunnel through the event horizon to the region inside the black hole where the Ki-
1lling vector which represents time translation is spacelike. In this region the
particle can exist as a real particle (with a timelike momentum vector) even though
its energy relative to infinity as measured by the time translation Killing vector
is negative. The other particle of the pair, having a positive energy, can escape
to infinity where it constitutes = part of the thermal emission (see Fig. 8). The
probability of the negative particle tunneling through the horizon is governed by
the surface gravity K since this quantity measures how fast the Killing vector is
becoming spacelike.

What is the source of the energy carried away to _§+ by the thermal emis-
sion? It can only come from the gravitational field itself, because matter (or equi-
valently energy) cannot escape from the black hole once it develops an horizon. But
we have appointed above, that the thermal emission cause the mass of the black hole

to decrease and this is true because the expected energy flux at infinity is pro-

portional to

4 2 4 s
— —~ 1 il
areo x| Mk /ﬁ% (II1.42)

This is a runaway process, i.e. a mass decrease causes an increased energy flux at
infinity and hence and increased mass loss rate. Thus we arrive to an apparent pa-
radox: How can the black hole lose mass without matter crossing from the interior
of the black hole into the outside universe? Inspection of <-Tvv'> (where v is the
advanced time) at the event horizon shows that it is always negative ]53[. As it re-
presents a null flux crossing the event horizon, one can see that the steady loss
of mass-energy by the Hawking flux to infinity is balanced by an equal negative ener—
gy flux crossing into the black hole from outside. Therefore, the hole loses mass,
not by emitting guanta but by absorving negative energy.

In sections b), c¢) and d), we have assumed that the quantum state is the
conventional vacuum state in the '"in" region. To what extent the presence of quanta

initially will change the particle creation effect? Birrel and Davies [53|(see also
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|88]) showed that '"the effect of initial quanta fades out exponentially on the

same timescale (the collapse timescale) as any surface luminosity, and the black
hole soon settles down to thermal equilibrium, having "forgotten" the details of
the initial state. Therefore, we may conclude that the Hawking's effect is extre-
mely general, and independent of any physically reasonable initial quantum state".
However, it depends (according to what have been treated here) necessarily on the
existance of the gravitational collapse, as we state in the following sentence:

The existence of the gravitational collapse of a body is a necessary condition for
the occurrence of Hawking's effect, i.e. in order to detect the particle creation
effect at §r+, starting from vacuum state at jf“. The argument which justify this
sentence is: If there is no collapse, then the wave packet corresponding to the sta
te AT will be entirely scattered by the Schwarzschild static geometry and it can-
not pick up any negative frequency part. This is so because the blueshift which
suffers upon entering the body star) is exactly compensated by a corresponding
redshift when the waves leaves the star. Therefore (for details see |60|), the sta—
te T does not exist, i.e. Tf = 0. Since obviously eZ“: 0 in the absence of collap
se, then from Eq.(32) it follows that £™°= 0; that is there is no detection of par-
ticle creation at future null infinity J7+

What is the back reaction? The fact that the particle emission itself
will affect the spacetime geometry is called back-reaction. The calculation of the
magnitude and nature of this effect on the spacetime metric is of considerable im-
portance, because it serves for check the consistency of the theory used. Thus, if
particle creation causes large local changes in the metric we cannot expect our
approach to be valid.

Assuming that one may continue to treat the background metric as classi-
cal, then the simplest approach to the back-reaction is to assume that the major
back-reaction effect is to cause the mass of the black hole to decrease at precise-
ly the rate necessary to compensate for the expected energy flux at infinity of the

created particles. Then, the stream of negative energy across the event horizon

will cause the area of the event horizon to shrink, as we have already said (see



- 57 =

Fig. 9(a)). As the area decreases, so does the mass, implying that the temperatu~

re
kX4
T=bBl o (12010 )1 /M) (IT1.43)
21 Ke
and luminosity
-2
L = (3.4 do%)( M/1 o) ang, (I1I.44)

rise. Schwarzschild black holes therefore have a negative specific heat [53|, they
radiate and get hotter, behavior which is typical of self-gravitating systems.

33
From Eq.(43) we see that for a black hole of solar mass ( 10 gr), the temperature

is

(U]

T <<

K
M=M, (I11.45)

where we remember that 3°K is the temperature of the cosmic microwave background.
Thus, black holes of this size would be absorbing radiation faster than they emit

it and would be increasing in mass. However, in addition’to black holes formed by
collapse, we have mention the possible existence of the so called micro-black ho-
les |89-91|, formed by density fluctuations in the early universe. These small black
holes, being at a higher temperature, would radiate more.thaﬁ they absorbed. Now

the particle creation and further thermal emission gets important and they would
decrease in mass according to the runaway process described above (see Eq.(42)).

50, as they got smaller, they would get hotter and so would radiate faster. As the
temperature rose, it would exceed the rest mass of particles such as the electron
and the muon, and the black hole would begin to emit them also. When the temperature
got up to about lOlO°K, electrons and positrons will emerge, and any residual char-
ge on the hole will rapidly disappear. Moreover, superradiance effects will tend to
deplete the angular momentum (if any), so the black hole has a tendency to slowly
approach the Schwarzschild form. When the temperature got up to about 1012°K or

when the mass got down to about 1014gr the number of different species of particles
being emitted migth be so great that the black hole radiated away all its remaining
rest mass on a time scale of the order of 10_23s. Thus, the continuation of the

Hawking's process seems to imply that the hole will "evaporate' away ever faster.



2

HTOH YOVId

NOILVIAVY DNINMVH

Fig. 9(a). Black hole.evaporation. Gradually the
flux of negative energy (straight arrows)
causes the horizon area to shrink. The
process continues until the horizon collapses.

""" BLACK HOLE SEEN
TO EXPLODE

Fig. 9(b). Penrose diagram for an evaporating black
hole.

Fig. 9. Diagrams |53].
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It has been conjectured that the end result of this Hawking evaporation process

is or an explosive disappearance (Hawking, 1977), or a naked singularity (De Witt,
1975; Penrose, 1979) or perhaps a Planck mass object. Figure 9(b) shows a Penrose
diagram for these situations, where the dot represents one of the above three al-
ternatives. In the first case this evaporation will produce an explosion with an
energy of 1035ergs. Even if the number of species of particle emitted did not in-
crease very much, we can calculate from the luminosity, Eq.(44), the lifetime of

an evaporating black hole, and obtain:
, -26 :
t ~ 10 (F4/!1yk) s. (III.46)

thus, for a black hole of Fermi size G~10‘13cm), about lOngr, the lifetime is com-
parable to the age of the universe. As is most likely that such micro-black holes
(M*~10_18M0) would formed in the early times of the universe, this implies that
black holes with an initial mass less than lO%Bgr would have evaporated away by now.
Finally we should say that the most persuasive evidence that the Hawking
black hole radiance should be taken seriously is the strong connection that it pro
vides between black holes and thermodynamics |55|. Thus, in order to construct a

consistent theory one identifies:
. y
ko T > % &/27

(ITI.47)

where S is the entropy of the black hole and A is the sum of the surface areas of

the event horizons, and then one arrives to establish four thermodynamics laws for

black holes (classically!).
Z
£) THE WAVE EQUATION (O +m) =0

All our assumptions are still valid, except when explicitly stated. We
consider now, a mass scalar field, but much of our results can be extended to the

massless case. Thus, our scalar field equation is

(I11.48)
( 0O+ m- ) #’ = 0



- 59 -

where ‘# = ¢’ft,ﬂ‘9.¢) and m > O . We also assume all the necessary hypothesis

in order that a solution of Eg.(48) exist |92-94

. Due to the symmetry assumptions

Eq.(48) can be separeted in (the so-called) mode solutions:

Sé = éﬁwr JEM (r) Yo (8.%) (III.49)

where Y, ., are the spherical harmonics, and the subscript wi must not be confused

with the mass of the field. Replacing Eq.(49) into Eq.(48) gives:

~2 i —2 ‘
Pod rifd , W-F ( "+ —ﬂﬁ{lL) fth=0 (111.50)
r2 dr dr Y wht = .
- -1 1 . .
where r = (l-r )/2 , and we are putting 2M=1, for simplicity in notations, but af-

terwards it can reappears. Defining ri= r+ ZW\Qwaﬁ-—1I or simply r* =V + don |~ 1]

Eq.(50) reduces to:

2 2 -2 -3 =1 2] -
d fwl(v) + [_(ml+ LY +r )(""’ )+ G Jf‘w (()=0 (111.81)

Ar**®

2 R
where L :AQ(£+7) and where we see that the term
-2 -3 -1
V() = —(wm+ ¥ S5 v )(’l"‘Y )

acts as an effective potential. A diagram of this potenfial can be seen in Fig.10.
If m # 0, then every wave packet should in the asymptotic past, behave like a free
(V = 0) massless solution propagating in from the past event horizon together with
a massive solution (distorted by a 1/r* potential) propagating in from spatial in-
finity. Similarly, in the asymptotic future, every wave packet should behave as a
free massless case propagating to the future event horizon together with a (distor-
ted) massive wave propagating to spatial infinity. If m = O, then every wave packet
should approach a free massless solution in both the asymptotic past and future.
This would imply that a massless scalar field in Schwarzschild spacetime is deter-
mined by its value on the past event horizon and j?’.or, equivalently, by its va-
lue on the future event horizon and j(+ , because the wave packet should be of the
form £, (u) + g,(v) as t—w and f_(u) + g_(v) as t —= -, where u=st-r* and v=t+r*
|64].

Let's analyze the solutions of Eq.(50) using Eq.(51), in the three follow-



Fig. 10.

Diagram of V vs. r. Physically this
potencial give rise to reflected wa-
ves which may be envisaged as back-
scattering of the field solutions from
the spacetime curvature.
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ing regions:
2
1) Near the horizon: this region is defined by VY-1< Lﬁ/{} << 4 , because r—>1

we can neglect small terms in Eq.(51) and obtain:

d4° ¢ -
" + W) f =0 . (III.52)
where we are denoting fﬂt(r}by' f , the solution of this equation is:
W

* : *

— Lwl (I11.53)
7(1u;(r}“A1MF( ) |

where /41 is independent of r*. '

2) Intermediate region: 1 < ¥ < oo , we can neglect the terms w?®and w’ be-

cause they are much smaller than the others, thus:
—2 2
da FFrd L 7( = O (III.54)
dy dr

the solution of which is given by:
][zwﬂ (r) = Az PAKZV’—")+BZQ1 (2r-1)  (111.85)

where 5} and<Qz are the Legendre functions and Ao ,B2 are constants.

The definitions of regions 1 and 2 do not really lead to an overlap re-
gion. However, near the point v, = +<AZGQ+1)3, all the nonderivative terms in the
differential equation for { are small [95|. One can approximate the solutions by lin

ear combinations of constant terms and terms proportional to £W\!K—1l. Furthermore,
since J%Afkb——ﬂ}éé ﬁzxﬂﬁf7€£+i)z) we will neglect terms of the form ¢/ A (e =1}

when compared to unity. Thus, for r near r. we have from Eg.(53):

ﬁ A (1 =ty ) = AC{L1H {w_,éﬂ(m—ﬂ}“iw/@m(‘r’%)) (1T1.56)

f; can be determined from the behavior of f} , Cli , for 2r - 1 near 1:

P.Q (;_Y"-"I) :7 + O(r‘i}

Lo , .
wz v 2 L +O(r—1):,%wr,1)+(111 57)
K=t K ia

.

Qular=1) ==L hnlr=1+

N

i~

where & 1s a constant. Fitting ﬁ1 and f; near ro we obtain a relation between Ao,

B2 and Al
AL+ E. (,%,&4(%’—1} +0~) = A (1 —lwdn (r=1)), (111.58)
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Keeping terms only to lowest order in (J we obtain:

Aa = A‘l
BZ —~ Zl:h)A1

3) Far from the horizon: y¥—=>00, so we can neglect 1/r with respect to unity,

(I11.59)

thus we gets from Eq.(50)

2 2 L
(d Q%) +r w"‘—rm—~L)7‘=o ' (1II.60)

dr
since now ¥ —s> 41 This equation have solutions in terms of Coulomb wave Ffunc—

tions F§ and Gf , thus the solution is |96]:

/[nu* (r] = A3 Ff(‘w(1+v2/2v,uvr) +53 Gi(—w({:v%\,)ww) (III.61)

where V =({ - Wﬁiﬁbl)yﬂ The overlap hetween regions 2 and 3 will occur when'V}<<ﬁ
but when @/r 2> v . Therefore we can neglect 1/r with respect to unity and terms
in WV with respect to both unity and 1/r in Egs.(55) and (61). To evaluate f; in

the overlap region we need and asymptotic expansion for fi and Clx :

Po (2r=1) = L2801 <zr-1/"<1 . 0(%)) _ (24)1 ¥

2 (xl)? DK ( |
I11.62
V2 P
O er-1) o (&) (1+ O@/r))
2(za+1)p A
therefore we obtain:
- . s 1 f“”/l
foo= Ay L2yt p By & - . (III.63)
2 TE 2 (24414} p i

Similarly, we use the asymptotic expansions |96| for the Coulomb functions near

wvy =0 ( ) )JZH({ Do \)__
_As [z ltev?) Jwvr + wvw}
£ "’?‘[ £< v/
. B [ (wvr)~t (1 +O(w\/}’))] (III.64)
roL(za+1) ¢ (-wli+vE)/2v)

where

) = 2te e T (x|
Gt = 2e AT (111.65)

and so we obtain by equating f; and fé |95]:

Aozl LA cl <~uu+w7<wv)f“
BB 2V

B Q| B;( (s v)* ) .
2(20+1)! (2a+1) &g (Fw(t+v3)/2v )

(ITI.66)
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By demanding that f have unit incoming amplitude, and using an asymptotic form

for F© and G® in Eq.(61) we obtain:
Ay + (B, = 2 (III.67)

and finally, from Egs.(59),(66) and (67):

, L+1
Al = 2(41)° (c; )(wv) : (111.68)
24)!

D. Boulware |97| has used Green's functions in order to solve the wave
equation (48) in a Schwarzschild spacetime. He does not consider a time-dependent
phase of the metric (e.g. a gravitational collapse), for.this reason his‘boundary
conditions aré different to those we are assumed here. His results are Ehat star-
ting from a vacuum state he find that it is stable, i.e. there is no particle crea-—
tion effect. This seems reasonable, according to what was said before; a curved spa
cetime cannot by itself create particles, it needs an effect ('"match effect'?)
which starts to create particles (in our case the gravitational collapse) and af-
ter this process the curvature of the spacetime stabilize the steady state produc-
tion and emission to infinity of particles created.

After some calculations, Boulware found the S-matrix for the scattering
process of scalar field waves in a Schwarzschild curved (but time-independent) spa-

cetime, and it is:

; X
/—~ j«l‘wtf" 1A f,,'z

S -1 S (ITI.69)
DSIPEEy }fﬁuﬁ’é oo ( qua_)

and with the relations found in |97|, can be verified that it is unitary as it

should be.

g) CONCLUSIONS

(i) The central theme is that the gravitational collapse of a star, which
settles down to a stationary black hole, yields a flux of particles at j)', which

are created from the vacuum state in the vicinity of the horizon; this flux has

shown to possess a thermal spectrum corresponding to the temperature hR 2
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If there is no gravitational collapse, as it has been see, then there is no "Haw-
king's effect" of particle creation.

(ii) We can observe from Egs.(19) and (26) that the S-matrix in the case in
which we have considered the time-dependent phase of the collapse is an infinite
matrix. Instead we can observe from Eq.(69) that the S-matrix for the same curved
spacetime (i.e. Schwarzschild spacetime) but without consider the time-dependent
phase of the metric is a finite (2x2) matrix. The reason is clearly, that in the
first case there is the phenomenon of particle creation while in the second this
effect does not appear.

(iii) To assume (for technical reasons) that the spacetime is flat out of a
compact spacetime region, is an unphysical assumption that is not satisfied by the
Schwarzschild or Kerr-Newman spacetime solution of Einstein equations. An open pro-
blem is to find to what physical matter distribution such an assumption leads.

(iv) For a distant observer the collapse never ends because the surface of the
star always tends but never reach the future event horizon. This would imply that
the particle production due to the time variation of the metric, for a distant obser
ver, never ends. Of course, when the surface tends to the horizon, the metric tends

I
to the stationary state and therefore we can expect that in this situation 4 —> 7.
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