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ABSTRACT

This thesis is concerned with the numerical solution of Einstein's
equations. In particular we look at computer generated solutions to the astro-
physical problem of the collapse of self gravitating fluid bodies. General
Relativity predicts significant deviations from the Newtonian picture when
velocities and densities become large.

Chapter one reviews results from past collapse computer codes for spheri-
cally symmetric and axi-symmetric bodies.

Chapter two details the methods and techniques used to obtain the results
discussed in chapter one. The ADM (3+1) and the [(2+1)+1] formulations of
General Relativity are briefly described, and we then systematically review
the all important choice of gauge conditions. York's conformal approach to
the initial value problem is outlined, and the chapter ends with some numerical
considerations.

Chapter three introduces an old but little used formulation of General
Relativity known as Regge Calculus. After a review of previous work in this
area we present Regge Calculus in a (3+1) form. 1In chapter four the formalism
is extended to include a perfect fluid and we then go on to apply it to the
relativistic collapse of spherically symmetric bodies. The Regge Calculus
equivalent of the Tolman - Oppenheimer - Volkov equations describing fluid
spheres in hydrostatic equilibrium are solvéd. The results are found to be
in excellent agreement with those produced by other numerical methods. A
static equilibrium configuration is then evolved using a Regge Calculus collapse
code. This exhibits numerical instability in the central regions but work is

in progress to overcome this problem.
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1. NUMERICAL RELATIVITY

1.1 Introduction:

Numerical Relativity is a quite recent field of study which has exper-
ienced rapid growth in the past ten years [1] - [3]. This is no doubt, partly
due to the equally rapid growth of computer technology on which the subject is
so dependent. However the development of formalisms of General Relativity (GR)
suitable for computer implementation and the deeper understanding of crucial
issues such as the initial value problem are the major factors governing this
growth.

The usefulness of Numerical Relativity in the calculation of space-
time generated by strong field (Newtonian gravitational potential ﬂf«fcz where
c = light speed), high velocity (vac) sources is clear. Perturbation methods
[4]— [6] depend on the existance of a small expansion parameter which is physical
and characteristic of the problem (such as the ratio of the masses for a test
particle falling into a black hole [b]). For strong field, highly non-linear
problems all natural expansion parameters are large and one must use numerical
methods, which depend on unphysical expansion parameters. There are many inter-
esting astrophysical problems which fall into this category, a particular one
being the catastrophic collapse of self—gravitating fluid bodies [7],[8].

At the endpoint of thermonuclear burning stars of mass M2 8Mg tend to
produce cores of iron group elements with a central density of/;yVB.7xld‘g cm™?
and a mass of around 1.4, [9] - {1ﬂ . As the core cools electron degeneracy
pressure supports it against gravitational forces, but, as first suggested by
Landau [12] and shown in detail by Chandrasekhar [13], there is a maximum stable

mass for such cold, degenerate configurations of




Mane = 576 <Y M, (1.1)

where ‘>é is the number of electrons per nucleon = 0.41 - 0.43. This assumes
no rotation and observations ﬁd] indicate that this is probably a good approx—
imation. Any core exceeding this maximum mass necessarily undergoes gravitat-
ional collapse until it reaches nuclear densities of./D'VlO“fg cm™ At this
point the hardcore repulsion of the neutrons cause the core to bounce producing
an outward moving shockwave. The strength of the shockwave depends sensitively
on details such as the equation of state and the degree of neutrino trapping
(neutrinoes are produced via neutronizetion ie. the capture of free electrons
onto protons). In some cases the shockwave is able to eject matter from the
star. The core is now a relativistic, degenerate neutron star.

Such a scenario may describe the general features of type II supernova
explosions [15] - [17]. The high densities and large fluid velocities reached
particularly at neutron star formation, means that GR should be used.

Further gravitational collapse of the neutron star can occur if, either

i) it accretes matter from an infalling stellar envelope and thereby
exceeds the maximum stable mass for a relativistic, degenerate configuration
(thought to be around 1.3Mg - 2.7My and almost certainly less than SMG[Q]),

dlnp

or, ii) it has a composition such that the average adiabatic index [1: s

where M is the mass and R is the radius of the star. The last term is a GR

satisfies

GM
L
¢ et = 5+ O<6R

(1.2)

correction to the Newtonian picture. This collapse criterion is very general.
At higher densities there are no stable configurations. GR predicts

the formation of a black hole provided that the ratio of specific angular




momentum to mass satisfies E%( 1 (c=G=1) [18].

Numerical simulations of gravitational collapse to neutron stars and
black holes can provide quantitative details of the scenarios described above.
We would hope to obtain information on such fundamental issues as the conditions
necessary for supernova explosions, the quantity and nature of gravitational
waves emitted during collapse, and the final fate of collapsing configurations
with —=>1.

The plan of this thesis is as follows; in the first chapter we review
the results of fully relativistic numerical simulations of spherically symmetric
and axi-symmetric gravitational collapse. All of these use a simple equation
of state and do not treat the detailed microphysics. Present computer power
limits one to spherical symmetry if realistic equations of state and nuclear
reaction energetics are to be considered. However we are concerned only with
the role of numerical relativity and do not discuss such codes [19] - [21].

Chapter two begins with a description of the ADM (3+1) formulation of
GR on which most modern numerical relativity codes are based. This treats the
gravitational field as a dynamical entity evolving from conditions prescribed
on an initial spatial hypersurface. A modification of the (3+1) approach
particularly suitable for axi-symmetric rotating collapse, known as the
[(2+1)+l] formalism, is then outlined. Gauge conditions for spherical and
axi—symmetric spacetimes are reviewed, York's conformal approach to the initial
value problem is outlined, and the chapter ends with a discussion of some
numerical points including differencing of equations and shock handling.

Chapters three and four form the main part of this thesis. We intro-
duce a little used formulation of GR known as Regge Calculus. This differs
significantly from other formulations used in numerical relativity in that
the Einstein field equations are derived in a discrete form ready for imple-

mentation on the computer. After an introduction to the method and a review



of previous work in the area we describe Regge Calsulus in a form which has
many similarities with the ADM (3+1) approach. These similarities are pointed
out as they appear. The construction of a Regge Calculus collapse code for
spherical bodies is the subject of chapter four.

The notation used in this thesis mainly follows that of f22], except
for chapters three and four. We refer the reader to Appendix I for the notation
used in these chapters. Geometrized units (¢ = @ = 1) and a metric with sign-

ature (-, +,+,+) are always used unless explicitly stated otherwise.

1.2 Spherically Symmetric Collapse:

Analytic expressions are available for the dynamic collapse of homo—
geneous [23] and inhomogeneous [24] dust (zero pressure) spheres within the
framework of GR. However when pressure is included a numerical approach is
necessary. May and White [25},[26] were the first to make an extensive study
of the relativistic collapse of self-gravitating polytropic spheres using
numerical methods.

May and White use a Lagrangian co-ordinate system, ie. each fluid ele-
ment has constant spatial co-ordinates along its world line. In this case
only the time component of the fluid 4-velocity is non-zero. Also simplifica-
tion of the Einstein equations is acheived by using a diagonal metric in the

form [27],
Asl:—o:ng-\'L: L‘)\fj + Rloiﬂl _ (1.3)

2
where a, b and R are functions of t and‘f/, and djfL: d91+sin?9dg5. We note

that this combination of Lagrangian co-ordinates and a diagonal metric is



possible only for spherical collapse.

The matter is divided into a series of concentric spheres of proper
area 4TTR1(/J,t) each enclosing a fixed rest mass }J - During the collapse
these spheres 'expand and contract' to ensure }J remains constant, thus ‘//
is a Lagrangian radial co-ordinate. A perfect fluid with isentropic flow is
assumed and shocks are handled using an artificial viscosity of the von
Neumann and Richtmyer type [28] (see chapter two). In the Lagrangian frame

the stress-energy tensor is

Tezpliem) |, T=Ti=T=0p (-4)

where p is the pressure,/}) is the rest mass density and 11 is the specific

(=3

Vv
internal energy. All other components of _T— are zero. We define relativistic

j.l

k specific enthalpy as

P
w= | +mT 4=, (1.5)

/

the 4-velocity normalization is
}/\)
so that in the co-moving frame we have,
v !
W= (%,0,0.0) (1.7)

then from the Einstein equations, baryon conservation and energy and momentum

conservation we may obtain [26],[29] the dynamical equations
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= - “FB(Z(/Z> (1.11)

for u, R,/) and TT , where we have the definitions
Q

m = b /ﬁ( [+7T) R "(/U (1.12)

p = P(—'T’))) | (1.14)

(1.12) is the mass interior to radial co-ordinate }J y (1.13) is a generaliza-
tion of the special relativistic factor )( = (l—vz)-é and (1.14) is the equation
'of state. The metric component a is then found using

N
o °P (1.15)

3P A 3P

From eq. (1.9) we interpret u as the 3-velocity of the fluid in a gauge using



R as the radial co-ordinate.

May and White integrated this system of equations using a two step finite
difference scheme ([26] gives the full details). We present results from two
runs of their code.

First we consider the collapse of a 1.1M, sphere of constant density

/% = lO'3 g ch starting from rest. The equation of state is that of g poly~-

trope

- ! (1.16)
P= K2
where in this case the adiabatic index Y =§§ and K = constant = 1.06. Figs.
1.1 -~ 1.4 show the values of velocity u, radius R, density/e and metric function
a verses Lagrangian co—ordinate‘}/ at various times during the collapse. There
are a number of noteworthy features. The build up of central pressure was suffi-
cient to halt the collapse causing the inner regions to bounce. A shockwave
then propagated outwards, and in this example some mass was ejected. The final
system is an equilibrium core with an expanding shell of matter. For high central
densities,/e > SXIOW'g cﬁﬁ, the adiabatic index was changed to Y = 2. this
represents a hardcore equation of state and enhances the bounce.

Fig. 1.5 shows the same set of results for a 21Mg sphere of constant
density/e = 107 g cm$ starting from rest. Again a polytropic equation of state
with ( =‘% is used, but this time X = constant = 0.05. We expect pressure to
play a less significant role in this case. The pressure gradient is never large
and continued collapse occurs. At a certain point [ becomes negative so that
the pressure accelerates the inward flow; this is seen from eq. (1.8). Quali-
tatively the results are similar to the dust results of Oppenheimer and Snyder
[23]. The value of K separating those models which bounced or underwent con-

tinued collapse was found to lie between K = 1 - 2 for X =w§ for a wide variety
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10.

of initial conditions.

Fig. 1.5 shows the start of black hole formation, however it was not
possible to follow the evolution further because a singularity developed in
the co-ordinate system. This can be seen from the R verses )J graph. R reaches
zero at an intermediate zone in a finite co-ordinate time. A solution to the
problem was given by Hernandez and Misner [30] who suggested the use of Lagran-
gian co-ordinates with a non-diagonal metric where the time éo—ordinate is
constant along null geodesics.

Writing

CcQu:&dtﬁ-L,o(}J (1.17)

we transform the metric (1.3) to
2 2 2
ds :—CZOQMz—zclooluA/J + R N (1.18)

where u is referred to as observer time. [30] lists the new equations for
spherical hydrodynamics in this gauge. Since photons interior to the Schwarz—
schild radius R = 2m cannot escape, events inside this region, which produce
the co-ordinate singularity of the previous gauge, occur at infinite observer
time.

Miller [9],[31] presents collapse results using both the May and White
and Hernandez and Misner co-ordinate systems. Figs. 1.6 and 1.7 show some of
the results. They are not directly comparable with those of fig. 1.5 since
the initial conditions are different. A relativistic polytrope with Y = ég
was first constructed by integrating the Tolman - Oppenheimer - Volkov (TOV)
equations and was made unstable by reducing K. The collapse of a 2.1Mgy con-

figuration from rest is shown. We see that observer time successfully avoids
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Vo is the fluid
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the singularity in R.

Two modern spherical collapse codes are those of Smarr and Wilson [32],
and Shapiro and Teukolsky [33],[34]. Both use the ADM (3+1) formulation of
GR (see chapter two), and difference the hydrodynamic equations in an Eulerian
form. A grid velocity which moves the grid nodes relative to the co-ordinate
system was employed to ensure adequate coverage of the collapsing matter, and
a von Neumann - Richtmyer artificial viscosity handled shocks.

A general picture emerged from the large number of initial conditions
considered by Shapiro and Teukolsky. Equilibrium polytropic spheres with X =
2,,% or %’ were destabilized by reducing the pressure. Depending on the initial
conditions one of three scenarios occured. If the pressure deficit is moderate
and the mass M < Mmax, where Mwmaxis the maximum stable mass for the given X
(see [8]), then the star bounces homologously. For M > Mmaxwith moderate pres-
sure deficits continued collapse to a black hole is the result. While if the
pressure deficit is large a non-homologous bounce occurs, regardless of mass,
with subsequent oscillations of the inner regions. The latter scenario may
be explained by the fact that a large pressure reduction causes the inner
regions to collapse much sooner than the overlying matter. Final collapse
to a black hole probably occurs on a secular timescale as the outer regions
fall through the shock. The three scenarios for a X =.% equation of state
are shown in fig. 1.8. Ry is the radius of the star after pressure reduction;
the curves represent the motion of Lagrangian matter tracers each labeled by
a fixed fraction of rest mass interior to it. By using a maximal time slicing
condition singularities were avoided (see chapter two) and it was possible to

evolve the system for many hundreds or thousands of M.
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Fig. 1.8 (a) homologous bounce, dotted line denotes the shock front.
(b) continued collapse to a black hole, dashed line represents

the event horizon.

(c) non-homologous bounce, dotted line denotes the shock
front.



1.3 Axi-symmetric Collapse:

Spherical symmetry represents a great simplification of the true nature
of gravitational collapse. Only non-spherical systems allow gravitational
radiation to be emitted and thus only then does the whole of sSpacetime become
dynamical. Also the effects of rotation should be included. There are several
axi-symmetric codes which solve the Einstein equations coupled to a perfect
fluid [35] - [38]. we concentrate on two of them.

Firstly we consider the work of Nakamura [38] - [42} who used a [(2+l)+l]
formulation of GR [43] to construct a computer code simulating the collapse
of relativistic, rotating, super massive (M = 108 Mo) stars. Although axi-
symmetry with rotation allows both polarizations of gravitational radiation
to be present no results regarding wave emission were obtained. There are
several reasons for this absence:

i) The use of cylindrical co-ordinates (r,gf,z) combined with a choice
of zero shift vector produced a gauge which did not isolate the gravitational
degrees of freedom. This makes interpretation of the wave content difficult.

ii) Their spatial grid of 28 x 28 nodes in the (r,z) direction cannot
resolve deformations of the body to the accuracy required for estimates of
wave emission. The outermost grid points were at a distance of 25M (where M =
mass of the body) which is not sufficiently distant since typical gravitational
waves have a wavelength of ~ 15M. Computer resource limitations governed the
size of the grid. The choice of zero shift vector meant no simplification of
the Einstien equations and all six spatial metric components needed to be evolved.

iii) A difference scheme with a large, implicit numerical viscosity was
used to approximate the equations. Thus any waves or oscillations were damped.

The code was used to study the hydrodynamical aspects of axi-symmetric

collapse for a wide variety of initial conditions. A polytropic equation of
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state with X = %i was assumed. The Einstein constraint equations were solved
using York's conformal approach (see section 2.4) with the assumption of a
conformally flat metric and the trace and transverse-traceless parts of the

extrinsic curvature set to zero. Two rotation laws were considered,
(%)
Jyoce M (1.19)

where Jd is the specific angular momentum, r, is the initial radius of the
star = 14.5 in all the models shown, and C¢ is a constant which took two values,
a) rotation law A; C# = 2 (almost rigidly rotating)

b) rotation law B; Cg = 10 (strongly differential rotation).

EI'D{' —An'l'
Input parameters are the polytropic index K, J = Eg::iand U =f;“‘7 where E.}
a grav

is the rotational kinetic energy, E,.\ the internal energy and Eym,the gravita—
tional energy of the star. We note that for a rotating polytrope in equilibrium
J satisfies the inequality 0< J< 0.5 as a consequence of the Virial theorem [46].
Fig. 1.9 lists the initial conditions and final outcome of several runs.
Models are characterized by the rotation law and Kerr parameter g = S%, max
denotes maximal time slicing while hyper denotes hypergeometric time slicing,
(see section 2.3).
For a slowly rotating model, q = 0.5, with rigid rotation (A) the
deviation from spherical symmetry is slight and collapse to a Kerr black hole
is the result. 1In the differentially rotating case (B) the final result is
the same but the inner regions are deformed more strongly due to the faster
rotation. The most interesting results are for rapid rotation. A collapsing
configuration with an initial q> 1 cannot form a stationary black hole unless
q is somehow reduced to <1 by eg mass shedding [47] or emission of gravitational
radiation [48]. All models with a>1 failed to form a black hole producing

instead either a vertical jet (for rigid rotation) or an expanding horizontal
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disk (for differential rotation). In run A146 (see fig. 1.10) the centre
matter first falls vertically along the z - axis and outflow in the radial
direction occurs. The central regions then bounce producing a shockwave which
reverses the infall. At this point the core has a value of g~1 and thus it
is possible for the final outcome to be a black hole with a jet.

Differential rotation gives a different picture. In run B143 (see fig.
1.11) there is a strong outflow in the radial" direction and a disk forms.
The thin shell of matter left behind eventually falls vertically onto the disk
producing a weak shock. At late times the radial velocity of the central reg-
ions decreases while that of the outer parts remain large. Mass shedding is
the result.

It seems that the final fate of rapidly rotating configurations is
very dependent upon the initial conditions. For slow rotation, q£1, a black
hole is the end product.

Stark and Piran [37] have recently constructed an axi-symmetric code
which is capable of following the hydrodynamical evolutions and estimating
the gravitational wave emissions from rotating stellar collapse. Its success
is a result of carefully chosen gauge conditions.

The ADM (3+1) approach is adopted. Isolation of the gravitational
degrees of freedom is achieved by employing the radial gauge which in spherical

polar co-ordinates (r, 8] ,55) has the interval

2 z
rolb (1.20)

1 ¢ 2 {
JS :—(O(Q—pﬁ‘.>rjh—2(5‘.clsc o“f—l‘jpro”l{—m .
#0014 7) (g df + £ ol6)
where O 1is the lapse function and ﬁb is the shift vector. For asymptotically

flat spacetimes this becomes a transverse - traceless gauge at r-+ 6 ywith

the metric components g and’? representing the hy and h+ modes of the
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Mccel |Case a U J ime Slice Hor;:on?l) Remarks
Aldg A 1.45 1 0.94 | 0.77 Mz NC jet
Al22 1.22 10.86 | 0.51 Mz NC jet
AIQS A 1.05 |0.84 | 0.37 Mz: YZS —
A23 0.82 |0.82} 0.29 Mzx vzs _—
ATS A 0.75 ]0.82 | 0.19 Mzx RS —_
AZD A 0.50 ]0.81 1 0.08 Mz ¥Y== —_—
I R R _
Bl42 | B 1.43 | 1.01 ] 1.20 Mzx NO e”?a‘"“:lgfsk
BL21 B 1.2Y 10.88 | 0.76 Mzx NO "
B1l04 B 1.04 | 0.84 | 0.54 Mzx NO "
BSZ2 B 0.92 | 0.82 ] 0.42 Mzx Hvoer YZS —_—
B74 B 0.74 1 0.81 1] 0.27 Mzx /Yrper Y=Z3 —
BsSl B 0.51 0.8} 0.12 Mz Y=3 —_

Fig. 1.9 Table of initial conditions and final outcome of axi-
symmetric rotating collapse. The bresence or absence of an apparent
horizon is indicated. An apparent horizon always lies inside, or
coincides with, the event horizon. (see [ﬁB]for details of how to

numerically locate apparent horizons in the R2+l)+l}formalism).
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gravitational radiation respectively. To minimise numerical errors g and ’Z
were evolved directly. The grid has some 100 x 8 nodes in the radial/angular
directions with the outer nodes at a distance of S0M. Singularities due to
black hole formation were avoided by using the polar hypersurface slicing
condition. When combined wifh the radial gauge no event horizons are allowed
to form. The presence of a black hole is inferred from an exponential decrease
in the lapse function. This allows continuous evolution for times of many
M which is necessary if the full gravitational wave content is to be estimated
“

The initial conditions were as follows; a static, equilibrium poly-
tropic sphere with adiabatic index X = 2, mass M and radius R = 6M is pressure
reduced to either 1% or 40% of its equilibrium pressure. Simultaneously the
star is given a rigid body rotation with the total angular momentum J measured

by the parameter a = (a = g = Kerr parameter). The Einstein constraint

M?
equations are not used to provide initial data.

The nature of the collapse is determined by the value of a. For a ¢ 0.5
continued collapse to a black hole is the result, with little deviation
from spherical symmetry. If O.5<za(zau& (where aceb= 1.2 + 0.2 for a pressure
reduction to 1% and acrb= 0.80 + 0.05 for reduction to 40%) the effects of
rotation are significant.’ An oblate spheroid forms but the final result is
again a black hole. The time for black hole formation increases with a. These
results are in qualitative agreement with those of Nakamura.

In the case of a}a,+ a black hole never forms. Material near the pole
flows along the rotation axis towards the equator while radial expansion occurs.
The picture is qualitatively similar +to that of fig. 1.10(b). The star then
bounces and reverses the motions. The final result is oscillation about a .

flattened equilibrium structure. No jet is formed. Because of the large pres-

sure reductions strong shocks do not occur. This may explain the difference.
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The qualitative features of the gravitational radiation emitted during
collapse are independent of the initial conditions. Fig. 1.12 shows the
amplitudes of the hy and h, modes for various values of parameter a. The
amplitude increases as a increases. Wavelengths are in the range 12 - 28M,
Perturbation results for a test particle falling into a black hole give a
similar waveform [6]. Its shape is characteristic of the normal mode oscilla-
tigns of a black hole [58] which are excited when particles fall in on a
dynamical timescale. The oscillations are subsequently damped by gravitational
wave emission. In this case the amplitude is decreased since phase cancellation
effects occur. The total energy AE transformed into gravitational waves is
very small. It increases with a approximately as %féxa* with a maximum value
of 7 x 10-%. This indicates gravitational collapse is a poor source if axi-

symmetry is maintained.
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2. METHODS AND TECHNIQUES

2.1 The ADM (3+1) Formalism:

The ADM (3+1) formulation of GR [53] has been reviewed many times [35},
[54}. We will summerise the essential features.

Since there are no preferred observers for a general spacetime we must
arbitrarily choose a congruence of world lines orthogonal to a family of spatial
hypersurfaces and define Eulerian observers in terms of these. For local
observers at rest in these hypersurfaces the spacetime metric is divided into
the induced metric Xﬁd ya lapse function & and a shift vector #;. The latter
two quantities depend on the subsequent motion of the observer; o« determines
the choice of the next hypersurface while ﬁz is a motion of the spatial co-
ordinates (with repect to Eulerian observers). Thus constant time slices are

distinguished and we write the metric in the form
T R A L e+ Ve e e 2.1)
AS s "(‘X"Fé {AL)O( + }3,,' x + ¢ o!oc o«[oc, (2.1

where ¥ﬂ is the spatial metric of the t = constant hypersurface, the lapse
» ; r
function & = (-g’)" and the shift vector = YVRL, b = g ..
- b

If n” is the unit normal to the hypersurface then

tV: an4-@P (2.2)

where ®Kdt is the orthogonal proper time separation of hypersurfaces t and t+dt,
3
and nf = L&,—-%& is the 4-velocity of the Eulerian observers who measure the
{

velocity of the spatial co-ordinates to be é& (see fig. 2.1). The rate of

change of the spatial metric with respect to local orthogeonal proper time
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(Eulerian observers) is given by the extrinsic curvature

K/_m :'l/ifﬁ X/J‘? (2.3)

where £ denotes the Lie derivative. Equivalently we define the extrinsic

curvature by

1y
K/\, - - }J ).Vl\) (2.4)

b
bY
where n, = (-« ,0,0,0) is the 1-form dual to n” and X =g +n n> is a spatial
Y 3

IU

projection operator. Note that the extrinsic curvature is a purely spatial

quantity, Kru n" = Kf’ n” = 0. From (2.2) - (2.4) we write
Y
L S

where D;ﬁj = Xt-V} &j defines the covariant derivative D; compatable with ij.
We can now write the Einstein equations in a (3+1) form. If they are

first written as
(;}AJ = 8TT~TPV (2.6)
where

G-}J\) e {Z/J\) - '/7- ?/'N R (2.7)

we obtain, by projection

i) the Hamiltonian constraint

3) O
Ggwmaz(3Q+K-K%k*):&v> (2.8)

f



The time vector is t :NHH*FI where ® is the lapse function, ﬁy
is the shift vector and r)P is the unit normal. The dashed figure

represents a local light cone.
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ii) the Momentum constraints

_X;G’:}V‘Q:DS(KCJ”XCjK): gn—J"" (2.9)

where the projections of the stress-energy tensor va are

T nt'n’ = P
(2.10)

"Y;Tﬁ n’= j )

K denotes K; and ¥R is the scalar curvature intrinsic to the spatial hyper-

surface. Use has been made of the Gauss - Codacci relations [56]

Fyv oyl 3 ) L L [
XLXJ YK Xk QIJ\M‘ = R”K +K;KK3~]<jKKL- (2.11)
F v =D (2.12)
YLQ]NV]:DJ'KL DK
The dynamical Einstein equations are obtained by writing

R/,\,,: 87 (T v —%.jf,v,j&o- T;D-> (2.13)

v
and projecting using the operator X& yd , Tto give

Ko I 2
AT - @Ak Looiva - TR 4 2k, K*;
(2.14)
- oYL 4 .
~ K;J'K = - 8 (SLJ 4XLJS+2/’YLJ)
where
X% X37—0 = SU'
(2.15)

§=¢F



The spacetime is then the time history of two spatial tensor fields K‘J
and X;b evolved via equations (2.14) and (2.5) respectively. The initial data
( X ‘J on the t = 0 hypersurface is subject to the constraints (2.8) and
(2.9), which are satisfied at all times as a consequence of the Bianchi identi-
ties. The consistent specification of this initial data is outlined in section
2.4. We note that the equations cannot determine « or pi . These must be
specified arbitrarily on each hypersurface, and it is this which gives the (3+1)
formalism its power. The choice of & and Pi determines the observers who
record the data set ( Kj’ K;J) which describes the spacetime. A good choice
of these kinematic variables is crucial for the success of any numerical code.

We review some of the many options in section 2.3.

2.2 The [(2+1)+1) Formalism:

For spacetimes possessing a Killing vector field gP Geroch has shown
[57] that it is possible to divide out the Killing direction to reduce the four
dimensional manifold M with metric gfg to a three dimensional quotient space
S (called the orbit space of ﬁy , 1le. the orbits of §H are represented as points
in S) with a scalar field X::gpgf, a vector field A%N=EWVGX§JV“§} and metric
hrg= g%v—-i;gyfv. gfvﬂ‘is the totally anti-symmetric Levi - Civita tensor.

The next stage is to write the Einstein equations on S, with additional

equations obtained for > and Wy
I
Rf\,(s) = 7\ (LJ/J(A)Q - L‘,N Wp Lo > D/JD A +L L R, (2.16)

v
DFD*’A = - Dﬁs Lp L7 - "; QW(M)E’JE (2.17)
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2
D[},l«)\;) - g/-»\’/po’ glrﬁi(’voé
(2.18)
DP<§§“2> =0
where Df is the covariant derivative compatable with the metric hﬂu. If gl)
is spacelike then S is a three dimensional spacetime and we may apply the (3+1)
approach described earlier to obtain a (2+1) decomposition. The invariant

interval in the orbit space S is written as
T
(XSZZ l’\}w 00:«:}!&‘735\) - - (M1—7A7A) p“: +ZZ A):;cﬁ p“,' T l‘/AS O?DCAJDC‘S (2.19)

where Hp, is the metric of the two dimensional spatial surfaces, & is the lapse
function and ’2A is the shift vector. The indices A, B take values 1 - 3
excluding the value corresponding to the Killing direction. One of the advan-
tages of this formalism is already apparent; there are only two shift vector
components rather than the usual three. In some cases this can significantly
simplify the choice of gauge.

Nakamura used this formalism to construct computer codes simulating the

collapse of axi-symmetric, rotating stars, the results of which were reviewed

in chapter one. Such a spacetime possesses the Killing vector field 3F§§}::$%5

so the &ﬁ shift vector component need not be considered. [41] and [44] list
the H2+l)+1] Einstein equations for this system. A remarkable feature which
appears is the close similarity of some of the equations with those describing
electromagnetic fields in curved spacetime. The formalism is easily extended
to include a real electromagnetic field, and this has been done in [45].

Obviously a spacetime with the necessary symmetry requirement is needed
to utilize this method. It cannot be applied to three dimensional stellar

collapse.
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2.3 Gauge Conditions:

There are several motivations for choosing a paticular gauge. We would
like to avoid both co-ordinate and physical singularities. The latter are
avoided by slowing down the evolution of the spatial region near the singularity
as it is approached. This is controlled by the lapse function. Also one would
like to make the Einstein equations as simple as possible so that a numerical
solution is not unduly complicated. A good choice of shift vector can zero
several components of the spatial metric and thus considerably reduce the
number of calculations, particularly for quantities such as the 3-Ricci tensor
n)R;\',. However there are other considerations governing the choice of shift.

We may like the co-ordinate congruence to follow the matter world lines, or
wish to globally minimise the distortion in the co-ordinate grid as the space-
time evolves. Since the quantity of gravitational radiation in a spacetime is
usually small (see chapter one) the gravitational degrees of freedom should be
isclated as much as possible. If the difference of two large metric components
gives the gravitational wave content then numerical rounding error can easily
swamp the solution. We begin with the choice of lapse.

i) Geodesic slicing;

Set =1, and if this is combined with shift §;[= O we use Eulerian
observers who are freely falling so that spatial hypersurfaces are geodesically
parallel. If a physical singularity forms the geodesics focus towards it and
the calculation halts after a finite time. This slicing is singularity seeking
[59} and is thus useless for collapse calculations where a black hcle may form.

ii) Lagrangian slicing;

In spherical symmetry we may use a diagonal metric, ﬁiz 0, and the slicing
condition ¢U? = 1 where U° is the time component of the matter 4-velocity.

This means Ui = 0 and the fluid world lines are orthogonal to the spatial hyper-
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surfaces (possible because there is no vorticity). Since the shift is zero
the co-ordinates follow the matter. This gauge was used by May and White for
their collapse calculations (see chapter one) which were halted at the start
of black hole formation. The fluid world lines focus towards any singularity
producing singularities in both matter and co-ordinate variables after a finite
time. Again this is not a useful gauge for collapse calculations.

iii) Maximal slicing;

We can avoid the focusing effect of world lines towards singularities
by choosing ¢ in such a way that the trace of the extrinsic curvature, K,
remains zero on each time slice if it is zero on the initial one [60). Physi-
cally K measures the expansion of a congruence of world lines normal to the
spatial hypersurfaces.‘Setting K = O produces an'incompressible fluid of
observers.

Since the Eulerian observers then have zero convergence their local
volume element f?<jic, where ¥ = Aa¥ X;' , is time independent., The proper

|

spatial volume V of any region {1 of the t = constant hypersurface is

V oz f\]-( L (2.20)

which may be maximised by the variational principle 4§V = 0. This leads
directly to the condition K = O, f61). Substituting into the Einstein evolution

equations (2.14) the conditions K = O,%E% = 0 gives

]{( Y(—J D‘Ddo(_ _ (&)R - A-T (g _ ’3}) (2.21)

which is an elliptic equation for & to be solved on each slice.
The maximal slicing of Kruskal space [62] shows that « drops exponent-

ially in the region of a singularity, although the time slices do penetrate
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the event horizon. Motion within r = 1.5M, where M is the mass of the black
hole, is effectively frozen so that the Schwarzschild throat stretches with
time, becoming topologically a cylinder. As a consequence the co-ordinate
grid is sucked down the black hole to cover the ever increasing proper length
of the cylinder. This problem was encountered by Shapiro and Teukolsky who
used maximal slicing for spherical collapse (see chapter one). In principle
the problem may be solved by using a non-zero éhift vector to push the co-—
ordinates out.

Maximal slicing has other drawbacks. Solving the elliptic equation
requires several sweeps of the numerical grid which is time consuming. Also,
at the moment, it is not clear whether general hyperbolic spacetimes admit
maximal hypersurfaces. Despite all this the singularity avoiding feature
and the fact that it simplifies the constraint equations has made it a popular
choice for codes constructing asymptotically flat Spacetimes with possible
black hole formation.

iv) Constant mean curvature slicing;,

The slicing condition is K = C(t) where C is a function constant on
each hypersurface. This includes maximal slicing as a special case. It is a
generalization of the natural time co-ordinate in homogeneous cosmologies and
as such has been used extensively for cosmological problems[63].

v) Algebraic and hypergeometric slicing;

The slicing conditions

0 OQ(N_A

S Ir>0c = Vosech (mr)x

(2.22)

can be made to simulate the singularity avoiding feature of maximal slicing

without the need to solve an elliptic equation on each hypersurface. In fact

do

with the boundary conditions A 1 at r-» and e Oatr =0 it is possible
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to express & directly in terms of hypergeometric functions. Also the free
parameters Ve and m give some latitude for adjustment and experimentation.
This slicing condition was successfully used by Nakamura [41] for rotating
axi—-symmetric collapse. It does not simplify the Einstein equations in any
way but offers other advantages. In particular it was found that for disk-
like configurations hypergeometric slicing is superior to maximal slicing.

vi) Polar slicing;

In sphereical polar co-ordinates (r,9 ,}5) we may express this slicing
condition as K = K; - Substituting into the Einstein equations yields a
parabolic equation for ¢ which can be integrated inwards with one sweep of the
grid. The single boundary condition is o¢c = 1 at r =®. This means a signifi-
cant saving of computer time in comparison with maximal slicing. When combined
with the radial gauge the singularity avoiding feature is strong, the slices never
cross the event horizon.

Unfortunately the slicihg condition is irregular at r = 0 so it must
be smoothly joined to some other type of slice at finite radius. Stark and
Piran used mixed maximal and polar hypersurfaces for their rotating stellar
collapse.

We direct the reader to the references [65] - [67) for a complete descrip-
tion of the powerful combination of polar slicing with the radial gauge and
its application to stellar collapse.

The choice of shift vector is now considered.

i) Eulerian gauge;

We simply set ﬁiz 0 so that the co-ordinate congruence is normal to
the spatial hypersurfaces. Early collapse codes [26}, [31) used this gauge.

ii) Lagrangian gauge; .

For spacetimes containing matter we can set ﬁj = %; where UV is the

fluid 4-velocity. Thus the co-ordinate congruence coincides with the congruence




of fluid world lines. For one dimensional flows this is a convenient choice
but in two and three dimensions where vorticity may be present the co-ordinate
grid can become severely distorted leading to a loss of accuracy. Taub [68]
gives the general formalism.

iii) Simplifying gauge;

A particular choice of P‘ can considerably simplify the Einstein equa-—
tions by zeroing certain components of the spatial metric. Three conditions
on the shift vector enables three components to be eliminated giving, eg. a

diagonal spatial metric

2

Jf = ‘jw doc® + ‘j‘&\ %14* 3 onq (2.23)

Also the shift vector may be used to keep the spatial metric in a particular
form, such as, eg; the isothermal gauge where g.9= Erp = 0 and g"" = g”s, or
the radial gauge where 8 = 8y = 0 and oo Bgg g;ﬂ = r'sin*@ , and the

three dimensional line element has the form
2
1 1 - 2 2 ) ,
dU = A et e r" R 20+ 0 (SmgcJP/+ §do) (2.24)

where A, B and g are the metric functions to be determined. At p-» in
asymptotically flat spacetime this gauge becomes transverse and traceless with
5 = h, representing the x mode and h, = B* _ 1 the + mode polarizations
of gravitational radiation. Thus the gravitational wave content can be obtained
directly from the computed metric' components.

iv) Minimal distortion gauge;

Finally we mention the minimal distortion gauge [69) where the shift
vector is found by imposing the condition Dd(%;%)):: O where ?;j: K{j/xba.

In the linearized theory this reduces to a transverse-traceless gauge and also



eliminates non-physical gravitational waves due to co-ordinate effects. Thus
it would be useful for studying gravitational wave emission. Unfortunately
one must solve a complicated vector elliptic equation on each time slice to
find the shift vector components. This combined with the fact that it offers

no simplification of the Einstein equations restricts its practical use.

2.4 The Initial Value Problem:

By treating gravity as a dynamical theory one is restricted to globally
hyperbolic spacetimes [70]. Also (3+1) numerical relativity can construct
only those spacetimes which may be foliated with spatial hypersurfaces (how-
ever see [71]), although conversly Geroch has shown [72] that any hyperbolic
sSpacetime has this property and so can be generated on the computer. A set of
initial data consistent with the constraint equations (2.8) and (2.9) is re-
quired. One must decide which parts of ( yij, K;j) are freely specifiable and
which are to be determined from the satisfaction of the constraint equations.
There may be no solution for arbitrary data. It is well known, however, that
GR does possess a well posed initial value formulation [73}, ie. that for a set
of initial data satisfying the constraint equations there exists a unique
spacetime which is a solution of Einstein's equations, is globally hyperbolic,
contains the Cauchy initial data hypersurface and is such that the solution
depends continuously on this data. The procedure for solving the constraint
equations is then as follows:

We begin by writing the spatial metric of section 2.1 as [60]

Yd": 575”? (2.25)
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A

where ﬂf is a conformal factor to be determined and X is some given spatial

metric (usually Kﬂ is taken to be the flat space metrlc) The scalar curva-

ture intrinsic to the spatial hypersurfaces transforms as

(3)Q:ma¢—\+—_ g@,—Eé‘/,'J' [SL» §d¢ (2.26)

A
(”R is the scalar curvature associated with Xﬁ and D; is the compatable

where
covariant derivative. For the extrinsic curvature we first decompose it into

a trace and trace-free part,

trace K = quﬁ (2.27)

}

trace-free AN - ” - X d K (2.28)

and it is assumed that K will be specified. The trace-free part Aij will be
subject to a conformal transformation followed by decomposition into a sum

of divergence free and trace-free parts. The ordering of these operations is
ambiguous and can lead to different initial data sets (see [61]), we show one
method.

By transforming AV as
- AN
_ )é Ip K\LJ
- (2.29)
we find the desirable relations

D\j }C\”l = %_m DJIE\LJ (/Qor ¢>O> (2.30)
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and

A z A = 0 (2.31)

" o A
where A and A are the trace of A7 ang A'! respectively. Any traceless symmetric

tensor can be split into two parts [74)

AL

A=A« (L

where

([\\/)%: D‘\m/j + ISJ\,\/i— %}?JJ‘ ISK\,\/k (2.33)

I

A Afj .
E>jF\x- = %1* O (2.34)

A : .

Ala : A A oA
Y De DWW+ }g D DJ-WJ,;. [QJ W (2.8

D, ()= p: A*!

W' is a vector potential which is to be determined by the constraint equations
along with the conformal factor ¢: At this stage the initial data which is

A A -
freely specified is XZj, K and A;ﬂ - The matter terms should now be considered.

The detailed treatment of the/p and j‘ terms depends on the nature of

the source [75], [76]. We assume/B and §£ are given and write

P ¢—3/§\ (2.36)

. 10 AL
JL %N)JL (2.37)

H

so that the local 'dominant energy condition' [77}
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Plf XLJ J‘Ll Jd > O (2.38)

is satisfied for all ¢H>O. The constraint equations are now written as;

i) the Hamiltonian constraint
/\L-j A N A A(,‘J' -1 72,9 ;=S A /73
g DLDJ‘¢*Q¢*’A¢J'A ¢"§K¢ +H37T/7¢:O(2.39)

ii) the Momentum constraints

A ; A( A . Al. . b A 4.
YID.DW+4D DJ-\A/J+ [zjw’-z/zgj D Kug,-,J‘:Q (2.40)

which are solved for gf and W to give the initial data set

(2.41)

There are no global existance and uniqueness theorems for this elliptic
system of equations in its most general form, however the analysis has been
done for some special cases (see [54]).
The equations are simplified considerably if we assume the initial data
: ¢
is time symmetric (K% =0, j* = 0) and conformally flat ( ﬁj: ¢‘§y), then

(2.40) is an identity and (2.39) reduces to

?ij6¢13j'§5+ ln’/3¢-3: O (2.42)
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This also has the effect of eliminating gravitational waves from the initial
data [39].

Another simplifying condition, which is often used, is to set K = 0 on
each slice, ie. maximal time slicing. Then ﬁé decouples from (2.40) resulting
in a linear, second order elliptic system for W[.

York and Piran [78} give a method for the numerical solution of (2.39)
in its general form. This is based on a successive over relaxation (SOR)
iteration scheme. Obviously good boundary conditions for ﬁf are required and

the assumption of asymptotic flatness offers many advantages in this respect.

2.5 Numerical Considerations:

a) Differencing;

For implementation on the computer the partial differential Einstein
equations (2.8), (2.9) and (2.14) need to be written in a discrete form. This
is normally achieved using the method of finite differences [81], [82], although
Mann [86], [87) has introduced the finite element method (FEM) (88] into GR.

The many ways to difference a given differential equation is the subject
of a vast literature [81] - [85). One is concerned with accuracy, stability,
convergence and the efficient solution of the resulting large system of algebraic
(possibly non-linear) equations. These are specialized fields and we direct
the reader to the references cited for the details.

b) Shock handling;

The non-linearity of the fluid flow equations will ensure the formation
of steep gradients in most cases even if the initial data is perfectly smooth
and regular. Energy is transferred from long wavelength modes to ever decreas-

ing wavelengths causing smooth waves to evolve naturally into steep gradients.
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Mathematically the final result would be a discontinuity, however nature avoids
this phenomenon by converting the kinetic energy into heat via viscous effects.
There is an associated entropy production and the discontinuity is converted
into a region where the fluid variables change rapidly but smoothly. Such a
region is referred to as a shock.

On the numerical grid there is an upper limit to the wavelengths which
may be represented. This is dictated by the spatial step length. Energy
accumulates in this shortest wavelength and appears as a numerical oscillation
which destroys the solution. The remedy is to follow nature and introduce
viscous terms to spread the discontinuity over several grid nodes.

The addition of a scalar bulk viscosity g =-—S v‘,cupL to the pressure
has proved to be very successful and popular. Here u® is the 4-velocity of
the fluid and g is a proportionality factor. A real bulk viscosity is linear
in the term YLu* so that the thickness of the shock varies with shock strength
(the weaker the shock the larger the transition region). To obtain shock
widths independent of strength one makes g wavelength dependent. For Newtonian
hydrodynamics in slab symmetry von Neumann and Richtmyer [28] proposed an arti-

ficial viscosity of the form

dy | d

. J; (2.43)

7= - Kphs

where K is an arbitrary constant whose value is to be determined by experiment,
/D is the density, Ax is a spatial interval and v is the fluid velocity.
This has a number of very desirable features: |

i) The shock width is independent of shock strength as required. Its
value in terms of Ax is determined by K.

ii) q is very small except in regions of large stress Jﬁ:' For expansions

one normally sets q = O.
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iii) q is of the order of the kinetic energy. This allows thermal and
kinetic energy to interchange.

iv) The addition of q to the pressure means the fluid flow equations
automatically satisfy the internal boundary ( "jump' ) conditions across the
shock. These are the Rankine - Hugoniot relations and are necessary in addi-
tion to the hydrodynamic equations for a unique solution [82].

A relativistic form of (2.43) in spherical symmetry was used by May
and White [26) to treat shocks in their stellar collapse code. Using the same

notation as in section 1.2 their relativistic generalization is
1 DU | . _af
kopp ()5 if Zso
A/J/o> D/J r

O [07? —B-g—éO_

ot

|

!

(2.44)

1

|
The term 7" compensates for the fact that kinetic energy, (' - 1), is of order

u rather than u?* at extreme relativistic energies, thus it keeps g~ kinetic

eénergy. For spherical symmetry (2.44) is
A 2 (QIM> .
] )if — )/Z
R/ 7o\ 2p r
(2.45)
. 2
1:0 ldf P (O

N

In spherical collapse large but smooth velocity gradients can form and no
shock appears. This can generate a g larger than the pressure which causes
numerical instability. For this reason May and White also experimented with

the artificial viscosity

Z:~K'L/§(/+Tr)fﬁ%1 ;L%(l>i [fi;t( > (2.46)

which is zero when the compression is large but uniform.
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For two and three dimensional flows an artificial tensor viscosity
could be used [81], however the satisfaction of the Jjump conditions is not
guaranteed. It is simplest to always use one of the form q = —.gvzu“.

Other numerical techniques have been developed for dealing with shocks.
If the equations are put in a conservation law form and differeﬁced using the
Lax - Wendroff scheme [82) then an implicit diffusive term is introduced. This
has the same effect as an artificial viscosity.

Shock fitting (82},!90] involves following the shock front and imple-
menting the jump conditions directly across it. The hydrodynamic equations are
usually written in a characteristic form. Continuous monitoring of the fluid
variables is required along with some criterion for the presence of a shock.
The method can give high accuracy, but it is complicated and so seldom used.

A recent development which is becoming increasingly popular is the flux
corrected transport (FCT) algorithm [91],[92] although it has not yet been
applied to GR problems. Breifly, the technique consists of two stages. Stage
one is transport by a difference scheme which has a large numerical diffusion.
This is followed by an anti-diffusion stage which localizes the diffusion to
those regions where unphysical, high frequency oscillations occur. This cor—
rective diffusion is non-linear and varies with the solution from point to
point. The overall scheme is conservative so that when a quantity of flux is
subtracted from one point an equal amount is added somewhere else. Physically
reasonable results have been obtained from shock tube calculations without

using an artificial viscosity. For astrophysical applications of the method

see (93],[94].
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3. A REGGE CALCULUS APPROACH TO NUMERICAL RELATIVITY

3.1 Introduction:

Regge Calculus (RC) [95] provides a discrete formulation of GR based on
a variational approach. It bears a close resemblence to the Ritz variational
techniques used in finite elements, and in this sense RC is a natural finite
element formulation of GR.

The basic idea is to approximate a smooth, differentiable, curved manifold
by one which is continuous but piecewise flat. An elementary example in two
dimensions (2 d) serves to illustrate this and at the same time we can define
the important concept of a deficit angle.

Consider the smooth 2 d curved surface shown in fig. 3.1(a). This sur-
face can be approximated by a polyhedron composed of a collection of flat pla-
quettes (triangles in this case) as shown in fig. 3.1(b). The curvature of this
piecewise flat surface is evident. The triangles A, B, C, D meeting at some
vertex cannot lie in a 2 d Euclidean plane and stay attached to each other; a

gap must appear. We then define the deficit angle & by

E 2-\-]— Z( af\}'c:x ow\ &5 O/E I_L/‘/cw\ /&5) (3.1)

J-r:omghs mbc"' “-7

al o ver "cx
So, although the geometry is Euclidean‘both inside each triangle and at the 1 d
interfaces where two triangles join, there is curvature at the vertices. A vector
parallel transported on a path from A through B, C, D and back to A so as to
encircle the vertex undergoes a rotation equal to the deficit angle. If the
vector returns to A without encircling the vertex then no rotation occurs. Thus
we can say that the vertex 'carries the curvature'.

The above idea is extended to higher dimensions in a natural way. An
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Fig. 3.1 A 2-geometry with continuously varying curvature can be
approximated arbitrarily closely by a polyhedron built of

triangles.
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n d curved surface is approximated by a collection (lattice or net) of n d
flat blocks (Regge blocks) which meet y or hinge, on the (n-2) d sub-blocks
(bones) which carry the curvature.

That in general the curvature is carried by the (n-2) d bones is easily
shown. Consider a 2 d Euclidean plane in polar co-ordinates. The metric is
ds1 = dr? + r1d91, and points of equal r but & differing by 2 are identical.
Now delete a wedge 27 - £ <0 £ 217 and thus obtain a manifold with the intrin-
sic geometry of a cone. This is the £ - cone. The origin r = 0 is a vertex
with deficit & while the rest of the & - cone is Euclidean. 1f IR is the
real line we can consider the 3 d product topology ]R X £ - cone which is Eucli-
dean everywhere except at the straight line r = 0. For an n d topology we con-
sider H{hzx € - cone which is Euclidean everywhere oqtside of the (n-2) d

subset r = 0. This is just the n d Regge block.

Regge [95] considered the approximation of the Hilbert action,

IH:I’Z;F R[‘E{qu (3.2)

over a lattice composed of 4 d Regge blocks. Since the curvature R has support
only on the 2 d bones (areas) we do not expect the 3 and 4 d blocks to contribute

to the integral. The discrete analogue of (3.2) is found to be

I
[R -~ §:r Z\:A" £ (3.3)

where Aa is the magnitudé of the area of a bone n, En is the deficit angle
associated with that bone, and the sum is over all bones n. An alternative
derivation of (3.3) which considers it to be the limit of progressively 'more
discrete' approximations of (3.2) is given in [96].

Since spacetime is described by a manifold with an indefinite metric we
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require the Regge blocks to be Minkowskian, with Lorentz metric =diag(-1,1,1,1),
rather than Euclidean. This means there are three types of bone: "

a) Spacelike; every vector (leg) on the bone is spacelike.

b) Null; every leg on the bone is a linear combination of a null leg
and a spacelike leg.

c) Timelike; there are both spacelike and timelike legs on the bone.
A leg X is spacelike, null or timelike according to {i;i>;>0, {X,XD = 0,
<i,i>>< O respectively. We do not consider null bones in this thesis, for
some discussion of them see [97].

Suppose the bone is timelike and is aligned to lie in the z - t plane
of the Minkowski co-ordinate system (t,x,y,z) of a Regge block. A vector parallel
transported on a closed path encircling the bone undergoes a rotation equal to
the bone's deficit angle E, in a direction perpendicular to the bone, that is,
in the x - y plane. This is just the Lorentz transformation corresponding to
a rotation of angle £ in the x - y plane. We conclude that the deficit angle
of a timelike bone is real. Similarly we can consider a spacelike bone lying
in the x - y plane. A vector parallel transported on a path encircling this
bone undergoes a rotation in the z - t plane equal to the deficit angle. Again
this is a Lorentz transformation, but this time it corresponds to a velocity
boost in the z-direction. The vector has rotated through an imaginary angle,
and thus the deficit angle of a spacelike bone is imaginary.

The above considerations motivate the following conventions adopted in
this thesis (see also Appendix I):

a) The magnitude of a spacelike leg is real while that of a timelike leg
is imaginary and is written as l{i,i)/z==ix.

b) The area of a general bone formed by two legs X and Y may be written

as

Aﬂwy): ((R,R><;ﬁ?>'“<;,?>l> (3.4)
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so that

i) a timelike bone has imaginary area and real deficit,

ii) a spacelike bone has real area and imaginary deficit.

In the usual continuum theory Einstein's equations in a vacuum can be
obtained by varying (3.2) with respect to the metric components 8nn+ For RC
the legs of the lattice effectively define a metric since they give proper
distances, and we expect that by varying (3.3) with respect to the magnitudes
of the legs ( LF, p=1, 2, 3...) we would obtain the vacuum Regge - Einstein

equations. Carrying out this procedure gives, from (3.3)

I _ < A DEN

If there is no contribution to (3.5) from the lattice boundary then the last
term vanishes (this is proved for positive definite metrics in [95) and extended
to indefinite metrics in [97]), however if a leg at the boundary is held fixed
the vanishing of this term may not be complete and boundary contributions of

the type discussed by Hartle and Sorkin [98] need to be considered. In this

work no such boundary terms arise. Then we have

}A“
>3 LP =0 (3.6)

n

which are the Regge - Einstein equations for vacuum spacetimes. Normally (3.6)
is a coupled system of non-linear algebraic equations to be solved for the
leg lengths lP

This completes the introduction to RC and its application to GR at the
basic level. RC provides an elegant and natural discretization of spacetime.
This feature makes it particularly attractive for the quantization of gravity

program and recently a large number of papers f99] have appeared on the subject.
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We do not discuss the application of RC to quantum gravity, neither do
we consider the mathematical and topological aspects of piecewise flat mani-
folds [lOO]. Our task is to construct classical, physical spacetimes from
Regge blocks. In the next section we describe some preVious attempts, pointing
out limitations and problems of the methods. We then go on to describe a new
formulation of RC, due to Porter [101}, which circumvents many of these problems.
Finally, in the last chapter, a perfect fluid matter field is coupled to the
Regge lattice and the resulting formalism applied to the general relativistic

collapse of spherically symmetric stellar cores.

3.2 Previous Applications:

Applications, prior to (101}, of RC to classical spacetimes can be
divided into two groups; the Williams approach and the Sorkin approach.

The Sorkin approach [97],[102} closely follows the original idea of
Regge in that the n d Regge blocks are taken to be n d simplices. An n d sim-

th member of the sequence Zline, triangle, tetrahedron...} and is

plex is the n
characterized by the fact that it is defined by its edge lengths alone. This
would seem to be a good choice; the ten legs of the 4 4 simplex could be identi-
fied with the ten components of the metric tensor. Also simple formulae exist
for the volume and other properties of simplices ([103] has a useful list).
However Sorkin's study of‘]g*and SleR simplectic nets indicated problems for
general topologies. For the initial value problem one should study the resulting
net very carefully in order to discover which legs are constrained and which

legs one is free to specify. 1In any case the number of initial value equations

is very large, being around seventeen for each vertex. Clearly this is prohibi-

tive even for a numerical solution. No solutions to the Regge - Einstein
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equations were given by Sorkin.

In contrast the Williams approach has produced numerical results. Follow—
ing a suggestion by Wheeler [7], Collins and Williams [104] modelled a dust
filled, closed Friedmann universe using lattices of 5, 16 and 600 regular tetra-
hedra each containing an equal amount‘of matter. They construct, for example,
the 5 tetrahedra universe as follows:

Take a regular tetrahedron of edge length 1 and arbitrarily call it the
central one. On each face place a second identical tetrahedron. Now close the
universe by identifying triangular faces which meet along a common edge length.
This can be done only for lattices of 5, 16 or 600 tetrahedra.

The 4 d Regge block produced by extending the tetrahedra in time is
shown in fig 3.2(a). Areas and deficits are calculated by defining in this
block a cartesian co-ordinate system (x,y,2z,it). Since all the blocks are equal
these calculations are straightforward. For the deficit one first finds the

dihedral angles 9;' between adjacent 3-volumes hinging on a bone usin
J J g g

Cosgcsi Vﬂ.% (3.7)

where n;, Hi are the unit normals to the i™ and j& 3-volumes respectively. The

deficit angle is then given by (3.1) with dihedral angles replacing vertex angles.
Collins and Williams considered only the variation of the timelike leg,

and then took the limit of the resulting algebraic Regge - Einstein equation

as this leg length approached zero. 1In this way they obtained a first order

ordinary differential equation relating 1 and its time derivative i which was

integrated numerically. Clearly 1 governs the dynamics. If U is the volume of

the universe and U its time derivative then we may write

n =5, 16, 600 (3.8)
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Fig. 3.2 (a) Diagram illustrating a 4-dimensional block.
(b) Rate of change of volume of the universe

vs volume, analytic solution

y 600 tetrahedra - - _

b

16 tetrahedra — — __

ref. DOQ.

» 5 tetrahedra - .- . _. . From
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L) - 2 J—ij (3.9)

Fig. 3.2(b) shows a plot of ﬁ verses U and compares the Regge results with
the analytic solution. We see that the form of the analytic solution is followed
in all cases, but only for n = 600 is there reasonable quantitative agreement.

Work along similar lines has been produced. Collins and Williams inS]
give results for a 600 tetrahedra model of the Tolman universe, a closed uni-
verse containing blackbody radiation. Again there was only reasonable quanti-
tative agreement with the analytic solution. An improvement in accuracy for
the n = 600 model was obtained by Brewin [106} who by relaxing the spherical
symmetry requirement sub-divided each tetrahedron into twelve smaller tetrahedra
thus producing a 7200 tetrahedra universe.

Closed cosmologies which are homogeneous but anisotropic have been con-
sidered by Conners [107] and Lewis [108]. Both have used rectangular blocks
rather than tetrahedra, with closure being obtained by identifying points on
opposite faces of the block. We note in this case the topology is the 3-torus
T3 = s'x s’ x s'. Conner's approach differed slightly in that he used differen-
tial timelike legs from the outset rather than taking the limit at a later
stage. The general qualitative behaviour of the models followed that of the
analytic solutions except near the singularity where the Regge universes collapse
to a non-zero minimum volume.

Other work in RC concerns the initial value problem. In this case the

Regge blocks are 3 d and the 1 d edge lengths carry the curvature. For an initial

spatial hypersurface of time-symmetry the relevant Regge equation is [7] 4

2 I

n + mater )—e.fms =0 (3.10)

!
IVO‘uw1£ Par veﬂ#ax
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where ln is the magnitude of the edge length, EA its associated deficit and
'volume per vertex' is the unique 3-volume associated with the vertex. (3.10)
is just the Regge analogue of the time-symmetric Hamiltonian constaint equation.

Wong [109] (see also [7]) solved appropriate versions of (3.10) to
costruct Schwarzschild and Reissner - Nordstrom spacetimes at the moment of
time-symmetry. Of particular interest are the Regge blocks used. First the
spherical surfaces were approximated by a collection of icosahedra (see fig.
8.3(a)). Anicosahedronis chosen because each of its twelve vertices and thirty
edge lengths are identical. The detailed breakdown of the space between succes-
sive surfaces is given in f7]. Breifly the space is divided into twenty tri-
angular prisms with the edge length along the prism being the radial proper
distance between the two surfaces. The Regge equation (3.10) then gives the
dimensions of successive icosahedra in terms of the preceeding two for some
given radial proper distance step. In comparison with the analytic solution
(by equating 'spherical' surface areas) both spacetimes were approximated to an
error of £10%.

Wong then repeated the calculations but this time he used the so called
'continuum block'. This block is of greét interest to us and will be described
in detail in chapter four. To construct this block a spherical surface of
proper area 47 r' is divided into surface area elements of the type shown in
fig. 3.4. Elements are then joined by radial legs of equal length. In the
limit of A6,53¢~>O the spherical surfaces are appfoximated exactly and the
Regge approximation is in the radial direction only. As we would have expected
this block gave more accurate results than the icosahedra, with errors of £1%.

An axi-symmetric initial value problem was considered by Collins and
Williams [110). This application of RC is interesting because they used two
types of Regge block to approximate the space. Fig. 3.5 shows details of the

blocks and the axi-symmetric shells constructed from them. The use of different
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shaped blocks will be essential for approximating accurately spacetimes with
little or no symmetry. 1In this case there will be a Regge equation for each
different type of vertex; one picks a particular vertex and sums over the rele-
vant quantities (bones in (3.3), legs in (3.10)) attached to it. Rathef coarse
blocks were used by Collins and Williams since they were testing the method.
The solution corresponded to two asymptotically flat regions joined by a non-
spherical throat. A geometry containing two throats was also considered.

Recently Williams [111) has looked again at her tetrahedra universe
models. The approach has been generalized to handle homogeneous, anisotropic
universes although as yet only the time-symmetric initial value problem has
been solved. In this case each length of the tetrahedron may be different.
Care in then required to ensure closure, and in fact only four types of closed
anisotropic universe were found to exist, one with 5 tetrahedra, one with 16
and two with 600. Of these four only the two 600 tetrahedra models have a hypér—
surface of time-symmetry, ie. satisfy (3.10). One is similar to the Taub uni-
verse although the anisotropy behaviour differs by ~20%, the other was reported
to have no analytic analogue. The method does not seem to offer any advantages
over the simpler rectangular blocks of Conners and Lewis.

Lastly we review some work that is not directly relevant to the theme
of this thesis, ie. the construction of spacetime by computers, but is never—
theless interesting. Once a spacetime has been constructed one would like to
know its properties. One approach is to study the behaviour of test particles
and null geodesics in the spacetime. To this end Williams and Ellis [112], [113]
have developed a formalism to trace geodesics in RC constructed spactimes. Of
course in the flat Regge blocks the geodesics are straight lines, but at the
boundaries between blocks they are refracted according to an extremal distance
law found by considering the transformations of a co-ordinate system from block

to block. The formalism was tested on a Schwarzschild spacetime of the type
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constructed by Wong (using continuum blocks) and attempts were made to re-
produce the classic results of GR, including perihelon precession, light bending
and Thomas precession. Unfortunately in all cases they found that some thou-
sands of Regge blocks were required for convergence to the analytic results,

and even then general orbits were not well represented. This type of formalism
could be very useful to us in our collapse calculations. 1In particular it

could be used to locate apparent horizons in much the same way as Sasaki et al
[49] did. However we feel that significant improvements should be made before
it can be used for this purpose.

RC has modelled simple dust or radiation filled, closed, homogeneous
cosmologies with moderate success. We would like to apply it to stellar
collapse. This is a much more difficult problem; not only is the spacetime in-
homogeneous but it also contains matter with non-zero pressure. A new approach
to RC is required to deal with inhomogeneous spacetimes since the limiting
procedure of the Williams approach cannot be used. This is because each vertex
is now different, representing different observers over the spatial hyper-
surface. Porter [101] has developed this new approach and we describe it in
the next section.

As regards the accuracy of RC predictions, we emphasise that the Regge -
Einstein equations (3.6) are exact for the discrete topology on which they are
solved and that it is this discrete topology which is the approximation. For
comparison with analytic results, obtained from smooth manifolds, we should
approximate the smooth topology as closely as possible. It has recently been
shown fllA] that the Regge action does iﬁdeed converge to the Hilbert action
in the limit of block dimensions going to zero. Thus for our spherical ccllapse

we will use the continuum block of Wong.
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3.3 (3+1) Regge Calculus:

In the Hamiltonian (3+1) formulation of GR described in chapter two the
timelike direction was singled out and the spacetime foliated with spatial
hypersurfaces which were constant surfaces of a scalar function t related to
time.

Similarly Porter singles out the timelike direction in the Regge block
and foliates the spacetime with discrete spatial hypersurfaces constructed
from 3 d blocks, each of which is Euclidean. However this foliation is not
continuous since time is taken to be a discrete parameter. The corresponding
vertices of the 3 d blocks in adjacent hypersurfaces are joined by timelike
legs whose lengths are always finite; no limiting procedure is taken. Note that,
unlike the Williams approach, the timelike leg lengths at each vertex may be
different. Fig. 3.6 shows the general Regge block produced. Since we are to
evolve the spatial leg lengths it is useful to take tetrahedra for the construct-
ion of the spatial hypersurfaces when the spacetime has no special symmetry.

This block has eight triangular areas, four of which lie in the o<&
hypersurface and four in the (& +l)fL hypersurfacé, and six timelike areas (see
fig. 3.6) each of which ¢orresponds to the time evolutioq of a spatial leg.

In addition there are twelve boost angles X and in general one spatial leg has
two associated boost angles. The faces of the block are formed by six 3 d
volumes, two spatial being the upper and lower tetrahedra, and four timelike
(again see fig 3.6). From simple geometricrconsiderations we see that if the
spacetime upto the Oﬁw slice is spécified, either from previous evolutions or
the initial value problem, then a knowledge of the timelike leg lengths and the
boost angles is sufficient to determine the (X +lfk hypersurface. The system
has then evolved.

The choice of the timelike leg lengths is arbitrary and corresponds in
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Fig. 3.6'(a) General Regge block consisting of a tetrahedron extended

in time. (b) A 3-dimensional time-like face of the block. (c) A typical

time~like area. (d) A spacelike area.
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the continuum theory to the choice of the lapse. For the boost angles Porter
has shown that the equations produced by varying the Regge action (3.3) with
respect to each spatial leg length are sufficient to determine these unknowns.
We do not repeat this lengthy proof but instead refer the interested reader
to [101).

Intuitively such a result would be expected since in the continuum case
the equations produced by varying the Hilbert action with respect to the compo-
nents of the spatial metric Kn’are sufficient to evolve these components. Vari-
ation with respect to the conjugate momenta, related to the extrinsic curvature
components Kiy, simply gives their definition. We then have the (3+1) system
of equations. This Regge formalism has many similarities with the continuum
(3+1) approach. For various reasons the boost angles are adopted as the cohju—
gate mémenta to the leg lengths. We do not vary with respect to the angles,
instead the legs are evolved from a knowledge of the angles using the vector

sum, eg. for the timelike area of fig. 3.6,
= e e - Mn (3.11)

from which the leg length hkMH is easily found. This effectively corresponds

to the continuum expression
P
K”_ = - 2oyt (3.12)

(assuming no shift), and it is by comparisonof specific instances of (3.11)
and (3.12) that one is led to take the angles as the conjugate variables. This
point is considered again in the next chapter.

There is a novel feature of the formalism which we now discuss. It

appears we need twelve equations to solve for the twelve boost angles, but
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only six spatial legs are given. Thus the variation with respect to each spatial
leg should give rise to two equations. This is not unreasonable. The Regge
prescription says that one should pick a particular vertex and sum over all

bones attached to it. This action is then varied with respect to all legs
attached to the vertex. Since each leg joins two vertices it will be varied
twice. However quantities such as deficit angles etc. should be evaluated in
terms of legs and boost angles etc. at the vertex in question. This produces

the two equations.

We now check the compatability of the two equations with the requirement
that the Regge block be flat. Consider the case when N spatial tetrahedra hinge
on the leg LCEK (see fig. 3.7). At vertex i,X the equation obtained by vari-
ation with resect to timm is

YAk 3 Ak YA kg

gi ok T T bkt —— £, =
)LI;K,D( R B lL'K)O( s 9(1‘:,0( e 0(3.13)

21r N
I _ Z
J..l

while that at k,X is

2 v DA DA o dhein _
I{Z = Z _—"_*‘Lﬁ gkjf’x + (SKC‘,D(-! + ém')b( - 0

)L‘K,o( K,& g=i 9 l_,,',()o( P (,(:Klg( ){.iﬁ,b( (3.14)
For (3.13) and (3.14) to be compatable we require
1
BIR _ ) LR - O
)kaﬁ L P [tmx Kk, . (3.15)

Consider now an observer momentarily at rest in the j& tetrahedron. This 'block
observer' sets up a Minkowski co-ordinate system (7 ,x,y,2) such that the
tetrahedron lies in a T = constant hypersurface, and the situation is as shown

previously in fig. 3.6. We note that in general the jﬂ tetrahedra of the

1N h
(X -1) and (& +1) hypersurfaces will not lie in a 7 = constant hypersurface.
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The areas and normals may be calculated in terms of this co-ordinate system

giving

YA _ 3Axjin
BL!:K,X 2 Lecm

(3.18)

since the triangular area A;KL« is invariant about permutations of the vertices

ijk. The typical timelike area may be written as

AL'K,K = '/Lk ([mc,a L‘m Sim XL\K + LMk, L'K,,x Sim i

. . / . ! (3.17)
+ LMy« l.l:K/“’»l S Yiv: + LMk ,x L'K,Ml Sin ‘YKC)
which is symmetric about ik, giving
BALK’M —_ BAK;)D(
T ) (3.18)
)Lﬁn,« R L‘k,u
similarly for Ajk,x-) - Compatability then requires
Eonjw = Exjin
& VR Zkilu (3.19)

?

gL'K ®-i - EKL'JA‘!

For convenience we concentrate on the first condition. As usual the deficit
angle of a bone is found bj first caculating the unit normals to the 3-volumes
having this bone in common, the dihedral angles between adjacent 3-volumes are
then found and we find the deficit from (3.1). For Eixj,m one such 3-volume
is formed by legs [gj% s L[ﬂm and EL} at vertex i, & . We denote its unit
1-form normal by
o~ N N —
~ ;7 T . z ( (.!:K,DL: (L'J‘,K , Mtf,bi)
n Liw-' lii,u . m;,u) = (3.20)

Iy

MR

where the volume 1-form is given by
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r a a
ZA - f/\(“A_n_ t[x,x [L'J"p( M ¢ x (3.21)

and EAFAJl is the totally anti-symmetric Levi - Civita tensor.

The evaluation of the deficit £ﬁgu requires the unit 1-form normal to

the same timelike 3-volume but this time formed by legs l(mx, (KiA’ Mi,x at

vertex k, X . We have

- - Ef( linw [“L“ . ;;k,x>

;\j ( }.ixlx: l.Ks',o( : V’V]—lgu) - ~ ) (3-22)

If the Regge block is to be flat then its 3 d faces should also be
flat, implying a unique normal for each face regardless of which legs are used

to evaluate it, ie.

F{ ( {‘k,“" ("‘j,“ V;L'ng> - V:i ( LJK,x : lkj,b( : VT/?K)(X) . (3.23)

Applying a similar argument to the other 3 d volumes we see that the compata-
bility requirement Ecgi¢==£njgxis a geometrical constraint that the Regge block
should not ‘twist;t The solution of equations (3.13) and (3.14) together imply
this constraint, and we may use (3.23) to acertain the accuracy to which the
block remains flat during an evolution of the spacetime. Alternatively one may
apply to (3.13) identities of the type (3.23) and obtain (3.14) or vice-versa.
To begin an evolution one must first construct an initial spacetime
'sandwich'. Again the continuum theory provides the guidelines. The four con-
straint equations may be obtained by varying the Hilbert action with respect
T 1n particular (3.23) constrains the block from twisting about a timelike

axis. Such a degree of freedom is unphysical and corresponds to a rotation
ot the triad (x,y,z) by an observer who does not Fermi - Walker propagate

his tetrad frame [115].
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L
to the lapse (X (Hamiltonian constraint) and the shift vector components Fé

(momentum constraints). Thus we expect the variation of the Regge action with
respect to the timelike leg lengths to give the analogue of the Hamiltonian
constraint, and in practise this is the case. If M spatial legs meet at vertex
i,X then fig. 3.8 shows the situation. Variation with respect to the magni-
tude of the timelike leg ;th gives the constraint equation

B:[R éi- E: ‘m = ()

a(ém;,x> [ Y Q(LMLQ

(3.24)

Unlike the evolution equations, (3.13) and (3.14), this involves quantities
between the d& and (& +lft hypersurfaces only.

The shift components are not so easily found; as described later they
are related to angles rather than legs. In our application of RC to stellar
collapse we avoid the problem of the missing momentum constraint equations by
starting from a hypersurface of time-symmetry, although a solution to the
problem is currently being sought.

As referred to above we view the initial data as a spacetime sandwich
since it is not yet clear how to incorporate York's conformal approach to the
initial value problem into RC. There are two types of sandwich, the 'thin sand-
wich' where the spétial metric and its time derivative are given on an initial
hypersurface, and the 'thick sandwich' where the spatial metric is given on
adjacent hypersurfaces. The correspondence with (3+1) RC is clear. The thin
sandwich is a specification of the spatial leg lengths and the boost angles,
subject not only to the usual constraint equations but also to the no twist
constraints (3.23) while the thick sandwich is a specification of the spatial
leg lengths on adjacent hypersurfaces. In fact because of equations (3.11) the

two are identical.
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3.4 The Kinematics of Regge Spacetime:

The choice of observers who describe the numerically constructed space-
time is, as was discussed, a choice of lapse and shift. This gauge freedom is
present in (3+1) RC. The timelike leg lengths determine the proper time
between adjacent hypersurfaces while the freedom of the Regge block to 'lean'
in three independent directions corresponds to the shift freedom. If the block
does lean then the top tetrahedron of fig. 3.6 is displaced relative to the
lower one, with the boost angles changing to accommodate the shift. We expect
therefore that the applied shift will be related to the values of the boost
angles.

In practical calculations it is more convenient to use the components
of the timelike legs rather than the boost angles. The block observer of the
previous section at rest in the j& tetrahedron measures the compoﬁents of the
spatial legs at vertex i,X as

= Y9 2
(OJLI;K/\ 3 {.dK,x )] lt‘ﬁx)

—

]

LiK,m

(O7 ‘*LJ

(¥

— b z
(_L'l',a & (“j,x 5 ( L'j,-*) (3.25)

N * d 2
l.l:q‘-!,ﬁ( :(O) {L'l‘—',x ) l({'—l,u b [L‘f-t/p:)

and the components of the timelike leg at i,% as

-Y’;{C,u = mi,u (SIV’\L\ Aélat. s Slvil«\ Xc',ot 5 g"’“!"\/l‘,“ 5 SIV{/'\ Zt‘,tx) (3.26)
say, with normalization

1 . * . —_ —
_g,,:\],\lAL,u + §l|;&l/\1><£,o( + SML %‘,x + g“"L Z‘/“ . / (3.27)
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The boost angle X;k between legs ;i} and li&“ is given by

< MC,P( 5 Lt‘klm>

Cos Yux = Imen Low .28
with similar results for X‘J }{;\]‘_, giving
Sim h X « e [i‘s,x Z:‘:,x \ vos U
U sk Yol T L’ZJ‘ o H.j’x [tl‘,x cos (3.59)

4

. >
Sin L\ Z ¢,X L L‘&\",K {.JJ‘-',D‘ [1 cos YL'JH

L‘j--,u
and thus we may adopt the spatial components of the timelike leg as the funda-—

mental unknowns.

The block observer is related to an Eulerian observer at i,X moving

normal to the spatial hypersurfaces along the vector
ﬁ:(m;,«,03050> (3.30)

by the Lorentz transformation

A ’
N , T
M = A (3.31)
ie.

e} 3 Y T »
V_VT N = m»‘,k (/\ O’ 3 /\Ol 3 /\OI 3 /\°'> (3.32)

L,K

and by comparison with (3.26)
/\oof gmL A[/x
/\7;, sw{L X.',(x
/\‘301 = smh Yoo

Vi

IR

(3.33)

/\101 = §1;1!‘\ ZL‘/K
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If a shift vector is now applied to vertex i,& the Eulerian observer is boosted

to an observer moving along the vector

[ - (oc dt ffclk | Bt ,f>1011:> ) (3.34)

where dt is a co-ordinate time interval and
2 NECIE 1,2 NI 2
—otdb () dE - () dE () dE = e

and is related to the block observer by

14

r‘\
m/:‘,o« = /\Ar" t . (3.36)

For an arbitrary boost of velocity v in a direction k = (O,k’,k“,ki), (k, >= 1,

we have [22]

/\T, - _\//\"o, KT

° (3.37)
/\IT/ </\00’ ~ 1) KIKT'{' 8'1'

I3
and 5 is the Kronecker delta. We note that the normali-

H

A

where X = (1-vi)t

zation condition (3.27) is a consequence of the property

7

° L < 2 Y 1 - _
‘(/\o'> t(N,) + (/\a) + (/\o> = -] (3.38)
By substitution we may write the last equation of (3.37) as

/\I - /\2’1/6;'
T’ ([\001+ l)

+ 8” (3.39)
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Further substitution of (3.39) into (3.36) gives, using (3.33)

moi,“ =t St b A« +(5‘°0H s:v(L\X:,u +F;:0“ SW(L\/L“M + ﬁzo/zf 5.«/{[\2‘,'0:

smﬁ‘x y S'"L%u"”‘t‘/(a 40)
Mia = adbsinhXon + @b (14 4 g — o
simh Xe’,x siih Z e

[ + S’V“L ALF,K

+p At

5
with similar expressions for Wﬂz'“, M« , and these are the components of the

timelike leg M/ as measured by the block observer with a shift applied to
vertex i, o .

As in the continuum case the shift vector may be chosen to simplify
the Regge - Einstein equations by setting, for example, a component of EX;#

equal to zero, or we can use it to make the co-ordinates follow matter.
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4. SPHERICALLY SYMMETRIC COLLAPSE

4.1 Discretization of the Spacetime:

The formulation of RC described in section 3.3 has been extensively
tested for spherically symmetric vacuum and dust filled spacetimes. Porter
derived the spherical Regge -Einstein equations using both the icosahedron
and continuum block approximations. He then constructed the Schwarzschild
solution and the dust filled Tolman - Bondi universe [116]. Various time
slicings were used for the former, some making the solution appear dynamical.
Good agreement with the analyticAsolutions was obtained in all cases (although
there was always some error growth at the centre). This showed that the form—
alism could handle inhomogeneous spacetimes asg required, and was able to accu-
rately reproduce analytic solutions of Einstein's equations.

Porter's work also showed that the continuum block provides a much
smoother approximation to the spherical topology than the icosahedron. This
is in agreement with the findings of Wong mentioned earlier. We will use the
continuum block throughout this chapter.

The continuum spherically symmetric 3 - geometry in a particular spatial
hypersurface t« is approximated by a collection of spherical surfaces each of
which is identified by its proper area, A;, = 4n‘rax with A, = 0 Yy« and
i=1,2, 3,... . Each spherical surface is then subdivided into area elements
by dividing the polar angle 0€ 6 ¢ ang the azimuthal angle 0 ¢ ¢é 2T into
equal intervals AG, A;ﬁ repectively. The corresponding area elements of
successive surfaces are Jjoined by radial legs of constant G, ¢', and thus we
obtain, for example, the spatial block lying between surfaces r; « and L,
shown in fig. 4.1. The block edges r. A8 and L sin9A¢ are chords of

circles whose proper circumferences are ZTTP[K and 27, sinf respectively,
7 ¥
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and in the limit A9, [§¢-+<) we have ré“—a Schwarzschild r co-ordinate at
verex i,o .

The block is extended in time by attaching timelike legs to each vertex,
and then in the resulting 4 d Regge block we establish a Minkowski co-ordinate
system ( 2°,x,y,z) such that the 3 d block lies in a 7T = costant hypersurface.
Fig. 4.2 shows some of the timelike areas produced.

In this co-ordinate system we may write the legs attached to the vertex

marked * in fig. 4.1 as

fiasm®Ag = (0,0, Mxsinondg,0)

——— e

r&,&AQ = (O, FoeS ,l/fL {\L‘;“A(SI'VI8>A¢, O)

(4.1)

- A[\L’,«-l,m AQ FL’+;,M .
di,x:(O,_T‘;’ ) AQ 51A9A¢,KOQC,M>

— u
mb [ = ML‘/K (S‘l’\!’\ HL‘IK )—g SIV"LYL;D‘ b} S‘V\ 9A¢ Sll/\]/\ \/L"o( 3 Sll/\[\ V::k>

’

with normalization

. 1 u
- SIV\-L\QAL‘[/K + (S‘L—{- SI'V\LQA¢1)5“/;LL\/[/K + SW\L \/L‘,fx - —/ (4.2)

where

5= AB ([-% cosOnp™)"
2

. . . O ,
AlemB) = Sin (0+40) “Sm B ¥ AQeosO - é{‘ sin®

For 46 small
A = /_\91+'/15M9 cos@A@AQSl (4.3)

A (_\L"i-l ,D( : ”\(_l.rl‘o( - /\L. b4
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NaSin(B+AB)JA @

X

Fig. 4.1 Spatial block used for the discretizationof spherically

symmetric space time.

f‘.‘,,ow\ Ae

A[ P(,uim;,m]

Fig. 4.2 Some of the timelike areas produced by extending the

spatial block in time.
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and k is a parameter such that

Lim k = |

4.4
46,040 (4.4)

and in practise we take k = 1 aways. In terms of the co-ordinate System in
the block lying between surfaces o« and ryx  the above timelike leg is

written as

ASL . ‘ gt
WT‘,& = Mix (swnh AL",“ s Sinh 7/5,“ 551 GA@/S’”L‘%‘,M )g“”l‘\/b‘,k).m's)

In our contirmum approximation considerable simplification is obtained by ignor-
ing quantities of'order O(AQZ) etc. and higher while still maintaining a second
order accuracy.

As an example we calculate the timelike area ll[JMIWRJShOWH in fig, 4.2

and its associated deficit E[Jg.:wm;xj - From (3.17) we may write
! . .
A[a‘i,ﬁm;’k] -7 (im;,u 0!0.,“ s A+ L4, J"," sua 3

. 1 . . /
+ LML‘IK O{LI)X«L( gl\/\ A +‘ LML'*‘,K O(L:,K-l—‘ S|y\ & ) . (4-6)

Inspection of the timelike area /X[J.k. M x] in fig. 4.2 gives
Q, ? b,

—
—

oki,ou—l - 0(‘," T Mk, - Wy x

(4.7)
so that
L R u
Oiz:ﬂ.-i-l - (ml.‘q‘-l/p( SIV.\L\ H N ML‘IK SIV\L\ qu,‘/x 3
7
. . \
_ Mb.'PlDLS‘\;\L\\/LL;-:x@—_ APHI,M é_:@__ + MexS SIV\L\/'IK'
’ s 2 S
[mc’m,x SI‘/;L\\/L'-H,k + M - M;;o( S/V\'[\\/L',x] SM“QA;D/, (4.8)
2

n
ML'U,K SlV\(L\\/;-I,DL -+ K 0(0',04 - ML‘,K SIV‘.[\ Vﬁ,b() .
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Using (4.1), (4.5) and (4.8) we find

£ QZZu 5 old);>

. U
cos Az — SRR :
LMy x ofi,x ~ ML \/L;‘x
M, : L L
cos 3 :‘<, s din ~ L S""I"\/t‘“,“
LMy, x O(C,ox (4.9)
’_ S ’ O[C“*'> CoTu
cog A = - 2 Tl
l'ml:lbl JL‘IOH-I j)L/DH"
cos 'z Lo, iwed o p
M Ao
giving
. _ u , .
ACin i) i i otk Vit b di o Vi

. —u . L
+LM[,x 0((..,0(4-( COSL\ \/L',pwl + LVVUH)K Olz,',cxﬂ COSL \/ )

Utl, K+

where we have introduced the definitions’

—u |

B =1 Lo Ly - o e, o]
b, O(L.,VH-I ’ '

— _ , . . .
)\i'+|’o(+| - —0(.‘ [Milk Lc‘,K + J';,K S‘V\L\\/L:-!-l,lx - ML.-J-I,D(]
LK+
L “u
LL'K = cosL\\/:';,)x cosL\ \/:K - SIV{L\ \/L'H,u Slv\L\/L‘,o& (4.11)
’

cosl, Vi 2 L1+ ()‘J-LA )1]'/1

ey

I
L ~ an

COSL le%+I: [’ + ()é“mw)



The calculation of the deficit is a little more involved. Fig. 4.3 shows the
four 3 d volumes meeting on the area A[D\b‘l“;m,;,“] (one dimension suppressed
for clarity). From the geometry of the situation we see that ')L ’)Z/ and
f)l’ ’)L where 7L '7!‘,,_ etc. are the dihedral angles between adjacent 3-volumes.

The deficit is then

é[o'(«,'uzm,_‘u] = A ‘2%'2%5 . (4.12)
— -
The volume 1-form of the 3-volume defined by legs m:,',lx: ofb-),‘ and PJAS“"SAQ/

at vertex i, is

r a n
z/\ = £Ar‘g,n_ Md,m JCM Fu‘}u%wi@ A/@/ (4.13)

which when divided by the (approximate) volume of the parallelpiped gives the

1-form normal

—

~ — ——‘—__..___ _____‘_____..__ . N — A'-D- Afw—:k - U
V\(Mu',k:o‘a' Lung9A¢) 5,nL"A (SSML\\/“IK S lo’. Sin [\\/i/k)

)

: » . u .
S)HL\A?)N 3 07 ég'(-—l %C%% g‘”L\RC,zx , (4.14)

—

The 1-form normal of the adjacent 3-volume defined by legs r—{/l_;u, ‘Jlf,ﬁ(’

lcabd at i, is found, in the same way, to be
—_— . : A/“;-HJO( . g
;\V(W\,;,u : 0{ AQ) SMA').A”‘(SM@A%[SML\L;N—H—;s:n{'\vil&],,

(4.15)

A/\L-H 23
“ i )

A(§1:9>A¢ mL\ ALX N —SML\AL“ 5

The dihedral angle "]LI is obtained from
(4.16)

COS’\/: - <H(VVT&;< . Vté,x . /‘L'xéi;ﬂg/,\fj)jl;\/(mx 0? fLMA8>>
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Fig. 4.3 Schematic diagram showing the four 3-dimensional volumes meeting
on the area A[A“hmq, The deficit is found from the difference of 27 and
the dihedral angles +;,7&,1@ and YL. The dimension along the timelike

leg is suppressed for clarity.
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whence

!

Ly tau A/‘L‘H,N .
cos Y, = sl AL é}lcosgs'ML\AC’“ "+ 5m8ABA5D’[( | ) (4.17)

2el:
+ A (\\:#l, X

UK

2 d
SIV;L\ \/:K SIMIL\\/,_',X -‘S/b;\[\\/c’,x - ,/q. g”"‘[lz'd U, X ]}

with a similar expression for TL .

We may use expansions for the inverse trigonometric functions since

the arguments are small, thus we find finally

SMSABAP/ A/\L:Pl,x b
E[Mb.,’(:opc,u;] - coslt \/L‘lex [ olL'k - (I - 4“ —_—

(4.18)
X S'V‘L\VL« Smif\\bx + h—sm[« /Lp( + b V > .
When calculated at vertex i+1,®% the deficit isg
EEMv,x:olc,u] - - M [ (éﬁ:}_) (1-4 Ao Afers
cosh® \/Wx o(c,x O{L,x
(4.19)
SEELAFIPIE A s 2 Vi)
and the 'no twist' constraint is
M
b Yon = S el Vi = SO (B gy

from a comparison of the zero components of the 1-form normals

For convenience we list all area variations and deficit angles in
Appendix IT.




75.

4.2 Coupling Matter to the Regge Lattice:

There are several ways in which one might include the effects of matter
in RC spacetimes. Normally the properties of a source are described by the
stress-energy tensor 7_M‘and thus we could, for example, add appropriate stress-
energy terms to the right hand side of the Regge - Einstein equations. An
alternative approach is to use a matter Lagrangian Jiq and vary the total
action

I+ = (Q'*ﬂfm)\f’:é O{L‘;C . (4.21)
The second of these appraoches is preferable since the scalar.fm -g is easier
to translate into Regge quantities than the individual WNArcomponents. Also
one would like to keep the variational characteristics of the methodology.

We require, then, an action principle for a relativistic perfect fluid.

Several exists in the literature [77], [117],[118], however following Porter

we choose the Schutz variational principle [117] with total action

L= [ (R+ léTl‘P>\/:§ olu'x. . (4.22)

This is chosen for several reasons. Firstly the Lagrangian ¢ZW\= 16p is
simple, being just the pressure of the fluid. Secondly, as will be detailed
below, the fluid 4-velocity may be written in terms of six scalar potentials.
The use of scalars in RC is particularly advantageous since they are unchanged
by Lorentz transformations from block to block. We can then place the scalars
on the vertices of the lattice.

Schutz writes the 4d-velocity of the fluid as
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Mr‘:\,l\//(¢,r\+o<{‘2’sr‘+eg’r‘> (4.23)

where w, ¢, o, F, © and S are the six scalar potentials, some of which have

a physical meaning, eg. w = specific relativistic enthalpy, S = specific en-
tropy. Variation of the total action (4.22) with respect to the independent
variables ¢, x, p, 9, 3 produces an evolution equation for each potential
along with the baryon conservation equation when combined with the 4-velocity
normalization. Schutz has shown that the system is equivalent to the ordinary
fluid equations based on the divergence of the stress—-energy tensor. By vary-
ing (4.22) with respect to the metric components ﬂAF we obtain the usual
Einstein - Hydro equations. Note that the pressure p = p(w,S) is a function
of all the independent variables via (4.23).

We may simplify (4.23) for our purposes. In stellar collapse using a
perfect fluid one assumes isentropic flow (8,/ = 0). Also Schutz has shown
that gauge freedom exists in his velocity potential representation. On the
initial spatial hypersurface one is free to chose any one of ¢ ,0(,(5 or O
arbitrarily. We use this freedom to choose X = 0 which has the evolution
equation Upot,p = 0, so we expect X to remain zero along fluid flow lines.
Then (4.23) is reduced to

.

Ur = WA

(4.24)

The equations governing the fluid flow in the continuum theory are
obtained from (4.22), (4.24) and the 4-velocity normalization. These are to
be rewritten in a discrete form.

Write, for the spherical lattice,
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l.'au-\ Rl‘.;..

[br > PJ:EIOJL;' :lénSlv\BAGA}ﬁz F!‘l\/?g";o(/{o“:‘

2!.3 e naé‘a‘
blocks “‘aa“ élock;

block tx '

(4.25)

The double integral is approximated over the rectangular region of the (t,R)

plane t ¢ t{tue, R;¢RS&R,, by the trapezoidal rule. Provided the blocks

are small we expect sufficient accuracy. Then

Ime = bmwsnigpong Z_[ LM x cosL\\/:x P-x&”‘ Aux

; . VA . 2
+ L Muw cosh Vi PL.’MF;,M Ao wri + Ui cosh Vi Pk P ke o

+ 1 . coSL V

where we have used

L

iﬂ,x-{-; P
L1, 0041

N (4.26)

e ]
l:-l—ll“‘f'l L:o(+‘

Jﬁ ~ (QGH_'QJ)Jg; P UQ“.‘Q&)%i;EH

L

'Lm;_}« COSL\ \/:\,“ ~ ({:ocﬂ— ‘::x)\/é:o L'Ip(

L.VML'/D( COSL\/;,\O( =~ (k‘*“"l —{:D(> \/i:o L‘/D(‘V‘ (4.27)

, L
L L, % COSL\ \/£+I,D(

0

(EKH ‘L%> Ji; L+, ™

R L
L ML"H,K COSL\/L"H;X :“: (%d-{'\ - !70‘) \/5;0 L',;.\)p(-H .

Again we expect this approximation to be adequate if the Regge block is small

since then the metric components will be nearly constant across the block.

For the moment we will work with the simple diagonal metric in spherical
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symmetry,

At ociaiklwugak(k,fz)deJr F’L(t,malﬂl. (4.28)

s = -

rl
Using equation (4.24) and the ¢ evolution equation U ¢,p = -w we can write

the 4-velocity normalization as

CJAP ¢M ¢)r, = ‘\«/Z. (4.29)

Noting that Up = U¢ = 0 in spherical collapse, for the diagonal metric (4.28)

we have
2 2

9o . P _

Too Tun

(4.30)

The form of the equations obtained by variation of the discrete total action
depends crucially on the way this equation is differenced. Unfortunately the
differencing is ambiguous, one must compromise between stability and accuracy
with some experimentation required. The collapse problem is hyperbolic in
nature and so there will be characteristic curves moving from the surface to
the centre and from the centre to the surface at the local sound speed. We
would like to collect information from both sets of characteristics, ie. from
points on either side of the vertex i, in the spatial hypersurfacé. We will
write (4.30) in the discrete form,

2
1 _ ( ¢,,‘,oc+n - ¢L‘,%>

- 2
L= y (¢L‘+:,zx‘¢d,u) N ¢dx‘¢- K)l (4.31)
L / -1,

C lmeeslVE T, —

D"E—i,l&
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2

where we have spatially averaged the quantity jéﬁ

Jar
An equally good form of (4.30) is

and have again used the

identifications (4.27).

\"/17,:0( - - (¢L',x+| - (ZS;,“)l _ (%4-,« - Qﬁx) (@’L-,K— 55,,,,“) (4.32)

!

. 2’ u ’
(LMflu> CDSL\mvb‘,o& J[ltx a(L’-{,D(

Some experimentation will be required to choose the most suitable expression.

The discrete total action

Tmes

1701‘262 AN + T os (4.33)

is now varied with respect to the leg lengths (M« , rl:.‘,oc and {‘L',u Sn B A Q/ ,

and the scalar potential Qu" We consider each variation in turn.
1

a) LMy variation.

As discussed above this yields the constraint equation,

2 o f:\ L ¢L',b( P k]
3 (imiy) TLBximid) d(imow) T HPx ik

2 B A [Oca:m. ]

L \E)A[o(

el a]

S imeie)

(4.34)

PYAYR L
Efo(;’,ufmt‘,x] + [JL-.' ] E[o( . .
a (iM[/u) U~k ., ML,x]

bl?wo _— C)

—

)
+ 7
2 a (L'M;',«x)

The factors in front of the area variations come from simply counting the

number of similar bones having the leg érv]ga in common. Substituting for the

area and deficit values we obtain
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A(\L;K + 2 O(L'A-«INSJV;LYCJD( S,V{L\/L‘;(

it 2l s b

Ll-(ri,cx +ML',0( SH;\L\/L'M [
' ) O(L'-l,x COSI»\\/EIK o(,,',(x CDSL\ vb:',,oc
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- ~§ cosl V5L
2 cosh \/L',oc 7(0-«,0(

+ L}.sw{L\/g,u (gm'L Yeu — é;—‘—i"— sk vt«)}j)

-1, &

2 1
_ zm-[ (o [Pt P («z&.m o Gabn) )}
ﬁ“ x \A/l,,"m 0!16,0( oxii—:,oc
F'Z:,tx (0( X COSI"\/L (R + 0{L -1 ,8¢ CD$L\\/ Mb‘a:' v COS[\\—Z::‘u + ':/le: O[[—i/{x COSZ\ v‘:; )

W et} —
( M, s R (\‘“ 0’"’“ CDSL \/" K L, el /‘Z,M. (‘/{L.,DH—I CDSL\\/:«u)

g 1 — L
+< m‘““ PL {‘Lu o(i—u,x COSL\/L‘,DL " P M,(‘:MI i, Lot cosh V V, k“)} O

(4.35)
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b) a(. ¢x variation.
We have

2 BA L (AL‘,« . ¢,}’K]

QAECJL"R N Gc'a-]
BJWX E’[o(ﬁ,u:(}(f,u] * 2

Bokb\,k EEOIL',x: 9L',A‘]

4+ BA[J:,,‘:M.;,] . BAEJc,x:m‘;b.] (4.36)
B AL‘,M L Ol""“ . m“'“] }OI\L‘,M [O(L‘,k . VVIL’,«—I]

which when evaluated at vertex i,X is

| X V\ O -A‘/\'llt‘x Iy ?K —u
Lf—(/\d,u +/\£+“°‘>[2JL, ! Ly' b S"‘}"\/, + Cfb.m]
2 a{c.,o( COS[\ VL:)( ,

L *
_ (Wl{,m coS['\\/:x + M coSL VCJ—I,K) [ (A/\,,'H,x) _ ({ -
R cosh™ Vi

LPA[\L‘HD(

(/{ sw\l« /L,XSML\/H,( + Z{-SIHA %p( + S’V‘l‘ \/L‘K)}

— (ML , %=1 COSL v(,t" L A IR LDSLVLHN> (A(\C”’x_‘)'l—‘ (, )
2 CDSL \/ JL',«-.

Lxl

LI-A/\L'+l,M-I

0{ ML /L Xe gxm[«\\/b“ , T L S/mL )’(““, + S/V\sz:x-')}

+LTT PC,N/LZ?W‘( ‘“CDSLV°“+MLNILOFA (,p()

L Ve )
* PLH,(X r}w,oc (Mc'ﬂ,(xCDSL \/“*“z"‘ RS COSL \/LH’N *
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1
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ML',M—I COSL \/L')p( )
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(4.37)

while at vertex i+1,X it is

2 (Xl X Sin - /\z.'+r x SIM.Z\ \/;ﬂ x
4—((\&—&/0(”[‘;/“)[ s L/L / , : ) =
2 olex cosh Viex Lri,x
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— —
<M"‘t“" COSLV?,“ Tk a1 CosLV“"/“) (A /\L'-H Py *
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_ ( | —

2 Tt
2 2 e cosh \/4'+/,o<—l o/f,u-f

A /\L‘i—l XK=
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b oo SML\/‘“']“" S'M.LVL\“,“" thoak /L'+/,x': + §’VIZ\ VL‘H,A-I)
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I Pl""(/"( {\L'+4/a( (Ml’+l,b< COSL\ \/L'-H,o( + W, ki COS[\ \/L'+1,K>
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. | S- /-
o{;{-:,x ml‘,MCOSL\\/‘Z‘,o& + O{;(l,x W e, - CDS[\ \/L‘,Ac)
S e

1

, </a.,m+ R},,,x)( e =Be) . L

T F | (
J - LFlL& d{L‘,P(

“u
+ ﬁ Mor, COS[\\/HU"‘

.
W ol )

- - L [\"L - O
+ AH["K e -t CO'SL\ Vztl,oc T Wloen,u CUSL \/'-'*"z"‘ + My ,a-1 COS VL.’“)\J

[

(4.38)
- _
The definitions of the quantities di x and O’;_‘,‘,( are given in Appendix II.
c) fuxsin 9A¢ variation.
This gives the equation
PRI

] QAEJ‘:f“:¢L',x]
SChnioag) Coouido +

3 (7 x sm@OAJ) E[GI‘V" : f’i‘,fx]

-+ BACJC-\,K,' ¢/,,',K'J g
9 ((\L’/x s DA 55) Ed"’\""":du;x]

(4.39)

+ BAC¢L',K"ML",¢-]
S (Fonswoag) O Pox miad

+ P2 Af ?{c‘,x Do ]
B (/‘L./D( Sim 9A}5)

which in full is

£[¢ 4oL 2Imo =S

Ga LM x-r] 2 O (lewsivad)

2 PL',x (”S'P‘L‘ \/:'A,oc + S“’.‘[’\ \/l:/“ +/L—/L'(:x +'/U:zx>

2 Cﬂ LI,D( Sllﬂ'l\\/{,p‘ - A/\L.'f'(,% S/Vl[\ \/:(x —
+ 2 FACIO( ‘ + O—.M
2 oo x cosh \/Mu,zx Lo

+ 2 ()Q(-“p( SH/\'L\ \/‘./D‘ - A/\L"u §1M'Z\ VE,:X
2 d(t‘-l,o( .
2 o(t,'-l,x COSZ\ \/:T,K e



84.

M &

/

[A fc,.x + 2 AC-I,D( §“,\‘L \/L‘,D( S/m[\ \/Z:,o(

0(5-1 x CoSL\ \/,; X
’ ’ . A/\C-H,D( +2 O(L‘,D( S/V;[\ \/U,D( SIM.Z\\/‘:}/&

O/L'lp( COS[\ \/:\,IX
Al Cx—) Tt ZGL s §m[«\\/1 ke Slv;ﬁ\\/i‘-,“_l
olc'-l,u—l cosh \/L'/“_,

+ M- l:

J— A/\L'+f;1><~l + ZJL',AC-I S“’{L \A‘,“" SIM’[‘ V::“"

a(d,zx—: CosL \/;“,‘x-,

L
s My x (O(L',O( CUS[‘\/&X -+ O(L'—',A CDS/’\\/C,N)

8

Flw[ pl

+P¢,xl\ﬁ,x mt',ac—t(&(tﬂéoflx\/m+0€Luzxcos[\\/“x ] O

(4.40)

J

Because of spherical symmetry an identical equation is obtained from the ’\gl,x NG

variation.
d) ¢ variation.
¢,%

From Schutz fllﬂ this yields the baryon conservation equation,

/Dli/“ + PL'/"‘ (¢u &K+l T ¢L'x g M k- (os[\ \7;4,,(
~DHT) e i (el + — s ol

RS ML;D( COSA \/L./D( ’ ML.,D( CD«S[\ \/:'401
L L
+ CDS[{\VC,D( P -t COSL\ \/dlou
— % N,k t o w )
LV, “ ’
cos L, Mt'lu COS[/\ \/C:"‘

¢c+| ® ¢b 0(> )DL'H 3 + PL‘“/“

/

1 n
0( Ca /\L'H,zx (Mt‘ﬂ,x COS[’\\/L'H,:x JL'-H,K
b P \"/L'-H,o(

L
+ MUk, - COS[/\\/H,“ O(L'J,,/K + e CDSZ\ \/L'H,zx O((.',D(

+ M, x - COSL\ V:Tw,zx Jui”")] N
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( ¢c',x - ¢;_.,,() /Dc’,x + PL',“ 2
o P LT R bl v

+ Mt'lx-x COSL\ ‘\7?,% Ju/x + ok Cosl\ \/t),x Ju-.,o(

+ 1 x- COSL‘ V:,",u o[L'-/,«x> - O

(4.41)

where the difference operators D and }) are defined by

Ofec= Lo Lo
Ploa= 4 (Lot fes)

In all of the above we have obtained the pressure variations by writing, eg.

(4.42)

B Pd,x - Ck R‘,x W
d (mix) dwex Y (im ..',x>

(4.43)

. ) B\A/"l;“
similarly for fp,,g, ol;',x and Jx- The quantity b_—(dwl’ Y is obtained from
/ (3
AFC,M
dwu',dt
ized to isontropic flow;

equation (4.31) while is given by the first law of thermodynamics special-

AP = (—-——-—)JrP) : (4.44)

dw W
Equations (4.37), (4.38), (4.40) and (4.41) are to be solved iteratively
for the unknowns sinhY, , , sinhvfl\x , sinhV'{M and w;/s. Then ¢ is evolved

Ly

explicitly via equation (4.31) and the spatial legs are evolved using
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(Exer = Mow + 2o e SIViL\\/L',,x (4.45)

and

- Z R
O(L.,N-l"l [2ML,D& M"""'/’( LL‘,“ - ML"p( - MC-#I,IX

. " . 1/2(4.46)
-+ ?\ JL‘/"‘ (m(,‘-!-l,b( S‘IV\.L\ \/(,'-)-t,o( - ML'/% SIV\AZ\ \/(_"0( ) + J L"N]

which are obtained from inspection of fig. 4.2 and equations (4.7), (4.8).

The relationship between the Regge evolution variables and the continuum

extrinsic curvature is manifest most clearly in equation (4.45).

We have
1
continuum K - - ’/ E_C = -—[,_ g_{_\
Regge i Yo = Tomer - Fix
ZML'/X

so that K,;),'V— 21";,& sinh Yy, x

If there is a non-zero shift vector equation (4.31) becomes

W;'Llo( - (ggbl'o“‘ “ ¢L.’x> + ﬁﬂau“ (¢L'f°“" - ¢“/“> (¢L'f—:,x - ﬁL',K)

. T T u
(cmiu) cosh Vi g (cmen) cosh Viw oA

_}_ (¢C,M - ¢£—1,‘x>
O(C-',c(

[
PN

! . Ef_"’_{i_)‘_:_ § (¢L'+l,a< - ¢o'.b< ) ; (¢L‘,x - Q’-,,x)
(L.MI.‘,K-) COS(A \/t‘,a( y{t‘ X 0,{1‘:_, X

(4.48)
where (5Rdt is a shift in the co-ordinate R direction. This may be used in

conjunction with the transformations (3.40) to rewrite the spherical Regge -

Einstein equations with shift.
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4.3 The Regge - TOV Equations:

The intervalvdescribing static, spherically symmetric spacetime in con-
tinuum GR is
O N s ok
s = - & jpr + (4.49)
where X and g, are functions of Schwarzschild r only. One may use (4.49)
with Einstein's equations coupled to a perfect fluid to produce the Tolman -
Oppenheimer - Volkov equations describing static, spherically symmetric fluid
bodies [22]. These bodies provide a starting point for stellar collapse calcu-
lations. The aim of this section is to reduce the Regge - Einstein equations
shown previously to the static case.

Clearly for static spacetime we require

\,\/L'}oc-u = \/\/L',ot

v

r. (4.50)
L,

Y

rb',au-r
A - olgm
Mikn = Wl g

which from equations (4.45) and (4.46) leads to

Siﬂ\4‘7au - C)

ML'.‘.”IX - M(:,K V{X (4- 51)

2 i

u L
glV{L\\/,jlx = §th\VL“+|/K -

where we have used the no twist constraint (4.20) for the latter. Only the

time component of the fluid 4-velocity is non-zero so equation (4.31) becomes

= <¢c',ﬂ<*' - ¢L;f>‘> .

v, (4.52)
m ¢,x 603{'\ \/c\':\o(
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For infinitesimal timelike legs (rn;“’m - W]nq)4< GLQA and we may write

N\4¢2:M¢Kdt where dt is an infinitesimal co-ordinate time interval. Then

cosh Via = cosh Vi w x L1+ 0] 2 | (4.53)

and we rewrite (4.52) as

(4.54)

Applying conditions (4.50) - (4.54) to equations (4.35), (4.37), (4.38), (4.40)

and (4.41) we obtain

ANC Al AN\ AL .
N T R e e oo (e ] -
4- J\[—-l g[,.' ' Ofl:‘l F ! 01 /L)[\L (Dl +0[(-|>-

L
(4.55)

L=

Cr ey Ak ATe At
(Fee 1) T + (P + 1 ,)T .;,,20(5[;[:- T + 817/3/‘0( (A;Jro(;-.)—'O

(4.56)
I [\H-l
20 1) A g (s #x,)] | A ]4- B (pli i +p, M) 0
(4.57)
(¢’°>le“ - (¢’°>c',zx-f = conshant (4.58)

which are similar to those first derived by Porter in [lOl]. Note that (4.37)
and (4.38) reduced to the same equation (4.57).

We now consider the boundary conditions. Fig. 4.4 shows the type of
3 d spatial blocks where we have r, = 0. The contribution of one central

Regge block to the matter action is



(4.59)

which may be approximated as

IMCG,J = 4/3 Sin 9A96¢ Z[ P. OQ“& [i,oc (M, x cosh \/lu’x
o )
2 i —
+ P’Z Dlt,cx (\Z,M LW, x COSL\\/;/D{ -+ PI,MH J“x-i-( —::,,(4.1 CIM,'“ CUS[\ V'b’\“_i_l

T . —L ’
+ P‘z/o(-u J!,xi-] {\z)xﬂ LW COS[\ \/Z,tx+l]

(4.60)
where we have spatially averaged the quantity pJf:;; over the proper 3-volume
v =’€r:,°< sin 96913% d:x.

The action (4.60)is used for the centre boundary conditions of the
collapsing star. The variations with respect to thevlegs énﬂUx and A|ﬂk and
the potential ?&K will be described in the next section. Here we merely
assume the results obtained by taking these variations followed by reduction
to static spacetime.

Using r,=-r;, d;= di and “JZ:KL ,due to symmetry about the centre,
in equations (4.55) and (4.57), and replacing the matter terms with the centre

matter terms obtained from (4.60) we find

A
(1+ 5 2d0)

(1 5+ Spi)

Mz - | 3 (4.62)

r:), = (4.61)
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Fig. 4.4 A central spatial block.
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The total mass M of the body is normally obtained by evaluating the

integral

fy

M= b )3(\1”(‘\ (4.63)

v

where r¢ is the surface radius. We approximate this as

A

= > % 2 5 ( rﬁ + f§+l Z}/}+/ .‘
M 2 [, (/I’Pﬁ’/l)—}- 1’2,1 F /iu, > . (4.64)

An equation of state is now required. For simplicity we use a polytropic

equation of state,

.
p=KE
P (2.65)
o
TR

p
where we take adiabatic index F =4 and K = constant.

3 Such an equation of

state describes, to sufficient accuracy, the degenerate cores of highly evolved

stars (see [119]). In terms of relativistic enthalpy we rewrite (4.65) as

P =K, (ww)*TT

(4.66)

W+ T -
FEP

(r=1) (w-1)

where
}
I\NT-1 [T=1\F2

K, =|— e (4.67)

is simply a scaling constant. For the present we follow Mann [86] and Porter

-1
[lOl] and choose K, = 1.07499x10 . This will enable us to compare results

directly.
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The system of equations is solved as follows: One chooses the central
enthalpy w,y and an initial proper step length d,. Clearly we are free to
choose the d;'s since this determines the degree of discretization. Equation
(4.61) is soved for r, and then (4.54) and (4.62) are solved for &, and w,
by Newtonian iteration. With these values we then solve (4.55) and (4.56) for
the unknowns r;,, and X, from the centre out. The MINPACK routine HYBRD1 which
minimises a system of non-linear algebraic equations is used for this purpose.
The enthalpy wi. 1is found from equation (4.54) once &;,, has been obtained.
The surface is reached when Wy, = 1 since this corresponds to a vacuum. For
Wy ¢ 1 we estimate the position of the surface by linear interpolation between
vertices i and i+l. We then take two steps back to vertex i-1 and bisect the
interval between this vertex and the approximate surface. After solving again
for vertex i the surface is found by fixed point iteration. This procedure
ensures that the proper distance step to the surface is not unduly small rela-
tive to the previous step. Rapidly varying step lengths can cause problems
when the system is evolved.

The arbitrary time scaling can be fixed by choosing géoz constant =
central enthalpy wg,s such that (X = 1 at the centre. This means co-ordinate
time and proper time are synchronized at the centre.

Figs. 4.5 - 4.7 show some representative stellar models produced. The
first has weew = 1.14 and is stable to radial perturbations. The second has
Weew = 1.178.  This is at the peak of the stability curve where the eigenvalue
for radial perturbations is zero, and thus it is marginally stable. Such a
star can provide a useful test for any collapse code. Numerical instabilities
are not damped as with physically stable initial data, and they may push this
star into the unstable regime causing it to collapse. The last star has
Weey = 25 and represents a highly condensed configuration unstable to radial

perturbations. This is expected to undergo collapse to a black hole on a



93.

dynamical timescale.

Figs. 4.8 and 4.9 show mass verses central enthalpy and mass verses
radius curves from which the radial stability properties of the stars can be
determined (see the discussion in [8]). The characteristic maximum stable
masses and the spiral are clearly seen.

There were no problems with numerical instabilities and for all values
of central enthalpy the equations converged satisfactory. For wcm,z/lZQ the
fixed point iteration sometimes failed to find the surface. As w.w increases
the enthalpy profile approaches a delta function in nature which makes the
surface difficult to find. The computer time needed to solve the equations
is negligible being around 5%x107° secs. per vertex, and since we are using a
package routine this represents an upper limit.

Any numerical results should be thoroughly examined and tested before
they are to be believed. To this end we perform two tests on the results ob-
tained. First we compare radii and masses with those of identical models
produced by Mann using the finite element method. Fig. 4.10 shows the compar-
isons. The results are seen to be very similar in all cases. They are signi-
ficantly more accurate than previous models produced by Porter.

As a second test we look at the convergence of the solutions as the
number of blocks used is increased. This should also give us some idea of the
local truncation error of the RC scheme. Fig. 4.11 shows the results for
weegw = 1.178. Clearly the total mass and radius are converging to a value near
M = 7.302x10“ cm and R = 8.204xlO$ cm respectively. This is within 0.05% and
0.01% of Mann's results.

In conclusion we can say that RC is capable of producing relativistic,

static stellar models with an accuracy comparable to other numerical methods.



94,

T-1L
1-13
T-11
110
E1408
= 107
-
=106
Lig

104
1-03
1-01

LA LN L O L L O B

] | T I R T
0% 18 27 36 45 54 43 72 81 990
Radius (x10°cm)

100

o |

O

Pressure |

|
0-9

[ AN N R A T T N N sy
18 27 36 LS 5L 63 77 g1 90
Radius'(x10°cm)

Ween=1-14 Gamma=5/3

Fig. 4.5 Solution of Regge — TOV equations for central density

= 1.14 using a polytropic equation of state.




118
116
114
112
111
=1-0 9
=
=107
105
1-04
102

100 [ N N N N A b e
€20 37 10 T8 ST 65 73 82
S 1

LI N I B B

O
(@]
Qo
—
(@8

Pressure (x107'%)

OOOOQO——\_x_.;._;

[ l

S i N e N A

S L L L A L B e

1 ] N i
08 16 24 32 40 48 57 65 73 82
Radius (x10°cm)

P

Ween=1-178 Gamma=5/3

Fig. 4.6 Solution Of Regge - TOV equations for central density
= 1.178 using a polytropic equation of state.




2500
2250
2020
1780
1540 f+

21300 f

1080

“"8~2”01
580
340
100 -

P T L b b0 1 4§y
L 08 12 16 18 24 28 32 36 39
Radius (x10°cm)

L B W L <
O

Pressure (x10°%)

OOO——\‘—“——"I\)I\)I\)LJJ

e

T

-\gi!!vllllltll |

i Ll i
0 04 08 12 16 18 24 28 32 36 39
Radius (x10°¢m)

Wean=25-0 Gamma=5/3

S W o0 o U ® = S
I

Fig. 4.7 Solution of Regge - TOV equations for central density

= 25 using a polytropic equation of state.




o
o
<
pes

=56
v
%
o
=

o 3 -3 9 m

Mass (x10%)

8 3
78
14
70
6-6
-2

W U Ut

U

w =~ o

g
=
.
=
s
-

8 -
3r
8_ | 1 1 s e ! | b s 5
1 2 3 L5 10 20 30- 40-50- 100~
Central Enfhalpy
L
0k
6
o
g -
g
3 .
.8_J|!|ll!|l|l'l'illlll
0 1 2 3 L 5 6 7 g 9 10

Radius (x10°cm)

Gamma=5/3

Figs. 4.8 and 4.9 showing mass vs central enthalpy and mass vs

radius for a sequence of equilibrium Regge - TOV polytropes.

Adiabatic index F: % .



98.

‘09

‘pesn ST mmn » yatm sjeas Jo

90°0 S0°0 LELYB €
500 G21°0 9/661°8
L0°0 LET"O 2.896°8
% % (wo _QTX)
snipey ssep snipey

90UsJIaIIT(]

§9696 "€
G0c°8

25.6°8

AEO uOHuﬁ v
sntpey

ST SToOPOW ©839Y ayz UT SYO0TQq JO Jaqunu oFedsse oyf

suoTqenbs otdoajdfrod ‘uostaedwod jo ayqel 0Tty 814

G9€E6 "V
8786¢ "L

c89L°9

AEU*OHxv
SSep

WHA

*(WEL) POUISN JUSWSTH S3TUT 8yj
Zursn uuey JO ©SOU} YITM STOPOW AQL - 988sy ay3 Jo uostaeduo)

Gc
8LT°T
Vi 1

Adtreyjug
TeJdjuan

1T

€1



99.

‘pPoylsw jusweTs 93TUTF 8yl BUISn uuBy JO Tapou
jueteaTnbs ue yztm ST uostaedwo)y QLI = NBPm JOJ

uoTinos AQL — o389y JOo sousBaeauod Jo 189 IT°'t °*Bt1d

LTO"0 9G0°0 €9€0¢°8 8Gc0E"° L

¥90°0 Gc1°0 9.661°8 9940€° L

€6T°0 : viec 0 0c681°8 Or8TE "L

v8r°0 €0T°0 LcS9T°8 6606¢°L

v16°0 9¢°c £E00ET"8 LIEET "L

ov-°c VO TIT €4907°8 80c6r "9

% Snipey urt % SsSep utr AEOMOHXV AEO&OHNV
d0UL8JISII I 90UsJIsIII( snipey ssel

"84T°T = “¥m pesn syoorg Jo Jequny syz U3TM SnNIpey pue SSB) JO UOTJBTJIEA

6€1

€9

€e

ST

s¥o0Tg
Jo Jaquny



100.

4.4 Spherically Symmetric Collapse:

Here we describe briefly some of the progress made in modelling spheri-
cal collapse using RC. The stellar models produced in the previous section
form the basis of the initial data. For test purposes we will evolve the static
data of the weew = 1.14 star which is known to be physically stable. In a col-
lapse calculation one normally modifies the static data in some way to ensure
collapse. None of the methods used are particularly realistic and since this
is not a problem confined to RC collapse we do not discuss it here. f36] gives
some account of the methods. Possibly the easiest option is to evolve an un-
stable star such as the Wegn = 25 model, however an obvious objection is that
such a star would not occur in nature.

We assume zero shift vector and an interval of the form
2 2 * C{ 2 2 L
A :-oaolkﬂ—jﬁ et (4.68)

where X and g, are functions of t and r. Thus r is our radial co-ordinate.
This describes an essentially Eulerian gauge.

At this point we normalized the stellar models, using K,, such that
the central density equals one for any central enthalpy. The masses, radii
and pressures scale accordingly. This makes the results from computer runs
easier to interpret and the numbers span a smaller numerical range.

Boundary conditions at the centre of the star are dicussed first. The
contribution to the matter action of a central Regge block is equation (4.60).
We vary this with respect to iW1,x, oL,x and Qﬂu. From these variations

and the spherical symmetry conditions at the centre
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Mw =0

/’

smh > =0
KLA :"Fhm

| Vo (4.69)
J'L-’D( = JL./K

LYl 2 Uk
Poaz=9,.

where the last condition is obtained from the requirement that the fluid velo-

city be zero across the centre, we find

a) (M.« variation

_ Fa
(D(x,a( COSI«\ \/,\:‘“ —+ Jl,ou-; COSL\ vl,o(+|> = <. l

1 2 nu
A 1’0( COSL\ \/I,D(

1,88

M e

7 2z —u -
+ (R,D( r‘:x M‘),m Cosl\ \//l:\tx _‘F.,ou-r fz,M; Al,x;, COSJ’\ \/\Jown )} - O

(4.70)

giving the constraint equation at the centre,

b) OLUM variation

(\‘L,oc 5IVIL\ \/:o( —u ] u
[f’ r’—,“ [.‘ 2 ol c SL\\/M + O_nlx —/Z(M,,m COSL\/,I‘X +Mz_/x CO.SL\ \/}-Z,o:)
1, CO 1%

T )1 ok T s e ek )
OQI,DLCOSL\\/:IK ! o ’ | |

P e " Lo . n B
X : u - ! + — % ’ tx{\z’x (MI,x cos \/;)x + Mn,o(—p CoSL \/I,AL)
1 (-’/Q;,x.xcosL\\/;Im_‘> ] 3 F;

,X

L — L -
) PZ/K}(\ZJ“ (‘mllu COSL\\/Z/K -+ WT?_/&(«I COSL\/ v\} - O (4-71)
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c) ¢. variation
v,x

- ——b‘ g
P;ﬂ:*+ﬁ:* (¢"‘XH ¢/1,0~> F'Z-A O(IK(MUD( éoS[\ \/tlA,o( —FM:,M-: COSZ‘V(.N)—O~
U !
VJ%,M Vyhix cosL\\/gm

D
(4.72)

For the surface of the star we take advantage of Birkhoff's theorem

and fit Schwarzschild spacetime by writing the proper distance step as

AN
As,x ~ ) [s, = Alser (4.73)

where i = s is the surface vertex and M,« is the total mass of the star on time
slice t«. An extra block is placed outside the star and we then take the
limit as its spatial dimensions go to zero, ie. clgu—’o. Clearly equation
(4.73) holds since [se,x = {\s,« . Also coshvl;+,,‘-> COShV:‘/& .
The procedure for the solution of the equations is then as follows:®
With inital data set up on the first slice we build a time-symmetric sandwich.
Time-symmetric spacetime is momentarily static and so we use the same conditions
as in that case. Obviously they hold only over an infinitesimal time interval.
A time slicing condition is required to specify the timelike legs M., «.
For the evolution of the wew = 1.14 static data we choose the natural Schwarz-

schild like slicing

Mo = & AE YV (4.74)

1
where - ®; is the 8,0 component of the static spacetime metric (see fig. 4.12).
The timelike killing vector field then maps the spacetime onto itself so that
it should remain static. This is a good test of the numerical code. /At is

a co-ordinate time step.
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%Y

Equations (4.37), (4.38) and (4.41) are solved iteratively for sinhV .« ,
sinhvix and W, x again using the routine HYBRD1. Several sweeps of the net
using a Gauss - Seidel type iteration are required for convergence. Convergence
is monitored via the norms of the residuals of the unknown quantities. Once
the unknowns have been found the spatial legs ng and the velocity potentials
<¢¢& are evolved explicitly using equations (4.46) and (4.31) respectively.
The constraint equation (4.35) can be used to check'the accuracy of the
solution.

Unfortunately an oscillation develops in the velocity potential at the
centre at an early stage and rapidly grows so the the program crashes around
co-ordinate time t = 5M. The numerical values of the velocity potential indi-
cate local radial velocities approaching the speed of light. The oscillation
is rapidly damped in the outer regions of the star which remain static to good
accuracy. Total mass is conserved (nfld% % change). For this case of sinhY. x
= 0 Yex the no twist constraint is satisfied all along the slice at all times.

The reason for the central oscillation is not known at present. It is
probably true that RC contains very little implicit artificial viscosity (un-
like eg. the Lax - Wendroff difference scheme). We are currently working on
a solution to this problem.

There are several other problems to solve before a full collapse calcu-
lation may be considered. While the Eulerian Schwarzschild grid is adequate
for the test evolution of static data a collapsing star would rapidly fall
towards the centre with a subsequent loss of accuracy due to the coarser and
coarser digcretization. We propose two solutions to the problem.

a) One may use a shift vector to make some radial co-ordinate (vertex

number, say) follow the matter velocity, ie. make ¢4J“= Q@ak Vf,m , giving

4

a Lagrangian type grid. Schwarzschild r will then be a function of vertex

number and time.
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b) As an alterntive we may use the Schwarzschild grid with a grid velocity
Vg, that is, move the vertices at f'b‘,x relative to the continuous co-ordinate
r. This corresponds to moving the spherical shells of section 4.1 in and out.
When differencing time derivatives such as ¢a’ we must remember to include a

convective term due to the motion of the grid [66] y [120],

g o G b TG b (g

+ E \/3 (4.75)
At Aleer,u A fb',b(
so for example equation (4.31) becomes
1
ez - G 2Bod gy o =)
' . 1 Lz\/u Sim L,x z,

(LVVIL‘,M) Cos L ¢ {L’M,;K)CosL\ \/t‘,x
X (¢L'+"°( - ¢“’“> €L ( ¢¢;¢x - ¢¢'—/,1x)

A/\[H,zx A/\L‘/D{

2

. \/‘ 2 ‘

+ 2 suih Yo (¢L‘+/,x - ¢L;,x> ( ¢ - 4. >1

I “u + LR L=l

COSL\ \/(,'/oa A/\Zp: o *
’ /_k[\c',o(
1 | 2
“}/ <¢L'-H)a( - ¢L',x) (¢L')p( - ¢[-—|,N>
1 yo 1
L, N -
’ oimr,x (4.76)

where the grid velocity is governed by a choice of sinhYQ& . For the evolution

of the static data we set sinhY;y = O for all time corresponding to zero grid
velocity.
A second problem concerns the handling of shocks. Being a discrete

method RC will be unable to deal with steep gradients. As discussed in chapter
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two, one normally uses a diffusive term in the form of a bulk viscosity added
to the pressure. However we use relativistic enthalpy as the basic thermo~
dynamic variable and have assumed dS = O in the derivation of the Regge -
Einstein equations. Some modification of the velocity potential formulation
for a perfect fluid +to include the effects of a viscosity is required.

One feature of RC which offers advantages in shock handling over stand-
ard numerical methods is the fact that it is based on a variational principle.
The variation of the action with respect to rgx is a variation with respect
to vertex positions on which the thermodynamic variables and velocity potentials
are defined. By solving equation (4.40) iteratively along with equations
(4.37), (4.38) and (4.41) a value of sinhY@M (grid velocity) is obtained which
moves the vertices to where they are needed most. This is similar to the
moving finite element method of Gelinas, Doss and Miller [121] which is spec- .
tacularly successful in handling single and multiple steep gradients. Some
care is required since all regions of the star need to be adequately covered

to maintain accuracy. Also we should not let vertices cross or even too close.

4.5 Conclusions and Discussion:

The Regge Calculus provides a formulation of General Relativity which
differs fundamentally from the continuum theory. 1Its use in numerical rela-
tivity is motivated by the way in which a natural discretization of the space-
time may be obtained.

In practise, for simple geometries, discretization of the ADM (3+1)
equations via the highly developed finite difference methods is vastly superior.
However the increase in complexity is considerable when the number of dimensions

is higher than one. Regge Calculus on the other hand starts from 3 d and is



reduced to 1 or 2 d by symmetry arguments. We expect then that for the con-
struction of spacetimes with little or no symmetry Regge Calculus will be a
tractable alternative for the numerical relativist.

There is much work which needs to be done before this goal is achieved.
The Regge -Einstein equations are implicit in nature and require iterative
methods to solve them. This is costly in terms of computer time. Our spheri-
cal collapse code currently has a speed of 0.033 Secs. per vertex per evolution
on a GOULD 32/97 computer. This is very slow, but we emphasise that it rep-—
resents an upper limit since at this stage a package is employed. An efficient
implicit equation solver needs +to be developed. A second problem, as mentioned
previously, is the handling of shocks.

The advantages which may be obtained in higher dimensions justifies
the development of the method and its application to test problems such as
spherical collapse. 1In any case it’is worthwhile having fundamentally differ—
ent formulations of General Relativity for numerical work which may be compared

to ascertain the reliability of results.



REFERENCES

[1]
[2]
[3]
[4]

(s)

(s)

[7]

(2]
[a]

[10]
[1]

(12]
(13]

[14]
[15]

[16]
[17]

Smarr L. (ed) "Sources of Gravitational Radiation" (Cambridge University
Press, 1979).

Nathalie D. and Piran T. (eds) "Gravitational Radiation, Les Houches
1982" (North Holland, 1983).

Bancel D. and Signore M. (eds) "Problems of Collapse and Numerical
Relativity" (Reidel, 1984). \

Moncreif V., Cunningham C. and Price R. "Radiation from Slightly Non-
spherical Models of Gravitaional Collapse'" in ref. [l].

Price R. "Non-spherical Perturbations of Relativistic Gravitational
Collapse, I: Scalar and Gravitational Perturbations" Phys. Rev.“gé,
2419, (1972).

Ruffini R. "Gravitational Radiation from a Mass Projected into a
Schwarzschild Black Hole' Phys. Rev. D7, 972 (1973).

Wheeler J.A. "Geometrodynamics and the Issue of the Final State" in
"Relativity Groups and Topology" Eds. de Witt C. and de Witt B. (Gordon
and Breach, 1964).

Harrison B.K., Thorne K.S., Wakano M. and Wheeler J.A. "Gravitation
Theory and Gravitational Collapse" (University of Chicago Press, 1965).

Miller J.C. and Sciama D.W. "Gravitational Collapse to the Black Hole
State" in "General Relatwvity and Gravitation. One Hundred Years after
the Birth of Albert Einstein" Ed. Held (Plenum Press, 1980).

Van Riper K.A. and Lattimer J.M. "Stellar Core Collapse. I. Infall
Epoch" Ap. J. 249, 270, (1981).

Rees M.J. and Stoneham R.T. "Supernovae: A Survey of Current Research"
(Reidel, 1982).

Landau L.D. Phys. Zs. Sowjetunion 1, 285, (1932).

Chandrasekhar S. "The Highly Collapsed Configurations of a Stellar Mass.
(Second Paper)." MNRAS 95, 207, (1935).

Greenstein J.L., Boksenberg A., Carswell R. and Shortridge K. "The
Rotaticn and Gravitational Redshift of White Dwarfs" Ap. J. 212, 186,
(1977).

Woolsey S.E. and Weaver T.A. "Type II Supernovae' in ref. f3].

Wilson J.R. "Stellar Collapse and Supernovae'" in ref. fl].

Shapiro S.L. and Teukolsky S.A. "Black Holes, White Dwarfs and Neuton
Stars'" (Wiley - Interscience, 1983).



[22]
[ 23]

[24]
(25]
[26]

[27]
(28]
[29]
[30]
[31]

[32]
[33]

[34]

de Felice F. and Yungiang Yu "Stellar Rotation and Gravitational
Collapse: The %; Issue." J. Phys. A. Math. Gen. 15, 3341, (1982).

Van Riper "Stellar Core Collapse: II. Inner Core Bounce and Shock
Propagation Ap. J. 257, 793, (1982).

Hillebrandt w. and Miller E. "Computer Simulations of Stellar Collapse
and Shock Wave Propagation'" Astron. Astrophys. 103, 147,(1981).

Hillebrandt W., Nomoto K. and Wolff R.G. "Supernova Explosions of
Massive Stars. The Mass Range 8 to 10Mg" Astron. Astrophys. 133, 175,
(1984).

Misner C.W., Thorne K. and Wheeler J.A. "Gravitation" (Freeman, 1973).

Oppenheimer J.R. and Snyder H. "On Continued Gravitational Contraction"
Phys. Rev. 56, 455, (1939).

Liang E. "Some Exact Models of Inhomogeneous Dust Collapse" Phys. Rev.
D10, 447, (1974).

May M.M. and White R.H. "Hydrodynamic Calculations of General Relativistic
Collapse'" Phys. Rev. 141, 1232, (1966).

May M.M. and White R.H. "Stellar Dynamics and Gravitational Collapse"
in "Methods in Computational Physics'" Eds. Alder B., Fernback S. and
Rotenberg M., Vol.7, (Academic Press, 1967).

Tolman R.C. "Relativity, Thermodynamics and Cosmology" (Clarendon Press,
1937).

von Neumann J. and Richtmeyer R.D. "a Method for the Numerical Calcula-
tion of Hydrodynamical Shocks" J. Appl. Phys. 21, 232, (1950).

Misner C.W. and Sharp D.H. "Relativistic Equations for Adiabatic,
Spherically Symmetric Gravitational Collapse" Phys. Rev. 136, B571, (1964).

Hernandez W.C. and Misner C.W. "Observer Time as a Co-ordinate in
Relativistic Spherical Hydrodynamics" Ap. J. 143, 452, (1966).

Miller J.C. "Computer Calculations of the Graﬁitational Collapse of
Stars in a Full General Relativistic Treatment" D.Phil Thesis, University
of Oxford, (1974).

Smarr L. and Wilson J. "A Numerical Method for Relativistic Hydrodynamics"
in ref [1].

Shapiro S.L. and Teukolsky S.A. "Gravitational Collapse of Supermassive
Stars to Black Holes: Numerical Solution of the Einstein Equations"
Ap. J. Lett. 234, L177,(1979).

Shapiro S.L. and Teukolsky S.A. "Gravitational Collapse to Neutron Stars
and Black Holes: Computer Generation of Spherical Spacetimes" Ap. J.
235, 199, (1980).



[35] Evans C.R., Smarr L. and Wilson J.R. "Numerical Relativistic Gravitational
Collapse with Spatial Time Sliceg" preprint (1984).

[36] Smith A.L.H. "Numerical Calculations on the Collapse of Relativistic
Fluid Polytropes' D.Phil Thesis, University of Oxford, (1983).

[37] Piran T. and Stark R.F. "Gravitational Radiation, Gravitational Collapse
and Numerical Relativity' 12th Texas Symposium on General Relativity

[38] Nakamura T. * General Relativistic Collapse of Rotating Stars" in
ref., [2].

[39] Nakamura T.,‘Maeda K., Miyama S. and Sasaki M. "General Relativistic
Collapse of an Axially Symmetric Star. I. The Formulation and the Initial
Value Equations" Prog. Theo. Phys. 63, 1229, (1980).

[40] Nakamura T, "Numerical Relativity" preprint (1982).

[41] Nakamura T. "General Relativistic Collapse of Axially Symmetric Stars

[ﬁZ] Nakamura T. and Sato H. "General Relativistic Collapse of Non-rotating,
Axi-symmetric Stars" Prog. Theo. Phys. 67, 1396, (1982).

[43] Sasaki M. ”[(2+l)+l} Formalism of General Relativity" in ref. [3].

[44] Maeda K., Sasaki M., Nakamura T. and Miyama S. "A New Formalism of the
Einstein Equations for Relativistic Rotating Systems. " Prog. Theo. Phys.
63, 719, (1980).

[45] Maeda K. and Oohara K. "General Relativistic Gravitational Collapse
of Rotating Stars with Magnetic Fields" Prog. Theo. Phys. 68, 567, (1982).

646] Tassoul J.L. "Theory of Rotating Stars." (PrincetorlUniversity‘Press,
1978).

f47] Miller J.C. and de Felice F, "Gravitational Collapse and Rotation. 1I.
Mass Shedding and Reduction of the %ﬁ Ratio" preprint, (1985).

[48] de Felice F., Miller J.C. and Yungiang Yu "Gravitational Collapse and
Rotation: Gravitational Radiation and Reduction of the T3 Ratio"
preprint, (1985).

[49] Saski M., Maeda K., Miyama S; and Nakamura T. "A Method of Determining
Apparent Horizons in [(2+l)+l] Formalism of the Einstein Equations"
Prog. Theo. Phys. 63, 1051, (1980).

[50] Oohara K., Nakamura T. and Kojima Y. "Apparent Horizons of Time
Symmetric Initial Value for Three Black Holes." Phys. Lett. 1074, 452,
(1985),

[51] Stark R.F. and Piran T. "Gravitational wWave Emission from Rotating
Gravitational Collapse" preprint (1985),



L54]

[e8]

Thorne K.S. "Gravitational Radiation: An Introductory Review" in ref,.
[2].

Arnowitt R., Deser S. and Misner C. "The Dynamics of General Relativity"
in "Gravitation: An Introduction to Current Research" ed. Witten L.
(Wiley, 1962).

York J.W. "The TInitial Value Problem'" in ref. [2].

de Felice F. "Time - Like Tetrads" preprint (1984).

Sachs R.K. "Gravitational Radiation" in "Relativity, Groups and Topology™"
ed. de Witt B. (Gordon and Breach, 1964). '

Geroch R. "A Method of Generating Solutions of Einstein's Equationsg"
J.Math.Phys. 12, 918 (1971).

Detweiler S.L. "Black Holes and Gravitational Waves: Perturbation Analysis"
in ref. [1].

Smarr L. and York J. "Kinematical Conditions in the Construction of
Spacetime" Phys. Rev. D17, 2529, (1978).

Lichnerowicz A. "L'integration des équations de 1a gravitation relativiste
et le probléme des n corps" J. Math. Pures et Appl. 23, 37, (1944).

York J. "Kinematics and Dynamics of General Relativity'" in ref.[l].

Estabrook F., Wahlquist H., Christensen S., de Witt B., Smarr L. angd
Tsiang E. "Maximally Slicing a Black Hole" Phys. Rev. D7, 2814, (1973).

Centrella J. and Wilson J. "Planar Numerical Cosmology™" Ap. J. 273,
428, (1983).

Centrella J. and WilsonJ. "Planar Numerical Cosmology II" Ap. J. Suppl.
54, 229, (1984).

Bardeen J., and Piran T. "General Relativistic Axi-symmetric Rotating
Systems: Co-ordinates and Equations" Phys. Rep. 96, 205, (1983).

Piran T. "Methods of Numerical Relativity" in rerf. f2].

Bardeen J. "Gauge and Radiation Conditions in Numerical Relativity"
in ref. [2].

Taub A. "Relativistic Fluid Mechanicsg" Ann. Rev. Fluid Mech. 19, 301,
(1978).

Smarr L. and York J. "Radiation Gauge in General Relativity" Phys. Rev.
D17, 1945, (1978). .

Eardley D.M. and Smarr L. "Time Functions in Numerical Relativity I,
Marginally Bound Dust Collapse' Phys. Rev. D19, 2239, (1980).



[71]
(72]
(73]
[74]

[81]
[82]

(8]

[ea]
[85]
[s6]

[87]

(e8]

d'Inverno R.A. "(2+2) Formalism in General Relativity" in ref. [8].
Geroch R. "Domain of Dependence" J. Math. Phys. 11, 437, (1970).
Wald R. "General Relativity" (University of Chicago Press, 1984).
York J. "Conformally Invariant Orthogonal Decomposition of Symmetric
Tensors on Reimannian Manifolds and the Initial Value Problem of General

Relativity" J. Math. Phys. 14, 456, (1973).

Isenberg J., 0O Murchadha N. and York J. "The Initial Value Problem of
General Relativity" Phys. Rev. D13, 1532, (1976).

Isenberg J. and Nester J. "Extension of the York Field Decomposition to
Gravitationally Coupled Fields" Ann. of Phys. 108, 368, (1977).

Hawking S. and Ellis G. "The Large Scale Structure of Spacetime"
(Cambridge University Press, 1973).

York J. and Piran T. "The Initial Value Problem and Beyond" in "Space-
time and Geometry'" eds. Matzner R. and Shepley L. (University of Texas,
1982).

O Murchadha N. and York J. "Existence and Uniqueness of Solutions to
the Hamiltonian Constraint of General Relativity on Compact Manifolds"
J. Math. Phys. 14, 1551, (1973).

O Murchadha N. and York J. "Initial Value Problem of General Relativity.
I. General Formulation and Physical Interpretation" Phys. Rev. D10,

428, (1974).

Potter D. "Computational Physics" (Wiley, 1973).

Richtmyer R. and Morton K. "Difference Methods for Initial Value
Problems" (Wiley, 1967).

Ames W.F. "Numerical Methods for Partial Differential Equations™"
(Academic Press, 1977).

Smarr L. "Basic Concepts in Finite Differencing'" in ref.[ l].
Roache P.J. "Computational Fluid Dynamics" (Hermosa, 1972).

Mann P.J. "The Search for Stable Finite Element Methods for Simple
Relativistic Systems" Comp. Phys. Comm. 30, 127, (1983).

Mann P.J. "Some Mixed Finite Element - Finite Difference Methods for
Spherically Symmetric Relativistic Collapse" J. Comp. Phys. 58,
377, (1985).

Mitchell A. and wait R. "The Finite Element Method in Partial
Differential Equations" (Wiley, 1977).



[89) Zienkiewicz 0.C. "The Finite Element Method" (McGraw - Hill, 1977).

[90] McKee C.R. and Stirling A.C. "Relativistic Shock Hydrodynamicg"
Ap. J. 181, 903, (1973).

[91} Boris A.P. and Book D.L. "Flux Corrected Transport. I. SHASTA, A Fluig
Transport Algorithm That Works'" J. Comp. Phys. 11, 38 (1973).

[92] Book D.L. Boris J.P. and Hain K. " Flux Corrected Transport II: Gener-
alizations of the Method" J. Comp. Phys. 18, 248, (197s5).

[93] Gilden .. "Thermal Instability in Molecular Clouds" Ap.J. 283,
679, (1984).

[94] Gilden D.L. and Shapiro S.L. "Gravitational Radiation from Colliding
Compact Stars: Hydrodynamical Calculations in Two Dimensions™"
Ap.J. 287, 728, (1984).

[95] Regge T. "General Relativity without Co-ordinates" TI1. Nuovo Cimento
19, 558, (1961).

[96] Friedberg R. and Lee T.D. "Derivation of Regge's Action from Einstein's
Theory of General Relativity" preprint, (1984).

f97] Sorkin R. "Time Evolution Problem in Regge Calculus" Phys. Rev. D12,
385, (1975).

[98] Hartle J.B. and Sorkin R. "Boundary Terms in the Action for the Regge
Calculus" GRG 13, 541, (1981).

[99] Rocek M; and Williams R. "Quantum Regge Calculus" Phys. Lett. 1048,
31, (1981).

Rocek M; and williams R. "The Quantization of Regge Calculus" Z.Phys.g_l,
371, (1984),

Warner N.P. "The Application of Regge Calculus to Quantum Gravity and
Quantum Field Theory in a Curved Background" Proc. R. Soc. Lond. A383,

359, (1982).

Jevicki A. and Ninomiya M. " Lattice Gravity and Strings" preprint, (1984).

Hamber H. and Williams R. "Higher Derivative Quantum Gravity on a
Simpliciel Lattice" preprint, (1984).

[lOO] Cheeger J., Miller W. and Schrader R. "On the Curvature of Piecewise
Flat Spaces'" Comm. Math. Phys. 92, 405, (1984).

[101] Porter J. "Numerical Study of Non-homogeneous Spacetimes Using Regge
Calculus" D.Phil Thesis, University of Oxford, (1982).

(102] Sorkin R. "The Electromagnetic Field on a Simplicial Net" J. Math.
Phys. 16, 2432, (1975).



[103]
[104]
[105]

[106]

[107]
[108]

[109]

(110]
1)
[112]
[113]

[114]

[115]

[1186]

[117]
[118]
[119]

[120]

Hartle J.B. "Simplicial Minisuperspace I. General Discussion" preprint,
(1984).

Collins P. and Williams R; "Dynamics of the Freidmann Universe Using
Regge Calculus" Phys. Rev. D7, 965, (1973).

Collins P. and Williams R, "Regge Calculus Model for the Tolman Universe"
Phys. Rev. D10, 3537, (1974).

Brewin L. "Computer Generated Solutions Using Regge Calculus" in GR10.

Conners P.A. "Computations in Relativistic Astrophysics' D.Phil. Thesis,
University of Oxford, (1978).

Lewis S.M. "Two Cosmological Solutions of Regge Calculus" Phys. Rev.
D25, 25, (1982).

Wong C.Y. "Application of Regge Calculus to Schwarzschild and Reissner -
Nordstorm Geometrics at the Moment of Time-symmetry” J.Math. Phys. 12,
70, (1971).

Collins P. and Williams R. "Application of Regge Calculus to the Axially
Symmetric Initial Value Problem in GR" Phys. Rev. DS, 1908, (1972).

Williams R. "The Time-symmetric Initial Value Problem for a Homogeneous
Anisotopic Empty Closed Universe, Using Regge Calculus" preprint (1984).

Williams R. and Ellis G. "Regge Calculus and Observations.I. Formalism
and Application to Radial Motion and Circular Orbits" GRG 13, 361, (1981).

WIlliams R. and Ellis Q. "Regge Calculus and Observations.II. Further
Applications' GRG 16, 1003, (1984).

Feinberg G., Friedberg R., Lee T. and Ren H. "Lattice Gravity Near the
Continuum Limit" preprint, (1984),

Synge J. "Relativity: The General Theory" (North Holland, 1960).

Bondi H. "Spherically Symmetric Models in General Relativity" MNRAS
107, 410, (1947). ~

Schutz B. "Perfect Fluids in General Relativity: Velocity Potentials
and a Variational Principle" Phys. Rev. D2, 2762, (1970).

Taub A. "General Relativistic Variational Principle for Perfect Fluids"
Phys. Rev. 94, 1468, (1954),

Shapiro S. and Teukolsky S. "Black Holes, White Dwarfs and Neutron
Stars" (wiley, 1983).

Piran T. "Lagrangian Relativistic Hydrodynamics with Eulerian Co-ordinates"
in "Essays in General Relativity" ed. Tipler F. (Academic Press, 1980).



[121] GelinasR., Doss S. and Miller K. "The Moving Finite

al Partial Differential
J.Comp. Phys. 40, 202; (1981)

Element Method:
quations with Multiple

°

Large Gradients"



APPENDIX I

A.1 Notation and Conventions for Chapters Three and Four:

Geometrized units are used ( ¢ = @ = 1) except where stated otherwise.
Tensor Indicies;
Capital Greek (eg. A, 1) take values 0, 1, 2, 3.
Capital Latin (eg. I, J) take values 1, 2, 3.
Difference Indicies;
Small Greek (eg. , ﬁ) label spatial hypersurfaces and take values
X =1, 2, 3...... with & = 1 being the initial hypersurface.
Small Latin (eg. i, Jj) dencte the spatial vertices to which a variable
is attached and take the values i = 1, 2, 3,...
The Minkowski metric qu = diag. (-1, 1, 1, 1).
A
éAPAfL is the totally anti-symmetric Levi - Civita tensor such that EOVL3: +1.
A vector is denoted by x and a 1-form by X.
The inner product is denoted by {, .
AEXQK:wﬁ] denotes the area of a bone containing the legs ‘Qd“ , 9?« . Square
brackets do not denote anti-symmetrization.
éj[xgarﬁg]denOtes the deficit angle associated with the above bone.
The magnitude of a timelike quantity is imaginary while that of a spacelike

quantity is real.

The general metric tensor gn, has signature (-, +y o+, +).
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A.2 Area Variations and Deficits:
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