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INTRODUCTION

Observations of the microwave background radiation
vyields crucial information about the large-scale
gravitatiﬁnal and scattering processes which have
occured during the evolution of the universe. The
isotropy of its intensity has been extensively studied
and remains of great current interest, particularly
with regard to theories of galaxy formation.

Up to now the only anisotropy detected is a dipole

}
variation (Boughn et al.,1§%1; Corenstein and Smoot,
1081), with a fractional amplitude of (1.40 £0.41). 40 >
For the quadrupole component we have an upper 1limit
fractional amplitude of 2.107“(Lubin, Epstein and Smoot,
1683; Fixsen Cheng and Wilkinson,1983).

The dipole anisotropy is most str:ightforwardly
interpreted as a Doppler effect cdue to the motion of
the observer relative to the last scattering surface
of the microwave radiation.Still a contribution to the
dipole due to cosmological effects cannot be ruled out;
however the quadrupole amplitude typically exceeds the

dipole one in homogeneous anisotropic models (Fabbri,

‘,}a...



1080).

Should subsequent measurements detect a quadrupole aniso_
tropy, it could be ofiginated both by a long density wave
or by an universal expansion anisotropy. It is therefore
an important problem to discriminate real cosmological
effects in the properties of the cosmic background radia_
tion. In this connection, it is very important to observe
that in anisotropic cosmologies, as first poisted out by
Rees (1968), the radiation anisotropy is coupled to the
linear polarization by means of the Thomson scattering.
It is well known that when a beam of natural light under_
goes Thomson scattering, the radiation becomes partially
polarized in the direction orthogonal to the scattering
plane. The overall effect does not vanish after averaging
over the incidence directions of the beams, if the beam
intensity depends on the direction. This 1s just what
happens for the background radiation in anisotropic cosmo_
logies.

Since polarization cannot be produced by the peculiar
motion of our reference frame, a comparative analysis of
anisotropy and polarization would be a powerful test for
cosmological models.

There is alsc a good deal to be learned from the study
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of poclarization on small angular scales. In fact Thomson
scatterin@éffectively converts temperature fluctuations
into partial polarization if the photon mean free path
is smaller than the characteristic length of the density
perturbations before the last scattering time. Then
density waves, turbulent motions and gravitational waves
can generate small spale polarization during the
recombination.
No positive detections of cosmic polarization, but only
upper limits, often referring to the Ragleigh-~Jeans
region, have been reported so Tar (Nanos,1979; Smoot
and Lubin,1979; Lubin and Smoot,1981; Lubin et al.,
1983 ). The most stringent limits, due to Lubin et al.
(1983 ) are a few times 10~% for the linear polarization
and 7—.‘10’3 for the circular polarization, at large angular
scales. In the millimetric region Caderni et al. (1978b)
set limits of order 10‘3 on the linear polarization at
angular scales bhetween 0.5° and 40°,

For comparison, the anisotropic models investigated
by Rees(1868), Basko and Polnarev (1880) ,Negroponte and
Silk (1980) predict polarization degrees of 10'ﬁ}1dﬁfor
radiation anisotropies of order 1074,

A crucial problem, however, concerns the survival of
the primordial polarization during the propagation of

rhotons over cosmological distances and within our
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galaxy. As a matter of facts, the radiation mighf be
depolarized by random magnetic fields through Faraday
rotation. However the polarization degree of the
background radiation can affected also by a coherent
magnetic field because of the finite thickness of the
last scattering suprface. As the background photons
travelled different path lengths since their last scatter_
ings and were subject to different Faraday rotations,
the primeval polearization tends toc be damped, and can
conceivably be canceled out al least at certain wave_
lengths.

On the other hand, a peculiar general relativistic
effect occurs even in vacuo (Brans,1975); the depolariz
ing effect is intrinsec to the radiation decoupling
process in any anisotropic cosmologies. However, this
was shown to be not very impeortant (Caderni et al.,1978a;
Fabbri and Breuer,1980).

The plan of this thesis is the following; The first
section deals with large scale polarization. In chapter
I we discuss the transfer equation for homogeneous
cosmologies. The solutions for Bianchi type I models
have been investigated by Rees(1068),Anile(1¢74), BEasko

and Polnarev (1980),Negroponte and Silk (1&80) and



Stark (1981}). Tolman and Matzner (Tolman and Matzner,1984;
Tolman,1985) extended the investigation to Bianchi models
of type I,V,IX and VIi,namely, to the classes of homogeneous
models which are direct generalization of the standard
(closed, flat and open) Friedmann cosmologies. Their results
are described in chapter II. In chapter III we consider
the effects of a homdgeneous magnetic field on the anisotropy
and polarization of the background radiation in Bianchi
type I models (Milaneschi and Fabbri,1985).

In the second section we deal with the small scale
polarization in the microwave baclground.
A small scale polarization degree can be produced by local
sources such as the scattering of the background radiation
by clusters of galaxies (Sunvaev and Zeldovich,19880).
However a more important source of small scale polarization
are density waves. Kaiser (1883) and Bond and Efstathiou
(1985) have estimated the polarization produced during the
recombination in initially adiabatic perturbations, which
according to the Present theory of galaxy formation, grew
via gravitational instability into the large inhomogeneities
we observe today. They found a polarized component of the
temperature anisotropy of about 10%.

In the last chapter we present the results of our own



work (Milaneschi and Valdarnini,1985).

We have numerically integrated the transfer equation for
the evolution of adiabatic perturbations in universe

models with dark matter and calculated the ratio between
polahization and radiation anisotvopy as a function of

the angulér scale for different values of the density

parameter () and of the spectral index of primordial

density perturbations.



. SECTION I

LARGE SCALE POLARIZATION OF THE MICROWAVE

BACKGROUND RADIATION.



CHAPTER I

TRANSFER EQUATION FOR POLARIZED RADIATION IN
HOMOGENEOUS COSMOLOGIES.

In this chapter we will follow the procedure used
by Dautcourt and Rose{(1978) to derive a transfer
equation for polarized radiation in an orthonormal reference
frame and in a general homogeneous curved spacetime.

First we will consider the transfer equation for
non polarized radiation. To obtain a manifestly covariant
description,la relativistically invariant photon
distribution function N related to the radiation
brightness I by N= I/¢ hﬁva) must be used.

The Liouville theorem ensures that N does not change
if one follows the motion of a particular photon in the
absence of collisions. With an affine parameter s along

the photon path one calculates the total change of N as:

(1)



In an orthonormal frame e, (i=0,1,2,3) the four

momentum k" of a photon satisfies the relations:

-
KA Lap =0 (2)
dk™ % kKT

e Y , (3)

<
where rﬁxare the affine connection coefficients.
Introducing a coordinate system x™ of the space-time

the eq.s (1) and (3) give:

o
The components of the four momentum k are not inde
pendent:; a standard representation is
0 L ;
k- = hvy |, k' = hynt
where n° is the threee-dimensional ray direction. It is
convenient to introduce polar coordinates (?',¢) and

. . L ) - .
two further directions a and b' , forming with n' an

orthonormal triad:

n' =(sin¥ cos#) , sin@sind? , cos?)
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We obtain:

(5)

where b/,u: FMO‘/_,, n*n

In a homogeneous universe we choose to work in an
orthonoémal frame of reference which is itself
homogeneous, in the sense that the spatial frame vectors
are homogeneous vector fields. Following standard work
(cf. E11is,1967; Ryan and Shepley,1975) the metric is
defined by:

dszz..d£1+ Qzﬂa(élﬁ>£ Eééi (5

the time coordinate t labels successive homogeneous
spatial surfaces, and R(t) is the usual cosmological
length scale. The anisotropy is represented by the
traceless 3X3 matrix ﬁ%(t);the shear tensor is then

defined by:

-

£(€6> ‘L'k /( Q@>KS+ (Qﬂj).gk /(Q/L)k;].

ol—

The three vector fields E |, (dual to 1-forms E‘ )
K‘.
“8
where the CK;S are the structure constants of a

have commutators(Lie derivatives) [Ei,ES] = C Ew»
transitive Lie group associated with the Bianchi
cosmologies. This means that the E are homogeneous
vector fields{Mac Callum,18789).

The orthonormal frame 1is defined by equating the



ds* above to vbdeﬂe* where §,, is the Minkowski metric of
signature +2, and e, (dual to 1-forms e™) are the four
frame vector fields. (The indexes My ¥, are frame indexes).
We choose:
e® . dt )
Ca B\ .. g3

ez R(t) (eP)j B
and suppose that our frame is dynamically non-rotating,
i.e. a vanishing "Feﬁmi" rotation velocity. In such
orthonormal frame, N is independent of the spatial

coordinates x' and the following relations hold:

N éi
¢ at
R
ot
‘\%_i—— = —_‘Z{Q_
X an® 0{[:

(7)

So the transfer equation in a homogeneous universe

becomes:

AN 4 3N dv 4 9N 4B | anN
at £

2 dE 34

Eire

(8)

To take into account the polarization properties of
the radiation we may generalize the distribution function

N to the two complex functions

N = I+10V
chty?
LN= @-_iu
cho®

(9)



The quantities I,Q,U and V are the usual Stokes barameters
(Chandrasekhar,1960). The quantities (N and,N are space-
time invariants like N; they change,however, if polarization
directions are rotated. The polarization directions are

two space-like directions orthogonal to the propagation
direction kH, which can be rapresented by a complex null

ol .
vector m , with
' P

mem "= 4
o

Mmam = O
A

From the Maxwell equations one knows that m?% is parallel
transported along the ray k®(this preserves the orthogona_
lity relation m.k¥= O along the whole ray). If polarization
directions are rotated by an angle o :

m'u—-Pm'/“:e‘.Nm"‘}
the distribution functions ,N and 4N transform in the
following way:
oN = ,N'= N

20 4
17\1—71“‘: 2 LN'

Thus the quantities N and ,N have spin weight zero and
two pespectively(Appendix).

Now we want to write ,N with respect to the directions
a{ and b:, which are not parallel propagated directions.
Thus we must add to the transport equation for Na term
accounting for the relative twisting of the directions
(a;,bL) with respect to a parallel propagated direction.

-l . .
I.e..N must be replaced by ,N ¢ and the Liouville

42



equation becomes:

4 (Nett)e -*“‘(a NeCitda )0,
5

(11)

Now we must find dQ . To this purpose let us define the

= / (a5 +ib¥ ), and differentiate t‘

reference vector t?

with respect to time:

(o-;*g," i \:Cx;)n'# Lt cobq B ngg)

b’ o _
dt Va
(12)

from the parallel transport law we have for the polarization

vector:
dm;:_,rf KQ,WP__(F:-+F[ me)mc
T *f o = o¢’ "¢ : (13)

, the vector t *

For a rotation of an angle & around o
it if at the source m'm t° subsequently

b

transforms into €

that is m°-£;=QVLN.DifFer*entiating this

is mt= thet®
relation with respect to time we get

dix LetYs .j_m_‘ g; + \m( OLEJ ) (14)
dt ad ¢ dt
and substituing eg.s (12) and (13) we find
L A TR o' ngsah*'“' T
cdt

where we have used the relations:

A .0l
tE {7&]=- Lieb n'

13



K
| R 8‘;5‘“-0—

(Y

For completeness we have included the frame's Fermi rotation
velocity L), in this result, but of course we have chosen
L. = 0.

The first term in (15) is due to the choice of a polar
system of coordinate.In fact a variation of : in the direc_
tion of’g'does not produce simply a parallel transport of

t3 along the unitary sphere, but also produces an extra
rotation of Z and Eparound Ep, because, by definition, it

must be tangent to the circle al © = const.

The third term is due to the spatial curvature of the universe.

Substituting eq.(15)in(10) we obtain:

5}—-0—N+M9{—Y+9°N,Q{_&+9°N9lﬁ = O
2t T Dy dt At dt

MJ, N d¥ + %N 48, 9N dd
at 3 dt S5 d

L0c
'2(,! Cot%@ -’r.Lf n, h« TSQKB 7)\}5 (161

Mow we consider Thomson scattering by free electrons
and cgeneralize the equation (16) to a Boltzmann equation
by adding a source term on the right side, N}wu The
Thomson scattering source term for intensity I alone is

(J - I), where J is the emission term; the mean free
path 1 is 01367)“, where n,_ 1s the free electron number
density and 6+ is the Thomson scattering cross section.

From the corresponding emission term for the Stokes

parameters, we obtain (Chandrasekhar,1960) for the vector

e ()

L



(35)cn = B2 [mPA2NED )
P (9,¢;9'¢) N (@, ¢")]-¢

where p, and p_. are 2X2 matrices; their elements can be

expanded in terms of spin weighted polynomials né, ncg

and mc%see Appendix) for both primed and unorimed angles;

the result is:

Then the final expression for the transfer equation

in the presence of Thomson scattering is:

(18)

where



CHAPTER II

SOLUTION OF THE TRANSFER EQUATION TO THE FIRST ORDER
IN SHEAR.

2.7 THE POLARIZATION OF THE MICROWAVE BACKGROUND

RADIATION IN FLAT AND CLOSED MODELS.

In this paragraph we will describe the results relative
to the large scale polarizazion in Bianchi models, in the
absence of a uniform magnetic field, following in
particular the paper by Tolman and Matzner(i8g84),

They consider models which are a gen8ralization of the
standard closed,flat and open Friedmann Robertson-Walker
cosmolodies,that is Bianchi types IX,I,V and VII.

The distribution functions (N and ,N are expanded in
terms of the spin weighted polynomials and substituted
into the transfer equation (18). By using the orthogonality
relationﬁéhe emission term integral may be evaluated

vyielding the exact result:



<. . R " S A‘ .
0')" :’:‘6 (ReﬂN;>)n —-ZB_O-(RE&NLSBW\ +%(1M°Nl)n+

R& oNo

DR .. P
0 3= %Qeg_N,bm“_% ( Re ON.,S)YY\ .

(1¢)

only multipoles up to the quadrupole { oN¢yand ;N )
appear, meaning that while higher order modes are damped
by Thomson scattering through the absorption term I
they are not regenerated in the scattering: but quadru__
pole and lower order modes undergo both a damping via
I and an enhancement via J in the scattering.
Tolman and Matzner(1984) truncate the multipole expansion
to the quadrupole order; this is a good approximation
for flat and closed models, but for very open models
significant higher order modes are generated by the
spatial curvature, so these last models will be treated
in a different way (Tolman,188%5) and we will discuss
them in the next paragraph.
Let us use as independent variable in the transfer

equation the optical depth T defined by
("

Tt ty) = g ot

£

and define
3(om oN)
2 (én v)

Invokindg the orthogonality of the spin weighted polynomials



in each of the expanded transfer equation, we obtain
four coupled,complex, first order ordinary differential
equations for the monopole, dipole and quadrupole moments

of the Stokes parameters distribution functions:
=] :—K roke -
%—‘:C ONO + 6 (_" "% j._‘ nh goNo + -> o NK -+ M ONKQ): _blmaNQ
0 N3 Ak A ke
2 N €(-T oo S oMot A E+ BTN N CF) N =

_Re oN: — ¢ Tim oNu
3

%ONL"S‘L _@ (Eb'sfoNO'!'gsK‘-.&. §+Hté}aNK+{Ffi§ +
T

~ke ) . .
G"S‘g Nee)= - 2 Re ol - %c Re o Ny -t ImoNey

40
rxel ) ke N .. .
izNCS."’Z(K"‘A-’-LL“.J)QNKé —-—%Qe ONLQ"%QQQN(A
At
.,L.,I?h OM;S’
(20)

the real coefficients used here are defined as follows:

AJZ‘ i(rocx'i-ra"%'ro/z% 6"“)
5

n K L. i [s]
Bi:'r‘.o'{'%(rOK“-QT’(O(:+T/22§£.K>

A K e e a

CfF s L2 (T oo T Buev 3 Moo B T 85 §)
» o

‘Dls - - rso ébK

ELS:—— r “y



TG A TR § T Mie+ T Soer T2, 6o Se)
(ffj - (é M ow - 4_;_ re. \21““;0+% mon 5. )45 e

}:‘fé = r‘ib + Moo b

S L (T2 T

k‘KZ N o

s & - " )
Cy 7 r Cx éoe + %3 T ko S\Seﬁ <%+ %§) r/zz 6‘."‘ g.‘)z

£ ,
L "% = A (44 bn , & (L€l
Ly 3 ( = r‘QW ¢ gi& ééj'ﬁ% I ~e € b

€ [2&ls)

€ 12£1 k)
- &l 2 € _ 2T ay & 2i)

(21)

Because n®and m'S are symmetric and traceless,ohﬁyandlhks
are also, and therefore the coefficients listed above
must be  symmetric and traceless on the index pairs i{
and K. However for brevity in this listing we have not
always done soO.

These coefficimts are functyions of the affine connection
coefficients Tﬂkx, then they represent the effect of the
gravitational field on the radiation.

It is a well known classical result that circular
polarization (Stokes parameter V) obeys a separate transfer
equation(Chandrasekhar,1960); here we may generalize this
to curved spacetime by noting that none of the modes of
V is coupled to any other Stokes parameter, and vice-versa.

We henceforth ignore the V term.



The eguations are now simplified by converting to
normalized functions, as follow. In our reference frame
AR L VP .
J" is zero and the term Ny, is a secoand order term 1in
the shear; so at the lowest order in the shear we are

left with the eduation:

g.oNo—-B—M Y=O.
ot R v

Thus we have only the term due to isotropic cosmological
expansion; the redshifted monopole is conserved, to first
order in shear. We divide all the Stokes parameter

functions by the monopole function, so for the vector_&

4 4
N : oN{ [oNo | _ D/
- o Niy /oNo Loy
Re a Mo [oNg fQJS
Im 2N laNe Uey

we obtain the equations:

9T
A Ak

5 Teg- L (e e By D) 2 Tyt 2Ry
2T
2. W ¥4 [:Ka(/( - 4 I 2. ..
,a_z .54 \é Kﬁ, ?5- L‘S"i“ __S.Q‘_)

. K €
g% Ueg-E L0 Qe = U,

(22)

20



Note that U.;and & contribute to both the Stokes parame
tere 0 and Q because the polynomiale m¢Y which eompare

in the expansion of 2N are complex.From equations (22)

we see that if there is shear (é;s = -8/) a quadrupole
component 1s always generated from the monopole term and
then by means of the Thomson scattering a quadrupole
component in the polarization is created.

From the first of eq.s(22) we see that also a dipole
term is generated by the quadrupole if EK5€£0; in Bian_
chi type I models this term is zero, so we do not have
dipole anisotropy. The ﬁfi‘coefficient, containing the
spatial curvature, couples the parameters & and U giving
rise to the twist of the polarization vector.

The transfer equations may be considered as a single

matrix differential equation:

iz
<

A
.;.KR) =~5

Wz

2
T

I

) (23)

A
where R(t) is the matrix of coefficients involving space-

time curvature:

0 O O O O
~re
0 O ‘S o
R ()= ‘
A /\k
ey HY O o O
/‘ke
O O O O - L‘A
° o o L*



and S ig the constant matrix due to the scattering:

o) O 0 O O
O 1 0 O ®
5= ", O  9/i0 zo O
O ) 115 2/5 @)
O O O O 1

The eq.(23) has general solution:

]

_—

5t T * 1 T T
N(t)= e 145 eM(T)dz'+( Mcee Mz v
( 1‘ \gto g'Co ) Szo ( )60(2 G(I_L
- 570
-1 e N (<,
] = Ct )' (24)

where

1 o o O 0
. |
05T @) e O ®) ®
O 0 e, (ty 3¢() O
O 0 2e0 er) 0
O O o o

o
\J



with
e,(‘t): /(
)
e.(z) = % (e® +6e”

ey = 1 (eF-e”T)

and M(T ) is:

o e © © o
Ske -T ~
0 0 CE e 38 5% T o
o' ; k
- § @41y ete,(-o) Hyy o o 3€(—2)6th--
- § 2e, (-T)S 2¢%¢_(-T @f'
g 3 A 3( ) Cy o O BZC-Z)QI Lk. |
£
- A
o - 267, o)L "f ,qz)éi’j:} o

Let us take as initial conditions:

'(:\"—j (t") =

OO OO0 =

The first term of the series is:

N(z)- )+-esz5 eM(Tyde N (o)

O

O
- €, (T) f L4(-o>§6n)€dz 363(t%25 €U5>f6 ldz’
e
é 2(z) S 9,8 C—z)fG Cdz' ey(TD 35%,53(_ ,);6‘.5,%2

&

\// /\
.

O000~ \=

23



At the present time © =0, so e (0)=4d, €,(0)=4 ,
€1 (0)= 0 and

o]
v (_€Cle-T)60 de' - To A .
1L5‘ gto g %CZ) 3dt" ggo %(66 t+ [Ce] )66‘ dz

Qi = § - §leetmogde (T2 (e T e B pg g,

(26)

In Bianchi type I models all the other terms of the
series are zero because M(t').-M(T") = O ,s0 eg.s (26)
represent the compléte solution to this order of appro_
ximation. If C*¢, Qkf , t.i? are different from zero, the
other terms of the series are present; however we can
consider eg.s (26) as the solution before the recombination
between matter and radiation, for 1 4 0O, so that the other
terms of the series become negligible, since they are

multiplied by higher powers of 1. So if 6;51 is a constant

we have at the beggining of the decoupling (for T,-b® ):

IL'S = f éL GL.&-g

(27)

The same result is obtained if we use an expansion
in powers of 1 for optically thick stages(see Dautcourt
and Rose,1878). Let us write the system (22) in the

following way:

Aye
QK%-CD C ;lkgy_-Dc
¢ % f-fSe) s Lr%gté
eh ke _ .4 19
é ( rDtQ“) +L ©y (/(L¢3> E 19‘3“ '%Qué



A
L_ké

Z(%—t ub‘&'l‘ vy Qc'i)::_ug)?

(28)

If 1 = O the rhs constitute a system of algebraic equations

for the expansion coefficients, from which we obtain:

D‘.' = O/ I‘S = O/ Q‘,) =0 ) Ueg=0 /

only unpolarized isotropic radiation will be present in
this case. Thus considering ,N,as of zeroc order in 1 and
the remaining coefficients of first order, we have to

first order in 1:

D{ = O
2’967 1¢3+'_330_ Q;‘X': f@s;b

U= 0,
from which:
o 9 L
Q= - 26548

ICS: %6;5.26'? .

In the opposite case (no scatterings), we find from
eq.(26) Q=0 and lps=-§56¢$dt . Let us now consider
the case of axisymmetric Bianchi type I models. In this
case we can take the shear tensor of diagonal form and

choosing the symmetry axis along the i=3 direction, we
have 6,, =6G,, , then I, =I,; and L, =&,, -

As a conseaquence of the axial symmetry the Stokes para_

]
n



meter U:-0 . In fact by definition U =TI p sin:lxﬁ where
I, is the intensity of the polarized component and ¥

is the angle by which the reference direction (along

the meridians) is rotated with respect to the polarization
axis; because of the symmetry is/%'= O or ;5==ﬂ72(the

sign of Q discriminates between the 2 possibilitiesd.Then

oN= oNo & (/"‘2' %) (oN3s - ONM)

2N = a8 = 5_; ('_/uz) (2N33- 'J.NH).

e\ Ay?

Since

Qu = igg@xgeﬂfmdt
the optically thick solution is:

Q== Sy 1 4(6.-6) (4- m?) oNo
f .g 33 /H) /\"> (29)

So the polarization is proportional to sin@ (is null
along the symmetry axis), as is expected because of the
axial symmetry. Moreover, by definition Q = IP cos:yx R
so the polarization is along the meridians if the greatest
expansion is along the simmetry axis (being g =-1 in the
Railegh~Jmsans region).
Then in axisymmetric Bianchi type I models the two parame_
ters I and Q are sufficient to caracterize the radiation
field.

Tolman and Matzner have numerically integrated the
system (22) to first order in shear in Bianchi universes
of type IX,I and V.

For the calculation the evolution of shear and of the

2.6



ionization fraction are needed; for the shear evolution

the results of Collins and Hawking (41973) have been used:

Sy = éksu (4+2)i type I and V (30)
and
-4
Seg = A W13 0.3 + By (442)? Tmooz (A+ 32 Qo)(4 0o 1))

type IX (31)

with A /¢ and B., constant.
The first term of eq. {31), which is generated by the
coupling between spatial curvature and anisotropic
expansion, is neglected in the numerical integration
of the transfer equation; however, we note, in some cases,
in particular in the case of a second ionization, the
anisotropy mode driven by the curvature could be more
important than the other one.For the fractional ionization
x(z) of the matter during decoupling they have used the
numerical results of Peebles(1968). Generally, x begins
to decrease from unity at about z 4 1900, drops most
rapidly around z X 1400 and from z =800 on, it is down
to a constant residual fraction a 3.107°-23"*

Tolman and Matzner find, in agreement with Negroponte
and Silk(19¢80), that quite a significent error 1s made
b¥ assuming a step function behaviour for x(z), either
at decoupling or at reheating. In fact in the step model
of Negroponte and Silk, in which x(z) = 1 for z» 1500
and x(z) = 107% for «x % 1500, they find a polarization degree
px 10* %?L (where %Fﬂ)is the nresent anisotropy of the
Hubble constant), while with an accurate model for the

fractional ionization history they obtain P % 10° BH.
N o

I~
~J



This is due to the different number of scattering ng
between the recombination and now; in the step model
is n;= 0.03 and in the other case is ng =‘103. Since an
higher number of scatterings may increase the polarization
but always isotropizes the radiation field, a radiation
anisotropy about two times greater is found in the step
model. However, we note that an anisotropy calculation
following the SacHs-Wolfe method (19667), in which a
step—modei with a last scattering surface ghifted to z=4000
is used, gives rise to an error on the anisotropy degree
only of some per cent .
Tolman and Matzner have also considered the case of a
second ionization of the intergalactic medium in which
the time of reheating is extended from z, to z, , with
z,~z, equal 2 or 3 and z, less than or equal 10.

Let us now consider the results of the numerical
integration.
In Bianchi type I and V the coefficient t.ff,which is a
function of the spatial curvature, vanishes, so only in
type IX models a twisting of the direction of polarization
is expected.The rotation angle with respect to the
meridians is independent of the observational direction
(see fig.4 ); the twist of polarization is large (of
the order of 60° forQ,= 1.5), se it should be easily
observable if the polarization could be. This result
suggests an important observational test of the spatial
curvature of the standard models.

The anisotropy and polarization results are presented
in fig.2 ,3 ,4 where the present amplitudes of the qua_
drupole I*@ and dipole D; intensity anisotropies are

given in units of 10q‘§5/ ; the degree of polarization
H /o
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in the quadrupole mode P, also in units of 10"%’/0.

The Hubble constant was 100 km s’ Mpc” throughout.

The dquadrupole intensity amplitude is normally negative,
simply because the maximum of the shear corresponds to
the greatest redshift and therefore a minimum of the
intensity. In closed models, where a dipole is never
generated, and in open models in which the shear is in

a plane perpendicular to the preferred direction so that
no dipole is formed, llygl increases uniformly in models
with decreasing Ilo..This is expected, since a lower
density results in less numerous scatterings, allowing
the anisotropy to build up by differential redshifting.In
open models in which the formation of a dipole anisotropy
is possible, they find that the dipole increases

while the quadrupole decreases with decreasing Q, .
However for very open models ( Qo,4£.1) there are integration
problems due to having neglect higher order multipoles,
so0 this procedure fails.

The polarization and anisotropy degree are sensitive to

a second ionization of the diffuse gas. Their values are
a function of the optical depth or number of scatterings
n, between the reheating time t and the present time t,.
If ng 4< 1 (z, 4< 10), the reionization has no effect;
if n =z 1 the two polarization states decrease at a
different rate. The maximum polarization is attained for
ng = 1.72. More scatterings tend to damp the reionization
anisotropy of both the polarization states; in the limit
r1§;30 polarization and anisotropy drop to the asymptotic

values:
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Consequently the ratio P/I increases with T, reaching a
maximum equal to 2.

The behaviour of the polarization degree depends on the
function 23(—1), which couples polarization and anisotropy.

For Bianchi type I models with a second ionization, we

have: _
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Then, starting with a large radiation anisotropy IL&(‘cQ
the polarization reaches its maximum value in correspon_
dence of the maximum value of the function €,(-Tu), that
is for .= 1.72.

As noted by Basko and Polnarev (1980) an interesting

property of the quadrupole anisotropy and polarization
2T
is they drop as € ' and not as € °. The reason is that
in the course of scattering an anisotropic, non polarized
component of the radiation field does not simply becomes
isotropic, but partly transforms into a polarized compo__
nent. The scattering of the latter results in its partdal
depolarization, with a certain fraction being transformed
into the anisctropic, non polarized component. Thus, the
anisotropic and the polarized components of the radiation
field make a single complex which decays more slowly than
&

Tolman and Matzner have also considered some type IX
models with L).»1 and L25=0.12, because of the upper
limit set on 123 by studies of nucleosynthesis (Yang et
al. 1884). The results for the dark matter dominated
closed models did not significantly vary with , for

a fixed 115 =,12. In every case the anisotropy in these

models was about two times larger (due to less frese

[§Y¥)
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electrons) than the corresponding model in fig.2, while

the polarization was smaller (again due to less scatterings)
so that the ratio P/I is about 0.045 for all dark matter
models.

Moreover measuraments of the quadrupole polarization
may provide an important test on wether the dominant
source of the quadrupole is shear or are matter inhomo_
geneities. In fact, while the essentially random or
statistical origin of the anisotropy in the case of
inhomogeneities works against the development of large
scale polarization, the opposite is true in the case cof
shear(see Sec.II).

Finally, if a quadrupole anisotropy in the microwave
background will be observed, the ratio of polarization
to anisotropy may provide a good test on the reheating

time and on the hydrogen mass fraction of the universe.



2.2 THE POLARIZATION OF THE MICROWAVE BACKGROUND

RADIATION IN OPEN UNIVERSES.

This problem has been extensively treated by Tolman(1985).
The cosmological models he considers are homogeneous
models with negative spatial curvature (Q,< 1) and a
small expansion anisotropy. It is well known that the
spatial curvature in these models has the effect of dis_
torting the radiation anisotropy by focussing it onto a
relatively small angular scale (Novikov,1868). In a model
with shear, the radiation anisotropy has a quadrupolar
angular dependcence when it is cenerated, but by the pre_
sent time it has been squeezed into a single small intense
"hot spot? the magnitude of the effect depends on Ll,.
Tn the case of very open universes the standard agproach
of expanding in multipole moments becomes extremely
difficult, because the effect of interest occurs on all
angular scales from 90° to very few degrees.

Then a direct or Monte Carlo method is used to compute

numerically the entire histories of a number of photons,

uJ
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and therefore to determine their distribution on the sky.
The method relies heavily on the symmetries of the
problem, particularly spatial homogeneity. This symmetry
implies that any physical quantity cannot have a
dependence on spatial position. Cylindrical symmetry is
also assumed for the shear, the direction of the photon
being thus specified‘by a single parameter, the angle
from the symmetry axis.

The evolution of photons is the outcome of three
processes: shear which redshifts the photons at a rate
dependent on their direction, thus introducing intensity
anisotropy; spatial curvature which deflects the photons
into one preferred direction, thus distorting the aniso_
tropy; and Thomson scattering which changes the direction
and polariZation of the photon istantaneously and without
changing the total intensity.

The study of the first two processes makes use of the

equations of motion for the free propagation of photons.

Taking the symmetry axis along the polar axis, they are:

*

K=_686 \% cos® O _
é\: 0 ' L)
(cosg)' = _ Si\h2 7 (R-‘e- /34-% coga) ¢)
(32)
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where k = k® R (is the renormalized energy), and &= S33,
p= (%ﬁ;s@»[&):ﬂzThe factor R' identifies the spatial
curvature term which gives rise to the distorsion; note
that it is never positive, so the spatial curvature

must always bends photon paths toward cos ¥ = -1, 1.e.
the simmetry axis. The second term does not have just
one sign, but will always be very small due to the
factor & . In the case of isotropy (6= 3= 0), the
second term of eg. (32 c¢) apparently implies that spatial
curvature is still producing a distorsion because photon
paths are redshifted alike (eg. 32 a) and so only perfect
isotropy can be observed.

The equations of motion have been integrated in Bianchi
type V models, where the shear evolve as S(2)- 64 (4+2) 3
(Collins and Hawking,1973). The results of the simulation

are shown in the fig.B,é,?,S,%,which are graphs of the
intensity anisotropy %; and the ratio of polarized
intensity to anisotropic intensity P/AT against the dire_
ction © on the sky in units of the present shear to
expansion ratio %it.
Statistical fluctuations én the scale of the bin size (1°)
are seen in all the results; they should be ignored since

only sfiructure which is larger than the average fluctuation

()
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can be considered physical. The models considered have llc:Qi_
and no reheating (fig.% ), reheating at z = 4 (fig. € )

10 (fig.#), 100 (fig.8), as well as 0,= 0.3 with

z, =10 (fig.9).

The cylindrical symmetry of the model implies that only
two directions for the net polarization are realizable:
parallel to the meridians, from pole to pole, or perpen_
dicular to this; thus U = O is the expected result.

The hot spot in AL/l is evident at the pole on the right
with width (that is, semidiameter of the spot maximum)

in agreement with Novikov (1968): 3.5° for AL2,=0.1, 11.8°
for L, =0.3; however, also evident is how guickly scattering
reduces it. The sky is otherwise featurless in AL/I.

The polarization of the radiation in the hemisphere
opposite the spot is roughly constant and positive if we
take the expansion greatest along the symmetry axis. The
hemisphere which contains the direction of the spot shows
three different features in the polarization. First,
roughly centered between pole and equator there is a large
band of strong polarization which has the direction of
negative P/I (opposite to that of the rest of the sky).

+hese reaions cover 15% (fig.§b, 20% (fig.%b) and 30%

(fig.9,b) of the area of the sky, just below the observed
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limits for 52/33-10—8. Second, the spot itself is polarized
H o

in the positive P/I direction, but at a significant level
only if there is an dbolarized region near the equator

and in fig.élb also surrounding the spot.

Reheating introduces scattering, so that the very narrow
spot is converted into polarization, but with opposite dire_
ction and distributed broadly over the sky. Where this po_
larization is comparable in magnitude to the already present
polarization, cancellation occurs and an unpolarized region
results; in other direction the new polarization dominates
and the unusual direction of polarization would be observed.

In géneral the shear could be triawial, and have an
additional cos:h? variation. The hot spot in that case
would be split into four parts, with alternately positive
and negative peaks. But then even a little scattering would
quickly mix the positive and negative regions and so damp
the spot amplitude. The polarization would also develon a
cos i@ variation, but in contrast whuld be less sensitive
to scattering because it has feztures on larger angular
scales. The magnitude of P/A I is similar to that expected
in a flat universe (20%), except for the unpolarized
region.

Thus in open universes it has been shown that features

in the polarization arise on three different scales, while

27



the intensity anisotropy is featureless except for a single
spot confined to less than one percent of the sky; so
polarization could be more accessible to observation than

intensity anisotropy.

2.3 EFFECT OF COMPTONIZATION ON THE MICROWAVE

BACKGROUND RADIATION IN BIANCHI TYPE I UNIVERSES.

Stark (1981,b) calculated the dependence of the
polarization and quadrupole component of the cosmic
background radiation on frequency, optical denth and
temperature of a reheated intergalactic gas in an
axisymmetric Bianchi type I universe. He shows that
Comptonization effects on the polarization and quadru_
pole component can become important for gas tempetature

5%9
T 1 K
c 7
The observations do not esclude the presence of an

intergalactic hydrogen with density as high as the

critical density; however the gas temperature Te must



be 3 105 K in order to evoid detecting too much neutral
hydrogen, while it must also be T,_-(S.‘!O8 K in oprder to
evoid detecting too much thermal emission in the X-pray
region.

First Stark obtains the zero temperature ('Te = 0%)
solution for the radiation properties of a cold intergalac_
tic gas; this solution is in agreement with that found
by Basko and Polnarev (1980), Negroponte and Silk (1980).
Then using this as a zero order solution, he finds the
general solution for the intensity and polarization as
functions of frequency, angle and optical depth of reheated
gas for the finite temperature gas correct to O(ch/mtcz).

The solution is given in terms of the vector

To(3): (3

Q
7—’3 - . L ¥ .y
where x = hY ﬁ 3 with TmC temperature of the radiation
k ’.ZLC 6’2’-5
at the recombination time % and can be written in the

Crec ?

following way:

3= w, (*‘LL éﬁs‘;c(l/x)( ) 4@>(Q>
<_/§;> (4- ) %%‘;C(\q) S?T <f_>( )
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with 4/5’>

Substituing this form of solution into the radiative
transfer equation containing the temperature corrections
(see Stark 1981,a), he finds, after identifying the
isotropic 'and quadrupole contributions for the various

orders:

AL . KTe T %X (% cct%k§,43
I m, ¢* e*_4 z

This result agrees with that given by Sunyaev and
Zeldovich (186Q); the Comptonization effects change the
photon (and therefore intensity) spectrum for an isotropic
universe.

Let us now consider the Comptonization corrections to
the polarization properties. The ratio of the polarization
due to Comptonization to the zerco temperature polarization

]
% is found to be of order:

e

T —
o ~ 40 wax (4,T) Kle o phax (4,7 4.(198 )
go macl 5 /(Ok

Then appreciable changes to the zero temperature predic_
3-3 .
tion occur for temperatures T.3» 10 K (depending on

the optical depth of the reheated gas).



The ratio_ég depends strongly on the frequency (see fig.{0)
The change in sign around x~ 6 means that for x«< 6 the
comptonized radiation is polarized at right angles with
respect to the zero temperature result (i.e. it is
perpendicular to the meridian planed. We see a large
increase at high x due to the sharp fall off (and con__
seguent large frequency derivatives) of the Planck
spectrum in this region. The Comptonization contribution

to the quadrupole component (A T)T divided by its zero

temperature value is found to be:

QQI)T ~ 5T Kle A~ T ( e )
(DT’ e € 2 40 *40%k

Fig. 44 shows clearly that (as for polarization) the
Comptonization effects become rapidly more important at
high freguencies. The general frequency dependence of
the Comptonization distortions to the spectrum, polari_

zation and quadrupole component are all very similar.
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Polan'z'aﬁon and anisotropy of the microwave background
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Figure  The frequency dependence of the first order fractional Comptonization contribution to the
degree of polarization (divided by max (1,7) kTe/mec?) of the microwave background for the optical
depths of reheated gas indicated. The actual fractional Comptonization changes (i.e. the contribution due
to Comptonization divided by the zero temperature result) in per cent are obtained by multiplying these
results by.~ 2 max (1, 7) (Te/10°K).
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CHAPTER III

POLARIZATION OF THE MICROWAVE BACKGROUND
RADIATION IN BIANCHI TYPE I MODELS WITH

A HOMOGENECUS MAGNETIC FIELD.
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Summary. In this paper we study the anisotropy and polarization
propertics of the 3K cosmic background radiation in homoge-
ncous anisotropic cosmological models filled with a uniform
magnetic ficld. We gencralize the polarization transfer equation
to magnetic Bianchi models by adding a Faraday rotation term.
By means of a multipole expansion, we solve the transfer equa-
tion for the quadrupole and octuple, terms to the first order in
the collision time for Bianchi type-1 models. The solution is
. valid for the cosmological scenario with a secondary ionization
ol the intergalactic plasma and also for the time preceding ther-
mal decoupling. The polarization degree is found to decrease for
decreasing frequency according to a simple law, and the polar-
ization pattern over the sky is affected by Faraday rotation in

a characteristic way, quite different from space curvature effects. ’

The polarization properties of the background radiation could
therefore provide a powerful test for the existence of a homoge-
neous magnetic field, to be added to current astronomical tests.

Key words: cosmology - cosmic background radiation

1. Introduction /

The angular distribution of the cosmic background radiation
exhibits an anisotropy of about 1072 on the dipole scale, while
. contrasting results have Been reported on the quadrupole scale
(Fabbri et al.. 1980, 1982; Ceccarelli et al.,, 1982a: Fixsen et al,,
1983: Lubin et al., 1983a). Although the dipole anisotropy may
be entirely due to the peculiar motion of the Earth with re-
spect to the radiation frame of reference, anisotropics at some-
what smaller scales, if genuinely extragalactic, would be linked
to structures on a cosmological scale. It is therefore an impor-
tant problem to discriminate real cosmological effects in the
properties of the cosmic background. In this connection, it is
very useful to observe that in anisotropic cosmologies, as first
pointed out by Rees (1968), the radiation anisotropy is coupled
to the lincar polarization by Thomson scattering. Since large
scale polarization cannot be produced by the peculiar motion
of our frame of reference, a comparative analysis of anisotropy
and polarization would be a powerful test for cosmological mod-
els of the universe. g

Send offprint requests to: R. Fabbri
*  Present address: International School for Advanced Studies
(SISSA), Trieste, Italy

In fact, no positive detections ol cosmic polarization have
becn reported up to now. Only upper limits on the polarization
~ degree are available, often referring to the Rayleigh-Jeans region
{Nanos, 1979; Smoot and Lubin, 1979; Lubin and Smoot, 1981;
Lubin et al,, 1983b). The most stringent limits, due to Lubin et
al. (19%3b), are a few times 10”? for the linear polarization and
7.107 3 for the circular polarization, at large angular scales and
at a wavelength of 0.9cm. In the millimetric region Caderni et
al. (1978b) set limits of order 1072 on the linear polarization
at angular scales between 0.5? and 40°. For a comparison, the
models investigated by Rees (1968), Basko and Polnarev (1980)
and Negroponte and Silk (1980) predict polarization degrees of
10~* + 10~® for anisotropies of order 107*,
However, in order to correctly interpret the implications of
* the experiments we should carcfully examine the possible role
of depolarizing mechanisms. In fact, a depolarizing effect is in-
. «trinsic to the radiation decoupling process in any anisotropic
cosmologies (Brans, 1967). However, this was shown to be not
very important (Caderni et al., 1978a: Fabbri and Breuer, 1980).
More relevant is the problem of the possible influence of large
scale magnetic ficids. The depolarizing property of random mag-
netic fields is familiar in astrophysics. In our ¢osmological con-
text, however, the polarization degree of the 3K background .
can be affected also by a coherent magnetic field because of the
finite thickness of the last scattering hypersurface. As the back-
. ground photons traveled different path-lengths since their last
scatterings and were stibject to different Faraday rotations, the
primeval polarization tends to be damped, and can conceivably
be canceled out at least at certain wavelengths. Ceccarelli et al.
(1982b) first attempted to evaluate this effect averaging the po-
larization degree over the last scattering interval by means of the
familiar weighting factor e ", with t the opticai thickness of the
cosmological medium. However, the work of Basko and Polnarev
(1980) on nonmagnetic models shows that a brute force weight-
ing procedure is not applicable because of a peculiar anisotropy-
polarization coupling. As also noted by Negroponte and Silk
(1980), simplilied approaches are not successful in calculating
the polarization, while they work much better [or the radiation
anisotropy.

The only reliable method to simultancously evaluate both
the anisotropy and the polarization of the cosmic background is
to write down and solve a general relativistic transfer equation
for the Stokes parameters of the radiation. Several authors have
studied the transfer equation for homogeneous anisotropic cos-
mologies in the absence of magnetic ficlds. The solutions for
Bianchi type-I models have been investigated by Rees (1968),
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Anile (1974), Basko and Polnarev (1980), Negroponte and Silk
(1980), and Stark (198). Tolman and Matzner (198f) extended
the investigation to Bianchi models of type I, V, IX and Vi,
namely, to the classes of homogeneous models which are direct
generalizations of the standard (closed, flat and open) Fried-
mann cosmologies,

In this paper we anaiyse the effects of a homogeneous mag-
netic ficld on the anisotropy and the polarization of the back-
ground radiation in Bianchi type I models.

To this purpose, in Sect. 2 we generalize the transfer equation
for polarized radiation to the case of magnetic Bianchi models
filled with a cosmic medium at rest in the homogeneity frame.
No restriction is posed on the Bianchi type in this general
formulation. However, we assume a non-relativistic intergalactic
medium, so that the transfer equation is obtained by simply
adding a Faraday rotation term. In the following sections we re-
strict ourselves to type I models, and solve the transfer equation
(to first order in the expansion anisotropy) by expanding the
photon distribution functions into muitipoles up to the octupole
term. The solution is to the first order in the mean free time for
Thomson scattering. Therefore it reasonably describes the state
of the radiation ficld down to low redshiits only in the case of
a substantial reheating of the intcrgalactic plasma.

Our solution shows that, while the anisotropy pattern is

« weakly affected by a cosmological magnetic field, substantial

modifications are produced in the linear polarization state. The
polarization degree monotonically decreases for increasing radi-
ation wavelength, while the polarization pattern correspondingly
tends to change from quadrupolar to octupolar. The octupole
term would dominate in the polarization pattern at observation
wavelengths i, > [0cm for a magnetic strength (at the present
epoch) By ~ 107° Gauss.

Admittedly, the existence of a so high magnetic ficld is quite
controversial. Evidence for a ficld larger than 107° Gauss was
claimed to arise from measurements of the Faraday rotation for
the radiowaves emitted by quasars (Soluc et al., 1968) and of the
rotation measure field within spiral galaxies (Tosa and Fujimoto,
1978: Solue et al., 1980), Removal of local (i.e., Galactic) con-
tributions from the Faraday rotation of distant sources, how-
ever, leads to upper limits on B, (Ruzmaikin and Sokoloff, 1977);
a recent limit claimed by Vallée (1983}, is as low as By < 3 x
10 """ Gauss. and contradicts the argument based on the galactic
structure. Further, the analysis of Welter et al. {1984) shows that
the extragalactic components of the rotation measures of about
100 QSO’s can be explained by magnctized discrete clouds along

the line of sight. In this connection, we also recall that Lawler -

and Dennison (1982) provide evidence for strongly inhomoge-
neous ficlds in the intracluster medium. In both cases, the in-
homogeneity scale is some lens of kiloparsecs.

Although the presence of extragalactic magnetic ficids may
render the detection of cosmological effects more difficult, we
believe that the cosmic background may offer a better test than
discrete sources. Since a universal magnetic field would produce
a large-scale polarizatipn pattern, experimentalists can search
for low-order harmanics with large-beamwidth detectors, so that
small-scale effects are smeared aut. {We also point out that the
cosmic background polarization probes the magnetic field at
redshiflts larger than those of QSU’s, where magnetized discrete
clouds are. probably absent).

A serious problem which cannot be removed by largc-beam’f
width detectors is, of course, the large-scale distribution of the

I

magnetic field in our, Galaxy. However, as we shall see below,
even field strengths as low as ~ 10#MGauss would produce
measurable effects in the cosmic background polarization, and a
spatial analysis couid separate them from local contributions.

The magnetic field effects turn out to be approximately pro-
portional to BOJ%. (This is only a low-ficid approximation in our
cosmological context!). Such a frequency dependence, as well as
the spatial distribution, make them quite different from the cos-
mological curvature effect discovered by Matzner and Tolman
(1982). .

Therefore, the 3K background radiation might be usefully
used as a cosmic probe for an intergalactic magnetic field, effec-
tive over a redshift range much larger than the one of astro-
nomical sources. On the other hand, any reasonable value of
B, implies negligible eflects at i, ~ 1 mm, so that millimetric
measurements of the polarization pattern would provide clean
information on the geometric structure of the universe.

2. The transfer equation
Homogeneous cosmologies can be described by the metric

ds? = —de? + ez’(e”),jE’Ej,

with E' the three homogeneous one-form fields which are invari- -

ant under a transitive group of motions on the spacelike hyper-
surfaces (Ellfis, 1967). One can also introduce the orthonormal
frame w' = e*(e”), ! and, from this, the usual polar coordinates
{0.9} on the celestial sphere. For the homogeneity of space, all
physically relevent quantities depend only on 1,  and ¢. The
transfer equation for polarized radiation propagating in a me-
dium of Thomson scatterers at rest in the homogeneous frame
can be written as

0 ftdy ORd0 SR ode .
P LT S LR I ) AP
a Cv dt + cll di * co di + Ril.p) -
{ 1 .
= i[—ﬁ ”{4;} P(Q.Q’)-:?J, (1

where the symbolic vector n* can be expressed in terms of the
standard Stokes parameters and the corresponding photon oc-
cupation numbers

I ny .
" c|Q ng
= — = . 2
. U ny ’ @
vV ny

Also, Iis the photon mean free time, P is a standard transfer ma-
trix (Chandrasekhar, 1950) describing Thomson scattering, and
the matrix

0 0 0 0
- dy (0 0 2 0
=2 - 3
R {0 -2 0 0 (3
0 0 0 0

describes the variation of the Stokes parameters due to the trans-
port of the orthonormal reference vectors for polarization along
the photon geodesics. The angle ¢ measures the corresponding
rotation of the polarization vector, and its time derivative was
. given by Dautcourt and Rose (1978). The transfer equation can
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also be written in a more compact way introducing the complex
photon distribution

Sl 1 1wy ;
N=(zﬂ)=<-}}153(g—iu)' _ “

.

Then we can write

N oNdv AN d eNdp _dy . .

d o wa T wa A iy MN
1 . - .
=7[—N+j'dﬂ'(ﬁ‘-N+ﬁ"N')], (5)

. 00
where the matrix M = 0 ']), and the star denotes complex

conjugation. The matrices 7' and §7, which give the emission
term for Thomson scattering, are:

p -

' 1 ey
; n'h0. d)n 0. 1) + 3 0, pIng0r, ¢') + 3 -g n(0, $)miAr, )
3 3 . _,'Jgd M
~3 m0, @In A0, ), 3 m'g, ¢)inr,({7'v 3]

S

J n'ho, gyn o, ) - 2 (0, gt ¢y + 1. 3 n(0,$)m (07, $)
- 8 4 2 4
3

=m0 gm0, 4,

3
i 3 m0.p\m g, $7)

- (6)

where n and m are the polynomials formed from spin-weighted
spherical harmonics (sce Dautcourt and Rose, 1978). The prop-
ertics of a specific cosmological model affect Eq. (5) through the
di d¢ dy dv .
i ac I ai and I, which
in turn depend on the time evolution of e* and e’} )

The inclusion of a source-free homogeneous magnetic field
affects both the evolution of the cosmological metric and the
structure of the transfer equation. -

In practice, we shall restrict ourselves to cosmologies where
both the anisotropy of the expansion rate and the magnetic ficld

explicit expressions of the functions

“are small. This means that the averaged expansion factor e*

W=A+1264 554714 =~ 38512 — 7252471,

evolves as in the isatropic limit, i.e. > (1 + =) 7!, with = the usual

_cosmological redshift. Also, the magnetic field does not contribuic

to an appreciable extent to the cosmic matter density: for By as
large as 10°° Gauss at = = 0 we should have Pricia/ Mmarey < 1078
for 2 £ 10% The presence of a magnetic ficld, however, affects
the behavior of the anisotropy of the expansion. For instance,

“fet us consider the dust-magnetic solution given by Thorne (1967)

for axisymmetric Bianchi type-I (ie.. euclidean) modéls, ‘whose -
geometry is described by the metric

ds* = —di? 4 Adx? + dy?) + Wid=2
Here 4 and ¥ denote the cosmic scale factors

A=) = o),

W= eef),,.

‘ Thor?é's (1967) solution is

! (A + 65)(A — 3512,

Nk
(7

where £, is an anisotropy parameter, § = Piu, and the constants
B and p are defined by

R

Then the fractional anisotropy of the expansion rate is given by

1 dW /1 dA “_l~3a,,(l+z)3’z+
W dt \A di T4

ol + 2)
Rglz 6 ——,

7 (8)
where Ry denotes the value of (A2W)'13 at the present epoch,
Therefore, the expansion anisotropy is the superposition of two
modes, £, and J being mutually independent. The first mode,
which decay as (1 + z)*2, is present also in the absence of the
magnetic field; the second mode is excited by the magnetic field
(0 being proportional to the field strength) and decay more slowly,
as (I + z). Since according to observation the anisotropy of the
expansion rate was at most of the order of 10~* at z ~ 1000, it
can be shown that the mode driven by the magnetic fieid would
dominate after the thermal decoupling for B, ~ 1078 Gauss; also,
for By = 1077 + 10719 Gauss, this anisotropy mode will become
more important than the first one at later epochs. Other solutions
for type-1 magnetic models have been provided by Jacobs (1969).

* Their qualitative behaviors for large times and small anisotropies

arcsimilar. In other Bianchi types, one also finds curvature driven
modes, whose time evolution is not relevant to our purposes.

In the following, the temporal evolution of the {small) anisot-
ropy of the expansion rate does not need to be specified. In order
to generalize the transfer equation to the magnetic case, we only
need to make some assumptions on the thermal history of the
universe. .

Here we assume that the cosmological medium can be treated
(1) as a “cold” plasma, so that we can neglect kinetic encrgy
terms and relativistic effects, and (2) as a tenuous gas, endowed
with characteristic frequencies much smaller than the radiation
frequency. Synchrotron emission and absorption can thereby be
ignored, and collisional absorption is negligible in comparison
with Thomson scattering.

Let us discuss briefly the above assumptions. The cosmo-
logical plasma can be treated as cold for clectron temperaturcs
T, < 107K (cf. Stark, 1981). This condition is well satisfied for
a long period before the recombination of the primordial hydro-
gen. and in particular close 16 the thermal decoupling (= = 10%),
For the sccondary ionization of the cosmological plasma, models
have been constructed where T, can be as large as ~ 107K at
z >~ 3 (Sunyaev and Zeldovich, 1970; Field and Perrenod, 1977).
However, so high temperatures are not demanded by observa-
tion, and for the sake of simplicity we shall maintain the low-
temperature approximation as in Egs. (1) and (5).

As to assumption (2), we obscrve that the mean [ree path
for Thomson scattering is ¢l ~ 102°(1 + 2)"?cm for a present
electron density n,o =~ 10 *cm =2, It is then much greater than
the Larmor radius, which is of order 10°°%1 + 2" *cm or
10'2(1 + 2)"2cm for By ~ 107° Gauss or 107" Gauss, respec-
tively. However, the electric force acting on electrons during colli-
sions is still much larger than the magnetic force; therefore the
Thomson scattering terms in the transfer equation keep the same
form as in the absence of the magnetic field. Next, let us estimate
the plasma frequency w, and the gyrofrequency w,,, which are
given by

dnne?\'?
m, = .
’ m, -

Wy = ,“ 9)

o)
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with obvious meanings of the symbols. The ratios of w, and ay,

to the radiation frequency are roughly given by
Yo 210791 + 12,
w

Wy

2107131 4 z), (10)

w

taking the values n,, = 10" %cm™3, B, = 107° Gauss, and w =
10''(1 + z)s™". Since just before the thermai decoupling both
ratios are as small as ~ 10~", for the entire period under inves-
tigation we can treat the radiation transfer in the limit of “weak
anisotropy” of the plasma. in which the two natural magneto-
ionics modes are regarded (a) as transverse and (b) as having
identical ray paths (sce Mclrose, 1980). In this rcgime the only
important effect produced by a cosmic magnetic field is the
Faraday rotation. It is well known that in the _quasicircular
approximation the axial ratio of the polarization cllipse of the
two natural modes and the difference between the two refraction
indexes are:

~

cosf*  ay sin?(*
[cos 0% 2w cos0*

2
An = %’—’1 [cos %},

(11

where 0% is the angle between the magnetic ficld vector and the
direction of propagation of the radiation. Moreover, since the re-
fractive index is very close to unity, we can assume that the pho-
ton paths are space-time null geodesics.

In conclusion, our transfer equation will be obtained by sim-
ply adding a Faraday rotation term to Eg. (1) and since (1) is
wrilten in a polar system associated 1o a Jocal orthonormal frame,
such a term has exactly the same form as in the ordinary plasma
physics. Therefore, taking the magnetic field in the 0 = 0 direc-
" tion, we have

¢ dl N
0 dr

_l _+5d§2’
T " 4n

wh:‘:r%natrix Feg has the form

ciody

cn

&t

hode

e + Rit,0,¢)- 4

\Q‘Q')'!?J‘*'fm'ﬁv (12)

0 0 0 \ 0
. 0 0 -r 0
Frp = ! ' (]3)
0 . 0 -—r, ,
0 0 ry 0
with
2T | T —1 |
L= o= . mndn, ro= —_, - wndn
v R e T +1
Using (11) we obtain also
- m,fu);,, c0sfl — mf,n;,z, sin?f cos @
? (0] lcos a
2,2
[CHOF .
rg=— 2’(’”3 sin?f. (14)

In our cosmological context, to the zero-th order in the expansion
anisotropy we can write

0w, _C
w 7 . (15a)
where
4ne’B .-
C=—— "9
miorw} ) (15b)

is a time-independent adimensional quantity, which may be of
order unity for reafistic values of 8, and wq. Thus, the leading
term of r_is important in Egs. (12) and (14), while the terms pro-
portional to wlwhw™? = (C/l)(wy/m) can be dropped.

Equation (12) holds for homogeneous cosmologies of any
Bianchi type (with the cosmic matter at rest in the homogeneous
frame of reference). The only limitation on the model is due to
the fact that a homogeneous magnetic field is only compatible
with Bianchi types I, II, VI,, VI, and VII, (Tsoubelis, 1979).

In the following we shall restrict ourselves to Bianchi type I

“spaces. In such spaces the terms (¢A/80)(d0/d1), (20/dp)dp/dt) and

R - i give contributions of the second order in the shear tensor
and can be neglected in our first order treatment. Thus we have
simply :

‘o didv 1

" - (16)

EI“= l[ﬁ——!%%ﬂ(ﬂ,ﬂ‘)'ﬁ}—f-f}k'ﬁ.
‘Faking also advantage of the simplified form of Feg (where in
particular rq = 0), it turns out that it is veiy convenient to rewrite
Eq. (16) in terms of the distribution functions 4N and ,N, which
are eigenfunctions of the operator #¢p, corresponding to the ei-
genvaluesry = Qandr, = iw dn, respectively. {In this approxima-
lion frp truly represents the Faraday rotation, in the strict sense
of rotation of the polarization planc). Then the transfer cquation
takes the form:

Pl Dl = [ON 1 g + pa“Nv].
%;X fli%’ ‘;—: = —; [ZN ~f ‘g (P3a 4N + pie AN*)]
~2% N, (17
where
2(%=—(1:c050, (18)

and y is the angle between the major axis of the polarization
ellipse and the reference vector for the polarization.

3. Solution of the transfer equation to the first order
in the mean free time..

The photon distribution functions oN and 2N have spin weights
zero and two respectively: thercfore they can be expanded by
means of the spin-weighted polynomials. which form complete
orthogonal sets of functions in the spaces of square-integraple
functions of appropriate spin weight (Dautcourt and Rose, 1978).

N
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Thus we have From the first of the equations (21) we sce that the isotmpi-'
N = oNo + oNit + 0 Nyl + Nt 4+, ?ally redshifted monopole intensity is consFth?d to the first order
in the shear. Moreover, the circular polarization modes, namely
‘ (19 1m N, Im N, and Im Ny, are not coupled to any other Stokes
In the (N expansion, nl = (sin 0 cos ‘?. sin 0 sin ¢, cos 0) is the unit’ p'arar'nctcr; 50, since cosmologically significant circular polariza-
vector and N tion is not expected to be present primordially and would be
strongly damped at any rate according to (21), we set V = 0.

N = Ny +  Nym™ -,

' =n'n‘—-1 5. ' Introducing further the adimensional quantities I, and Q
3 defined by
. {
ik plabal . (§ikp! i1,k &l ! N
n n'n'n 5(6n+6n + 64n'). A (20a) Re ™2 = I,,
o''o
In the ;N expansion we have - . N
i x Re 2% = Qu. . (22)
m- =nmnn, DNO
"otk i x I
m* = it + 4 mtl (206) e get the following system of equations
where '
R . i d 1/9 3
t [en i on : =1, —¢&a, = —-(-_1 + = Q.)
R I T 20¢ i if 1j ij |
"=A (:-0 *sind ;-4;) @0 o [\1o 7 10
. . . . ¢ 11C Jk3 i3 1 2
is a complex quantity of spin weight . F Q= il3 (e*3Qu + 770y — 3 Iy— 3 o5l (23)
The number of indices of the n-polynomials and m-polyno-

mials charaterizes the multipole order of the corresponding con- In the very carly stages of the universe aithough there can

tnbuu'?ns to anisotropy and polur:jzlanon. "‘I;lhus for instance, n' be a large expansion anisotropy and an intense primordial mag-
and m' are quadrupole terms, and n'" and m ™ are octupole terms.  petic field. the interactions between matter and radiation are so
‘ ' [requent, that we may consider the radiation field as being uni-
form, isotropic and unpolarized; thus only the monopole differs
For the moment, let us truncate the expansions (19) to the quad- from zero. Subsequently, when we get close to the recombination
rupole order, as done by previous authors dealing with non-  of the primordial hydrogen, the polarization degree of the radia-
magnetic models. Using the orthogonality relations between  tion becomes appreciable. The mean free path for Thomson scat-
spin-weighted polynomials and keeping only the terms 1o first  tering being still small in comparison with the Hubble radius,
order in the shear, we obtain for the expansion coefficients (No, we can use the approximation appropriate to optically thick
oNp oNyyand Ny stages, i.., solve the equations to first order in [ (Dautcourt and
Rose, 1978). By this approximation, we get

3.1. Solution to the quadrupole order

—

foN 1
Qo _ g Nyi = —=iImgoNy, ,
cl l . 9 3
ANy, . { . ) i‘d’u“‘ﬁQu:f'U’uv
TR N = -7 (Re oN + LImoN)),
) 2 1 2 1 .
. ! L T 3 "3y 2
2Ny . 1/9 3 3 Iy + SQ” 3 ClOue™ + Q™) 0 » (29)
__;__—E(ONUI+G’|]0N0)=} —‘—l‘ EReON']+ERclN'! R . .
We thereby obtain an algebraic system of equations. We will
+ilmoNy ), give its explicit solution in the case of (Bianchi type-1) spaces
2 with diagonal metric. In this connection, we recall that the dia-
Calty ENjg=—— HoNg — 1 (1. Re oNy o gonalization of the metric tensor in magnetic models, as shown
at ! ! I\5 by Ryan et al. (1982), is possible if and only if the magnetic field
y RY p
2 . is parallel to one of the cigenvectors of dgyy/dt on a nonsingular
*s Re Ny + i Im Ny ), (21) ¢ = const hypersurface. Setting a;; = 0.d;; in (24), we obtain the
. lution
where ' 50
v @8N Y G 1l cran 4
=N o - : SR 3 1+4C) :
. i 2 B C*dH
&;; denotes the shear tensor given by Ou= -3 &l [a,, + S,y = 612) 2]‘
d . d , 1 +4C
204 = @ (eMede” My + n e Mfe" o g ;Eé” ,
e g . . 127 91 4 4CY
and (identifying the i = 3 direction with the magnetic field vector, e
ie. the 0 = 0 direction) . 0= 2 LICAH
cH 1 (M + SHhS 4 54 nj) v B3+ act
= - T (L L. .
Y 6 o ’|J=132=Q13=Q31=0~ . (25)



where 4H = a4, — g, is the azimuthal anisotropy of the cos-
mological model. Since, as we have remarked, this solution de-
scribes the state of the radiation ficld only before recombination
and after a substantial reheating of the cosmological plasma, in
general we should integrate Eq. (23) numerically in order to
derive the anisotropy and polarization of the background radia-
tion at the present epoch. In this case, Eq. (25) provides the “initial
conditions™ at some redshift z = 1500 to be used for the intcgra-
tion. However, the memory of thc’nrly events is lost if the optical
depth between the secondary ionization and us is large: the period
of free propagation between the recombination and the onset of
reheating does not affect the subsequent state of the radiation,
and (25) is an approximate description of its properties at low
redshilt. Numerical calculations performed by various authors in
non-magnetic modcls show that the first-order analytic solutions
are reasonable approximations down to z = 0 (the observation
epoch} if the reheated gas is able to scatter each background
photon at least ~ 10 times.

‘Therefore, although Eq. (25) cannot cover all of the usual
cosmological scenarios, still it is worth discussing its physical
implications.

First we observe that in axisymmetric Bianchi type-I models
the expansion coeflicients have the same form as in the absence
of the magnetic field: because of 4H = 0, the oll-diagonal coef-
ficients vanish; also Iy, = I, and Q,, = @;,. If, on the other
hand, the universe is not axisymmetric, the Faraday rotation
gives rise to non-vanishing ofl-diagonal terms (besides modifying
the diagonal ones). The temperature and polarization pattern
may be drastically changed. For example, consider the Stokes
parameters Q and U:

-

1 3 o
4] ='_j ('h‘\--‘:[oNo {i; (7y,+ 755)sin*0

i
+ m (! + cos* O)(sin 2¢p — 2C cos 2:;5)},

U= - ;"” iGNy ~— T af & (sin2¢ + "( cos 2¢). (26)
In non-axisymmetric Bianchi I spaces we have, in the absence
of the magnetic ficld, U = 0 when ¢ is an intcger multiple of 90°.
(The polarization is there parallel or perpendicular to the prin-
cipal planes of the shear, according to whether @ is positive or

“negative). In the presence of a magnetic field, U vanishes on the

“cosmic meridians™ corresponding to

g2 o 20

Qn -0
For B, = 107 % Gauss and /, = | cm. the zeros of U are displaced
by 6% for B, = 3.107,"" Guauss we have the same displacement for
jp=6cm. *

A more detailed dxscueston of the linear polarization pattern
will be given after calculating the octupole approximation. Before
closing this subscction, we notice that a non-vanishing circular
polarization arises when we consider the full expressions of r,
and rq (see Eq. (14}). Let us introduce the quantity

= -2C. (27)

m,,m [

e

(28)

which is <107'3(1 + ) for the above values of B, and i,.
Equation {25) gives the solution to the zero-th order in «, and

can be used to generate the first-order solution by iteration. Wc ‘
find .

Im N,
RegN,

-

maNy eCQy,

Re Ny

so that Bianchi type-l models predict a circular polarization

! enormously less than the lincar polarization.
, , N

3.2. Solution to the octupole approximation

Let us now consider also the octupole terms in the expansion of
the distribution functions (N and ,N. Inserting {19) in Eq. (17)
keeping the oN\p and ;N terms, we find that the radiation in-
tensity in the octupole term is not coupled to the monopole
and quadrupole terms. If we suppose oN,;, to vanish initiaily,
they will remain identically equal to zero. Otherwise, they are
strongly damped and result unmeasurable. The equations for
the lincar polarization cocfficients ,N; and ;N are:

a

. 1 - 1
Ez{vu—fzzNu=f[ (CuzNu+5'Dﬁ sz,,)+§RcoN,,

2
+ 5 Re Ny +ilm zNu]v

é . 1] 7iC
I: 3 (Efx 2N

5; zNux - i INl]k = —7

+ Ff/’:' Now) + zNun]» (29)
where -
dQ
DA — Mr(milyend 2
1 _[m (m'y*n o
. Eﬁk = m”(mm)'nj
F:,h = I m’l'"(m”k)‘nj
If we introduce the adimensional Stokes parameters:
N
ReZ =9,
DN QU
N
Re 20Uk _ .
€ N, Qip
N
mit-y,,
OND ~.
N
mi2-y, (30)
olNo

and scparate real and imaginary parts, Egs. (29) take the fol-
lowing form:

é 11 L 2
(?_{Qijz l 5’11+ Q:]“C;( Qu
i3 5
+e°0Q, +7 Uys Ie,
é [ C .
(3—1 U(jk _7 {qu + § l}sleu + ‘SIJQ;k + ‘5”Qn

5 .
-3 (6703 + 8"Q,, + ‘an)jl}» (31)
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= Uy= - 7 {U,, + C[—S(r/’lu,, *2 -+ Uy
5
+3 Quz:l}v
f@ I C
& Qn=—; {Qu‘x *3 [éhuu + 65U, + U,

2
-3 (3"Uy + 6"U,, + JUUJ,)]}. (32

From Eqgs. (32) we see that the coeflicients Uy, and @,y are cou-
pled to cach other, but not to other Stokes parameters. Since
Egs. (32) again contain damping terms on the right-hand sides,
we shall henceforth limit ourselves to Egs. {21) for I); and Egs.
{30 for Q,; and U, This means that no octupole term appears
in the anisotropy pattern.

From the second of Eqs. (31) we see that, if the quadrupole
term Q,; differs from zcro, an octupole term is produced in the
polarization, which in turn affects Q,;- This coupling arises from
the presence of the magnetic field: for C = 0 all multipoles of
order higher than the quadrupole would vanish (to the first order
ina,) :

Again we solve the equations to the first order in the photon
mean [ree time [.

The quadrupole coefficients for the anisotropy of intensity are

L1126 + 25¢C? 2C*4H
BT 711
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As already remarked, no octupole terms are present for the in-
- tensity. The ‘octupole coefficients for the linear polarization are
given by

Q= - (34)

2C*4H
ACT+{1 + 3 c? ’
2t

2
27

¢IC
5
| +=C?
+2!
T33

3
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2

5
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13(
= {%12— 3 3
4C* I +--C?

+( +21C)

5
+=C?
21

" (35)

These solutions tend to solutions previously given by Tolman’
and Matzner (1984) in the limit C — 0. The coeflicients 1, and
Q,,in Egs. (33) and (34) differ from the corresponding expressions
in (25) because of the coupling with the third order multipole.
However, the corrective terms are proportional to C2. Therefore,
if we truncate the multipole expansion to the quadrupole terms
ab initio, the resulting quadrupole coefficients are correct up to
the first order in C. The corresponding approximation is good
only for low ficlds (e.g., By < 107° Gauss at i, = | cm).
- The octupole coefficients are of the order of C times the
+ quadrupole coefficients. In fact, C may be larger than unity at
 sufficiently large wavelengths. For instance, C > 1 al'i; 2 10cm
for By = 107° Gauss. Therefore the polarization octupo'e coef-
 ficients may become more important than the quadrupole ones:
' however, since Q) = ¢&la,/C? for C — oo, also U tends to
+ zero as C~'. Therefore the large-scale polarization is destroyed,
; whereas the quadrupole intensity approaches the value Iy =
v 12¢15,,. For axisymmetric, Bianchi type-1 models we confirm the

I~
&



result that the quadrupole off-diagonal terms vanish, but the
octupole coeflicients U, ,,, U,,5, U,y, appear, and the quad-
rupole diagonal coeflicients are affected accordingly.

4. Polarization and anisotropy patterns of the background
radiation :

The degree of linear polarization is defined by the relation:

_ (QZ + UZ)!/Z
—~—T—~-

P {36)

The direction of polarization can be described by the angle
defined by . :

i
' .
y= 3 arctg 6 37

To the octupole terms we get !

|
Pl = [Re{Qym" + iUym'3) ) + [Im(Q;m" + iU;m™]E (38)

and
1 ol 13

¥ = 5 arctg| @y + iUy ) (39)
2. Re(Qm" + iU,,,m')

Using the results of the previous section, we shall first give
explicit expressions for P and y in the case of axisymmetric
models. From Egs. (34) and (35) we get very simple expressions:

la,, sin? 9 2
P=&1—§‘n—q(l+ﬁczcoszﬂ> (40)
]+_‘]C“
and
-l t 3(' a 41)
1--2-arcg§ cosfl . .

Clearly, the polarization degree vanishes along the symmetry axis.
The maximum polarization is for 0 = 0,,, where

0, == o for €< T
2
25 +9C? , 50 :
anz()m = g '~—-9‘~C—E£- for C* > 6 (42) I

As to the polarization direction. we observe that for C = 0, the
angle y vanishes and the polarization direction is parallel or
perpendicular to the cosmic meridians, according to whether the
universe is expanding along the symmectry axis more or less
rapidly than the average. (This holds truc also for the exact
solution, not only to the first order in /). For C #0 the
polarization direction is tilted by an amount depending on the
photaon propagation direction. On the cosmic equatorial plane,
0 = n/2, we have 7 = 0. Near the poles, we have the maximum
rotation

ic

Im = F=-arclg 5 (43)

O

(Oa]

P2

w

which increases with the ratio By/w}. We have x,, = 2° at
o = lem for By =10"° Gauss, and at 1o =6cm for By =
3.107" Gauss. -~ . - ‘

The effects of a cosmic magnetic field on the polarization may
thereby be quite large. On the other hand, the anisotropy pattern
for axisymmetric models is described by

4l =1, - I;,)(cos’O-—%)

5 2
2+-7-C

——{loy, (cosl 0 - 1)
ct 3

3
‘+'7-.

(44)

For any values of C, the anisotropy amplitude is fittle different
from its value in the absence of 3 magnetic field, and the angular
pattern remains quadrupolar. The ratio P/A4l, which is of order
unity for C « I, decreases for increasing magnetic field and goes
like €™ for large C.

Therefore, a powerful test for the existence of a cosmic
magnetic field would be, rather than the anisotropy, the
frequency-dependent polarization pattern. For By =0, P is
practically constant in the Rayleigh-Jeans region, although it
changes like /5 ! in the Wien region. In our axisymmetric case, in
the Rayleigh-Jeans limit

(45)

where 4 = e%j(nc*m,a,). For B, as large as 1077 Gauss, fairly
strong variations would occur in the centimetric range: the ratio
(45). which is close to unity for 4o = lcm, would be reduced to
about } for 1, = 5cm. For By = 107" Gauss the same consider-
ations apply to the range J, = 10 = 50 cm,

We note also that the variatlons of P are of the second order in
B, and fourth ordér in J, for the hypothesis of axial symmetry
around the magnetic field vector. For Bianchi type-1 non-

- axisymmetric models, the magnetic corrections are of first order

in C and therefore in B,. We find that, to this order of approxi-
mation, in the Rayleigh-Jeans limit, the polarization degree is

. (“Z - 2 2
= (001 + 039 sin®0 ¢ 22~ Gl cos?sin? 2¢
cos?0 + | i, — g2
— cos? 2(;5] - —uTi (cos?0 + 1)

sin? ) cos 2¢ — 1Bigl(o3, — ay1)F sin 2¢

2 11 cos40~_16cos’0+ 7

cos 53 + (03, — o},)sin2¢
- 3,33c0s?0 4+ 105 g, —
sin? 0 T80 N_SI L sin? 2()

sin 2¢(ay, cos® ¢ + o, sin? #]. (46)
Thus even in the absence of axial symmetry the ratio of the
polarization degree to the anisotropy of intensity is of order
unity for low values of @Bo43, and decreases substantially for
aByig 2 1. ‘



8. Conclusions

"o this paper we evaluated the effects of a cosmological magnetic
field on the background radiation in Bianchi type-1 spaces, to the
first order in the expansion anisotropy and the Thomson mean
free time. v -~

We have seen that the polarization degree is a decreasing
function of the parameter C = 4ne’By/c?mla m?, which is
proportional to the rotation of the polarization plane betwecn
two consccutive scatterings. Expanding the radiation field up to
the octupole terms, we have found that, aside from a frequency-
dependent multiplicative factor, the anisotropy pattern of the
radiation is the same as in the absence of the magnetic {ield, being
quadrupolar. However, the polarization pattern is substantially
modified, because the Faraday rotation produces a coupling
between the quadrupole and the higher-order multipoles of the
polarization. An obviously important test for the existence of a
cosmic magnetic field is the decreasing of the polarization degree
P itscif with the observational [requency: while for the special case
of axisymmetric Bianchi type-I models the variations of P are of
second order in B, and fourth order in Zq. in general for Bianchi
type-I non-axisymmetric models. the magnetic corrections are of
first order in B, and second order in Zo. However, since we should
be able to discriminate the effects of the Galactic magnetic field,
also the observation of the polarization pattern constitutes an
important test. As a matter of facts, in the presence of a cosmic
magnetic ficld. the polarization pattern would be tilted across the
meridians of the celestial sphere by an angle y, whose dependence
on the sky direction should be consistent with anisotropy
measurements. In this connection, we also notice that the
cantribution of the galactic field B, to the rotation measure is
estimated to be about l4{cotg h[ sinlm™2, where b and [ are the
usual galactic coordinates {cfr. Ruzmaikin and Sokoloff, 1977).
For By =3 x 10" Gauss, Eq. (43) implies an effective cos-

mological rotation measure of about 20m - 2, 50 that the cosmic )

<" polarization eflects would be comparable in magnitude to the
galactic contribution, but with a different spatial distribution.
Therefore, we could still detcct the existence of such a small
magnetic field. Also, inhomogeneous extragalactic fields with
random rotation measures of ahout 50m - 2 (Welter et al., 1984)
should not be a scrious probiem for the detection of cosmic cflects
of the above order of magnitude. -

As Tolman and Matzner (1982) have shown, also a positive
spatial curvature gives pjace to a distortion of the polarization
pattern. but in a quitc different way: in the absence of a magnetic
ficld, the contribution of curvature to the rotation angle is
independent of the direction of propagation of the radiation, and
moreover independent of frequency. So we could easily distin-
guish between the two cases by means of a spatial and/or spec-
tral analysis. v

In conclusion. even for magnctic ficlds much lower than
claimed by Sofue et al. (1968, 1980) we can have measurable cffects
on the cosmic backgrodnd polarization in the Raylcigh-Jeans
wavelength region. On the other hand, for reasonahble strengths of
Bq. the intergalactic Faraday rotation cannot dopolariz_f the

cosmic radiation at least around ‘o x Imm.
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SECTION II

SMALL SCALE POLARIZATION OF THE MICROWAVE

BACKGROUND RADIATION.



CHAPTER 1V

MICROWAVE BACKGROUND POLARIZATION IN THE

DIRECTION OF CLUSTERS OF GALAXIES.

Sunyaev and Zeldovich (1980) have pointed out that
small scale polarization of the microwave background
radiation is produced by scattering in clusters of
galaxies. X—-ray observations have showﬁ that rich
clusters of galaxies contain a large amount of hot
intergalactic gas (Forman et al., 1978; Cooke et al.,
1978). Hence clusters of galaxies‘may be considered
as fully ionized gas clouds with high temperature and
finite optical depth with respect to Thomson scattering.

The scattering of the cosmic background radiation
on these clouds of intergalactic gas opens the possibili
ty of measuring the velocity of each cloud relative to
the coordinate frame determined by the background
radiatiOn.

The radial motion of the cloud produces a variation

of the background temperature in the direction of the

L



cluster:

T
LQ-UrT.
T ra

Here T 1is the optical depth of the cloud with respect to
the Thomson scattering, VU, is the radial component of the
peculiar velocity of the cloud (positive U, corresponds
to a recession velocity exceeding that corresponding to
Hubble's law). Superpoded to this effect there is another
temperature variation due to scattering on free hot
electrons (Sunvaev and Zeldovich, 1970); however this
latter effect is frequency dependent , so measurements

at two different wavelengths (one in the Rayleigh-Jeans
region and the other iﬁ%Mien region) could give an
estimate of the radial velocity of the cloud.

Moreover, we have the possibility, at least in principle,
to measure the tangential component of the peculiar
velocity of the cloud v using the observation of the
microwave background polarization of the scattered

radiation.In the clusters of galaxies there are two

different polarizing effects.

a) Scattering on a single electron.

A single moving electron sees an anisotropic background



radiation field. In each direction the Planckian form of
the spectrum is conserved; however, the radiation
temperature depends on the angle Q'between the line
of sight and the\direction of motion according to the
well known formula:
To= T, g;‘;_z
AP Mo (38)
where ﬁ= %} Tos Mo = cos%% and the angle%@ are measured
in the rest frame of the electron. The expansion of eq.
(38) in powers of ﬁ has a quadrupole component of order
A
Toe Ty (4o ot p'( po- 4w
(39)
The angular distributioqﬁf the radiation intensity has
a form:
'S:-_Sr (’i‘(’ Q/IA0+C (/.4&-.13.)4..,)
(40)
Then after scattering on a free electron linear polarization
must arise in the direction perpendicular to the direction
of its motion.
Let us calculate the polarization degree using the
scattering matrix (Chandrasekhar,1860). For a single

scattering we have:
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1
I, () g d#‘
IA,Cp) - M A4 I-LUM)

tofud

where I” and I, are radiation components with electric
vector along two orthogonal directions. If the radiation

field is not polarized

In our case Io is given by (40), so from (41) we find:

TN, g [ AC o) 4 C
1L (m 2 A+ %(C —%c: ,

then
pe izl o 4O pnd)
I,+ 1, 0 | (42)
to the first order in C.
In the case of small T there is unscattered light in the
direction of the cloud. The scattered light contributes
only a small fraction T to the total intensity. Therefore
b= 0.1 T #; .
The transformation to the observer's reference frame does

not change this value.

To give an estimation of p, we take T= A (this value

]

20

comes from the observed "Sunvaev and Zeldovich effect”
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in the direction of the cluster of galaxies Abell 2218);
on the other hand from the observrd radiation anisotropy,
-3 . .

8T ~ 10 7, using the formula AT . _UrtT, we can give an

T T c
upper limit to U, £ 6000 km/s). Then we find:

¢

J

p £ 2-40
which is more than one order of magnitude below the actual

experimental sensitivity.
b) Effect of finite optical depth.

There is another effect connected with two consecutive
scatterings, i.e. with finite optical depth of the cloud.
Although T 1is small, it is possible that effects of the
order of <~ may become observable. These effects are absent
when we consider scattering on a single electron.

In the rest frame of the cloud the unperturbed radiatiocn

field is, to the first order in 3,

TO: Tv (/"/;Ma)
*_So: Sr (A—kﬁ[llo))

where the coefficient k depends on .
Due to the symmetry of the angular dependence of Thomson

scattering relative to the change %a‘Pﬂ—gm MoP - Uo, the

o
s



scattered radiation becomes isotropic and the dipole term
kK BM vanishes in the scattered radiation field. It is
obvious that the isotropic radiation field does not

change under the action of Thomson scattering. Therefore
we must take into account only the uncompensated decrease,
due to scattering,of the dipole component of the radiation
measured in a frame moving with the cloud.

For example, for a piasma sphere with constant electron
density within its boundary, we obtain to the first

approximation:

%o =3, (4- kBMe) | A4y, 40
and

50'3{[4_* Kﬁ)l\*ae--c‘ul, OL/Ua(’L/
where T = ierM.R-

Such a distribution contains the second harmonics with
coefficient ~ K(Zz . The scattered light becomes polarized,
the polarization having opposite sign on different sides
of the cloud. Taking into account that only a small fTraction
T of the detected radiation is scattered in the cloud,
we obtain:

p=12 RBT* 4@, .

20

In the Rayleigh-Jeans region k = 1 and with T = 0.1,

U, = 3000 km/s-—{;@6=0.0‘l we find:

-4

Pmax: T 2.5 40



The thermal effect can also produce a polarization of
the microwave background radiation, infact it decreases
the intensity in the Rayleigh-Jeans region, producing an
anisotropy in the radiation field. Therefore even in the
case U=0, it can lead to the polarization of the cosmic
background in the direction to the cloud. In this case
the coefficient of the quadrupole anisotropy is & Ejf‘t.

mec?

So after one single scattering the polarization degree is:

¥ 0.4 KTe T sin’ 90,
mecC?

and for a small finite optical depth is:

A0 K Te ’C2 sin?
Pro.4 KT °
Yﬂg(‘,z

which is always of the order of 10‘6.

3
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CHAPTER V

SMALL SCALE POLARIZAT ION OF THE MICROWAVE BACKGROUND

RADIATION IN THE ADIABATIC THEORY.

Another source of small scale polarization are the
primordial perturbations which are supposed to have grown
up into the observed structures of the universe.

In this case the expected polarization degree is larger
than that predicted by Sunyaev and Zeldovich (1980) to
accompany the microwave temperature decrease in the direc*
ticon of clusters and is also larcer than the expected
polarization from discrete sources.

Kaiser (1983) calculated the evolution of initially
adiabatic perturbations through the epoch of recombination
with particular regard for the polarizing properties of
Thomson scattering. He makes the following simplifying
assumptions: (1) the self gravity of the perturtations
may be neglected, since he considers perturbations below
the Jeans mass, (ii) the universal expansion may be

neglected, sincs the time scale for recombination is
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small compared to the expansion time scale at decoupling
A spectrum of initially adiabatic sound waves is

propagated through the recombination epoch, 15004 z <
900, then a linear approximation is used. The general
perturbation is decomposed into FOUfier components

in which.the perturbed quantities all vary as ,X(f)£)=
Ra[xme"g’é’] and which evolve independently.
The fractional perturbation of the radiation field
J(pm,%2,6) ia also a function of the angle between the

— -2
observation direction 1 and the wave vector k, being

- -

Bo=k.1.

Because through the Thomson scattering a linear
polarization arises whenever radiation with a non-zero
quadrupole moment of intensity is scattered, a multipole
expansion of the radiation field at least to the second
order is required. In fact Kaiser expands tlHe intensity
of the radiation up to the quadrupole moment, nealectinag
the coupling with higher multipcles. This approximation
is good for the optically thick regime of the perturbation
that is k t,& 1, where t. is the mean free time for
Thomson scattering, but becomes less accurate at later
times.

The procedure he uses is the following. First he gene_

ralize the transfer eguation given by Peebles and Yu

Q™
O



(1970) to allow for Thomson scattering, introducing the
scattering matrix. Then he solves analitgcally this
equation for the optically thick regime taking the
moments up to the second and expanding the transfer
equation to the first two non-vanishing orders in the
mean freeApath of the photons. In this regime all the
relevant quantities are supposed to vary proportionally

to exp [ Y t] , where Y is found to be:

= Lk _ A Kt (4 - £ o4
R TR AP

where

a = (4% %. %%L).

Then the damping rate is:

T _ 2 ; 4
Thom 'JGK tC(’( %—%i""' ;1)

If we compare this quantity with the result for isotro

s dde o a S . .1 a 2
pic scattering given by Peebles (1980), ]“L.w_ 4K tc(i’%%féz)

we see that [, ., exceeds [ by a factor 4/3 in the

wo
radiation dominated 1imit, showing that the effective
viscosity is increased.

The solution valid in the optically thick regime are
then used as an initial sequence to integrate numerically
the transfer equation when the optical depth of the

verturbation is intermediate. The integration stops at a

redshift z, = 850. The final results are the total rms

™
e



fluctuations obtained summing the conbribution from diffe_
rent plane waves in guadrature.

Fig. 12 (a,b,c) shows the specgrum of fluctuations e
emerging from decoupling for an initial spectrum %2“&
%3,3}and P, represent the rms density fluctuations, the
rms radiation fluctuation and rms polarization fluctuation
respectively.

From these figures we see that the polarized component 1is
expected to be about the 20% of the rms intensity fluctua_

tion.

b2
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SUMMARY

We study the polarization of the microwave background radiation on
small angular scales, induced by adiabatic density perturbations in universes
dominated either by cold, warm and hot dark matter or by baryons. |

We have computed the ratio between polarization and radiation aniso-
tropy = (P/(AI/I)) as a function of angular scale. This ratio is found to
be typically =10%; it turns out to be larger on very small angular scales
and approaches a constant value on scales larger than =40' 92/3hl/3.

It depends also on the value of the spectral index n of primeval den-
sity fluctuations, being larger for larger n. For fixed values of the angular
scale and of n the P/(AI/I) ratio is the same, irrespective of the nature of
dark matter.

Finally, this ratio decreases with Q; for & = 0.2 it is a factor

22-4 smaller than for Q= 1.
Thus a positive detection of polarization in the cosmic background

radiation at small angular scales would provide useful constraints both on

€ and on the value of n.

Key words: polarization - cosmic background radiation - dark matter.



1. INTRODUCTION

The small scale polarization of the cosmic background radiation has
been studied by Kaiser (1983) and Bond and Efstathiou (1984). Kaiser (1983)
pointed out that a sizeable degree of polarization is associated to small
scale anisotropies of the cosmic microwave background induced by adiabatic
density perturbations. This is a very interesting result since the predicted
ratio between polarization and anisotropy ( 0.2) is much larger than that
associated to other competing .sources of small scale anisotropies (such as
Poisson fluctuations in the direction of discrete sources, Sunyaev-Zeldovich
effect in rich cluster of galaxies). Thus measuring this ratio would greatly
ease the singling out of the truly primordial temperature fluctuations.

Kaiser's (1983) result, however, is preliminary in that it is based
on a number of simplifying assumptions. In fact he neglects the self gravity
of the perturbations, since he considers perturbations below the Jeans mass,
and the expanéion of the Universe through the recombination.

A more refined calculation was later carried out by Bond and Efstathiou
(1984) who, however, only give the ratio between the correlation function of
the polarization and the correlation function of the radiation anisotropy.

Here we present a full analysis of the problem. We compute the ratio
between polarization and radiation anisotropy as a function of angular scale
for a variety of cosmological scenarios. We consider model universes in which
dark matter is made of massive neutrinos (I case), warm particles with a rest
mass in the KeV range (tentatively gravitinos, G case) and cold particles
(C case). In these cases we take & = 1 and Qb = 0.03 for the baryonic
contribution to & . For comparison we also consider a baryonic model for

b
f = 0.2 and & = 0.03 (C2 case). In addition we analyse the dependence of

the dark matter with & = €, = 0.2 (B case) and a cold dark matter case with

the results on the spectrum of density perturbations.

We have numerically integrated the perturbed Liouville equation for

the collisionless particles and the colli:iional Boltzmann equation for the
perturbations to the radiation Stokes Paramoters,
-1 -



In sect. 2 we describe the analytical framework of our model and

in sect. 3 the numerical integration scheme is discusced. In sect. 4 we

present the results and draw some conclusions.

2. THEORY

2.1 Fundamental assumptions

The metric element, in the standard synchronous gauge, reads

5= dt* — o* (1) [Sdgs—h&?}]x"‘oleﬂ, (2.1)
J

where t is the cosmic time, a(t) is the scale factor and haB are the metric

perturbations (hereafter we take ¢ = kB = 1). The total density is

C=C-TexT s | =

where p , p and pb are the energy densities of radiation, collisionless
r X
particles and baryons, respectively. We parametrize the Hubble constant as
-1 -1
H = 100h ¥m sec Mpc and take the present value of the background radiation

temperature to be 2.7°K (Smoot et al. 1985). The time unit T is chosen to be
T :\[ 3/ 8vGp, of
.

and 1 = a ct 1is the length unit; +the index o refers to the present epoch.
5 ‘

i

In these units the equation for af(t) is

d ’\/i+ (ex+ed/er . (2.3)

t

ol

L&

At high red-shifts the collisionless particles (hereafter X particles) obey
the Fermi-Dirac distribution function with zero chemical potential. The

ratio / is
- pX pr

4 &2

_— ; T =
_.GX___ CX Gi‘,( e . S Fl(j Ch? , CX :iggx"ﬂx 7 C?:P +{ X/ }%(}2 A)
e+ 1 L a



where g_ is the number of spin states for the X particles, =T /T and
X *x X rad

p is the particle momentum in TX units. The mass of the particle is fixed

2 3
by the above parameters: mX = 70.5QXh /BXGX eV. The mass associated to the
-1 3
length scale i = 2na(t) k (k = wavenumber) is M = L 5 x .
6
In the linear approximation all the variables of interest can be

3
decomposed into plane waves. We choose the x axis along the wave propagation

3
direction and call ¢ the angle between the x axis and E.

2.2 Liouville equation for collisionless particles

s

We assume that the distribution function of the X particles, f, is

given by
o /(1+9) -t
Ty 4‘¥
%:7{ € == | (2.5)

where g is a small correction to the unperturbed distribution. In our co-

ordinate system the Liouville 2quation for a plane wave reads (Peebles 1982)

o)

. 2z | ~ (3 | _ \/
_f-g«ﬂ%%ﬁ:%[(w Y .</Jz_m%:,q . -

o)

where g = g(t,k,u,p), h = hu, u = cos 6. The dependence of g on y can be
a

decomposed into Legendre polynomials (Valdarnini 1985):

o0
_\ ae+d poNy (e P, W
%{-L %U{{ N Fo () T ey e (2.7)
{=0
Then eq. (2.6) becomes
. i h
0= — ’ T o
\ ST
& 9 1
-k P s (D) + o ,Q} ~(h —k>6_g f£z4 . (2.8)
— N G, —_— 2
Te =t g i L L7 gt + (s 3 )
2.3 Matter-radiation and field equations
(a) Transfer equation for polarized radiation and matter eguations

7
We assume that at high red-shifts (z > 10 ) the photon distribution

w



is isotropic and unpolarized. Linear polarization will be produced By Thomson
scattering of radiation aniesotropies due to density perturbations. Polarized
radiation is described by the four Stokes parameters I, Q, U and V (Chandrasekhar
1960). Our decomposition into plane waves guarantees that for each plane wave
the radiation field possesses axial symmetry with respect to the wave propaga-
tion direction, so that U = O in our reference frame. We further assume that
there is not circular polarization (V=0).

Let us define Jl, Jr as the fractional perturbations of the radiation
distribution relative to two orthogonal directions of linear polarization, which
are in turn orthogonal to the k direction. Then I = %(Jl + Jr) and Q = Z(Jl—Jr).

The transfer equation is (Kaiser 1983):

) y > - L N ri —
20 s lgl-v o] =
3-//'1-/17‘4-3/1/1/(/11 4 ,//’7“,_3//1,[;_//!7—> I

s | 3
3-3}/ —B/UL(I'/[/L> (X

(2.9)

Here I = I(u,k,t), Q@ = Q(u,k,t), ivb is the baryonic matter velocity and
-4
tc: (‘“e(ﬂ (r'r- “ XCI‘)‘)
J

where ne is the electron number density, GT the Thomson scattering cross-
section and x{z) the ionization degree. The polarization parameter Q-1iU is
a spin-two quantity for a rotation of the 1 and r axes around the E direction
(Dautcourt and Rose 1978). Then Q-iU can be expanded in a series of spin-

two polynomials. Owing to the axial symmetry these polynomials reduce to the

-4 -



. 2, d
associated Legendre polynomials Pl 5= (1—p )d—§ Pl(p), Then we have decom-
’ u
posed the Q parameter in the series
© 2
—_ (_ ‘) P C,fu).
Q= Te & e (2.10)
4=1

For the fractional radiation brightness I the following expansion has been

used:

—

Z 6{ C~c> P}e/ C//v . (2.11)

=0

[

The radiation density contrast is

y

4 —_
P | =
b= = = dy = 9 (2.12)
The transfer equation (2.9) becomes
_ 3 LY
a2 5] — £ T2 6, -5
61“"tc L Yo j‘]- OL,\.S‘ < }
_ U9 s, 4 6 B B U N W O I T S
%Z—ﬁtc Li—o_ T 5117— <ﬂ3.> %> a—/ ?‘ 3 3 i~
/
. T ;-1
P e N A
n Lzes 24-4 y
4 -
o 9 - 5
=-— =1 - L;‘+L°1}
12 n 20 3 ‘z_
J
v 1
ﬁg/::—u.E l £+3 jg+; - ftfg_ ﬂ{ 1 — tc 1_@ , {.Z 3 .
o LL+3 24-1
(2.13)



It must be noted that in eq. (2.13) the polarization is produced only through
the scattering of the guadrupole moment of the radiation field.

Finally the continuity and motion equations for matter are

o
1
ol
*

o
els

q-
|

~\ 0
R A SV ARV R R
\:“JQ‘%;\Qle\’ 3 b] %b ’
| (2.14)
Here 6b is the baryonic density contrast and
+ !
?‘r"— z ) Fe 3 (2.15)

is the radiation energy flux.

(b) Field equations

To complete our system of equations we have still to specify the
equations for the gravitational field. In the weak field approximation these

equations read (LSS, §82)

. . X —a
},-,-23% = 6 {g\- +<¥C15( 5)(.,\ +—€i %\'3 T
a /0/ 2,(7\r_
| 1= 6 ¢ + Pb UL (e }
n- n— — - s —_— o !
33 c 22 E } Cr X ;ﬁ% ) (2.16)
here oo
e 4. S i [ PLa * Q}] fﬁ. GF 3
S — @ I 2 ! 2 ]
Koo » 1 CL’:’V-,-I
o [ R
oo “ F
5{} — _;E__ S 5}_ V ¢ A F
'ZC,X 0 CUP+J>1 (2-17)

For the ¥ particles the dspsity contrast is



v

3 2
BX_—: 'j. S o—‘—’ F CI ____<'__ JF

2
ey A, CeP+D (2.18)
[
In the cold case § = _X and egs. (2.8) are replaced by
% g
2
5, % b (2.19)
2
3. NUMERICAL APPROACH
3.1 Approximate solutions
(a) Matter and radiation

At high red-shifts tc + 0 and the numerical integration of egs. (2.13)
becomes difficult (Peebles and Yu 1970). To avoid this problem we have ex-
panded the I and @ quantities in powers of tC. Approximate solutions of egs.
(2.9) have then been used in the first stages of the integration (see below).
This approach is similar to that used by Peebles and Yu (1970).

In the t = 0 limit the transfer equation (2.9) has the solution
c

I:S\r.q'-ud‘/(ju_xc ;\_O ) Q:OEQO (3'1)
Writing I =1 + t Il’Q =0Q + tCQl,we find the following iterative solutions
o c o

of eq. (2.9)

I = “lo + CTe %’— &4 ’1']‘7\72_ (I/J)__C“ +V{£—tc<%»\7'3?16/b>rc> +
r

where g
— (AT— .‘% T /
C\V‘(-:‘——o +[1 /U__.-—[-0~7
’ v (3.3)
o= 1em ]l 4o +hoh
L 3 L > a ) /
and n = 1. Ifnq = 0 we recover Peebles and Yu (1970) results for un-
p p
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polarized radiation. The radiation energy flux is, to the second order in
t

3

4 o U, .t 4
L D B W SRS 73
'L§"——%U‘b+ % du 4 +p > = A+R 1rh / (3.4)
where

A_}f_s_y_d,_ 2R F Uy 4

- a_ , P 3 n ( ) 3 o
da Cl+) [+R)

4
and R = — p /p . Then, in the limit of small t
3 r b c

y the system of equations
for matter and radiation reduces to

. |

» 4 kv kto T4, ks
5\ :..Z_ —_ + < \ﬁ‘iu— - Ly
- 3}7 - 3 oL oL [3 o, ° 30 1 C1+RY /
éb:h Tku\&

Z o /
T T — ¢
40 |+R TRy 4 I +R (3.6)

(b)

Collisionless particles

The numerical integration starts at an initial red-shift =z

such that
in
¥t >>1 for all the wavelengths of interest. In this limit eq. (2.8) can be
in

integrated analytically, giving (Valdarnini 1985)

O_—o:.b_.tl;h

2
= — 2% K 4} (1L -+i>
1= 7 == th EERL
49 I
%uh



6-_{:0 /,e_zé)_
(3.7)
If X particles are ultrarelativistl at z = Zi 6X = SX and with the assump-
in °x,g
tion § = SX = D(t) o< t we have (Peebles 1282)
r
h=2Pl¢
T
h — 39w + 39 D
3% T
33w + >0 t
— | N
Vpy = -2 T
6o
¢ = 3 5, (3.8)
° 4
3
where o = (o+p )/p . In the cold DM case § = — g and the second of egs.
X b r X 4 "r
(3.8) becomes
oo~ 23D
3.2 Numerical integration
The integration is performed from the initial red-shift z, = 10

down to z, = 800. The timestep is chosen to be At = 10—2Min (a/é,k). For
the integration we have used a Merson routine of the CERN Library; the rela-
tive accuracy has been fixed to be 10—4, at each step of the integration.
The differential equation for the ionization degree x(z) has been numerically
computed from z = 2000 down to z = 800, taking intoc account the presence of
X particles (Peebles 1968, Bonometto et al. 1983). The values of x(z) obtained
in this way have been stored and used in the main computation.

The expansion of the g, I and Q variables into orthogonal polynomials

has been truncated at a suitable lMAX (= 200), such that the last term of the

-2
series is much smaller (=10 ) than the 1 = 3 term at z = Zf for each of the



variables under consideration. The integration over p for the o¢'s has been
done by a ten point CGauss-Laguerre gquadrature. The accuracy of this integra-
tion has been checked in a previous work (Valdarnini 1985). The system of

egs. (3.6) switches to egs. (2.13) when

3t R oaze, Jokée B i‘@“l

4 |+ R 4 | +R o LrRod

et lg LUy - Ky LS &, L%—L‘ *% kg‘:ﬂ (3.9)
o 5w 30 1T4R /

-2
with ¢ = 10 .
]

20
In our integration we spanned the mass range M <M < 10 M@, with M, depending
: i i
6 10
on the considered case (M., = 10 M@ in the C case, M, = 10 M@ in the G case
i i

13
and M, = 10 MO for the N and B cases). We took four values of k for each
i

2 n
Dk

i

decade in M. Initial density perturbation spectra of the form !Srl

have been assumed at z = z, . In an actual calculation we have set n = 0, in
in
the linear approximation the results appropriate to any other spectral

n/2
'index can be obtained just by multiplying the final s"s by k / .

4. RESULTS

4.1 Observable gquantities

After recombination we can neglect scattering terms in egq. (2.9).
Then, at the present epoch t , the fractional brightness perturbation I and
o
the polarization @ are (Peebles and Yu 1270)

—hkyd

—_ Y o : T
IZCTo,k/WD = T étﬁzkiyﬁ ¢ - LLQ@‘U%O e “i \Q'%]
o)

4}:/“4 t,
Q Lo,k = G gk ) € , 4D
T

whereAtf‘is the time corresponding to the red-shift zf_ = 800 and
in
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— - t, kK, ) +2i%2 yho -2ap d h
\ t k 5 = I (- VA —_— L= Pl Q
In the calculation of the small scale temperature fluctuation of the CBR the

gravitational field terms in the first of eq.s (4.1) are unimportant.

The radiation correlation function is defined as

- = A - 0
Cotory =2 (@R, 6 G0

R 16 J (4.2)
where ri, n2 are unit vectors along the direction of observation, cos @ = n£ n2

and ¢ is the beam width. In the 1limit?® << 1 eqg. (4.2) becomes
+1

ol
_'A 1'2"'—‘ i’
€ (o,o)= = Y K“”‘é\k} by | TGk, T, (kEv 5)
R 6 4w / /
0 -l
L e %~klo“1v;°(x—p“ﬂ\j (4.3)
[ Y

where r = ZC/QH, V is a normalizing volume and J a Bessel function. The
o o

mean square temperature fluctuation is then (Doroshkevich et al. 1978)

2% =
(gzs 3 Colo, 7y — & Cp o) + 1 CRCZQ,;)X

/

where AT is the difference between the temperature measured along a central
beam and the average of the temperatures measured in two directions spaced
by an angle 6 with respect to the central beam.

The corresponding quantities for the polarization have been defined
in the same way. The small scale mean square polarization is

|

_ N L C (28, 5)
LC‘JCO/D,'~'_.CP<8/F>+5 PC / J‘(A-S)

< 16.
SCEPRES 5

e

To normalize our radiation spectra we introduce the rms fluctuation in mass

8M/M within a randomly placed sphere of radius R. It is found (Peebles 1980)

2 , el he
sHN\ = Y 5 K715l W (e RD
MJ’ 1 ! / (46)
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where

‘ ra
WGy = 15(.&47/-\/ usy]

El
7@
We normalize é% = 1 at the present epoch on the length scaleR = 8h~1MpC.

The same normalization has been used in all the considered cases. 1In a
neutrino dominated universe other normalization procedures make use of thé
two-point correlation function &(r) (Bond and Efstathiou 1984). Different
choices of the normalization may result in differences in the calculated AT/T
as large‘as a factor of two (Vittorio and Silk 1985). We stress however that
we are primarily interested iﬁ the ratio polarization/anisotropy, which is

obviously independent of normalization.

4.2 Results and discussion

Our AT/T always agrees with those previously computed by several
authors (Bonometto et al. 1984, Bond and Efstathiou 1984, Vittorio and Silk
1984). 1In Figs. 1 we show the temperature fluctuations versus the angular
scale for two different antenna beams ( ¢ = 1.5'and ¢ = 3'). Different
curves are labelled by the corresponding values of the spectral index n.

Figs. 1 can be compared with Figs. 1 (a and b) of Bonometto, Lucchin and
Valdarnini (1984), where the quoted values for ¢ must be doubled.

In Table 1 we quote the CD/Cr ratios for & = 0 = ¢ in the C case.
Other cases give similar results.‘ The n=1 case agrees with the corresponding
values reported by Bond and Efstathiou (1984). 1In Fig. 2a we show the ratio
between the polarization degree and the fractional radiation anisotropy
P/(0I/I), as a function of the angular scale for g = 1.5'and a cold dark
matter dominated universe. This ratio turns out to be very similar irrespective
of the nature of dark matter (cold, warm or hot). This happens because in
these models the polarization is produced through the scattering of radiation
by free electrons, whose number is the same at each red-shift in all the three

considered cases.

- 12 -



From Fig. 2 it can be seen that P/(AI/I) is a decreasing function of
8 . The contribution to the integrals in eqg. (4.4) is negligible for pertur-

bations with kér < 1 or M > MC (8) where
o

_ 2
M. (8) 2.40 *o7h l( é/i') Mo - (4.7)

In Figs. 4 we plot, as a function of the mass scale and for n=0, the averaged

==
final spectra Tr = /&2, T = /62, where
p

RN ot itk k
T (it = % Sﬂ dp 1Tk, )
- o S
Tkt = L by | @Gy, Kt
@t lety = o Ay LY

=1

Fig. 4a refers to the C case and Fig. 4b to the B case. From Fig. 4a it is
clear that on larger mass scales Tr(k) increases faster than Tp(k). Then as
0 is increased MC(G) becomes higher and the P/(AI/I) ratio decreases.

For k + 0 ITp/Trl = 107°. 1In fact for the longest wavelengths the
recomination can be treated as instanteous: so, while temperature anisotropy
is generated by potential fluctuations, there are not enough scatterings to
convert it into polarization (this result is analogous to that found by
Negroponte and Silk,1980), when a step-function is used for the ionization
degre;}

At a fixed 0, decreasing n results in a decrease of P/(AI/I), since
the contribution of Tr(k), Tp(k) in the integrals in eq. (4.4) is weighted
by the kn+2 factor, which enhances the high mass contribution to the integral
if n is lowered.

In Fig. 3 the P/(AI/I) ratio is shown as a function of the angular
scale in the baryonic case (2 = @ = 0.2, B Cése). This ratio, [P/(AI/I)]

b
has the same behaviour, versus ¢ and n, of the corresponding [P/(AI/I)]C

B?

ratio in the cold DM case; the value of [P/(AI/I)]B, however, is smaller
by a factor increasing from =2 to =4, as 6 increases. This difference is

mainly due to the different values of © considered in the two cases. In the

- 13 =



-2
B case & = 0.2 and at a fixed e, Mc(e) is (0.2) higher than in the C
case; then [P/(AI/I)]B is emaller than [P/(AI/I)]C. The P/(AI/I) ratio
9
in the n=0 case reaches the asymptotic value for Mc(e) =« 10 M@, that is

for

'
a0 24 3..

In fact [P(AI/I)}B becomes constant for 6 > 15' while [P/(AI/I)}C
approaches a constant value for 8 > 40'.

These conclusions are confirmed by a comparison between the [P/(AI/I)]B
ratio and the [P/(AI/I)]CZ ratio (Fig. 2b) in the C2 case (Q = O.Z,Qb = 0.03).
The bending of [P/(AI/I)]02 to approach a constant value occurs roughly at
the same angular scale as found for Qb = 0.2 baryon dominated case. It
should be noted that the values of [P/(AI/I)]C2 are somewhat higher than
[P/(AI/I)]B. This is due to the different values of Qb considered in the
two cases. The Tp(k)/Tr(k) ratio is higher in the B case than in C2 (compare
figs. 4b and 4c) for perturbations with M < lOl5M@, owing to the larger number
of scatterings which photons of these perturbations undergo in the first case.

—k202r2(1—u2)
However, because of the Gaussian factor ¢ -0 , the contribution of
the fluctuation spectra to the integrals in eq. (4.4) is negligible for per-
turbations with M < M (o) = 7.10149—2h_1(o/1;H)Bbg.The P/(AI/I) ratio is
smaller in the B case than in C2 since the values of Tr(k) are close to the
k=0 limit down to M = 1017M@ in the first case, while in C2 case Tr(k) begins
to decrease at M < 1018M®. The different behaviour of Tr(k) is due to the
different values of the baryonic Jeans mass MJ in the two cases. 1In both
cases the universe becomes matter dominated at z = Zeq = 4.2 1049h2 = 5.103.
At z < zeq‘and prior to recombination M% takes the constant value MJ = 5.1017M@
in the B case, while MJ = 1017 (z/zeq)_ /ZMQ in C2. In the latter case the
value of MJ at recombination is =10 M@ and fhe total mass of a perturbation
on the corresponding scale is M = 2 1018M = 7.1018M .
2 0 0

In Fig. 5, a,b the polarization degree P(8,0) is shown as a function

of the angular scale, for o = 1.5 and the N and C cases, respectively. In

- 14 —



both cases P(8,0) reaches the asymptotic value-P > 10_5 for g > 10' and

n > 0. Negative values of the primordial spectral index n are not favoured

by ﬁumerical simulations on large scale for the matter distribution in the N and C
case (White et al. 1983, Davis et al. 1985).

Up to now there has been no positive detection of polarization of the
cosmic background radiation. At large angular scales Lubin, Melese and Smoot
(1983) set the upper limit of 7.10“5 on the polarization degree. On small and
intermediate angular scales (between 30' and 40°) only one experiment has
been performed (Caderni et al. 1978) which sets upper limits of the order of
10 . Then a positive detection of linear polarization in the CBR would
require an improvement by a factor ten in the sensitivity of the present in-
strumentation.

On the other hand, we stress that a positive detection of linear
polarization of the CBR at angular scales 6 > 15' will provide information
on the value of @ and will provide useful constraints for the value of the
spectral indei n of primeval density perturbations.

In table 2 we list the rms quadrupole component of the radiation
anisotropy and of polarization. The definition of Wilson and Silk (1981)
has been used for the quadrupole moment of the fluctuations.v On the quadrupole
scale the present upper limit for the radiation anisotropy is QR < 2.10'_4
(Lubin, Epstein and Smoot, 1983; Fixsen, Cheng and Wilkinson, 1983). In all
the three cases considered, n = -1 is ruled out, the n=0 case is still possible,
if we allow for various uncertainties and in particular for the uncertainity
in the normalization. The quadrupocle moment of the polarization is Qp = 10 ,
i.e. about three orders of magnitude smaller than the quadrupole anisotropy,
thus it is completely unobservable with the present instrumentation.

After the recombination a second ionization of the intergalactic
medium will increase the ratio P/(AI/I) on small angular scales if the correspond-
ing . optical depth t is of order unity (Basko and Polnarev 1980, Negroponte
and Silk 1980, Tolman and Matzner 1984). In a non baryonic dark matter
dominated Universe with %3_: 0.03, reheating of the intergalactic medium

must occur at z > 100 in order to reach T = 1. However such values for
re
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Z b’ as discussed by Bond and Efstathiou (1984), are not plausible. 1In a

re , v

baryonic Universe second ionization of the intergalactic medium associated

with galaxy formation is most likely to occur at =z h < 4-5 (Sherman 1979,
reh

Osmer 1982). In the Qb = 0.2 case, ‘ = 0.2 for Z eh = 5 and the

small scale polarization does not change in an appreciable way.
Then we conclude that, in the models considered here, a second

ionization of the intergalactic medium is not likely to affect our results.
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TABLE 1

n C /c
p r
-2

-2 1.10
-2

-1 2.10
-2

0 3.10
-2

1 7.10
-2

2 11.10

Table 1: Ratio between the polarization and the radiation anisotropy
correlation functions for € = ¢ = 0 in a cold dark matter domin-—

ated universe with £ = 1 and Rb = 0.03.
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TABLE 2

C case
n
QR QP
-3 -7
-1 2.7 10 1.6 10
-4 -8
0 1.4 10 2.9 10
-6 -9
1 6.6 10 7.5 10
: -7 -9
2 3.2 10 3.3 10
N case
n
QR g QP
-3 | -7
-1 4.2 10 3.4 10
-4 -8
0 2.9 10 8.3 10
-5 -8
1 1.9 10 3.1 10
-6 -8
2 1.4 10 1.9 10
G case
n
QR QP
-3 -7
-1 2.7 10 1.6 10
-4 -8
0 1.4 10 2.9 10
-6 -9
1 6.7 10 8.4 10
-7 -9
2 3.2 10 3.8 10
Table 2: Radiation and polarization rms quadrupole anisotropy, QR and QP,
for dark matter dominated universes with €@ = 1 and Q, = 0.03.

b =
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Fig. la
Fig. 1b
Fig. 2a
Fig. 2b
Fig. 3
Fig. 4
Fig. 5

FIGURE CAPTIONS

Residual temperature fluctuations as a function of angular scale

for a neutrino dominated universe with Q@ = 1 and Qb = 0.03,
evaluated for an antenna beam ¢ = 1.5'. Different curves correspond
to different values of the spectral index n. The observational

upper limit of Uson and Wilkinson (1984) is also shown.
The same as for Fig. la, except for ¢ = 3'.

Ratio between the polarization degree and the fractional radiation
anisotropy as a function of angular scale for a universe dominated
by cold particles with @ =1, @ = 0.03 and for antenna beam

b
o = 1.5". Different curves refer to different values of the spec-

tral index n.

The. same for Fig. 2a, except for @ = 0.2, Qb = 0.03.

As in Figs. 2 but for a purely baryonic model with 9 = 0.2 = Qb.
Averaged spectra of the radiation anisotropy and polarization as
a function of the perturbation mass scale for a) a cold particle
dominated universe ( 2 = 1, Qb_z 0.03); b) a baryonic model with
£ =0.2 = Qb; c) a cold particle dominated universe with Q = 0.2,

.= 0.03.
b 0.03

Polarization degree as a function of the angular scale for a) a
neutrino dominated universe with Q = 1 and 2, = 0.03. b) a cold

particle model with @ = 1 and Qb = 0.03. 1In both cases ¢ = 1.5'.
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APPENDIX
1., SPIN S SPHERICAL HARMONICS

A quantityyis said to have spin weight s if it transforms
under a rotation through an angle %’ about the radial

. . (s
direction y— y & .
Newmann and Penrose (1966) have introduced and developed
technicues for spin weighted quantities on the unit sphere.
Let us briefly introduce them here.
We employ the usual @‘,¢» coordinate svstem, then the radial
vector n is: n; =(sin?cosd? R sin%sind? , COS gy.
Associated with spin s quantities are the spin raising and
lowering operators ;5 and 33 , respectively.

The operator’ﬁ as applied to a quantity <Y of spin s can

be defined as:

AR SAER +5m9 ¢) (sn’02Y)

The resultant quantity has spin weight s+1. Similarly

BYs i "0 (B tip ) (50070)

has spin weight s~1.



Applying to spherical harmonics Y just s times gives

us a set of orthogonal functions which when normalized to

unit constitute a complete set of prthonormal functions

in the space of square-integrable functions of spin weight

s . The corresponding recurrence formulae are given by:

ZO Yom = E(Z-s)(@-mwlﬂ—”l see Tem
555\1”,, = ,[(HSB((—suﬂm s-1 Vem

The orthogonality relations are given by (note, no
general orthogonality relations exist between spin s

spherical harmonics with different spin values):

9 J-QW! S:{-*elwr' d/.«dq = ﬁg sNelm' 5{’(' gl’hlm,

.

2. POLYNOMIAL EXPANSION ON THE UNMIT SPHERE.

The calculations involving an expansion in spherical
harmonics are greatly simplified if polynomials related
to spherical harmonics are introduced (Anderson and
Spiegel, 15971).

We first consider spin zero quantities. They may be
defined, senarately for even and odd numbers of indices,

as follow:



{4.- L Chevn 4 Lomer vee C Vopnen L
4 M. S A Yl(' 4 n 2k S +1 Layea 5 -1 bap)

Claeer Lonsy 5 Lang2 Lanes g‘f—n Loner)

(.4...[«1]1-‘-4 zh
n = Brn n 12
2z ;

where the bracket around a number of indices indicates

symmetrization. The numerical coefficients are:

22)! (n+2)! (n-2)" cun)!

Aan= -9 " (ans22) (2n'N?

Bra = 2N+ Ann
272-4

The functions of lowest order are:
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Polynomials of different order are orthogonal:

Gobrttykenks yn o 0 eds,
n ’

The "n-polynomials" are swmmetric in all indices and trace_
less for all pairs of indices:
(’4--. l-‘/H (L' ...(:
n = W ! “)

. : Cat
W‘A..,Lné’bs_;o ) 4_éeér\,/ié.$£f‘.12:r‘t§.

They may be represented as linear combinations of ordinary

(spin—-zero) spherical harmonics.



A regular scalar function f(¥,d ) defined on the unit

sphere may be expanded in terms of these polynomials

according to:

Jz-: 9‘0 + 9(; n' o+ Q(JK n(K ¥ erw, ";Ke*’--.

Only the traceless part of the coefficients Tiker--- 1is

required for a calculation of f, we therefore assume that

the coefficients are traceless. They are given by:

Qo = S‘QCﬂIl/lﬂT
QJ=§Q»§‘3dQ/4ﬁ
£ o (L n'" a5 dajurm

2

Yowe={L4n" 3 dQiam

o

The other polynomials we are interested in are those

connected with spin 2 harmonics. Here

with VY\[: 'i@(of'*';’&)‘)

ie kd’
M e T e st

. . . 3 . - . " L' "' )
taeee Lak (Cylg b3 Lz baa e, fanea O tamoiiban
m = Z P 2 m N n 6

- . k - . : .
by baktd (tal= ty... (Y 4 L L . ;
m :/zZ_ %K m n 2 n 6 242, 2043 6sz,bzk+l>
X
are quantities symmetric in all indices and traceless for

all pairs of indices. The m-polynomials are linear



combinations of spin 2 harmonics. Like n-polynomials also
m-polynomials constitute an orthonormal set on the unit

sphere, since:
yitn _ Kaee Xs
g\‘n‘ Y oLl - o Lov /Z':,."S_

A spin 2 quantity g(T, @ ) may be expanded according to:

(K : (Ke
+ Qlike M ...

&= B M
where the expansion coefficients must be symmetric in all
indices and traceless in every pair of indices.
Explicitly one has for the lowest orders:
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