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CHAPTER I
1.The Witten index
Let 345 = 6}) GE) (F: be the Hilbert space of the states of

a quantum mechanical system, with (EB ( C;T’) being the subspace of

the bosonic (fermionic) states. Let F be a hermitian operator,called
fermionic number, commuting with the Hamiltonian of the system, which

defines the bosonic and fermionic states in the following way:

or more supersymmetry operators

of L —— ¥ e

such that

H
i

"

{;2£ ( fi%‘> (ii 6;: and (;2£( éigré C: Qf; (2)

and satisfying the anticommutation relations:

;l.%{ 65 I = E {;E ) CQ~;E

where H is the Hamiltonian of the system.



Such a theory is defined to have a N-extended supersymmetry.
In everything which will follow the existence of more tha!: one super-
symmetry charge will not play any role; therefore we will restrict our
analysis, without any loss of generality, to the case of a single
supersymmetry generator (N=1).

Let us state some elementary remarks which follow directly from
the previous definitions.

From the fundamental anticommutation relation (3), it follows
that the energy of a supersymmetrical system is positive definite.

Eq.(3) implies also that Q commutes with the Hamiltonian:.
Thus if i%?é} is a bosonic eigenstate of the Hamiltonian with eigen-

value E#0 and with unit norm
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Applying once again the operator Q/VE on \P} we will get the original

bosonic state \b>, :



o ~ . . _.f .
3 / — 7 ) H Ve { /
e VE /&= E‘
= |
In other words the operator 6I= Q/fEAprovides an isomorphism between the sub-
spaces of the bosonic and of the fermionic eigenstates of the Hamiltonian with
A
‘ (5)

eigenvalue Ef'O. Q has “itself as inverse:

— 16>

by

Consider now the eigenstates of H with zero eigenvalue. (3) implies:
7
Q'oy=0 = <l Q'oy=0

=

Hlo)=0D
2 1oy |

thus
Assuming that the metric of the Hilbert space is positive definite,one

concludes: o~ %
R a
{is a state annihilated by the supersymmetry

\
S s an eigenstate of the Hamiltoniarwith zero energy:
(6)

0)
0 s ar
= H10y=0

Vice-versa, if
generator Q,

3 1 \ o

> Q lC{} = U

\ :_() —

o)
Summarizing, we have learned the following about the structure

of the irreducible representations of the supersymmetry algebra (3)



i)  the representations with non-zero energy are doublets containing
a fermionic and a bosonic state;
ii) the representations with zero energy are singlets, which can be

either bosonic or fermionic.

Therefore the spectrum of a supersymmetric theory, when discréte,
can be schematically represented as in fig.1: the eigenstates with non-
zero energy always appear in pairs boson-fermion,while the zero energy
states are singles.

us

Let(come now to the issue of spontaneous supersymmetry breaking.
By definition, we will say that a given supersymmetrical quantum mechanical
system exhibits spontaneous breakdown of supersymmetry if the ground

state (vacuumj is not invariant under a supersymmetry transformation:
DAEs A
(-X v/ 7‘- O (7)

From the previous discussion(eq.(6)) it follows that supersymmetry
is broken if and only if the energy of the vacuum is different from zero.
From this point of view supersymmetry is quite different from
ordinary symmetry. For an ordinary symmetry to be preserved, the existence
of an invariant state is not enough: other, non invariant states, can
become the vacuum of the theory if they are energetically favorite.
If this happens, spontaneous breakdown of the corresponding symmetry

takes place. On the contrary, in a supersymmetrical theory no breaking
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will occur if there exists just one invariant state.

Since in general the vacuum energy cannot be eactly determined, it
is difficult to establish if supersymmetry is broken or not.

A criterion to check that would be to count the zero energy states:
supersymmetry is broken if and only if this number is zero.

This may be technically very difffcu]t. Suppose we have determined the
number of zero energy states to a certain approximation,e.g. to a given
order in perturbation theory. The slightest correction to this computation,
e.g. the next term in the perturbative expansion, could invalidate our
conclusion about suhersymmetric breaking, since it can make eigenstates with
zero¢rurgy become eigenstates with non zero energy and vice-versa.

Also results valid to all orders in perturbation theory can be invalidated
by, even tiny, non perturbative effects. For example non-renormalization
theorems(l)state that supersymmetry if not broken at tree level stays
unbroken to all orders in perturbation theory. But these theorems cannot
exclude that supersymmetry gets broken by, let us say, weak instantons

effect, giving a non-zero contribution to the vacuum energy.

These kind of considerations have motivated Witten to introduce
the concept of index of a supersymmetrical‘theory(z). The index is defined

as the difference between the number of bosonic and fermionic eigenstates

Ay, = Mg = g (9)



It is edsily seen that the knowledge of the Witten index gives information

about the spontaneous supersymmetry breaking.

‘ £:0 £-
If ZXW # 0 supersymmetry is unbroken since :either RE:QF n?ckor both)

are different from zero.
If on the contrary Zlv/= 0, we are still left with two possibilities:
a) ng'= néra 0 implying that supersymmetry is unbroken;
b) n§G= nf;(}= 0 implying that supersymmetry is spontaneously broken.
Thus, the non-vanishing of the index Z}vy is a sufficient (but
not necessaryj condition for supersymmetry to be unbroken.
What makes ZX?J an useful object is the fact that it is what
we will call a "topological" invariant: By topological invariant we mean
a quantity which remains invariant under continuous changes of the parameters
of the theory (masses, coupling constants, size of the quantization box,
etc.) so long as these changes do not modify the asymptotic behavior
of the potential.
Because of this property, vay is expected not to be sensitive
to the specifc approximation one uses. In many cases one can exp1oitv
some convenient limit (great mésses, small coupling constants, small
size of the quantization box,etc.) to evaluate Z}vy easily and reliably.
From the index, stringent constraints on the possibility of

dynamical supersymmetry breaking have been obtained in many class of theories(

To understand why the Witten index is a topological invariant

let us Took at fig.2.



Suppose that for given values (g(,,ma,(}(,° ...) of the parameters (coupling
constants, masses, size of the quantization box, ...) of the theory, the

spectrum of the Hamiltonian appears as in fig.2a, with

=0 E:D

Doy (9o smgofios +0) = (G oM sy )= el sy s -2
being the Witten index. (In the example in fig.2a, ngo(ga,m>,§” ...)=3
and H;O(go,ma,&, ...)=1, so that [E%/=2 )-
Now, imagine that we berturb the system adiabatically, changing continuously
the parameters uop to the values (gé,mé,ﬁ%, ...). AccordingTytthe=enrergy
spectrum will :become as shown in fig.2b: the exwrgy levels have moved
and some states which initially had zero’aenargy have become eigenstates
with non-zero energy. But since ,as we explained before, the non zero energy

states always come in pairs boson-fermion, these states will be even

in number, half bosonsand half fermions. it follows that the difference

B0 £-0
Z}v/(gi,mﬁ,gﬁ, c..) = Ny (gé,mg,@q, cel) - ne (gﬁ,mﬂ,@q, eel)
will not change. (In the example in fig.2b two states which had zero energy

£
in fig.2a, have acquired a non-vanishing energy: ng (gé,mﬂ,ﬁd, el )=2,

roe

)

ng (g, >m 5k, 5...)=0 and the index does not change Z}vy =2-0=17).

Analogously, suppose that for some other adiabatic trasformation which

brings the values of the paramaters to (gz,mz,ﬁz, ...) some eiggnstates

that had non-zero energy, will go down to the zero energy level. Both

the number of the bosonic and the fermionic zero energy states will increase

the same amount, leaving the difference Zﬁvy‘the same.( In fig.Zc

ngg(gi,ml,gz, ...) = 4, néikgg,mz,ﬁ;, ...) =1, with Z}u,= 4-2=2 as in a and b).
In the former reasoning the assumption is made that the changes in

the parameters can move the energy levels but are "gentle" enough not to

make new eigenstates appear. It turns out that the allowed deformations
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of the parameters are those which do not change the behavior of the

potential asymptotically ( for large fields configurations ).

The topological invariance of the Witten index can be traced
to the fact that it can be thought of as the analytical index (in the
usual mathematical sense) of a certain linear operator related to the
supersymmetry charge. .

Let us clarify this point: 1et££hoose in the Hilbert space Efi:-éEEQDQV
( é;i ( G:M ) is the subspace of the bosonic (fermionic) states)

a.boson-fermion basis

(Plewe , (51c@ , [D)e€

The operator (-l)F will be represented by the (operator valued) matrix:

- /10

==l g (10)

R

The supersymmetry charge Q sends bosonic states into fermionic ones
and vice-versa, that is it anticommutes with (—1)F. Thus it will have
the following matrix representation:
(1
O L
Q: 0 (11)

where L™ is the operator hermitian conjugate of L.



The zero energy states are annihilated by Q and therefore.they have

to satisfy the equations:

Qfp)=0 & Lb=o

(12)
. < C A
Q)0 & Ureo
ol N -
One concludes that the Witten index is:
\ -0 E=0 _
ZQXVV Tng - o = dim ker(L) - dim ker(LT) (13)
where ker(L) ( ker(L+) ) is the subspace of the states annihilated

by L (L+), dim is the dimension of the subspace. The expression on the right-
hand-side of eq.(13) is the definition of the index of a linear operator,

which is known to be a topological quantity:

7

S = Leacex (L) 14
Ly, =) (14)

If we are dealing with a quantum mechanical system with a finite number
of degrees of freedom, the corresponding L and LY will be Tinear
differential operators defined on a finite dimensiona] manifold. In the case
of an infinite number of degrees of freedom (field theory) L and L*
will be functional differential operators on infinite dimensional manifolds.

Such a connection between the Witten index of supersymmetrical
quantum mechanics and the analytical index of linear differential operators
has lead to new technicsoto derive in a strwightforward manner the classical
"index theorems" of Atiyah-Singer and Callias-Bott-Seeley. We will come back

to that in more details in the third chapter.



2. The superpartition function

The definition (9) we gave for the Witten index of a supersymmetrical
theory may not be, as it stands, the most convénient for actual computations.
We will discuss in this section alternative expressions for the index
which not only will turn out to be convenient for explicit evaluations,
but will also allow, in some cases, for interesting generalizations.

Let us first distinguish between the case when the energy spectrum is
discrete and the case when it is continuous (in a box, if we are speaking
of a field theory).

In the former case it is easily seen that the Witten index can
be rewritten, formally, zs a trace over the whole Hilbert space of the

theory:

Zl\: - tr (—l)F . f?r theories (18)
W with discrete spectrum
In fact, in the trace (which is the sum over all the eigenstates of the
Hamiltonian) the contributions coming from the non-zero energy states

cancel in pairs, since for each bosonic state there is a fermionic one

with the same energy but with opposite value of (—1)F:
! AN 7y €0 _E=D X7 4T
A - _ - 4 1 3 — L e
Tt =) = 2, !(é) = 0y -0 4 [.,-z((i‘)“'”
eigenstotes € cietie
ofF H with 1o
- Ayt o &)+ 1) =
W e oy
DB Soric ‘é'.fv.\*ﬂif.»(
fv;g{p{.‘l.(z\cs f‘-’}(rf»"ﬁ"{:g
with B30 Wil E)o
= \ N A T A
- Ly Lo\ i - =—/; W/
£ ;0
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The expression in eq.(14) is mathematically i11 defined since it
gives rise to a non convergent series: 1-1+1-1+... .
It is more correct, and more useful in practice, to introduce some kind

of regularization:

Cv 0197 4(W) (15)

where f(H) is a function of the Hamiltonian with the following properties:
(i) f(0) =1

(ii) f(H) - 0 for H— 0o sufficiently rapidly that the series
defined by (15) is convergent.

If the energy spectrum is discrete the non-zero energy eigenstates
also cancel in the trace (15) because of the fermion-boson degeneration.
Thus the trace (15) reduces to the Witten index:

for theories

_ _\F
Z}}W/ = tr (-1) f(H) with discrete spectrum (16]

A common choice for f(H) is:

f(H) = e_@H /3) € \R‘ (161)

or:

f(H) ; ———--———}.__,,____ z € G (16“)

z + H

(in the last chapter we will study an example where this choice turns

out to be useful).
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The expression (16') defines the object:

() = tr(-1) e - EH (17)

which is called the superpartition function of the theory.
The superpartition function admits a functional integral representation(S).

Let 5fE’(LQ, ") be the euclidean Lagrangian of a d-dimensional super-

symmetric theory, quantized in a box of size /3 , and Tet us schematically

indicate with L? ( W%’) the bosonic (fermionic) fields. It can be

shown that:

( - j s Le (04 )

i

Zo(p) = J{ngdi'}e XI< e

o

(18)
PEY‘E OCE‘ {(,

&ovmiéx’y

Covcl {ieve

where in the path integral one takes periodic boundary conditions for
both bosons and fermions . (To get the ordinary partition function one
has to choose periodic boundary conditions for the bosonic variables
and anti-periodic ones for the fermions).

As we said, the functional integral (18) does not actually depend

h)
&

on ﬁz when the energy spectrum is discrete:

zéxvy - zzs (E’) for theories

(19)
with discrete spectrum

When the theory admits a continuous portion in the energy spectrum
eq.(19) is, in general, false(4)’(5)’(10)’(32). What can happen in such

a case, is that the contributions in the trace tr(—l)Fe— PH of the bosonic

- 12 -



and of the fermionic non-zero entrgy states belonging to the continuous

part of the spectrum do not cancel. Even if each Tevel is still doubly
degenerate due to supersymmetry, the densities of the bosonic and of the
fermionic energy eigenstates are not guaranteed to be equal. If non-
equality is the case, the superpartition function acquires a non-trivial

fﬁ—dependence, and thus cannot concide with the Witten index which is a
constant number.

Nevertherless, in some cases there still existsthe following connection

between the two concepts:

AW = 1im Zs((z‘) )I\) (20)

J
It is easy to see that this holds when zero is an isolated point

in the energy spectrum, that is when the continuous part of{the spectrum

is separated from zero by a finite gap. In a mathematical 1ahguage one

says that a sufficient condition for eq.(20) to hold is that the Hamiltonian

be a Fredholm operator.(6) One should stress that this condition is

not necessary: there exist Hamiltonians having a continuous spectrum

starting from zero which satisfy eq.(20), an important example being

the supersymmetrical Hémi]tonians around a classical monopole background(7)’(11}
When the Fredholm condition is valid, we can write for the super-

partition function: i

I .
ZZS(&>:: J gmB<E)“ hs(?)j@yﬁ' dE
Do

¢

I

(21)

Y ~ [ { ™ - ?:: -
13%5 4 ( iuﬁLQD*ﬁg{E}tQ dE

where ng (E) (nF(E)) is the bosonic (fermionic) density of the energy

_13-



eigenstates with eigenvalue E. € »Ois the energy gap separating the

continuous portion of the spectrum from E=0. (The non zero-energy states

belonging to the discrete part of the spectrum cancel as usual).

The integrand in the Tast term in eq(21) now converges uniformly in the

interval ( € ,+ ™), so that one can bring the 1imit inside the intergral:

Airmn EZB(§>

F’;—a'&i}

It is quite clear
nB(E) - nc(E) does not

For theories with

PR

. L (e - _ ;’ v -

wvi ey vy yve 8T e
(ot et e T I
{w;

t

ZL_\! W "k‘ /{r/\ A

A
i

o
Jp—
e
e
-
e

the the same result stays true even if the difference
vanish as E—~ 0 so long as it is not too singular.

a continuous spectrum the superpartion function

Z.(F) is a more general object than the index. In particular, for a certain

g

class of theories, one can recover the index taking the Timit of Z,( [5)

for ﬁ7’3 0o . For finite [ , Zg([l) gives information about the entire
: . E=0  E:0 .

spectrum of the theory in contrast with Z&\y =N - N which

only gives information about the zero energy states.

-14 -



CHAPTER 11

1

1. Supersymmetric quantum mechanics

We will begin to analyse the simplest example of supersymmetrical
system: subersymmetric quantum mechanics with one bosonic degree of
freedom(13). Supersymmetry, contrary to ordinary symmetries, can display
spontaneous breakdown even in systems with a finite number of degrees
freedom. This fact explains why supersymmetrical quantum mechanics has

(13).(14) studied as a simple toy-model to understand

been extensively
the kinds of concepts. we discussed in the previous chapter : index,
dynamical supersymmetry breaking,etc..

The Lagrangian of the system is:

| ¥ Ny TP T VIMPSETR 22
£ ol Wil cF L 4 Wby

where qﬁ*‘is a bosonic quantum variable and ”%/ = ( i;;; is a two-lca
spinor, f%zfi???ﬁﬁ is its conjugate. W/ ((P) is called the superpotential
and the prime indicates derivation respect to the argument.

It can be checked that the above Lagrangian is invariant (up to

surface terms) under the supersymmetry trasformation:

< oA 7ﬁ|
D
|
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The Hamiltonian corresponding to the Lagrangian (22)is:

IR = b {w‘(@]z . W”(@) (23)

p is the momentum conjugate to Q?‘ . }gA}A=1,2§are hermitian fermionic

variables satisfying the anticommutation relations:

v * = 2 bpg (24)
The hermitian supersymmetry generators are easily seen to be:
@4 - \/:g ( p A+ WX )

A concrete representation of the fermionic variables satisfying

the anticommutation relations (24) is provided by the 2x2 Pauli matrices:

;{! = ¢, CKF = &
‘ : (26)

‘The operator (-1)F must anticommute with Q, :therefore it is diagonal
A

in the representation (26):

. 1 0
L

In this basis the supersymmetry charge Q, Tooks like:

- 16 -



(28)

with:

(29)

and similarly for Qz .
As explained in the previous section, the Witten index of this model

is the analytical index of the operator L :

Aw - Mdax (L) (30)

The model (22) is simple enough that the question of the spontaneaus
breaking of supersymmetry can be directly addressed. We have just to
evaluate the number of independent, normalizable solutions of the linear

differential equations:

Lhip=0 & < A () + i Wie Y, le) = 0

y .f A co ( o~ Yo 31
Fale-0 & L4 W0t

o "/// A f

The first one has solution:

- 17 -



[ ¢
W
: ) |
Yle)= e °
while the second gives .
At £ 00 1 2
% ! { | = (33)

n
For f*;# and 4a, to be accetable as quantum states, they have to be
normalizable. This depends on the superpotential W(%>).

Let us choose, for concreteness, W(©) to be a polynomial in ¢ . One has

to distinguish between the case when

|  {even) ) e
W (CP) ~ &D s x{? — DC" (34)
;
and the-case when 4
[ocld) i L e
) e oy
W'e)~ g s > 2 -

From (34) it follows that:

L fodd)
| Winde ~ g

so that nor ’ka neither f%u. are normalizable. Thus, when (34) holds

- 18 -



supersymmetry is spontaneously broken since therecexist no normalizable

zero-energy state. Accordingly:

[\ =0 36
W (36)
In the case (35) we have

g  (even)
j WK dx ~ U
so that either K¥+,or Q%» ( according to sign of wZQ?) ) is normalizable.
In either cases there existsone (bosonic or fermionic) zero energy

eigenstate and supersymmetry is unbroken. The Witten index iis:

¥

I
1+
[
—_~
w
~
e

,_,W

In this example we have been able to compute separate1y.the

number nEto

and nE:O of the bosonic and fermionic zero energy states;

thus the knowledge of the Witten index does not add any further information.
But, suppose we were given only with‘the values (36) or (37) of ZXVU

( In a subsequent section we will expose a method to get ZlvU without
solving the Schrodinger equations (31)).Imagine that in the case (34)

the potential is as in fig.3a (even number of vanishing minima), while

in the case (35) it is as in fig.3b ( odd number of vanishing minima).

At least in the case of fig.3b we wou]d have concluded from the non-

vanishing of the index that supersymmetry is not broken. For the case

of fig. 3a no conclusion could have been drawn.

- 19 -



Let us stress that perturbation theory could not have distinguished
between the cases 3a and 3b and would have told us that supersymmetry
ﬁs unbroken in Qggp_pgsesgl3)’(l4). The non-renormalization theorems(l)
apply also to this situation and state that the quantum effective
potentia1$obta1ned from the expansion around one of the minima in fig.3
vanishes at the same minimum. Because of the shape of the potential in fig.3
one could fmagine that istantons, for example, may be responsible for
non-perturbative, dynamical breaking of supersymmetry.

The knowiedge of the index guarantees that dynamical supersymmetry
breaking does not occur in the case of fig.3b nor becauée of instantons
neither because of whatever non-perturbative effect. This is somewhat
typical of the incomplete but exact statements about the quantum behavior
of the theory that the index allowsto do.

13)’(M’)show that istantons do induce

Explicit computations(
spontaneous breaking of supersymmetry only in the case of fig.3x. One
can arrive to the same conclusion by means of the Callias trace formula
for operator 6n open manif01d<4) which will be discussed in the next

chapter(ls)’(16).

The aim of this section is to illustrate a technique, called ultra-
local prescription(g), to evaluate the superpartition function of a super-

symmetrical theory.by means of ibs functional integral representation.

- 20 -



For a wide class of theories, not containing gauge fields, this seems
to be the simplest and most direct way to calculate this quantity.

In this section we will consider theories which display, when quantized
jn a box, a discrete energy spectrum. The case of a continuous energy
spectrum will be studied in a following section.

Let us start from the functional integral expression§3):

Y

\XJ Z (fb) = %EQC\“;ECE‘\’\‘JQXPE—“ Jo ,. OZO (@, ; (38)

In order to compute (38), we want to exploit its remarkable
property: topological invariance. Since Z( ﬁ) does not depend on ﬁé
ﬁ;*> 0 in the functional integral (38).

Let first imagine to shrink the spatial size of the quantization box

we can .take the Timit

to zero. Exapanding the fields in Fourier components along the spétia]
coordinates, one reslizes that the non-zero modes have large energies

( of O(l/ﬁ;) ): thus théy do not contribute to the index.

One is left only with the zero modes, that is with the configurations
independent on the spatial coordinates. The theory has been dimensionally
reduced to 0+1 dimensions, .without changing the value of Zﬁ(ﬁ)). At this
point, one can still send to zero the length of the time interval where
the "paths" are taken.. This corresponds to the high temperature limit

of a statistical mechanical ensamble. Standard arguments(17)say that in

this 1imit constant loops in field space give the dominant contribution

- 2?21 -



to (38) as far as the bosonic degrees of freedom are concerned. One may

invoke supersymmetry to state the the same is true for the fermions. More
formally, given a 0+l dimensional system:

T T N G (39
0551& *i%;>” 5‘% + (39)
with a potential not depending on the derivatives of the fields, we decompose

the fields in Fourierccompanents:

oLy 7 P k
ok ! < ‘ (9w VY O S P
e(t) = = Cexp et %}‘“ | Pry (Fnm U)
| - P : - ) (40)
I

and the same for the fermions because they also obey periodic boundary

conditions. Let us rewrite (38) as:

S

Lo = WP('J‘” V9% Ye bz )7
> g‘ 0 ~ - . - K
i L. - ST '
s LA Jes T AYE Y
p i { /",‘
| - .
T v

Using the decomposition (40) one gets:

- 22 -



(42)

o~
ﬁ [
= m o
R R —
I A” R
g - —
Iy oy
o - -
N y Ib’ .
' [ o
P P Nyl
s G ., -
ST . - T
=3 T
o e o -
SN i//! .7,A 'uw
N —pt N -
L
4 A L
[ | o I t §
= : L
= o i
~. ; . -~
et - S
o~ o "
e e <
T e
[V oot o

o~

hS—

[ ) J )

N

[
ol
5 b k{
(7 (J

h
) where d is the space-time

- 23 -

the normalization is 1/(2% @A

Noting that

one obtains, taking the limit ;’ -5 0:

After a rescaling of the fields:

In general,



dimension and n is the number of scalar supermultiplets. The normalization comes
from the integral over the Kinetic terms, but the easiest way to find it

is to observe that the index is always 1 for arfree massivelitheory.

Armed with the ultra-Tocal prescription (43), we can derive a number of

results concerning scalar supersymmetric theories.

(1) Supersymmetrical quantum nechanics revisited

Let us re-derive the results (36)-(37) for the index of supersymmetrical
quantum mechanics, making use of the path integral approach. The super-
potential 1is chosenin such a way that the Hamiltonian has a discrete

spectrum, for example as in (34) or in (35). The formula (43) gives for

. r lr[" . . —_ . s o . .
I - - ; i g;! Coen o ond Vo et e e a0y
- ) €11 n Y i G AR et \i'\\l = S e {U I Y L N
\ ».(%Ci(-%‘di%d‘{» RXpi- O =Y E Nty WU 4 e AR
A\X/ b T -
0
{ i rE% 1. / -
ISHIRL H o N

_ % ¢ g: (Y : \—{’ _ i o :{_’g’, N Y i -
— ! - 3 - -

/ fﬁ'vf(« <

;

SLA

Performihg the change of variables:
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one gets:

Frooh
1w dhe coce <55}

IS

Exactly the same result follows for the N=1 Wess-Zumino model in
two dimensions, since when reduced to constant configurations it becomes

identical with the above model.

(ii) The complex Wess-Zumino models (N=2 in d=2 or N=1 in d=4)

The Lagrangian is :

m@gfq \7\/{“}{///':3

; /
o C -
“ - } <

which is always invertible if we choose W ’((g) to be a polynomial,one
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obtains:

the degree of the

— { \‘— { qu—}" £ A _
AKXVU" Q{§g%i¥1 éﬂf% G F> {Q§ ) - polynomial Vvl(@) (?é)

(iii) The non linear supersymmetric < -model

We wi]i choose to work with the real models (N=1 in d=2)(18)but

the same reasoning works for N=2 in d=2, the Kahler models(19>.

The superpartition function is:

r -~ ol PN i NV A
f Fpo 1 177 f i as o ot (g L L@ Yo Vod
ZQ: [%G({O"{‘C{\ggxxtp[~jﬂ% ERHCA = 9@ 7y
< I . L
J (46)
H 5 7 - Wzgm ’Y\:- ! 15( " ‘X‘
| 5 i - 4

where the scalar fields (/ are coordinates of the compact, n-dimensional,
: : : a . : : S
Riemannian manifold M, and “{ are 2-dimensional Majorana spinors (isj.=

1,...,n). Using again formula (43) for the index, one has:

‘ I I S R & - . — — e
/\ L R T2 B AR A A EAE VR A
[\ - ey fx% I E AL A \“g { |
WW < W i 12t ! {

LR S - i
(’e I é j i
|

We can perform the Grassman integration using Berezin's formula. Expanding

the exponential, the only term which can contribute must have n “%"s
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and n V¥ 's, to match the number of objects in the integration measure.
Since the expansion of the exponential contains only even powers of 4{
and 4# 's, it follows that the integral vanishes for odd n. For even n

we get:

"D

AQ(/ qu)( {%',L‘ (q)h/u (__L | p q;”‘{ I g{)i‘f/i
g™ () 2P |

J

Changing from the Qé s %r basis to the component basis ”# = (
gives a factor of three in the Lagrangian after appropriate use of the
cyclic identities for Rkjk ¢ . The resulting integral over Grassman

numbers is trivial and gives a product of € -symbols. Thus, we have:

N,z | ITde 0 0 eheingebp R ()
Bu= T b e e R Rge,
2},

This is nothing but the Chern-Weil expression(zo)for the Euler-
Poincaré characteristic of a riemannian manifold. We have thus recovered

the Witten's resu]t(z)

Zfiv%sigma model) = Euler characteristic of the manifold (48)
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Let us remark that we assumed that the manifold M is compact. In the
non-compact case complications may arise.First of all the ultra-local
prescritpion may turn out not to be correct because of the continuous
spectrum of the Hamiltonian. Secondly, it has been shown that in a class
of non-compact, non-linear G-models there exist»infinite]y many states

with zero energy which make the index infinite(21).

The previous computation is an example of a general method(§);(22)’(23)
derive the Atiyah-Singer theorem(24)for all classical complexes and

its G-index generalization. It can be shown(z) that there exists the following
correspondece between invariant quantities of the non-linear, super-

symmetrical & -models and the topological invariants of the underlying

manifold M:

er(-1)" = ()

tr(-1) K = 1lef (k) (49)
tr (Q ) = sign (M)
tr (Q K) = sign (k)

where k : M —% M is an isometry of the manifold M and K is the corresponding
quantum operator commuting with the Hamiltonian. Q¢ is the generator

of the discrete chiral trasformation fg? — s . }f(?ﬁ) is the

Euler charateristic of M, Tef the Lefschetz number, and sign refers to

the signature of M or k. The idea of the method consists to express the

qi
supertraces in the left-hand-sides of eqs.(49) as supersymmetrical path-
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integrals. One evaluates these path-integrals in a manner. similar to
that one we expained in eqs.(46),(47); thus, one obtains expressions for
the index densities of the topological invariants in the right-hand sides
of eqs.(49). An example will be given in the third chapter.

Let us remark that it is quite surprising that the non-Tinear
supersymmetrical ©-model contains so many informations about the topo]bgy

of the underlying manifold.

3. Theories with a continuous spectrum

(1) The super-Liouville example

There are cases when the ultra-local prescription apparently does
not seem to give the right answer for the Witten index. Consider the

N=1 real super-Liouville model in d=2:

A Mrfdi")gz

+ b
2

L - aagaqumerp

which is of the Wess-Zumino type, with:

=
Using the foemula (43),one gets\®)»(28):(32),
o<
VA A ¢ . 3
Zo= | Ao ol 4 o
> s U2 T g
()



Clearly this cannot be equal to the Witten index which is defined
to be an integer. One is forced to conclude thattthe Hamiltonian of the
model (50) has a continuous spectrum: the constant configurations
prescription might fail to reproduce the correct superpartition function
and Z;(ﬁ;) is not guaranteed to concide with the index.

Since the validity of (43) is doubtful, one has to resort to some

other method to evaluate 23({3). Because of the existence of a local

Nicolai mapping (25)>(26)-(27)

(29)

for this model, ZS(Q,) can be exactly
computed . A bit surprisingly, the rigorous computation based on

the Nicolai mapping gives the same answer of the ultra-Tocal prescription:

Zs(iz’) = 1/2
It follows that even the weak equality (20) does not hold:
Ny # 1&% Z(p) = 1/2
It is therefore proven that the Hamiltonian of the super-Liouville

model has a continuous spectrum starting from zero and the difference

between the bosonic and the fermionic densities of energy eigenstates

is rather singular as the energy tends to zero.

In this and in the following section we will restrict our analysis
to Hanliltonians that have a spectrum in which the continuous part is
separated from zero by a finite gap (Fredholm Hamiltonians).

For such = theories, we expect, in general, a non trivially @—dependent
superpartition function. Néverther]ess equality (19) holds.

In 1979 Callias, Bott and See1ey(5) gave an explicit formula for the
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trace(§) ifL/’ ' E,lﬂ[i/
— 9 —
tr (41 ¢ — L 2)

(52)

where L is a linear, differential operator defined on the non-compact

manifol R"

L = ZS“E); @M, +« 1, ©® D) (53)

5‘; i=l,...,n are the gamma matrices in n dimensions. Q%{f> is a
nxn hermitian, (asymptotically) unitary matrix chosen in such a way
that L is Fredholm. The trace (52) can be thought of as the superpartition
function
F- H
ZS((B) = tr(-1) e (54)

of the supersymmetric Hamiltonian:

2 = L*L (1-F) + LL'F (55)
( F is the fermion operator).
We are not interested for the moment in the specific form of the
Callias formula for the trace (52):1later on we will derive it by means
of "supersymmetrical" methods. The important fact is that, for each value
of B , the trace (52) is a topological invariant since it is expressed
by a surface integral which depends only on the asymptotic behavior of the

potential.

(§)Actua]1y they computed the trace

bo(z. o 2oy L zed
Clzare Z4Le /

which is easily seen to be related to (52) by a Lapldce trasform.
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Accordingly in the following we will assume the porperty of topological
invariace for ZS(P ) from the very beginning. Using the functional integral
representation of the superpartition function we will show that, also in
this case, ZS(€>) can be explicitly calculated as an ordinary integral
ovef constant configurations. Let us stress that this fact is not obvious
since ZS(Q>) turns out to be non trivially dependent on {9

The previous assumption is justified by the Callias-Bott-Seeley
theorem for quantum mechanics of the type (55)5(53) (n odd), but it
can consistently applied to quantum mechanical system not of this form
(in particular with n even) and also to field theory. In the latter case
such a generalization is mathematically non trivial because the relevant

differential operators are defined on infinite dimensional manifolds.

(111) More on the constant configuration prescription

Consider supersymmetric quantum mechanics with an arbitrary number

of degrees of freedom having as euclidean Lagrangian:

coe T [ / r\»ii v"a,fi
D < I Y ; FE AT
R { LU { f‘f{ L( / n)ﬁ},{ ]j VAP
Nl 5(@’ )+ 4 A %A”‘ ;zv‘;*{(‘-) Z 1A TR (56
( ¢
where i,j =1,...,n; A=1,2 . CF are the bosonic variables, Q{A are

the fermions. ,i denotes differentiation with respect to QDL and
w(cf) is the superpotential.

The superpartition function is given by the functional integral:
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p

Zg(ﬁ)‘; {(Wd%”exp(——fdfo/@e> (57)

In ordere to assure the Fredholm character of the energy spectrum

wﬁ(te) is chosen to satisfy the asymptotic condition:

(1= o a homogeneous function
‘ s of order zero bounded below
by a positive constant

According to our ipothesis, we can deform the potentiaT in the

following way:

>Q/ ( E&/ (2‘9) ,4 an arbitrary parameter > 0 (58)

PRSI

without affecting the superpartition function, since (58) corresponds
to a "stretching" of the potential Teavingthe value at infinity fixed.

Thus, invariance under the deformation (58) implies:

Z.(0- Ve n ol [ ' k2004 +

i

(59)

é Wa)) - s A, A j\{i;(w}}

Performing a change of integration variables with unit jacobian

- 33 -



N N N R Rt e 60
3 3@2@{U€}*W iﬁg ﬁfJiﬁyy“E%}i (60

At this point one may carry out a decomposition in Fourier modes of C!‘{4}

laYA"
and )X%(H, exactly as we did in sec. II.2 .
It is easily seen that the constant modes give a contribution

of 0(1) in ;X » while the non-constant modes are at least OL) ).

From the overall } -independence, one concludes that, in the present case

also, the superpartition function is given by the functional integral

reduced to constant configurations:

Let us remark that while in the case of discrete energy spectrum
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the ultra-Tocal prescription (61) was "physically" intuitive (since Z,(g)
is actually ﬁ -independent, one can imagine to "decouple" the non-

constant modes sending the size of the quantization box to zero and

giving them large masses), for theories with continuous spectrum it is

not so. Rather, it is the specific structure of the Lagrangian (61)

which requires that the non-constant modes cancel each other, somehow,

in order that ZS({B) be a topological invariant. There exist supersymmetrical
Hamiltonians, still Fredhoim, for which the constant configurations
prescriptioncannot:.be justified.

Integrating the fermions in (61), one obtains:

i
‘ 1
r " ( gldpi}fg”»%zlzﬁlﬁ %/H(Q}QQ»L,,ﬁ { W) )
c (V } “ N H ! LI “ % z
S\ A on ) J : —
-

Making the change of variable
_ »&/‘((,
‘fj - " V() i (62)

the final result for the superpartition function is:

()t
. V{ M}/ y K
/ . 7

Z(p)= N Wf*?)ﬁ%—"é (63

g

[acswt
o]
-

AVa\

where B" is the image space of the mapping (62). N is the winding number

n-1 Sn—l

of the map from S to given by the restriction of (62) to the sphere
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at infinity. An integral representation of N is given by:

s

N =0 | dw, A adiy (60)
Qv ’

[v)
where @%f jf and £ is the solid angle in R":

[“}’{\‘ . () r«,—{"’l

N, -

To get the Witten index one has to take the limit of (63) as
ﬁ;—e 00 . Clearly in this limit the gaussian equals 1 (recall. the

asymptotic condition on W (i )) and hence

AM/ Jin RATSIEN (65)

One can find a more exp11c1t formula for the integral in (63),

'l w

when ]w (p)\ —— > Y , a constant independent on the angles.

The image space B" becomes a sphere of radius Y , and thus:

V " 2
N L /'L ! et v WE: % /2
7( — N \{:._> dop™™ 07 _
4—'(\€) - 2T ‘
0 rr
ris -
Coy b dE e (66)
. o LU 4 i
— ‘k Q — i e
S (T
: :
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Formula (66) agrees with the Callias-Bott-Seeley result (see next
chapter) for n odd. For n even 1tkgives a new trace formula. As pointed
out at the beginning of this section, if one takes for granted that
Z ( Q) is a topological invariant even for field theories, the very

P2
same formulae (63)-(66) obtained hold also there.

(iv) Gauge theories

As Witten pointed out(z)it is iﬁgenera] difficult to compute the
index for theories which contain particles that stay massless for all
the values of the parameters. Of course this is just the case for gauge
theories when there not occurs comp1ete breakdown of the gauge symmetry.
The difficulty Tays in the fact that the energy spectrum becomes
continuous, starting from zero, when there are massless particles around,
due to their zero momentum modes. Under these circumstances the concept
of index becomes tricky to define.
To overcome this obstacle it is useful to introduce some sort
of geﬁera]ization of the concept of index.(z) Q
Let X be any operator commuting with the supersymmetry .charges and,
hence, with the Hamiltonian:

()(( CQj} =0 f:::;> i)( f Q% -0

L

Let P% be the projector into the subspace of the eigenstates of H which

are eigenstates of X with eigenvalue N . The quantities
tr(-1)7e 7 p ; tr £(0e PR (67)

similarly to the superpartition function tr(—l)Fe~ @H, are topologically
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invariant. Like the index, if one of them is non-zero, supersymmetry
is unbroken.

For gauge theories, even if tr(—l)Fe— ﬁH can be i11 defined and/or
tricky to evaluate for the reasons explained above, it is possible to choose
P) and ‘X so that the related traces (67) are well defined and easy to
compute.

We will consider the pure N=1 super Yang-Mills theory. Its field
content is: a non abelian gauge field A, and a Majorana spinor Wk““
in the adjoint representation of the gauge group. The lagrangian is:

[ O »,\} - - iy G
L=~ YEOY oyt ()

For sake of simplicity we will take SU(2) as ~ gauge group. We will
work in the gauge A, = 0.

As usual to compute the index we are interested in the zero-momentum
modes. The strategy will be that one of quantizing only the zero -momentum
modes whith have zero energy classically: in the weak coupling they are
expected to have energy much lower than the others modes. The zero-

momentum modes that have classicaly zero energy satisfy:

A

b —1& a )
{:v =0 S {/Alj fi"g.}: 0 A. = Al T constant
Y - : matrices
Hence, A; must belong to the Cartan subalgebra of the gauge group SU(2).

This means that they are proportional to the same generator, which we
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can choose, conventionally, to be T~ :

; s g
% P : !
4 — i i

(69)

Analogously, the fermionic zero-momentum modes carrying classicaly zero

energy are:

where < is a constant Majorana spinor.

We, therefore, will quantize the Lagrangian:

1 5' E =t
whose Hamiltonian is:
T e :

e

(70)

(71)

( V is the volume of the quantization box). [/  are the momenta conjugate

(

L T v
'tO B ; . : Pt RN .
g I3 o ot )

To quantize (71), one has to know the domain of the variablzg 3

Consider the jauge trasfermations:

i 3T e LT
— -t
. Ok
. ~
£
) — —

s T Y . - -

; ; e €

; WF H

, 4 . A4 P ©
P R PR % - =

:

(72)



that is, the zero-momentum modes are shifted by a constant:

1y
! g L it
e . %\ ’J{ [

b, v r T ey (73)
The gauge trasformations (72) are topologically trivial(they are

called "small gauge trasformations ). By virtue of the Gauss law, the

physical states must be annihilated by them. Therefore, the.wave

functionals .of .the physicals states must be periodic in h; ,with

period 21 /53

There exists another gauge trasformation:
T2
} (T |
e
(T = © (74)

which is also topologically trivial, since it is constant. Under (74):

G €
h, — =N ;€ - =€

Invariance under the G operator (74) implies that the wave functionals of
the physical states are even in h; and contain an even number of fermionic,
zero-momentum, creation‘opekators.

The evaluation of the index is now trivial. The Hamiltonian (71)

has four zero energy eigenstates

{
-

+ /
0y Exloy €€, o), e=n2

Al
where {0>' is the bosonic "vacuum" with constant wavefunction 1%0 =1.
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65: are the zero-momentum, fermionic, creation operators. Between
i
the states (75), only [O> and C:Jrléz {O> are invariant under the

"small" gauge trasformations (74). They are both bosonic. Therefore:

AW - tr (-1)F =2 for su(2)
A direct generalization of this argument to the general case of a simple

gauge group of rank r, gives(z):

[Ny = el | (76)

We conclude that supersymmetry is not spontaneous1y broken in pure
super-Yang-Mills theory. |

Let us end this paragraph with some remarks about the Timitations
of the previous result.

A major question is if the addition of matter to pure super-Yang-
Mills can trigger spontaneous supersymmetry breakingi-As long as one adds massiv
supermultiplets, the index will not change and supersymmetry remains
unbroken. The same is true if one couples supermatter:in real representations
of the gauge group, since it is always possible to give a gauge invariant mass
to real matter. The difficult case is when the supermatter lays in
complex representations of the gauge group: it cannot get mass preserving
gauge invafiance. As usual the zero-momentum bosonic modes make difficult
to compute vay. Besides that, in supersymmetric theories there appear
frequently scalar potentials which are vanishing in certain directions

in field space. Therefore the zero momentum modes of the scalar fields
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can become arbitrarly large at no cost in energy, so that they can

develop a continuous energy spectrum starting from zero.We already pointed

ogt that under these circumstances the concept of index becomes difficult
to define. The relation between the index and the superpartition function
may break down ( see the super-Liouville example), and even its topological
character becomes doubtful. In some cases such difficulties can be overcome
using particular boundary conditions which eliminate the zero modes(z)’(30).
One might ask if it is possible to derive the previous result about
the index of super-Yang-Mills via the functional integral representation of
the superpartion function, as we did for scalar theories..At present this
program seems to present difficulties. The method we used for scalar theories
is justified when the energy spectrum is discrete, while we expect this is not
the case for gauge theories. Only restricting the supertrace to a subspace
we have been able, in the above derivation, to distretize the spectrum.
An é]ternétive and more rigorous computation of the index for gauge
theories/wou1d,actua]1y, be We]come: the correctness of (7&) has been

recently questioned in ref.(31), where it is poihted out that ambiguities

may arise in the definition of the index for gauge theories.
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CHAPTER III

1.Supersymmetrical quantum mechanics and index theorems

The index theorems demonstrates the equality of analytical indices (relatec
to the solutions of partial differential equations) to topological
invariants.

We already remarked in chapter I that the Witten index of a super-
symmetrical quantum mechanical system is the analytical index of a Tinear
differential operator related to the supersymmetry charge. In a basis

in which the operator (—1)F is diagonal
0
e [
0 -1

the hermitian supersymmetry charge looks like:

~

0 O‘f') v = @

= Lo

The Witten indéx is the analytical index of the operator L:
/_{_\\:{/ = index (L)

Therefore to compute the analytical index of a given differential
operator L, we will choose the following strategy:
(a) we will build a supersymmetrical quantum mechanical model having

the Q defined in (77) as supersymmetry generator.
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(b) We will compute the superpartition function of the model built in

(a) via the functional integral representation.

Step (b) includes two subcases:

~(by) The operator L is defined on a compact manifold and has a discrete

1)
spectrum. Thus the superpartition function 25 (@0 is ﬁ-independent
and equal to the index of L. We can take the Timit (5 ~—>0 in the
path integral representation ofzs(g ). The path integral becomes

straightforward to evaluate since in the limit ﬁ'ﬁo the constant
configurationswill dominate(g)’(zz)’(ZB)’(9).

(b,) The operator L is defined on a non-compact space and has a continuous

0)
spectrum. Zg(f ) is, in genzral, ﬁ§~dependent. If L is a Fredholm
operator, ZS(ﬁB) is a topological invariant for each value of ﬁ>
Because of that, in some cases, the path integral representing Z( ﬁ)

can be evaluated by means of the ultra-local prescription(lo). One

obtains the index of L taking the limit:

index (L) = ww zs(@)

We will see that the step (bl) povides a derivation of the Atiyah-
Singer index ‘theorem, while step (b2) gives the Callias-Bott-Seeley

trace formula for operatorson open spaces.

2. The Atiyah-Singer index theorem

Consider the Dirac operator on a d-dimensional,riemannian, compact
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manifold M in presence of a non-abelian gauge field:
R
A 1 aE::@, —%iA E )
/@ — b CC“» ( C) fx .% 2 \""\)/m 53 b : IAA

o . . . . . . Ty
e , a=1,...,d, are the gamma matrices in d dimensions; Gy = %5 RERLE

ok . . . '
OJ#‘ js the spin connection:

. b e
m&b::\~€v (%Mef" rﬁJ€A>

eff’are the vierbein:

C V4 é v
o L0 _ e €, = .
et s g 5 ST

The matrices ( T‘*)AB provides a representation of the gauge group G.
®=1,...,dim(G); A,B = 1,...,m and m is the dimension of the representation.
The index of the Dirac operator P is defined to be

t _

&

index ( P ) = dim ker(Pp) dim ker( P )

g o= V(%)

v

where

y
f

are the Dirac operators projected on the subspaces of the spinor with
definite chirality:

_ aoAl
5/5 /\4"‘8; I n“‘f%ﬁ

is the chirality operator in d dimensions ( d is even).

1

JARY!
Us

Since
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)5 R — ('@Lfr

the index of P can be written as:
) o4 N

. t 3 . §?3A~ gék | -
‘imaﬁﬁgf Eg = C@u@a {e (L |- .Qf@& e it 7=

[}

with:

Following the prescription (a), we will build a supersymmetrical

system with supersymmetry charge
e L'F) {‘C} iﬂﬁf_
Q= ( Lo/ ( (o0 0

L / \

The Hamiltonian will be:

S (79)

(79) can be thought of as a concrete representation of the Hamiltonian
of an abstract quantum mechanical system. Such a system contéins d bosonic

variables X .whose conjugate momentum are represented in (79) by derivatives

respect to ,X,,; :

(80)
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Thebsystem contains also d fermionic redl variables,satisfying the

canonical anticommutation relations:
ab
a b -
H’ N } = 29
ﬂ%(s

yooare represented in (79) by the gamma matrices:

o At ©
g\é g (81)

R s

To take 1in account the gauge fields, further fermionic degrees of

freedom have to be introduced. Let f*zﬁ, ﬁ?ﬁ,A =1,...,m be fermionic

creation and annihilation operators satisfying the anticommutation relations

[ A 1 48
! mb (=
1

Then the quantum mechanical operator

A (Tm‘) mnbBA
. A 2

ﬁ? ,[ Ao | (82)

o

is represented in the subspace of one-particle states 1t o;> , by the
matrix

L e O

AT (T

fpo AL

!
With the identifications (80),(81),(82), the Hamiltonian (79) can be

rewritten as:

- 47 -



The corresponding Lagrangian is:

: P ; Sy A “ﬁ)ﬁgmﬁﬁ
L= Lgxaek (D) ot O
- Lat P (84)
s ~ ,«EC:, 3
K _ e . ™ = iy Lt
Di: - D{ + X A/‘ / Lj'{ A !

(84) describes a N=1/2 supersymmetric 'non linear <cwmodel defined on the
riemannian compact manifold M and coupled to the external gauge fields f%p

. Our aim is to compute the superpartition function of (84):

~ F

Rl

dey OF - T , |
wader Y= le, € (85)

where trl means that the trace is taken over the subspace of the one-

particles states

o f
[

)
>

0)

J——

To get (85), one can use the following trick. One computes:

F_pH+tAN
AY) = le (1)@ o (86)

where ,k is a parameter and N is the "color" number operator:
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In (86) the trace is taken 1in the "big" Hilbert space which includes

the multiparticles states

. ﬁ%lﬁAl\O) e {

This trace can be splitted in the subtraces on the different multi-particles

At At 10

subspaces labelled by the eigenvalue of N:
L&l r 2 [T Syt
ey % F »(JH‘ LGK
- - €
L\()) = ), ty V) 1€ (87)
‘)(:0 A
where trk indicates the trace on the subspaces of the k-particles states
(k=0,...,m). Thus, to obtain the trace (85) in which we are interested,
we have to extract from (87) the piece proportional to e

(86) can be expressed as the path integral:

For £}—4> 0 (88) is dominated by the constant configurations. Expanding

around the constant modes

(o]

/D]A _ 41;% f/{ng

P s
©
ity
i
o
S ]
A o
.
P
e

[y 0 v 1N .
Pl o~ 3 A L N

and keeping only the terms-quadratic in the fields, we obtain:
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where:

"

~ T

Yin) v , ayb
R70) = R ) ¥ &

and Rffggk is the Riemann tensor of the manifold M.

Performing the standard gaussian integrationsin (81), we get:

/
=
- | {ZLL A
vl AR A g TV
H i ~ . PR 4 = - : ya
LA L Cew o WY /T P — !
TS RS B Lol oxaet | 52 /
SEEY | —— i ¢
/\ a
L (/2 |
AL

Integrating out the fermions, {90) becomes:

e bR "“”Qﬁ/
Z\U):(E?)/JM [L & Iz

M
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where the two-forms on themanifolds M have been introduced:

P

~ N oy ~_ - r v
6{Vv = Eini@ dX}AdX / ¢ = %}“ drradx

(85) is obtained extracting from (91) the term proportional to eﬁx:
(00 71 8| ! %">3 ? ,’ymgifglaﬁx f% § {: é:izg |
wnder(P) = (o) TdeU TP e e
' et ’ PR
"f L { h &"’f\ i

which is the Atiyah-Singer formula for the index of the Dirac operator (78)(24)_
From (92) one can derive the the expressions for the Euler characteristic

and the Hirzebruch signature.

3. The Callias-Bott-Seeley theorem

The Callias-Bott-Seeley theorem deals with linear differential

operators of the type:

=t 0+ (1,000

(93)

Q' I
where <ﬁ( X) is a mxm matrix unitary and hermitian. X, are the gamma

matrices in d dimensions ( d odd). L is defined on the non-compact space

d

R. The theorem states that(%):

Vti._zg\,w < - wmi_, K clex [m
. Z+LH, z+LU /

(94)



and:

! (dfj)' i o d (94Y)

Introducing the definitions:

‘ ~ 2
= i/ 0 L } ! i) ‘t‘?‘j& = (—\}
d={Lo | ) T
- 40 (95)
v U D
(94) can be rewritten as:
3 t I3 : %; | P
//\ {Z) 'E_ '{\ ?& ,,__,Z_;,,,.__:, é*é’é E = . r5/< \V\AQX(\Li (96)
- Zie (1+2)

The left-hand-side of the equation (96) is proportional to the Laplace

trasform of the superpartition function of the system defined in (95):

Me)=z | et Zslp) 0
| PR iL (97)

Z} (z) depends non-trivially on z, and so ZS( E) is @—dependent. This imp1ﬁes
that the fermionic and bosonic densities of energy eigenstates of the
Hamiltonian in (95) do not match. We have studied an Hamiltonian of this

type in I11.3.(ii1), the Wess-Zumino supersymmetric quantum mechanics

with an arbitrary number d of degrees of fredom:
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AH = bl W oo~ t€ge X; Xo Wipv

(98)

We found for the superpartition function of (98):
[i%

d) | (EJE 1 L ~

] N - ' Yo L e

ZS(B) - N } 1 (99)

0

The superpotential vj(xf) is chose to satisfy the asymptotic conditions:
V) - oy
] \/\/%ipx*?{ 7 (100)

We would 1ike to show that,for.d odd, (99) is a derjvation of the
Callias-Bott-Seeley theorem with a specific choice of the potential é@(;f).
For d even (99) provides a new trace fo;mu]a, not of the type (94).

The supersymmetry generators of the system (98) are:

CQE - —%j ( F)ﬁk;Kjﬁ + Ué{r :an ) , i
(101

: g L Y i/ Vol
Gé? - 75’ (?b/‘/.}‘ 1}(///5/! )

In a basis in which the fermionic number is diagonal, the supersymmetry

generators :take the form:

O L

5\71:( "o )
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Let us construct L in the two dindinct case d odd and d even.

d odd

‘It can be checked that an explicit representation for the fermionic

/
operators CXA* s0beying the 2d-dimensional Clifford algebra, is:

;Kﬁ) = B/W ® 4i? ®» T,

{

Ao 4,007 O, (102)
d=1

—

where 5”? f«=1,...,d are the p= 2 * dimensional matrices representing
the d-dimensional Clifford algebra. Cf; and @, are the 2x2 Pauli matrices.

(-1)F, anticommuting with the fermionic variables 5{2‘, is represented by:

(e =X X XL K= 0,81, 0

(v

In this basis:

Q= g (1"hoTo0

-
—.<:\
\f‘
—
=
S
=<
X
(@
QA
N

from which it follows:

Iy A + . ® "W
L - X P/“ © (9 * d? 4 g (103)

This belongs to the class of operators considered by Callias, with:

%}(X) S \)(/If (104)

Taking the Laplace trasform of Zg( p) in (99), one obtains:
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j@ ) () /2
105
= —%_;ilﬁ,_, N (108)
I i
(V4 2)
we recover the Callias-Bott-Seeley trace formula (94) (in (94) is set

equal to 1), since the winding number is equal to the index of L:

index(L tY(XM(“Mﬁ)E

[l
2o
;TEl _
AT
e
)q

d even

Az representation of the 2d-dimensional Clifford algebra,for even

d, in which (-1)7 is diagonal, is:

M !
AP ’_‘i} p Tt e &
/4(§ - ® T / ;T
.
[ ”"f*rg }\G" oo %;‘.,}(E“‘E
ns L o / ;
/)i a = i

a _
where T‘ ,a=1,...,2d-1 are the q = 2d ' dimensional matrices satisfying

the 2d-1 dimensional Clifford algebra.In this representation
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-and:
o( d-i
~ \ - = /-’ s / ¢ iy /EE (106)
L_ = 4 A Ppe L. T b%iﬁ"{ C W g
/w:l /u»:y

This operator does not belong to the class considered by Callias: in any

case our result (99) correctly gives its trace and the related trace.
|

=One may think to derive the formula (94) in the general case
when Cb(ﬁ)is not of the form (104), but it is a generic hermitian (unitary)
mxm matrix. Building the corresponding supersymmetric Lagrangian is quite
strightforward. It is not of the Wess-Zumino type (98). Thus, the ultra-
local prescription to compute ZS({E) from the path integral does not apply.
Nevertheless the path integral can be reduced to gaussian type and, essentially;
the expression (94) is recovered. However to-deétermine the :correct

normalization factor appears to be tricky<33).
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CHAPTER 1V

The relevance of the index theorems discussed in the previous
chapter is not limited to quantum mechanics.

The role played by the Atiyah-Singer ihdex theorem in instantons
calculation or in the axial anomaly ppoblem:has been, by now, quite
well understood.

When operators defined on norcompact spaces appear, the Atiyah-
Singer theorem is not of great usefulness: one needs alternative theorems
like the Callias trace formula or others(7)’(34).

Recently these theorems have found several applications to study
field theoretical phenomena 1ike fermion fractionization, chiral symmetry

breaking, etc.(35)’(36)

. Because of their topological character, one
expects that trace formulae like (94) become useful in the soliton or
monopole sectors of a field theory. In fact, we will illustrate in the
following how to use trace formulae for operatdrs on open spaces to
compute quantum corrections to the mass of supérsymmetrica1 solitons.
For sake of simp]icity we will consider the 1+1 dimensional case(]]),
An analogous technique is valid for four dimensional supersymmetric
field theories admitting monopoles ( as N=2 or N=4 super—YaAg—Mi]]sj(IZ)3(16);

in this case one makes use of a trace formula derived in ref.(7).

Consider the supersymmetric theory in two dimensions

(o) - L0/@) T

o= | [ $o0¥e LAy -3 Wle) -

(107)
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where Q} is a real scalar field and ‘q/ a Majorana spinor. W(LF) is a

superpotential chosen such that the above theory admits topological

'solitons, and the prime denotes a derivatives respect to the argument.

The classical soliton (antisoliton) qg(,X) satisfizthe Bogomolny equation

=+ \)(‘/!(C{’S(X)) | (108)

d x
The classical soliton mass is: ~+ 9@
+ 00 ) ;
Moo [ (2] 1 wleen' |- - [ % Wit =
0~ (1 1\ oX 2 J y, Jx
— o
- o ’
;"L ?7’?‘ s‘w[((ﬁ { 3 . T “} t w (109)
- ‘ijﬁmﬁifiifjﬁéx R | KX/(C€S{X})5
}r °x L -V
The 0(ti ) correction to the soliton mass is given by:
A= BT - J0 )
Y éZ e Lo (110)

apart from renormalization counterterms. bﬁﬁ and iﬂg are the eigenvalues

of the differential operators coming from the quad ratic expansion of
the action(107) around the classical soliton.

The bosonic fluctuations %}(,X) satisfy:

+ T -
i > f -
L g () Wg € (¥) (111)
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while the fermionic eigenfunctions /QA§}== E 0 hﬁgsatisfy:
0.

Ly

L~ M”g(X) = U)F u,(K)

’ (112)
\,‘r U\,(}(\) t {UE: (}\A_( (}()

where we defined the linear differential operator on R :

Lo od o, (e (113)

( L* is the adjoint of L). From (112) one obtains the decoupled equations:

1 . |
L L W(n) = Wf W) (114)
L L+ - (r) = We U

The quantities in which we are interested are the densities g and ne of

the éigenfunctions:of the bosonic and fermionic fluctuations equations,(111)

and (112).Let us define n, ( n_ ) as the densities of eigenfunctions

of the operators L'L ( LL*). Then, from (111), it is clear that:
¥ -
e = 04 (115)
It is not difficult to convince oneself that:
ne = L (he 4 (116)
F 5>
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Therefore:

Ng-N¢g (h4-1-) (117)

One can evaluate the right-hand-side of this equation using the

Callias-Bott-Seeley trace formula (94) which, in this case, gives:

_ N T .
o ( T Tr ) o st (118)
z4 L z4 LU 2{{%4&@ Vzaal |

where a: = wgt(gg(%:ﬁﬁ ) ) .Trasforming the trace into an integral, (118)

can be rewritten as:

Vg

h ‘ _ -
wnere é}(z)—' ( \ O_{ C/(» E
(z)z | - — |

’ 2Z L \g 7 Valiz |

g

This has the form of a dispersion relation, from which it follows that

ﬁgn;%dﬁg _rﬁ:;-:\g_; ) ‘:+,{(E“€)~_§p(>? );} VA
%\K ,tg / £ /
that is
A o{ 1
Lo jéq | ( . Qf{:, 72 \ F}W,O(:E ‘Q\;\ ; N é({}
j“j'j - = - - —— |\ T/ - e
Ui{t 52{3_ ﬁEL \‘I[ E-ai {‘,ﬁf ,0“( g

iy



Thus, the soliton mass correction is

Y ~ S (., -y =
A e B 2 (We-boe) =

{
i
% Phal Flal (119)

( apart renormalization counterterms ).

One sees from (119) that the non-vanishing of the mass correction
is intimately Tinked to the topologically non-triviality of the

classical soliton solution - the same formula evidently gives zero for

the energy correction to the vacuum in O( i ).
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