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INTRODUCTION

The Density Functional formalism (DF) within Local Density
Approximation (LDAY has been very successfull for studying
garound state properties of different systems 1like atoms
molecules and splids , characterized by different kinds of
bonding , including covalent bonding .

In particular the determination of the equilibriuwm geometric
configuration , lattice constant, phonon frequencies , bulk
moduli , is possible with a high degree of accuracy for
several systems. In principle, also structural phase tran-
sitions in solids can be studied by the LDA. The computa-
tional difficulties which one is faced to have howsver

greatly limited its application in this direction.

If one is interested in finite temperature properties
of systems not only in the crystalline phase , but for
liguid or amorphous phases also ,  the Molecular Dinawmics
(MD) simulation appears to be a rather successfull method to
predict them,both at equilibriuwm and out of eguilibrium.

The main problem connected with a MD study is the determina-
tion of the interatomic forces ( potentials » . In all MD
calculations "empirical” potentials have been used ( empiri-
cal in the sense that they are fitted to some known proper-

ties ) . Usually the N-body potentials has been written as a



sum of two-body potentials or in some Cases of two-body and
three—body terms .

This "empirical” approach if appropriate for simple systems
{ 1like rare gas solids where the Lennard-Jones interaction
works very well ) may fail in the case of systems with
directional covalent bonds (like tetrahedral semiconduc-—
tors ) . Recently some effort has been paid to construct
empirical potentials for silicon L 1,2 1 which contain a
combination of pair and triplet interaction ; however Ifrom
what is known today it is fair to say that existing empiri-
cal potentials fail ¢ gualitatively) to give =& satisfactory
description of local order in silicon . This is related to
the strong dependence of the interatomic potential on the

electronic structure.

The unified approach for MD and DF developed by R. Car
and M. Parrinelle [ 3 1 overcomes this problem since in
this approach the exact ¢ wi&hin LDA » many-body interaction
potential is evaluated , without any empirical ad justment .
in fact the potential derives explicitly from the electronic
structure. The mutual ion-electron interaction is taken into
account self-consistently within the Born-Oppenheimer ( BO )
approximation . It means that in such approach is possible
to study not only the properties connected to the ionic

motion , but also the effect of this wmotion on the



electronic states .

However it must be emphasized that in all the cases in which
non—-adiabatic couplings between ions and electrons bgcome
important , the BO approximation is nomore valid and then

this MD-DF approach cannot give satisfactory results .

In this thesis work we extended the initial formulation
of reference L 3 1, combining the MD-DF method with the con-
stant pressure MD due to aAndersen [ 4 3 , to allow for the
MD cell volume to fluctuate .

This generalization should permit to study physical problems
for which is necessary to take into account volume fluctua-
tions , like phase transitions . We initially applied this
method to the study o0f finite temperature properties of cry-
stalline silicon , in order to verify the accuracy of this
approach and to perform convergence tests .

In particular we have studied the thermal expansion of the
crystalline silicon . We looked also at the variation of
the direct energy gap with the temperature . Even if in
principle it should be possible to obtain this quantity
within the present approach , our conclusions on the possi-
bility of studying it are negative because of the necessity
to use too large a cell for the present computer capabili-

ties .



We obtain ,completely from first principles, the ther-
mal expansion coefficient in rough agreement with experi-
ment . Note that to obtain this quantity a great precision
iz required , because we are looking for variation on the
lattice parameter of some part on a thousand .

However our results are strongly dependent on the various
parameters wused in the calculation , as the number of plane
waves, the number of k-points , the dimension of the cell .
Therefore it has been necessary to perform an accurate study
of convergence which is still in progress . Iﬁ this thesis
we present preliminar results of such analysis. Particular
attention was devoted in this work to the analysis of the
convergence of our results with the number of plane waves
used to represent the electronic states .

One of the most relevant results we found is a strong sys-
tematic error introduced in all the properties which depend
on the volume resulting from the use of a constant number of
plane waves , indipendently from the volume variations .
This problem is removed if one is able to reach an absolute
convergence in the plane waves ;3 this however requires a
prohibitivly large number of plane waves in particular if we
want to study the dependence of our results from the size
of the MD cell . We think that it should be possible to

overcome this problem simply by adding a corrective term in



the total energy . This however remains to be tested.

The outline of this thesis is as follows . In chapter
41 the theoretical framework is discussed : in particular we
first describe the MD-DF unified approach ,then we analyze
in some detail the constant pressure MD used in this work ;
finally we briefly recall the most used theoretical approach
to the thermal expansion in solids , i.e. the guasiharmomic
aproximation . Chapter 2 is technical in nature and deals
with the details of our numerical calculations. In chapter
3 the numerical results are presented and discussed . The
last section is devoted to the conclusion and to indicate

the possible future developments .



CHAPTER 1

1.1. Unified Approach for Molegular Dynamics and Density

The unified Approach for Molecular Dynamics and Density
Functional theory (MD-DF) ,recently proposed by R. Car and
M. Parrinello [ 3 3 ,is able to overcome some limits of both
the DF scheme and of MD simulations . In particular this
method permits to compute ground-state properties of large
and/or disordered systems at the level of-state-aof-the-art
electronic structure calculations and to perform "ab initio"®

MD simulations. In fact, in this method no assuwmption about

the interatomic interactions is needed : the 1latter are
treated ‘"exactly" within the DF-LD scheme, the only assump-
tion being that the PBorn-Oppenheimer approximation to

separate the nuclear and electronic motion holds.

In a DF-LD framework [5,61, the ground state properties
of a given system are computed through the minimization of

its total energy .,
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with respect to the single particle electronic orbitals
{%%} {where the charge density is given
2
Y (#)
n

nates and oy indicate all possible external constraints

by n(f)= 4:—-

). Here RI denote the nuclear coordi-

imposed on the system,such as , for example, the volume. The
functional U contains the internuclear Coulomb repulsion and
the effective electronic potential energy. In the HMD-DF
method, the parameters {Wi}; { Qx} p {}iv} are taken to be

dependent on time and the following Lagrangean is defined
—~ I -
= /2 - Jdr
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The &i(Fﬂﬂ are subject to the holonomic constraints :
[RERACOEARRS (1.3)
L)

In 2g. (1.22 the dot indicates time derivative, ML are the
physical ionic wmasses, whereas /l and /ib are arbitrary

parameters of appropriate units. From the Lagrangean

defined above, the Newtonian equations of motion for the

parameters {w,} ,P}IS, [dﬁ} are obtained. These are :
1

pt G o= -Sef39rGH s S A NG (140)
M I:ii -\ E (L.45b)
My &, = - DE/ Doty (t-4c)
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The j\ZK are Lagrange multipliers introduced in order to
satisfy the constraints imposed by eg. (1.3). It can be
shown that, once the classical system described by the
Lagrangean (1.2) has reached the eguilibrium,the eigenvaluesr
of the J\ matrix concide with the occupied K-8 eigenvalues.
Different procedures can be employed to minimize the func-
tional E. In the original MD-DF formulation, a dynamical
simulated annealing procedure was proposed. However, as far
as total energy wminimization is concerned, Newtonian dynam-
ics can be conveniently replaced by other type of dynamics
£73. In our work we have adopted a steepest descent minimi-
zation method since it was recognized to be computationally
more advantageous. We notice that in the MD-DF approach,
diagonalization, self-consistency, ionic relaxation and

volume relaxation are achieved simultaneously.

The molecular dynamics simulation of & systewm descibed
within the MD-DF scheme is performed in practice as follows.
A situation is realized,in which the ions are allowed to
move at a given temperature, following the eguations of
motions (1.4b), while the kinetic energy of the electronic
parameters remains egqual to zero. We stress that in this way
the first term in equation (1.2}, which represents a ficti-
tious kinetic energy, is kept egual to zero. Therefore the

ions move under the action of Born Oppenheimer forces, while



the electrons are at any time in their ground state. 1In
order to achieve such a situation an appropriate choice of
the /u parameter entering equations ({1.2Yand (1.4a) must bhe
made. }L must be much smaller than the ionic mass Mg S0
that during the typical observation time of a MD run, the
kinetic energy associated with the Y:S remains very small
compared to the typical variations of the potential energy

of the system.

In the original MD-DF forwulation, the MD simulation of
a system is thought to be performed within the microcanoni-
cal ensemble ( the volume V, the energy E and the total
number of particles N are kept constant). In our applica-
tion of the MD-DF method, we have instead rewritten the
eguations of motions (1.4) in order to allow the simulation

of a given system in the isobaric-iscenthalpic ensemble.
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In- the original formulation o0f the MD simulation
method, due to Alder and Wainwright [83, the Newtonian egua-
tions of motion of N particlés in a fixed MD cell of volume
Voo are zolved nﬁmerically, The total energy E of the sys-~
tem is‘consérvéd. Time averagés calculated in such éimula—
tions are then equivalent to averages n?er‘the microcanoni-
cal ensemble (E,V,N).

However, one is often interested‘in the calculation of con-
stant temperature and/or pressure praperties in order to
have a direct comparison with measured quantities.

In the last few years, a notabye effort has been made to
generalize the MD method to the study qf static and dynami--
cal properties for systems represented by different statist-
ical ensembles, such as, e.g.; the isoenthalpic-isobaric
(H,P,N>, the canonical (T,V,N) ana the isothermal-isobaric
(TysP,N) ensembles. The first contribution in this sense is
due to Andersen L[4] : he has suggested a way of introducing
volume fluctuations into MD simulations which allows ther
description of a given system within the (H,P,N) ensewmble.
Subsequently, Parrinello and Rahaman [9] have extended the
Andersen’s formulation to allow for changes not only in the

volume, but also in the MD cell shape. Recently Nose’ [103

has proposed a generalization of the MD method suitable to
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study constant temperature properties.

In what follows, we describe in some detail the wmethod
introduced by Andersen, which has been implemented in our
application of the Car-Parrinello scheme.

The simulation of a system at constant pressure requires the
introduction of volume fluctuations . To describe such fluc-
tuations, a MD method can be devised, in which the volume is
a dynamical variable rather than a fixed guantity. The
result is a way of calculating trajectories so that the tra-
jectory average of any property is equal to the (H,P,N)
ensemble average of that property.

In the constant pressure MD method, the system is thought to
be in contact with an arbitrary large constant pressure
reservoir. The system is imagined to respond istantaneocusly
and homogeneously, rather than locally, to any difiference
between the external and internal pressure. Each spatial
point in the system responds at the same bLime, so that the
volume f{luctuations are manifested as uniform pulsations of
the system. No local pressure gradients or surface effects
are introduced into the system by the ressrvoir.
Mathematically, this behaviour can be imposed upon the sys-
tem by an appropriate scaling of the particle positions

;i . Theseg are replaced by the scaled coordinates

L

gi yi=l,...,N,defined in the following way



§i = i—{ /V{/i ‘('.=1/.,..'N. (LS)

where V is the time dependent volume of the system. The

hamiltonian of the system, as expressed through this scaled

set of coordinates, is given by :

-

WG v, ) s v et

Here M is the mass of a particle, U is the system potential
energy and M, and F, are appropriate constants. Dots indi-~
cate time derivatives. The MNewtonian equations of motion,
derived by the Hamiltonian (1.6), and written for the uns-—

ap
caled variables r: are

-, U{aj-

tl

MF,

£}
3

Hg[

&
@

H

MV =-21&VU +z_.r1[é-

;A ton i 3V

These pguations couple the dynamics of the particles to that

of the volume. We notice that if the parameter My becomes



13

@
infinitely large and the condition V=0 is satisfied at t=0,

then eqg. {(1.7a) reduces to the Newtonian equation for par-
tile i, while eqg. (1.7b? expresses the classical virial
theorem.

The trajectories defined by eq.{(1.7) can be used to calulate

time averages of any function F( r,ﬁ,v ds

T

F = fi«; 74: dt F(r(e),—}o(e)/-"\/(t)} (4.8)
o]

Andersen has proved that the resulting time averages for
static properties are equivalent, except for negligible
errors, to averages in an isoenthalpic-isobaric ensemble in

which the pressure is Fo s i1.2. :
F = - 1.9
3 < r>NF'H 4. 9)

We want to stress that the difference between the two dif-
ferent averages is really negligible if a large number of

particles N is considered. In fact it has been shown that :

B

F o= <Fl,, * O(N°) (1.10)

for an intensive gquantity; and

=
i

CFY oy + C(NTH) (4. 11)

for an extensive guantity.

The introduction of the constant pressure MD in the MD-DF
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method is straightforward, once the parameters Mv and F’a

are specified.
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1.3. guasi-Harmonic Approximation.

1f the potential energy U of a crystal is expanded as a
Taylor series in the lattice displacements, it can be writ-

ten as the sum of three terms:

Us Uy - U * U (0

u and U, are respectively the zeroth and second order

&g horm

terms of the expansion. U contains all the terms of

ath
higher order. Several important physical phenomena are
associated with the anharmonic terms. 0f these, the most
familiar is thermwmal expansion. In default of adequate
information about Uam&L « the potential enerqgy U of the
crystal is approximated by the f{irst two terms of egqg.
(1.12), where the {freguencies of the lattice wmodes which
enter the expression of Uh«ﬂnare assumed to be dependent on
volume. This is the so called gquasi-harmonic approximation

for the potential energy U L[i13.

The thermal expansion coefficient of a crystal o is

defined by :
A/ ) FD]D
o - i(ae) ] LPV_ i _'-[_,_;-) (13)
L\RT Jp 3V DTJP 3B fb\v (

where 1 indicates the lattice parameter and B the bulk

2,
modulus ¢ B = M’(D U/A@VﬂT pa In the guasi-~harmonic approx-—
imation, Ol can be expressed as follows:

o= 4 x D & |w ,T) 114
3\/%5 ana'r (‘lk ( )
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Here E are the Graneisen parameters for the mode q}_ g
q et

L
&};_Bm%/b&v (1.15)

E{“%Lﬁ) is the internal energy of an oscillator with fre-

quency qu at the temperature T. According to eqg. (1.14},

the expansion coefficient should approach a constant value
at temperatures higher than the Debye temperature a
¢ B = 625 K for Silicon):

A = Ks 2. (1916
3RV 9* X%k |

where kﬁ is the Boltzmann’s constant .

In the case of Silicon, it has been shown +that the quasi-
harmonic approximation is a satisfactory one to describe the
behaviour af O as a function of temperature in a guite
large range of T [12].

Ab initio calculations of the phonon frequencies as func-—
tions of the crystal volume allow a first principle estimate
of the thermal expansion coefficient at high temperature
(see eg. 1.16). Table 1 displays the resulis of conven—
tional LD calculations [13] of the Gruneisen parameters for
Silicon. If these values (together with those for B obtained
consistently by the same calculations [141) are used in 20.

T (o i
(1.16), we obtain © = 2C x 1¢ (f\"\ ) . This result com-

pares nicely with that derived again by eq. (1.16) when the
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Table 1 : Measured and computed phnhan frequencies f

and Gruneisen parameters RS of Silicon, relative to [ and ¥
points.

LTo(T) LoAa (x) Tol(x) Talx)
T A% 3 13,90 .44
EXFT, . . . .
%(T‘Hz) A
Tueor, A5, NG A2. 16 348 b.u5
) 0.98 i.5 0.4 ~ Al
L TwEOR, 0.9 A3 0.9 - 4.5

(&) %VQW\'R&%.[JQ]
(b) gmw Ref.[ 4 5]



18

experimental values [15,167 for 2{ and B are used :

oL 26 x 10 ("K") .
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CHAPTER 2

In the following we briefly describe the details of our

numerical calculations.

We have performed a constant pressure MDD simulation
with the external pressure (ﬁg ; see eg. (1.7b)) fiwed

equal to zero and used a periodically repeated simple cubic

(8C) cell containing & Silicon atoms.

We have adopted a pseudopotential framework and used a
first-principle nonlocal norm-conserving pseudopotential
£173 for the electron-ion interaction. This pseudopotential
contains s ( 1I=0 3 and p ( 1=1 )} angular contributions.
Exchange~correlation effects were described within the LDA
using the parametrized form proposed by Perdew and Zunger

£L181.

A plane waves representation was used for +the elec-
tronic states. There are two procedures to choose basis
functions as the linear dimensién of the crystal changes :
the constant EPW procedure and the constant NPW procedure.
In the former case, the basis set contains plane waves up to
a kinetic energy cutoff EPW, while in the latter case it

contains same number (NPW!) of plane waves. NPW and EPW are



5/e
related through the eguation : NPwW :éi—z vV (EF’W) °
kd

Therefore the NPW and EPW procedures are equivalent; as far
as the volume V of the cell is kept constant. Since in our
MD simulation V varies with time, the two procedures are no
longer equivalent. Though it converges slower than the con-
stant EPW procedure [19J, we are forced to choose the con-
stant NPW one in order to have the same number of étime—
dependent) expansion coefficients for the electronic

wavefunctions,; at esach MD step.

g

Only one special k-point has been used for the averag-
ing over the supercell Brillouin Zone (BZ). This is the
special Baldereszchi point 020,210 for a simple cubic Bravais

-
lattice K = ( 1/4, 1/4&, 1/4 ).

We have chosen a value of the parameter }k (see eqg.

1.2) egual to 300 electron masses .
In our MD simulation we have used the Verlet algorith [22]
to integrate the equations of motion. Once the MPW parameter
of the calculation is fixed, the time step is chosen in
order to ensure a desired accuracy for the integration,
namely an accuracy which guarantees enthalpy conservation

to at least 7 significant figures.
The value of the time step chosen in each of our calcocula-

-16

tions is of the order of 10 SBC.. About one thousand MD
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steps are therefore necessary to observe the system over a
time interval of the order of its ionic oscillation, ©.0.,
~13

10 sec., as estimated from the phonon frequency values

reported in table 1.

The choice of the parameter Mv, entering the eq. of
otion (1.7b) must satisfy the two following requirements.
iﬂv must be small enough to permit statistically significant
variations of the volume [231 ; on the other hand, it must
be large enough to allow an accurate integration of the
Newtonian eguations. The value which we have chosen as a

compromise between these two conflicting requirements is

-4
0.05% (mass y lenght in a.u.?.

We finally notice that the control of the temperature

was achieved by constant rescaling of the velocities.



CHAPTER 3

2.4 Results for thermal expansion in Silicon

Our calculations for the thermal expansion coefficient
of Silicon have been carried out by means of the following

steps .

al We determine the equilibrium lattice parameter
( 1 3 at zero temperature via a steepest descent minimi-
zation procedure for both the electronic degrees of f{reedon
and the volume , keeping the ionic coordinates fixed in

their perfect diamond arrangewment .

b3 We generate the initial configuration for the MD
simulation @: in particular we fix 1 at the value determined
in the step a) ;3 we give an initial swmall random displace-
ment to the atoms with respect to their equilibriuwm posi-
tions and then we optimize the electronic parameters in
order to achieve the point on the BO surface relative to

that ionie configuration .

o) Starting from the generated configuration , we
heat the system up to a certain temperature T via a MD run

with a simple rescaling of velocities .
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d? Finally , we remove the constraint imposed on T
in step ), to allow the evolution of the system according
to Andersen eguations of motions. When the system has
reached the thermodynamic equilibrium , its average tewmpera-
ture and lattice constant can be evaluated and then a point
of the curve 1(T) obtained.

By repeating the steps ©) and d}), we can obtain other values
of 1 at different temperatures . 4n interpolation of these
points 1(T) permits finally to evaluate the4therma1 expan-—
sion coefficient as follows :

o = det/dT

We first present the results for the lattice parameter
at T=0 .

A main guestion we have been faced to is to determine how
our results depend on the number of plane waves (NPW) used
to describe the electronic states .

In figure 1 we report the lattice parameter at T=0 calcu-
lated for different values of NPW . Both zero- and
finite-temperature results are shown. As we have mentioned
in chapter 2, the constant NPW procedure , which we had to
choose in our calculations, is wusually a slow convergent
gne, The convergence of our results , as can be seen from
fig. 1., is indeed guite slow : the value corresponding to

NPW = 380 ,is about 4% of the convergent value . The varia-



tion between the last two points is less than 0.2 % . The
convergent value of the lattice constant , as obtained from
our calculation with NPW = 2200 {(zee table 3.1, is 10.362
2., « This value agrees with the experimental one , 10.26
A.U.y within 1%.

We believe that the discrepancy with the convergent value
of 10.26 a.u., determined by Yin [19] within a constant EPW
procedure, is due to both the use of only one special k-
point in our MD cell of eight atoms ,and to the disregard

of the d (1=2) nonlocal term in our pseudopotential.

Since a MD analysis of a system regards its ionic
motion as governed by the Newton equations , our finite tem—
perature results , must be compared with the experimental
DHES. for high temperatures only ,for which the classical
limit holds . We look then at the experimental resulis for
temperatures higher than the Debye temperature GBD s which is
about 625 9K for silicon . In this temperature regime 1 is
approximately linear as a function of +the temperature and
hence o is nearly constant (see table 3.2 ) .

In principle we should be able to observe the small varia-
tions of O still present at high T, because our calcula-
tions fully account for anharmonic terms in the potential
ensrgy. In practice, the precision with which the values of

o are computed does not allow us to account for such



()
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Table 3.1 : Relevant pafameters used in our
caloulations : the energy cutoff EPW, the number of plane
waves NPW, the time step t; the " Andersen parameter ¢
Hv(see text), the "fictitious massg" (see text).

EPW (R9) N Pw stlaw) M (o)  julow)

b 380 A 0.05 300

A2 150 G 0.05 390
Al 950 G 0.05 300
20 AbSo p.05 300
2y 2200 4 0.08 300
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Table 3.2 : Measured values of the thermal expansion
coefficient & as a function of the temperature in the high

temperature regime C2737.

T (°K) S (407 2k

G 00 28. 6
oo 39. €
§oo 4o.5
Aooo 424
A200 43.%
Al oo L&, 2
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Table 3.3 : Calculated values of the lattice constant 1
as a function of the temperature T, for different values of
NPW. The values at T = 0 determined by a steepest descent
procedure are also indicated.

NPw= 280 NPW=$50
T 2 T €
0 9.9y Xppo2 0 A0.429 2 0.000
o230 | g g5 £o.003 60020 | A0.4GD20.002
1320 £20 | g.983 £ 9008 A30% 20 | A0.499 2a.00
NPW= 9§50 NPW= 1650
T L T )
0 10.222 %0002 ) Ao. 3Ll t0.e02
18ox3o | 10C.2H = 0.003 goox lo| Ao.Lloxo0,p05
Ad50 £30| A0.308 % 0.003

NPW=2200
)
0 10. 362,% 0.002

3alorlo| A0.39y % aeoy

variations.



We are now going to discuss the results obtained for
1(T} at finite temperatures.
In table 3.3 we report the theoretical points 1(7T) deter-
mined by the constant pressure MD simulation sfor different
values of NPW . The values of 1 for T=0 are also indicated .
We have found that the highest is the temperature, the long-
est is the time needed by the system to reach equilibrium .
Hence the number of time steps employed in our calculations
is not the same for all the points 1(T).
We notice that in order to ensure our calculated properties
were evaluated at equilibrium, we did not commence averaging

for properties until at least 200 time steps had elapsed .

Figure 2 displays the average temperature i: and lat-
tice parameter ET in a MDP run where the temperature was
initially raised at 1500 °K .About three thousands time
steps have been necessary to achieve an accurate estimate of
the equilibrium values . By comparison, the same quantities
for a MD run in which the initial temperature was 600 9K
sare shown in figure 3b . In the latter case only 1000 time
steps are necessary to achieve the same accuracy on the
average values which one has in figure 2 . In figure 3a the
instantaneous values of both the temperature and lattice

constant are shown . These correspond to the average values

nf figure 3b .



hd NPW=380

1260 |-

I (ay)

9.993 L

9,983 |

1 | ] o
1000 2000 3000
At

Fig. 2. Average lattice parameter and temperature from
a constant pressure MDD run  in which the temperature was
initially raised to 1500 K.

As expected, the dependance of 1 on the temperature,
as extrapolated from the computed values which we report in
table 3.3, is linear within the estimated theoretical
2rrors. This is true for each value of the parameter NPUW.
The straight line {fit of the function 1<(T) allows the
evaluation of the lattice constant for any desired value of
the temperature. Fig. 1 shows the values of 1 computed for
T=600 °K, as function of the parameter NPW. The convergence
of 1(T=600) with the number of plane waves is similar to

that displayed by 1(7=0). The convergent value for T=600°%



overestimates the esuperimental one of about 1.5% .
Figure 1 shows also that the difference between the two
values at zero and finite T , éle .18 strongly dependent

on the value of NPW . Z&Q is indeed more than doubled

when we pass from NPW = 380 +to NPW = 2200. HWe must
enphasize that we are observing variations on 1 of the
order of wmilesimal part of 1(T=0)> « Therefore small
errors on 1(T) , lead to wmuch larger error on lﬂe . In

figure 4 we display the thermal expansion coefficient

lo'4 determined via the slope of our interpolating
straight line for 1(T) . The variation of ¢ with NPW is
the same as that of 43@ «» The wonvergent value of o is
about 2 times the experimental value measured for T larger

than the Debye temperature (see table 3.2) .

Three main reasons can be responsible for the

discrepancy of our result with experiment :

=S
1Y the use of only one special k point in a cell of
eight atows.
As in the case of zero temperature results, the present ones

are not expected to be at convergence to this respect.

2) The size of the MD cell.
Since our MD cell contains only & atoms, the error made in

the computation of averages from eqgs. (1.10, 1.11}) is



g NPW=2200

200

&
-
llau)

1042

1038
1 1 L L
0 500 1000 1500 At
g’ A
1= 600} NPW=2200
400|
200L
(b) . . i
g A
|:10-4O /\’W/\_'
10367 .
] I T,
500 1000 AT

Fig., 3. Instantaneous (a) and average (b) values for
the lattice parameter and the temperature, from a2 constant

pressure MD run in which the temperature was initially
raised to &00 K.
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expected not to be negligible.
33 The disregard of the d nonlocal contribution to the
pseudopotential. This effect can be reasonably supposed to

be less significant than the first two.

We notice that as the size of the MD cell increases,
ey
the number of special k points needed for accurate integra-
tions over the Brillouin Zone decreases. Therefore an
improvement on our calculated value for ol should come
-y
from either an enlargement of the MD cell, with one k point

B

or from an increase of k-points in a cell of eight atoms.

We may attempt an explanation of the large change which
we obtain for A as the parameter NPW varies. The analysis
of & cowmputed from the Silicon phonon frequencies and the
Gruneisen parameters obtained by G. B. Bachelet et. al. [24]
can be useful to this respect. The method adopted in
Ref.[24]1 combines the new MD-DF approach with the theory on
guasi-harmonic lattice dynamics developed by De Lorenzi and
Jacueeci [257.

Table 3.4 shows the & values calculated by G. B. Bachelet
et.al. at different fixed values of the conventional crystal
cell volume. As in our case, this cell contains eight
atoms. ot is s2en to be strongly dependent on the volume

at which the calculation is performed . Its value is more
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Fig. 4, Thermal expansion coefficient o« as a
function o©f the number of plane waves used in the

calculation.
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Table 3.4 : Thermal exansion coefficient Ol calculated
for different values of the lattice constant (from ref. 24).
The calculation is performed with EPW = 8.0 Ry

LATTICE |THERMAL
EXPAN SION

STANT
CON BTA CoEEBRIC|ENT

(a.u) ( _Jot°K)

{2)

A0.263 18— 54

q.829" Aq=20

(») EXPERIMEWTAL VALVE
() CRLCULATED  VALUE (Q@g,uﬂ

than doubled when the experimental instead of the calculated

lattice constant is used in its evaluation. This large vari-



3é

ation is certainly also determined by the variation of the
bulk wmodulus B with volume. This can be argued in the fol-
lowing way.

The dependence of B from the volume V can be determined by

the Murnaghan’s eguation of state [263 :

/

E_(v) :Eé_:\f [(B\/!j/»-vi) s |+ enst (3.1)

Eﬂﬂ indicates the total energy of the crystal; Bo and

)

B, are respectively the bulk modulus and its pressure

derivative calculated at the equilibrium volume Vo . 1f

the computed values of EToT are fitted to eg. (3.1) [i14],
’

BO turns out to be 3.2 . B(V) can be calculated from the

second volume derivative of eq. (3.1 and then used to
establish the volume dependence of G (see eg. 1.163,
under the hypothesis that the sum of Gruneisen parameters
varies weakly with V. In this way, O turns out to be pro-

B -4
portional to V ° . Taking for B; the value of 3.2 ,

0(,(’!0»265) - i 35
x ( 9.829)
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BeLe Results for the direct epnergy gap

In order to evaluate the variation of the direct energy

gap of &ilicon with the temperature, we have computed the
-
electronic eigenvalues at the r\ paoint K = (0,0,0). The
latter is included in our calculation for the total energy
with a zerc weighting factor. In our calculation, the
F and the X points of the BZ are equivalent, since they
differ by a reciprocal lattice vector of the chosen simple
cubic supercell . Therefore the diagonalization of the
e

jﬂk matrix (see eg. 1.4a> at k = (0,0,0) gives not only the

electronic levels at r but also those at X.

We have first calculated the direct gap E3 at T = 0.
To this end,; we have optimized the total energy of Silicon
via a steepest descent procedure, keeping fixed the ecrystal
volume at its experimental value and the ions in the perfect
crystal positions. The calculated energy levels at T=0 are
reported in table 3.%. Qur results compare well with those
obtained by Yin and Cohen [14] within a conventional DF-LD

approach.

We now turn to discuss our finite temperature results.
The temperature derivative of the energy gap at oconstant

pressure can be expressed as the sum of two terms
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[m%) :(%E«a) , d faﬁa) (5.2)
2T /e DTy D4V /T

Table 3.5 : Electronic energy levels of Silicon_at
' and X, calculated using an energy cutoff of 14 Ry. The
lattice parameter was fixed to the experimental value. The
gnergies are Teasured from the top o0f the valence band

s
* () ()
é‘th gepr.
E"'/g - 12,20
)<4 - §.00
X, - 3,12
§
[ 0.
Xy 0. %L
Fs 2.64 3.40 ‘)
¢ te)
I’l. 3.06 L. A

(+) Celenlaled value

(&) Ek“‘:euwehkaﬂ value
(o:) agwrow\ R&?. L2%])



The first term in the right-hand side of eq. (3.23
represents the "explicit" effect of +the electron-phonon
interaction, while the second term is related to rigid
volume changes . The electron-phonon interaction induced
by the thermal icnic motion, couples electronic states with
different E vectors, whieh are orthogonal in the equili-
brium situation. The phonon f{reguencies in Silicon have at
most values of 50 meV. Therefore the difference between
the energy of the coupled electronic states will be
correspondingly small. Due +to the shapes of the Silicon

-

energy bands in the neighborhood of K = (0,0,0), states hav-
-
ing small energy differences are also separated by small k
vectors. Hence an accurate account of the electron-phonon
interaction relies on the possibility of including very
=
small phonon k vectors in our calculation. This can be
achieved only with a MD cell of much larger dimension than
that we used. We have roughly estimated that an appropriate
MD cell should be at least ten times larger than that
adopted in the present calculation.
In principle ;the MD-DF method allows to evaluate the elec-
tron phonon effects on the energy gap variation with tem-
perature. The practical calculation ,however, is not feasi-

ble because the huge number of particle which should be con-

sidered is not menageble even by means of supercomputers.
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Fig. 5. Behaviour of the s and [is electronic levels
of Silicon as functions of the lattice constant 1. Both
zero— and finite-temperature results are shown.
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Therefore, our calculation is expected to account mainly for
the implicit thermal expansion contribution to the tempera-
ture derivative of the energy gap. The latter contribution
is the smallest of the two terms of eg. (3.2) : its measured
value is -0.3 x 10‘4( eV /°K ), against the measured value of
~1.9510 ¢ av /%K 5 for (@Ea /DT)V :

Our calculated value for (@Eg/DTJP is + 0,3:{‘10_4( ey
/°K 3. Though it has the same magnitude as the euperimental
datum, it has the wrong sign.

In order to investigate the reasons of our discrepancy with
experiment, we have carried out a zeroc tewperature calcula-
tion of(DEj/tﬂh\q. The so called deformation potentials

T
(D;/bﬁnVL’which we rcalculate are reported in tahle 3.6. As

can he seen from this table, our result for

(’DE:&/D?MV)T has the right sign .

and fZB lev-

In Fig. 5 we compare our results for the Tﬁ

3
els, as obtained from zero and finite temperature calcula-
tions. It is apparent that the main source of error in the

. ™ SNT
sign of dE§ oﬁ p evaluated at finite temperature , is
c
related to thermal efifects on the [‘5 conduction level. The
reasons why the effects of the temperature are more pro-

nounced on this level than on the top of the valence band

constitute an open question.
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Table 3.6 : Deformation potentials for the electronic
states of Silicon at and X. Our calculated values are
compared with other theoretical results and with the

available experimental data.

Preseut 28 Expb.
wev K R&? 3 th
A ~0. 4 - 1.0
Xy -3.8
Xy ~L.¥ -5.4
’ ()
- -1 ~8.6
T 8. 4 1.9 _u.;cw
Xy -G 5.5
C
(e ~8.6 ~8.2,
C
I ~A8.8 ~-20, 3

(o) Froan Raf. [2a]
() Frow 2@,?. [30])



COMCLUSIONS

In this thesis work we have extended the original formula-
tion of the Molecular Dynamic ~ Density Functional ( MD-DF2
approach, combining the latter with the constant pressure MD
method due to Andersen.

We have tested this " ab initio " constant pressure HMD
methed , in which the M-body potential is derived from DOF
theory , studying finite temperature properties for crystal-
line silicon @ in particular we have studied the thermal
expansion coefficient of silicon .

This property appears to be very sensitive to several parawm—
eters used in our calculation. Hence a careful analysis of
how the thermal expansion cogefficient depends on these
parameters allows a broad test of the acouracy of our
approach and of the possibility that it can be used in the
future for the study of wmore complex physical situations,

2.9. phase transitions .

& thorough analysis of the sensitivity of X from the
parameters of the calculation should test its dependance on
the following factors :

13  the number of plane waves (NPW) employed to describe the
electronic states of the system;

2) the size of the MD cell;



L4

asd
3) the number of k-points used to integrate over the Bril-

louin Zone.

This thesis has been concerned with the first test, while
the other two are part of our work in progress.

The convergence of the results for oL with NPW has been
found to be very slow. To achieve a convergent value ,we had
to employ a number of plane waves as high as 2200. The need
for such high a NPW to correctly account for properties
which depends on volume changes, restricts the possiblity of
using larger MD cells. This restriction is imposed by the
exceedingly large computer memory required in calculations
with large MD cells and large NPW.

In order to overcome this difficulty, one can think of
introducing a correction to the total energy which allows
to reproduce the convergent result by means of a reasonably

small number of plane waves.
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