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INTRODUCTION.
let
(1) x = £(x) (o) =0

be an autonomous ordinary differential equation, where x Rn, fEC‘%Br(O),Rni,
and Br(O) is an dpen ball of radius r centered at 0. We assume that the
Jacobian matrix £'(0) has a.complex conjugate pair of eigenvalues iAi, and
that no other eigenvalue is an integer multiple of Ai (non-resonance con-
dition).From now on (1) will be called the unperturbed eguation, and the-
corrisponding dynamical system, the unperturbed system.
Let us consider a smooth curve

%‘Stm-bfﬂ

in the space of vector fields defined in Br(O), such that £ = f and fy(o):o

Vgelp EP[ Moreover let ¢ {P‘} t¢ {3(64}be " curves of complex conjugate eigen-

values of f'(0) passing through*Ac¢. The classical Hopf Bifurcation Theorem
gives a solution to the problem of existence of periocdic solutions of:

x = £(x)
contained in a neighborhecod of O,with period near to 21f,and such that for
U = 0 , the closed orbits tend to the equilibrium point. Since géR, it
can be called one-parameter Hopf Bifurcation. By substituting ak~dimen-
sional smooth surface to the curve just considered, we obtaintithe defini-
tion of multiparameter Hopf Bifurcation.

It is possible to carry on further the generalization: let us introduce a

iy
topology in the space of c®vector fields on B (0) in the following way:

Define the real function ||| - ||] in the of c® vector fields
&)
el -2, £
] ] [
S LNV VIR
(1) 1 X :
where || £ || is the usual C norm of f. ||| - ||| defines a distance

by the relation

d(f,g) = ||| £-g [l
Generalized Hopf Bifurcation is :concerned with the existgce of periodic
solutions with period near to 2%, contained in neighborhood of 0, for an

equation:




Generalized Hopf Bifurcation is concerned with the existence of periodic
solutions with period near to 2W ,contained in a neighborhood of 0, for
the equation

x ¥ g(x)
with g close to £ in the sense of ||| - |]].
The goal of this thesis is to expose some techniques, essentially based
on the stability properties of the involved dynamical systems, which
receﬁtly proved to be useful tools to treat Generalized Hopf Bifurcation
( from now on, only GHB). Moreover , some theorems can be generalized to
obtain information about bifurcation of families of compact invariant sets
for abstract dynamical systems: an interesting consequence is the possibi-
lity to give a purely topological proof of the classical Hopf' theorem in
R2 or when a bidimensional invariant manifold exists, in addition to a : =
more accurate study of the relationship between the stability properties
of the unperturbed system and the perturbed ones.
In § 1 the classical theorem by Poincaré—Andronov-Hopf'is reported, in a
recent version due to Ruelle and Takens {30) , together with Chafee's re-
sults about bifurcation without transversality, which can be considered
as intermediate steps in the passage from classical to GHB.
In §,2 the study ofbifurcationsof families of compact invariant sets is
motivated, and the second method of Liapunov used to prove that a switch
in asymptotic stability of a dynamical system leads to bifurcation=pheno-
mena. A similar result in which total stability partially substitutes
asymptotic one is reported, with an analysis of the effect of this sub-
sfitution onn the attractivity of bifurcated orbits.
The third section is devoted to an exposition of the h-asymptotic stabi-

n
lity approach to GHB in R .




An appendix has been attached, in which the so called Poincaré method

for the analisys of stability in presence of purely imaginary eigenvalues
is summarized, in view of the fundamental fole it plays in the theorems
of the previous section.

Finally, I wish to thank proff. Cellina and Moauro for their courtesy.




§ 1. CLASSICAL HOPF BIFURCATION

The classical theory of Hopf bifurcation starts with Poincaré's work
whese ideas were developed by Andransv 62) in the thirties for bidimen-
sional systems énd by Hopf(gl), who extended previous results to Rn.
Recent proofs with further information about the stability and attrac-
tivity of bifurcating orbits have been obtained by Sacker s, Ruelle
and Takens(go), and others. The following statement is due to Ruelle
and Takens.

Theorem 1:

Let fH be a one-parameter family of Ck vector fields on Rz (k3y4), such
that f}éO):@ for each w and F:(fp,o) is also Ck. Suppose that d%‘(o)

PO,

has two distinct, comlex conjugate eigenvalues Xﬁdﬂﬂé)and that the rest

of the spectrum is distinct from X(N,A&d .Moreover, let d £Q¢ 'X(“)) s 0

o

}4:0

Then:

i)there is a C  function g%@(—i,f)—aR such that (xl,O,“(xl)) is on a ¢i
closed orbit of period close to 21/|A(0)| and radius growing like J?J-
for xliﬂo and such that 4 (0} = 0.

ii) if the other eigenvalues do not cross the imaginary axis as B crosses
zero, then there exists a neighborhood U of heoghigin 33 such that any ¢
closed orbit in U is one of those above.

iii) if %he origin is a "wvague attractor", then,»(xl) » 0 for each xl#.o

and the orbits are attracting.

To explain what "vague attractor" means, it is necessary to define the so-
called displacement function. In our hypothesis, a trajectory starting at
a point on the X1~axis will meet in a finite time the same line in a second
point, say yl, distinct from the origin, .which is supposed to be an equi-

librium point. The map P which associates yl to x1 is called Poincaré map




or first return map. The displacement function is defined as the diffe-
rence between P(xl) and xl:

Vix_, = P(x - X

(1;4) (1,;4) 1
In the hypothesis of theorem 1 it is possible to prove thatithe third
derivative of v with respect to xlexists; the origin is a vague attrac-—
tor if:
2

27v(o ¢ 0
“""1)

D%,
and coordinates are chosen so that:

0 La@l 4, X' (0]
4%,00) = [ 4@l o 4 x*(0) Alo) ¢ o (d, X3(a))

o 0 d; x¥(0)
Marsden and McCracken gave an algorithm to compute the derivatives of V
by means of those ones of the unperturbed vector field: by point iii)
of theorem 1 , it can be considered as a computational method to deter-
mine the asymptotic stability &f bifurcated orbits.
Hopf theerem allows us todeduce the existence of periodic orbits by a
transversal crossing of the imaginary axis by a pair of complex conjugate
eigenvalues. Chéfee (JJ) studied the case of non-transversal crossing,
obtaining a weaker statement: in fact, he does not succeed in finding
bifurcating orbits, but only invariant sets.
Thecrem 2
if

i:gx)=Pmb«+ﬂxm) ; g0)=0

where P is a real n%¥n matrix, and the following hypothesis are verified:
i) €4, r,>0 exist such that P is continuous on fO,ZéInad X is continuous
on B_(0)* (0,£]
ii) for each r in [O,Eq]there exists k(r)»0 such that X is kdr}sunifor-
mly lipschitzian with respect to x on Br(O)xfé,ﬁﬁfand k(r) is infinite-

simal as r goes to O.




iii) O is an asymptotically stable equilibrium point for
X = f‘géx)
iv) there exists a pair of simple conjugate eigenvalues a(y) +ib(u) such:
that:
a(0) =0 , a(u) » 0 for pe o, €0 ]
b(H) 2 0 for mée CO;€,]
all the other eigenvalues lie in the left-hand complex half space.
Then: there exist r;» T, (o érzé T, ) and £,6]J0, %0 such that:
Cl) for every yé}),i,]there are two closed orbits, not necessarily distinct,

bf‘{;{} and g5 [H) , contained #n a neighborhood Br (0) where O<r(u)e T

b8 (I“) and n {74) lie on a local integral manifold(y) M (5‘4) homecomorphic to«
a bidimensional open disk and passing through the origin. When é"(;—t} # )}{;4),
they are concentric about the origin.
02) the part of Mz(;-é) which lies inside the inner one of the two curves,
say {, (,u} , is filled with solutions whose positive and negative limit sets
are, respectively, )/!(H) and the origin ( exept for the origin, that is an
equilibrium point). NO other solutions remain in Br (0) for all t<O.
C3) for each péjo, 5,1 that part of MZ(H} exterior %o ﬁ(ﬂ) and contained
in Br (0) is filled by solutions which remain in MZ(H)A Br (0) for all -
t)O,zwhose positive limit set:is {z(,ll). :
04) for each pé}O,i,J there exist soclutions approaching the erigin as t
diverges; they fill an invariant manifold Mn~2(,“) homeomorphic to an open
ball in Rﬂ_2 and containing the prigin.
05§ if XoéBr (0), then the solution passing through it, x(t,x ,H) remains
in Br(o)for a%l t»0; if it does not tend to the origin as t 6iverges, then
it ap%r'oaches the closed invariant set Q(u) consisting of those points in
MZ{H) which lie in the -annulus defined by )‘I[ﬂ/ and(z{x}; it contains in i

its positive limit set one or more closed orbits




Chafee showed also that without a transversality condition it is not pOS=
sible to predict how many distinct familis of closed orbits bifurcate from
the origin. On the other side, to renounce transversality allows us to
obtain information about all systems close to a given cne in = suitable
topology; the following statement (Chafee (A4)) as a partial answer to
the problem of GHB;
Let us consider the space U oonsisting of all the functions of ¥ (B (0), R )
whose derivatives are bounded on B (O), endowed with the topology of uni-
form convergence over all the derlvatlves, and its subspace Ul, , charact
terized in the following way :
f(x) = Ax + X(x) ; £(0) =
:EG{G‘ =D A is a real nxn matrix with two complex
conjugate eigenvalues; X'(0) = 0
In what follows BU1§f,r)_will denote the ball of radius r centered at f.
Chafee applies the alternative method (“f) to obtain a bifurcation fune-
tion xp( é, ), where é measures the amplitude of the orbit involved, and
examines the multiplicity of the null solution of i
Theorem 3
Let £ €U , such that £,(0) =0, £ (0) has a complex conjugate pair of
simple eigenvalues +i and no other eigenvalue is a multiple of +i.
Then there exists a bifurcation function Q’ such that if zero is a
root of multiplicity k of eP(é,f):O, then there exist three positive num=
bers dl, rl’ill verifying: '
i) for any f in BUl(f°’d1)’ the equation z:¢ -
= £(x) (*)

has no more than k nontrivial closed orbits in BP(O) with perlod contained
in ]2‘5’-}4”2?\'*-“‘[ 1
ii)for each integer jé[b,k]-and for any rg]o,rI], dg}o,dry,5f30¢§]there

exists a function fEBUl(fo,dz) sushthat (*) has exactly j nontrivial o




exists a function f‘éBUl(fb,dz) such that (*) ihas exactly j nontrivial
closed orbits with periods in J&m -Mg, Lersrg [ , Tywg «'5,!1(0)
iii) for any réJO,rI],ﬁtJOJAJ, there exists a number de]o,dI] such that,
if fe BUl(fo,d), if I" is a periodic orbit of (*) contained in Br (0)
with period T in Jgf'f"t,‘oﬂ'ﬂﬂ[then " 1lies-in Br(O) and T belongé to
Jlw-n, S upn [

iv) let S, the set of all functions in BUl(fo,dl) such that (*) has
J
exactly j nontrivial closed orbits whose periocds satisflf;.g’b"'ﬂ;l Té'gf"“ﬂl;
then for each integer jé[O,kJ ; S, has aononempty interior and fo lies in
J .

the boundary of that interior; moreover:

BU(f ,d ) =80S U..US
1( 979y °” T3 k

Theorem 3 is not concerned sither with stability or-atiractivity proper-—

ties of bifurcating orbits,cor with computational methods to determine *-

the majorization imvélwed. IN section 3 and the Appendix it will be shown

how it is possible to provide a successful algorithm even for GHB, by

choosing a different approach to the guestion.




§ 2. BIFURCATION FOR FAMILIES OF COMPACT INVARIANT SETS.

Most of the theorems recorded in this thesis are strictly connected
with applicationé to physical problems (it is sufficient to considér, for
éxample, the importance that oscillation theory has for physics).

It is well known the importance of stability in the construction of

a mathematical model to describe biological, economical or physical systems:
a non-stable model risks not to be a model at all. In fact, to repre-

sent in. an abstract way a real phenomenon, it is necessary to neglect a
lot of factors considered "irrelevant"; this features may be regarded

as perturbations of our equations (if the model is supposed to be determi-
nistic and differentiable) so the only traits of our model we may consider
as "realistic" are those which are preserved by small perturbations of the
vector field: in other mords, we request it to be structurally stable. In
some situations we are not interested in the fine topological structure

of the system: concrete models proposed to study turbulence (3¢g) are
characterized by the arising of hhgher and higher dimensional invariant
tori in the phase space, as the complexity of the motion of the particles
in the fluid increases. This phenomenon is associated toc switches ih
stability of invariant sets: when a subset passes from asymptotic sta-
bility to complete instability, a new invariant subset appears. In this
case we are only interested in the preservation of the stability of inva-
riant sets under small perturbations: that is, in total stability. A rele-
vant fact is that asymptotically stable sets are asthomatically totally
stable, as proved in (3%) and, for abstract dynamical swgstems, in (£%).
This makes them far easier to use, because it is not necessary to examine
the behaviour of all the systems close to the given one to obtain informa-:
tion of structural typer aéfmptotically stable sets are always phisically

relevant.




This sectdon is mainly concerned with abstract dynamical systems (both
discrete and continuous ones; I shall write I to mean Z or R); for standard
definitions, see (6). I recall the definition of total stability for
abstract dynamical systems given in (25), extending that one given by
Dubosin (16), as proved in {(6). In what follows (E,g ) is a locally compact
metric space with f‘ldistanceg ’ @ the family of ncnempty,compacf, pfoper

subsets of E, S the set of dynamical systems on E, p,TU elsments of S .

Definition 1.

Let Mé € ; fOI“'YT,péS and £» 0, téI"’\ﬁ’O} we set
b(f,'fr,' {,:)= nw?ﬁf{?”l‘d.‘ﬂ'“’a")): ﬂé{'éF,XéS(H‘f)}

we say that M is ~totally stable if:
(v g,p)(vFéI"‘\fo])(S 5,5 20)(V1e8 : d(wyp;,F)e &_) :

vt ($(4,4)) ¢ s(Hg)

A first step to the main bifurcation result is the following theorem,
in which we use the fact that asjmptotic  stability implies total sta-

bility (see (6)). First I premise the

Definition 2.
Let f >, be amap from [0, [ into S, such that
p: [O,;:[X IX E —»E is continuous; QPF L‘ will be said a one-parameter
familyvof flows. Let us associate to it a new map M & Mﬁfrom
Co, H [ €, for which
(i) for each I-L E[O,fc[ , the set Mf" is pr'—invariant;

(ii) maxig(x,Mo) IX€E MFE—»O as ic—*O;

For such families, holds the fellowing:

- 40 -




Let M be p, ~asygrbotically stable. Then there exist a ;A‘GJO,,E[ and
w : R+—=> R* of class K such that for each ;xé]O,H*[the set
Pr, =a’;:( S(Mq v(u))) satisfies the féllowing conditions:
(a) Pf‘ is a p -asymptotically siablesndmpact sed;

r.
(b)  there exists a neighborhood N° of M for which

(’37’5— ‘L"’)(vx € M)(V%;T}: Py (hix) € Py

Moreover:

(¢) P, ,—> M, as J¢ = 0, in the Hausdorff metric.

I
Proof:
The asymptotic stability of M, implies its total stability. There
exist positive k and F such that é[MQ,;\] is a compact subset of A?‘ (M,).
By definition of total stability and continuity of F,n {t,x) there exist

two maps h,k of class K such that:
! [ $(Ho hig))] € (Mo 5) Ve elo,A] Vuelow(E)]

provided K(A )5}?_ . The asymptotical stability ofM is equivalent to the
existence of a scalar function V defined in its region of attraction
(see (6)), positive definite on APo (Mo) \ M_ and strictly decreasing on
trajectories. For such a function and for each €& € }O, f\] there is

L(E) € 11,-;-00[ such that (see (25), proof of Thm. 3.1):

(h(€))
e Vy,2 € S [Ho]

[V(y) - V(z)] ¢« LQ (y;2) = p

where ¢ is of class K for which:
Vig, (Fux)) - v(x) £ () (x,M,))

Moreover,; the continuity of p allows to prove the existence of a N d

of class K such that:

- 44 -




c(h(g))

i for all e [0,9()],

(t,x)e [0,txsm_,A]
Consider a function /'X of class K such that /Z(E )€ min ik(&),qj(é‘)}

S (p(rt st,x),p(0,t,x)) £

for every & € [O, {\] . Let ¥ = h°7<."' and ]1* = 7(1’1”(2 )). Then:

* = % (h*(2)) € X(A) € k(A) € R
Jt I

V/t € }O,F*l : S(Mo,hz (A)) is an open neighborhood of PF=T; (S{MO,V(/!)))

because it contains the region of attraction of P‘.t : for each xe€ S(Mo,hz A))
+
there exists T € I such that P (Tt ,x)e s(Mm_, v (,'()). If not, let N
X e x °

be a positive integer and x = 7 (nt,x) for n € iO,...,N}; we have

n I
X Po(t,xn) € S(M_,A ). By using elementary properties of stability
theory one proves that V(x _) - V(x ) €& —c(» (F))/Z for 0€n< N

n+l n
which implies V( F[‘C (Nt,x)) - V(x) £ -N(c(v (F)))/Z, which contradicts the
positiveness of V. Now, to prove (b) it is sufficient tdhotice that
S(Mo,l—' (ln)) < P}.l which is positively invariant; if we choose as T‘x any

number greater than

mz maxi (o (}1)) : X€ S[Mg,h (A)]

the result is achieved. An immediate consequence is that pr‘_ is a compact
pF—uniferm attractor, hence asymptotically stable (point (a)). Finally, we

have:

M, € Boe S(M, 27 ()

which implies point (c).

For one-parameter families of elements of C it is possible to give a

generalized definition of bifurcation in the following way:

- 42 -




Definition 3.

Let Mr, be a map satisfying the conditions of Definition'1.
0 is said to be a bifurcation point for MF if there exists a rL *e ] O,]Z[
and a second map Mi" : Jo, FL*[_-r C such that:

(el) V;(C 10,](*[ M'F is pr-invariant and Ml‘ fa) Ml'1 =@

((5) max { p(x,Mo) X € Mf(} — 0O as }<—->0
Next theorem shows that for compact invariant subsets, an inversion

in asymptotical stability actually ensures bifurcation.

Thebrem 5.
Let E be connected, ;—-i > 0, M: [O’F[—’C a map like in Def.1.
If M'o is asymptotically stable and M]" is completely unstable for
K e]O,fL[ , then 0 is a bifurcation point for M/" . %oreover,}-(_* and M’
can be determined in such a way that Vi-c € } O,j-c *[ :

(a) M is ;}‘~asymptotically stable

r'.
(b) M;,( =’§'F’ N A; (Mf‘)’ where Pf" is a suitable compact set containing
A; (MF). I
[
Proof':

Functions h, ).’, and » are the same as in Thm.4, ; being subject to
an additional condition to be introduced later in the proof.
The compactedness of M‘.,, and condition (ii) (see Def.2) ensures the exi-
stence of a function € of class K such that:
M € S(M,h(e)) ¥ refos@] | Yeelo]
A satisfying S [Mo,:\] ; 'AP (Mo). We request /‘C to be not greater

. © .
than € in the whole interval [0, A] . Let us set ,t* =X (h?(A)):

for each }'Lé ]O,It*] , P].,_ = '{; (S(Mo) U(}ﬂ) is compact and satisfies
3
statements (a),(b),(c) of Thm.4. Let ’IB’P be the union of all invariant

subsets of PF : it is a compact p_-uniform attractor with respect to P/,‘ ’

- 4y -
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hence, by statement {b) of Thm.4, E’IF_ is p,‘—asymptotically stable.

To prove that it contains properly the region of p’t—negative attraction of

€A { . i
MF , let us take y AP},_\MT‘) There exists r'.( » O such that
S(Mo,rr.) s S(M,, v ()-t)); Mf‘ is p[‘-negatively asygtotically stable, so there

exists t' € I for which pit(t',y) €+S(Mr,r'r) c S(M_, v (r.)) < P[(.
Pr is positively invariant, —-t' € I and we may write:

'y =p (-F' ’pf‘(t ) € Be
that is, A; (Mf‘) c PF' ; being AP (M ) pjt—lnvarlant and Pr,_ is the union o
of invariant subsets of P Pre we have

A; (M) cﬂP}L
The inclusion is proper, because A; (Mf") is open, '}\S;P_(_ compact, F connected
and ’l;i_._ contained in S{ Mo, f\] which is a proppersubset of E.

Now let us consider the compact set M'F_ = ?’I}*\ A; (MF). By the elemen-
tary theory of dynamical systems, it is pf‘—invariant; moreover, it is
pr'-asymptotically stable. It is sufficient to show (see (6) or (25),1.1.2.3)
that

fxem: g4 35 ()¢ M

is a neighborhood of M. Let x be in A (Mf‘)\ M,; since A (Mf‘) is

I
compact and pﬁ—-w nvariant, J* (x) is a non empty set contaﬂzed in A (Mi‘)
It T 4
If vy € A (M?") n J* (x) we have @ # J (y) € M, which implies x€ J (y)
Fe Pr I B

i'(.

and x € M that is in contradiction whith our choice of x. So

r_ s
fo APF\ M =y J; (x) ¢ BA;(
I () i 0 I

rL

and our partial result is achieved, because invariant p,‘-unﬂiform attractors
e pn—asymptotically stable.
It remains only to prove condition (@) in Def.3: it easily comes from

statement {c¢) in Thm.4 and from

Mi‘_C P)_(C Pr'

-44-
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Now it is interesting:to notice how it is possible to apply Thm.5.
to dynamical systems defined by differential equations in R2 to obtain
~ re8ulf similar to Chafee's one (see (11) or §1, for the statement).

Let TL » 0 and f: [O,I't.[x R2 — R2 be a continuous map such that
Vi e Lol
(1) f(,0) =0
(ii) x = £ %) (s¢)
defines a flow pr‘ on R2

(iii) Equation (% ) has no equilibrium points distinct from the origin

in B (0), r » 0.
T

In the next theorem, which I report without proof (see (25)), the set

{O} will play the role of Nvt:

Theorem 6.

If:the origin of R2 is p —asymptotically stable and %‘—completely
unstable for > 0, then it = 0 is a bifurcation point. The number it*
and the map M}i can be determined in such a way that for each ;t in
JO’F*[:

(a) M}t is %‘nasymptotically stable;
(b) M}i is the compact annulus having as boundary two cycles Cf"C}‘
of the dynamical system concentric with respect to 0, the inner one

being equal to @ AP (0).

I
In Theorem 5iit is possible to weaken hypothesis for dynamical systems

. n
defined in R by taking M, only totally stable, using a characterization

of total stability for compact sets obtained by Seibert (34):

-45-




Theorem 7.
n
A compact subset M of R 1is totally stable with respect to the flow
defined by a differential egaution if and only if M has a fundamental

family of asymptotitally stable compact neighborhoods.

In the following statement we have once again Mf‘z {O} H %F denotes
n
a flow defined by a differential equation in#R , such that a is an

equilibrium point of p, for each .
R

Theorem..8.

Let the origin be tétally stable with respect to ( #) for = 0
and completely unstable for (#) for each f(}-O. Then there exists
7{* 7> O such that for every jt in‘]o,ﬁﬁ*[there exists a compact subset M}t
satisfying: ‘

(a) M}L is p -invariant and asymptotically stable;
(b) M'F_nio}=¢ and max {Hx“ : X g M}(} -y 0 as jo—r0
Proof:

By Seibert‘'s theorem,0 has a fundamental system of p,-asymptotically
stable compact neighborhoods. For each § ¢ ]O, A], A positive, let AE
be one of them, contained in S{0,t). Asymptotic.stability of Ag is
equivalent toithe existence of compact neighborhoods N€ of AE and a real
%" function Ve , positive definite in NE with respect to Ae (see (6))
for which:

e (x) ¢ c(?(x,Az)) ¥Vxe Ng

where \'Ie is the time derivative of V, along the solutions of (st ) for
rg'é 0 and c¢ is of class K. Moreover, A& is po-totally stable, so, like
in the proof of Thm.5, there exist three functions h,hl,k of class K such

that:
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() yr(s(agn (&) < ng ¥ e [o.x(g )]

+
(p) Y (Slagh (€))) & slag,n () Vp eLok(e )]

.véhere k has been chosen ip such a way that k(A) £ F . The compactedness
of NE implies the existence of a positive constant Lf for which

[| grad Ve I« LE in Ng ; for the continuity of f([-( ,X) there exists
\Y‘ of class K sush that:

c(h(€))
(0 lietpen - s € S V(px € Jo,ye)] ¢ ng

If we define X (&) as minik(é) \}1(6)}‘, it is of class K and (&),
({'b), (X) are true for }-e, in [o, /‘Z(E)] Now set p* = )((A) and for
}Lclnlo )‘L [ let € = )’» ([1.) We haves

P/" t= (S(Aé,h(s ))) ¢ S(Ae,hl(i )) C-Ns(o,hlfa ) +€)
hence, for g —»0: max { Hx]: x€ F;-c.} - 0. Let P/,_ be the union of

all invariant subsets of Pf‘ : from now on on the proof goes on just as i

that one of Thm.5, and the thesis is ocompletely achieved.

Further improvements of the stability analysis of classical bidimensio-
nal Hopf bifurcation can be deduced by the previous statemnt..The next the-
orems will be concerned with equations (%) where f is supposed to be
‘fé'and a pair of complex eigenvalues to creoss transversally the imagina-

ty axis. -

Theorem 9.
2
Let the origin of R be p -stable but not p —asymptotically stable.

Then there exists a seguence i'(n} neN of closed orbits around the

origin such that max { Hx]l : x(’}f g..., 0as n-—» oo.
n
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Proof.

7 Since the origin is po—stable, it has a fundamental family of positi-
vely inwariant compact neighborhoods. 'Choose one of them, say We e S0, £);
for xe W, , A t‘(x) € Wg . Moreover, the origin is supposed to be asymptods-
cally stable, so there exists x € WE. such that O# A+(x). By the transver-
sality condition O is an isolated fixed point of D,s and we may choocse §£
so that in S(0, & ) there are no other fixed points. Bendixson's theorem

+ —
implies that A (x) is a closed orbit around the origin.

Theorem 9 is used to show that total stability is not sufficient to

guarantee attractivity of bifurcated orbits:

Theorem 10.
2
Let the origin of R be p_-totally stable but not p -asymptotically
stable. Then, there exists Jt' € jo,fc[ such that for g e Jo, [

there are bifurcating orbits which are not attractive.

Proof.
The hypotheses of Thm.8 are satisfied, so we may state the existence
of‘ a family of bifurcating sets M}t verifying conditions (a) and(b) of ‘&
that theorem.. Moreover, by theorem 6, M'ft is an annulus bounded by two

closed orbits of p_ , which are bifurcating orbits for i(. small enough,

in virtue of (b) o}; Thm.8. Hence, the bifurcation function rc (c) (see Thm.1)
has positive values for peints ¢ arbitrarily close to Zero. For this reason,
and for Thm.9, there exists c¢' % 0 such that r(. (¢') = 0 . Let us set

r(" = sup{r.(c): c ¢ {O,C']} ’ r. " is strictly positive and. for each f(,

in ]O,ft[ there are at least two bifurcating orbits which cannot be

both attractive.

In next section it will be shown that the asymptotic stability of the

origin is not even sufficient to ensure attractivity of bifurcating orbits.
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§ 3. h-STABILITY AND GENERALIZED HOPF BIFURCATION.

The first part of this secthon is concerned with classical Hopf bifurca-
‘tion in R2. It is showed how the use of suitable stability techniques
allows us to study the attractivity properties of bifurcated periodic
orbits. The method ewposed leads also to an: algdrithm for the determina-
tion of the bifurcated orbits by an inspection of the unperturbed system.
In the second part:the more difficult problem of GHB in Rn is treated.

I¥ what follows, I refer to an equation

z & f (z) (%)
f(0)=0
k+1

- - 2 - .
where f e € (3—F,r¢[x Da’R ), k3 3, IL?O, a >0, Da open disk
in R cengtered at the origin. The jacobian matrix f'(0) is supposed to
have two eigenvalues a(;-c)iiis(r), with o (0) =0, o'(0)> O,

[ (r,) # 0, V)‘C . Equation (%) will also be written in the form:

X

o((r. )x — ¢ (;t Jy+ X(F,X.y)

ol ([:)y + (b(}c)x+ Y(ic,x,y)

with X,Y real functions of order » 2, that is, whose Taylor's formula

(%)

y

]

k
starts with terms of order 3 2. The set of ¥  functions of order h
k
(h & k) will be: denoted by € . For Je = 0, setting A = p (0), the

unperturbed system: .appearsin this form:

X Ay + X(x,y)

1]

(%)
A x + Y(x,y)

11

y
with obvious meanings for X and Y.
By X, and Y  will be denoted komogeneous polynomials of degree i
i i

in Taylor's formula for X and Y.

......
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Definition 4,

Let h be an integer such that 2 ¢ h € k. The null solution of ( *})
is h-asymptotically stable (h-completely unstable) if:
(i) Vi, ted (Da,R') of order »h, such that ‘5(0,0) = T(0,0) =0
the zero solution of |

X

It

-Ay+X(X,y)+...+X<X5y)+ (X,y)

y

Ax + YZ(x,y) + ...+‘Yh(x,y) + T(x,y)

is asymptotically stable (completely unstable)

(ii) h is minimal with respect to (i).

The previous definition has an obvious generalization to n-dimensional
systems.

Next theorem (see (28)) shows how to recognize the h-stability of
the involved sgstem by suitable truncations of the Taylor's formula
associated to ( *}) Qr by the derivatives of the displacement function

V, as defined in § 1.

Theorem 11.

The following propositions are equivalent:
(a) The null solution of (%) is h-asymptotically stable (h-completely
a unstable)

(b) the Poincaré index of the system

X

I

“Ay + X (X,¥) .+ .e. + X (x,7)
2 h (9 .3¢)

It

y Ax + Yg(x,y) + oeee + Xh(x,y)

is h+1 and the relative constant negative (positive).

i
(e) ° ‘l’ (0,0) = 0 i=1,...,h-1
¢ '
ah
%Z (0,00< 0 ( »0)
B¢
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Moreover, if (a) holds, then h is odd.

Proof.

‘ I report only the equivalence (a)¢=> (b) in the case ¢f h-aspmptotic
Shabilitye '

{a) =(b). When we set § = T = 0, the origin is asymptotically stable,
so there exists a polynomial F {see Appendix) whosectime derivative along
the solutions of (%%) satisfies:

1 1
2 + o(x2 + yz)/ﬂ(

o 2 2
F{x,y) = G(x +y)
where G is negative and M is an even integer. By (ii) in Def.4

M2 h+l. It @s not possible that M # h+l. In fact, let us set

5

2 2
T =aylx +y)
with a » -%G. Now the time derivative along the solutions of (#¥)' is:

1 ok
F(x,y) = (2a + G)(x2 + yz)/2F+ o(x2 +y )QP

AN

i

2 2
ax{x + y.)

I

hence the origin should be completely unstable: contradiction.

(b) =»(a). By she hypothesis, a polynomial F exists such that:

3 2 1 h 2 p h"
Flx,y) = a(x + Yz)é( +1) +olx + yz)/Z( ) G< O

Condition (i) of Def.2 is satisfied, and h is minimal: if not, the previous

steep of this proof would generate a contradiction.

In what follows, I shall frequently refer te bifurcating periodic
orbits by means off the bifureation function IR. as defined in'§ 1 in
the statement of Thm.l. An orbit will be identified by a couple
(c, ]t(c)), where c is allowed to vary on O, EL, &ro:

Next lemma introduces the theorem announced-in § 2.
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Lemma 1.

If O is asymptotically stable (completely unstable), then the bifur-
cating periodic orbits are attracting (repulsing) if and only if there
exists & *€]0,E[ such that:

(i) the restriction of the bifurcation function is injective;

(i1) jt(e) e’ (0) >0 (g1 (0)< 0) = on Jo, &

Proof.

Let us consider the case of O asyptocally stable and & '(0) > O.
r((c)d'(o) > 0 implies jt(c) » O in To, 8*[ . Moreover 0 is completely
unstable for (%), becausee '(0) P O implies d(r&) > 0 for F. >0.

Hence (see (11), (25),or §1 and §2) there exist two closed orbits of
(%), for O-& r( 4[(.1, b?undaries of twicompact sets Kl and K2, for
which holds:

[]
O0€K cK B (0
1 2 e* )

=]
and such that Kl\ K _is compact, invariant, asymptotically stable. We may

choose & N € Jo, & *{ in such a way that
i <
sup {}H,(c), ce o, 81[} I(l
If ) is the closed orbit passing through (01,)1(0)), then

&
By applying the results of previous sections we obtain the asymptotic

X = 3- = \6\ because they are contained in B (0) and i(, is one-one.
1 2 *

stability of \“ .
Now let us suppose the bifurcating orbits for ;'t, €JO,E *[ asymptoti-
cally stable, and at the same time there exist 014 02 in ]0, E*[
h that = c =: and no other points in c ,c L
suc a [t(cl) ;‘L( 2) i"» P 1 1°%
verifies fc(E) -_—].(

Let us denote by Y 1 and X‘2 the orbits corresponding to (cl;it(cl)),

(02, !L(cg)). For an arbitrary x in the annulus defined by Yl. and K‘z ,
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A ‘(x) is a periodic orbit for (%), distinct by X‘l and X‘Z, because

A (x) is repulsive: a contradiction, because‘x 1 and K 5 are consecutive.
Finally, let us suppose that 1-4. has a zero in ]O, E*[ .

Since o (]-c) is increasing in a neighborhood of 0, for of '(0) » O,

the origin is asymptotically stable ewen for ,( negative and small. Repea-

ting the work performed above, we obtain the existence of a bifurcated or-

bit non asymptotically stable, which is against cur hypothesis.

It is possible to give a definition of h-attractivity for sets, that is,
an attractivity property which is not destryed by perturbations of

order » h.

Definition 5.
Let us denote zylsh = S(XZ,...,Xh,YZ,...,Yh) the sc—';t of couples (P,Q)
. . + -
of furstions in ¢ [(_f" Tg) X Da,R] of order 3 2, such that:

3
X {x,y)
1

[p(o,x,7] .
i=2,...,h

1

a0, x,1] | = ¥, (x,5)

for (P € S v will be the displacement and bifurcation
( :Q) h’ P,Q, FP,Q 2 P +

functions for:

X

1l

ol (;t )x - {&(;t)y + P(;th.y)

(—3(—)1)’Q

yo=o ey« plex + QUpox,y)
Let h be an integer, 3 € h £ k. The bifurcating periodic orbits are

said to be h-attracting (h-repulsing) if:

(a) for any (P,Q) € Sh the periodic orbits. of (-K')P Q are attracting;

v

(b) h is minimal with respect to (a).
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Theorem 12.
The bifurcating periodic orbits of (#) are h-attracting (h-repulsing)

if and only if O is asymptotically stable (h~completely unstable) for ;c =0,

Proof. (sketch).
In this proof ¢'(0) is supposed to be positive. I report only the
case of h-attractivity.

By Thm. the zero solutions of

x = -Ay + P(0,x,y)

(*")P,Q

Yy = Ax+ Q0,x,y)

where (P € S is h-asymptotically stable. Let us write for .
( ;Q) h ymp y }t rp’Q

We have:

]
?c

Je (0) = (0) =0

Form the identity

VP’Q(c, jle)) =0

we obtain

s+1{1’, 32\,
2 2.0 (0,0) = =(s+1) —FQ (0,0) (S)m)
s+1 F
Q¢ XS

It is pessible to prove, applying Thm. s that

gi
ME-(O):O i=1,...,h=2

’é Cs+l

3 h-1

h-1
dc

Then ;‘t is strictly increasing and such that i* (c)el '(0)» 0 on IO, & {

(0) 20

By Lemma 1 the bifurcating orbita are attracting. Finally, by working as
in Thm.11(part (a) =»(b)), we prove that for each odd integer j less
than h-1 it is possible to find a couple (P,Q) & SJ_ such that 0 is

completely unstable for (-X"O)P o
) 1
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To prove the opposite implication we use the argument of the

sufficiency: if Poincaré index of L*D)P Q is , then there exists
13

(P,Q) € Sj such that the origin is j-completely unstable for (% )

P,Q

By the first part of this proof, the bifurcating closed orbits could

be h-completely unstable, which is mnot possible. If the Poincaré index
is M < 0o, then the origin is either asymptotically stable or completely

unstable; by arguments similar to those ones used in the sufficiency we

obtain M = h+l and determine the sign of Poincaré's constant.

If the unperturbed system is defined by an analitic vector field, it

is possible to improve the statement of the previous thm.:

Corollary 1.
Ir f(rt,x,y) € ‘6"’9(3-‘1'_5,11[ K Da(O),RZ), £(0,x,y) is (x,y)~analytic

and '(0) > 0, (< 0), then:

(a) If 0 is asymptotically stable forit =0, then the bifurcating closed
orbits are attracting and exist only for }t positive (negative)

(b) If 0 is completely unstable for,c =0 then the bifurcating closed
orbits are repulsing and exist only for ft negative {positive)

(c) 0 is stable but not attracting for it=0: the bifurcating closed

orbits are stable but not attracting and exist only for y,:o.

If the unperturbed system is not analytic, the asymptotic stability
of the origin for the perturbed system is not sufficient for the attracti-

vity of the bifurcating orbits. A éounterexample is given by:
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X=px-y- x(x2 + yz)f(X.Y)
(Cf‘)
y= x+ py- y(x* + y2)£(x,y)
\where
’JL-i 2 2. -2
x‘¢7 . -
(5] { e (sin{x +y ) + 1) (x,y) £ 0
0 (x,y) =0

The eigenvalue of (CF) satisfies the hypothesis of classical Hopf
theorem with transversality, so we are sure of the existence of bifurcated
periodic orbits.

A suitable Liapunov function for (qq) is

Vix,y) = K&+ y)

whose time derivative along the solutions of (Cﬁ) is

. 2 2 2 2
U(x,y) = (x + ¥y )(p -(x" +y )E(xy))
which is negative definite in& neighborhood of O. Hence the origin is
asymptotically stable for = 0. The bifurcated closed orbits are
e ’ . 2 2 2
circumferences of radius ¢ : X + y = ¢ .

THe bifurcation egquation associated to (CP) is

4
- > -2
cz(sin c  + 1)

2
F'(C) =c e
whose derivative is

4 o

p'le) = 2¢c a3 (cdsin20—4+c;4+c 811120“4«:»02 -2sin2c )
In the points Cn =¥2 UE»(4n+1))“i the derivative is negative.
Since 0 is a cluster point for the set {Cn} n and rt is positive on
each right neighborhood of the origin, F.cannot be injective in [0,5[
for any positive &€ . Hence, bifurcating orbits cannot be asfmptotically

stable.

~26-




n
Let us pass to the problem of GHB in R . The objects of next theocrems
will be the "émperturbed" equation
é = fo(z) (+)

where £, & €% (s, (0),8) , £,(0) =0,

(4]

and the "perturbed" one
z = f(z) (++)

in which f is closed to f,in the topology of uniform convergence for
all in norms. We suppose that f!(0) has two purely imaginary eigenvalues
i and no other eigenvalue:is an integer multiple of *i. The problem
of determining the number of bifurcated closed orbits containeéd in a
neighborh@od of O with period near to 2W was solved by Andronov, Gordon,
Leontovich and Mayer (2) using stability techniques, helped in this by the
theory of Poincaré-Bendixson. Their theory may be applied to n-dimensional
probiems when there exists a single pair of imaginary eigenvalues, because
in this case there exists a bidimensional invariant menifold. In the
general case, the problem can be faced by using suitable "“guasi-invariant"
manifolds as exposed in (7).

Before stating the main theorem I introduce precisely the definition
of gquasi-invariant manifold. After a linear change of coordinates, the

systems {(+) and (++) may be written in this way:
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e
]

-y + xo(st;P)

Y= x+ Y (x,¥,p) (+)
b =Ap+P (xy,p)

x=dx - by + Xx,y,p,f)

5’ =® ¥y + ‘}X + Y(XaYsP,f) (++)'
p = Ap + P(x,y,f,p)

where X,Y,P are of order » 2 in x,y,p, and with obvious meanings for
all the other terms involved.

Let

CP(h)(X,.V) = qDl(X’Y) + eeoe * ¢h(X’Y)

be a (n-2)-dimensional pcolynomial, whose homogeneous term of degree j is
ij(xsy). Let us set

“'Y‘(Xsyrp) =p - ¢(h)(x:y)

and let us evaluate the time derivative of \i) along the solutions of

(+)' in the points of the manifold

p = CP(h)(x,y)

h
The problem consists of determining Q)( )(x,y) in such a way that

d 2 2 h/2

: xy(x,y,p)! ® =o(x +y)

dt p=§ (x,y)
It is possible to prove that such a polynomial exists and is unique, by
using arguments very similar to those ones applied in the proof of
Poincaré's procedure (see Appendix). I emphasize that there exists a recur-

h) and q>(h+l) :

(
sive relationship between CP

(h+1) (h)
C%D ' = q) * cPh+1
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Definition 6.
The bidimensional manifold

P = qD(h)(X.y)

will be called quasi-invariant manifold of order h.

Consider now the reduced system

h)

X = -y + Xo(x,y,CP( (x,¥)) (s)

1

X + Yo(x,y,q}(h)(x,y))

1

y
which may lead to two possible results:
I) an odd integer h > 1 exists, such that (Sh) is h-asymptotically
stable or h-completely unstable;
II)case«(I) does not hapﬁen.
This two occurences determine two opposite qualitative behaviours of

the system in a neighborhocd of the origin:

Theorem 43 .
h -1

If (I) is true, then, setting k.= — 5

{(a_) tithere exist al > 0, 81> 0, Nl neighborhood of f_ such that for
i

each f¢g Nl there exist not more than K closed non trivial orbits

contained in Ba {(0), with period [211— -—81,211; +8;l
1
(aii) for each integer j € [O,K] , for each a2€ ]O,al{, V 826 10, Sl[ y

¥ N, neighborhood of £ , N_c N_ there exists f € N_ with exactly
2 °’ 2T 1 2

j nontrivial orbits contained in Bé (0), having period

2

in [21’;—52,21*»82] .
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(aiii) VQC}O,al[ s Vg € }O, Sl[ there exists a neighborhood ﬁ
of £,, N € N » such that if £ € N and Y is a closed orbit
of (++) contained in Ba, (0) with period in {2’&1-—51,2"_\-+ 51] ,
then it lies in Bé(O) a%d its period belongs to

[ on-5,2% + &]
If (II) is true, then

(a) for any integer j > O, 7 a> 0, ¥ s > 0 and for any neighbor-
hood N of f , there exists f € N such that (++) has exactly

j orbits contained in Ba(O) with period (2‘&2—8 ,2E+5].

The proof of this statement is rather involved, so it is divided in a se=

guence of proposition. Let us pave the way for the first of them.

By pekrformihg the change of coordinates

s=p- 4>(h)(x,y)

(+)' and (++)' become:

-y + Xgh) (X.S’,S)

% =
y= x+ th)(x,y,s) (+)"
S =Als + wfh)(x,y,s)

X=0X- By + §h)(x,y,s,f)

jomxesy + Y xy,s,0) ()"
S = As  + W(h)(x,y,s,f)

(h) () _(n) _(h) (h) (h)

where A and A  are matrices and X =, X , Y s Y oW , W are

o o

terms of order » 2. In these new coordinates (Sh) appears as:
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-y + Xc(,h) (x,¥y,0)

X + Y(h)(x,y,O)

[+

(Sh)'

y
To control the period of bifurcating orbits we may change the scale

of time for perturbed systems: we c.ii replace t with t, to obtain:

£ [9( X - Py + X(h)(x,Y:S:f)]

X =
& = E[ (5 X + ‘dy + Y<h)(x1y9saf)] (++)"'
s=1¢ [ As + w(h)(x,y,s,f)]

There exist a¥* €10,ao[ , §* » 0,N* neighborhood of f_, for which:

(i)  det(I - eszA) £0 ¥egeli-s*,1+8*[ , ¥ r enx

(ii) the solutions of (++)"' (x(t,x ,¥ .8 & ,f),y(...),s(...))
starting in Ba*(O) remain in B (0) for any € € 11-8*,14— 5*[ ,
a
o
fe nv, t€ Jo,2T],
It is possible to find (x,,y ,s,) in Ba*(G) such that

S(Z“«XO,YO,SO y € ,8) = S, (Sl)

for each & € ]1- §*,1+8*[ , fe N*. 1In fact (Sl) is equivalent,

by (++)"', to:

F(X,,¥,58,,E,f) =0 ' (Fl)
where
Ziv
F(x,,¥,,8,) = (eme A I)s;+ & e& A(zm-r)w(h)(x(r),y(r),s(r),f)dr
o
and

F(0,0,0,l,fo) =0
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(h
because W ) has order » 2 with respect to {(x,¥,8). O
Now, since

2TCA
DSF(O,O,O,l,fQ) = det (e °-1I)#0

we may apply the theorem of implicit function to obtain a' ¢ ]O,a*[ ’

n-2
Sre]o,8+ ,N'c N* and G € €(D_,(0) xJ1-S1,1+8 ' [x N',R ),
. . . 2
where Da.(o) is a disk in R , such that
é;(oaorl’fo) =0
and in B_,(0) X 11-8",148 [ x N' (s ) is verified if and only if:
So = Gf(XO,YO,E,fﬁ

Since we are looking fir periodic solutions of (++), we may restrict o
our research of solutions verifying relation (sl), which will be called

(2w,s) solutions. Next step of the proof is the following:

Lemma 2 .
In a neighborhood of 0, the origin is inner to the projection of
a periodic orbit of (++)"' on the (x,y)-plane and touches each of the two

axes in only two points.

Proof.

In the (x,y)-plane we may pass t#bolar coordinates (? ,F): the
solutions being periodic, we must assume all values in ]O,Zii: and
the thesis will be proved. We have:

h (h) '
° Xy - yXx Ex X (XsYsS;f) - EyY (Xiysssf)

2 & 2
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EQ is strictly positive and the quotient at its right is infinitesimal,
as r tends to O, because the numerator is of order > 3: this is suffi-

cient to say that & is strictly positive in a neighborhood of. 0.

Now, by a suitable applicationcofiithe variation of constants to the

firstitwo equations in the system (++)"' and of the theorem of implicit +

function (I jump over this parte of the proof) we may prove the existence
of a* € Jo,a'[ , N" ¢N' and a €°° real function & defined on
Ba"(0)>< N such that the periodic orbits of (++)"' are those solutions
satisfying

x(2™,c, € (c,f),f) =.c

c € B, (0)s So we may define the displacement function
a

v: B (0) x N" —> R
a

V(c,f) = x(2W,c, &€ (c,f),f) =¢

and lock for its zeros.

Since the solutions of (++)"' are €%, we may write their Taylor's
formula up to terms of arbitrary order:

2 h h
x{t,c,f) = ul(t,f)o + uz(c,f)c + oees + uh(t,f)c + ofc )

I

2 h h
y(t,c,f) vl(t,f)c + VZ(C,f)C cdeees + vh(t,f)c + olc) @3)

2 h h

s(t,c,f) = wl(t,f)c + wz(t,f)c + eee + wh(t,f)c + o(c )
where ul(O,f) =1, uZ(O,f) = ve. = uh(O,f) = vl(O,f) = see = vh(O,f) =0
and w_(0,f) = w (2W,f) for j > 1. Since € has continuous derivatives

J J
with respect to ¢, we have also:

€ (c,) = €,(6) + € (fle+ ... + € (£)c + olc)

with € (f) = 1.
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It is possible to determine the first degree coefficients in c¢. In

fact we have:

1BWi = A w

et °1
hence:

w (5,£,) = w (0,£,)e""
and

2TCA '
wl(EIL,O) = wl(O,fo)e ° = wl(o,fo) =0

that implies

wl(t,fo) =0

h
By this, and recalling that w( )(x,y,O,fo) is of order greater than h,
we have:
W
2 A
3t o2

by which, analogously to what done before:

w (t,f) =0
2( )

Proceeding in the same way one arrives at the following relation:

t,f = see8 = t,f =
wl( ) wh( ) =0

Now, to determine ui and vj we put s = 0 for f = O and obtain the

system:

(

[+]

X €Ly +x

1]

h) (X:Yso)]
(Sh)"

1l

y= €[ x+ Yih)(x,yyo)]

which is (Sh)' after the rescaling of time.

If the zero solution of (Sh) is h-asymptotically stable, it is possi-

ble to determine a polynomial (see Appendix):
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2 2 _
F(x,y) =x +y + Fs(x,y) +oaee + l(x,y)

F
h+

whose time-derivative along the solutions of (Sh)" is:

o€ Gh+1(x2 . y2)(h+1)/2 . O(xz . yz)(h+1)/2

with Gh+1 £ 0. Integrating over the interval [0,2“;] this last formula

along the solution passing through the point (xo,yo) = (¢,0) we obtain:
I

F(x(2T,c,f )0) = F(c,0) = j[EG (x2(£)4y° (1))
o h+1
)

%(h+1) 2 2
+o(x +

. )Z(h+1{] gt

(

x and y can be substituted by the corresponding expressions in {(0); by

comparing terms of the same degree we have:

o

vl(zTL,f ) =1
v(2w,f ) =0 j=2,c0.,h-1
J

v va :TLG
(2T 1,) h+l

by which we may deduce the derivatives of the displacement function
with respect to c:

i

DV
3 (0,£,) =0 j=1,...,h-1
ol
'Bhv ; )
(0,f ) =ht LG < 70
h ° h
dc

h h
By the continuity of @ V/ 2c¢c , there exist ale ]O,a"[ . Nlc N"
h h o
such that (3 V/?c:kc,f7.< 0 on Ba (0) x Nl; Rolle's theorem implies
1
that V(c,f) cannot have more than h-1 zeros in B (0) distinct from the -
a
null one, since the origin is an equilibrium poin% of (++) for each T,

To each periodic orbit there correspond two zeros of V, so (++)"' can have
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at most %(h-1) closed orbits of period 2 , corresponde to close orbits
of (++) with period near to 2W: (ai) is proved.
As for (aii), let i be an integer in [l,K-}(case j=01is trivial). Con-

sider the following perturbation of (++)"'

3 .
x=€[-y+ Xgh)(x,y,s) . %:; I |
vy = E[ X + Y((,h)(x,y,s) + ;2‘; a y(xz . yz)k—i 1 (++)1v

MNe
I

e[ As + wgh)(x,y,s)]

where the a_ 's will be determined later. V(c,al,”.,a_) denotes the displa-
3 J

iv
cement function associated to (++) . By construction, we have:

" h h
v(c,0,...,0) =g +o(c) g,< 0

and by the continuity of V, there exists fll> 0 such that

lail < 111, i=l,...,j, implies:

V(c,,a 5.-52,) < 0
J

l!
~ For j = 1, we may apply poincaré's procedure to the bidimensional system.
iv
associated to (++) to determine a polynomial Fl, whose time derivative
iv 2 2.
along the solutions of (++) starts with the term (x +y ) of order

h -1, with positive Poincaré constant gl. So we may write, for 0 < al < 111

h-2 h-2
V(c,al,o,...,o) = glc + olc )

and, for a positive cl< c,:
V{cl,al;o,...,o) > 0

Iterating this procedure over all the indices, we prove the existence

of a positive ‘Plz< '\11 such that lail 4 \12, i=2,...,j; we have:

V(cl,al, ,aj) > 0

-3¢~




So we may start again with the relation:

h- h-4
V(c,al,az,o,;..,o) = gzc + olc )

and go on in an analogous way,until 'we determine the existence of j positive

numbers E. such that
&

C, £ C, L C,
i i i-1 . .
lzl,...,J

V(E_,a secesa. ) =0
i1 J
Each of them determine a couple of solutions of V(c,al,...,a,) =0
J

and, being 0 a root of order h-2j, we may state that they are the only po-
sitive solutions of V(c,al,.,.,a_) = 0 . Provided we choose c, close enough
to the origin, we have arbitrarily small Ei's. They correspond to the j

eriodic solutions of statement {a. . ), which is now proved.
ii’?

Finally we have that, provided ¢ is chosen sufficiently small, for any
c B-{(0):
=
h
IWmfglzfﬁ Je >0

By the continuity of V, ¥ ca.e BC(O) there is a neighborhood NC < N
1
such that all the zeros of V(c,f) contained in Bé@ﬂ lie in Bé&%), that
4

1

is equivalent to (a. . ).
iii
This part of the proof can be developed analogously in the case of
h-complete instability .

It remains to prove the second part of the theorem. For a fixed positi-

ve integer j let us consider such a perturbation of (+)°*
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1 mn
-y + Xih)(x,y,s) + bx(x2 + yz)é(h 1)

Do
I

2 %(h-1)

Y(h)(x,y,s) + by(x2 +y ) («H)v

]

= X +

o

. (h)
s=As + W, (x,y,8)

. .
where b is a constant, and h=2j+1. After a rescaling of time (++)

assumes the form:

X =g -y + Xih)(X,y,s) + bx(x2 N y2)/2'(h-1)1

y= E[x + Y((,h)(x;y,S) s by (" + yz)é(ml)l (+0)"

efas + wih)(x,y,sﬂ

We
i

For b=0 Poincaré's procedure applied to the bidimensional system associated
to (++)v gains only null constants, because the system is neither asympto-
tically stable nor completely unstable; on the opposite side, for b#0, -
there e#ists a Gh+l#0 which determines the behaviour of the systems close
to the given one. Hence we know that there exists a third system, close

to (++)Vi having exactly j = %(h-1) periodic orbits in a neighborhood‘of

fts equilibrium point. This last system is the perturbation reguested.
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APPENDIX. POINCARE'S METHOD.

In his celebrated paper appeared in 1892 (-33) Liapunov proved that
the stability of an equilibrium point O can be recognized by an inspec-
tion of the spectrum of the linearized equation. In particular, if all
the eigenvalues lie inthe left-hand half space of the complex plane,
the equilibriumpoint is asymptotically stable; on the other hand, if
one eigenvalue with positive real part exists, O is not even stable.
The theorem of stability in the first approximation does: not give us
any information about the behaviour of the system in a neighborhood of
0 if one pair of imaginary eigenvalues exists. Poincaré's procedure
allows usto carry on the analysis of stability even in this case, as
it is shown by the following theorem.

Let us‘consider the eguation

x.= -y + X(x,¥)

il

y x + Y(x,y)

where X,Y are analytic functions of order 3 2 (that is, whose Taylor's
formula starts with terms of degree 2'2; Xj’ Yj will denote their homo-
geneous terms of degree j). We define the function Vm; U=R , U open
set containing O, by recurrence:

L ¢
o X + Y

\'4 =V + f
m+1 m m+1

where f : is a homogeneous polynomial of degree m+l, such that vm+l'
m+
the time derivative of"Vm+1 along the solutions of (1) does not contain
(m+1)—order terms; the following theorem is concerned with the existence

and uniqueness of f and V . In what follows the symbol [VJ_ wiil
m+1 m+1 J

denote the term of degree j in the Taylor's formula associated to V.
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Theorem.

If V is such that:
m

[Vm}Z = een. = [vm}m_l -

a) if m is oddy then there exists only one homogeneous form f such that:
m

[\}m] =0

R
b) if m is even, then there exist infinite forms f such that:
m

IEARTEE

Moreover, G is uniguely determined.
m

]
(@]

then:

Sketch of the proof:

By induction. For m = 2 the statement is trivially true, so let us consi-
der the case m 2. As a first step we look for an f (m-homogeneous) for
m

which: ‘

[\} ] =0

m_f m
By the hypothesis of induction, we have already determined f , j=3,..,m-1
J

all verifying

[v@]j =0 =1, .. ,m-1
So, when we derive V along the solutions of (%) and we impose Vm to be
equal to the corrispondingterm of the right-hand side of (1), we obtain
a partial differential equation of the following type:

2f o
( sy Esx Y ) = Wnp (2)

where wm is an m-degree form. By substitutingin (2) a generic homogeneous
polynomial of degree m we obtain a set of linear relations involving the
unknown coefficients of fm and those ones of Wm. Using linear algebra =
techniques it is possible to provethat the problem of existence of a solu-
tion for {2) is reduced to the analysis .of the set of solutions os the

algebraic equation:

D (¥) =0
m
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where Dmis the detepminant of a system of linear algebraic eguations. By
combining algebraic and analytic considerations, it is easy to argue that
if m is odd, then there exists only one fmverifyng (2), while if m is even
existence is not even assured. In the second case the next step is the

research of a f which satisfies:
m

[\7] =G (x+y )m/2
mj m m
which leads to

(Gix—_z y) + G (x +y)m/2 (3)

W
Still passing through linear algebra one obtains the existence of a solu-
tion and a constant, Gm, uniquely defined by the algebraic algorithm,
which allows also to deduce the existence of infinite polynomials veri-
fying (3)..

If Gm= 0 the procedure goes on with higher order polynomials; if Gm+ o,
our data are sufficient for an analysis of stability. It remains to see
how to prove that Gm is indipendent of the choice of the fj‘s, J=3;c.,m=1,
which are not unigiely determined for even j's.

Let us suppose G »G'>0 to be two constantsobtained by Poincare's method,
m m

associated to the polynomials V and V'. For V''= V, we may write:
V' o= { G%)(x +y ) +ox+y) (4)
Vit G (x+y ) +olx+y) (5)
m

Since G&)O, V satisfies Liapunov theorem about instability, so O is an
unstable equilibrium point. On the other hand, if (1’Gé/Gm)’ the fun-—
ction V = V" - V! is positive definite, with time derivative negative de-
finite, that implies the asymptotic stability.of 0: a contradiction. By a
similar argument it is possible to treat the case Gm< Gr;é 0.

By what precedes, two possibilities may happen:

A) The procedure is not finite, and we may write, formally:

Va=x+y+f + o +Ff + a0 !
3 m
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which is a first integral of (1) (see (33)) . V satisfies the hypothesis

of Liapunov® theorem on uniform stability in a neighborhood of 0.

B) The procedure is finite: there exists m&N and G 4+ 0 such that for
m

V=V =x+y+f + ...+ F
m 3 - m

the derivatives along the solutions of (1) satisfies:
Vo= Gm(x +y )m 2 +o(x +y )m/2

Hence,  if %n< 0, (respectively G£>O) V and V verify the hypothesis of

Liapunov theorem about asymptotic stability (complete instability).

In both cases we reach a conclusion about the behaviour of the system in-

a neighborhood of the equilibrium point.
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