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INTRODUCTION

The universe is homogencus and isctropic only in an average sense and only on the
very largest scales. Galaxies, clusters of galaxies and superclusters represent
inhomogenities on scales .as large as 20 to 100 MPC. The existence of these
inhomogenities implies that the early universe must have contained fluctuations

in the density of matter. Overdense regions would then expand more slowly than

the background and eventually, provided the fluctuations were not damped,

they would stop expanding and collapse to form bound objects. To understand

how galaxies form we need to know how the inibtial density fluctuations arise, under
what circumstances they evolve into bound objects and how the bound objects

develop the observed characteristics we see today.

Primordial density fluctuations'can, in principle, ocamur in two forms: (i) isothermal
perturbations and (ii) adiabatic perturbations. Though in principle both are
allowed , grand unified theories of the strong, weak and electromagnetic
interactions actually force us to consider only adiabatic perturbations. With
purely adiabatic perturbations present in a baryon-dominated universe, the

first structures to form are of the scales of supérclusters(404?~ 40/6 PT@ ).

The galaxy formation takes place by the fragmentation of these protoclusters. This
scenario, popularly called the "top-down" model of galaxy formation, has
difficulties to reconcile with observations of the microwave background, and the
spatial distribution of galaxies, unless the cosmologiical density L= .

But N\ & | baryon-dominated universe is in conflict with the upper limits on the
baryon density( Jié.e-{) inferred from big bang nucleosynthesis arguments
concerning the abundance of He, D and *Li. On the other hand, however, evidence
based upon dynamical arguments suggest that N~ 1 , implying the existence of

dark matter.

The nature of this dark matter is still an unsolved problem. But if it is the
dominant matter in the universe, it is likely that it plays an important role

in galaxy formation. Recent developments in particle physics, have given a long
list of candidates , whose relic abundance could supply the mass density
contributed by dark matter. These candidates are classified as hot, warm and cold
dark matter, according tc their initial random velocities relative to the comoving

expanding frame of the universe.

The reole of these particles in the formation of structures in the universe is

discussed here and it is shown that the hot and warm dark matter scenarios for



galaxy formation are not compatible with observations. The cold dark matter
picture seems to be the more promising. In this-scenario the first objects to
form are globular clusters. These globular clusters are formed with massive halos
around them. At present, there is no direct observational evidence to show

that globular clusters do have dark matter halos. Some of the properties of
globular clusters , in the light of the cold dark matter model, are discussed
here. We also comment on possible observational tests to detect the massive

halos of globular clusters.



CHAPTER ONE
THE LARGE SCALE STRUCTURE

1.1 THE STANDARD MODEL

The appropriate framework to describe the universe seems to be the Standard Big Bang
model.The Big Bang model is based on the Cosmological principle and the theory of
general relativity. The Cosmological principle is the hypothesis that the umiverse is
spatially homogeneous and isotropic so that it appears the same in any direction or
from any spot.The general relativity theory ensures that the laws of physics are the
same everywhere in space and do not change with time.Accumulating observational evi-
dence over the past fifty years supports the standard model. The Hubble expansion,

the existence of the 2.7°K cosmic background radiation with its characteristic black-
body spectrum and near perfect isotropy,the accurate determination of the light ele-
ments { D, SHe, * Jthat is,the primordial nucleosynthesis,may all be considered

as evidences for the standard picture.Now it is generally accepted that the standard
model gives an accurate accounting of the history of the universe from about n»ldakec°ﬂk
seconds after the "bang'" when the temperature was about 10 Mev,until today,some 10-20
billion years after the "bang'" with temperature of about 2.7°K{ X 3 x qu Gev ),
Extending our understanding further back to earlier times and higher temperatures
;equires knowledge about the fundamental particles and their interactions at very

high energies. And prior to fa seconds, the Planck time,gravity needs to be quan-

tised and the subject is still not very developed atthe moment.

Observatiocns indicate that on the largest scales( >72 100 MPC),the universe is iso-
tropic and homogeneous and it can be accurately described by the Robertson-Walker

metric {Weinberg 1972)

2 Tty givded 1:}

Ky

where dcz is the proper separation between two events, ( 7, 8, ¢, € Jrepresents
the space-time coordinates , R(t) is the cosmic scale factor and k = +1,0,-1 is the
curvature signature which indicates the type of universe we live in; closed,flat,or

open respectively.



The dynamical evolution of such a universe is given by combining eqn.(1.1) with

Einstein's field equatiocns.Taking the Cosmolbgical Constant A\ =0, we get (Friedmann's

equations)

T, (1.2)

le(éy': Bmal — Kk
3 R

where HZ h/&is the Hubble constant which gives the expansion rate of the universe

and 19 is the total energy density in the universe.

Energy conservation relates the density.jo to the pressure # and this is expressed by

2
f—k(ﬂi}> = —3})‘2 (1.3)

Solving this equation requires an equation of state P: P(P) for the medium.
If the density of the universe is dominated by non-relativistic matter, "dust",

the pressure can be neglected . Then eqn;{1.3) gives

,PC’( R’.a Ag.o.( F:O (1.4)

In the early phase of the universe,the energy density was dominated by photons and

using the equation of state for relativistic particles, eqn.(1.3) gives
PR for  P= —‘g—'JDC (1.5)
In general,with a perfect fluid equation of state P: (”Q'Df (3{;\"‘52)‘\/\19 get
F

L RA--S’;’ % (1.6)

Knowing “P as a function of R, we can determine the cosmic factor R(t) for all time

by solving ean.(1.2).



it is useful to have a number of parameters that quantify the observed expansion of the

universe.

The Hubble constant H.

The present value of the Hubble constant ‘43 is observed to lie in the range

Ho = 3G 4 25 kw T

(1.7)

The subscript zeroc denotes the present epoch. The Hubble parameter is usually

expressed in the dimensionless form

h, = He L (1.8)
loo km & MPe

The density parameter

The density parameter ,j’vof the universe is expressed in units of the critical
density ~iE. It is the larpgest density the universe can possess and expand for all

future time. It is given by

-29 2 -3
Fe = 3uf'/ ~ 2x10 h, 9m cwl 1.0)
g G

The density in the universe is then expressed as the ratio

N |
‘\Q.. /\Pc. (1.10)

_fl, is called the Cosmological density parameter. The determination of its value
is one of the primary goals of observational cosmology.
1f JL?! the universe will eventually recollapse while Jl&} implies that it
is going to continue expanding forever.At present, \QL is known only to lie in the range

0.0ly< N < 3 The lower limit comes from the primordial nucleosynthesis argument

4(&?} \ﬂb?&o‘mq) and the upper limit from the age of the universe(Yang et.al 1984;
Zeldovich et.al. 1979), { L < 3) .



Age of the universe 439
The parameters H and JL can be used to determine the age of the wuniverse . This is

given by the relation(Weinberg 1972)

t, = ‘E_;(_.__J") (1.11)
H

whers %{J@is a monotonic function.For the three models of the universe; closed,flat

or open, this function is given as

Ho)y = It cos (2 -1) - %(m-‘)””] for 121

5 (a1
§ Ji - 2-_‘ -‘:—ov’ \n- :"l
§nd = 5

_n (i —A)"s’/"- C_osi«-a( %ﬁ‘) Lov JL2 |
"2
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From the observational data on the oldest stars present in the globular clusters
233y €3

in the Galaxy and from the age of the Galaxy supplied by /mu and : Ee/:sses

the age of the universe is found to be(Audouze 1979, Symbalisty and Schramm 1981)

9 9
13.5 x10 yeavs £ t‘u £.20%10 Years (1.13)
The uncertainities are those which come from the poorly known HO Oond .

There are two cosmological epochs of interest for us.Recombination and the epoch of
egqual matter and radiation density.

“Hecombination occurs when the radiation temperature drops to,ngooox;and the protons
and electrons combine to hydrogen. Given the present temperature of 2.7°K this occurs
at a redshift(l-l-it) ~ 303 for all values of J) Dbetween 0.1 and 1.0.

The epoch of equal matter and radiation occurs at

i

(1+2¢)~ e for (L

(&g; 2’%5‘\'93 for JL 6]

!



1.2 THE DENSITY OF MATTER IN THE UNIVERSE

One of the fundamental cosmological guantities is the mean mass density ‘f? of the
universe. Dlscussion of vP is particularly difficult becsuse for every conceivable
form of matter in the universe, we have to find from observations and theopy, an
estimate of the amount or an upper limit to the mass. We have seen that Jo can be
expressed in terms of fL(egn.1.10). There is no strong observational evidence that

P should equal the critical density, J2

& way to measure .ﬁt.on very large scales is to determine the deceleration parameter

%O . The deceleration parameter is given by(Weinberg 1972)

- —/oe
C‘o' -E’.“‘;
Q [<]

For N =p , we get from eqgn.(1.2) , SLz 2%,
Once %e is determined we can get Jl . Although %ain principle be measured from the

deviation of very distant objects from Hubble's law, the difficulty lies in knowing

the true distance of these objects.The estimates should take into consideration the
evolution and sampling effects of these cbjects. Observations indicate a range of ﬂ}a
from 6 6.5 to I-5 ¥ 0.95(sandage and Hardy 1973, Tammann et.al. 1979). This gives
an upper limit to J},é&k. The age of universe gives an upper limit to the value

of fl. In a Friedmann universe, a larger value of JL impl#es a younger universe.

From the age of the universe (see egn.1.13) we get \Qéa~1.

There is no stfbngrbbservational evidence for £ to F. so JL=d.

But there is also no guarantee that all the significant contributions to the mean
méss density will be in the forms that can be detected by us. In fact, we will see
that there is enough observational evidence for the existence of a kind of matter,
the dark matter (DM) or popularly known as the missing mass, dominating the total
mass in the universe. This DM is detected through its gravitational attraction

in the massive extended halos of spiral galaxies and in groups and clusters of
galaxies of all sizes. This matter is appropriately called * dark " because it is

detected in no other way;it is not observed to emit or absorb eletromagnetic radiation

of any wavelength.

From a thecrist's point of view, the determination of F the mean mass density

in the universe is all straightforward:

(1.14)



That is, one determines the number density of galaxies 'ﬁmg and multiplies it by the
mass associated with a galaxy M&A‘ , assuming that light faithfully follows mass,
The oldest method and still the most widely used one for measuring W , is the
mass-to-light technique. In this method, one determines the average N!L ratio
associated with an object and multiplying it by the luminosity density, one gets the

Va associated with that object.That is,

F = i(%) (1.15)

The luminosity density L isa readily measurecd observational quantity.

Note that is assumed even here that the luminosity is a "tracer" of the mass.All the
calculations are based on this assumption, a highly non- trivial one. Since our
knowledge of the universe is derived primarily from light (the photons), it is

difficult to find a method which does not rely on this assumption.

The mean luminosity density of the universe is obtained from the luminosity function
of galaxies. A galaxy luminosity function,d){t,jdt, is defined so that it gives the
number of galaxies per unit volume, with luminosities between L. and Lyl
Schechter (1976) has shown that the luminosity function of galaxies in rich clusters

is best fitted by the expression

S - L L
@(.L)f“' = ¢)*(%'i) ex? -E A (1.16)

2
where L , @ﬂ are constants and L is the luminosity corresponding to a B(O)
absolute magnitude of ~20.6. Efstathiou et al. (1983) gave the values of [ and ¢“’

as

od = =129t ol

6¥ - 13 % a.3xitﬁzk?HPc.3

s

With these values the mean luminosity density of the universe is

i ~ 1-9x10° ka(L@HPC-3> (1.17)

Corresponding to this i we can define a critcal (H/’L) ratio as
c



il

)
(EL) ‘f.._-"” = Ihx 1o he ('IL@ (1.18)
L e~ 4 Lo ’

The mass-to-light ratios from observations, of the different objects in the universe
is given in Table 1 (Faber and Gallagher 1979).The most striking fact from this data
is that the observed mass-to-light ratios seems to be increasing with scale from the

H?L. ~ 0 -2) for the Solar neighborhood to HIL ~ @oe—éoo)‘ka for rich
clusters.This implies that there is a considerable amount of mass in large systems
that is non-luminous, "dark". Figure 1 shows the observed mass-to-light ratios as a -
function of the measuring scale. From this figure Davis et.al. suggested that the

PE}L_ versus scale might be approaching an asymptotic limit (perhaps Jl=1 )

on the scales of superclusters. Gott and Turner (1977) believe that the curve flattens
already on the scales of binary galaxies and small groups of galaxies. However, what is
significant from these measurements is that there is more matter in the universe which

isg dark and increases with scale.

It has become clear in the past decade that, not only is there a great deal of DM

in rich clusters but that there is dark m: ter associated with individual galaxies

as well.The strongest evidence for this comes from the studies of the rotational

velocity ‘V versus radius ¥ in the disks of Spiral galaxies. (Faber and Gallagher 1879
V.C.Rubin et.al.1982 , Burstein et.al. 1982). From the application of simple newtonian
mechanics to a system in eguilibrium, it is found that Spiral galaxies are surrounded

by a large amount of dark matter.

The technigque by which the mass of a distant object is measured relies upon Kepler's

third law:

GM = Tx N> (1.19)

where ¥ and ~ are the orbital radius and velocity of a test object(say,gas)
which orbits the mass ﬁ1 . The mass associated with a galaxy can be determined
by studying the orbits of stars and gas clouds at the distance from its center

where the light falls off-the Holmberg radius ?&¥. The Holmberg radius is defined

as the radius at which the surface brightness of an object reaches an apparent mag.
26.7mag/sqg.arc sec. It is a convenient measure of the optical extent of a galaxy.

For a spiral galaxy, -gﬂ ~1p -30 kpe.
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If the luminous mass was the only constituent of a galaxy, then we would expect the
observed veioéiti&s to drop off as '8”1} ag implied by egn.(1.19). But this is not the
case in spiral galaxies. The rotational velocities for these galaxies instead remsin
constant out to large distances, implying that the total mass ™ interior to ¥
increases linearly with ¥ and therefoeekpaifh% See figure 2 which gives the

observed rotational curves for spiral galaxies{Faber and Gallagher 1979). Measursemants

on more than 50 spiral galaxies for which rotation curves have been obtained show

effect. (Krumm et.al. 1979;Rubin et.al. 1978)

The dark matter inferred from these rotational curves measurements is found to he

atleast 3-10 times the luminous component. Kinematical studies on the globular

in our galaxy has shown -that the massive halo of our galaxy extends to atleast =.!
(Innanen et.al. 1983). From the orbital dynamics of the Magellanic clouds, it was

suggested that the halo of our galaxy must extend to atleast ~- J¢ kPe (Lin et

Theoretically, Ostriker and Peebles (1973) found that & massive halo may be regu
to avoid a bar-like instability and suggested that the disks of spiral galaxiss musi
be imbedded in a stabilizing massive halo. Other evidences supporting massive halos
though not as compelling as the galaxy rotation curves, comes from the studies of

binary galaxies (Turner 1976 ;Peterson 1979).

Two ways of determining the mass contribution of galaxies to the density, gives an

21
. . .. . . . * v igh
interesting range of uncertainity in the value of \H . Bright galax1es{}.:%~mmaqﬂ' Lé}

have a space number density {(Kirshner et.al.1979 )

’Y\% ~ o-oz.H?’MPc.'B (1.20)

-
Taking a typical rotation velocity of a galaxy to be ¥V X 200K S ot the optical
A -
radius,, =~ 1Sh kP, we find that the total density due to the luminous parts of

galaxies is

3.
~ Y U (1.21)
Ium T Q'Oi
G Pe
If the observed massive halos are included, this value increases by an order of N\

magnitude. If we extrapolate each galaxy's halo half way to the next galaxy,
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we find (Peebles 1881)

—S), = ‘J23132J3

Z.G!J%

This wide gap of two orders of magnitude between
studying the dynamics of systems of galaxies. In
of DM comes from the dynamical studies of groups

Gallagher 1979, Press and Davis 1982 , Davis and

(1

.22)

(1.21) and (1.22) can be narrowed by
fact, strong evidence for the presence
and clusters of galaxies (Faber and

Peebles 1983). The problem of DM

in clusters first arose when Zwicky in 1933 pointed out that the mass needed to hold
the Coma cluster of galaxies together is some orders of magnitude greater than that
implied by the estimates of the masses of the galaxies in the cluster obtained from
their luminosities. By applying the Virial theorem the masses of these systems can be
obtained. Dividing the masses thus obtained by their luminosities, we can find the
mass—-to-lignht

ratios for these objects.These are similar to the ones given before.

We see ifrom these results that there is a considerable amount of DM in the universe.

The nature of this dark matter is still a mystery. We shall see later that various

species of elementary particles might provide a natural explanation for this DM.

Multiplying the mass-to-light of the different objects by the luminosity density(egn.1.17}
we obtain the mass density. The typical values are(Faber and Gallagher 1979)

i
(Solar neighbeorhood) =

L
Lo

0.004 £ 0-007F hg

Galaxies

( ) = O’OOG»Q-S”"}
Binar alaxies and groups) =
( v e grour o-olf — o-13

(Clusters )
6-2 — O-F

SL
S

L]

We see that _fL shows a strong correlation with the scale surveyed.The trend is
guite clear, suggesting that DM clusters preferentially on larger scales. The value
of £} inferred from these results suggests thatbgﬁl. increases with scale there
is no evidence that (L = } . The largest inferred values of L are in the range ©-2=&é&:
Even on the very largest scales observed, that of superclusters with masses Fiﬁwtowvﬁﬁwﬂg
the observed {1 never reaches unity.Cosmological models in which the universe
passes through a very early de-Sitter " inflationary stage" predict Ji=1

the Einstein~ de Sitter universe! i



10
However, it may be that the amount of DM also increases with scale. Thatiis it may
have a distribution that does not fall even on the scales of the giant superclusters.
Suech a distribution is the only way to reach ~fL':{ . Such a distribution would also
imply that light emitting matter is not a particularly good tracer of the.mass.
Another method of estimating ). is based on the peculiar velocity VL.G» ,of ocur
Local Group (LG) of galaxies toward the Virgo cluster (Davis and Peebles 1983). This
method may represent the best near hope of measuring the component of the mass that
might be clustered on large scales{ ﬂvff}KJfQP£ ). The basic assumptinn is that the
peculiar velocity Vtg, arises from the gravitational acceleration due to: the mass
concentrated in the Local Supercluster, the flattened struture containing several
thousands of galaxies surrounding the Virgo cluster. As a result of the agreement
between vLG; measured with respect to a group of distant( ~, Go MPc) galaxies
(Hart and Davies 1982) =and the value measured from the dipole anisotropy in the
microwave background radiation (Davis and Peebles 1983) we have VLG- ~ koot Lo kms-!
Assuming that the mass and galaxy number density enhancements represented by the
Local Supercluster are the same ﬁ:& e 2, ) and neglecting any flattening,

] i

we get

0O =0-35 £ 0I5 (r.24)

Though, uncertainities in this value are large. Lo could be larger if the mass
density is less concentrated than the galaxy density on supercluster scales or if
flattening and the effects of possible under-densities outside the Local Supercluster

are accounted for {(Hcffman and Salpeter 1982)

Unfortunately for the advocates of .Jl.:.l there is no positive and definite evidence
for Sl =1 . What is very clear though is that & large amount of matter in the

universe is dark.

1.3 THE DARK MATTER i

The exact nature of the dark matter is still unknown, ’but there are arguments that it i

may not be "baryonic'; That is, it is not made of protons, neutrons and electrons.as all
wnattey
ordinaryhfamiliat to us is. The strongest argument concerning dark matter not being

baryonic comes from the big bang nucleosynthesis, which gives us limits on the total
amount of baryonic matter present in the universe. This is derived from the combined i
D and 2He abundances and using the fact that no significant amount of D

has been produced since nucleosynthesis.(Yang eﬁ.a1.1984)



In the early universe, almost all the neutrons which nfpreeze~out’' Bre synthesised into

Y He - The synthesis process sets in quite suddenly;between‘TmJOt-sxiJkthe neutron
fraction 4rops dramatically and the deuterium and the tritium abudances peax before
dropping slightly as these nuclei are incorporated into helium-4. The abundances are
stabilized by Teb-3 x\Oq K except for the neutron fraction which continues %o drop
through beta gecay. The pulk of the material ends up &S z*He and Y . The lack of
stable nucleus with atomic DO. 5 ensures that only traces of heavier elements 1like

3y, are synthesized Cosmologically.Virtually all the neutrons end up in giving
the helium mass fraction Y ~ 15‘7# The time evclution of the nuclear reactions 1is

given in figure 3.

The nuclear rates depend on the baryon density at the time of the time of nucleosynthesis
and hence, via the expansion of the universe, On the present baryon density. The

dependence of the results are shown in the figure 4 (. Wagoner 1974 ,1979;Yang et.al.

1984 ). The f£ollowing points can be seen from the figure:

(a) The helium abundance 1is relatively insensitive to the matter density.This is
because the helium abundance is determined principally by the neutron-proton ratio
at the freezing out temperature which in turn is determined by the cosmological’ -
expansion rate at that time. At that epoch, the total density in the universe is
dominated by radiation ( Pe 7 “Pb ) and so the matter density plays secondary

role in determining the final abundance of Y He

(b) The other light elements D) FL, etc. are extremely sensitive to! the matter
density ‘PE . As & increases, the destruction cross-sections for B and 3&)5
into Yye increase. The D and 3pe abundances decreass while Y% e increases
siowly. Ko significant amount of D has been produced since then. And now,much of the
remaining b has been converted into Y he in stellar pburning. The amount of
3He , on the other hand, has increased in normal stellar processes. The sum of the
abundances D+ 3ie today, however, gives an upper limit on D4 2He present at
nucleosynthesis and this in turn gives a jower limit on the amount of baryonic matter

present at the time of nucleosynthesis.

2
Lk % 0ol (1.25)

The present observed abundances of Y4 He, D, q’L; give an upper 1imit to the

paryonic matter density

.ﬁbk”f; o- 034 (1.2€)
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Thus, the nucleosynthesis arguments restrict the baryonic matter in the universe tno the

range

0-01 = Sy £ O 4 {1.27)

We have seen that the mass-to-light ratic keeps increasing on scales larger than binaries
and small groups quite drastically and therefore JL exeeds the upper limit on th'
Therefore we are forced to say that the bulk of matter in the universe in not baryonic.
Further, the deviations in the Hubble flow towards the Virgo cluster has given JL

in the range @.258<¢fl< ©O: & (1.24). The general trend is towards JL > 0-16 and
that the dark matter is non-baryonic,though Gott et.al. {1974) suggest that f} <6l

and everything is in the baryonic; should not be excluded.

More evidence on the fact that dark matter is not baryonic comes from studies of the
massive halos of the spiral galaxies(Hegyi and Olive 1983). The possibilities of the
halos being made of baryonic material like gas, snowballs, dust and rocks, "jupiters”,
low mass stars, dead stars, collapsed objects like the neutron stars and black holes

were considered.

Consider a halo made of gas. Since the halo is required to be both stable and static,
we have to assume that it is in hydrostatic equilibrium, that is, the halo is maintained,

For temperatures less than T, the halo

‘% ¥

. . . u. . .
would collapse on a gravitational timescale of tc =(3}T/'33,GJ)1' 8 x w‘?\t‘, which is

only if it is at a temperature

TQW *

much less than the age of the Galaxy. This 1;1 can be determined from the

following argument: ¥from the assumption of the hydrostatic equilibrium

db
Yy = — @M A {1.28)
CQ"' -,9»
where % and UF; are the pressure and density respectively, at a radius ¥ and
T

P_‘ = {2J}r )K‘" (1.29)

™e

=2
is the equation of state. Solving the 'equations (1.28) and(1.29) with H’d‘t’ and P T

as the observations indicate, we get
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&
T,. = [Gwe Me ) ~ 2xlo K
eq, B (1.30)
2k v
for N.' ~ ‘0‘2 HQ at v & 00 kpe |
A" hot gas at temperature —Tg{ however,would emit X-rays, the amount which

calculated)exceeds the limits of the observed X-ray background(Silk 1973).

Consider the possibility of the halo consisting of low mass stars or "jupiters”

that is, non-nuclear burning objects, with masses &£ O'GBHQ (Dekel and Shaham 1979).
Using a power law distribution function for the number of stars of a given mass as a
function of mass, with the index in the power law matching the observed stellar
distribution function, we find that such a halo would radiate more light than is

observed.

The possibility of the halo being composed of frozen hydrogen snowballs or dust grains
is ruled out because the former would sublimate and the latter would prevent the
formation of the observed low-metallicity population-two stars because of their

metal elements of atomic number greater than three.

Consider a halo composed of stars with an initial mass greater than ZJiQ, which are
now either white dwarfs or neutron stars with minimum masses around ~ Yy HG)' Since
stars with masses larger than 2 Mg must evolve to remnants of only j.y Hg , atleast
40 percent of the present halo mass contained in these remnants must have been ejected.
The problem is where has the ejected mass gone since it cannot be in the form of hot
gas,which would radiate,and It cannot be in the form of cool gas which would guickly
collapse into the disk. Further, a significant amount ( 7 1oy, ) of the ejected gas
would be in the form of helium and métals{ Arnett 1978) and this would contaminate the

metal abundances of the oldest stars.

A final possibility is that the halo is composed of black holes. This cannot be
possible unless they are extremely efficient in accreting gas or they should be primordial

which is & possibility that cannot be ruled ocut.

Since the nature of the dark matter seems to be non-baryonic and since the conventional
possibilities like gas etc. are ruled out, non-conventional possibilities for the form
of the dark matter were suggested. Particle physics provided a generous list of weakly-
interacting species whose relic abundances can supply the mass density contributed

by dark matter. The most popular candidate for the dark matter was the neutrino{Cowsik
and McClelland 1972 ; Bond and Szalay 1981 ). But it was shown that quantum statistics
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places .an important and an interesting limit on the masses of elementary particles
Ebace ¢

playing this astrophysical role(Tremaine and Gunn 1979). From the phasei;rgument it

can be shown that the lower limitson the mass of a neutrino, reguired to be the dark

matter are - -

Dwarf galaxies ™ > 250 ew
Galactic halos My 7y 20 EN
iy
Binaries and Galaxy groups M, Py Ik hg T v
- G ho > eV
Rich clusters ™ 2/ o

and if globular clusters are dominated by neutrinos, we get the rower limit as

Globular clusters My, 7 2 Kew

Inspite of these constraints and the fact that none of the possible candidates for the
dark matter have been proved to exist in nature, we find that elementary particles do
give a natural explanation for the dark matter. The various candidates suggested and their

role in cosmology ‘will be discussed in detail in chapter three.

1.4 THE DISTRIBUTION OF MATTER IN THE UNIVERSE

It.has long been suggested that galaxies are not randomly distributed on the sky but
often lie in groups and clusters. The clustering of galaxies was first discovered by
Herschel in 1811, sho did not even know the nature of the nebulae he saw. The clustering
of galaxies into groups and clusters is especially striking in plets of the distribution
of the nearby galazies. Figure 5 shows a distribution of galaxies in the northern
hemisphere. It appesars now that genuinely isolated galaxies are exceptional and perhaps

even non-existent.

The distribution of matter is now accepted to be clumpy on all scales ranging from a
a simple binasy star system to the scales of superclusters, the largest structures
known, having masses on the order of kg%-fghub(Oort 1983)s One approach to study

-~ galaxy clustering is o use statistics(Peebles 1980; Fall 1879).
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The use of statistics has proved te be useful in many ways and the credit for most of

the recent work goes to Peebles and his associates at Princeton. They applied the
low-crder correlation functions to the Zwicky, Lick and the Jagellonian cafalogues as

a measure of the galaxy clustering. The correlaticon functions applied to the distribution
of galaxies provides important clues about the structure and the evolution of the

universe on scales larger than individwal galaxies.
THE TWO-POINT CORRELATION FUNCTION

Since the luminous content of the universe exhibits such an overt structure, it is
useful to employ some quantitative measure of the clustering. The simplest statistic
to use is the two-point correlation function 2’{«) . It is defined by the joint
probability of finding galaxies centered in the volume elements V, and VN_ at a

2
separation Y {(Peebles 1980):

gp= m>[1+3(n] WSV,

(1.31)

where Y} is the mean space density of galaxies. Consistent with homogeneity and
isotropy Q‘('v) has been wrritten as a function of separation alone; the galaxy
distributions approximate a homogeneous random process. Davis and Geller(1976) found
that EQ(Y) varies with morphological types in the sense that ellipticals are more

strongly clustered than spiral galaxies.

The equation(1.31) tells us that if 21(1) 20 it implies clustering.
if 2‘ =0 it implies a purely Poissonian distribution and Z’ L ©
implies anticlustering, that is, "holes" in the distribution.
Thus, the exact value of '% (y') provides important facts about the true nature of

clustering in the universe.

Peebles(1974) found that the %:(f) is well approximated by the power-law

-7 -4 -
2 = (-%) (ot W MK <rcoh” Mpe) (1.22)

: .
with y = 13% to.o4 ro=(s>to3)h’ Mec e

where Ye is the normalization quantity.
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The normalization quantity comes from Kirshner et.al. (1978) who measured 166 galaxies
brighter than an apparent magnitude m=15. The data available to Peebles et.zl.
consisted of galaxy co-ordinates in projection. Since only a limited amount of
information about positions in space is available, most estimates of %(r) have

been measured through the angular two-point function W (9) . This angular pair

correlation function is given as

§ F(e) = nzz[‘! + wie] 83"4 §e-,

(1.34)

It is the joint probability of finding two galaxies in the elemental solid angiles 86*'4

: 2
and %0*3 separated by an angle & '? is the mean angular density of galaxies
in the sample under consideration. Estimates of w can be made direclty from the
counts in a sample for which the positions of individual galaxies on the sky are

available.

2{ (r) is related to theW@')W linear equation which was given by Limber(1954).
It takes the form

o o ® ~*
) ) b2 2t 1, % { . z ¢OQ }
w (©) i 5& x ¢wi£dy %[(XQH’)]g ?‘gdxx (1.35)

Here @é‘)is the sample selection function defined as the mean number of sample
ga}axies per unit volume of space at a distance ¥ from us.The numerical estimates
show that the clustering is well-developed. The value of % is’ %0“) )}1 on a scale

corresponding to masses below

My ~ 510" QWM

(1.36)

M* is the characteristic mass scale that separates weak clustering ( "> H*)
from a well-developed clustering ( M < ﬂ*) . One of the aims of any theory of

galaxy and cluster formation should be an explanation of the magnitude of M* .
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The two-point correlation function is reliably known to be graeter than zero at

v & ‘fggdﬂﬂlin the Lick sample but is lost in the noise at larger separations. Though
structures do extend to larger scales, as density enhancements of :galaxies around
rich clusters are detected upto e &40 F‘ MP¢ (Oort 1983), there is no believable
evidence on whether § (¥)  is positive or negative at ¢ 3 45 W HPC

The statistic %Gﬁ gives only a limited description of the clustering and one way to
obtain more information is to estimate higher order correlation functions. The three
and four-point correlation functions are both well known(Groth and Peebles 1977,

Fry and Peebles 1978) . The three-point correlation function has the following form:

G lomirn,) = Q[ ) + Wrw) §(r) + g2 3¢ ]

(1.37)

where G& is a constant whose value is 4.29 I 0.24 {Peebles 1980)

The three-point correlation functions in the Zwicky, Lick, and the Jagellonian
samples have been discussdd by Peebles and Groth(1975). The eqgn.(1.37) is found to be
good representation of the data'over the scales 0.4 K‘ MPL & v ¢ 2L"4 MPC .
Fry and Peebles(1978) estimated the four-point correlation function ’? for the

Lick and Zwicky samples. They faund that the power-law model gives an adequate
description of the estimates for both the catalogues. Results for cross-correlations

between galaxies have also been discussed (Peebles 1980).
THE DENSITY FIELD AND %(r)
It is helpful to think of the distribution of galaxies as representing a fluctuating

density field. Also it is convenient to express i(r} in terms of the local density

of galaxies:

W

tr) = < ex) e(R+7T)> /¢ o* -4
4 8% ¢ /<$>

(1.38)

= CEPA §(R+MD [eo™>

If the matter in the universe is entifely in the galaxies and their halos,; then the
observed correlation function {kgnil.32) should reflect the matter correlation
function, that is, %(f) = %%ﬁf) . Later on we will see how this helps in determining

the shape of the primordial fluctuation spectrum that is responsible for the structure
we now see in the universe.
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The description of galaxy clustering in terms of the correlation functicns suggests a
gravitational orgin for the structure of matter on scales larger than those of
individual galaxies. Clumps with ahigh overdensity should be bound and stable,in which
case one can apply the Virial theorem. The mass of a typicafh?% given (Peebles 1876a,

1976b) as:

M~ 3 fO T

{1.39)
2 3-%
= 8 o ¥
by using eqn- {4?.32)
since
%’2' ~ GM
-
2% (1.40)

= G @? rg‘ r

Z
The one-dimensional mean square velocity <sz1 > between galaxy pairs of
separation ¢4, is related to the sum of the accelerations over triplets a&f

galaxies (Peebles 1980 §75)

[

2 = —-e.—g — ooty — e
Vi y= 868 | dr |\ T re E(nz,\r~%\)
1 v ® (1.41)
T

if the velocity dispertion is isotropic and clustering is bound and stable.

Using eqns.(1.32);(1.37) the equation (1.41) can be written as

0.4

, Xfa
4fz s %,ra v et
Lva> = R0 &8 (\-,;;) (——"""‘“‘MM) Kim -
(1.42)

This relation is called the Cosmic Virial theorem. A measure of the relative
peculiar velocities between galaxy pairs provides an estimate of the density
parameter 52 ,assuning that the gélaxy correlation functicns accurately

measure the mass distribution.

A& CfA redshift survey, carried out by Davis and Peebles(1983) has given

4 ' o4
4\/1:’} ~ 300 % 50 Km sed ; r o 4Rk MPC

5

A e

Lo

oot
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Using this value and the value of O = 4.% » in the egn.(1.42) we get

Q e~ 0.4 (1.43)

The peculiar velocity studies indicate a low mean matter density in the universe.
This result however,does not necessarily exciude a high density universe for it
is possible that most of the dark matter is broadly distributed and is not clustered

on small scales.

VOIDS “AND FILAMENTS

In addition to the largest structures in the universe having high densify enhancements,
there also regions inithe universe completely devoid wof any galaxies. These empbyn:
regions in space ''voids" «came up in.a redshift survey of galaxies by Kirshner et.al.
(1981) who reported of an apparent absence of galaxies inithe redshift range £« 0.0¢ - 0.0¢
cver a very large area of the sky (w &0° = 400 W* Mec across ), in the direction

of Bootes. This zone of depletion corresponds to an enormous volume of the order

~ 40¢ W3 mecd . The density within the holes is 40 % of the mean cosmic
density ifare allowed to assume that the number of galaxies is indicative of the

local mass density.

Bahcall and Soneira(1982) suggested that the void in Bootes is surrounded by large
superclusters , since the void coincides in redshift space with an excess density

of clusters and superclusters, specifically Bercules supercluster in the foreground
and Corona Borealis supercluster in the background. The observational evidence for
smaller volumes of galaxy depletions in the vicinity of superclusters also exists
(Chincarini et.al. 1975, Taranghi et.al. 1980, Davis et.al. 1982). These observational
results seem to suggest that galaxy voids and large-scale superclusters might be

strongly correlated; Voids being surroundsd by large superclusters.

Besides voids in the universe, on the largest scales matter appears to be in a
filamentary structure(Zeldovich et.al. 1982). Although statistical work on these
structures is still being developed, prelimimary explorations using percoclation
studies(Shandarin et.a1.>1982, Zeldovich et.zl. 1982 ) seem to show that these
structures are real. Any theory regarding the formation of galaxies in the universe
should take into account the existence of such structures and should account for

their presence.
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COMPUTER SIMULATIONS

An interesting test of the clustering picture is to simulate on the computer a model
galaxy distribution, project this distribution onto the model sky and compare the
visual impression of the resulting map with maps of the actual galaxy distribution.

This was done using the Lick map as the standard by Soniera and Peebles(1978).

Figure & shows the space distribution of the galaxies constructed on thisbby them.
Each fan in the figure represents a slice of the model sky one degree thick and 40°
wide. The three fans are placed one above the other at separations of 3.5°, The voids

in these figure may be due to statistical fluctuations.
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CHAPTER TWO
THE GROWTH OF STRUCTURE IN THE UNIVERSE

Marring the perfection of the standard model for the universe we see that galaxies
exist and are discernibly clustered in aggregrations upto 404;?1@or more and on
scales ranging upto 30 h™” MPC corresponding to = 4% of the present day horizon
size. The existence of such structure implies that the early universe must have
contained some irregularities in the density iof matter, because making of galaxies
requires some sort of fluctuation which can evolve under its self-gravity. Now it is
generally accepted that the universe was close to Friedmannian at early times but that
small irregularities existed which grew by the mechanism of gravitational instability

forming the present structure we now.observe in the universe.

2.1 GRAVITATIONAL INSTABILITY

The fundamental cause for structure in the universe is the mechanism of gravitational
instabilitv. The ideajthat galaxies have grown as a result of gravitational instability
can be traced to Jeans in 1902. The early universe was nearly uniform in density but
not perfectly so and many regions were overdense enough to gravitationally bound.

These bound lumps expanded for a while, reached maximum radii and then recollapsed,
settling quickly into dynamical equilibrium. Depending on the original mass of the
bound lump, it may be today be identified with a galaxy(ﬁoﬁ—4°u'b1e ),a group or

s 4F 46
clusters of galaxies(40 =48 M@ ) or a supercluster(40™— 40" Mg).
The evolution of a density inhomogeneity as function of time can be understood by
comparing its size with three characteristic scales: (a) the horizon scale, (b) the

Jeans mass,(c)the damping scale

{a)The horizon scale

"
N

The spatial distance to the horizcon at a time t is given by A W

i
associated with is a characteristic mass

3
= 4 T Et?t}
Mw 3 5 o (2.1)

where ng\ is the baryon density.The egn.(2.1) gives the mass of 'bapyens within the

horizon at'a time € .



4

2 -4
In a-radiation-dominated universe (RD) the scale factor TR su t ~ {4+2)

Correspondingly, the mass within the horizon is PiH ~ (44-2)‘3

~¥,
For 2 < &e? a matter-dominated universe, R = -(:% and HK’“G*E) :
So, we get for ?ﬁg :
0 2 ’ . 1
Mu =~ 40 OQh [4Ax2q] Mg | (5.2)
A & B .
4 % o
4% 4+ 2 _— He 2.3
M H ~ 2. A0 (Q L‘z) i_______ﬂ.c.‘-.— M ® ( )
: 4+ 2
(b) The Jeans mass
The Jeans length scale 7\-3 s is of fundamental importance in the gravitational

instability picture. This is the minimum scale on which pressure gradients in a sphere
can balance the gravitational forces. For scales A > ?\S , graviiy dominates the 4
dynamical motions, whereas for A < A 3 pressure dominates and the inhomogeneity
behaves like an acoustic wave.

In an expanding universe with /A\ = (O , the characteristic time for collapse or

expansion is

A

t ~ (Gg)

(2.4)

where .9 is the density of the medium.

If the velocity eof sound in the matterf(assuming it behaves like a perfect fluid) is Ce

the Jeans lenght is given by

K/
x < = N e Csz 2

G¥9

(2.5)

Since €¢ £ C , this is always less than the scale of the horizon. The corresponding
Jeans mass is
3
My = &7 (E__‘«f_
S\ 2

(2.6)



All density fluctuations larger than the Jeans mass tend to grow due to gravity, while
perturbations below the Jeans mass ~ M ¥ » oscillate wikh constant amplitude,
as ordinary sound waves. Thus the Jeans mass M 3 , 18 the characteristic mass

which divides a growing mode from a stationary mode.

Prior to recombination, the matter and radiation are closely coupled, and they can be

regarded as a single composite fluid where the pressure is mainly due to photons, that

is, ‘P = 'Fg 2 %?{ c . The sound speed in this medium is given by(Rees 1971)
z
Cs = (S i \ where
° § Iadiaba'!’ic

69

]
o
W
“0)
3
+
F
0
ot
P
o
i

T (2.7)
8P = £ g 8T
3 T
Here ?m and g’{ are the densities of matter and radiation field respectively.
Thus
2 2 1
Sy
Since it is the radiation-dominated era > and so we get Cg 4. C
’ gx § T E
Since Cg¢ is only slightly smaller than the € , the corresponding Jeans length
is only slightly smaller than the horizon scale. So ™M 5 ~ ! W
Therefore for 2 3 2. , we have the Jeans mass as
3 o
42 [ 4+ 2eg (R L)
MS = A0 A4+ = 4+ 2 3 (2.9)
[4+ (......__..ﬁ.) ]
4+ 2
where ol =4 for «RD ; oA = -2 MD
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vadiation
After, recombination, when matter and have decoupled ,the relavent sound speed for the

matter is only

i

cS (.’i kT
b S e (2.10)

The Jeans mass, correspondingly drops to

é “ﬂ& %&
2 A+ 2 )
Mg = 40 (94*) i M@;
A &+ Ty (2.11)

On scales larger than this, density fluctuations in the linear regime can grow until

the present epoch,
(c) The damping scale

Though perturbaztions on scales 7\ <<'?\S behave as acoustic modes, itiis not
possible to propagate disturbances of arbitrarily small wavelength through the
universe.lLimitations on the wavelength are imposed by viscosity :and thermal conduc-
tivity of the cosmic fluid,since both'these processes can remove energy from sound
waves of sufficiently high frequency. If the damping time scale is shorter than the
cosmic expansion time scale, the wave will be efficiently damped before the universe

has had time to expand by an appreciable factor.

In the pre-recombination era,both viscosity and thermal conductivity are governed by
the Thomson scattering process. The mean-free-path of a photon with respect to elec-

tron scattering is

4 -
;\ €s = (2.13)
Ame O

where O~ is the Thomson cross-section and Me is the free electron den-

sity. Associzte=d with this is a characteristic mass

N 68 -2 (2.14)
Mooy = D M, M = A0 Mg gr !
For 2 > ?orec
-l 6
£ N :wtm) M (2.15)
ﬁa:'f s ‘{iO (QL\) 44T ®
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Ancther relevant damping scale is the Silk's mass. Adiabatic density fluctuations
on sufficiently small scales are damped by both the action of viscosity and radia-
tion diffusion. The former process acts to smooth out velocity gradients,while the
latter smooths cut temperature gradients. The damping of these fluctuations was
first calculated independently by Michie(1967),Peebles(1967) and Silk{1968), though
only the latter work was published. Hence the associated damping mass is called the

Silk mass today.

For 221 > 2 D T e ,the 5ilk damping mass is
45,
. @ -5l \ !4
2 A+ Zrec
M b.Silk = (Mﬁpt HR(H°)> = S x AD (QL\) y an / M o (2.16)
+

At the on set of recombination ,periurbations on scales smaller than equation (2.16)

are attenuated.

2.2 THE DENSITY PERTURBATIONS

Galaxies belie the homogeneity of the universe not just today but all the way back to

t=0, since no means of growing the inhomogeneities spontaneously from the standard
model has yet been found. The problem of galaxy formation isbpostulate some natural set
of perturbations at t=0 and then propagate these perturbations through a few times JCDS
years atleast and then demonstrate that they give rise to galaxies, clustering of galaxies

voids, filaments etc. ,consistent with the present observations(Peebles 1980,Rees 1978,
Gett 1877).

The origin of the density fluctuations required to produce galaxies is still an unsolved
probiem. Ideally, ome would like to be able to show that the flutuations could arise
naturally, sSpontaneously and then grow to have the value we require. Unfortunately,

it hés proved very difficult to explain how the required fluctuations could arise
spontaneously and most cosmologists have concluded that fluctuations just have to be
into the initiai?ggﬂggé universe at,say, an epoch as early as the Planck time. This is
not a satisfactory attitude since ultimately, one has more or less given up the hdpe of

explaining the origin of galaxies!

Many pictures in which fluctuations could have arisen spontaneously have been suggested
but none . of them is conclusive yet. One of the scenarios is where the fluctuations
are induced by quantumgravity effects at the Planck time{Wheeler 1957, Harrison 1970).

Another scenaric was suggested where the fluctuations could have arose from false

vac uum effects at the grand unification epoch(Hawking 1983, Guth 1982,Bardeen et.,al. 1982) |
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The fluctuations could have arisen in an initially homogeneous universe through
statistical effects if the universe forms 'grains" at some phase transition. At some
level the universe is bound to develop :graininess as we know that matter is in dicrete
particles like protons at some later epoch. However, grains of only ‘0’20 gms.

are far too small - to produce galaxies . If graininess developes on much larger
scales, say when the universe undergoes a phase transition s then it might be possible
to have large fluctuations. Unfortunately,>SUCh,§lu¢uations were found not large to
produce galaxies, unless the grains formed at an implausibly late epoch(Carr and Silk

1983).

In the standard model, large scale structure forms when perturbations in density $= é;&_

grow to & = 4 , after which they cease to expand with the Hubble flow. The 5

evolutionjthe perturbations -i1g generally discussed separately at the two epochs
t « trec and t > trec . Two specific Fridmann models are considered ;The

Einstein-de Sitter model ( L =4 ) and the "open" model( £L = o©.4 ),

For the S =4 model, the mass within the horizon at (Pﬂz ~ Mg ) is «z4§“f1@,
Fluctuations on the mass scales of galaxies and clusters of galaxies thus come within
the horizon during the radiation-dominated era and are frozen at approximately their
initial amplitudes j%;— until recombination because the radiation and matter
are locked together by Tgomson drag, ahd the radiation fluid is quite stiff.Here

since the sound speed is nearly the speed of light, C =4 ¢ .At recombination,

the Jeans mass drops to A 4405 f1@ and on all scales lgiger than this, density

fluctuations in the linear regime grew according to

2fq

(2.17)

_%)S_, o< (4-\-%)—4 < T

from recombination until the present epoch(Rees 1971). Thus,for galactic mass scales
40“ - 40“ M , growth by a factor of 1000 is possible for perturbations in the
linear regime between recombination and the present epobh. Once a perturbation has
grown to the point where 6¢ ~ 4 , non-linear effects accelerate the enhancement
process. However, density fluctuations at recombination greater than ©.4 7§ are
needed to produce galaxies by the present epoch in an 52 = 4 model. When the
universe is matter-dominated, the rﬁs o~ 404? (egqn.2.9). Fluctiiations on mass scales
“larger than Pﬁg can grow until the present (5?).% R . But fluctuations on mass
scales slightly less than the mass -404? f?@ remain at the amplitude at which

they entered the horizon until the epoch of recombination(Gott and Rees 1975).

In the L= 0.4 model the growth of perturbations does not start until the

epoch corresponding to a redshift Aer = 40 & fztﬂg

pa-
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because of Thomson drag and because small matter fluctuations do not grow in a

universe dynamically dominated by radiation(Meszaros 1974). In general, perturbations

in the matter do not grow prior to (.lJ—’EE,v ) even if this is later than recombina- o
tion. For the JL = ©'}universe we have R V> during radiation-dominated , £ o E% for

-1
matter-dominated and Re & from ( I+ 2, )= Sl = lo up through the present

epoch. The last phase is that in which the densziy has dropped significantly below
;the critical value \/ﬂ; , so that matter no longer significantly decelerates the
Hubble expansion, and a linear expansion prevails. At recombination P1J.,4 ufﬁo,

so perturbations larger than this are free to grow according to eqn(2.17), but for

z=10 until the present epoch, we have

Se ~ Constant (2.18)
f
for perturbations in the linear regime. Thus in the £ =0.1 model, growth

by a factor of 100 is possibie in the linear regime, requiring perturbations

P 4 % at recombination.
For the gravitational instability picture to work, we need .Sl » ©.04 because
at this limiting value we have (4 + Ze )= ( 4+ Zopen )= 270 - a0
- Perturbations cannot grow prior to ( 4+ ®eq ) because the universe is radiation--*
deminated, "and canriot grow subsequent to this because the universe is so open that
it has already entered ite linear expansion phase. We see that this provides a rough

lower bound on the density parameter SZ,E .

2.3 THE FLUCTUATION SPECTRUM

Since the matter distribution in the universe is clumpy not just on the scale of
galaxies, but on all scales upto 400 HP¢ , it is therefore important and useful
to view galactic fluctuations in the context of a general spectrum of fluctuations
which extend to much larger scales. A clue to the orgin of fluctuations may be

contained in the form of this spectrum.

Zeldovich(1972) has suggested that the proper place to discuss density fluctuations is
when they first come within the horizon. Density fluctuations on the scale of the
horizon tell how different parts of the universe are sewn together prior to their
coming in causal contact. It is commonly assumed that the amplitude of a fluctuation
when it first comes within the horizon varies as some power of the mass contained
within the horizon at that timeq
- &

_Eig" = €& _fzﬁn

\ § /H My /



28

where the power-law index ol and the amplitude(fixed by rl* ) as free
parameters.
Zeldovich suggested that this spectrum should have the simplest shape. In particular,

it should have no preferred mass scales. This is often referred to as constant

curvature fluCtuations. Zeldovich suggested a spectrum with oL =0

and

5%
§ /u

where K is some constant. Zeldovich argues that the constant K might be related

= K (2.20)

to the total entropy per baryon, the entropy being generated by the damping of short
wavelength perturbations. He suggests K ~ 4O—¢ . This is the simplest possible
primordial density fluctuation spectrum. If we choose the o £ O , the universe
becomes more and more clumpy with time. Eventually (ﬁl&);ﬂiand the
universe becomes ﬂon—Friedmannian. Since the universe is so unifor§ today as the
cosmic background near isotropy suggests, it is hard to accept ol Lo . On the
other hand , if we choose & S0 , it implies that the universe was very
non-Friedmannian at early times. Here it is likely that order-unity fluctuations
on scales of the horizon would lead to a profilic production of black holes with
masses = f(‘ (Carr 1975, Barrow and Carr, 1978) and would disrupt the standard
picture of nucleosynthesis. This is unattractive, but to avoid these procblems, some
physical process is required which cuts off the spet¢trum(2.19) such that j&f pran
for M 2 Hg (Press and Vishniac 1980 ). v

We have seen that the two-point correlation function % (r) is well approximated

by a power law and the spatial correlation function for matter is

% (h'\) £ ?C?>€(i’+?)7/< e>” -1
¢

i

43Q(23§?<2+?)>/£‘Q>L

it

Since z(¥) approximates a power law, we would suppose that the spectrum of the

initial perturbations is a power law (Peebles 1974)

\Sk\ = o k" (2.21)

where %’K is the Fourier tranform of [ e(:r.p/i !:) - !J
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%k has randomly assigned phases. Then for fluctuations with diameter Ng" have

an amplitude

==
SV x M
(u" (2.22)

84 is related to the spectral index &l as - ool 41

2.4 THE TYPES OF FLUCTUATIONS

There are two generic types of perturbations, iwhibh by the process of gravitational
instability might evolve into galaxies etc. (Peebles 1980). The two types are

(a) adiabatic perturbations and (b) isothermal perturbations.
(a) Adiabatic perturbations

These involve perturbations in both matter and radiation components of the universe
during the radiation era,so
23 o+ 25
5)‘6 Se

Here the entropy per baryon remains constant; $S =0

S

(b} Isothermal perturbations

These arise from perturbations of the baryon density, while the radiation remains smooth

%?K -0 ) 685 :#0

em———

§x S

Here the entropy per baryon is not conserved , S #0 . Therefore, these are

also called the "entropy perturbations".

The characteristic spectrum of inhomogeneities surving the radiation era of the ' 3

universe differs according to whether the initial perturbation is isothermal or

adiabatic.In both cases, there exists a characteristic mass below which irregularities

are damped out by pressure,

A A
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For the adiabatic perturbation, photon diffusion has time to erase inhomogeneities

during the radiation era that are smaller than (Silk 1981)

&
2 -2
M® a2z A0 QT h, Me

b 4] ~2\3
<4+ 0.0 27 hY) (2.23)
ad 42 od 4
For §2 =4 ) MD ~ 40 H@ ; for 5230.4, My ~ 40 Me
is
In the case of isothermal perturbations the damping scale h1b , 1s condiderably

smaller and is just the Jeans mass determined by the baryon pressure. This is of the

order
s c -
¢ 2
My ~ 40° (L) Mo
(2.24)
The fate of adiabatic perturbations obeying N =1 ,spectrum(commonly referred to

as the Harrison-Zeldovich spectrum, Harrison 1970, Zeldovich 1972) has been studied

by Doroshevich et.al. (1974). At recombination, one finds no significant fluctuations

on scales smaller than b1gﬁd ybut on allscales larger than r1iwd fluctuations

are of the order of K . These sound waves involve peculiar velocities gV~ c_(%_;) ~K
At recombination, the restoring force due to radiation suddenly disappears; regions that
happened to be contracting will contract by an amount gV'tY¢C where &}l‘ is the
Hubble expansion time at recombination. The velocity perturbations thus lead to baryon

density fluctuations

—— —i— ~t yecl -
(;EL%i)Lawvovxf\) ’ (: ': ) 2 S:Y;fi =7

Since ric( 1'3 this leads to a baryon density fluctuation spectrum - °

p e
(%-)gwﬂﬁn 0( M (2.24)

The equation (2.24) relies on velocity overshooting to build baryon perturbations

larger than the original adiabatic pertﬁrbations. This leads to a maximum amplification
od

of o~ Beo at scales just above HG . Press and Vishniac {1980) demonstrated

that this overshooting concept is not correct and showed by detailed photon-transport
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computations that the amplification factor is only s 2 . This poses difficulties
in the model picture giveaby Doroshkevich et.al. They favor adiabatic perturbations
in a £l =p-} model 6f the universe. Their density fluctuation leads to formation
of protoclusters of galaxies of mass !D“’HC). Upon collapse of such a protocluster,
" shock waves would form giving rise to dense flat regions of matter, the "pancakes"
that could fragment into galaxies via the usual Jeans instability. Production of
bound protoc¢lusters of masses lo“"ﬁa reguires SP/J ~lo” 2'amd therefore K ~ 2-2 xl;(? .
However, Sunyaev and Zeldovich(1972) have shown that collapse to a pancake in one
direction may occur while a protocluster is expanding in the other two directions, so
protoclusters :can be slightly unbound and & = go'L* is acceptable.If the adiabatic
scheme is applied to SLL o= ] universe then such problems would not arise.
However this requires the post-recombination overshooting discussed béfore.Witbout
this the value of k. must be much higher to produce galaxies: 7S5 xto-‘s for
JL= ©-1 and K >10°3 for (l=| . But this produces fluctmations ' in
the microwave background of the order (?Tli);>'6.3 which eiceeds the present observational
limits. This is a serious drawback for the adiabatic perturbations. Press and Vishniac
(1980) suggested that this problem can be solved if M =4 instead of Zeldovich's
sP¢c+fuvn’for this spectrum is steep enough so that the large scale microwave
background isotropy is not violated. But the m = 4§ spectrum runs into trouble at
the other end of the spectrum, because it predicts order-unity Fluctuations at (og}{g
and below. Press=& Vishniac themselves pointed out that this would seriously disturb

the primordial nucleosynthesis argument.

g

The fate of isothermal fluctuations obeying the Zeldovich spectrum n=4 , has been
-
studied by Gott and Rees(1975). We have here %g) ~ A0 on the scale of horizon
total

at all times. Now for isothermal perturbations

(ELS) = (ELE) . ?‘“ﬁvn
- § /ol § / bargn § totot

Since the universe is radiation-dominated for epochs of interest ?hﬁd o R

-

Sy

; gku‘d ’sz

$ booryen . " . 3
so ————‘g_?h'&i < R . Since Mpet b , Rt E'> ,s0 My o™ R’ and Nw,bof,( R

Expressing the density fluctuations in terms of the mass scale in baryons we have

23 - M
§ ] barons

These baryon flutuations are not subject to damping and cannot grow because they are
locked to the radiation via Thomson scattering, so they remain at this amplitude
until recombination. For K = 40':’%?-) ~4 at scales of 10° Mg (S2=4) or 407 M@
( §2 =0.¢7 ). Since the density of baiya;s never be negative, at smaliler scales
equal positive and negative total-density fluctuations of amplitude k = ;d‘“cannot

be produced by baryon fluctuations alone.
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The value of k, can be estimated by matching the observed amplitude of the covariance

function. Gott and Rees{1975) find K~ -8 x o~ Y and 2.2 x 1e™¥ for
SL= and Ji =0 models respectively. This predicts fluctuations in
microwave background '%177 A~k ~ lo~U on angular scales greater than 2°

for flLs| and greater than 6° for JL = ©:1 | provided the last scattering surface
3

is at ~ o . This is compatible with the the observational limits on the
microwave background. The isothermal picture is consistent with the observations

but till now we have no detailed mechanism to produce ¥he P¢V+UVBG*‘°“5 .

In addition to these fundamental types of primordial perturbations, it has been noted
that subsequent hydrodynamic effects(detonation waves) can make small seed perturbations
grow(Ostriker and Cowie 1980). Thus if initial seeds can be formed via either adiabatic
or isothermal modes, then if they explode and their explosions stimulates cther
explosions, then large amounts of matter can be moved about even on scales larger than
the initial seed perturbations. Such a situation might arise if the quark-hadron

transition produced planetary mass black holes which clustered baryons about and

subsequently exploded(Freece et.al. 1983).

2.5 GALAXY FORMATICHN

The minimum size of the surviving inhomogeneities in the adiabatic and isothermal
cases suggests two different process of galaxy formation.In the case of pure
adiabatic perturbations, the first objects to condense out of the expanding universe
are masses of the order of galaxy clusters.Here, large scale perturbations 'on a scale
greater than the damping mass }4;ﬁ' must reach the nonlinear stage of growth
before galaxies can form. During this growth, initally small anisotropies in the
perturbation spectrum are strongly amplified into highly flattened structures, or the
"pancakes'. If the matter infalling during pancake formation is pressure-free, then
as it accumulates in the midplane of the pancake a caustic surface eventually forms
at this midplane where streamlines intersect, making the density momentarily
infinite there. For a collisional fluid(like the baryon-electron component of the
universe), shock waves must develop in the midplane, rather than a caustic {actually
one shock on either side of the midplane), whish dissipate the kinetic energy of
infall by heating the gas, enabling it to cool radiatively in the post-shock flow

to a temperature 5;;5’&_. The high density and low temperature of this thin, central

sheet ultimately results in its fragmentation and, eventually, in galaxy formation.

Since the density anisotropies are assumed to be small, linear theory of perturbation
may be used to discuss the early phases of the picture. Zeldovich(1870) developed

the following approximation fo treat the growth of adiabatic perturbations.
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It actually remzins a good approximation even a little beyond the linear regime.
el
The position of a particle s 1 is approximated as function of its comoving

Lagrangian position Tl? and of ‘“time t by

P ey
N = o (4)q + WOTCY) (2.25)

R -a
The first term gives the unperturbed background and the second | term b(e? P>C‘§J3
represents the initial irregularity in the matter distribution, which isassumed to
be small. The density in the vicinity of each particle at a later time 't , 1is

given by

P> = PlE) _ Pl
‘ 37/3?} \ g‘i -+ b(e)a"i/-oq,j \ (2.26)

-—’
where L {t) is the mean density in the universe.
By extrapclating the result of equation (2.26) , infinite density is achieved
at some time when the determinant inthe equation vanishes. Thus, the matter

will pile up into sheets{pancakes) along the surfaces defined by the condition

D7
= =
la&’% ©

Figure 7 shows a 3-Bimensional N-body simulation(Davis et.al. 1983) where the
ieidovicﬁ agprdximétiénktheory”ié compared wiéh;the computer results. From the

figure we see that the Zeldovich approximation compares very well with the N-body
simulation, especially at early times. At late times Zeldovich's approx. fails to
reproduce some of the features seen in the N-body simulation- the filamentary
structures. Two-dimensional studies have been done by others{Melott 1983,Doroshkevich
et. al. 1980) and the results are compatible with Zeldovich's theory.

Since in this theory galaxy formation proceeds by the fragmentation of "pancakes"
this theory is known as the "pancake scenario". Also, since large- structures are

formed first, and galaxies later, this is popularly called the "top-down" picture/

However the parncake scenaric runs into serious trouble by conflicting with the
microwave background temperature fluctuations observed. The residual irregularities

in the microwave background offer an extremly important test for the thecries of

galaxy formation. The present anisotropy in the microwave background{MBR) is correlated

with the density variations at recombination for the adiabatic case, because the
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FIGURE 5.1 Comparison of the Zel'dovich approximation bq. (5181 with a
nwmnencal simulation of gravitational clustening using “pancake’ initial conditions
The tiec rows show projections of the particle positions after the sy<tem had
expanded by faciors of 2.4, 1.6 and 5.4 respectively. Pictures fo the left show the
N-body simuanion and pictures o the right show the Zet'dovich approsimation.
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temperature fluctuations are related to adiabatic fluctuations as(Silk 1981)

g%? B %5 <T Sig‘>4m4;a (2.27)

The horimon size at recombination subtends 6° of arc on the sky. The corresponding
acale ¢6& H;fi ( ,,g&z; ;o'* ) is 5' -10'. We expect then that the

temperature fluctuations in the case of the adiabatic theory to be

_Ei{ ~ !0——3 on thése scales . (2.28)
T

Infra-red observations at a. 600 micron wavelengths give variations over
6° as %T/T_EE 3.5 « o—3 ’ (Melchiori et.al. 1981). Patridge(1980) gives

gT/r"" {6“ for e>3 / . Table 2summarizes a list of all the published upper limits
on the small scale anisotropy of the MBR(Patridge 1983). We see from the table
that the limits are uncomfortably tight for the adiabatic galaxy formation picture.
Moreover we have seen that the perturbation:spectrum is highly contrived unless

(L = Q.(Sle%aﬁd.Wéls0é319811¢Wilsen”ahdoﬁilktlSBI:aPeébléspiQSE )

The isothermal picture seemsto have no problems of conflicting with the MBR.

As the name itself suggests, these perturbations leave the photon density unaltered
since these involve perturbations only in the matter density.

Under the assuption of a power-law spectrum &6f the isothermal fluctuations at the
epoch of recombination we have seen that the characteristic masses are of the order

IDS—- !0’:} Ho comparable to the Jeans mass just after recombination

=t
HT o |QS @‘\7’) (1 H@ (2.29}

The first 6bjects to condense out in this case are objects of masses o~ f{I . This
mass corresponds roughly to that of a globular cluster.Subsequently, these objects
will cluster under the action of gravity and build up structures of larger and

larger scales, right upto the éxtent of superclusters. Since gravity alone is
responsible for the ' ‘generation of clustering and structure , there should be no

characteristic scale of galaxy clustering.

We have seen that the two-peint correlation function can be expressed as a power-law.
The main aim-of theoretical models is to calculate the expected correlation function

and compare with observations, given the initial density fluctuation spectrum.



TABLE Z

STRUCTURE IM THE UNIVERSE {1
Table 1

A 1ist of all published upper limits om the small-scale
anisotropy of the cosmic microwave background., The resultis are
generaliy expressed as limits at the 95% confidence level. The
corrections ardéd my owp estimastes, and may be ignored.

Reported or

published Corrected
Observ. Wavelength Angular upper limit upper limit
om scule AT/T AT/T
1. 2.80 107 1.8210-3 3. 521028
2. 0.35 2 4.,0x10~% 2.0x10-2
3. 0.35 ~1:5 3.7x10-8 1.8x10-%
4, 3.60 2110 7.0x10-4
5. 2.8 330 3.0210~# 4,0x10-4
6. 4.0 ~12'240° 5.0x210~5 1.6x10-4%
7. 11.0 8 ~2048 1.5z10~4 4.,0510-4%
8. 0.13 30° 1.2x10-4
§° ' §.0x10-5 4.0510~4
2. 4.0 to { to to
150 1.3230-% 7. 85109
ic. 0.8 ~ 77 8.0x10-%
ii. 6.3 77 { ExlQ-—-4
12. 2.8 i1’ { 2.5x310-%
13, 2.8 415 { 2.5x10-+4

% Coaverted to 2¢ valuoes and corrected for talescope .

efficiency. Not cozrected for possible errors in statistical
analysis.

1, Conklin and Bracewell (1987) 8. Caderni gt al, (1377)

2. Penziss gt al. (1969) 9. Parijskij ei al, {1977}

5. Boynton and Partidge (1973) 10. Pastridge (1980b}

4. Carpenter st al. (1973} 1i. Ledden et al, (19803

5. Parijskij (1973a) 12. Selelstnd et al. (1981)

6. Parijskij (1973b) 13. Birkinshaw gt _al, (1981
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The isothermal picture for gelaxy formation, known as the "hierarchical scenario®
or the "bottom-up",should give the right clustering observed in the universe for
an assumed initial spectrum. If all the galaxies are arranged in a mested hierarchy,

Peehles{1974) has shown that the power index ¥ of 2 (v) to be

Y= 4tdn (2.30)
£ 4"
in the non-linear regime( SP/P >> ) ) . Peebles has suggested that f=0 initial

spectrum is an appropriate fit to the observed %(1) . More extended calculations
by Gott and Rees(1975) suggested that mn=-1 spectrum gives a hetter fit to the
overall %(v) curve than M= © speétrum for both J$l=}| and Sl =00
Hiyoshi and Kihara (1975) from N-body simulations for $lL =] , found that " Lo is
a good fit. Peebles and Davis(1977) using the BBGKY hieﬁfchy equations found that

an — 6 is matches the observed 'i, (+) well.

A better answer to all this might come from detailed computer simuiations. Using

N-Body simulations Aarseth et.al.(1979) and Efstathiou and Eastwood{1981) for +=zw©
Spectvu m !

and JL= 1 +they found that the observed is too steep. Figure € shows projections

of an \ﬂ - { model with Poisson initial condition,that is, "=o

The isothermal picture of galaxy formation is promising but the mechanism to

produce the perturbation is not yet found. In fact the recent ideas in particle physics’
suggest that the number of photons per baryons is frozen in from esrly epdchs and
should have a universal value(Weinberg 1981). This might preclude primordial

isothermal fluctuations altogether.




hi

G, FISTATHIOU AND L SHK
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CHAPTER THREE
GALAXY FORMATION WITH DARK MATTER

Recent advances in the grand unified theories of the strong, weak and electromagnetic
interactions has provided a natural explanation for the observed éntropy per baryon
number,which is one of the fundamental numbers needed to characterize the Fridmann
cosmological model,in terms of baryon -non-conserving and CP violating processes, that
occur in these theories. Several authors (Weinberg 1982;Press and Vishniac 1980) have
made the important point that &he entropy per baryon number is fixed in terms of
purely microscopic parameters and should not vary from point to point in space. While
the entropy per comoving volume remainsg constant, the baryon number, an excess of
particles over anti-particles, which is initially ze¥e, is generated as the symmetry
of the grand unified era is brokeﬁ,soon after the Planck time. Since a universal baryon
number is generated , any pre-existing isothermal perturbations which are entropy
variations cannot survive in the standard model. Only adiabatic perturbations survive

and should be present to form galaxies.

We have seen that galaxy formation in the adiabatic case, the pancake scenario, is
difficult to reconcile with observations of microwave background , the spatial
distribution of galaxies and the light element abundancesgunless SLa | and the
perturbation spectrum is highly contrived. But Jl=zl| . baryon dominated universe
is in conflict with the upper limits to the baryon density( Jlbiiod ) inferred from

the big-bang nucleosynthesis( Yang et.al. 1984). Onithe other hand y we have seen

that evidences based upon dynamical arguments suggest that J} >o-l , perhaps as
high as JL ~-1 , implying the existence of dark matter(DM), having a density
greater than Jlb . Since this DM is found to be dominating gravitationally

on all scales larger than galaxy cores and amounts to some 90 percent by mass in

the universe, it is likely that it plays an important role in galaxy formation.

A substantial fraction of DM surrounds the visible portions of galaxies. The following
picture can be made for a galaxy; a dense, luminous core containing the stars, gas and
other baryonic matter, surrounded by an invisible halc of DM, ten times larger in radius
and containing 90 percent of the mass. When galaxies cluster, their halos probably
merge, creating a fairly uniform sea of background DM, in which the luminous

portions are embedded. The separation of baryonic matter, from DM on galaxy scales

might probablyh%xplained by the dissipational property of the baryons . Because when

the baryonic matter is gaseous, it radiates, loses energy and sinks lower, while DM

which interacts gravitationally only,does not radiate and a structure composed of



37

such matter collapses only a factor of roughly two or less from its point of maximum
expansion. Therefore, DM is necessarily of some form of dissipationless matter.Since
we have seen that the DM cannot be any of the conventional forms , let us consider the

exotic choices particle physies has provided us.

3.1 HOT, WARM AND COLD DARK MATTER

Particle physics has provided a very long list of weakly interacting particle species,
most of them hypothetical, whose relic asbundance can supply the mass density contributed
by the dark matter.The many candidates suggested, spanning an embarrassingly largeswir<}

Yarge
mass “is given in the below table.

CANDIDAT € MRSS ABUNDANCE
q -
Axiem o !;51\, '~ lo Cwm
-3
oo Cwa
Neutvimo ~ doev -
-3
(7] Cidd
Sxauikmo/pke-k-no ~ lkey 'F& - -3
) ~ ‘Chl‘ﬂ o~ {Q el
Smeutvine 6.2
N | Cuer ~ In
Phekine §;21¢“V:3
!gs ~ ‘Jh'&ev ~

Q“y’e‘.‘. m»; Wons

s 39
P+iwovdial block- >7 io § 5 lo Gev

)‘\0‘8% j UF;RU et

Of these various possibilities, only rocks,Jupiters and neutrinos have been directly
observed, though a non~-zero rest mass for the neutrinoc has not yet been confirmed.
The viability of the other candidates is uncertain in two ways:iTirst, they must be
proved to exist in nature and, second they have to have a mass which matches their

present number density in such a way as to produce the observed 1 .

W
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Inspite of the long list of candidates with the different masses, some gereral themes
have emerged. First, it is useful to classify these DM candidates. An useful
classification scheme was introduced by J.R.Bond . In this scheme, the candidates are
termed 'hot!, "warm” or '"cold" dark matter according to their initial random velocities,

relative to the comoving ,expanding co-ordinate frame of the universe.

The hot DM refers to particles that are light( ~ loo ev ) and which are relativisti
at the time of their decoupling,and remain relativistic until shortly before they become
the dominant matter in the universe. At that time, the temperature of the universe

would be below their rest mass and they begin to cluster. The most popular candidate

for the hot DM is the neutrino.

The warm DM are 10-100 times heavier than the hot DM with masses usually in the range
1-10 Kev and which decouple earlier than the hot DM and hence become non-relativistic
early. An early candidate for the warm DM was the gravitino (G.R.Blumenthal et.al.}982)
but recent changes in the scale of the supersymmetry breaking predict gravitinos to

be more massive{ 100GeV), making it a candidate for the cold DM, and not a warm DM.

A photino of iEeV is a likely candidate but recent theories predict (Goldberg 1983)

photinos toc be more massive. At present there is no natural warm DM candidate.

Cold DM candidates are either very heavy particles that become non-relativistic at
very early stage(gravitinos, photinos, right-handed neutrinos) or are particles that

are born with imtrinsically zero velocities(axions).

We shall see that the crucial cosmological distinction amongst these different types
of elementary particles is the different role which collisionless damping plays in
determining the structure which emerges in a universe dominated by one or the other
of these particles. The nature of the structure which emerges out, is fully determined
by the amplitude and shape of the adiabatic perturbation power spectrum as measured

in the linear stage of growth , the post-recombination epoch(Doroshkevich et. al.1881,
Bond et. al.1980,Wasserman 1981; Bond,Szalay and Turner>1982; Peebles 1982,1983;

Turner,Wilczek and Zee 1983; Primack and Blumenthal 1983).

3.2 GALAXY FORMATION WITH HOT DM

The standard hot DM candidate is the massive neutrino(Doroshkevich 1981; Bond et.al.
1980). We know that a neutrino exists and there is no compelling reason to suppose that

it is massless. In certain grand unification theories , the neutrino,which is one
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component of a multiplet with its charged lepton and quark partners, attains a mass
naturally . Witten(1980) and Gershtein and Zeldovich(1966) first realized that a
neutrino with a small rest mass might lead to a gravitationally dominating cverall
neutrino density and they deduced a limit w, < ligo ev for it from the age of the
universe. Marx and Szalay(1972) and Cowsik and McClelland (1972) suggested massive
neutrinos as possible candidates for the "missing mass" in the halos of galaxies.
For many yaers, massive neutrinos were considered plausible but not compelling
candidates for the DM , while the favoured ‘scenarios were with ordinary nucleonic

matter(faint stars, gas clouds etc.).

Primordial nucleosynthesis arguments{ Yang et.al. 1984), ( gﬁb.40-0§b the need to
explain the observed JU2, 618 | as indicated by dynamical arguments implying

the need for DM, favoured neu%rinos to other nucleonic scenarios. Experimental
evidence for neutrinc masses(Lyubimov et.al. 1980}, as well as theoretical work in
GUTS stimulated interest in neutrinos. A new trend was initiated by Szalay and Marx
(1976) who noticed that the perturbation growth of neutrinos starts long before

the decoupling of matter and radiation and that seems to provide an answer to the
problems faced in the adiabatic case of galaxy formation. At present there is
apparently mo reliable experimental evidence for a non-zero neutrink rest mass.

The Lyubimovet.al. (1980) measurement of the tritium beta-decay spectrum has
suggested that the mass of the neutrino(electron) can be as large as 14-46 eV.
Preliminary evidence for neutrino oscillations on the other hand, which implied a
neutrino mass greater than A~ leV(Reines et.al. 1980) has been called into question
by Kwon(1981). Experiments have been reported,which claimed to place upper limits

of 560 KeV and 250MeV to the masses of the fﬂ and V¥ neutrinos respectively

(Daum et.al. 1978). Recent studies of double beta decay have given model-

dependent upper limits to the mass of the eiecﬁron neutrino as m,;, = E.6ev
(Rirstein et.al. 1983) and wmg, € i0c eV (Avignone et.al. 1983). In short the experi-
mental evidence for a non-zero rest mass is extrememy uncertain and on the other hand
the range of possibilities allowed by the grand unified theories which predict finite
mass for a neutrino is great. We shall see how cosmology in principle , limits

the sum of the masses of stable neutrino types to roughly 100eV( Schramm and Steigman
1981).

THE MASS CONSTRAINTS

During the early evolution of the universe, all particles including neutrinos, were

produced copiously. Most of the neutrinos present in the universe today were produced
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at the same time as most of the photons in the 2.7°K background radiation( Weinberg
1972). The neutrinos and anti-neutrinos (with masses < 1MeV) are in thermal
equilibrium with the photons and the electron-positron gas at T = i&’ok (&~ 1MeV)
Their mean occupation no. as a function of momentum p and time t is given by the
non-degenerate Fermi-Dirac (FD) distribution of extreme relativistic(ER) particles,

~

-
n(pt) = |1 e I | & fieer ()] o

+P
KT

since My« KT®1Mev.( % = ¢ = 1).

This equation is valid even in the non-relativistic (NR) regime where neutrinos are
neither FD nor degenerate. The neutrinos remain in thermal equilibrium until the
temperature drops to 'Ebd » at which point their mean free path exceeds the horizon
and they essentially cease interacting thereafter except gravitationally.

The neutrine mean free path is

Ay ™~ (ﬁ“-a “ej;) - (3-2)

where ¢ denotes the cross-sections for neutrino-antineutrin® reactions and‘ne;is the

density of charged leptons .

- A
Ty = %tx 1 (kT) for kT <« mﬂ/k (3-3)

- 48 3
where @ . = Al 210 € om is the weak coupling constant, known from the observed
rate for the muon decay process /u."' - 6+ & '\)c . —5
The density of the charged leptons ei is given by

- 3
M (}5;.. (3-4)

Taking‘ﬁ =¢c = 1, we have the neutrino mean free path from the above eguations as
—4 x 2 2 -4
Ay o~ (o Met) o [(gu KT) (W) ) N
z T 3 - (3-5’)
~ [’<¢%\mk T >('1' ) ]

The horizon size at that time is

4’ & - 4!1 - 4[1 -

A, ~ (6 f)’ ~ G ¢ ~ Ma T (3-¢)
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-ty 48 -€
where Mﬁ =G = 422 x40 GV x 24 40 g is the Planck mass.

Thus z. :
?i (‘3 ka‘! )({“f_s) }1 —r‘ 3
‘V?\ . bad H e ] —-T--—'—' ( B ?)

Vd

with the neutrino decoupling temperature

-y -4l
Tvd i % whk Hp‘ ~ A4 Me\/ (3. 2)

When the temperature of the universe falls below 1MeV, eﬁ- €~ annihilation ceases to
be balanced by pair creation and the entropy of the et e” pairs heats the

photons. At temperatures above 1MeV, the number of neutrinos N, = 2 'ﬂg , where
the factor "5/4‘_ comes from Fermi vs. Bose statistics. But the et 6-4 annihilation
increases the photon number density relative to that of the neutrinos by a factor

“/4, . Thus, today, the number of neutrinos {plus antineutrinos) of each type present

in''the universe is

3

(3.9)

’nv, = 3 .4 #m = 409 cmm
b ¥o

Subscript zero here indicates the present epoch,again.

mKa is the number of black-body photons observed today. It is given by

kT - -3 ;
Ny, = g«r(.rc—\) 2 §(*) = 393 om (z.40)
“’%th T = 2.7°k : S(s) = 4.02020¢ .

The present cosmological density is

S

Therefore it follows from the above that

1]

Q gc = 441 57 Lxl KeV C,m-s (3 ,,4,4)

kS
Sy, & S 4 400 W ev (3.22)
£ ﬁv.
whereZ% ig the sum of all the neutrino species with Moy, £ 1MeV. Consistency
&
with the widest range :allowed as well as the restrictions of (9] £ 3 and h >~-;—

gives

Z M, & 400 eV (3.43)

e
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In general the sum of the masses for different neutrini types should have to satisfy
this relation. The required mass range is compatible with the experimental upper |

limits for the masses of ¥Yum and Y _ and also for V. if h £0.7.
/7 ® e

Similar constraints can also be found on the masses of other fermions which decouple
while stillirelativistic and are candidates for the DM ; the analysis differs only

in the decoupling temperature and in the number of spin states available to the fermion
(K.A.Olive and M.S.Turner 1982; Bond and Szalay 1983). The particles decoupling
earlier at higher temperatures miss the heating due to annihilation of//‘t/p‘— or

other species and thus have lower temperatures given by
. A 9
3
T, = Ty [3._3..] (- 44)
W

Here %‘ stands for any hypothesized fermion particle which decouples when it is
relativistie; %* is the number of relativistie species at decoupling(K.A.Olive et.al.

1981). The FD number density for particles which decouple while still relativistic is

3 3
m,e = 29 Ts ¥¢) = 28¢ Ty R [ =2 \ (2. 45)
4m? 4 * D/

C%g = spin degrees of freedom( 2 for spin % partners like photinos and neutrinos) and

gﬁg = 4.020206 . The energy density of a fermion species of mass Nn§ is given by

3
-2 :
Q'; - M h (%f/z)i_———-‘w‘?s)( T%o ) o ac)
3? e\/ %*,f 2'? W - }
Forta particle of decoupling temperature
400 MeVy 4&5’
soc Mev - 61.8
2’ {00 GeV ! %* - 404 (3~"?‘)
i0** 464
43 - 3
o 2
5?{ - m’f céo . l’] . ( %&/2) . T‘g’o ev
940 2.3 K

4450
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Consistency with the "best fit" range of ages{{, » Gyr from globular clusters)

¥

restricts
' {321
140 2
z mMe & lasp ( Aég) eV
§ 360

For all standard unified models with %*5 £ 464, ﬂ”‘{ cannot exceed 400eV.
Thus, we see that the big bang cosmology puts stringent limits on the number of

types and masses allowed for the particles.
THE CHARACTERISTIC SCALES

Collisionless particles have no pressure but they still have kinetic energy from
their thermal motion. So one can define an effective Jeans length and mass for these
particles by using the velocity dispersion %.(ﬁv:> instead of Cgt in the
expression for the Jeans mass. As-usual , perturbations on mass scales ™ greater
than r«sf, the effective Jeans mass for the hot DM, grows, while those on smaller
scales do not , since particles stream out of density flucﬁpations on times which are
shorter than the local gravitational time scale t AJ(C.Pj—{zIn the comoving frame,
when the random particles are relativistic, ?ﬁsi. o~ FﬂH , Since the horizon size
and free-streaming length are comparable. P11 thus increases propoftionally to t,
the age of the universe(Bond et.al. 198C). Fig. 9 shows the growth of PTE» for the
neytrinos.
Qﬁen the particle velocities become non-relativistic, r13} decreases with time.
Hence, the Jeans mass reaches a maximum Hsm“ roughly when kTJ. ~ rW\_IK_CLz , where
T% is the kinetic temperature corresponding to the particles of mass Nﬂi; .
after which the P‘S& begins to decrease. The mass which fills the horizon at the
time of transition from relativistic to non-relativistic particle velocities

(kTg ~ mgc® ) is

3

-2 é
MH(ka ~ g c“) “—:‘%f M'W myp o (3.«(8)

where oA = —rg/ﬁ;, is the factor which gives the "heating" of the photons
relative to the fermion particles, from annihilations of other species after the

decoupling of these particles.

The transition from radiation to matter domination occurs at redshift iiaq
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(4 -'!"Ee?\) x 4{—140{’ ﬂ.k«l (3.43)

The mass?ﬁazwhich fills the horizon at this epoch is

A5 z -t

Meq z 40 (5“'\ ) Me (3. 20)
i Lo X 2 .

Since M-&s_ o Mu (‘(T.g ~ M.FC) ythe effective Jeans mass for these particles is

just the mass which fills the horizon at 2537

Ay

P13§ ~ Meg (% .24)

For example, in the case of neutrihos of non-zero mass ,rmyas‘bOé‘; the distance
travelled during the transition from relativistic to non-relativistic state is

(Bond et.al. 1980; ,Sato and Takahara 1981),

-2

d-y = ?\H (kTN M\,Cﬁ) o MP‘ mA

(3. 22)

-4 4
~w ha(muspew) (4e2) me

In order to survive this free streaming, a neutrino fluctuation must be larger in

linear dimension than dx: . Correspondingly, the Jeans mass Fﬁgv is given by

k

3 -2 45
Ms, = 473 My m = 32 40T (g Y

(3. 23)
THE SHAPE OF THE PERTURBATION SPECTRUM

In order to see what non-linear structure emerge, we must censider the shape of the

perturbation spectrum

_(M-A)’/$
ég_. < M (2.24)

The most salient feature of the hot DM is the erasure of small fluctuations by
free-streaming. Free-streaming eliminates power in the perturbation spectrum for all.
(-8 4

may
scales ™ <H; o Ma? . The spectrum on scales M> ME ~ He? , retains its

shape, transformed to
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*(M*‘)/k
28 LM (M > M) (3.25)

for all the mass scales rﬂ which have entered the horizon.

45 N
Since PQCQ ;5 40 (fl k ) pl@ ,s8cales of the order of superclusters are the
first objects to form in a hot DM dominated universe. These are the pancake masses
referred to earlier. Small scale structures like galaxies can form only after the
initial collapse of these supercluster size fluctuations through fragmentation

{Shapiro 1983).
GROWTH OF FLUCTUATIONS

The growth of a fluctuation, of Mvs 2 in the universe is shown in Fig. 40 | for

three different cosmological scenarios.

) 52v =0 E'RB =003 ; @) y=0, Ag=4 ; (i) L, =4 , Ny =o0.03

The dashed line corresponds to the neutrinos;the three solid lines show the growth

of baryon fluctuations in the three different cases.

-€

In the case of{i) SZ\;;O, SLB:.o.os, 2T s very small € 2,40 .
.. . 5T -3 . .
As we have seen before (ii) jlv =0 ’Sla = 4 gives .irh = 40 ywhich is too
large to be comsistent with the MBR fluctuations . In the case of
fl,= 4  Reea0s, the growth of (E_S) is first inhibited by the large
' § baryen
-4
radiation density(Meszaroe 1974), then by the 52 effect. The fluctuation growth
3
from 2z 40 to 2 =€ is only~ 45 ; 2T 2006 in this case.
. -

£ .
The absence of the small angle ‘;:‘ fluctuations in the case of a neutrino dominated

universe, makes it a very attractive picture for galaxy formation.
GALAXY FORMATION IN HOT DM UNIVERSE

Galaxy formation in a hot DM dominated universe falls within the context of the
pancake scenario. Several calculations have been done by various authors ( Shapiro
et.al. 1983; Centrella and Melott 1983; Klypin and Shandarin 1983; Frenk et.al.1983),
taking the case of a neutrino dominated as the prototype for the universe dominated

by hot DM. The calculation involves two parts: (i) the structure which evolves
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in the neutrino dominated universe; (ii) the fragmentation and the galaxy formation.
The first part involves collisionless particle numerical simulations, of the growth
of the appropriate linear perturbation spectrum into the nonwliﬁear stage. The
second involves detailed, numerical hydrodynamical calculations of the coupled
growth of the baryon and neutrino perturbations into the non-linear stage, including
the effects of ionization, recombination, radiative and compton cooling and thermal

conduction.

Many calculations have been performed (previous references) of the 3-dimensional
collisionless, gravitational clustering of the neutrinos in the post-recombination
Friedmann universe, starting with the perturbation spectrum appropriately peaked at
wavelength A = d*v . Fig. Il shows the 2-dimensional simulation of such a calculation ¥
{Melott 1983). In the numerical simulations, the regions of high density formed a net-
work of filaments, with the highest densities occurring at the intersections (knots)

and with voids inbetween. The similarity of these features to those seen in the
observations is the most attractive feature of the hot DM. In fact, the most serious
problem of the other DM ( warm and cold) is the failure to produce this large scale
structure seen in the universe. Another attractive feature of this picture is the

advantage in explaining the important Hubble-type environment: correlations.
PROBLEMS WITH HOT DM

In spite of the attractive features, the lack of small angle —é%;‘ fluctuations,
the formation of filaments, voids, the Hubble-type environment correlations, a number

of serious problems with the hot DM have emerged in the recent studies.

(1) Studies of non-linear. . clustering ( A <40 HMPC ) (S.D.M.White et. al. 1983)
havyéshown that the supercluster collapse must have occurred rgcently, at redshift
EESC 2 & ' This was also consistent with a study of streaming velocities in the
linear regime( A > 40 M®C ) yhich indicated that 84, £ ©.5 ( Kaiser 1983).
However, the best limits on galaxy ages from globular clusters, plus the possible
association of QS0Os with galactic nuclei and their abundances at > 2 , indicates
that galaxy formation took place before = =3 . This is inconsistent with the
neutrino picture for galaxy formation, in which superclusters form before galaxies:
gsc > %gg,{uies
(2) A second serious problem is the ratio of the total tc baryonic matter, r‘/ML s
on large and small scales. Large clusters( /U:"‘r Me ) have higher internal velocity="
dispersions than galaxies. Galaxies fragmenting within clusters will therefore be -

able to capture only the more slowly moving hot DM particles, and the DM halos
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around galaxies will conseqguently be reduced in mass. l-dimensional numerical simu-
lations predict that the ratio ’4A4& ~ S times larger for clusters than for galaxies
(~ 40" Mg ) ( Bond et.al. 1983), since the larger clusters with their higher
escape velocities are able to trap a considerably larger fraction of the hot DM
particles. While there is evidence that the ?1/L ratic increases with scale
there is also evidence that the more meaningful ratio of total to luminous mass
rﬂ/ﬁ4wm remains constant, from large clusters through groups of galaxies, binary
galaxies and ordinary spirals. See fig. [2.and table 2 (Faber 1983). The r1/51bm
of rich clusters is similar to that of galaxies including their massive halos, even
though '4/L foftclusters is larger. This is mainly because of the different stellar
populations in the ellipticals in rich clusters and the large contribution of X-ray
emitting gas to r‘buh. The table suggests that there is no significant evidence for
an increase in P\/Fﬂh from galaxieé to clusters , in conflict with the numerical

results.

(3) A serious blow to the hot DM picture comes from the recent theoretical arguments
(Lin and Faber 1983) and observational evidence from the velocity dispersion data for
Draco, Carina and Ursa Minor ( Aaronson 1983; Lin and Faber 1983) that dwarf
spheroidal galaxies hava substantial amounts of dark matter. If this dark matter’
consists of weakly interacting particles of rest mass mn, , then Liouville's theorem

implies that ( Tremaine and Gunn 1979, Peebles 1982)

2 U 4 K¢ %* v
o w) (__.___.> e 3.
my 74 ( & e (- 26)

where &= 1is the 3-d velocity dispersion of the particles and ¢ 1is the core-
radius of the particle distribution. For Draco, with 6™~ AC Wm&é‘and if one takes for

¥e the observed tidal radius of 500 pc { Hodge 1971), we get

my > 240 eV - (5.2?)

A similar argument for spiral galaxies ( our galaxy) would imply ﬂwv‘>%°*g This phase
space constraint puts another limit to the allcowed range of masses for the dark

matter.

Aaronson (1983}, using a smaller value of ro for Draco, finds nnv:;53otv , which is
certainly incompatible with the cosmological constraint given by eguation 3.43.
However, the present velocity dispersion estimates are uncertain and further observat-

ions are needed to confirm the result,;before a serious dilemma is assumed to exist for
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Table 1

The Baric of Total to B&r);onic Matter on Various Mass Sc&ln‘)
Total-to-
S¢ructure Mass Scale Mass-to-Light | Baryomic Msse | I Hot Gas
M /L M/M
B
Large cluscers 1043 L 316840 8.621.1 8
Small E-dominated 13
gToups 5 % 10 8326 5,420.5 61
Small spirsl-dominsted <
groups Zx 10” 60*’? 1&.2“36 03
-18 -6
Entire Milky Way 1012 50 14 :H

a} Detsils to appear in Blumenthal, G.R,, Faber, S.M., Primack, J., and Rees, K.,
in preparatios, 1984.
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the hot DM pancake scenaric. But the phase-space constraints and the indications of
DM in dwarf spheroidals, led several authors( Sciama 1982; Cabbibo et.al. 1881) to
consider photinos, the spin % supersymmetric partners of the photons{m > Spo eV )
to be the dominant matter inm the universe. They come under the category of warm

DM, which will be discussed next.

Besides these problems with the hot DM, the picture also needs a well-defined theory
for the fragmentation process of the protoclusters, which at present, is not very

clear.

3.3 GALAXY FORMATION WITH WARM DM

Warm dark matter consists of particles which interact more weakly than the hot DM
and decouple at temperatures Tud >>ffga while still relativistic. Because of their
early decoupling, their number density is not increased by particle annihilation at
temperatures below .Tin { subscript "w " standing for warm DM particles).

One suggestion for a warm DM particle was the ~ 1 KeV gravitino, the spin 3/,
supersymmetric partner of the graviton (Pages and Primack 1982),but recent changes
in the scale of supersymmeiry brea king (Savoy 1983) now predicts a mass of AOzGey
for the gravitino, which deoes not make it a candidate for warm DM. Another suggestion
for a warm DM particle was the photino,the spin % supérsymmetryc partner of the
photon (Sciama 1983), with massnﬂ§ greater than 500 eV and Twd ~ 200 MeV.

But with the current medels of supersymmetry and the requirement that the photinos
almost all annihilate (Weinberg 1983; Goldberg 1983),so that they do not contribute
too much to the mass density,we have m"t“i > 2 GeV (ref.as before).

At present there is no suitable warm DM particle,unlike hot and cold cases;but they

cannot be pkegcluded.

With the standard assumpion of entropy conservation per comoving veolume,the number
density Mw, of warm particles today,and their mass mig, can be calculated in
terms of the effective number of helicity states of interacting bosons (B) and

fermions (F) (Steigman 1876; Primak 1983)
- 3
% (TW&\ = Qs = % Br <3’28/

The current standard model of particle physics ,together with the simplest grand

2 2
unified theories (minimal SU{S) },predict %£7§A'4° for ' between 40 GeV
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44
and T&m” 40 Gev,with only a factor unity increase in %*(T) from

supersymmetric particles. Then for -ng in the range 1 GeV - AO‘“’ GeV,

we have (Primak 1983)

“ure -3

&

114

g%wm
ﬁﬁﬁx = P 52.%1 %!;4 P(e\/

where %av is the number ofwhelicity states.

Unlike the hot case,the transition from relativistic to non-relativistic particle

velocities for these warm particles occur significantly earlier than the transi-

tion from radiation to latter doMimation in the universe. Therfore the Jeans mass
Vis“‘ for these particles is significantly smaller than 'ab4qﬂ . The Jeans

mass 'MSW for particles of masses My, ~ A KeV is

42

-2
M:;w ~ A0 M ® (_Q_h ) << Meq
which the scale of a large galaxy (see fig. %8 ).

THE FLUCTUATION SPECTRUM

The fluctuation spectrum which results from the effects of damping on the prifmor-:
dial spectrum in the case of warm dark matter is different from the hot DM case.
Once again ,all the power M <& F\S‘u is damped away and as before the primor-
dial shape is

— (m+3) 4
E%Si < ™M ¢ /% for Mo rﬁeq (5;23)

The scales which come across the horizon between M'Sw and Ma? are however supres-
sed by radiation,which still dominates,unlike in the hot DM,where P‘B P fﬁga .
A

As a result,the spectrum is flattened relative to eqn.(3~29) to

..(n3-»3)
2 e M /¢ (M5~M5¢~M°‘i) (z.30)

‘ »
Where m 2 M~33 ., This means that the warm DM has a power over an increased range
44 A< ) .
of masses, roughly from 40 Me to 40 P‘@ . The first non-linear structure

to form in the case of warm DM is roughly of order of galaxy scales,and galaxy

formation here proceeds according to the hierarchical scenario.
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PROBLEMS WITH WARM DM

Since galaxies collapse first,the problem of galaxies forming very late does not
come up in the warm DM case. Galaxies also have not to accrete their dark halos
via fragmentation within a larger structure,so no trend is expected in the total
to baricn ratio bﬁ/p1h above 40" Pﬂ@,in agreement with the 54/%45 shown in
table 3 . However,warm DM faces two problems,one on large scales and one on
small scales. On large scales,the question is whether the model can account for the
observed network of filaments and voids seen in the universe. Detailed N-body
simalations ( N 4»406 ) may be needed to answer this. The same difficulty comes

in the case of cold DM alsoc,as we shall see later. On small scales,dwarf galaxies
pose a problem to the warm DM picture. The phase constraint here is satisfied
unlike in the hot DM case,since these particles are of larger masses (ﬂ“wv“"ﬁev),
but the problem here is about the formatlon of dwarf galaxies. Warm DM damps out
fluctuations below quw (~ AG P1@) and dwarf galaxies with M 40 fkpan only
form via fragmentation ,following the collapse of a protogalaxy. The problem here
is that dwarf galaxies ,having small escape velccities, as A0 K - sec™” .,can capture
only a small fraction of the warm DM particles,whose typical velocity dispersion
must be ~ 400 Km.sec” ,typical of ordinary spiral galaxies. Thus,we expect M/M fom
for dwarf galaxies to be much smaller than for galaxies,but this is not so,as seen

from the fig. ‘2{

The detailed theory needed for fragmentation process is applicable here too,since

some process of fragmentation would be needed to form small galaxies. Though some
of the problems facded with hot DM are resolved here ,there are difficulties in the
warm DM scenario too. And of course, right now there is no suitable candidate

for warm DM.

3.4 GALAXY FORMATION WITH COLD DM

There are some collisionless particles which decouple when they are non-relativistic.
These particles are either more massive than the warm DM particles(m, > 4 KeV )

or are 'cold" in the sense of having very little velocity :rdispersion at all times.
An example of the former is the photino mentioned earlier with.ﬂni.~r2;eev. An
example of a " cold" particle having little velocity dispersion is the axion, a

spin zero fseudo-Goldstone boson which has been proposed to explain the absence of
CP violation in strong interactions within the context of quantum chromodynamics (QCD)

(Peccei and Quinn 1977; Weinberg 1978; Wilczek 1978). The constraints from the
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eritical density ?a (Preskill et.al. 1983) and the longevity of helium burning

stars (Fukugita et.al. 1982) put limits on the mass of the axion Mg , as
-5 -
A0 eV £ mg < 40 eV
-5
For mng =z 40 eV , the axions today would be gravitationally dominant. A third

cold DM candidate is black holes of mass 407" Mo £ MB& £ i0¢ Me
the lower limit is implied by the non-observation of E ~-rays from black hole decay
by Hawking radiation and the upper limit is required to avoid disruption of
galactic disks and star clusters( Carr 1978; Freece 1983). Another exotic cold DM
candidate is the gquark nugget (Witten 1984). Thereis no shortage of cold DM

candidates, though till now none have been proved to exist in nature.
THE FLUCTUATION SPECTRUM FOR COLD DM

The growth of cold DM fluctuations was first calculated numerically by Peebles(1982)
who included cold DM , photons, baryons, and electrons and ignored neutrinos. He

calculated the fluctuation spectra and gave it the analytic form{Peebles 1982)

-2

{gK‘z_-, m"[“,ouc +;p|<“;i (3.34)

2
where ol = A0.F MPC j {% = 8.4 MPC
Blumenthal and Primack (1983,1984) extended these numerical calculations to include
three massless neutrino species and found similar results as Peebles.

&M

It is convenient to represent the cold DM spectra in another form, , which

represents the rms mass fluctuation within a randomly placed sphere of radius ii
: ( Peebles 1982). Peebles (1984) gives this in terms of“? (r) , the two-point

correlation function

2
2
_.%.Ei—- = %(F) d"r
(| re
¥
Fig. 1% shows the results for éﬁﬁ— , normalized in such a way that
—A
é—ﬂ- = 4 at R = h MPC
M
This normalization agrees with the rms fluctuation 3%?' in the counts of bright
-4
galaxies at R = 8 h HPC (Peebles 1980; Davis and Peebles 1983). We see from the
%
figure that at W < 0.4 HPc | % varies slowly as Elmﬁ 'Ri .
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Figure 4. The logarithm of the r.m.s. mass fluctuations (1og, SM/M)
within 2 randomly placed sphere of radius R in & cold DM universe.
The curve is normalized at R = BMpC and assumes an initial
Zeldovich {n = 1) fluctuation spectrum.
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Y 52

M 46 R g 30 ™Mpe ) % varies rcughhﬂ as R

This applies even in the non-linear regime %£i~>> 4 at small R.

Fluctuations having masses M« Pﬁeﬁ cross the horizon when the universge is still
radiation dominated(%ﬁ>’%gq ). Aftér such fluctuations cross the horizon, the
neutrino components of the perturbations dissipate by free-st reaming , and the
photon and charged particle perturbations oscillate as an acoustic wave, whose amp-
litude is ultimately damped by photon diffusion( Silk damping). As a result, the
growth of cold DM fluctuations Sc decreases and consequently SC begins to
grow very slowly until the universe becomes cold DM dominated at Erei after

which Sc, grow according to the usual law

4

(B8) =5 = mo=en) G2

S

—4
until 2 o $2 . This inhibition of the growth of S; , for fluctuation which
enter the horizon at E-'>'%uﬁ before the matter dominated era is called

"stagspansion'{ Primack and Blumenthal 1983).

Since fluctuations of M « fie? grow little during stagspansion and since fluctuations
on all scales grow at essentially the same rate after the universe becomes matter
dominated,an initial m=4 Zeldovich spectrum evolves to a much flatter spectrum
for M < H?' See Fig.is . Shown in the figure are also fluctuation spectra for hot
DM case and white noise fluctuations ( M =0 ) in an isothermal scenario. The next

figure( V%) gives the power spectra for all three DM's, hot, warm and cold.

GALAXY FORMATION WITH COLD DM

s $b

A
are damped for M <'H5ﬁk’ after recombination the baryons fall into the cold DM

Though before recombinatien the baryon fluctuations ( 55'& ) do not grow and
perturbations and G, = §_ (Doroshkevich et.al. 1980). This occurs when the

baryonic fluctuation mass exceeds the baryonic Jeans mass ™

Sk

32
é -4
¥

where 'Fg is the temperature of the baryon gas and _rg is the photon temperature.
On scales smaller than this, the pressure of the baryonic gas prevents growth from

developing g b to be the same as ®c .

When the fluctuation becomes Eig.nai for any mass scale M , non-linear
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gravitational effects become important. Then the fluctuation separates from the

Hubble expansion, reaches a maximum radius and begins to contract. During this

contraction, violent relaxation due to the rapidly varying gravitational field

converts enough potential energy into kinetic energy for the virial relation
LPEY> = —2LKE™>

to be satisfied( Sargent et.al. 1981; Gott 1977). After viriglization, the mean

density within a fluctuation is roughly eight times the density corresponding

to the maximum radius of expansion{ Peebles 1980).

Fig.lg;shows that the cold DM fluctuation spectrum is a decreasing function of

FQ; smaller mass scales become non-linear and collapse first at earlier times than
large mass fluctuations. Although small mass fluctuations are the first to go
non-linear, we know that pressure gffects prevent baryons from falling into such
cold DM fluctuations if M« '4SJ . More importantly,even for M >f1&5 . the baryons
are not able to contract further unless they cool by emitting radiation. Without
such mass sagregation between baryons and cold DM, the resulting structures will be
disrupted by virialization as fluctuations that contain them go: non-linear

( White and Rees 1978).

Galaxy formation here proceeds accbrding to the hierarchical scenario, since small
scale structures form first. Then these cluster gravitationally to form larger
structures. This hierarchical clustering of smaller systems into larger bound systems
begins at the baryon Jeans mass ?1&L , and continues until the present time. It is
helpful to visualize the clustering process by means of a diagram that follows the
gradual evolution in the properties of collapsed remnants as clustering evolves.

This is shown in the figure( {§ ), where the baryonic number density My is
plotted versus virial temperature T for spherically symmetric protocondensations
resulting from m=4 Zeldovich spectrumof cold DM fluctuations. The curves in the
figure assume that the protocondensations have already virialized but that baryons

have not yet cooled and condensed. The curves labeled {g assume that for each
&M

mass scale, VRl has the appropriate normalized rms value; 2 € corresponds to
fluctuations %5& twice as great and so on. Mass labels on the diagonal lines

are total values and include DM. The clustering process executes a locus in the
(4”3, T ) plane, the shape of which is controlled by the form of the fluctuation
spectrum. The heavy curve in the figureis the locus corresponding to an average
perturbation at amplitude < §£% > q» [ . Alsc shown in the figure are the
present positions of clusters and groups of galaxies, including dwarf spheroidals.

It is seen in the figure that the different types of galaxies ( the Hubble sequence}é
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are all spread out.

-

The choice of (M , T ) coordinates allows us to identify those structures in which

dissipation is important. A good criterion for dissipation ( Rees and Ostriker 1977)

is to compare the gas-cooling timescale, flum! , to the collapse timescale,
t:‘)ﬂxi R/ﬁ ‘
1f %;mﬂ “f34w~ , baryonic collapse is not halted by internal pressures and the

baryonic component collapses dissipatively. The areas .&mi 4{:4’!\ and  t.l >t“‘)"

are shown in the figure.

The figure shows that dissipation is important for galaxies( they lie in the region
tm& 4.&&,. ). All medium and large-sized galaxies lie in this region. Groups and
clusters of galaxies lie in the region teosl > {37,, where cooling is unimportant
{Faber 1982; Silk 1982). An important feature in the figure is the marked separation
by a factor ~~ AOB in the baryonic density between galaxies on one hand and groups
and clusters on the other. This separation can be taken as a strong evidence for ¢
dissipation on the scale of galaxies but not in clusters . This gap would
disappear if total rather than baryonic density had been plotted. Then galaxies
would move to lower densities by a factor ~ 400 as the dark halos are more

diffuse than the luminous portions by about this factor, and groups and clusters
would move to higher densities by a factor ~ 40 . The apparent gap would then
vanish and the clustering process would exhibit an unbroken continuum on all mass

scales, as it should in a dissipationless hierarchical clustering.

The position, width and shape of the cold DM clustering locus seems a fair match

tc the real structures in the universe from 406-— 45“39. The figure also suggests
naively that there is an upper bound for galactic masses of M < ,“leia , where the
baryonic cooling time begins to exceed the dynamical time. For the smallest galaxiés ,
collisional excitation of atomic hydrogen provides a lower limit P%;>4OSHQ,
corresponding to virialized baryonic temperature ‘Tg ;;‘ﬁD%K. This range 43%55 M.«
€4Cf;b, encompasses virtually all mass that is observed to comprise galaxies. For
protogalaxies in this mass range, the velocity dispersion of the baryons will
initially remain constant(T =z comst ) as they condense within a gravitational potential

of the virialized, presumably isothermal, DM halo.

3
The collapse of fluctuations with masses ! > 40 t4® leads to clusters cf galaxies

in this picture. In this model, there is a natural mass scale( Blumenthal et.al. 1984)

2z [4
H‘S\; o~ MGG-‘,‘b ( Tviréni /40$k§ " AO HQ (3'34")
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where Pﬂadﬁ is the baryonic mass within a galaxy; Fﬁl,k is the Jeans mass of a

cloud at 40“’K in pressure balance with protogalactic gas at the virial temperature.

During the dissiﬁation phase of galaxy formation, the gas might be likely to have

a two-phase structure with a hot phase at Tvina! and a cool phase at uto‘bf, in

which case subcondensations of mass fﬁ%,b would be expected with density constant
csj}wd/gbk . These can be identified with protoglcbhbular clusters. More about

this will be given in the next chapter, where we shall discuss the formation of these

structures in detail and discuss their role in explaining the formation of

structure in the universe.
PROBLEMS WITH COLD DM

Formations of galaxies with cold DM dominating the universe,;is an attractive
scenario but it has some difficulties which are yet to be solved. Dwarf galaxies
with heavy DM halos are less of a problem here but there is the problem of sufficient
cooling of baryons and to avoid disruption. The Hubble type versus environment
correlation cannot be answered as naturally as in the hot DM case, since it is in-
herently plausible there that events during cluster collapse might affect the
fragmentation process within a cluster. In the hierarchical scenarioc, galaxies form
before clusters without anyforeknowledge of their environment. However work is
being done in this direction( Blumenthal et. ak. 1984) .Peebles{1984] examined
statistical correlations between local density peaks and surrcunding density
enhancements in the cold DM picture and found dense galaxies to lie preferentially
in dense clusters. Ellipticals are found in denser regions and irregulars and
spirals are found in sparse regions. The figure ( 18 ) shows that ellipticals are
denser than spirals or irregulars and Peebles' :suggestion se€ms to be verified.
However, Peebles strictly refers to the density and distribution of DM whereas the
density in the figure( 1€) refers to baryons. There is a need to link baryonic

density of galaxies to the densities of their dark halos in this picture.

A second problem inveolves the masses of galaxies. In the cold DM picture, these

are determined by the rate at which the clustering proceeds relative to the rate

at which the baryonic collisional cross-sections of galaxies shrink via dissipation.
A complete theory for galaxy masses thus depends on detailed understanding of the

dissipation processes, which is still not clearly known( Faber 1984} .

The most serious challenge for cold DM arises on very large scales, where galaxies
are observed to form filamentary superclusters with large voids between them

(Oort 1983). Numerical simulation of clustering do seem to develop sheets and
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filaments( Melott et.al.1983), but poses some problems matching with the reazl

universe.

In order to preserve the attractive features of hot DM universe{ large scale
structures) and cold DM { small scales), it is worth considering a scenaric where
the universe is dominated by two kinds of particles, & hot DM particle and a cold DM
particle. Work on hot DM particles (neutrinos m ~%d) and warm DM particles

( photinos ~ 4 KeV) together present in the universe has been done by

Valdernini et. al. (1983, 1584).
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CHAPTER FOUR
THE GLOBULAR CLUSTERS

Globular clusters are the oldest systems in our galaxy. Because of their great
age, the study of the formation of globular clusters is intimatly involved with
cosmology. The formation of these cluster systems with masses - AC)6P4@ inside
galaxies,iS‘still an unsolved problem. It was generally believed that the globular

clusters in our galaxies formed through contraction after the galaxy has come

into existence. But, because the Jeans mass just after recombination is SO near the
observed mass of globular clusters, many investigators argued that the growing
condensations at the epoch of recombination should be associated with the formation

of globular clusters.

Impressed by the apparent uniformity of globular cluster luminosities, both
throughout our galaxy and in other galaxies, Peebles and Dicke( 1968) proposed
that globular clusters originated as gravitationally bound gas clouds pbefore the
galaxies have formed. In their model, the first bound systems to have formed in
the expanding universe were gas clouds with mass and shape quite similar to the
globular cluster systems. Prior to the recombination epoch, radiation drag on the
matter prevents the growth of irregularities and at recombination the Jeans mass is
~ 405 ?1@ . Since this is of the order of a globular cluster mass, Peebles and
Dicke proposed that globular clusters came into existence before galaxies did.
They also suggested that the formation of larger systems in the universe takes
place by the merging of these protoglobular clusters. Van den Berg ( 1975) has
pointed out, however, that globular clusters do seem to differ systematically in
certain traits from one galaxy to another, which may argue for a postgalaxy
formation for the globular clusters. He pointed out that the Peebles and Dicke
scenario leaves a number of observational‘questiongzmﬁg;g?.by studying the various
properties exhibited by these systems, we might get an idea about the formation of
globular clusters. And, as Peebles and Ricke suggested, if they are really
cosmological objects, then from the studies of globular clusters, we might have some
clues about the formation of structures in the universe, which as we have seen in
the last chapter, is still an unsolved problem. Let us consider the formation of
these objects in the spirit of the arguments given in the last chapter and see
whether the results are consistent with the observed properties of these cluster

systems.
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DARK MATTER AND GLOBULAR CLUSTERS

In a universe dominated by weakly interacting particles with negligible primeval
pressure, the cold DM , assuming adiabatic fluctuations, we find that there exists

a characteristic mass scale for baryens

€
which can be identified with the masses of globular clusters. The power spectrum
for the cold DM , 1?c (Peebles 1982), is given by the expression ( see eqn. 3&&0
2 Kz)z
Po = l8ul™ w k(aanksp (4.2)
where of = 40.% MPC - = Bk MPC *

and K is the comoving wave number{ K = ﬂ-i—?f—(ﬁ

) expressed in units of
radians per MP¢ at the present epoch. At small K , ’Pc_ e« ¥, which is the
initial primeval Zeldovich spectrum with m=4 . At short wavelengths the
spectrum is suppressed by radiation pressure, so FL - K”—s at large K .

The first generation of objects form at % ~ 400 in this scenario. At 2 . 460
hydrogen decoupled from the radiation and thus relaxed to the same distribution as
the cold DM longward of the hydrogen Jeans length. The gas pressure suppresses
density fluctuations on smaller scales. The resulting spectrum for the hydrogen

was calculated by Peebles (1982) and is given by the expression

? (‘) - & 2
H = .,_Q____LL ) P=2%€6 . 40 Mec (Q.?a}
@+ p ) ’
-3
At  comoving wavelengths ~ 40 KPC o ., 4 Mpe , Pu o= K , S0 the
contribution to the varianceof © § per octave of wavelength is constant. The

spectrum is normalized by fitting to the observed large scale fluctuation in

galaxy counts ( see fig. b ) as shown before.

The sizes of the smallest structures are fixed by the short wavelength cutoff of the
ﬁ?a ok KI“S spectrum. For the hydrogen distribution this cutoff is fixed by
the Jeans length and one finds that the hydrogeh mass in one of these gas clouds

is ( Peebles 1984)

ML o~ box 40° Mo (e4)
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As noted by Peebles and Dicke, this is coincident to the mass of a globular cluster.
The clouds also tend to appear in asscociations, an unusually dense cloud tending

to be surrounded by other dense clouds. The characteristic mass of an association-
is fixed by the break in the spectrum (FL Q‘) . This mass might be associated
with a galaxy mass (Peebles 1982). Thus a universe dominated by cold DM yields two
characteristic scales, one of which might be identified with galaxies, and the

other with globular clusters.

The quantitative analysis of the hydrogen mass distribution implied by the spectrum
?%g@‘y in the model is given by considering a fractional mass excess A within

a distance ¥ of a’peak of the baryon mass density S gh; (Peebles 1984)

A

b4 9L /Cep v (e-5)

v

If S ?L is a random gaussian process the probability distribution of A from the
spectrum 'P“ (k) can be derived.

extremum
Fig. |9 shows the behaviour of A around a two standard deviation of SEL
The central curve is the mean value of A | The top and bottom curves are shifted
from the mean by the rms fluctuation of A around the mean . The horizontal axis
is the comoving distance ¥ from the extremum of SQL. The top scale is the

mean baryon mass ™M within a sphere of radius .

One sees from the figure that there is a considerable spread in the mass excess
found around a peak in the baryon mass density. One also sees that the denser gas
clouds reach a density contrast A ~ A and start to break away from the genefal
expansion at a redshift B ~ 60, This is the first generation of hydrogen objects.
Around such a dense spot there is a net mass excess (A»© ) that tends to extend

P
to My~ 40 Mg, but with a considerable scatter.

A fluctuation 609&%«&)”‘nf4o~ in A produces a region with baryon mass.fﬁk
A4
,vd0§@, Thig tends to form a bound system bywrefto. A fluctuation less than [e
g
gives a mass ~ 40 Pﬁ@ . Thus at % ~ 40 the objects just forming would have

baryon masses roughly in the range observed for galaxies.

At redshift B~ 5@ | the most prominent (ze- )peaks of the hydrogen distribution
develop into a first generation of gas clouds with radii 4 K®C and baryon

6 \ . .
masses My~ 10 Mg, The temperature of the hydrogen is T 400°K ., This is close to the

background temperature because the residual ionization is high enough to allow a
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appreciable heat transfer from radiation to matter( Peebles 1968). This means that
once the gas cloud stops expanding and is supported by gas pressure, it can lose
energy, sﬁrink and heat it up. When the gas temperature reaches«néﬁ@K} the matter
gets collisionally ionised, the cloud radiates more and the central part of the clouds
tend to collapse in a free fall manner. The final structure would be a radius of

the order 20 to 30 Pc , which is not unreasonable for a globular cluster( Harris

and Racine 1979).
GLOBULAR CLUSTERS WITH MASSIVE HALOS

In the above scenario, the first hydrogen forms at 2~ $0-400 a5 gas clouds

with size ~ 4 KFC . 8ince the initial density fluctuations were supposed to be
adiabatic the cloud would be formed with comparable concentrations of hydrogen and' DM
the mass density of the DM being ~30 times larger, the net mass of the cloud is
around All&¥r4® . Since the DM is weakly interacting it is left behind when the
hydrogen cloud coctracts. This makes the final central density of the star cluster
substantially larger than the DM density. This is rather desirable because the
observed mass -to-light ratios in the coresofglobular clusters are approximately
unity. But this picture suggests that a globular cluster,like some galaxies,is

born with an extended halo of DM . There is no observational evidence that globular
clusters have massive halos but Peebles (1984) pointed out that there is not much
direct contrary evidence either.In fact, he suggested that if globular elusters

do have DM halos they might help %o account for some of the systematics of the

globular cluster properties.
TESTS FOR MASSIVE HALOS IN GLOBULAR CLUSTERS

Dwarf spheroidal galaxies are found to be dominated by DM halos( Aaronson i983;
Faber and Lin 1983). It is not unreasonable to extend this argument to globular
clusters, which are only one order of magnitude in mass smaller than the dwarf
galaxies but similar to them in most of their other properties. Since the

baryonic mass gets concentrated to the central region of the globular clusters

and the!'DM forms a halo around them, we can check if the mass-to-light ratios

in these systems increases with radius as it does in a spiral galaxy. Another

test is to see whether the line-of-sight velocity dispersion for these objects
increases with increasing radius. The observational possibilities to check for the
presence of a dark DM halo in globular clusters will be discussed later. However

it is interesting to note.that a massive halo produces an apparent tidal cutoff in
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a cluster,similar to the tidal cutoff observed in these systems. In this picture

the density of a cluster varies as
o <« (- ?/) (4. 6)

where ¢ is the gravitational potential and AY is the l-dimensional velocity

dispersion. If 4> at large radius is dominated by the DM it can sharply cut off
? . For example suppose the core radius of the dark material is much larger than

the size of the clusters.so that the DM adds a ceonstant value 9x to the netmass

density. Then the Emden's isothermal gas sphere equation becomes

L4 sraw L L s @)
2t ‘a—i da ?o
where = d7 b = a? ) Fﬁ-fa ExF(—A’)
Q’ﬁ'a?n

and go is the central mass density.

Fig. 2.0 shows the projected surface density in the model. The top curve is for P, =6.
The second curve is for an isothermal gas sphere with a homogenous dark halo with
density R, = 0:2% of the central density. The bottom curve is the ratio of the net
mass to the star mass within a sphere of radius v for the second curve. Compare
this with the figure 2{ which shows the density distribution observed in globular
clusters as calculated from their star counts (King 1966). The real clusters are
tidally limited by the parent galaxy. The limiting tidal radius of the cluster

is given by the formula
i

Re [ i 1 (6. 2)

(2 +e) Mq

i

LEFY

where ${f is the perigalacticon distance of the cluster, aw and tﬂs are the
masses of the cluster and the galaxy respectively and € is the eccentricity of the

cluster's orbit.
The density distribution seen in the figure( 2.1 ) was fitted by a formula

-5, (% - “;‘::)z (4 9)

where § is the surface density, §A is a constant and ¥ is the radius of the

cluster. Also, an empirical formula was found by King( 1962) which represents the
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density from centre to edge in globular clusiers. This is given as

4 4

[+ e T [aelrse ] ™

.

£ = k (4. 40)

where k is a constant and Ye is a scale, called the core radius. King found
that this law agrees quite satisfactorily with the observational data. He found
that the density distributions in all the glebular clusters can be represented by
this law. The shape of the density curve calculated for a globular cluster with
dark halo is similar to that of a King model. As expected the DM becomes dominant
at the effective " tidal" cutoff. However, this dark halo model is not consistent
with observaticns in the case of Oﬁega Centauri. Seitzer (1983) has found that

the line-of-sight velocity dispersion decreases with increasing radii at the

rate expected for King's model with no dark halo. Gunn and Griffin (1979) found
evidence of decreasing line-of-sight net dispersion with increasing radius in

M3 and they also obtained a satisfactory fit to the star distribution and motions
using a truncated model with an anisotropic welocity distribution and no DM.
However, it is worth emphasizing that the amisotropy of the star orbits introduces
an uncertainity into the measurement of the mass distribution (Peebles 1984). The

equation of equilibrium for a star distributicn is given by

5 (3v7) « BT v) - - (o )

where (% is the gravitational acceleration , ?@ﬁ is the mean star mass density,

Yy , Vg are the radial and azimuthal velocity dispersions respectively. If the
dilute halo of a star cluster were populated by relaxation in the core, we would
expect Ve B® Va . If Ve were roughly comstant, then because S‘Qﬂ is decreasing
appreciably more rapidly than o in thke outer envelope, egn. G&.A{)would
say that the total mass density varies as ?‘ oL r_—z. . indicating the
presence of DM. The best evidence on the behawiour of Vy comes from Cudworth's
(1979) studies of relative peculiar star motions within globular clusters/
Cudworth found that Vs in M3 , is roughly constant to ¥ ~0.25 ¥¢ , a
radius that contains 90% of the stars. Howewer, this constant Ve cannot be
taken as the evidence for DM in globular clusters because the flat shape of

observed might be a result of measuring errers at large ¥ . However, this is an

interesting test to check whether globular clusters have DM.
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A massive DM halo in globular clusters means that their net mass-to-light value is
larger. Right now, there is no direct observational evidence for this. But

Innannen et. al. (1983) found thatAa discrepancy in their calculations disappears if
they use a higher Nﬂ/f_, than the one they have taken. Innannen et.al. investigated
shapes of globular cluster orbits in our galaxy, using the tidal radii of the clusters

as probes of the galactic gravitational field at their perigalactic points.

The observational problem of measuring the tidal radius of a real cluster employs =
the run of projected star density with radius from the cluster centre. Typically, the
cluster contribution to the projected density of stars is overwhelmed by random
fluctuations in the background density before even half of the apparent tidal

radius can be reached( King et.al. 1968). But within this relatively small region

of the cluster, tidal distortion of the cluster shape is small/ For this reason,

the observed projected demsity profile of a cluster is then invariably fitted with
& spherical model, as a means,extrapclating the observed profile from the inner

parts of the cluster out to a radius at which the density vanishes according to the

cluster model.Thus , the " measured" tidal ‘rddii may not always be without error.

Innannen et.al. assumed a spherically symmetric mass distribution model for the
galaxy with the mass M Gi) increasing linearly with R

MER) «R G+ 42)
in their calculation. The theoretical expression for the tidal radii for the

globular clusters in our galaxy calculated by them was

- i A3

o= Re[- b ][] G- )

where E(f is the perigalactic distance of the globular cluster, A is the
semi-major axis ofl the orbit. aw , *43 are the masses of the globular cluster and

the galaxy respectively. For a point mass galaxy, this expression reduces to

1/~

‘ T o . ~{(4- R
e nleEm ] e e

which is similar to the one derived by King (see eqn.4.%) except for the factor 2.

This difference arises from the elongation of the limiting tidal surface along

the line between the cluster centre and the galactic centre (Keenan 1981). King's
¥4 value actually refers to the distance along this axis from the cluster

centre to the analogue of the inner lagrangian point in the elliptic restricted
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three-body problem for a point-mass gabaxy.

In order to relate the theoretical radii of eqn.éhJﬁto the actual observational data,

Innannen et.al. found that the value of r% needed was

¥
o (ko) = rerd (. 45)
24 38
: ) i
where Ve is the heliocentric distance of the cluster inKF¢ and K{: is its

observed angular tidal radius in arc minutes.

f
The cluster mass o they had, was obtained from its visual mass-~to-light ratioc,

””/e‘ , through
= (nn ) L, = (o
£ /vy £y

where My is the visual integrated absolute magnitude of the cluster. Using the

ok (M@ — M)
) A0 (4.46)

Harris and Racine data (1979) they found ,

<”“/ﬂ)v = 4.2 *o.a @ . 47)

This G*yi}v was assumed to be the same on average for clusters everywhere in the
galactic halo. Real cluster-to-~cluster differences might exist but the mean value
might be approximately given by(ﬁ-d}). The cluster perigalactic distances T{f

were determined by them as follows: using eqns.@LMz},@uu}and@q4¢), they found that

the cluster mean density can be written as

. = 2 24 [4__ &.(‘R?/A)J

& rt_’ 46T

(. a8)

4
z
R
i
This -§; can be written directly in terms of observational quantities as
<

-3

/
?‘L = E%F-(5§}§v A0

(& . 43)

oL M@ - w1 e r&’
( 3438 )

But eqn. &+4% has two unknown quantities A and Rf . Fortunately, for objects

orbiting in logarithmic potential the time-averaged mean of ,QM[ R?/ Rﬁ)l

RN T NN (AR

isjust given by



Thus, by substituting the presently observed galactocentric distance, R .
of each cluster for A in eqn.@uqu and multiplying both sides of this equation by
F{i » one gets a transcendental equation for an unbiased estimate of<;RP/R>in

terms of §E RF.

Using this, Innannen et.al. derived the perigalactic distances for 66 clusters in our
palaxy as functions of their present galactocentric distances. A histogram of <TRE/R b
distribution is shown in the fig.(22). But the theoretical distribution curve used

in the figure differs from the distribution:of perigalactic radii derived from the
observed cluster radii. The perigalactic distance for all clusters combined from

observations is given by
({og(RF/R) >'¢.ﬂ,, = -0, A0 hy c.023

The theoretical value derived by Innannen et. al. was
<l°3(R?/R)5W = —-©0.034 t 0.028

To vremove this discrepancy, Innannen et.al. found that the mass-to-light ratios
have to be increased by a factor 2 to 3 times more than the one they used in the
calculation ( eqn.{ﬁnl?)). Peebles 1984) suggests that this can be considered as

evicdence for dark halos in globular clusters.
If there is a dark halo in globular clusters, it might act as a trap for high velocity

found arocund Tmega Centauri { Seitzer 1983) mayv be expl=zined by this. But as pointed
out before Omega Centauri shows no evidence for a halo. In fact, it gives evidence -
against a dark halo because it shows a decreasing velocity dispersion with increasing

radius. Maybe detailed studies on Omega Centauri are needed to resolve this prchblem,

Moreover. if a cluster has a dark halo whose radial cutoff in star density is due

to the halo rather than a tidal effect, evaporation of stars would be strongly supp-
ressed and the core collapse might be prevented. The core collapse is a maior problem
in globular clusters. Numerical studies have indicated core collapse to be common

in globular clusters but none have been observed.
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The core collapse problem would not arise for globular clusters formed with a

dark halo.

if globular clusters are born with massive halos, it might play an interesting role
in the origin of the heavy elements in the cluster stars. In the present picture,
protoglobular clusters are the first generation, so the keavy elements must originate
by processing stars within the cloud. The dark halo would increase the binding energy
of the gas cloud, making it more likely to survive the supernovae from early star
generations. Furthermore, the binding energy is highest in the earliest gas clouds
and these tend to appear in associations in the densest parts of the most massive
protogalaxies. It therefore seems reasonable to speculate that the final heavy
element abundances in the cluster is statistically correlated with the density of
the halo, because the higher the binding energy the greater the probability that
the cloud can survive one or more supernovae and so accumulate heavy elements.
Maybe, this can account for the correlation of heavy element abundance with

galactocentric distance observed for globular clusters ( Harris and Canturna 1979).

Another important point that can be solved in this picture is the high abundance
of globular clusters found in elliptical galaxies. Harris and Racine (1979)
estimated the total number of globular clusters in a sample of elliptical and
spiral galaxies. This total number was derived via the luminosity function for
globular clusters, which they find to be fairly uniform from galaxy to galaxy.
For most ellipticals, the total number is closely proportional to the integrated
luminosity of the galaxy. The spiral galaxies appear to have fewer clusters than

do the ellipticals.

Van den Bergh (1982) has also shown that there is a relatively high abundance $
of globular clusters per unit spheroidal luminosity in M87 and other first-ranked
galaxies. If the formation of elliptical systems in the universe was by merging

then it would be difficult to explain this high S .

Toomre (1977) pointed out that there at least 11 strongly interacting pairs of
galaxies among 4000 NGC galaxies. Adopting a uniform rate of mergers, a merger
ti&e—scale of ~ ?'xias yr. and a Hubble time of 4% ‘403 yrs. we get a total of

~ 250  merged galaxies among objects in the NGC. Toomre suggests that if the few
mergers we see today are just the statistical drags of a once common process,

then the actual number of merger remnants might be actually as high as 750, which is

~ 49 % of all NGC galaxies. This value is reasonably close to the value of 44 %
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ellipticals found among the Shapley-~Ames galaxies ( Sandage and Tamann 1981). This
approximate numerical coincidence and computer calculations describing collisions
between n-body systems, suggest that ellipticals might have been formed by merging
of spiral galaxies. We can check this by studying the globular cluster abundance

in galaxies,

Most globular clusters are tightly bound objects that will be able to survive the
merger of two ancestral galaxies. N-body simulations ( Gerhard 1981) have shown

that few globular clusters would escape during a merger. Therefore it follows

that the specific globular cluster frequency & should be the same in spirals as in
elliptical galaxies formed by'merging. But this is not what the observations indicate;
the frequency S in spiral galaxies is an order of magnitude lower than that in ell-
ipticals. This suggests that elliptical galaxies cannot have formed by mergers of
spirals,and galaxies with large S must have been born that way. In the present -
scenariocsthat could come about because the most massive protogalaxies would tend to
have the greatest initial density contrast and so to have the most durable globular
clusters. This scenario for the formation of globular clusters in galaxies is

promising and further work has to be done in order to prove or disprove it.

The studies of globular clusters in galaxies give information about the formation

of structure in the universe. In a cold DM dominated universe, globular clusters

are the first bound objects to form . But these globular clusters are born with a halo
of cold DM around them. Right now, there is no strong observational evidence for
globular clusters to have massive halos, but as we have seen, 1if these halos exist,
they might actually account for the cbserved globular cluster systematics. Moreover,
if halos are present in globular clusters, it might be an evidence for the existence
cf cold DM in the univefse. A major concern, whether a hierarchical or a pancake
model for clustering in the universe is correct, might also be solved from the
studies of globular clusters. If giobular clusters have formed as suggested, we then
have evidence for hierarchical clustering in the universe. This weuld be-an .important

step forward in our-understanding of the formation of structure in the universe.
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