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Introduction

Respons of a medium built up of charged particles to a weak external
scalar potential can be described with the aid of a so called longi-
tudinal dielectric function ( or rather iverse of it ). This function
is non-local in space and time,and gives the following relation be-

ext
tween external potential E&qg)&nd the total screened potenfzal\/€ %)

ext

AGHERE: g«ﬁ AREIIVZER -1

=3 '
where M%iﬁb is equal to the sum of\f14+) and 5&%& f) -a potential

due to rearrangements of particles of medium

Because of the homogeneity of the system with respect to transla-

tions in time, the dielectric function depends on the difference

! . . . .
t -4 .If a similar homogeneity with respect to space co-ordinates

were, the dielectric function would depend as well on the difference
- =/

T-1

representation:

;and the relation 1 -4 would have a simple form in the fourier

\/ta? w) = €£(5,w) \Vars (3.0) 1-3

In what follows we shall deal only with the electronic longitudinal
dielectric function in c¢rystals ( more precisely - in semiconductors)
trating icns as rigidly staying in their positions in the lattice.

Such a system of electrons instead of being fully homogeneous in space,
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is invariant only with respect to discrete translations forming
translation group of a given crystal. This fact reflects itself
in the way the relation I-~4 can be written in fourier representa-

tion:

ext _ —
\/(%4- w) é—(ﬁi“'G C‘j*G £J>V(7+G w) I-4
=1
where i is limited to be inside the Brillouin zone andggpij are
reciprocal lattice vectors. The object 6{%+{;‘5£’+ny&) is called
the Dielectric Matrix ( DM ). The matrix indices are reciprocal

lattice vectors.

It follows from the very efinition of DM that it is a fundamental
quantity in solid state physics, knowledge of which is very important
for &ﬂdersfanding the physics offcrystals. In different classes of
phenomena however, and according to our need of accuracy, different
levels of sophistication in the application of DM are used. There is
a class of phencomena (optical mainly ), where sb called dynamic die-
lectrié function ({E‘:O, é‘t:é':O) € =€(w)),if not only dielectric
constant, is sufficient. On the other hand, if the purturbing poten-
tial doesn't depend on time, we need only to know the static DM
{&@%Qﬁééwwzo)EEég§+éf§*§ﬁ. For a need of some applications (in me-
tals mostly ), it is sufficient to have only diagonal part of DM,

as if the system was homogeneous. There are some phenomena however,
where the knowledge of full DM is necessary, and the diagonal approx-
imation doesn't work at all. The most striking example are phonon
calculations in insulators and semiconductorsqd)
Since first principles calculations of DM are extremely difficult,

a number of models of DM appeared during last decade, which describe

with a better or worsl success the above mentioned class of phenamena§ %):

The increase in computational possibilities last years encouraged solid
state theorists to look at many phencmena in crystals from higher

level of sophistications. This caused an increase of interests in DM.




Many papers appeared, whose authors try to calculate from first
principles ( i.e. starting from a realistic band structure of a
solid ) the BMYSS.<8=~£3> These calculations turned out however to
be so elaborate, that only in %—q0,<3370 limits and for a few ma-
terials could be done, in other cases applied approximations shake

their relyability.

Present work enters the class of works of first principle calculajfk;
tions of static DM'es. It has however a new feature with respect to
previous calculations, a feature that makes the computations more
easy and more effective, we belive. The method we apply is "direct"
and "non-perturbative", as previous works used. The meaning of this
and the idea of our computational method we shall explain in Sect.IT.
In Sect. III we shall present some computational details. The results
and the comparision with already existing data will be given in Sect.
IV. We preseﬂt there DMies calculated in RPA-approximation for silicon
and gallium arsenide in X,L and partly in I points.TInprinciple this
method allows to calculate DM'es also for points inside Brillouin
zgﬁe. In that section we calculate also so called dielectric band
structure(éé)in X and L points. €Conclusions and perspectives close

our work.




IT. Presentation of the Method

In this section we shall present our method of calculation of static
electronic DM and we shall point out the differences detween this

and previous mrthods.

ext
In the presence of external static potential \/(fi) electrons in a

crystal rearrange themselves forming a new density ¥F1(%) .The change
in the electronic density 4 ¥1(%),so the difference between this densi-

ty and unpurturbed one n°%(e)

AN (Z) = A1) - n%1) -1

is responsable for forming an additional potential g\/(&) that scre-

ens \f L%) according to the Poisson rule:

2! AN(T)
cSV(‘E) = \/ {i) - e?‘i} = e? \at H"i’]

<¥i 3R
if \/ (Z)ls small,so also vfi)ls small,there must be a linear conne-

11-2

ction between AVif)and v (’E)

An(i) =§4i' X(T,1)V/ ey -3

&
Function %»(‘E,Z‘) is called proper polarisability.Combining [ -2

and 25’5 we get:

Vi) =\ S(eey - e "'i”’%(w’i”\/cﬁ') -4

Comparision with [=4 vyields (written in compact form):




E=4 —1¥% -5

a ‘:j e
where 1 = g g - ‘i‘) A, =
. ( . ! c %i’ g ‘

€(5038) = - T R(G63E) s

To calculate DM in RPA approximation one starts from a self-consistent

one-particle band equation:

2
iﬂ A \é(fi‘, «ﬁ(»z)::!é;%(i) -7

ext

When an external purturbing potential \/{%) is present,in the self-

. . . e S
consistent equation (in Hartree scheme) k/fx) appears:

{ El + Vh) + V {m)]ﬁ/ (v) = “ﬁf’ (w.) }{«8

2

The next step is to calculate the change in eléctron density AN(3)

from ﬁhe relation:

ANy = nE@) — n%A) zZ fg’lt' (%) r *-2—:'/%“ l*kl("i) r | -9

~ where %¢ is thé»eccupation number.

If \/i?gis assumed small,equation =8 can be solved perturbatio-
nally.In this way,one 8xpfesses the "purturbed” wave functions “bv
by "unpurturbed" ones #& according to the formulas of perturbation

& A ‘
theory Qﬁd one gets ?{/ or trough n‘*ﬁ é in a well known (Adler-

wiser)¢S) expression:

["n Y]

)= %@,-%}”{@ (o) Chele ™y sl TS
=/
? kit E§+’L' &L
! I1-40

€6

a4
i

!
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Existing calculations of DM are all (according to our knowledge) ha-
sed on equ.l[-40 .There are two basic difficulties making these calcu-
lations elaborate: summation over Brillouin zone and summation over
conduction bands.First can be overcomed with the aid of special points
techulqu,ezgﬁi%)he second creates more troubles,since to get good con-
vergence about 90 conduction bands are needed in the case of insula-

tors and qemlconductors{4 ) .The above facts make the first principles

calculations of DM extremely time consuming.

Our method is based on the direct computation of the new electronic
density'?ﬁ(i),i.e. on solving 'equ. -8 exactly,without using pertur-
bation theory.We start with a semiempirical pseudopotential band egu-
ation of Cohentergstresseréﬁqzto which we add a small monochromatic
potential Qf a given chosen wave vector.The Cohen-Bergstresser poten-
tial plays a role of an unpurturbed self-consistent crystal potential
in one-electron band equation.Additional small monochromatic petential
simulates self-consistently screened external potential .Having solved
the new equation we calculate electronic density summing over all occu-
pied states.We subtruct fromvit the unpurturbed electronic density Yj%i)
and fourier analise the difference.The response to a perturbation of

a wave vector %-&é ,Va}?.(,a.),ﬁust be of course of the forman(3+G'\where

o=

G , G are reciprocal lattice vectors. Dividing An E:Lvés) by Vgu(ifé)
we get :((cr!‘G q +G )

There are however a few essential problems in this method.The Schrédin-
ger equation with additional potential to be solvable should possess

a discrete translational symmetry.The presence of\/gg generally dest-
roys the original translational symmetry of the lattice.This fact ser-—
iously limits the possibilities of application of this method to spe-
cial q points in the Brillouin zone.If g-vector of Viﬁﬁ) is equal to

G - a reciprocal lattice vector - the original lattice symmetry is not
destroyed and the calculaticns do not differ much from those without
perturbation.If § cannot be traced to the centre of BZ by a translation

from the reciprocal lattice,the translational symmetry of our hamil-

tonian is changed.When G-vector lies on the border of the Brillouin
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zone (at points X or L for example),or can be join to such a point by
a reciprocal lattice translation,we are able to solve the equation -8
wiﬁh the aid of supercell technique,@e expand the elementary call
twise in a relevant direction.Within present computational capabilities
the Schrédinger equation #!=8 can be solved when q lies in the midway
from the zone centre to the border of BZ and even for smaller q-
Agother problem ceates the hermiticity of a hamiltonian with mono-
chromatic potential.Since we are able to solve only hermitian Schrﬁ—r
dinger equations,the potential should be real.This problem is easy to
overcome.We solve the equ.il- 8 separately with sin(gr) and cos(gr)
as perturbations,and from them extract the relevant information.
Usually one defines G=0, G'=0 (or vice versa) elements of €€@+a ?%Q,)
as ”wlnﬂs",and G%O G‘%O as "body” of DM.The present method dcesn't
allow to compute %(Qgc) element of DM,neither the non-analitical
elements in wings at G§-—% 0.At the centre of BZ we are able to calcu-
- late only '"body" of DM,ocutside the centre however,we can compute the
whole dielectric matrix. |

The band equations we solve are the following:

[Eﬂ . \éﬁ) + C$€n{:(7‘+@}i] "‘fl’ (5) = E;(Q)%“(i)

L.?m Tn
-4
EE:L + Lf%(-;) + ¢ ces[(§+é)i] “k;(i) = E:(ﬂ‘{;_ (%)

Here ¢ is the strength of a perturbation.We have performed preliminary
studies with different strengths in order to be sure that we are in

a '"linear regime'",i.e. the responce in the density Awfl) is proportional
to c.We put cequal to 0.0001 Ry.

Next,we calculate in both cases the electronic density:

p—

sin \ 4k ‘
v (1) = e (3) [-42
T+6 LQJ@ (2m) \%/ \

. s
Similarly we get Y‘\,wa('i)




AY] is given by:

5{91 _ o Se,p‘ e _
AH;@,C” = Ng® -

F )3 — 23 S o{
Z; Y}§4é(5) = Yﬂ§*a(7) (=)

The unpurturbed density ?ﬂ%ﬂ we obtain of course from the solution
of usual Cohen-Bergstresser band hamiltonian without any additional
potential.

A
We have tne following relations defining 756ﬂiﬁ :

A

T Y (5,5 ¢ sinf(3+G )ai}

W

st _
I -4%

i

Am-_,m Saiz' 72(5;5) c @s[(§+§}tﬂ]

Writiﬂg these relaticns in fourier space yields:

St

zi\\df-ia(«i u)“..a-— [X(7+Q,?+6)~—%(EL +G 173~ -G)
N-44

=G

ANz (ea)= ’”[ R (GG 1348 + X (GG 5-5)

Subtracting,we come to the final conclusion:

L)

%(‘ G 3+6") = AY\ (3+G=)+Lzm? ?*G)/ 1145

In the next section we give some details of the calculations.
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III. Computational Details

Wé have calculated DM'es fof Si and Ga-As in point rT (the "body"
elements),in X and L points.We have used in equ.s. {1=-7 , i1 -8
original Cohen~Berﬁstresser(i?h%nmlfactors of crysuél potential.For
these same potentials RPA calculatlons at the zone centre are availa-
ble.As the basis of functions plane waves of (q+G)£;21 (in %f units)
ﬁere used.The whole matrix of hamiltonian in this basis was diagona-
lised,without applying Léwdin's perturbation method.We are convinced
however,that in future work with larger supercells Léwdin's method
will be unavoidable,since in that case both the +time of computation

of band structure and the number of independent elements of DM to be
calculated increase strongly.

In the case of X and L éoiﬂts we have to solve equ.s H-44 witn

a supercell technique.To this end elementary cell should be expanded

; t&ice in a relevant direction in such a way, to make‘fr@m vectors ax
or qL ,the vectors of a new re01procal lattice. In this way,the number
'of basis funculoms that are ubed to solve band hamiltonian increases
about twice with respect to the number of functions that is in normal
cell,and fbr X and L points it becoms equal to about 200.This fact
is the origin of most difficulties.For points in the midway between
the zone centre and its border,the number of basis functions would

be of the order of 400.Within the present computational possibilities
the direct diagonalisation of such a great matrix is excludéd.As was
already mentioned,L8wdin's perturbation method would be of great help
in this case.Authors dealing with different problems within supercell
gecmetry have found the L8wdin's technique very useful and accuratei{Sl
It was demonstrated in Sect.II that the basic quantity to be calcula-
ted is the electronic density.To have it in zero temperarure case,to
which our work is limited,one must integrate the squere modulus of
Bloch functions over the Brillouin zone and sum over all occupied
bands (for r1point this summation will include four valence bands,

in the case of a supercell for X and L points.there will be eight




valence bands).The integration can be done with the aid of mean value
points technique.From various possibilities of mean value points (4@?3)
we have chosen those of Monkhorst and Pack.With their techniqﬁe the
results of normal cell can be exactly reproduced in supercell.We
have used (4,4,4) division of simple cubic cell underlaying the

normal f.c.c. cell and the supercell (see Appendix A of¢f3)).In the case

of normal f.c.c.lattice this choise is equivalent to using two mean

value points of Chadi-Cohen.These two points of co-ordinates (;'ﬁ %)
13

and (3 Lgu)remﬂln really two only for completely symmetric functicns,

in other cases one has to rotate them obtaining 32 points (8 coming

from (%iﬁ'ﬁ), 24 coming from (%'ﬁih)).Their co-ordinates are the fol-

lowing:
I - ;_,:‘K i 4_.}- _A; 1 .,?:_35 j_t} —\-i .fi
k . a(iqa“%ia) kg__u" cs.< H)”Luié«)
A -1
L = 25(+d 3 4 W =2E+4 44 +3>
k = ‘“"‘("Q;‘“’tg,ik‘), k}{.32 a_< -’inLH"?f

AT~24 K

In the sﬁpércell, the number of non—equivalent points diminishes to
16,for some of them can be joined by supercell reciprocal lattice
Véctors.Because of time-reversal symmetry,we need to diagonalise
supercell hamiltonians yet in smaller number of points ( 8-for X
point, 10-for L point).

The calculations were performed for so called Hermitian Dielectric

Matrix ( HDM )}, which is defined as follows:

€(3+4G,§+6) = -

E%G

€(q+a, 3+6') -2

L

The two objects & and = are equivalent,the advantage of wor-
king with HDM 1is that one needs to bother only about one "triangle"
of HDM and one can compute easy the dielectric band structure.

We have computed only independent elements of HDM, i.e. these that

can not be connected one to another by any symmetry operation.For
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[7 point,if HDM is 113x113 matrix,there are 217 such elements (without
non-analiticities at "wings"-there are 210 such elements). For X
and L points,if HDM is 108x108 matrix,there are 468 and 598 such
elements respectively.The advantage of our method is,that we need
not to compute separately all those (217 or 468 or 598) elements.
Since some of them delong to the same row,they are obtained in the
same cycle of calculations.A éycle of calculations contains the
solution of equ.s W -44 with a given,one,reciprocal lattice vector

G in purturbing potential.In one cycle one can have the whole row
of DM.We need to do as many cycles as are independent elements of
HDM with right-hand site vectors different (i.e. with different
purturbing potentials in equ.ﬁ;44). In the case of G=0 HDM (210 
independent elemehts 1), there would be ¢ cycles only.IN the case.b
of X and L ©points,there will be 14 and 16 cycles respectively
for 108x108 HDM. -

In the next section we shall present our results.



IV. Results

In this section,the

HDM''=s

nide are presented.In Table

caleculated for silicon and gallum-arse-

I;scme of "body" elements of HDM of Si

in [ point are shown.They are compared - with previous results

obtaired by Baldereschi and

quattivw)&Both these results were got

‘with the use of one mean-value point (Baldereschi pointywﬁ)

Origin of reference is between atoms.

Table I. "Body" of HDM of Si for §=0.

Present Previous
G G! work results
' €060 €(65")
(1,1, 1) (1, 1, 1) 1.7109 1.711
('1' 1, 1) (1, 1, 1) _.0164 -.016
2’2, 0, 0) ‘(1, 1, i) .0853 .085
(1,71, 1) (1, 1, 1) -.0204 -.020
(1,1, 1) (1, 1, 1) _.i127 ~ 113
(2, 0,0) (1, 1, 1) .0079 .008
'(;'2, 0, 0) (i» 0, 0) 1.5290 1.529
(2,0, 0 (2, 0, 0) -.0082 -.008
(0,2,0 (2,0, 0) 0245 _.025




In Table II, the same "body" elements of HDM at r,point for Ga-As
are shown,together with already existing data obtained by Resta and

rd
{4%)
Baldereschi.Origin of reference is between Ga and As atoms.

Table II. Some of "body!" elements of HDM of Ga-As for g=0.

Present work Previous results
G G!
Re €0, Ime6.2") Reg(ca)  1Imé€(G,6Y)
(1,1,1) . (1,1,1) 1.6889 . 0000 | 1.6891 .0000
(1,1,1) (1,1,1) -.0035 -.0464. -.0036 | -.0463
(2,0,0)  (1,1,1) .1083 -.0391 .1085 -.0390
(1;3,1) (1,1,1) -.0096 .0000 ~.0097 .0000
(1,1,7) (1,1,1) -.1071 L0714 -.1068 .0716
(2,0;0) (1,1,1) ;.0107. -.0079 . .0105  -.0079
(2,0,0) (2,0,0) 1.5150 .0000 1.5152 .0000
(2,0,0)  (2,0,0) .0020 .0000  .0023 .0000
(o,é,o) (2,0,0) -.0037 .0000 ~.0038 .0000

As it can be seen,in both cases the results are almost perfectly equal.
The différence is less then 0.001, and can be traced to the finite
 va1ue‘éf thekpurturbing pbtential strength c. This value of ¢ how-
  ever,cann0t be too small,not to submit the results to the influence

of computational ”noi%es“ (coming mostly from the process of integra-
ting over the Brillouin zone). The above results were computed in or-
der to test our method and check its accuracy.New results - HDM' es

of Si and Ga-As calculated in points X and L - are presented in
Tables III-IV. These calculations were done with the technique of

mean value points of Monkhorst and Pack. Origin of reference again




between atoms.

Table III. Some of HDM elements of Si and Ga-As in point X. §X=(1,0,0)

G G' Silicon ‘Gallium-Arsenide
£GG,3,+ G . Ree€d,«£ 546y Im 5€%‘*5,§{§)

(0,0,0) (0,0,0) 2.9484 2.8921 .0000
(Z,0,0) (0,0,0) .0000 .0000 L4504
(1,1,1) (0,0,0) .0829 +1266 -.0188
(i,1,1) (1,1,1) 2.0860 2.0621 .0000
(0,0,2) - (i,1,1) -.0022 ~ _.0006 .0002
(1,1,1)  (1,1,1) 0185 -.0010 .0039
(0,0,2) (9’0’2) 1.4198 1.4032 L0000
(0,0,2)  (0,0,2) -.0209 -.0212  .0000

- {0,2,2) (0,0,2) -.0065 | -.0038 .0167
(1,1,1) (1,1,1) 1.3305 1.3178 .0000
(1,1,1) (1,1,1) ~.0109 ~.0067 .0192
(2,0,0) ’(1,1,1) 0532 .0585 .0181
(0,2,2 (0,2,2) 1.1819 1.1796 .0000
(2,0,0)  (0,2,2) .0146 . .o129 .0048
(7,2,2)  (0,2,2) |

-.0122 -.0076 .0094




Table IV. Some of HDM elements of Si and Ga-As in point L. g

L
Silicon Gallium-Arsenide
G G
€5+, 5 +0) Re€(@ibied)  Tm (4G5
(0,0,0)  (0,0,0) 3.1683 3.0854 : .0090
(1,1,1) »(o,o,o) .7425. | 6818 4391
(2,2,2) (0,0,0) -.1393 ~.1425 -.0198
(i,1,1) (i,1,7) 1.7069 1.7871 .0000
(2,0,0) (i,1,1) .1095 L1443 -.0543
éi;i;ii (i;i;f) L0232 .0083 ] .0023
(1,1,1) (1,1,1) 1.4290 1.4200 ~.0000
(0,0,2) (i,1,1) .0628 ’ .0739 .0215
(2,0,2) (i;1;1) .0551 .0648 | ~.0181
(0,0,2)  (0,0,2) 1.2775  ’ 1.2?37 ~ .0000
(1,1,1)  (0,0,2) .0532 ﬁ .0617 ‘ .0185
fT?E,E) (0,0,2)  -.0087 ~.0018 | ~.0047
'(1,1,1) (1,1,1) 1.2711 1.2693 .0000
(2,2,2) (1,1,1) ~.0197 ~.0064 .0153

(2,0,2) (1,1,1) .0157 .0128 .0027

i

B fome

rol—
ot
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As a first immediate application of our BM'es,dielectric band stru-
cture in points X and L was calculated for Si and Ga-As. Die-
lectric band structure are called eigenvalues and eigenvectors of DM

-
(or HDM) at a given vector q:wﬁé@)

7~ =
[ ECGG+8 5.87) V(3+8Y = £z V(3+6) W-4
Z:v .

In Tabl.V, the greatest eigenvalues of DMfes of Si and Ga-As in

points X and L - are shown.

Table V. The greatest eigenvalues of DM of Si and Ga-As in X and L
points. Symmetry notation as in Bassani's boek&o?

Silicon »f@éilium—ﬁrsenide

k?@iﬁtr X Point L © Point X ’Point L

A £3,) & £
xl 3.060 Ll 4.066 M1 3.471 L1 4.0§5
X4 2.393 Li 2.547 M4 2.741 Ll 2.563
Xl; 2.016 L; 2.010 MS 2.401 L3 2.110
X, i,554 L, 1.966 M, 2.004 L = 1.979
X, 1.552 L, 1.860 M, 1.905 Lé 1.748
¢ 1527 1 1551 Mo 12337 4 say
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sdielectric band structure of silicon resulting from some

models of DM was calculated.In Fig.I we present the comparision

of our results with those of ?)

Point

%4

r‘ o
@ K: Ky

% Brex
] 4%
ol

X4 Xy
= Xy
&y,

o Xy

b c

X

-A
.The comparision is done for £ 'Ci)

Dielectric band structure ( £2%Q resultirg from models

and the present work:

It can be seen,that the most similar results to ocurs Car-Selloni

A characteristic feature of the spectra of f.:gﬂ is the gap Ll— L

which is "closed" in "empty lattice"”

ol

dielectric band

3

structure.

field effécts.As can be seen from the picture,Sinha's model too

much overestimates its value, Johnson's model and local density

model too much underestimate it.These facts are in agreement with

model gives (with partially different symmetry ordering however).

1

Its value could serve then as a measure of the importance of local

2.

a-present work ;b-Car-Selloni model.
c-local density model,d-Johnson's model ,e-Sinha’'s model

axét'

s |

T v
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general trends of these models,resulting from the basis they
were established (too much ionic,or too much metallic). Car—
Selloni model gives for this gap a value about two times smaller
then our value is, which suggests that local field effects are

underestimated in this model.
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V . Conclusions and Perspectives

We have presented in this work a "direct" method of calculation

of RPA dielectric matrices in semiconductors and insulators.
"Direct"- means that equation il -8 is not solvedvperturbationally,
but directly. We have calculated "body" elements of DM in point

" and the whole DM[es in points X and L for silicon and
galium-arsenide. The agreement with already existing results in

i point is excellent.The small difference ( less then .001 )

in results can be treaﬁed as the accuracy of calculation coming
from a finite strength of perturbation c¢. When this strength
goes to zero, our results should exactly reproduce previous ones.
In the case of X and L points there are no available data to
be copared with ours. o |

We have caléulated the dielectfic band structﬁre of Si and Ga-As
in points X and L . Comparisioﬁ with the values given by diffe-
rent models approves the model of Car-Selloni'with respect to

other models.

In conclusion we can say, that our method of calculation of DM
turned out to be very effective. We belive, with present compu-
tational possibilities we can compute DMfes also for pcints in-
side the Brillouin zone. For future work'we plan to calculate

DM 'es for points in midway between the zone centre and X and
the centre and point L respectiveiyband also in 1/4 of these

distances from point ¥

The calculated DMkes can serve for many purposes. They can give

a good frame of reference for a satisfactory model of DM for
which there is a continous need.They can serve in phonon calcula-
tions. They can be used in so called - real space local field in-
vestigations,that is in computatioﬁ of the change in electronic

density due to a given perturbation.
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