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TI. INTRODUCTION

The effective potential has received a great deal of attention
because it allows one to study spontaneous gsymmetry breaking beyond the
tree — graph level, meanwhile the spontaneous symmetry breaking has
proved to be extremely fruitful in mamy areas of physics. Since one
cannot evaluate the effective potential exactly when the interaction
exists, the usual approach is to resort to a loop expansion, i.e. , 2
perturbative method in which the functional method is widely used. In
virtue of effective potential, the effects of non - Minkowskian spacetime
topologic s%ructure and spacetime curvature upon symmetry breaking have ~
been treated in many articles recently. Both in finite temperature and
compact spatial axis cases, the spontaneous symmetry breaking may be
restored above a critical temperature or below a critical 1ength) the
mass pole being shifted when one loop radiative correction is taken
into consideration. The restoration may occur even at the classical level
when a field coupled with a background gravitational field. The vacuum

“instability or in slightly different terms, the phase transition from
the symmetric phase to the broken symmetry phase and opposite process

are dealt with in various situationse.

The outline of this paper is a2s followse In CheII th7&eua1 path -
integral formulation has been summarized by which one can know how to
calculate effective potential up to one loop correction that is useful
to discuss spontaneous symmetry breaking above classical level. In CheoIIT
the calculation of effective potential in non - Minkowskian +topology
is given where both finite temperature and compact spatiayéxié cases are

considered and Zeta function, dimentional regularization as well as other



mathematical methods are used. For the sake of convenience, only the
example of self interacting scalar field is provided. The restoration

of the spontaneous symmetry breaking beyond a critical temperature

and critical length is discussed in terms of the effective potential
approachs In CheIV the effects of curvature and temperatur?in the closed
and open Einstein universes are considered. The critical radius of

the static Einstein closed universe is computed. Both zero and finite
temperature theory in static open Einstein universe are provided where
Zeta functién prescription and heat kernal mothod are usede. In aprendix

technical tools are reviewd



IT. EFFECTIVE POTENTIAL IN FLAT SPACETIME.

11— %1
le Path Integral Expression of Quantum Field Theory

Por simplicity, we start with an examination of the familiar case
of a single scalar field, ¢’, whose dynamics are described by a Lagrangian
density, !Qioﬁ §h¢>, The generalization to more complicated cases is trivials
Consider the effect of adding to the Lagtangian density a linear coupling

of ¢ with an external real ¢ -number source J(x), the action becomes

S[¢, T] = [d% (2 + Jugen) | (2.1)
Define the generating functional Z[J], which is the vacuum transition
amplitude in the presense of external source

LR Nf.%c%‘s{‘gu (2.2)

Z[T7] = {Qu lOm>:, = e
The derivative of Z[J] give rise to the Green functions with n external
legs
v 3 Z0T]
s> - IJoxn» (2.3)

Meanwhile, the generating functional of connected Green function W¥/[J]

G"‘(x, RN Lo|T P - dtxmr[0> = gﬁ)

can be expanded into a functional Talor series

(23
Il = 2 i I GO m) Jow: Jirs (2.4)
"-Q .
The successive coefficients in this series are tbe connected Green functions,
Gz , which is the sum of all connected Feynman diagrams with n external

legs and can be derived inversely

- 2
e (x, -~ x) = (igi G (2.5)
c " ST o FT0w

The field induced by the presence of a given source J(x) is the
classical background field in the sense that
F(x)e= SHO <Gouz | %100 >

230 <0l O >

The effective action TT%J is defined through the Legendre transformation

(2.6)
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Tll:= WLT] - [d% JeoFo (2.7)
From this definition, it follows directly

T3] _

— - J(x) (2.8)
rX720)

The effective action can be expanded in a manner similar %o that of

eqe(244)

@2) _— —
M3l = 3 4 (af o dx, TG %n ) Fowre B (2.9)
h

ni
The successive coefficients in this series are the 1PI Green functions
(or proper vertices ); Tﬁois the sum of all one particle irreducible
Feynman graghs with n external legs amputated. 1PI means such a kind
connected graph that cannot be disconnected by cutting a single internal
line. There is an alternative way to expand the effective action.
Instead of expanding in powers of ¢ , one can expand it in powers of

momentum (about the point where all external momenta vanish Y e Inm

configuration space, such an expansion looks like

T[¢] = fcfx[— Vg >+ zf-@“fﬁ)zZ@Tﬁ'“ ] | . (2.10)

Y(%) is called the effective potential . Comparing the expansions (2.9)
with (2.10), one is easy to know that the nth derivative of V(;) is the
sum of all 1PI Feynman graphs with n external legs of zero momentum.

43(1) is arbitrary here, however in order to compute effective potential
— A
only, one can choosg ¢(x) as a constant field ¢

T81= -7, 9 [& (2.11)

or
“ ] [
( -_— e o ®
\éﬁ) —T[¢] (2.12)
where (2 = (ZE}ﬁf?o) is the volume cf spacetime.

Furthermore, the Fourier transformation of classical background
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field is

— ha - *kx -~
- (. fkx o
Pex) = f;n)“ e Fik>

where & (k) is the Fourier components of <f»’—(x). For constant field,

one gets

R S IO ) (2.13)

The effective action is

M#l= 2 ?L (d%, -~ dx} TCx, - x0d B~ Fexw
) “ Miz) g
=7 L (b . LR ity k) T Chpkny Ptk - Fkn>
7 n! (emy* (2t S ( ! (2.14)

For constant field
~ ;‘:z AR 4
rl= 2 L Feeoens e (2415)

bangt ]
in which, ["(c) are the 1PI Green functions with all the vanishing external
momentums , therefore they correspond to vacuum graphs. The effective

potential can be expressed in the form
A
4 = @" _w
L @) == — T (e (2.16)
h=o

In another words, effective potential is the generating functions of one

particle irreducible Green functions at zero external momerntum in the sense

that
A~ d V(&
" (0) =""—E.‘g’n—‘ ]é;-:o (2.17)

3
As anexample, let us consider a self interacting ¢ scalar theory,

the corresponding Feynman graphs are



() : O-6- 8

o x o+ Q ) 8

%0 O - @- 8
Fige 1

If one expands V%f in the powers of B, i.e. loop expanding,one may

classify all the vacuum graphs according to the loop number as shown

in Fig.2

(=2

Veﬁ H X = X tff’? 3mph
Vﬂ» . + (:j - F e e e = O che foop
eff

e . 4 e = 8 @ fuo {“OP
eﬁ ~d

l e 2 ’

2. Bffective Potential with One Loop Radiative Corrections

Using steepest — descent method, the saddle point 4‘3; is defined as

3S[e] -
00 g_g T Joo (2.18)

$(x) is a functional of J(x). It is the classical solution when the

gource term J vanishes. In the case of scalar field, one has

& - heoi Forens Ve

(Q+mdd + Vi) = Joxo . (2.19)

then, one can shift the field ¢ (x) —P(x) + ‘ﬁ(x) and expand Z[J] at

- 6 =



the saddle point ¢', 2 _Cli >

£si4, 71 8%5}‘] SRR E Ve

P22 24

Z(11= N [P¢ e
(2.20)

(e
where V is the Pth derivative of potential. Using i4 denote the

prepergator and simplified notation in following way
=2
25

~f
——— oz (x
PPl A¢v » ¥

-1
fcf‘xfj m Goo dtyy = Py «g
one can rewrite (2.20) as follows

. ~7 P 7
%;:5[% 7] '{2(51‘#’4&”# +§; %4V{¢)!¢s j'

L Wi
e #og e (2.21)

in which only even p terms have contribution due to Wick integral,

v ~f
z { g
R2OAt gl
Jog e = (& (2.22)
By suitably defining N to absorb all constants, one geis
% -f
WIT] = S[¢ T1 * 5+t fleddt Qg +WIIT (2.23)

where

(og e HEC G ZEV

(D¢ o+ F¢-a5

% L1
If one rescales ¢ by putting ¢—H ¢ , it is easy to see W(JI is

¥[7] = -ih 1n

of the order &2

'y N sf
¥[gl= S[&T] + '%E‘Lnbef Qy O (2.24)
and it can be proved $[4,7]- S[¢.T] = O(’xf), after a cumbersome calcula=—

tion which is omitted here, one can rewrite W¥(J] as follows

W[Il = s[d 7]+ -‘—Eﬁn Det ‘3‘ *+ OE%) (2.25)
-7 -
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where @ is substituded for ¢ . By substraction J(x)¢ (x) from W[J],

one can obtain effective action

. ~1 2
Plaw]= s [§o] + e drog * OGD (2.26)

As mentioned zbove, the effective potential can be derived from [t¢] by
setting ¢(x) to be a constant field ¢

a _ { —r
V%(‘?) = - -ﬁ‘-‘f[‘f’]

On the other hand, one can expand vef“ according to the powers of 1

A (2] o) It
Vore) = Vopp *+ Vopp vV,

2)

£f b (2.27)
Comparing (2.27) with (2.26), it is easy to get the effective potential

at tree graph level as follows

V;c;f($) =L @) = FAE U (2.28)

-1 ~t
Notice 1n Det A$ = Tr 1ln A$ , where the capital letters are used

to remind us both deiterminant and trace are taken with respect to momentum
index as well as internal index. Due to translation invariance; .the
_propergator i4j is diagonalized in momentum space <E'| d:;,‘i [ k>

= <k[d‘; [k >3 (k = kl), and we know that so far as diagonalized matrix

is concerned, the relation below is valid (k(lndgik} = 1nQ([4;/k) = lnzg:(!k).
Therefore the functional determinant may easily be evaluated

~1

-
in Deté$= Tr 5('&‘/2')[4244;(/?)

-1
< _f A*‘
[dh 2-k0], tlnd;

where the trace sums up the internal index only. Isclating the spacetime

“ =3 P ~
volume (2r) & (0) in [[¢], the second term of [[¢] turns cut to be

~f 4
it [ J® 2 (kD
%fcznﬂ Lo det D (k> -2r)yd(od . (2.29)
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Pinally, the one loop contribution to the effective potential may be

derived in the form

A z'rzj’fk -1
Vope(d) = - FarTT 1n det A$(k) (2.30)

<
3. 4n Example : Calculation of Effective Potential in ¢ Theory

Let us summarize what have been said above: in order to get one loop

A
correction of effective potential, first, one should shift field d—eg(x)+ ¢

A
where ¢ is a saddle point and chosen to be a constant field, so the

Lagrangian o (¢, 2% ) is shifted to L (¢ +%,3%); second, one can

expand action arcund ¢

“ ” bXY oA 2
j = PR ¢ °
S(#+¢) =56) + = Lp¢+%’¢"¢f +5, €93 (2.31)
to obtain the propergator id (@, xy ) of the shifted field
, 755d, ¢3 -
-t . = e ) —— A» (k) 2.32 v
Afdxy} P _ é (2.32)

o Mmoirertaum spece
_where SO‘{‘}E_#} is the quadratic part of it; finally, the tree graph

and one loop contribution of the effective potential are

(¢2 A i
veff((#) = - OZ (4)) 1
w A i ( dk -
V op($) = - -5-[@—-1;)-4 In det 2 (k) (2.33)

Imitating these procedue, in the case of self- interacting scalar

field with Lagrangian density
. 2 A 44
o = Faede - FHd - L@

A
after shifting field ({9—-» ¢ +¢, one gets shifted Lagrangian

-9 -



- - —%i
oZ{q?’q,.j L (d+d)~ L () 7 a2 !; ¢

]

= £%a¢ - E(aie 2EOF - 2E8- (2.34)

which means the constant terms and ¢»term are dropped from it. The
inverse of the propergator is

y 73894 O-1DF5x-y4)
%(x' = T B(E) =( g (2.35)

2 2 A L2
M = m + —;?

in momentum space, which yields

- :
4$(’“= Ko ow (2.36)

boo P

The effective potential at classical level and one quantum correction
A

are respectively

[{+p] A ~ 4
Vo dy = AmdTt 23
eee(®) = 2 +
i (d% : 2z
Voppld) == Z o ln det ( k = M ) (2.37)

For smgk neutraby scalar field, 1n det A =Tr In A = 1ln A. By iotating
the integral contour, eg.(2.37) may be integrated in Euclidean space

and regularized by introducing a cutoff K =/5,
2

A 2,2
'{1) _ I 2,[: &dbf 2 2
v = 5 ?OW in ( kE + M )

where unimportant constant is dropped. It is much easier to compute the

integral 2
A+
2
35%; ( (xlnx =¥ 1lnx ) dx
< 2

The final resul+t is

@ p 4 i 2 ALy 4 sz\a} + 01
Voo = [ AL (1R~ tka (53 * 0D .
eff 64”2 (2¢38)
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4. Renormalization of the Effective Potential

[el
Renormalizability means +that the divergences occured in perturbation

theory can be cancelled by adding counterterms to(gi(x), cf same forms of
terms already in o{ (x). The counterterms can therefore be absorbed by
<
a redefinition of the scale and of the parameterse In A® theory, the
n> ) (G
overall degree of divergence of Tj is positive only for FP and I and
is furthermore a functicn only of the number of external legs and not of

the order A , so that it is renormalizable. In such a case, one can

renormalize the theory by adding to ol counterterms

‘ 2,2 N 44
OZ = _2L§6c¢ b«¢ - -:?{—7;145 2—’-‘# * ot(‘om}'?r'?‘ems

- L /\
g = t(z-Dge5%¢ - Tt et (2.39)

Cewnters
S
where Z is ,hz order beCause the lowest crder graph in A¢ theory is +wo

loops (fige3),

N
N
Fig.

hence the wave function rencrmalization counterterm can be ignored up

to O(E) order.

Consequently, the renormalized cne loop effective potential is
A as2 § 529 B T4 (428N g (Lo )+ AM

+ %5w1$2 + i‘, 5f\$ +3C (2.40)

where ;C is required for keeping Veff finite when A~e o2 . The other

counterterms are chosen g0 as to secure the normalization conditions

- 11 -



.
ES

|

_ =0
¢ &>
4V i =n?
dé® la>
c'dVefy = )\
2e41)
T L (2-41)

where (¢) is the normalization point and is conventionly taken to be +the

extremum of the effective potentiales These conditicons result from the
(27

constraints onT and.TSp'which are the only divergent loop diagrams in

2 theory.

To introduce counterterms is equivalent to subtract divergent terms

. 2>
from V&f.f which exist as a result from Pre» and ﬂ%k) (fige 4 e

® o O B

ﬁ@) Tgb)
Fig. 4

Basing on eqe(2.16) and rewriting (2.37) as follows

o it A
Vers = .f<2 o b (1 ) (2042)

one can get the renormalized one loop correction of effective potential

" AN 37 X j
" _ A L2 X 3
Vepr = ~ ; j(Z’t) ‘B“‘({ k’—n’>+ 2 k*-n’ ‘ 41 (k-#y* )

(2.43)
By performing Wick rotation ki-_ i%?, the integral may be evaluated

in Buclidean space with the cutoff k, = A

vy, Ly (Ad; 5
i A/ A 2
d ke _ w L —
Veff zj(zr') [&(T+ m’) k:fmz 2 (ke+MD ] . (2‘44)

One will find that the cutoff dependent terms being exactly cancelled

12 -



each other . Dropping scme unimportant constants,namely, cutoff and
A2
¢ independent terms, the final renormalized one loop contribution to the

£11r73
effective potential is

o) s 4 2 2 = &3
% R I
Veff“_ﬁn:[”‘ln;‘zw'?m” M=mn+>  (2.45)

If one adapt a little different convention of normalization conditions

dVed

=l A g (2.46)

where M TDeing a nonvanishing normalization pecint, for a massless

H ol
scalar field, the resulting Veff(¢) is

” _ Aé’)tf { ;22 Aa IS -
Veff@;) = '4—7 +én4~fi:2(2‘§—) [LZ ’/% - ?Z._ J + (2'47)

in agreement with ref. 8.

13 -



ITI. SYMMETRY RESTORATION AND MASS GENERATION DUE TO SPACETIME TOPOLOGY

[41L1e]
l.Spontaneus Symmetry RBreaking

Generally speaking, for a system, the symmetry of the Lagrangian
may not be just the same as that of the vacuum state. If the symmetry
of the vacuum is smaller than that of the Lagrangian, the spontaneous

symmetry breaking will occur.

Let us investigate spontaneous symmetry breaking in the case of

scalar fieléd ¢ (x), with Lagrangian

Ly40¢ - V(4>

X

and Hamiltonian

w = L7+ Lo+ V@ (3.1)

in which the state of the lowest energy is a constant state denoted by
{¢> + The value of {($> is determined by the location of the minima
of the potential, V, so called the vacuum expectation value. If the

potential is
2
V= 4s"+249* (3-2)

where the coupling constant A:>O, but the mass square of the field

can be positive or negative. This Lagrangian admits the symmetry

¢ — -9

If!L5>c>, the potential is as shown in fig.5a, the vacuum state lecates
at ¢>= 0 . Since the vacuum possesses the same symmetry as the

lLagrangian does, the theory have no spontansous symmetry breaking.

If 4’<p , the potential is as shown in fig.5b, the derivation of

it is

- 14 -



which gives the minima as

{Py= % |6 (3.3)
nNA
Let one define a new field by a translation
H

(? = @ - <¢>

In terms of the new field, the potential is
2 2 l3 }\ -

U= 259"~ >+ 2 ¢ (3.4)

therefore, the true mass is é&@f and the {J has no the symmetry of

¢ — -4> any longery Since the vacuum state have no summetry

¢ — = it leads to symmetry breaking spontaneously.

’Av llv

(a) | ()

[11]~[13]

2o Finite Temperature Field Theory

The path integral which has been presented in Ch. II, provides an
indefinite integral representation of the defferential equations of field
theorys But the peth integral itself does not contain a specification
of the boundary conditions. The path integral prescription.in which the

corresponding Green functions of the differential equations satisfy the .

- 15 -



causal boundary conditions at t = %060 is usually called zero-temperature

field theory. For example, the causal Green function in free scalar field

theory is .
X
Jot et e

Jo¢ e%”/"";""t

A=Y )= L0, |T<P(K)q‘»(y) ] o,>=

where IOin)> and iooué> are the vacuum states corresponding to t — -~eo
and t —=t00 respectively.

In order to carry out the calculation and improve the convergence property
of the generating function (2.2) , it is custOmary to rotate the time
integration contour of the generating function on imaginary time axis

xo—+ —ix4 (or. t— -iT ) so that

< ter -iT ¥

+57%] T +S[4] (3.5)
where

Sele] = Jdx L 141 = - [dedi’ i, (3.6)

In Euclidean section, the generating functional of Eq.(2.2) can be read

of f
{ 3

L1+ [ded P T4 )
J[T] = j®¢’ e 4

be (3.7)

where b.c. denotes a certain boundary condition. If we restrict the time
integration in (3.6), (3.7) to finite interval 0<z £ 8 , we shall get
the transition amplitude between the vacuum state at T = O and the vacuum
state at T =:P . Imposing on the field periodic or antiperiodic boundary
conditions: ¢(T,§) =+ ¢(rﬁzﬁ ,;) according to boson or fermion field

- 16 -



respectively, one can interpret (3.7) as the partition function for an
-1

equilibrium system of particles at the temperature @ s

el .

5 fdr fo'x [~ + T4 ]

zls1= [ 9% e

Pbc

s
~pH  fdr (dx’ T ¢ (3.8)
='T}[eﬁ egtﬁx }

where the natural unit® = ¢ = 1 is used and trace comes from the periodic

boundary condition (p.b.c.) The corresponding Green function

~BH .
To[e’ Toxo - dow) |

G x> =

~[3H
Tre (3.9)
and hence
3 a8_
WeLT1 = =-4n ZL3] (3.10a)
— _ SWELT]
G = SJoo (3:10b)

B~ _ )
4 = - p AR It IN LY
(¢ [] WeL1] jjs$ J (3.10c)

where E denotes Euclidean spacetime and WE[J] =i W[J] ,T’E[¢] =i [4]

being understood. $(x) is the thermodynamic average of the field ((x) when

the external scurce J=0

-pH
— Tre Pexo
CPf")! - T.e AH (3.11)

J=¢

A
The effective potential is defined at a constant field )

A __’__ E A
W; = - o T (&)

(3.12)

- 17 -



where‘_(zE is the valume of Eclidean spacetime manifold. Therefore the
field theory with the compactified imaginary time axis, in which the wave
functions satisfy the periodic boundary condition, equivalent to finite
temperature field theory in the sence that the inverse of imaginary time
period interval P“l corresponds to the temperature.

It is now clear that for both theofis at zero and finite- temperatures
we can use the same integral formulation but different boundary conditions,
giving rise to different propergators. The periodic condition of the

propergator in free scalar field theory éAﬁ(x)=<Tc{>(x)cp(o)> is
"(UI = z‘A(")}
Z
e A (3.12)

Its Fourier components can be derived throuth Fourier series and integrals

z‘%m — _{,_;% e“’w”xofi-"’— e'%“xz‘%(w,,,ib

23
@ (3.14a)
where the frequences
2 —
w, = == fe= o0, £1, 22, .-
n -ip ' ’ (3.14b)
are restricted by the boundary condition (3.13) y which implies that, in

the field theory at finite temperature , not all solutions of the motion
equation are permitted, only those wave functions which satisfy the periodic
boundary condition are allowed. In othef words, the periodic boundary
condition selects some particularly wave functions from the whole set of
the solutions of the motion equation, which reveals the influence of global
topological structure of manifold to guantum effects.

The same situation happens in Casimir effect , i.e, the electromagnetic
effects between two parallel neutral conducting plates at a distance L in
vacuum. In this case, there exist many modes of vacuum state due to the

quantum fluctuctions of the electromagnectic field, but only some of them

- 18 -



which satisfy the vanishing boundary conditions are allowed. Such vacuum
fluctuations produce an attractive force between the wall of the conderser
in the slab shaped case and an repulsive force for a spherical shaped
condenser. This phenomenon was studied in 1948 by H.G.Casimir and verified
experimentally by Sparnay in 1958 first, later by the others. Therefore,
the Casimir effects provide us a powerful and observational evidence for
the influence from global spacetime structure on guantum effects.

Return now to scalar field case, we rewrite Eqg.(3.14) in the form of

compact notation

_2,/@5(
Ay = Joe NE (3.152)
p & P
2T R -
- =, k
k ( -ip ) (3.15b)
3,
| s ( dE
f = - ip ,Lf @3
R (3.15¢)

in momentum space

2 -2
) A = T =
Z fg(k) kl' h')z 411}22 -2 2 (3-16)
! e Tk oAm .

Furthermore, consider the self-interacting scalar field

{ 2
@)= 4454 ~ tn'e’ - 297

L

Val
To compute effective potential Vk(@), one first shifts the field ¢(x) —

ey
d(x)+$ and then gets the shifted Lagrangian

25d e} = Fa05¢ - FOEID- Ladel

= L, 16,45 + & .38 9] (3.17)

- 19 -



where QI§§%4§ is the quadratic part of the shifted Lagrangian and CZ~§§%:¢j
[ (27

is the remainder part. The inverse of the propergator is
2 ~
3S.0% ¢J

~{ 4 2
AN b’) == —_ - -M 3 -
f“”@} * dPix) Iy -0 220D

(3.18)
=1
AE R = K- MT L M= W edél
'The effective potential is given by
N (<> A (<2 0N - M + A
V(#>= Y@+ %(¢)~=<%Pfj&z°zw{¢,¢}>
S (e _ ,._[_7,»)252-}-2.“#?4
%C ’= 2 4 (3.19)
@ oA _ zay,@;&dvt -’(é‘ b = izfdsk A,(—4F2Q2‘£2)
Vs> = k3 R ) en? P 500
where - R
Eﬁ/{ = E\ -+ M7

The summation over n is divergent, which can be carried out in the following

way. Defining

we = 2 e (22 1+ £])

(3.21)
EﬂRE) — 25 2£
ok 4E, +E2? R= 0 £{ -.
i /F (3.22)

and using the following formular which can be proved by an infinite product
of shry

s 4  _ _ 1 . .
?zZJ; ¥+ n? 2tk T (5.23)

- 20-



one can deduce that

QUE) _é_ = -
A (F&t/zr )= #(z eﬂ»f )
= 2p(E t Lt (1 €5 + temme indep of E
V) F( e ) ’ 7 (3.24)
Correspondingly, one has
1) 4,
%(4:):: ;%— ?fn{is Ute ) + 4nfenite coestarts
- Pk 7 F f ~EB .
T BJ((Z-@s (== *-F—»&n(l-etﬁ))
~— > .
= W @+ VP ($>
(3.25)

f

{ 3
,()cﬁ) ﬁf-i—k— Em

o (277-)3 2

I

'—lﬂ,\ d& '"f,g
Q//,s(cn #f(z@ n(f-¢ ")

_ £ —(xiﬁ?f)

2%

v

/(dx:c,&,({

¢ A
where V°(¢) is recqgnized as the zero-temperature one loop contribution

basing on (2.37), because

‘o

E
,&z(/e‘f';;"'M)—“ =3

-z
"’
a2 a
V_ (0) in (3.25) is the one-loop potential at zero temperature, exactly tﬁe
same as Eq.(2.45). The one loop potential %;bat a finite temperature can -

be evaluated in many ways. In order to compute FL ,, we expand Eq.(3.26)

with respect to small P .
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I N S LA B ¥ LA i J:L 2 - 27+ 28AT) + 00
R = =t A - g - Lt <L (5 272k ) 4 00D

[t41 (3.2¢)
where 7 1is Euler constant , defined by

Y= - %0 = L [Z gt ]

e £ (3.27)

If a system possesses a spontaneous symmetry breaking at zero temprature,

the zero temperature effective potential has a minimdm at ¢ £ 0 .

a%($)
>4

I
o

4’\;=<¢>

which is called a symmetry breaking phase. If the effective potential at
A

a finite temperature has a minimum only at § =

A2 B 2z -
__b_f___.._vi 2 = 2$ a_____vff) = 0 of ¢ =0
2¢ oF ‘

the broken symmetry will be restored when temperature becomes higher,
at which the phase transition from symmetry breaking phase to symmetry
“2
one will ocuur. Symmetry breaking is absent when Eﬂéﬁfﬁ # 0 ,and{Qp#£ 0.
22

2¢
The restoration of symmetry is assumed to regluire ke

(3.28)

Decomposing WJ$3 into Kp$§+1;($i) y, a zero temperature comtribution and

finite temperature contribution, the necessary condition for symmetric
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restored becomes

~ 42 /( 2
JACS, 1 . Btéhz) | > o
242 é=o X B (3.29)
Noticing the mass term
i . B:z Vo(éz) [ = 2 a;/c‘g‘i) )
P L ¥ S ¥

we get the following inequality from (3.29)

o¢ $=o (3.30)

-4
and the critical temperature

Z,E(c@") l _ 7

e o ) (3.31)
Fe

B SN
"

]

] 4
which means that the symmetry is restored when the temperature @v exqeedes(i.

It follows that the critical temperature in the self-interacting scalar

field is given by

—f> AZ >\
bV; (¢> o 212 _ =
22 i= o - 2z 2
>F :2 . 24 P, (3.32)
so that
{ 24w’
7 ’ B (3.33)

We now turn to discuss the temperature dependence of the quartic self-

4
coupling constant in ¢ theory. The temperature correction to A =an

- 23 -



2
be evaluate from the expresions (3.25) and (3.26). In fact, if m > O,

A A
AV, B
NpBD = =
. A
Cf (ch

2 3'/\2 ﬁ-?mz

— A S 17, S L <
b FPE sy (3.34)
2 2y . .
where m_=m e . If temperature is very high, we can neglect the

logarithmic term, thereby A@)goes to vanish and the theory is asymptotically

free when the temperature near

To = ‘ff =L7AN
c (3.35)

2
If m £ 0, spontaneous broken may ocuur at the tree level. In order to
avoid the trouble connecting the imaginary terms in (3.34) , it would be

better to adopt alternatively an off-shell renormalization point ¢0‘

¢ ¢=¢ (3.36)

: 2 2
where ¢Cis chosen such that ,\¢0>>>lm l. The one loop temperature dependence

is finally found to be

2
3 A7 e
omt P e (3.37)

AB>= X+

2 z ' o
where e = exp (-27 - _3&) . It is therefore apg‘rent that )\ increases

with temperature P“1.
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. 1.3 . . .
3. Field theory on S x K manifold, compact spatial axis {ié}@S}

Following the line of the finite temperature case, we can also compactify
one or more dimensions , namely, the spatical dimensions extend for a finite
length and the extremes are considered coincident. If only one spatial axis
is compactified, the manifold has a Slx R3 topology, which likes Minkowskian
space locally,but different globally.

The gquantum field theory with the compactifying time coordinate is usually
called the finite temperature quantum field theory in the sence of its
mat&%atic prescriptions being exactly the same as those in a finite temperature
quantum field’theory. We also find a close analogy between quantum field
theory with a compactified time axis and one with a compactified space axis.
This can be easily understood by means of Wick rotation t =+ -iT . Hence
the Euclidean Green function in SlxR3 manifold used here has the same
properties as the thermal Green functions given above.

For a single self-interacting scalar field theory the Lagrangian density

is as follows
J(CF):: ._2{..?4¢ 2'l(¢ _ %mﬁéz__é\_;¢4

1.3 '
The flat spacetime with 8 x R topology has the metric[26]
2 2 2
JS = dt "dx,z— dxl - dx,

where o< t, x2, x3< +o0 , whereas 0< xls’L and the two points xl = 0,
x2= L is asummed to be identified. The 0(x) is a periodic function of S

so that the four-momentum %Lhas a discrete component [§==j%?£ , with
n=0,+1, +2, ... « The effective potential can be computed by the usual
way given in (h .II since the local dynamics of the field is unchanged by

the closure of the x1 axis. The effective potential up to one loop

approximation is
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l
=~
~
U
—
4
<
~
~

V&

W@ = Fwe * ¢

V:(ff;) = -tk J[Enz(/iz‘mz' }&4’;2) ) l{= (ai 2 dkdkdk,

performing Wick rotation t-+- i7 , correspondingly kd~>ik4, the one loop

correction to the potential is
~ 3~ .
@) = ZE— S AR 2 (B ar> (5.39)

2 2 2 2
where jfe dk,dk; dk, ) k= (_?_R_"LZ.) +f, + b, +/E M 172"’")L?>
What we 1ntereqt is the small limit, L M << 1, which is analogue of the high
"
temperature limit in finite temperature field theory. We can expand \4(¢J

2 2 [2[]
into Taylor series around L M = O up to first order

" L “ 2 £ -~
Vid) = U@d> + HEU > + O .
3.40

L I3
where 1) and U] are the expanding coeficents of following intqgr&fs

L A L A 2

(0 = V@ = dk gk ‘
U; V] /Lzﬁ-;=o (27-) 2L 2 j

¥z 2V,@) (> (ip 1
Ud) = ZnE2 ] = T 2 \dk T2 f (3.41)

M) 2 (zryz[ * fe+M
) LM=¢ LM'Z:G
[=271[28]
Using dimensional regularization ’ these divergent integrals can be

calculated in a D + 1 dimensional space by a substitution

3

IR — = [I%,
[ig1[25]

Using following notation

Iz r) = Z Lk /

K:+22-k +H +i8)%
(K r28:K +H +i9) (3.42)
.2

h both k d are D 1 dimention vectors kz— k + (2tn,) +k2+--~+ k2
where bo . an gq r + y =K. - S »
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and the dimension regularezation formular

2 B 'DJ
T /3)=f(11;< e w7 PRI (- -R) f
/ £ <k£2+ H)a( P(_.%) P{O() HO{_[@_%

(3.43)
then shifting coordinate origion in momentum space

e
%u+'fL= k and saparating
f
discrete components k = Zun

3 and q from .others, the integral can be evaluated
as follows

&
7 P2 f
I(Lx2H) =
HG?) 2nN 412 _ g2y~
[(Z22 155744y~ 27]
% -0 2(3-2)
== 7[ = 27

P
Teo (Z) Fle-z; b5

(3.44)
(for the definition of F(X;a,b) and other details, see appendix A)

In ocur case, a = LA b = 0.

27’ By virtue of above notations Z§k$) can be
expressed as
£ oy 2
L(e) = @ry’zL Iy 1. 0.4 (3.45)
The final result is ( Appendcx A )
LM Uid) = 2’:; |
(3.46)
L oA

In order to compute U (¢), one may consider its derivative with respect to L

%%j&%&(i&mﬁ: -2 Z_{J (2’“2 !

——

- = i% I,((il { 00) = - 66235 _ RE

(3.47)
Integration of (3.47) gives rise to
2
L oA T C
U, (¢ ——(-{—523 7 (3.48)
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where C is a L independent integration constant and can be negligible based
on the dimensional consideration. So the one loop effective potential in

small L limit turns out to be

L z ”
V($) = - L L (3% 247 + O

T o< T 2442 (3.49)

The first term depends on the global spacetime geometry, which corresponds to
zero point energy density of free energy. The second term tells us..that if the
field is massless at tree graph level the one loop radiative correction will

. .. . [151/1€] [22]
generate a mass owing to the nontrivial spacetime topology .

2 __ A
e 2442 (3.50)

In such a case, there exists no spontaneous breaking at tree level because it
is massless. The one loop radiative correction may generate a positive mass
for A> 0, so that the symmetry is reserved even at higher loop and the vacuum

~
¢ =0 is stable.

E2]

For the massive field case, (3.49) shows that the one loop correction

generates a shift mass owing to the self interaction and spacetime topology

PP S
- 24 42

2
If m<0, there exists spontaneous symmetry breaking at tree level. As it
1
is well known, the spontaneous symmetry breaking can be reapred as soon as one
loop correction is taken into account when the compact length is smaller than

the critical length Lc,which is derived by

id P2 Jie 2 (3.51)
247 1g-., 2 c 2am?
L=Le
(3.52)

This implies when the peoriodic interval of compact space axis is below LC,

the positive correction Anfz becomes larger so that it may cancell the

A
24.[2
2
negative mass sguare term m< 0, resulting a positive effective mass mR =

+ > 0, consequantly spontaneous symmetry breaking disappears.

24 L2
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A ———
As a result, the vacuum state at tree level ¢ ::iﬂigﬁf is no longer stable.
-~ ~
The vacuum state will locate at ¢ = O instead of ¢ # O if the one loop

correction is taken into consideration.

By compareing with the finite temperature field theory, one finds the
extremely analogy between the inverse temperature ﬁ and L. Replacing LC by

ﬁ: in (3.52), the (3.33) is again recovered.

4. Zeta Function Regulization

In order to calculate one or higher loop contribﬁtions to the effective
potential, oné must adopt a regularization precedqg to remove the divergence.
Hawking's S function regularized method is powerful as far as compact
manifold is concerned. For the sake of convenience, it would be better to
work on the Euclidean manifold at beginning. The action of a massless self

interacting scalar field in euclidean manifold is

i A1

«

S [¢1 = _go{;(w dz,

, & A 4
L, = - LTavdt- ¢ (3.53)
The generating function and effective action is
s @ + S, Jeodeo ]
*LTE J
Zel1] = [o¢ e ’
Welsl = ipy[1] = -% Ly Z[7]
- < —-
R3] = W7l - [dF, Joco
M
SNE[T] - 5(”
°J (3.54)
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The effective potential is

fE ) o ra - €. " A N
V()= — vy i1 = %é, » V'edr «cxs®s
(C2n — _)\\ r\4
V(e ¢
i34 3 - 2(d7, ({g deoAceasdey >
V& = = phafoge Tm
_ (=
(3.55)
Ace) = (=0, + 23> 3Cx-y)
(3.55)

When the background metric is real and positive , i.e. Euclidean, the operator
A will be real elliptic and self - adjoint, therefore it has a complete

spectrum of eigenvectors %% with real eigenvalues X,

A% — Q% | [debt, = %m

(3.57)
so that the field ¢$(x) can be expanded in terms of the Qﬁ(x)
by = Z Cop (%) .
~ " (3.58)

The measure‘fkﬁ on the space of all field'¢ can be expressed in terms of the

coefficients C,

He¢ = If‘jﬁ%dcn (3.59)

where/;is some normalization constant with mass dimention. From (3.37) and

(3.59), it follows that

~Lfdutad
z[¢] = (D¢ e d
- La,Cs

= £ e
gﬁ_’?dcn

_ =L

=1 /Ax.cz,z ‘

(3.60)
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and

“ . {4
Viég)= —— 5 , G4«
2wtM 5 A o , (3.61)

which is divergent, because the eigenvalues &% increase without bound. In
order to regularized it, one defines a generalized ¥ function from the
eigenvalues of the operator A4
i -5
T(sr) = 2 a4
A (3.62)
In four dimensions this will converge for Re s > 2, but it can be extended to
whole s plane by analytical continuation, with poles only at s =2 and s =1 ,

in particular, it is analytic at s = 0. The gradient of Zeta at s = O is

formally equal to 3Z£§Ck , thus the regularized expression of (3.61) turns
I
out to be
o L [elor+e@p o |
¢ 2Vt M -
(3.63)

[17i 1 f 1
1
Consider flat spacetime with a given topology of &£ x S x 5 x S by.making

periodic identification in each of the coordinates. The periodecities in the
time and space coordinates are taken to be P, Ly » Ls , Ly respectively; then
the volume of the manifold is Vol M =:F1wluL3' The eigenvalues C%v of operator

A appeared in (3.62) are

2
a, = %¢z . (zn z) - (27u2; (27*@ 27'/24) o en

where N stands for the set ( n,,nz,na,n4) which takes on all integer values

respectively.

f 3
The effective potentlal in the case of S x R manifold, may be easily

E]
1 3
taking the limit p » L, L3——+»oo . Therefore, the'g function in S x R

1
obtained from S b'4 S X S x S case by assuming F, lé, L > > L1 and

manifold turns out to be

<(s) = (_é_;_ X‘E")j [ <};1’_,.(211'/2 *752:[
(3.65)
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2
-~ 2 2 2 . . .
where k = k2+ k3+ k, . Introduing D + 1 dimension momentum space and using

(3.43), one obtains

A
K +a)5 P () 25
a’® = f%—é;’ + (;%f¥3/f

Finally, we get
1

LitsB PETs-2> , 4 5“2‘:’

Eiso> = )
4772 T(s) (% e (1* N/ )%
L2h3 B o 3-25 W‘;)F(S"‘f) .DS‘
- 472‘2 L/ rf(s) ( 2/
2n (3.66)
* ALE
where VU = (for D(s, 2 ), see appendix B).
s

¢
To calculate € (0) and €(0), we first calculate € (£) in the limit §— 0

{ see (3.68) ) and then compare it with the following expansion,

S(e) = (o) + €fer-E

(3.67)
The % (&) is given by
1133 i( )(f 2803 FOTED(1+ 3¢ )£) D2 .
5(¢) = Py == Py ( - +lg(2,.o)+a’£;)
(3.68)
It results in
oy = 2B (X Ly MBRDD, Gy = Lblsl g
28w
; (3.69)
ALl B 5 1617y 3NE a4
sy = "';7-[3(“)*( = L ‘)512r4$_7
(3.70)

Substituting (3.69), (3.70) into (3.63), the renormalized effective potential

up to one loop correction is

Py MIAga 1 AR b, 2
V(¢ = Y ¢ - “r: (T)’Q‘}/u ('\ )[3 7‘ j!ﬁ ‘D(‘? “)
(3.71)
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The divergent term in (3.71) is Ly independent, so that the renormalization

procedue can be carried out as in Minkowskian spacetime in the limit Li—»oo,

by virtue ef (B.1T)

Z MEA g4 _f o x$37 21 AF 22 4
V(¢)£~;—::~ " ar (%-)'eff/c * ANt $ - 2D

(3.72)
Then normalization condition (2.46) can be imposed to (3.72) to fix counter

term

2 2 Aa?
= _3 A A 25
’SA_‘ 2A [ £ = + 2 ]
(3.73)
Inserting (3.53 ) back into (3.71), the renormalized effective potential turns

out to be

2 2

2 2 2 4 ML M
Ay JL"4~_2L_ F_ R o) - X 0, —t—
We) = 4 ¢ 4fr? ¢ 34f 269 25¢T ¢ 3212

(3.74)

>

The energy density of the vacuum state ¢= O can be derived imediately from

(3.74)
", >
(¢=0) = -
Vee=2 QoL
(3.75)
and thetopological mass is
prd -~
s d V) . A
e = d@z :P‘:c 24L,2
(3.76)

So everything is in accordance with what we have obtained in precious section.

[22]
For a massive self interacting scalar field , by using the same procedue

as in massless case a similar result can be obtained. The renormalized one
loop contribution to the effective potential , which bears a resemblance to

(3.71),is
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A

V() = _L('hz—r.}‘m)q'; + 27(/\#@,\)96 é‘?*(zz-f ),g,{/u

- A7,z AV 16 2
e (280G 4 ) - L0 (o i) 3¢
(3.77)

- ~
where 4 C is a global counterterm to regularize energy density of ¢>= 0 state

finite as before. Imposing normalization condition

e =7
;V% { = “272?,2
d¢= 2.5

{3.78)

where the normalization point is chosen to be one of the minima of potential

- —ém?
r= [

the counterterms can be fixed and the renormalized effective potentiél turns

(3.79)

out to be

‘/(‘P L= V(‘P) - m(é"LM+Z 2&47’[) 2 ‘D() 2

(3.80)
oL = Ap2g? 74 M__f\wz"z_L.i’
i@ = Forde At tha - 223N L34
(3.81)
2 }"A A
where M = m Eﬂ? V(¢) is the usual one loop effective potential which is

independent of the non - trivial spacetime topology.

A
In order to know the behaviour of V(¢ ;L ) for smalyi, we expand Q}({,b)

as well as V (¢ ; 2 ) in small L limit (d<< 1)

3 4
n’ { pfo M, M 2 -2y
W¢ L)~ V(¢) (’—70[‘ * 24X M (27f * AT? ) * 2 )

(3.82)
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where 7 is the Euler constant. (3.82)shows that the minimum of the effective Poknﬁa[
occurs at $:= 0 again in small L limit even if it locates at 8 £ 0 at tree

level when m < 0, that is to say, the spéntaneous symmetry breaking is

restored by the radiative corrections, i.e., a phase transition from spontaneous

symmetry breaking phase to symmetry phase occurs. The rencrmalized mass term

can be defined as

e »
M = 7’2,: = 'Zzz+24lz
dé* fe
g=e (3.83)

where the last term corresponds to the topological mass as mentioned before.
The critical value L which characterizes the transition between breaking

c
symmetry phasé and symmetry preserving phase can be decided in such a way

that the effective mass term vanishes

which gives rise to

2 A
lb - 24 32
(3.84)

in accordance with what we have got before once again.

Repeating the same precedue and calculations in previous section, we
can also investigate the spatial periodic interval L dependence of the
coupling constant A (L) : if m®¢ 0, we will find A#)increasing while the L

decreases.
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IV. QUANTUM FIELD THEORY IN CURVED SPACETIME

1.Static Closed Einstein Universe [16] [31-B4]

The static Einstein universe is an example in which both the curvature
and non-Minkowskian topology are present. Let us consider a more general
case of a conformally coupled scalar field theory with the following

Lagrangian

/) 2
D T - T S
W) = jﬁ“¢ T4 ¢ (4.1)

where R is the Ricci scalar of the classical background geometry. Such a
massless theory is conformdlly invariant when the potential V(¢) = 0 . In
this case, we may need to add a {%&a term into the effective potential

given in the previous chapter.

| (I g (o2 +T¢)
z[7] = jweﬁf "l

~ 4 [dxjg fdug 400 A e

")/\ '{ 4.2
Vedr = — “‘*’%thﬁfﬁe (4-2)
A(xry)= (- *%5\52"' “&LI?) 50:-3{/)
The generalized § function can be defined by E??)==%;.Cl;° ,where

aN are the eigenvalues of operator A(x,y). The effective potential then

turns out to be

a. R 22 A+ A 24
V) = < * —/¢

{ r 2
—_— ( (o) n
2[/’:()/"{[50)-*3 ’ /“J

(4.3)
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The metric of the static closed Einstein universe in Friedman coordinates
is

ds' — —dt*+ & [ di"+ sona (d6 + sii6d$ ]
(4.4)

where 0« KET » 0<esyg, 0 < (€27 ; a being a constant scalar factor.
The manifold of a constant positive curvature possesses a RleS topology,
i.e, the t = O hypersurface is a 3-sphere of radius a. If we work on finite
temperature, after Wick rotation t— -i7, the topology becomes Slx53 with

the volume of manifold

(4.5)
and measure
4. 2 o
d%7 = dvdydedy a’si'y 5in6
(4.6)
The Ricci scalar in static closed Einstein universe is
&
R = o= '
(4.7)
The eigenfunctions of operator A can be chosen as
~2TiR 4 2 ot
E g (¢ @Sia" 5 -, (s
(7763 = Lo Ly (est) )

of
where Cp(x) is a Gegenbauer polynomial[éS][36], and N stands for the

quantum numbers (n,k,l,m) , n=0,+1,..., k=0,1,2,..., 1=0,1,..,k, m=—F,-%+1, -

.., .o The eigenvalues a, are

2
- 2 Ch+ 1)
CLV _ €?_¢,2*—(q25&,) -+ 5
(4.9)
2 k2 2
which are (k+1) degenerate as 22 2. = (k+1)
L=o m=-R
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The one loop effective potential is

e - I

—_ ’ p 2
V&= - [ sl + gt £,08 | (4.10)

In largeﬂ limit(i.e, low temperature), the generalized ¥ function is

i o k 2 a2 275
€s) = .ﬁg;_ J/{;ZZZ[’%P+~(-/%Z{L+I"-4
Sl —oo k=0 f=6 =R
(4.11)

Following the' standared dimensional regularization procedue, C(4.11)
becomes
__L e a2 (2 )
=orG-4+ ¢ Ck+0)
(s> = L GE Y~
2% P(s> ko £ m (4.12)
Introducing k'= k+1, the summation can be symplified as
L
w kR ol /\&2"‘5“2 25-0 2 g2 )
For (s A) —a 2 e
fro Fo w4 z oy (K2)%7%
JS*'Z)[ { 7 j
= 4 fa = S~3 - 5~/
S LR T
Y A$2@2
where L= > . Finally the ¥ function is found as
A
PEP(s-22 23—1[ 3 2 4,51
= 2 )~ -3, L)
T(so = 57 oy @ [FE0-2fGE 0]
(4.13)

7
where F function is defined in appendix B . £le) and /ey can be obtained

by computing €(£) and comparing with the expansion g(s>= g(:g«#gfo) &
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The renormalized effective potential is

Ay A4SA g ne AN o, bt X 42
W3 = o4 o ¥ - m e L ®

(4.14)

chm [REo- PRO]

Since the divergent term in Eq.(4.14) does not dependent on the curvature,
the renormaliration can be carried out as usual way in Minkowskian spacetime.

Taking L — oo and imposing the normalizetion conditions , we get the

counterterm
2
SA L 3A° iy A2 -&Aﬁ; +3_s_*]
47 s(2m? '755 /uz }T’l z é (4.15)

Where @, s rencrsbozation pe<nl Given by '3‘%‘{?!@‘ 5b= A

The renormalized effective potential up to one loop correctlon is estimated

as

Ay >\ SR A LA S . (200~ L E(T
d> = 44 +2a2¢-3“’{,¢ 2 Eu (F) Foalk ( F)@J
4.16

It would be easy to generalize above result to a massive field case

2

A2 2, I
by the substitution of “5— —~ M =7 7~ in one loop correction (4.14) .

The renormalized effective potential is given by

2 2
D o At g g M, e’ A
Weo = — z i <4 < (4.17)

-f-

_ [ Rz =R (L0)] 45 ¢C
4dna

P 2 2 A
where J=amMm , 3C is a global counterterm independed on ¢ and a, which
is necessery for normalizing the vacuum energy of the Einstein universe

in the flat spacetime limit. This means that 3¢ would be fixed by |(@=J = ©
Q=+ 9
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i o ¢

3C = 647—52//-

3
2 g2 (4.18)

e 4 N A
Meanwhile, normalizetion condition (2.41) may fix ZSA and 2m in }/(4’)1 ,

G == 9
sa = - eX, aiedd
eAm? é4m2 Az
-2 Nt A 2 (4.19)

where § is the normaliz@tion point. Finally, the rencrmalized effective
0 .

potential in static closed Einstein universe is

Vday = V(&> + L $*- ol (8 == He %)+ [F(?o) Z)F(lujj

2a* e4m?
204 ¢2
a 2 A2 A & i ,\f _L A )

,._L. Lot 208% A7)

(™%

where V() is the flat space part, whick ¢s separated frm the Terms indaced by The curcuture

2 2
In large curvature case, namely a M << 1, V((¢,a) can be expanded

as follows

M L Mql

g/@; a)l = V(e + za*q; 64_”,(&2 a’ z) 4—3?6?7"@2 T %ria T samt
aH<t?

(&.21)

A
It is easily found from (4.21) that 0

A
= 0 is a minimum of V(0,a), when

the curvature becomes large enough . In such a case , the vacuum energy
is given by

2 4 4 2> z
m
V(‘?":C' a) = ! - - 7

LA
’ Lpondd | na’ | 32t am ez £>

(4.22)
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and the renormalized mass is

2
"R = j;‘ F=c ~ e i(f_%”r (4.23)
where O(m4) and O( nfln mzaz) are neglected. If m2+ é;‘< 0, there exists
spontaneous symmetry breaking at tree graph level. Taking one loop quantum
correction into account, when the curvature is larger enough and exceeds the
criticle value, the {f># ¢ vacuum state will be replaced by &>= 0, and the
spontaneous symmetry breaking is restored. As for the criticle radius of
the closed Einstein universe or the criticle curvature, it can be decided

3 . . 2
from the vanishing renormalized mass term me: 0

S SRR W
d. = (1= G0 (4.24)
R('f\" “6’%(1*?677.2.)

(4.25)

By aid of preceding analysis, it shows that only if the Einstein universe
has a small spatial extension comparable with the size of elemental particles
just as the early stage of the universe, can the phase transition occur,
meanwhile it is found that only the symmetric phase can exist in a closed

universe during the early stage of the cosmological expansion.

We now concentrate our attention to the curvature dependence of the

coupling constant. In virtue of (4.21), if n3> 0, the A(R) can be obtained

by “
d V(@; >
R):= e — 322 2&’
)\( ) c[c?“ $=o = + 327?2& c

(4.26)
where m = mjexp [—27-2] , which clearly shows that A increases with.R.
If nf< 0, there exisls spontaneously symmetry breaking at tree level.
According to the same reason mentioned in Ch.III, A must be defined off

shell like in (3.36)
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fv@;ar | ELY i
Tde+F = A+ gage e 3not

A(R):= (4.27)

$=¢,

2 2
where ¢ = g exp[-2(F +7)] . The result (4.27) is quite similar to (4.26)
Therfore the A always increases with R both in m2> 0 and mz<'0, which is

different from the finite temperature case in flat spacetime.

2. Zero Temperature Field Theory in Static Open Einstein Universe[Si][SS]

The maﬁifold of open Einstein universe has R'x H3 topology whose t = O
hypersurface is a 3 -~ hyperboloid. Consider a case of self interacting
scalar field conformally coupled with the background gravitational field,
through 7§-¢F term. The Lagrangian is conformal invariant when the mass

term missing

X = -1g 98¢ - - B¢t

(4.28)
Its metric has a negative curvature in Friedman coordinates
2 . 2 .42 .2
ds"= g odatdx® = —dt’+ d[d% +sink T (d9 7+ Siod )]
(4.29)
where a is a scale factor , while the Ricci scalar is R = - g% Because

the classical potential is ,ZL(,,,;"’_ a—f})fpz-ﬁ —},qﬁ , the conformal coupling
) 2

provides the field with an effective mass ,af== e — é; . Lfnf;;%} the

minimum of potential lies at (&)= 0 and the theory is symmetric under

reflection transformation. If 0< w2 < ét , the minima locate at &> =

j%ﬁggzzgij;;s.’ so that the field has spontaneous symmetry breaking even if
722 >0 , due to the negative curvature of the background. Increasing

curvature may lead to a transition from symmetry phase to symmetry breaking

phase as soon as the critical curcature Clc is reached ( a.= 1%’ ).

As for massless field , spontaneous symmetry breaking exists already at tree

graph level since the minima of potential locate at <{¢>= {/;%;, different

from zero.
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When the quantum corrections enter in consideration, the effective

potential of one loop correction is

- g,ﬂffx,@‘ G Alx TP(x>

i A
x5 V') = Pl (04 e (4.30a)
Az Y) = Ak 2 d(xg) = (-QC-EL, ﬂf) S Y)

(4.30b)
where the measure cﬁtr@ = q?’Sin/z:x sin@dcdxdo dP P and 7=7{
the covariant d'Alembertian(39] (.= jy?“g%f"ab M = s é\_&}* .
Performing integral of (4.30), one gets

, €3,
fd‘%ﬁ{/(q&) == ~7§~7;,2,1Am:,5)
(4.31)

The Green's function of differential operator A is defined by following

relation

A G by = St 4

(4.32)
which has a formal sclution [40] [41] [42]
- “©Q ' -4s _ 23 |
Gy = AdxY)= ofdse ~Ofds Kz Yy so (4.33)
(431-[44]

where K (%, ¥,5 ) is called heat kernal which satisfies the heat equation

AKxYys) = alf(:;‘{_e) (4.34a)
and boundary condition
(4.34b)

( in detail , see appendix { )
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The heat kernal expression of one loop contribution to effective potential

is given by ( see appendix C )

oo
U.)‘~ I ds
% ._-—2-Df--—-5 Fex s (4.35)

where K (x x, s) = lim K(x,y,s), and the integral is divergent . In order to
y—x

regularized it , one can resort to dimensional regularization method.

[42]

In 2w dimension momentum space, the Green function of flat spacetime

can be derived as

5 A
Gy = (s & %

s )=
so that the heat kernal in flat spacetime is

2
~MS 2
~Otx4)
e ,
e és (4.36)

A

where the J{x y) is the geodesic interval between x and y. While in curved

[37][47]

spacetime the heat kernal can be written as follows

2

2
- M5 - Tl Y/,
<4 Oixy ‘
@ns)* PEL cosechTGoe (4.87)
S

k(xf,‘%zw):

As a result , the dimensionally regularized one loop effective potential is

o «© ‘Mas
= 13 ;!:w e (4.38)

The renormalized form of effective potential is

~ Pest 27 f g3 xIA 34 B (ds THS
Vd) = F5— -5+ b T € 90 (4.39)
' [

where & C is the global counterterm which normalizes the energy density of

the vacuum state being zero in the flat spacetime 1limit, namely, V@&Q) = O
. Q-+
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2
-7 3

oC 2(4?? st{m e (4.40)

2
The mass and coupling constant counterterms §m , A can be fixed by

normalization condition

I
©

3V(¢) ,
3¢ Lp

PMTCP
>¢4 L%

SU@ | = - o (4.21)
24 P :

4]

As a consequence, one gets

E wcls 2 33,2 @4 3 ~%s
SA = Wfs' (3X5-6AS¢ +AS5E ) e

2

Y = 2,2 -PZS
" 2(4?5) { T (s +455°8De © + O (4.42)

Inserting &C, Snflfk back into (4.39) and carrying out the integral, then

letting w — 2, we will find that the divergent terms may cancell each other.

The final result is

A’

4
A
+ Am —;4@ tmpg, 2k |
~

Although the quantum correction of V(¢) in curved spacetime has the same
form as it has in flat spacetime, it is curvature dependent because the

A
normalization point ¢ which is the minimum of V(¢) is a dependent.
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3. Finite Temperature Field Theory in Static Open Einstein Universe

The hezt kernal formalism of the one loop effective potential has many
advantages, one of which is that the effect of temperature on the propagator
is just to add a é}—functioqéorrection. In consequense, the one loop effective

[37] 9] fp4] la2]

potential at finite temperature can be easily written as

(2] 2z

7] .
% -Ms
Vet o= ”-@‘4—75 ;fsﬁu e g —zf;gb (4.44)
where é%(o, t) is the third Jacobi theta functloL48][49%1n detail, see

appendix D) which has the Jacobi transformation relation

8,5t = |+ 6 (0 -F) (4.45)

(4.45) would be useful later as it allows a duality transformation between

the high and low temperature regimes.

t 4 I3 d’S —MS 47z S
—_ - o Zzo (4.46)
V (45 !BJ Zﬁ (47—) SCO‘!‘,;, = % 4 (32 )

which is suitable for high temperature expansion. The renormalized one loop

contribution to the effective potential is

2

—

A N4 g (ds M

(4.47)
< —Mzs
In high temperature limit, M << ?{ , € can be expanded into Talor series,
consequently, the one loop correction is give by
M
@> A @f) “ds " amis -
V. pr= - ) Y M w2 G, p-’)— f"f;‘@*}'
K 28 (a4 . P % ‘?(jo_
fs()w ' Pl (4.48)
: o gt
where §'(0,t) denotes the summation;Z; e without n = 0 term,
h=~p0

while the last one is the n = o piece.
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By means of following integration relations

o0 2 -
j ds‘ e’.MS—-—-— "\/{2@ ’?7(—(..@)
st "" < (4.49a)
Z 2
to oo G0 ~HIT 5
ds 4 A2S 4 dS ﬁz
e = 2 e
260-22~1
= [EZI. . r__ 1 1
¢ FJ :2:‘3 [pRA-20+1 Ma-ec+z )
- 2 (opmt 2240200
= (470 B 2B (20-2e0t1 ) [T-0+ £ (4.49b)
the cone loop effective potential can be evaluated as.
‘ ( 2" 2fe0-%) R/_L
o k(T r e &) [-2e
= - ———— PL- + 22 5 &, (1~200)
V 2/5 L F(z W)lv, (4E2)3L“0 /5’ 4
z . 2] & 22 A
3w 320 - (h-+7 Y J-2eotl
_ _f/’.f;(ﬁ:__i 24 '%(2—-2@)'(’22‘ ¢ f’) M Tz — & [M-zwﬂ]
(am*y7m« asz BRI (Amt)tTVE R
(4.50)
i [49] s
where E% is the Riemann zeta function , defined as g%(s) = 22‘ —
n=1 7
which is analytic in whole s plane except for a simple pole at s = 1.

&0
When «w = 2, the first three terms in (4.48) can be computed imediately,

the 2 = 2 piece in the last term is divergent because it contains E%(l).
Letting ‘2= 2 + £ and expanding it around 2= 2 , we can separately get the

finite part and a pole term. Finally the potential is

4
“, _knt L wm gm MY EM (g BHT 2 42,
Vs, e = g0t " 2482 " onfp  4@my £ Ay a7z 1)

¥ w 20-3
— (e >, (:—1)/Z (- %) £
{5 n=3 T’(”“’J(‘@H’z)l—j’[z

(4.51)
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—ht
< (47 )*

zero temperature case , hence the renormalization takes place through the

The divergent part £ 1is @ independent, just the same as that in
same counterterms as the zero temperature case which can be fixed by norma-
lization conditions. Finally the renormalized effective potential at high

temperature limit is

o > 2 3
V(4 p) = —zL(rpi-;g;w +24%¢ o>~ LT - B R

Qo+ 24 3= [27pR

o a2 2y N
[ (ﬁ"_’L)‘i +27J R _ >0 M Fz/l z, (22-3)

4(4 2 (471')3/2 3 e (47’_2)4-3/2

(4.52)

«r
where V(&) is the»ﬁ independent part and is the same as the last term

given in (4.43)

The critical temperature at which the symmetry is restored can be

obtained by making the effective mass vanishing,

2 B
z P1ACH:Y 2 4 AR
e ° = 4: .= Mo T (4.53)
¢ =¢ fe
thereby,
[32 — _ EA { :
c > et L (4.54)

aZ

which gives rise to the relation between the critical temperature and the
curvature. It shows that the effects of the curvature in static Einstein

universe is equvalent to shifting the mass by the conformal coupliqg.



In hish temperature case , the last term in (4.52 ) is neglegible, then

the coupling constant may be obtained in the form

d&* d=o
_ _ 3x%c . 3%t 167’
npmt 32T PR (4.55)
with
o= (Redelde

where 7 is:EBuler constant, ¢ is ncrmalization point, which we have
chosen in (4.41) to be the minimum of the effective potential at zero
temperature.

With the aid of (4.43) and (4.41), we may evaluate the derivative
cf(k(é)kwith respect to $ and redlize that the quantum corrections

will not affect the extremes of the classical potential, so the Q is

still located at

¢+ = (J-.é‘.(,,,z,,~ L

A az .

(4.56)

In the case of O<ui < %; s (4.55 ) shows that .the effective coupling

constant ABR )-will decrease so long as the temperature increases while
/

: o : ! lérm/
the curvature remains unchanggple and for temperature near @ Fd 3

A vanishes and theory becomes asymptotically free.
However A will always decrease logrithmusly if the curvature

(2N
increases while the temperature remains unchangg@le.



4, Low Curvature Limit in Non - minimal Coupling Case

The general expressions of a renormalizable scalar field theory in a

curved spacetime are

2 2 A L4
L= -390 3a¢ - LirrzrIt - ¢
_ o - PU{.N
Tido] = S(¢d - Lo, DA = TI*] +*T7[4]
2
A = —_ Qf tTER +* M
(4.57)
where 'f is coupling constant between matter field and gravitational
background.
In Ch.IIT and Ch. IV, we have pfovided generalized € function

prescription and the heat kernal methods which are powerful for computing

effective action

P31 = -2t [stert 2@, ]

-

rrE1 = 4T T‘d%c €\Mrk(x, x. T )

(4.58)
The former is suitable whenever the manifold Jf is compact so that operator
A has a discrete spectfum; the later is quite general but requires the

explicit form of ka:ﬂit) which may be difficult to write up in many cases.

However , one may resort to the relation between k(x ¥.z) and ®¥(s) which
56 '
is connected by a Mellin transfor£ ]
%] 2
Ss>) = ——7 (4 T i
$) = rés> re t T k&xx=)e

(4.59)
where [1s) is the T7 -function. For small T, K(x x T) can be expanded as

follows



kix x 7 ) =
(4.60)
.
B.= Sdxf5 bn
7
(4.61)
where the bn's are the Hamidew * coefficients and are n- degree polynomials
in the curvature tensors of manifold. The first three non vanishing coefficients

are given in appendix C

In (45Y) and (4.6¢), the non vanishing contributions to ¥ (0) come only
from n = 0, 2, 4 because only these divergent integrals yield ﬁ62}7F4),fT£)

poles which compensate with the infinite denominator [(%) to give finite

result
> ) = 7 7G§"2)
Ste) (47-) (o) ét B (5
= ’—n——-'§dxA§ [ b, VT b. PT+ by } (4.62)

@rc)?

The derivative of €(s) at s = 0 is computed as

2-% 2
Yoy = —s—— Z B0 [~ + HE-D Lo [IE-2)-
<o) e = B0 [~ % M [ T4
where ?F function is the log . derivatives of [~ function. Discarding

terms which van sh at s = O or finite but at least cubic an the curvature

invariants, i.e. n 2 6 terms, one obtains

4 2 2 2
€lo) = fo,('j[-‘?— b, (£ Lab)+ bzmz(&,M- D~b .M ] (4.63)

@)’

Combining ( 4.62) and (4.63), the one loop effective action can be derived

4(&{1“[,—51”(2 Llﬂ) é”(";&%z) A@‘g‘t’/{,,zj
(4.64)

rF] = S81+ 7=

which is ultraviolet regularized . Above result is reliable as far as the



‘ 2
curvature is small compared with M . The first terwéf the integral is the
usual one loop contribution to effective action in flat spacetime , while the
second and third terms contain linear and quadratic corredtions in the

curvature.

For a static constant curvature, homogeneous isotropic manifold the
_ A
classical field ¢ can be chosen to constant < so that the effective

potential can be defined

L [T AL ) - b, M (1~ A1)~{%;£¢z/\z_]
(4.65)

~ (2PN
Vi®) = Ve~ o=
We now are in position to descuss the renormalization of the effective
potential . For the sake of simplicity , suppose the minimum of classical

potential locates at $ = 0. The renormalized effective potential is

;\1(4'5‘) = —é(m%gg +3;r72)<§2+

RN SR SRE R SR
2(4”)‘ (4.66)

The counterterms St SA ,SC can be fixed by normalization conrditicr

«

) q
dyeé ; — o
d$ 6:0

JIVR(%‘) = 7;*2{?

dq"‘)z ‘q’g:c
cﬁl{q(&:) ’ _
d3* 1=
where ¢ is a nonzero normalization point . Letting F? Gh»+§4? F@—71+2LQ?

A (4.67)

~

finally the one loop renormalized effective potential is

r75‘ 4 X ,\135" o
o= Eoder @+ 24 L [3EAe A% pip At + Ay, 16
_ [- 2 23’ b, +1>zma¢”’2 o Abeg? 54&7"}; (4.65)
2(:47r)2 27
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which give the general form of renormalized effective potential of a massive
43‘ theory non minimally coupled to a static constant courvature background of

which the last term is the gravitational corrections.

Basing on (4.6§) , some particular case can be easily discussed. For

instancel a conformally coupling theory where % =:-L' b, =0, b= ——LnﬁfL
] & ! 2 ? p (2 i&‘o
the renormalized effective potential is reduced to' be
| N 2082 pfp o - X, )
@) = £+ Bré s - —[2L R+ QMg ML - A, e
R 4(am)
2 )
Abg 32 ;
[ 4 - 2pm2 ¢ J (4.69)

2(477) z

where the curvature enters linearly at classical level , and quadratically
A

at the quantum level. 1In positive constant curvature case R>0 , $=0 state

is the classical minimum which is stable against the quantum corrections.

Lewever, if Lugrangian is not the conformal invariant, b, would be
non— ze€ro as ?bz= bt-f )it ( see apendix C J. Hence, if b, £ 0, the local

scule invariance would be spontanecusly broken even at tree level.

.
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V. CONCLUSION

Since path integral prescription of quantum field theory and
effective potential is very useful to study spontanscus symmetry
breaking beyond the tree level, first it is worthwhile to derive
detailed expressions in flat spacetime, next ,the‘generalization
of such a theory to finite temperature and compact spatial axis
are discussed. It has been found that the broken symmetry will
be restored above a critical temperature or below a critical length
so far as the one loop radiative correction is taken into account.
Both the global feature of the spacetime manifold of the non -
Minkowskian topology and the local feature of the spacetime curvature

will give new contents to physics.

Spontaneous symmetry breaking is very important in the unified.
theory and it is wellknown, our universe just was in extremely
high temperature configuration and possessed very large curvature
in the early evolution stage, shortly after big bang, so that

the studies of symmetry breaking and its restoration at high
temperature and large curvature is of great significance to the
physics on the point that only after we know much more about the
early stage of universe, can we understand the nowadays universe

much better.

In this paper, the self - interacting neutral scalar field is

dealt with as examples in different problems. As a matter of
[51 513
fact, 0(N)symmetry self interacting scalar field, spinor field
51

[UWJPJ
gauge field and scalar QED have been discussed in many

papers.
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Appendix A

The definition of F(Aj;a,b) is following summation

w - A
- 2 2
F(hja,b) = 2. [(mn+by+ 0@ ]
= -0

(4.1)

where a, b, is real. This series is convergent provided that

ReA>—L, but it can be defined in whole X plane by analytic

. . N T A
continuation, aside from poles at A= 3,-4 ,-%,

following integral representation definition.

B2 (A 4)

Fhe,b)=T a4 w55 + 45&'272)\3"\(:1,5)

-

by = [ (e Re (7“2 1) du

As a,b —+~G, one has

fro = @E) P(12)S (170 Rer <

T A
3(_4(& ) = (275) 77[2)";(2) 41r2 '€ T 24

- 6 © _ _t

Derivatives of £ give rise to
o
‘E—Q‘fk(a,é) = 2xaf,, (2 b
2 2
'521? fi(ab) = _zf\(zf\w)fm(a,s)-4x(z\+f)a £, 6

Define integral

!
I (D, H) = Zfd Ke (k22K +H1iE)Y

k) K,
T (D,a;f,H)=ZJdkz ,ﬂ
o "

(k; t28k +H 12g)

(D, ;2 H) = 5 {fk

Al ! (KE 42fk+H+t{)

The dimensional regulazation formular gives rise to

X P(t-%> , on 2(?““)

= —_— (5 -2
1D x2.0) = T —pe () Fle-2, 2 6)

...55_.

2

through

(A.2)

(A.3)
(A.4)

(A.5)

(A.8)

(A.9)

(A.10)



where

L z//:2
a = ;ﬁ;(H'EJ
_ Lt el
b = 2r

1. . . .
q is the first component of 9, which is a D + 1 dimension

. 2 2
Euclidean vector. If q =0, H =M , then a = '42;’\1 s b =0, one

has
2 % o 07 D
10,1, 0,0 = W) FR a0
a=$ >3
= —21[2%14“5%1 ("zif)‘f_f(o,O)
= 2r
27 (A.11)

3/
so that eq.(3.4 ) may be derived , yielding,

ey LA I(p, 1,0 M) = i
L MU';(¢)=(27[)32L s, . M. 24 /2

The T, and I,u.u can be derived by differentiation of I with

respect to 19‘,

. 24 F(oe-t-?l) -_2_E_p-2ﬁ’ , -k R »
I/LO(D, %, K, H)= T T ") [(K—H) 5“3%{:(«4-;@5) -fﬂa_-?%—f:(u(-{s_?/a,b)-]
(A.12)
7% f’(d“z‘%J (:H': p-za“.z‘g da +(—L—)2__L b & _ 12
]/:uu<D' % k, H) = T s Z ) [/q,,a 2 2m) L7 Rk, (saj“a =

L 2 ,_3_2_ D
t 0= T(/kulz& *’if"u) sarp T " aﬁjl[(""‘z’“?, a,b) (A.13)

where sign %w=(-—1,—1, -~ ), n, =(0,1,0,0 --- ). In particular

M=V=1, and £ = 1, k1= 0, one has

a2 a==» e

b—’ﬂ

%, D 2? - D
I (0100) =T rC-ReEE A il FO 2,a.65]
(A.14)
In virtue of (A.6) and (A.7), (A.14) may ke evaluated in the form

L4 D
2Ty [ . .
I, Gieod| = F rerBER[2Af G0 HE0E @ n] s

D=3 s v = -5

A o 3
= @ PRICE) 5 4 = 5 5

hence, the first term in the expansion of (3.40) can ‘be derived

- C
! fdl."zzl,,(ih"")"—‘-"'L t o

L A
Liced = (20.32&, G0l*
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Appendix B

Define for Re s>é’a series F(s; 2 ) by

oy -5
F(s; ) = 2 (n®+0%)

n= | (B.1)
which may be analytically continued throughout the complex s
plane to give a function which is analytic everywhere except at

s =% -mn, for n=0,1,2,"-- where simple poles occur;

- 2=5 ) -5
FGs )= 2 £ JST’G) Pi(:;s) + T - 5(”2" ') dx

- 2 -3
il C(;+ix){+p2]5;‘[CI-im) +AFJ
2T x

¢ e - (B.2)

+ £

The only singularities of F(s;») are simple poles coming from
the first term in (B.2) given by s = £ - n, for n = 0,1, 2,°*°
while the last integral is analytic in s.

F(s;2) can be expanded in a Laurent series about the pole at

s =31 - n as follows
F(s; 2> = ”‘“:%(ni‘;— » Rl O6ra-d) (8.3)
F(r;0) = é(—‘i)n %—' (B. 4)
AR —%(429"%'?,)—1'—[{%1“25-,‘2 el i”*“’
‘j(u‘-rx’)m%dx jU’“:;;iff-{(l-mwl dz  (B.5)

0f particular interest are the cases n = 1,72 . 1In the case of

n = 1, one has

B (1,0 = 7 .6,
)] f-ix)te
F o) = ;LDZ 1504 *‘Lba&»[“(””) I +‘f["””2:,,£ _[g ) ‘L‘o’
(B.7)
for small &
é
P o(130) = -7b + 2-00% 4@t + Le v (8.8)

for large & . _— .
2 &
F,(l;0) = ~Fob T FU - 70 (B.9)
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In the case n = 2, one has
F(22) = Fo* (B.10)
(2;2) — _ 7,48 J'% Lfg‘ 4 4 2 K
E (22 = -5 g(1+8) +§(145) +7%i)£.,4—;,?0&,[!+(rw) ]

j [([f-zl) +z;J [(f-uc)—fpj dx

P e2™ _ 4 (B.11)

for small &
4 ¢ N
F, (3,2) = 751'6' - ?ﬁj+ (%7- Ho- 7£~$R(3)z, + - (B.12)

for large &

_ o3, 2
Fo(30) = gl T =Y (B.13)
A related series is
£ 2 ) -5

D(S0) = 2 (rR+P) = 2f(5,20+ ) (B.14)

= -f0

which converges for Re s >% and may be analytically continued
throughout the complex s plane, where it will have the same

analytic structure as F(s32).

Expanding
D, (r;
D(s;20) = Al + D(r;») + 0(3""7‘%> (B.15)
Sth- %
for s in a neighberhood of s = § -n
P
D (n;2) = 2F,(r;00 = 2 (B.16)
2n-1
B (r;0) = 2FR(nsuo + 0 (B.17)



Appendix D Heat kernal method

For simplicity, let us start from scalar field
L= +3“o ¢¢ - Frit’- f3re?
whose equation of motion is

(O t3R +# ) PG> = ©

The corresponding Green function obeys

COHER #02) GOrygy = T 30xm4) c.1)

Most of our calculations and analyses are based upon how to
construct Green functions, but a general knowledge of Green
functions is diffcut to obtain. Under some certain situation,
the DeWitt- Schwinger proper time formalism is particular useful
(i.e.heat kernal method ). 1In order to explain it more clearly,
let us introduce a Hilbert space of state vectors [ x> winich are
eigenvectors of the position operator Q, Q(x>~= x [x», normalized
according to

{xfy > = 3L5(x,e)

Jd%gpk><xl = 1
If we adopt a symbolic notation where 1 stands for the delta -
function, A a differential operation, then the Green function can
be expressed as an average value of some operator & in this Hilbert

space

and .A(x,y) = -uc-rgo? +m.2 can be expressed as follows

-%
Acxg)y= <rlaly> = Aeog I Y45

so (C.1) can be rewritten as

AG= 1 (c.2)
which has a formal solution in terms of a parameter s
[ ad
-1 —SA
a=4" = [e ds (c.3)
[
and hence ,
o0 ~SA
Gy = [ds<x|e ly> (c.4)
. .

Actually, s is only a parameter here, although it possesses
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double time dimension [s] = [t’] ( in natural unit). If we
regard s as a proper time, E;AS may be considered as an evolution
operation and (C.4) may be explained as the propagation amplitude
from x to y in a time s summed over all possible values of s.
Defining
(g, s> = e "ty> | Lx.s [=¢[e®"

(C.4) may be rewritten in the form

2] oo
(xy)= }ds ,e> 2= Jds kK(x.9,5)
Grpy= [ds czsiger = | (c.5)
where K(xy,s):= (xs[¥,e> is called heat kernal basing on the

following reason: with the aid of (C.2), one may easily find

K (x,y,s) satisfies heat diffusion equation

-~ oK(xYy,5)
Ktz g, 5) = —_——
A o5 (C.6a)
with the boundary conditions
- -k
(c.6B)
In flat spacetime, the solution of (C.6) is
~#'s - O(x )
— = Yas ’
< ( ;S = e
Kix ¥§,5) ZLTEL e (c.7)
X 2
where 0(x,y) = (X—yf , 0 is the geodesic distance between x and

y. In curved space, the possible solution of (C.6) may be

written in such a form
P % =0t
€ Soewe =+ Foxg.od
@rs>? (c.8)

k(= g.5) =

where F(x,y,s) is a function presently to be determined and
A% j& [-deEC % a‘a)/ﬂy )35"55 . Inserting (C.8) into (C.6)

we obtain an equation for F which are not able t?@e solved in

general. But we can resort to asymptotic expansion to represent

F for s —= 0O

o %6
Ecxys> = 2 Enlx 408 _
n=o (C.Q)

- 60 -



and hence .

- K ~Otxy)

2 (-4
—dxpe T S Eeps
@ms)y rse (C.10)

In the limit of y—» x, which is implied in the operatlon of trace

e

kix gs) R

for calculation of the effective action, o(xy)— O, ti(x V) —=1,

we have
-— ?:23

[
(ams >?

Kix xs) =~ L Enlx>S %

(c.11)

Return now to the expression of the effective action (4.3 )

= (%5 Viér = ~4Trbe A

i
Congidering the functional variation ofl4),with respect to mitric
- T, o
> sA 4 AS -As
SP AT h = A = -3 e s A n(3Ee ™)
. ¢

the effective.action is

AS

[~-]
[{p] -
rU= 4 Tr»of ,é-efs e

(c.12)
And it's average values between states in above Hilbert space

give rise to heat kernal expression of the effective action

-]
& u)
A
= [&JFy@ = z Trof";s K(xg <) (c.13)
where Tr denotes functional trace over x and y
| « (3] .-L < ‘OJ
[dx T V)= 3 fJ’CJ? J—f&(u s) (c.14)
whose asymptotic expantion is
u) 2 ’}/ 3 M.S‘ x * a’
R N T IS LR (I
V‘*‘\/’— oy
pp-2x(ry "

where Qn(x) are local invarints of the curvature and gﬁx)
invariants of the intrinsic and extrinsic curvature of the
boundary and h%dsx the induced measure on the boudary s M

Ab A
boundary ). If the manifold M has no boundary aw==¢u only the

(ﬁ = det h, , h = %&y‘eknb’ n, is the spacelike normal on the
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volume part b, contribute and b, vanishes for n = odd and the

divergent terms only come from n = O, 2, 4.

Tn the massless case m = 0, the first three b, are
b= 1
b, = (£ -3DR
2
LM, et T (Lo )R+ F(F-DOR
b= R Ry~ R R |t F(F-3R* 3
Appendix D Theta function

D=fine a fPunction s
o —Rt+28:iZ

3"(9) = S e

h=-co
which has a property
$eztm> = fcz >

If q = !

, we have the third type © function
7
@(e,t) = [+ 28 Cee22 +22¢m4g + 22 e b2 ¥ -

in particular,

o Rmit
Gee ) = G) = 2L, ©
so that
2_2
Ly oE
O(e - & = AZ:.D e
3 7  awmis - o



Appendix E

ke 2a-1 20 (-
m -5(4@ 1 MG-«) /3 o MP(E-e)  s-2e
Vo= - [TG-M +W$( 2482 —"*"‘“‘( g w 28 G
[CAPN A P(esd mw) sevi-iw
vz 2 CE M TR B s a1

EVATVBTVC*VJ)

If w= 2, the first two terms can be evaluated imediately

"% 3
- K(em) 2y = - EH
2 )%,( 3 i
Vo= - 7{!’(7;% s ~ ope (E.2)

where following relations are used to derive (E.1) and (E.2)

S ¥
X (a)= 2. ==
R =1 2% Qo

In order to compute V., we may make use of the following duality

4

relation
P08 (s> > S(-5> (E.3)
T % = 7 5%
hence
% - 3
k(41 m? P -8 (3-2¢) F.;-aw
VC’ = e (4’7(35—‘0 72_% -t
_ kM Mm% g’ B (B.4)
4m3%? ! T arsr TZ' = Taaer
o= 2
n
The 2 = 2 term is the series Vp is divergent because it

contains 5;(1) , so we must put 1= 2 +& and expand it around

=12,
(.,)"tyrj/’ 2.3 € P(/Z—é)S,,c’m-s)
V@re) = - g (MED - ~
o P(es 0T (e.5)

=2 +&

In virtue of the expansion relationsbelow  Jdern & — o
rd

2274 2,5 2 2 3 2 2 2
(MB) = (MBD + & (FM) £n M
(ants = (any + E (4" L (47
8 Gr3) = S(1r2e) = <5 7 T OGO



Pa-%) = Pli+e) = PE)+er(d)= [T~ &7 (rr 22,2
peetty = PE+ = 113 tEP, = 2+ E(3-2r)
_ re -1
> = 5 ., = - TrZ
reo =7 Peso= -27+3 , pré>= ~fil7+2£:2) (E.6)

the divergent part in VD can be isolated, yielding

3/2 22 3 22 2
g = - He §[ A5 e (S L 1 - 2 (7 300]

/
F;.* 3

[fTS)*S(_s»zrv)j

x(;l-{ +Y + 0(25))}
3-2ri 1

_ 3, 44 3% 2, Y%
= _An’ Mpedr f ir” , Mg B _ _2n2r L
fe 2{{477:)3 (zg * 70~ g% 2 (27751')[&477‘ F(re3kn2)==3= 2

= MY L e,
L _ PV
aanp ¢ ‘H-«m)’[&1 ams TET Mmoo 7]

4
- _ w1 wmt Y BM [op 2+2 - 27
4wy & a@ny b M 4(470‘[ 2 J

(E.7)
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