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1.1 INTRODUCTION

The search for periodic solutions of hamiltonian systems, for
which one of the‘main sources of inspiration was the field of ce-
lestial mechanics, has a long history.

During the past few years there has been a renewed interest
in it and a considerable amount of progress: many new ideas and
methods of solution developed.

We don't intend here to give a systematic survey of the re-
sults obtained in time. For this we refer to the paper |54| of Ra-
binowitz or to the lecture notes |71| of Zehnder.

Rather our goal is to consider certain particular problems in
this ambit and to compare different techniques, which allow to ap-
proach and solve them; to show how new tools were introduced to
get rid of the encountered difficultieé.

We will devote our attention to problems and methods, which
are of interest also in other sectors of mathematical physics. Pre-
cisely we'll be mainly concerned with the search of critical points
of a functional (problem to which our original will be reconduced).

To such an investigatioﬁ one is led starting from a variety
of different questions. Everybody knows the role of variational
principles in classical mechanics: let us just recall the princi-
ple of minimum potential energy, from which the equations of equi-
librium of elastic bodies can be deduced, or the Hamilton's prin-
ciple as a substitute to the equations governing dynamical systems.

Also nonlinear Dirichlet problems admit a variational formulation.



Roughly: if‘(lCRn is a bounded domain with "smooth' boundary R
suppose we want to find a solution of the problem
- Au = g(u) ue
(1.1.1)
u=2~0 on °Q
n_ 2
whereAu = X Q_E is the Laplacian operator, g:R--=>R is a possibly
xS
nonlinear function.
u

Let us put G(u) =,L g(v)adv.

. 1 2 . . .
Then if f(u) = 5 | vul®™ - G(u) , where u is a function in an op-
portune space (which we have to choose) and u vanishes on 3Q, for-
mally it is f'(u) = - Au - g(u). Therefore f'(u) = 0 if and only if
u is solution of (1.1.1).
Clearly this has to be rigorously formalized. For example we should
prove that f is differentiable on its domain of definition.

Finally, to mention some more "modern'" example (to others, and
they are really many, we will refer as we will explain the methods]),
we recall that the differential equations of a classical gauge theory
are in many cases the formal variational equations of a functional
on a topologically non trivial space.
In this connection to establish the existence of non trivial solu-
tions for the Yang-Mills-Higgs equation a min-max procedure is suc-
cessfully used in |68|, while in |7| the Yang-Mills functional over
a compact Riemann surface is studied by means of the equivariant
Yorse theory.

We will present both min-max principle and equivariant Morse
theory.

A nice application of the equivariant Morse theory is also in
Is1] and |52|, where it is used to give an estimate of the minimal

2
~ e . . 1 . ~
number of central configurations in the n-body problem in R .



1.2 PRELIMINARS

1
Let p, qe'Rn and h = h(p,q)e C (Rzn,R).

An autonomous hamiltonian system has the form

i)- = _’_aj_](p7Q)
. ?
(1.2.1) 93 i=1,...n
(31. = a__b(p’Q)
1
’Opi

. d . L
where denotes -, . This system can be represented more coinciselv:

dat
(1.2.2) z = J Vh(z)
where z = (p,q)e& Rgn, J = g *g ‘ (with I the identity in Rn) is

the standard symplectic structure on R2n, and Vh is the gradient
of h. If the hamiltonian h depends in an explicit and periodic fa-
shion on time, we have the system

(1.2.3) z = JVh(t,z).

We approach the study of the existence of periodic orbits of
(1.2.2) and (1.2.3) with the consciousness that it is a minor a-
spect in the understanding of the global phase portrait, but ne-
vertheless a first step. After stationary points in fact periodic
solutions are the simplest objects in the qualitative theory of
dynamical systems. Despite of this even the solution of the problem
of the existence of periodic trajectories is often highly non tri-
vial and requires the use of topological methods. And we are in-
deed fascinated from the variety of problems and methods, to which
this study gave rise.

There are different questions which can be considered, local
or global.

One set of guestions has been motivated Hv the fact that h ig
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a constant of motion for (1.2.2). Thus one can look for solutions

of (1.2.2) having a prescribed energy, and also ask what geometri-
cal properties must an energy surface possess in order to ensure the
existence of periodic orbits of (1.2.2) on it.

Other questions of interest are connected with the search of
orbits of (1.2.2) having a prescribed period and orbits of (1.2.3)
having the period of the hamiltonian. One motivation for such a oro-
Dlem is that if we simply know of existence of some periodic orbhit,

whose period is unknown, the doubt could remain that it be very

—

arge, and in this case our information would be lacking in interest.
We will concentrate on the second one of these two general pro-

blems, which is often considered also as a tool to solve the first
one.

The underlying theme in the recent treatment of such problems
has been the use of calculus of variations, in finding solutions
as critical points of a functional.

The techniques used belong to global analysis and the results
ohtained are global.

Sometimes it is of interest to have local results: to find pe-
riodic solutions in a neighborhood, for example, of an equilibrium
solution. In section 5.1 we Qill adopt this point of view; we will

shortly mention some classical results and some very recent ones.



1.3 PRESCRIBED PERIOD CASE: THE VARIATIONAL PROBLEM.

COMPARISON OF DIFFERENT TECHNIQUES AND PROGRAM

Let us consider the system
z = JVh(t,z)
(1.3.1) h(t,z) e C2(RxR-",R)
h(t+T,z) = h(t,z)
and let us look for T-periodic solutions of (1.3.1). We reférmulate
the problem as an abstract variational probleﬁ for a functional in
a loop space.
A natural function space is the real Hilbert space H = LZ(O,T;Rzn).
Let us define in H the linear operator
A:dom(A)cH--=>H, by setting

1
dom(aA) = {ueH (0,T;R>"

) | u(T) = u(0)},
as Au = -Ju,
(Hl is the Sobolev space of absolutely continuos functions, whose
first derivative is in LZ).
Then define the continuos operator

F:H-——=H, by

F(u)(t) = vh(t,ult)).
Writing (1.3.1) in the form

- Jz = Vh(t,z)

we see that every solution ue dom(A) of the equation
(1.3.2) Au = F(u)
defines a classical T-periodic solution of (1.3.1). Conversely a

T-periodic solution of (1.3.1) defines by restriction a solution

u of (1.3.2).



Equation (1.3.2) is the Euler equation of the variational problem
extr {f(u) | ue dom(A)},
where f(u) = % <Au,u>H - 0w,

éTh(t,u(t)dt.

d(u)

I

In classical notations
£(u) = Cf)m[ 3 (8,0u) - h(t,u(t) }dt.

Therefore in order to find the required solutions of (1.3.2) we
can just as well look for critical points of the action functional f.

The point now is that this functional is not bounded from above
nor from below, even modulo compact perturbations. We express this
by saying that it is indefinite.

This property, which is peculiar also to other variational pro-
blems of mathematical physics, increases the difficulties.
Till few years ago no method was known to proceed in a direct way
in this case in the setting of variational calculus. Direct methods
like the min-max principle were in fact useful to garantue existence
of critical points only for functionals bounded from below, or at
least which became such after have been compactly perturbed.

Recently, as we will see, a direct way was found by Benci,star-
ting from the pioneering work of Ambrosetti-~Rabinowitz (|5|) and
Benci-Rabinowitz (|15|), which allows to overcome the obstacle
(see |12], |13], |16]| and |10]).

Our program now is the following:

first of all we will recall the Lyusternik-Schnirelman criti-
calpoint theory for smooth functions on smooth finite dimensional
manifolds. In this setting we will learn the basic ideas, from

which variational methods draw inspiration. After that we will



show how this theory has been generalized to manifolds modeled on
Hilbert spaces. We will emphasize the meaning of the assumptions,
which are needed for such a generalization (substantially the Pa-
lais-Smale condition for the functional). And we will also show
how the violation of the Palais-Smale condition, which turns out
to characterize some physical problem, can be in certain cases by-
passed. We will then, remembering our starting point, expose the
principal lines of the theory (due to Benci), by means of which
min-max techniques can be applied also to indefiniée functionals.

Actually when it was not known how to find critical points of
indefinite functionals in any direct fashion, other methods were
used.

We mention at this purpose the papers of Rabinowitz (]|55],
{56[), who proved, in correspondence to every T, the existence of
a T-periodic solution for hamiltonian systems, with hamiltonian
superquadratic at infinity,by means of an approximation procedure:
(a) restricting the functional to a finite dimensional subspace;
(1) hence using a min-max argument for the finite dimensional pro-
blem, and then (c¢) passing to a limit, in order to find the solu-
tion of the original problem. The last part is very technical: in
going to the limit one has to make sure that the stationary point
obtained in step (b) does not runfoff to infinity nor to the ori-
gin; and this is achieved with the complicity of laborious esti-
mates.

More recently Amann and Zehnder ([|2]|, |3|) treated the varia-
tional problem arising from hamiltonian equations [as well as the

analogous one, arising from the search of periodic orbits of the



wave equation Upp — U = f(t,x,u)J by means of a finite dimensio-
nal reduction, which is possible if the hessian of the hamiltonian
is bounded [if a particular boundedness condition for the deriva-
tive fu of the nonlinearity is satisfied], and then by means of a
generalization of Morse theory, due to Conley. Their results have
then be strenghtened by Chang (|26]|), who also simplified the se-
»cond part of their proof, substituting an approach via the clas-—
sical Morse theory. With respect to the boundedness of thg hessian
of the hamiltonian, this is automatically satisfied when an hamil-

>
tonian vectorfield with h(t,z)e C°(RxR-",

R}, l-periodic is given
on the torus T". In |31] this situation is studied from Conley
and Zehnder. In the same paper the authors prove a conjecture of
V. I. Arnold: every measure preserving Cl diffeomorphism of T2,
which is of the form : x———>x + f(x), x<§R2, f periodic with
meanvalue over the torus [f] = 0, has at least three fixed points.
Many results were also obtained by means of dual methods, de-
veloped by convex analysts (Clarke,Ekeland)(see [27| and |[28]).
Such methods apply to hamiltonian systems with the hamiltonian
having certain convexity properties. Part of the idea of Clarke
is to employ a Legendre transformation to convert the problem to
a simpler one: in contrast to the Legendre transformation usually
encountered in mechanics, here all the variables are transformed
and a ''dual'" functional is obtained (whose critical points have
to be looked for), which is bounded from below and hence much ea—
sier to study. The dual action principle has also been applied in

existence problems of nonlinear partial differential equations

(l14], |23]).
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We remark that if this appears as a nice trick from a mathematical
point of view, it carries a relatively strong limitation. It is in
fact applicable only in case the convexity assumptions are sati-
sfied. Since we would like to give answer to problems as they na-
turally arise, we should try to avoid at most at possible restri-
ctions on the cases of applicability.

Also: concerning the results of Rabinowitz contained in |55| and
|56],as we already told, they apply to superquadratic hamiltonians.
They don't cover hence most of the classical mechanical problems.
In fact for a mechanical system with constraints not depending on
time, imbedded in a conservative field of forces, the hamiltonian
has the form

v

hip,q) = ;.Ei:?ij(q)pipj + V(a),
where [aij(q)] is a positive definite matrix for every qe;Rn.
And such an hamiltonian is quadratic in p!
It is therefore important to be able to handle the problem in a
direct way; it is in this spirit that we present the recent re-
sults of Benci.

Now: in a parallel way we will present (together with the
Lyusternik-Schnirelman theory) the Morse theory for smooth fun-
ctions on smooth compact finite dimensional manifolds.

This theory too can be extended to manifolds modeled on Hil-
bert spaces.

But the generalizations we will give here are of a different

kind: we will illustrate *he Conley's index theory and the equiva-

riant Morse theory.
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The first one can be viewed as a generalization of Morse theo-
ry for flows other than gradient flows on locally compact metric
spaces. It is a useful tool in problems of nonlinear functional a-
nalysis. It was used to find special shocks in|66]|, to prove exi-
stence and multiplicity results for systems of nonlinear elliptic
boundary value problems in |2|, the existence of heteroclinic or-
hits for semilinear parabolic equations in |58|. In [30] and |31]
the Conley's index theory allowed to find periodic solutions of
time dependent hamiltonian systems.

The second one comprises the necessary modifications of the

Morse theory when a symmetry group is present.
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2.1 CRITICAL POINT THEORIES IN FINITE DIMENSIONS

Morse theory furnishes very detailed informations on the num-
ber of critical points of a 02 function f on a compact manifold
by means of homological methods. But it requires an ﬁypothesis,
which is in concrete problems rather difficult, if not impossible,
to verify: it must in fact be a priori known that the eventual cri-
tical points are nondegenerate.

Lyusternik-Schnirelman theory does not present this difficul-
ty. Moreover: the regularity of the function may be lower. It suf-
fices in fact for f to be C1 instead of C2. But the results furni-

shed are less specific than those of Morse Theory.
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2.2 LYUSTERNIK-SCHNIRELMAN THEORY

The critical point theory of Lyusternik-Schnirelman is based
on determining a topological analogue for the min-max principle,
which characterizes the eigenvalues of a selffadjoint compact o-
perator L. If the positive eigenvalues of L are denoted Al+’ A2+,

., arranged in decreasing order and counted according the multi-
nlicity, then

(2.2.1) , T . _8up min  (Lx,x)

n [Sn—l] xéSn_l

[N

where Sn denotes the unit sphere in an arbitrary n dimensional

-1
linear subspace ¥ of H, and [Sn~l] denotes the class of such sphe-
res as 3 varies in H. Since the eigenvalues of L are precisely the
critical values of the functional (Lx,x) on the unit sphere
3%, = {x | |x] =1} of H, it is natural to try to extend (2.2.1)
to general smooth functionals F(x) by finding topological analo-
gues for the sets 5 . and [Sn~l]'

We start considering the case of a C ° real valued function
f on a compact C®° Riemannian manifold M.

The basic technique will Be the one of gradient flow, also
called the method of "steepest descent".

Let ¢t be the flow generated by the C°° vectorfield - Vf.
¢t(p) is called the path of steepest descent of the point p.
Note that

2
(2:2.2) 4 £ () = < VEy ()= Ty (> = =1 TEy ()17

Thus there are exactly two possibilities: either |prlis 0, i.e.

p is a critical noint of f, (in which case ¢t(p) = p ¥t), or else
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1pr!# 0, in which case f(¢t(p)) is less than (greater than) f(p)
for t 20 (for t €0), so that (Dt(p) ;é p for t £ O.

Let K = K(f) denote the set of critical points of f, clearly a clo-
sed and hence compact subset of M. The compact set of real numbers
f(K) is called the set of critical values of f; and the complemen-
tary open set of real numbers is called the sét of regular’values
of f. Thus c&R is a critical value of f if the level f—l(c) con-
tains at least one critical point of f and it is a regular value
if f—l(c) = @ or contains only regular values of f.

The min-max principle is a very general method for locating cri-
tical values of f. It is a consequence of the deformation theorem,

which we will give next.

-1 1

We'll denote £ - r ((-o00,c]) and KC =Knf (c).
Lemma 2.2.3: Let XSEM be a regular point of f and let f(xo) = cC.

Then there is an £ > 0 and a neighborhood V of X such that

Proof:
it is evident from (2.2.2) that f(¢t(xo)) is monotone nonincrea-—

sing. Moreover at t = O the derivative is -| Vf% ]2, strictly ne-
0

gative and hence £(0 (xo)) is less than f(¢o(xd)) = f(xo) = C.

1
So for some £ > 0 f(¢l(xo))<< c - ¢ and also for x in a neighbor-
hood V of x_ f(¢l(x)) <c-¢.

Deformation theorem 2.2.4: Given ceR, let U be a neighborhood of

C—

C*E _y) € £°7° In par-

K, in M. Then there is an ¢ > 0 s.t. ¢l(f
ticular if ¢ is a regular value of f, then there is an € >0 s.t.
b (£57%) € 277

Proof:
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for each x in the compact set X = fwl(c) ~ U choose a neighborhood

. -9

V of xin M and ad _ > 0 s.t. ¢ (V) € £°7 %.

X X 1" x

Let V. U...UV cover X and letd = min (8 ,...8 ), so that if
Xy x X, X

Cc— & . .
. Since M is compact and

£e< &, then §_ (V. U...UV_) E£f
1 Xl xm
0=UU Vx U...U Vx is a n;ighborhood of f—l(c), there is an e >
1 m
-1
>0, which we can assume less than 6, s.t. f ([é—e,c+e]) < 9.

Then since £f°7° ¢ £ ° U f—l([c—e,c+e})

and 0 - U €< VX vg...u v,

1 m ot
U (Vv U...UV ).
X X

But both (!)l(fc_s) and §,(V_ U...UV_) are included in £ F

We are now in the posiiion to fo?mulate and prove the min-max
principle.

Let & be a family of subsets of M. We define the min-max of £
over 3 by

1) inf sup

min-max {(f,%) = Fey xeF f(x).

It is easily seen that an equivalent definition is

min-max (£,%) = inf {ceR | 3Fet with F < £° }
The family‘} is called an ambient isotopy invariant if given an
isotopy g, of M (i.e. a C* map : (t,x)-—e>gt(x) of [0,1] x M in-
to M with each g, a diffeomorphism of M onto M and g, the identi-
ty) and Fe}, it follows that gl(F)e'}.

Min-max principle 2.2.5: If % is an ambient isotopy invariant fa-

mily of subsets of M, then min-max (f,%) is a critical value of f.

Proof':
suppose ¢ = min-max (f,}) is a regular value of f and let Fg%-with
C+e

FC F , where € > 0 1s chosen as in the deformation theorem.

Since (@} is an isotoov of M, it follows that QJ(F)Eﬁ} .
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But $1(F) c ¢1(fc+8) € £ . So min-max (£,%) < c -e, a contrad-
diction.

One of the most important applications of the min-max prin-
ciple is the derivation of the Lyusternik-Schnirelman critical
point theory, which we will now recall.

Definition 2.2.6: A subset A of M is said to have Lyusternik-Schni-

relman category m in M (and we write cat (A;M) = m) if A can be co-
vered by m, but not fewer, closed subsets of M, each of which is
"contractible" to a point in M. This means that the inclusion map
into M is homotopic, as a map into M, to a constant map.

E.g. on the torus T2 there
are sets (like Al’AZ) with
cat (Ai;TZ) = 1 and sets
(like Bl'BZ) with

cat (BifTZ) = 2. The torus

itself, it can be showed, has category cat (T2;T2) = cat(TZ) = 3.

Next we give some properties of the function cat(.,M):

i) cat (A;M) = 0 <==> A = §;

ii) cat (A;M) = 1 <==> A is contractible in M;

iii) cat (A;M) = cat (K;M);

iv) if A is ciosed in M, then cat (A;M) < m<==> A is the union of
m closed sets, each contractible in M;

v) AS B SM==>cat (A;M) < cat (B;M);

vi) cat (A U B;M) < cat (A;M) + caf (B;M);

vii) if A is closed and deformable through M into B (i.e. if the

inclusion map of A into M is homotopic as a map into M with

a map of A into B), then cat (A;M) < cat(B;M);
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viii) if h is an homeomorphism of M onto itself, then

cat (h(A);M) = cat (A;Mﬁ.
Now: given a positive integer m < cat(M), let us define ém to be
the family of subsets F of M s.t. cat (F;M) > m. It is immediate
from property viii) that‘ém is ambient isotopy invariant.

It follows that if we define c_ = cm(f) by

¢ = min-max (f,% ) =
m m

inf sup B
T cat{(A;M)zm x€A fx) =

inf {ceR |4 A ¢ £ with

cat (A;M) 23m},

then by the min-max principle for each positive integer m < cat(M),
cm(f) is a critical value of f. We note that by the monotonicity
of cat (.;M) an equivalent definition of cm(f) is

c (f) = inf {ceR | cat (£%M) 2 m}.
Since cat (fC;M) > m + 1 implies: cat (fC;M);Z m, it is clear that
cm(f) < Cm+1(f)' It can of course happen that equality occurs. For
example if f is constant, all the cm(f) are equal. However if e-
quality should occur, then it would be made up for by there being
more than one critical point on the critical level. In fact we ha-

ve the following remarkable:

Lyusternik-Schnirelman multiplicity theorem 2.2.7: If ¢ = ¢ (f) =

= C (f) =...= ¢ (f), thenf has at least k critical points on
n+2 n+k

the critical level c. Hence if 1 < m € cat (M), then f has at leat

m critical points at or below the level cm(f), and in particular

f has at least cat (M) critical points alltogether.

Proof:

we can assume that there are only a finite number of critical
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points on the level c, say Xl""xr and we must prove that r 2 k.

Choose open neighborhoods Vi of X, whose closures are disjoint

closed balls, so that if ¥ = Vl U...U Vr’ then clearly cat (0;M)

< r. By the deformation theorem, for some ¢ >0, fc+E - U can be

. C—¢& .
deformed into f and, since

¢c-e<c_ (f) =inf {aeR | cat (£%M) > n + 1},

+1
it follows from property vii) of cat (.;M) that

cat (fc+8-ﬁ;M) < n.

By the monotonicity and subadditivity of cat (.;M):

C+¢€ C+ &

cat (f ;M) < cat ((F -9) UO;M) <n + r,
and hence
c <c +e <inf {aeR | cat (fa;M)2> n+r+ 1} =

= cC
n+r+l’

so that n + r + 12 n + k and therefore r 2 k.
Let us consider finally the following

Example 2.2.8: Let M be the bidimensional torus, f the function

height of the point p on the plane, where M is posed. And let us
consider situations 1. and 2. In both cases the Lyusternik-Schni-
relman theory predicts, according to theorem 2.2.7 at least 3 cri-

tical points of f.
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2.3 MORSE THEORY

Let f be a smooth function on a smooth compact manifold (smooth
will mean differentiable of class C °°, but éctually it suffices for
f to be 02). A critical point for f is a point p at which the diffe-
rential df vanishes. At such a point the hessian pr is a symmetric,
hilinear form on TpM’ the tangent space to M at p. In local coordi-

O,

nates (xi), centered at p, the matrix pr, relative to the basisé—X
i

at p is given by

p is called a nondegenerate critical point of £ if det pr # 0.
The dimension of the maximal subspace of TpM, on which pr is nega-
tive definite (that is the number of negative eigenvalues of H f)
p
is independent of the local coordinates used. It is denoted by
4 (f) and it is called the index of f at p. Independency of the
coordinates is also a property of the nullity of the hessian, which
is defined as the dimension of the subspace of all veTpM, s.t.
YweT M, H f(v,w) = 0.
b p
If p is a nondegenerate critical point of f, the Morse Lemma
asserts that there exists a suitable coordinate system xl,...xn a-
bout p, s.t. near p
f=f(p) - x 2 —. =X + X +eaet X
1 A AH n’
with 1 = Ap’ the index of f at p.
Hence the behaviour of f at p can be completely described by this
index. As an immediate consequence of the Morse Lemma it follows

that a nondegenerate critical point of f is isolated in the set K

of critical points. Functions, whose critical points are all non-
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degenerate are called Morse functions. They are generic, in the sense
that in the vicinity of every function one may find a nondegenerate
one. For them K is discrete and since K is closed in M, it is also
compact. Therefore a Morse function has only a finite number of cri-
tical points.
We can count the critical points of a fixed index k to obtain an in-
teger,ﬁqk, called the kth type number of f. And we can introduce the
"Morse polynomial'" of f

M (0 2 stz st

K P

where the last sum is extended over the critical points of f.
This polynomial gives a quantitative measure of the critical beha-
viour of f. A lower bound for such a behaviour is furnished by the
homology of M. In fact if we indicate

Pt(M) = %dim Hi(M;K) ti,
(where Hi(M;K) denotes the ith homology group of M with coefficients

in the field K), then the following holds true:

Theorem 2.3.1: If f is a nondegenerate function on the compact n-ma-

nifold M, then there exists a polynomial Qt(f) = qO + qlt +eeo,
with nonnegative coefficients s.t.

( N () = )

(2.3.2) 10 =P () + (1 + t)Q, (f)

It follows then:
m () >
t( ) ___Pt(M).
This inequality implies that Nﬂt(f) majorizes Pt(M) coefficient by
coefficient.
Indicated by bk = dim Hk(M;K) the kth Betti number of M, this means:
= b .
(2.3.3) m =:bk

(2.3.3) can also be seen as a consequence of the Morse inequalities,
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which are sometimes written as:

3
I\
o

El
!
E|
1A
o
[
o

(2.3.4) m. — m, + m

v
o
!
o
+
o

_ n n
My = My +eeot (-1) m bo - bl +ee.+ (1) bn'
We observe that one could think of these inequalities as an exten-

sion of the minimum principle: in the present context it asserts

Zb_.
0= "0

that m
The inequalities (2.3.4) can be deduced as a corollary of the next
theorems 2.3.8 and 2.3.9, the same from which, as we'll see, theo-
rem 2.3.1 follows.

Before presenting the announced theorems, let us give a clas-

sical example:

. . o . 2
Example 2.3.5: We consider the bidimensional torus T = M, as we

did in the precedent paragraph. But now we must put it in ready-
to-roll position, since the position corresponding to situation 2
(in 2.2) would comprise degenerate critical points for the function

which gives the height of the point p above the plane.

el 77777 oo D
The Betti numbers for the torus »ﬂfﬂ '
are:
bo =1 (HO(M;R) = R)
bl =2 (Hl(M;R) =R ® R)
b, =1 (H,(M;R) = R)

Therefore the Morse theory tells

us that there are at least 4 cri-

tical points for a Morse function on M: one of index 0, two of in-
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dex 1 and one of index 2. In this case we already know that the
height has the four critical points A, B, C, D of idex respecti-
vely 0, 1, 1, 2. Hence Qt(f) = 0 for this function: m1t(f) is e-
xactly equal to Pt(M)

Acriteron which suggests cases when this happens is the following:

Lacunary principle 2.3.6: If in "ﬁt(f) all products of two conse-
cutive coefficients vanish (i.e. mimi+l = O‘(i), then

(2.3.7) M (£) =p (1)

for any coefficient field.

Thus for such a function f,(n?t(f) computes the Poincaré polyno-
mial of M.

Ve call functions satisfying (2.3.7) perfect Morse functions. They
allow to turn the Morse theory around and use it as a computatio-
nal tool.

In order to see how (2.3.2) is obtained, we give now two fundamen-—
tal results:

Theorem 2.3.8: Suppose that the nondegenerate function f has no cri-

tical points in the region a = f =b. Then if Mt denotes the '"half-

space'" where f =t on M, there is a diffeomorphism of Ma with Mb:

M =M Furthermore Ma is a deformation retract of Mb’ so that the

a b’

inclusion map M C—--j>Mb is an homotopy equivalence.
a ‘

The idea of the proof is

to push M down to Ma along

b
the orthogonal trajectories

of the hypersurfaces f = const.

(that is along the gradient of

f) and of course uses the com-
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pactness of the Mi's.

The next result goes to the heart of the matter of what hap-
nens to Mt as t passes a critical value.

Let us recall the concept of attaching a thickened cell to a
manifold. The underlying geometrical idea is best gleaned from the
following diagram, where we've attached the thickened l1-cell Y to X.
(o) | Ix] 2 1)

{GLy) | x|

Here X

Y

It

N I
Xay T
and the terminology arises from the fact that homotopically X U Y

~ ~

is quite equivalent to the space X U Y (where Y is the interval
|x|=1 on the x-axis).

Thus as far as the glueing of part of the boundary of Y into the
boundary of X, the two factors of Y play quite distinct roles; i.e.
the second one just play the role of a "thickening'.

Quite generally now one says that X' is obtained from X by atta-
ching a thickened k-cell if X' is obtained from the disjont union
hy glueing "half" the boundaryde: x e & of the cell ef x ' K
into the boundary 39X by a diffeomorphism

n-k

k
o :De x e —= JX.

-1
The resulting manifold is then also often denoted by X U ek x e .
o

With this terminology we are in the position to state:

Theorem 2.3.9: Suppose that f has only one nondegenerate critical
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point p of index A in the range a < £ = b and that a < f(p) < b.

by

M U e)L X en—l, that is: M. is diffeomorphic to M with
b a o b a

1

Then M
a thickened A-cell attached.

We indicate the idea of the proof of this theorem for the spe-
cial case of the height function on a torus.
The region M_ = f—l((~(n,a]) is
heavily shaped. We introduce a

new function F : M --->>R,

which coincides with the height

function f except that F < f in
a small neighborhood of p. Then

the region F_l((—ao,a]) will

consist of Ma together with a

region H near p. In the diagram

His the horizontal shaped region. Choosing a suitable cell e)L CH,

a direct argument (pushing in along the horizontal lines) will show

that MA U e;k is a deformation retract of Ma U H.

Finally, by applying theorem 2.3.8 to the function F and the region

F—l([a,b]), we will see that Ma U H is a deformation retract of Mb'
The relation (2.3.2) and the Morse inequalities (2.3.4) follow

from theorem 2.3.8 and 2.3.9 by procedures of algebraic topology.

In passing from M_ to M the change infﬂlt(f) is given by v,

On the other hand the change APt = Pt(Mb) - Pt(Ma) can be twofold:
t)L or
AP, =
t _tk*l

Once this is granted, the inequality: A/q £~ AEchan be:
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0 or

AW - AP =
t t tl—l(l L t)

Proceeding inductively, we see that there exists a polynomial Q(t)

with nonnegative coefficients : Q(t) = q. + qlt tooay qiEZ 0, s.t.

0
M (r) - P () = (1 + £)a(£),

The crucial step is therefore the alternative for APt above, and
this is a standard result in homology theory. It is also a very

intuitive one. Consider the boundary'{}eK of the attaching cell.

-1
It is a A-l-sphere S;' in Ma' The cycle carried by this sphere

either bounds a chain in Ma or not. In the first case we cap the

chain bounded by Sp}“—1 with ek to create a new nontrivial homolo-

A
gy class in Mb. This corresponds to the alternative z&Pt =t .

In the second case e)L manifestly has as boundary the nontrivial

- -1
cycle SA 1 in Ma' Hence in this situation Pt decreases by:a tA .

An example of the twofold possibility is illustrated in the figure:

Tt

Note that to ascertain which alternative is valid involves a glo-
bal analysis of Ma'

We remark finally that in the original papers of M. Morse the homo-
logical nart was couched in the language of the analysis situs of

the time.
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3.1 PASSAGE TO THE INFINITE DIMENSIONAL CASE: VARIOUS REMARKS

The Morse and the Lyusternik-Schnirelman theory admit both a
generalization to the case of ¢’ functions (r = 1,2) on infinite
dimensional Hilbert (and also Banach) manifolds. The key step in
proving it is to generalize the technique of "steepest descent",
which gave the deformations that are at the hearth of the proofs
of the two basic theorems: the "deformation theorem" (2.2.4) and
the "theorem on passing a nondegenerate critical level" (2.3.9).
Tor Hilbert manifolds one can define the gradient vectorfield of
a function (relative to a Riemannian metric) just as in finite di-
mensions. For arbitrary Banach manifolds there is no real gradient
field; however one can define ''pseudo-gradient' fields, which have
all the essential properties of a gradient field. (v is called a
"pseudo-gradient" vector for ¢ at ueU if i) |v| = 2|0'(u)|, and
ii) <¢'(u),v> Z;|®'(u)]2). The real problem in both cases lies
in the fact that, since the manifold is no longer compact, the flow
generated by a vectorfield is no longer a compact flow (i.e. a o-
ne-parameter group) and it is only by making certain compactness
assumptions on the manifold,.or by replacing them by some kind of
compactness assumption relative to the function (like the Palais-
Smale condition) that one can show that the flow generated by the
pseudo-~gradient field really "descends to the critical point set"
in a strongh enough sense to carry out the proofs of the above
theorems. Hence a natural idea is to restrict the attention to

pairs (M,f) satisfying the following Palais—Smale condition:



- 27 -

given a sequence {xn}c Ms.t. f(xn) is bounded and ldfx | ——> 0,
there is a subsequence of {xn} converging (automaticall;, by the
continuity of |df|, to a critical point of f).

From now on we will simply write (PS) to designate this condition.

The (PS) is met in many important calculus of variation
problems, and this justifies its assumption in proving abstract
theorems. But it has to be noticed that it is not the last word!

When it is not satisfied maybe other way can be found, to
solve the problem. In some cases this was successfully done.

For example this problem camed out in |24|. Here periodic
solutions of a Lagrangian system with bounded potential V are
sought as critical points of a C1 action functional on Hl(Sl,Rn),
for which (due to the boundedness of V) the (PS) condition is
not satisfied in general. (This allows the set of critical points
to be unbounded).

As another example let us consider the problem of finding

nontrivial 2 -periodic solutions of the nonlinear wave equation

. u,, —u_ = glu) in Jo, = [ x R
(3.1.1) R

u(0,t) = uln,t) t €R
with g : R ——> R a continuos function.
This problem too can be read as a variational one. Precisely the
2 nm —-periodic solutions of (3.1.1) can be found as critical points
of the functional

2
1 2 2
£(u) :foj;ré(ux - u.®) - o(w)|axat

where G(u) = ojug(s)dsa

defined on an opportune domain A in an opportune function space H.

With a right choiche of A and H, f can be written in the form
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f{u) = =<Lu,u>. + ®&(u)

NI =

h

with L linear operator, selfadjoint on A,...

Well: the Kernel of L is an infinite dimensional subspace of H
and, because of this, the problem lacks the compactness properties
required in proving the (PS) condition.

To overcome this difficulty without doing specific require-
ments on g (many authors suppose monotonicity for g and solve the
problem with dual methods) there is a trick, recently used by Co-
ron (see |32|). The idea is to consider the functional restricted
to a suitable subspace of functions ﬁ of H, satisfying some sym-
metry property, invariant under L and s.t. the intersection of %

with the Kernel of L is reduced to O.

Thanks to this idea Coron proves that

2 .
if geC (R,R), g'(0) # 0, lim gég) = 0 when |u|--> o0, and
_there exist real numbers « and f s.t. - 1< a« < g'(s)<P ¥sEeRr,

then
for every integer 1 there is some TO s.t. if T > TO and T has the
form T = ZTtE, a integer, b an odd integer, there exist at least
1 03 solutions of (3.1.1), which are nonconstant in time and geo-
metrically distinct.
Moreover, combining the Coron's idea with the use of the Benci's
geometrical index for the Sl—group (113]), in |11] it is shown
that the boundedness assumption on g' can be avoided.

This idea, which is also used in |24], to consider the fun-
ctional resticted to a subspace (of functions) having all the

symmetries of the problem, in order to obtain compactness, is
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al

explained in [40| (see also |17]| and |138]). In this paper the im-
portance of a symmetry in the solution is explicitely seen invthe
study of the Choquard equation, for which optimal existence and
multiplicity results are obtained, despite the fact that the fun-
ctional at issue does not satisfy the (P3S) condition in the space
H.

Other problems where the symmetries are essential to get com-—
pactness arise: in astrophysics (in the determination of equili-
brium configurations of axisymmetric rotating fluids, for instan-
ce stars), in quantum mechanics (in Thomas-Fermi theory), in the
search for certain kinds of solitary waves (stationary states) in
nonlinear equations of the Klein-Gordon or Schrodinger type
and, generally, in the solution of nonlinear séalar field equa-
tions.

For further examples and details we refer to [40|, |17] and

|18|, and the relative bibliographies.
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3.2 GENERALIZATION OF THE MIN-MAX PRINCIPLE

But now let us assume the compactness condition (PS) to be
satisfied.

In the present and following section we will see why indefi-
nite functionals are difficult to study and also how this diffi-
culty can be bypassed.

How the Lyusternik-Schnirelman theory is generalized to any
pair (M,f), satisfying the (PS) condition, is clearly showed, for
example, in |64]|. It is done, following the steps in the proof
for the finite dimensional case, and proving an analogue of the
Lemmas and of the deformation theorem, given in such case.

In particular in the present setting the (PS) condition assures
that K_ = {xe€M | £(x) =c, (VE)(x) = 0} is compact. This pro-
~perty (which we could suppose certainly satisfied in the finite
dimensional case) is crucial in the proof of the following theo-
rem.

Theorem 3.2.1: Let (M,f) satisfy (PS) and let cm(f) be a sequen-—

ce with
c (£f) = inf sup f(x).
m cat(A)=m x€A
Suppose that m <n and — 0 < c =c (f) =...=¢c (f) < + 00 .

m n

Then the set KC of critical points is of catégory n-m+ 1 at
least; moreover, even if m = n, the set KC is not empty.

The application of the theorem is facilitated by the
Lemma 3.2.2: Let (M,f) satisfy (PS) and let soﬁeone of the con-

stants cm(f) be equal to + o . Then f assumes arbitrary large
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values on the set of its critical points (which is consequently
infinite).
It follows then:

Corollary 3.2.3: If f is bounded from below, then f has at least

cat (M) critical points.
Proof:
if £ is bounded from below, then: - 0 < cl(f). Now: let k be a
positive integer, k < cat (M).
If ck<: + o0 , then f has at least k critical points in
x| £flx)= c, +e| as a consequence of theorem 3.2.1.
Theréfore:
if ) < 4o for all k <cat (M), there are at least cat (M) cri-

tical points of f; if for some Kk, Ck = 4o, f has by Lemma 3.2.2
infinitely critical points. In any case f has at least cat (M)

critical points alltogether.

Remark 3.2.4: In certain cases this corollary is too general to he

fruithfully applied for the existence of solutions. This happens
when the topology of the manifold M is trivial. In such a case
the corollary does not give great informations, as is shown by the
following example.
Suppose A(x) and B(x) are 02 functionals on a reflexive Banach
space X, satisfying (PS) and B(x) bounded from below. Suppose we
are seeking solutions (x,A) X x R of
(3.2.5)

A(x) = ¢ = const.
The solutions of (3.2.4) are contained in the set of critical

points of the functional B(x) on the level set {xeX | A(x) = c}.
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If this level set is for example equal to the unit sphere in X

S ={xeX | |x] =1}, which is known to be contractible (since X
is infinite dimensional), it is cat (S) = 1. And then the theorem
gives no additional critical points besides the minimum, which we
already know to exist.

Bur the principal limitation of the corollary is given by the
fact that it applies only to functionals bounded from below.

We will introduce now the announced method to treat also un-
bounded functionals.

As a last remark before do it, we want to point out that the
first result concerning indefinite functionals, and the one from
which what follows draw inspiration, is in the paper |5| of Ambro-
setti-Rabinowitz. We refer to the famous "mountain pass theorem'.
Let us describe it for a real function f defined on the plane, re-
presenting the height of the land above sea level over the point
Axe:Rz. Suppose the origin lies in a valley surrounded by a ring
of mountains; i.e. there is an open neighborhood Q of the origin
s.t. for x&3Q : f(x) > %)>me.
Suppose that there is some point g
outside, i.e. xogfzi, s.t. f(xo) <
< co. We wish to walk from Xo to O,
climbing as little as possible. Na-

turally the way to do this is to

take a path crossing the mountain
over the lowest mountain pass. The
top of the mountain correspond to a stationary point of f and the-

re the value of f, i.e. the stationary value, equals
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¢ = inf max f(x) > ¢
P xeP

o
Here P represents any continuos path from X to O and the inf is
taken with respect to all these paths. Clearly every such path

has to intersect ® Q and so

max f(x) >c
xeP

o
The assertion of the mountain pass theorem is that the number c

so defined is a stationary value of f. Note that c will be in ge-
neral less than sup f.

This formulation is not quite correct, since the plane is not com-
pact and one should add a compactness condition, for example (PS).
The theorem is then true and holds even in Banach spaces.

The exact formulation is:

1
Mountain pass theorem 3.2.6: Let f be a C real function defined

on a Banach space X and satisfying (PS). Assume there is an open
neighborhood Q of 0 and a point Xo¢??’ s.t.

£(0), f(x ) <c < inf f.
o o

Then the following number is a critical value of f:

¢ = inf max f£(x) 2:00,
P xeP

where P represents any continuos path from X to O.
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3.3 INDEX AND PSEUDOINDEX THEORIES

We present first the abstract framework in which the theory
will be constructed.

Let M be a Riemannian manifold modeled on a Hilbert space H.
For AC M, Ck(A) denotes the space of k times Fréchet differentia-
ble maps from A to R. For A, BcM, Ck(A,B) denotes the set of k
times Fréchet differentiable maps from A to B. Id denotes the i—

dentity map. Moreover we set Né(A) ={>c€M | dist(x,A) < 6} .

Definition 3.3.1: An index theory I on M is a triplet {:E,ﬂﬂ,i L
which fullfills the following properties:
(1-1) X is a family of closed subsets of M, s.t. A U B, A0 B,
K\TB. € ¥ whenever A,BEX ;
(1-2) WQ is a set of continuos mappings : & -->3, containing the
identity and closed under composition;
(1-3) f A €3 and ¢hell, hlA)e 3 ;
(1-4) i : 2 -—=>N U {+cn} is a mapping satisfying:
(i-1) i(A) = 0 <==> A = ¢,
(i-2) monotonicity: if A¢ B, then i(A) < i(B) ¥A,Be X,
{(i-3) subadditivity: i(A U B) < i(A) + i(B) TA,BeX ,
{i-4) continuity: if A€ X is a compact set, then there exists a
6 >0 s.t. i(Né(A)) = i(Aa),
{i-5) superinvariancy: i(A) < i(h(A)) ¢A and YheM.
As an example: if E' is the family of all closed subsets of W,
ﬁi is the family of the continuos mappings of M homotopic to a con-

stant map, and catM is the Lyusternik-Schnirelman category, then it

is immediate to check that { » , W,cat defines an index theory on M.
11
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When we deal with indefinite functionals the existence of an
index theory may be not sufficient to garantue the existence of cri-
tical points., In fact if we simply use the Lyusternik-Schnirelman

theory (or some other index theory) in a direct way, when we put

C = inf sup f(x),
i(A)zk xeA
it may happen that ¢, = —oo(or +o0) ¥ keN.

k

Then the concept of 'pseudoindex'" turns out to be useful.

Definition 3.3.2: Let M and I = {E ,W],i} be as in Def. 3.3.1.

A pseudoindex theory I* is a couple {ﬂq*,i*}, which satisfies the
following assumptions:
(1-5) Wﬁ*c_Wn is a group of homeomorphisms of M onto M;
(1-6) i* :Z =>N U {+<m} is a map with the following properties:
(i*-1) i*(A) < i(A) YAe X,
(i*-2) if Ac¢ B, then i*(A) < i*(B) ¥A,Be I,
(i*-3) i*(A\B) < i*(A) - i(B) ¥A,Be X ,
(i*-4) i*(h(A)) = i*(A) Yhe M*, Aex

A method to construct pseudoindex theories is described by
the following

Proposition 3.3.3: Let I = {Z,M,i} be an index theory on the Rie-

mannian manifold M. Let Mj*c ﬂn be a group of homeomorphisms on M.

Given Qe £ , we set i*(A) = min i(h(A) 00 Q) for each AeX .
h e W™

Then I* = {WQ%,i*} is a pseudoindex theory.
We shall now show how the concept of pseudoindex can be applied
1
to the search of critical points of a functional fe C (M).

For each c € R we set
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0 :{XEM | f(x)Sc}
(3.3.4) ¢
K = {X(EM | f(x) = ¢, £'(x) = O}
c

s . 1 .
Definition 3.3.5: If fe« C (M) and . CdJG]R (with ¢, < Ca>)’ we

say that the triplet {f,co,ooo} satisfies the property (P) with
respect to the couple{ pX ,ﬁﬁ* }if
a4, x K i Fecel
(a) o K€ ¥ and o 1s compact ¥c eLco,gx)]
c ], ¥ =
(b) Yec E[Co COO] Né(Kc)
there exist ¢ > 0 and n & Mf s.t.

(3.3.5)

N
&, A\ cnl@ D)

In concrete cases, as we will see, the property (P) is streactly
related to the (PS) condition.
The following theorem holds:

Theorem 3.3.7: Let M be a Riemannian manifold with an index theory

o

={ ) ,Nﬁ,i} and a pseudoindex theory I* = {Wn*,i*}. Suppose that
1
f€C (M) is a functional s.t.
(a) there exist constants Cyo cd)g]Q s.t.
{f,c ,C } satisfies property (P) with
O o0

respect to {Ej,ﬁﬁ*}
(3.3.8) ‘
(b) i*(a) = 0 TAey® s.t. Ac a.

- N o
(c) there exists A€ X s.t. Ac,Q,cOO and

i*(A)> k=21

Then the real numbers

(3.3.9) c, = inf sup f(x) k =1,...k

are critical values of f and

(3.3.10) c

IA
o
IA
IA
0
IA
o

Moreover if ¢ = Ck = L. = Ck+r with
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>

(3.3.11) k + r = k,
then

(3.3.12) i(KC) =z r+ 1.
Proof':

we shall prove initially that

CO = Ck = k=1,...k.

IA

In particular we deduce that the numbers ck's are well defined.

We argue by contraddiction. In fact if ¢, < CO’ then there exists

k

~ ~

-1
Acf (]—cn,co[) s.t. i*(A) = k. On the other hand (recall Propo-

sition 3.3.3)

i*(A) = min i(h(A) n Q) = i(A N Q) = O by assumption (b).

hem%

S0 we get a contraddiction.

b=
[t
>
v
X

(=, =

z
If Ck> Cp? SUP f(u) > Coo for any Ae K

k
and this contraddicts (c).

Now: obviously we have c. = (k = 1,...k=1).

k= kel

Therefore (3.3.10) is proved.
To prove that the ck's are critical values, it will be sufficient
to show the sharper multiplicity statement (3.3.12). We argue in-
directly .
Suppose i(K ) = r and observe that (a) implies that KC is compact.
By continuity property (i-4) there is a neighborhood N of KC, Ne X

with
(3.2.13) i(N) = r.
Moreover it can be seen that there is a & >0 with ¢ - 5 > a,

¢ +3< b and an equivariant homeomorphism n of M onto M s.t.

1 (Qc+6\N) ¢ ac— 0
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and n(u) = u Yug/f ]ab

Also if ¢ = Ck+r’ there exists A E23k+r s.t. Ac éLc+6' Then
(A\N) c&c_é

and

(3.3.14) i*(A) =z k + r.

low, since

(3.3.15) i*(A\N) z i*(A) - i(N)
using (8.3.13) and (3.3.14) we get

(3.3.16) i*(A\N) 2k + r - r = k.

Observe that n eﬂﬂ*; thus

(3.3.17) i*(n(A\N)) = i*(A\N).

By (3.3.16) and (3.3.17) we get: n(A\N)e gz -

Therefore, since c = Ck’ sup f(n(A\N) ¢, which contraddicts
(3.3.14).

Hemark 3.3.18: If in the assumption (c) we know that i*(A) = + o ,

then clearly (3.3.10) defines critical values for each kt3N+

In order to apply theorem (3.3.7) in concrete situations it
is necessary to construct an appropriate pseudoindex theory. This
depends of course on the functional f, whose critical points we
seek. Essentially the problem is to determine the right class of
homeomorphisms N“*u This class should be big enough in order to
contain a function n s.t. (3.3.6) (b) is satisfied. But ifim *
is too big, it may happen that i*(A) = 0 or 1 for each Ae ¥ . For
example if every h.eﬂq* is of the form h = Id + compact, W?* is

too small and the property (P) is not satisfied. On the other hand
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if‘ﬁﬂ* = { group of all equivariant homeomorphisms on X !, then the
group is too large and i*(A) vanishes ¥ A ¢ £ . Another "delicate"
point is the choiche of Q (when the pseudoindex theory is constru-
cted according to Proposition 3.3.3).

To have an intuitive and roughly understanding, the pseudoindex

is a tool which allows to '"feel" only those subsets, where the
functional assumes values greater than some real number o in
such a way that the risk to have — oo in evaluating cm(f) vani-—
shes.

We shall consider functionals symmetric with respect to the
action of some compact Lie group G; because of this we'll study
index and pseudoindex theories on a real Hilbert space H, on which
a unitary representation Tg of the group G acts.

A functional fe Cl(H) is said to be Tg—invariant if

£(T u) = T (fu) fueh, ¥ geca.
g g
Amap h€ C(H,H) is said to be Tg—equivariant if
h(T u) = T (hu) ¥uecH, ¥ged.
g g
If £ is in Cl(H), then f'e CO(H,H), since we identify H with its
dual; and if f is Tg—invariant, f' is Tg—equivariant.
A subset AcCH is said to be Tg—invariant if
TA=A4 Ygea.

We set

L4
=]
I

{A(;H | A is closed and Tg—invariant],

[hc;C(H,H) | his Tg—equivariant

L, 1

sentation T if Y = X (Tg), m :;GQ(Tg).

3
3
lije]
Il

We shall say that an index theory is related to a repre-

In |16| the following result has been obtained by means of
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- pseudoindex theory:

Theorem 3.3.19: Let H be a real Hilbert space, on which a unitary

1
representation Tg of the group S acts. Let fe Cl(H,R) be a fun -

ctional on H, satisfying the following assumptions:

fl) f(u) = %<<Lu,uﬁ> - ®(u), where < , > is the inner product in

)

f.)

1)

H, L is a bounded, selfadjoint operator and(DE.Cl(H,R), ®(0) =

.= 0, is a functional, whose Fréchet derivative is compact. We

suppose that both L and &' are Sl—equivariant;
0 is a regular value for L or it is an isolated eigenvalue of
L of finite multiplicity;
every sequence {un}e,H, for which f(un)—€%>c e (0,+00) and
]f'(un)l|un[—~é>0, posseses a bounded subsequence;
there are two closed, Tg—invariant subspaces V, W¢ H and R, Co
>0, s.t.:
a) W is L-invariant (LW = W),
b) Fix(T J)cV or Fix T C W,
g 8
c) flu) < Cq for uE:Fié(Tg) s.t. £'(u) = 0,
d) f is bounded from above on W,
e) flu) = e, for ueV s.t. |u| = R,

f) codim(V + W) < + oo, dim(Vn W) < + o003

Under the above assumptions there exist at least

1
é(dim(v N W) — codim(V + W)) orbits of critical points, with cri-

tical values grater or equal to 5

Outline of the proof:

let’% be a class of equivariant homeomorphisms U : H ——-> H of the

ol )L

1
form U = e , where a : H ——=>R is an S —-invariant bounded

functional.
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We denote by B the class of continuos equivariant maps

b : H-———>H, s.t. for every bounded set Q ¢ H, there exists a fi-
nite dimensional space Enc H, spanned by a finite number of eigen-
vectors of L, s.t. b(E))c.En.

Finally we set

h : H-——>H | h is an equivariant homeo-
./‘nt* = { morphism s.t. h(0) = 0, h = U + b, and
-1 .
h = U2 + b2, with Ul’ UZE’Q, bl’ b2€B.

It 1s not difficult to prove that Nﬁ* is a group. By virtue of

f,(O,+<n)] satisfies

(fl), (f.), (fS) it is possible to prove that

2

the property (P) with respect to ‘Z,‘m*} by constructing an homeo-
morphism n as in definition 3.3.5.

Moreover by using the assumption (f4) we can estimate the pseudoin-
dex i*(.,., *) by means of (dim(V + W) + codim(V( W)).

Both the construction of m and the proof of this estimate are very

involved and we will not give them here.

Using theorem 3.3.7 it follows that: the ck's defined as in (3.3.9)

are critical values and they are bigger than e If they are all
different from each other, then the conclusion follows. If not,

for some k we have i(K )= 2. By (f ) (¢) K @ Fix(T ) = @. Then
Cy 4 Cp g
KC consists of infinitely many independent critical points.
k
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3.4 APPLICATIONS TO HAMILTONIAN SYSTEMS

This abstract critcal point theorem, proved together with some
slightly modified versions in |16| (see also [12]|), is in the same
paper applied to the search of periodic orbits for hamiltonian sy-
stems.

We mention here two of the results obtained.

The first one concernes an autonomous hamiltonian system with
hamiltonian h of the form

h(p,a) = _z‘ai’j<q)pipj + 3 b, (a)p, + V(a)
i, i

(as is the case for mechanical problems).

If some technical assumptions are satisfied for V(g) (in particular

it has to be superquadratic at infinity; for the other assumptions

we refer to the original paper), then the existence of infinitely

many, nonconstant T-periodic solutions for every prescribed period

T is proved.

The second result concerns the case, in which h is asymptoti-

cally quadratic:

1
Theorem 3.4.1: Suppose he C (RZH,R), but h(z) twice differentiable
. . , 2n 2n
for z = 0. Suppose there exists a linear operator hZZ(cn):R —-—=>R,
s.tT.
h (z) =h_ (w)z + o(z)
z zZZ
where Séfl —=> 0 as |z] ——> o ,

and the following nonresonance condition holds true:
o(iwJh (®))0 z =g,
ZZ

where o (A) denotes the spectrum of the matrix A.
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hzz( ®) is supposed to be positive definite and

p)
n(z) >0 #zﬁRn,sm.h;O):O.
2n 2n

Given two hermitian operators A, B : R -—-=> R

let the integer number © (A,B) be defined as

© (A,B) = T{N(ikJ + A) - N(ikJ + B)),
keZ

where

=
=
]

number of negative eigenvalues of A,

N(A) = number of nonpositive eigenvalues of A.

With the above hypotheses there are for the system

z = JVh(z)
at least %(3(@ hzz(ca),cohzz(o)) nonconstant 2 nw -periodic solu-
tions, whenever (D(QJhZZ(cs),h)hZZ(O)) > 0.

The proofs of both results are done by translating our equa-
tions into the abstract setting of theorem,3.3.19.g
That is to say: a natural Hilbert space is found, on which the
functional relative to our problem verifies the required hypotheses.
Indeed, in practice, when a functional f is given, for which we
seek solutions of £'(u) = O, the topological space, on which one
should work, is not given. It has to been choosen in such a way
that on it f is of class Cl and satisfying possibly the (PS) con-
dition.

In |16]| the choiche of a suitable space is done in the follo-
wing manner, in order to prove the first mentioned result (and in
order to obtain the second one there are little differences).

If t= 1, we set

Lt - 18t R,
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If s¢R, we set

N

(

WS = luet? | .z U.+ljﬁSN1J2<m ,
k=13%%.on J

where ujk are the Fourier components of u with respect to the ba-

sis (in LZ)

o eltJ¢

K = = cos(Jt)d)k + Jsen(Jt)¢k
where

{@k} (k = 1,...2n) is the standard basis in Rgn.
w®, equipped with the inner product

2.8
(u,v) s = ;:k(l + 1319 U Vs

is a Hilbert space.

’ 1 1
We recall that the embedding WS~’--—-7Lt is compact if I :>§ - s.

t
S0 in particular Wl/2 is compactly embedded in L for any t 2 1.

t
Mow, making the change of variable t --—> gj%—,
(3.4.2) -~ Jz = Vh(z)
becomes
(3.4.3) - J: = @ Vh(z) @ = I,
T ’ 2

The 2n -periodic solutions of (3.4.3) correspond to the T-periodic
solutions of (3.4.2).

In order to construct the action functional, whose critical points
are the 2n —-periodic solutions of (3.4.3), we introduce the follo-

wing bilinear form:
2n

1/2
a(u,v) = £ I ju.kv.k u,vew/ ,
jez k=1 9°J
where ujk’ ij are the Fourier components of u, v with respect to
the basis {ij}. The bilinear form a(.,.) is symmetric and conti-

1/2 1/

’ 1/2
nuos in W / . Let L: W ——=W 2 be the selfadjoint, continuos
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operator defined by

(Lulv) = a(u,v) u, ve Wl/2-
1/2
W
Observe that if u,ve cl(st,r%™)
21 .
(Lu|v) 1/2 = of (=Ju,v)dt.
W
If there are positive constants Cl’ 02, s s.t.
) S
< E
(3.4.4) ]hZ(Z)I sc 4 02|z| ¥ z,
standard arguments show that the functional
1 21 . 1/2
e — uj -
f(z) 2(Lz]z)wl/2 . H(z)dt z e W

is Frechet differentiable and its critical points correspond to
the 21 -periodic solutions of (3.4.3).

l/é

2n
Let us call ®(z) = é @ h(z)dt. Since W is compactly embedded

t
in L~ for any t =z 1, by (3.4.4) we have that the map z ——> hz(z)
1/2 -1/2
is compact from W / to W / ; then &' is compact.
It is easy to verify that the spectrum of L consists of the limit

points -1 and 1, and of the eigenvalues

A, = _f___g ______ JEZ

and each eigenvalue kj has multiplicity 2n.
Thenthe functional f(z) is strongly indefinite, and it can be secen

that it satisfies assumptions (fl), (£.), (f3) of theorem 3.3.19.

2
We are not interested to give the details of the proof here.
Simply we observe that probably one of the major difficulties in

applications like this is to individuate the spaces V and W veri-

fying the geometrical assumption (fA)'
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4.1 CONLEY'S INDEX THEORY

The homotopy index or Conley's index theory, introduced in
1978 in a pioonering work (|29]) by C.C. Conley, generalizes the
Morse theory for flows, which are not necessarily gradient flows.
In order to briefly outline this theory, let us consider a
continuos two-sided flow on a locally compact and metric space X.
We recall that a flow is a map
n: X xR -———=>X
n: (x,t) ——=>> x.t,
which satisfies:
x.0 = x {xexX
xe(t + 58) = (xet)es xe X:; t, seR.
Also: a subset ACX is said to be invariant if AR = A,
‘where AR = {x°t | x4, te R}.A
A compact and invariant subset SC X is called isolated if it ad-
mits a compact neighborhood N, s.t. S is the maximal invariant
subset, which is contained in N.
With such an isolated invariant set S, a pair (Nl’NO) can be
associated, where:

i) N. C Nl and Cl(Ni\NO) is an isolating neighborhood for S;

0
ii) N_. is positively invariant relative to Nl.(which means: X €N

0 0

and x-[O,t] C N_ imply x-[O,t] C Nl);

0

iii) if x € N and x.R' ¢ N,, then there is a t Z 0 s.t.

x+[0,£] C N and x.teN,.

Roughly speaking: NO is the "exit set" of Nl.

Such a pair will be called an index pair.
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Now: to an isolated invariant set S we can assigne an algebraic
invariant, which is actually an invariant for an index péir for S.
Let us in fact denote by h(S) the homotopy type of the pointed
space (Nl/NO,[NO]); that is let us put h(S) = [(Nl/NO,[NO])]. It
turns out that the homotopy type h(S) does ﬁot depend on the par-
ticular choiche of the index pair (Nl,NO)'fWhat is crucial for the
definition to be a good definition); h(S) only depends on the way
S sits in the local flow on X.

Now define the algebraic invariant

p(t,h(S)) = = y.tJ,
jz0 J

where Yj = rank HJ(Nl,NO).

The setting for the generalized Morse theory is described by the

following definition.

Definition 4.1.1: A Morse decomposition of S is an ordered family

{M ,...Mm} of disjoint, compact and invariant subsets of S, s.t.

1
for every XE.S\jgle there is a pair of indices i « j for which

w (x) cM, and W*(x)c Mj,

where the positive limit set ®@ (x) and the negative limit set © *(x)
are defined as the maximal invariant sets in the closure of x-[O,+cm)
and X'(—cm,O] respectively.

The relation between the invariants of S and the local inva-
riants of a Morse decomposition of S is given by the following i-
dentity

(4.1.2) 5 p(t,h(Mj)) = p(t,h(8)) + (1 + t)Q(v),
j=1

where Q(t) is a formal power series,having nonnegative coefficients.

We refer to 130! for a rigorous proof of (4.1.2).
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Rather here we want to emphasize why the above identity can
be viewed as a generalization of the classical identity in Morse
theory.

Let then X = S = M be a d-dimensional compact manifold and f
a 02 function on M. Let us consider the gradient flow X = — V £(x)
on M. Assume the critical points are isolated; then the family
(Xl""xn) of all critical points is a Morse decomposition of the
manifold M if we order them in such a way that f(xi) = f(xj) for
i = j. This is an immediate consequence of the gradient structure
of the flow. Since the critical points (xj} are compact and isola-
ted invariant sets, we conclude from (4.1.2) that the following e-
guation holds true:

n
(4.1.3) L p(t,h(ix. 1)) = p(t,h(M)) + (1 + £)Q(t).

j=1 .
As (M,¥) is an index pair for the invariant set M, the first term
on the right hand side is the Poincaré polynomial

d k
p(t,h(M)) = = p t7,
k=0

the Bk being the Betti numbers of the manifold M. If we assume now,
in addition, the critical points to be nondegenerate, then the ma-
nifold M is the union of the stable and unstable invariant mani-
folds of the critical points.
Observe that in this case the only local topological invariant of
a critical point xj,“which is an hyperbolic equilibrium point of
the flow, is the dimension of the unstable invariant manifold:; and
this is equal to the Morse index dj of the critical point Xj' It is
easy to show (see [30| for instance) that the Conley's index of

d.
the set {Xj} is given by h((xj}) = [(s J,p)], where n is a distin-
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. d.
guished point of the dJ—dimensional sphere S J. Therefore
d. ’
p(t,h(1x;))) = ¢

Summarizing, we find for the Morse decomposition of the manifold
1M indeed the classical equation of Morse theory
n d,. d
gt = 3 ﬁktk + (1 + £)Qt),
j=1 k=0
Q(t) being a polynomial having nonnegative integer coefficients
only.

We remark at this point that since the tﬁo-sidedness of the
flow and the compactness of the underlying space are an essential
assumption in Conley's index theory, this can be applied essential-
ly only to ordinary differential equations in finite dimensions.
Applications to other kinds of equations require some reduction
procedure. So, for example, a reduction procedure is carried on in
|30] to deduce existence of periodic orbits for a time-dependent
hamiltonian system.

Before to illustrate how this is done, we just want to recall
that the Conley's theory already was extended by Rybakowsky to in-—
finite-dimensionals semiflows. Using this '"extended" homotopy index,
variational equations of the form Lx = N(x) (L a linear operator,

Il nonlinear) can be treated. In particular in |59| periodic solu-

tions of second order gradient systems are obtained, without pas-

sing through finite-dimensional reduction.
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4.2 APPLICATION TO HAMILTONIAN SYSTEMS OF CONLEY'S INDEX THEORY

But the result, on which we want to dedicate our attention now,
is the following theorem 4.2.3, obtained in |30|. We need, befors
stating it, a definition.

Definition 4.2.1: A T-periodic solution xo(t) of x = JVh(t,x) i=s

called nondegenerate if, when considered the linear equation
(4.2.2) y = Jh"(t,x (£))y = JA(t)y,

the fundamental solution X(t) of (4.2.2), for which X(0) = 1, is
such that no eigenvalue of X(T) is equal to 1.

To every nondegenerate solution an index (€ Z) can be associated,
which is roughly the signature of the hessian of f at the corre-
sponding critical point. For the precise definition we refer to
[30].

2
Theorem 4.2.3: Let h = h(t,x)e C"(R x R” ,R), n = 2 be periodic

in time of period T. Assume:
i) the hessian of h is bounded: - 8 < h"(t,x) = 8 ¥ (£,x) ¢R x R~
and for some constant B;
ii) the hamiltonian vectorfield is asymptotically linear:
JVht@x)::JAm(tbc+(ﬂlXH as |x|->+ o
uniformly in t, where A(D(t) = Am)(t + T) is a continuos loox:
of symmetric matrices;
iii) the trivial solution of the equation X = JACD(t>X is nondege--
nerate; denote its index by jOO

Then the following statement holds:

1) there exists a periodic solution of period T for the system
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(4.2.4) x = JV h(t,x).

If this periodic solution is nondegenerate with index jo’ then the-
re is a second T-periodic solution, provided jo £ ] ©" Moreover:

if there are two nondegenerate periodic solutions, there is also a
third periodic solution;

2) assume all the periodic solutions are nondegenerate; then there
are only finitely many of them, and their number is odd.

If jk’ 1 = k =m denote their indices, we have the following iden-

tity:

n -d
Tt =t +t (1 + t)Qd(t),

where d > 0 is an integer and where Qd(t) is a polynomial having
nonnegative integer coefficients.

We also give an interesting special case of the above state-
ment, which can be viewed as a generalization to higher dimensions
of the Poincaré-Birkhoff fixed point theorem for mappings in the
plane. This wellknown theorem states that a measure-preserving ho-
meomorphism of an anulus, which twists the two boundaries in oppo-
site directions has at least two fixed points.

2n

2
Corollary 4.2.5: Let h = h(t,x)C (R x R" ,R), n Z 2 be periodic,

hi{t + T,x) = h(t,x) and let the hessian of h be bounded. Assume:
JVh(t,x) = JA_(t)x + o([x]) as [x|->w,

JVh(t,x)

1]

JAO(t)x + o(|x]) as |x|-=0
uniformly in t for two continuos loops Ao(t + T) = Ao(t) and
A (t +T) =A (t). Assume that the two linear systems

@ @™

and X

1}

[an

o=
o

d.

>
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do not admit any nontrivial periodic solution, and denote by jOC
and jo the indices of these two linear systems (i.e. of the respe-
ctive trivial solutions). If jOO # jo, then there exists a nontri-
vial periodic solution of (4.2.4). Moreover, if this periodic so-
lution is also nondegenerate, then there is a second T-periodic
solution.

In other words if the two linear systems with Ao(t) and A(m(t)
cannot be continuosly deformed into eachother within the set of the
matrices, whose corresponding solutions are nondegenerate, then we
conclude the existence of a T-periodic orbit.

The procf of the theorem proceeds as follows: first the pro-
blem is formulated as an abstract variational problem for a fun-
ctional in the loop space. And this is done exactly as in section
1.3 of this thesis. At this point the assumption (i) allows the
application of an analytical device, due to Amann (see |1]) and
used also in [2]| and |3|, which reduces the study of critical
points of f to the study of critical points of a related functional,
defined on a finite dimensional space Z.

The idea is simply the following one (we will refer now for the
symbols to section 1.3): observe that the operator A is selfadjoint,
A* = A, It has a closed range and a compact resolvent. The spectrum
of A, 0 (A), is a pure point spectrum: o (A) = 2nZ. Every eigenvalue
Aeo(A) has multiplicity 2n and the eigenspace E(L) = Ker(A - A) is
spanned by the orthogonal basis given by the loops:

taJ

t - e e, = (cosit)e

K + (51nkt)Jek, k=1,...2n,

k

.. 2 .
where (ek) is the standard basis in R n. In particular Ker(A) = RZn.
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Denoting by {E A’ A€ R} the spectral resolution of A, we define
the orthogonal projection Ped (H) by

P = dE

where B8 ¢ 2nZ. Let P = 1 - P, and set Z = P(H), Y = P (H). Then
H=17Ze Y and dim(Z) < o . With these notations the equation
Au = F(u) for uedom(A) is equivalent to the pair of equations

APu - PF(u) =0
(4.2.6) .

AP* (u) - P'F(u) = 0.
Now writing u = Pu + P'u = z + ye Z @ Y, we shall solve for fixed
z € Z the second equation of (4.2.6), which becomes

AL
Ay — P F(z + y) = 0.

With A_ = A{Y this equation is equivalent to

(4.2.7) y = AO—IPLF(Z + V).
-1 1 1 . .
Observe that IAO | = 57 and |P7| = 1. Also, from assumption (i)
we conclude that
[F(u) - F(v)] = Blu - v] Yu, veH.

Conseguently the right hand side of (4.2.7) is a contraction ope-
1
rator in H, having contraction constant 5 We conclude for fixed
z € Z that the equation (4.2.7) has a unique solution y = v(z)e€ Y.
. -1 ‘ t -1 1
Since (AO y)(t) = of Jy(s)ds, we have AO (Y)c H and therefore
v(z) € dom(A). Moreover the map z --> v(z) from Z into Y is Lip-

schitz continuos. In fact we have

1
]V(zl) - V(zg)lég 5 Izl - 22‘ + |V(Zl) - v(zg)!

Setting u(z) = z + v(z)
we now have to solve the first equation of (4.2.6), namely

Az - PF(u(z)) = 0, which in view of (4.2.7) is equivalent to the
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equation

Au(z) = F(u(z)).
One verifies readily that
(4.2.8) vglz) = Az - PF(u(z)) with g(z) = f(u(z)).
It remains to find critical points of the function g, which is de-
fined on the finite dimensional space Z.

Now to the gradient flow
z = vgl(z)

the Morse type index theory for flows is applied. And the appli-
cation is as follows: it can be seen that, due to the assumptions
(ii) and (iii), the set S of bounded solutions of this gradient
flow is compact. Hence for it (as for any isolated invariant set
of a local flow) an index is defined. Using the invariance of the
index under deformations crucially, this index is computed to be
the homotopy type of a pointed sphere:

- [¢" - la - 3
h(s) = [s7®], m_ = zdimZ i -

Here émoadenotes a sphere of dimension m o with a distinguished
point. Hence p(t,h(S)) = tmcn.This is not the index of the empty
set, which is a pointed one-point space and has hence the homoto-
py type [(p},p] for an arbitrary point p. Therefore S # @ and,
since the limit set of a bounded orbit of a gradient system con-—
sists of critical points, the function g possesses at least one
critical point, and consequently the hamiltonian equation admits
at least one T-periodic solution.

If the periodic orbit found above is nondegenerate, it has

an index, denoted by j€ Z. The corresponding critical point z of

g 1s then (it can be shown) an isolated invariant set with index
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hi{z}) = [ém] where m = d - j. Assume z is the only critical point
of g; then 8 = (z), since we are dealing with a gradient system,
and therefore h(S) = [ém], which on the other hand is equal to
[émcaj. Consequently m = m_ . Therefore if j # jm and hence m # n_
there must be more than one critical point of g.

Assume now that the hamiltonian system possesses two nonde-
generate periodic orbits, having indices jl and J 5 We claim
that there is at least a third periodic orbit. In fact if this is
not the case, then the isolated invariant set S contains precise-
ly two isolated critical point z, and zz,with indices h((zl)) =

.ml
(5 7], m =a-j;

If we label them such that a(zl) = a(zz), then {z

22} is an ad-
missible Morse decomposition of S. From (4.1.2) we deduce the i-
dentity

p(t,h(<zl>)) + p(t,h({z,1)) = p(t,h(S)) + (1 + t)Q(t),

2
which leads to the identity

t + t =t + (1 + t)Q(x).

1 + 2Q(1), with Q(1) nonnegative inte-

1

Setting t = 1, we find 2
ger. This is a nonsense; hence our assumption was wrong and we
must have at least three critical points of g.

Assume finally all the periodic solutions to be nondegenera-
te and denote their indices by jk’ k=1, 2,.... They correspond
to the critical points of g, which are isolated. Since S is com-

pact, there are only finitely many of them, say ZireeeZe We or-

der them s.t. a(zi) = a(zj) if 1 £ j. Then (zl,...zn) is an ad-

missible ordering of a Morse decomposition of S, and we have
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Tp(t,h(z)) =t © + (1 + t)o(t)

with m =d - J
[e0]

By assumption the periodic solutions are nondegenerate, hence we

know that

p(t,h(zk)) =t mo=4d-J,

so that

n
Tt -t % (s 1)Qt),

which, after multiplication by t-d, becomes the advertized identity
in theorem 4.2.3. We conclude that there is at least one periodic
solution of index joo. Also, setting t = 1, we find n = 1 + 2Q(1).
Hence the number of periodic solutions is odd. This finidhes the
proof of theorem 4.2.3.
We want to emphasize that the advantage of the generalized Morse
theory is that it does not require the critical points of the fun-
ction g to be nondegenerate; and it allows to define an index not
only for nondegenerate critical points, but also for compact inva-
riant sets.

Finally, as an illustration of the theorem 4.2.3, let us assu-
me there are precisely three nondegenerate periodic solutions with
indices jk, 1 < k & 3. Then:

m m m m
®
t L + t 2 + t 3 =t + (1 + t)Q(t).

Hence Q(1) = 1, and therefore Q(t) = t¥ for some integer r. We con-
clude that one of the jk's agrees with ja:’ say j3 = jOO . The remai-
ning indices are therefore bounded to satisfy |j2 - jll
It would be interesting to have an example of an hamiltonian system

realizing this rather special situation.
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4.3 EQUIVARIANT MORSE THEORY

When we consider an autonomou hamiltonian system: z = JVh(z),

the functional f(z) = OfT[%(é,Jz) - h(z)]dt, defined as in sec—
tion 1.3 on D(F) =[ zeEHl((O,T);Rzn) | 2z(T) = z(0)} is invariant
under the action of the group Sl. This has as a consequence the fact
that the critical points appear in manifolds and hence they cannot
be nondegenerate.

Actually a symmetry group is present in many other physical
‘problems. We would like to "adapt" the methods of Morse theory al-
so to these situations. In other words we are led to the question:
how is the Morse theory to be altered, to take into account a prio-
ri symmetries of a function f under the action of a compact Lie
agroup on a manifold?

This will be the topic of the present and the following sec-—
tion.

We start recalling first of all the notion of group action.

Let X be a topological space and G a group, with the multipli-
cative notation. We'll denote by Aut(X) the group under composition
of homeomorphisms from X to itself.

Definition 4.3.1: An action of G on X is an homomorphism

O : G === Aut(X): the homeomorphism corresponding to an element
g€ G 1s usually denoted by ((g)(x) = g(x) x€ X.

When G is a topological group there is another way of defining an
action on X, which also considers the topology on G. It distingui-

shes between left and right actions:
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Definition 4.3.2: A left action of G on X is a map

p G x X —>X

we,x) = gx,
satisfying the following properties:
1) 1x = x 1€G, xeX

2) gl(gZX) = (glgz)x g, 8,€G, x€X.

The difference between left and right actions is not just a matter
of notation, since properties 1) and 2) give a different order in
applying gl and‘gz. Hence, if the group is not commutative, a left
action is not generally a right action.

Given x€ X, we denote by 0(x) the orbit of x, that is the set
of those points in X, which can be obtained from X, using the ac-
tion of the group:

0(x) :{gx [ geG}.
-Then the quotient space X/G represents the set of all orbits.
The set

ze{gEGl @c:x}
will be called the isotropy group of x; it is the set of elements
in G, which leave x fixed.
If G is a compact topological group, then GX is a closed subgroup
of G.

Definition 4.3.3: The action of G on X is said to be free if ge G,

2 # 1 == gx £ x for evry x €X; that is GX = 1 for all x. If xeX
and ¢ : G ——=> 0(x) is the map given by §(g) = gx, then 0 is sur-
Jective. If the action is free, ¢ is also injective. This implies
that, when the action is free, every orbit looks like G.

Definition 4.3.4: The action of G on X is said to be effective if
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Ne =1.

X
xeX

We also define the trivial action of G as the one, which leaves
everything fixed, that is { x: @ =G

If G is a compact Lie group, acting freely on a manifold X,
then X/G is a manifold. However if the action is not free or the
group is not compact this need not be the case.

Once clarified these concepts, let us suppose that there is a
left action of a group G on a manifold M. We say that a flow on M
is equivariant if

(gex) et = ge(xet) X€EM, g&€G, teER.

If we have a gradient flow on a G-invariant compact manifold, then
it is equivariant if the function f is G-invariant, that is flgx) =
= f(x), for xe M, gegG.

To study an equivariant flow, the most natural thing would be
to look at the quotient space M/G. It is in fact obvious that a
flow can be defined on M/G in the following way:
[x].t = [x.t], [x] wm/G, ter,
where [x] is the orbit (equivalence class) of x under the action
of G. The flow above is well defined: if x and x' belong to the
same equivalence class, then x' = gx for some g and consequently
[x'] et = [x'et] = [(g-x)-t] = [ge(x.t)] = [x-t] = [x].t.
But, as we already told, if the action of G on M is not free, M/G
fails in general to be a manifold and therefore, to apply the
Morse theory, we should first of all extend it intelligently to
nonmanifolds.

A different approach is given by the equivariant Morse tTheory,

which is a natural extension of the free case.
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It consists of extending the flow to the space M x E, where E is
a contractible space, on which G acts freely, and then obtaining
the Morse inequalities in the quotient space (M x E)/G, replacing
the cohomology of the spaces involved in the equality

n
(4.3.5) z pt(h(Mj))=pt(h(M)) + (1 + £)Q(¢t)

j=1
with their "equivariant cohomology", which we'll present next.

We recall we are supposing there is an equivariant flow, de-
fined on a Haussdorff topological spacel', and S is G-invariant,
G being a topological group acting on r.

If G is compact (see |50| and the references of algebraic topology

there) there is a universal G-bundle characterized by having its

total space E contractible:

(4.3.6)

Il < <—

E/G BG
The space BG is called the classifying space of G. The action of
G on E is free and E is unique up to homotopy. Since the action of
G on E is free, the diagonal action of G on the product S x E is
free too. Here diagonal action means:

gly,e) = (gy,ge) geG, YES, e <cE.
We can extend the flow to S x E in the tfivial way:

(yoe)et = (vet,e) t ER.
We can project this flow on the quotient space (S x E)/G = SG.
It is obvious that if I is a G-invariant, invariant set for the
flow on S, then (I x E)/G = IG is an invariant set for the quo-

tient flow in SG.

To obtain an analogue of the Morse relation (4.3.5) for this
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quotient flow, using equivariant cohomology, we need some compac-—
tness condition. In fact in obtaining (4.3.5) compact pairs have
been used. Also the definition of isolated invariant set requires
the presence of a compact isolating neighborhood. But in the bun-
dle (4.3.6), usually, E and BG are realized as infinite dimensio-
nal manifold:; so all compactness is lost in S x E and SG. This
difficulty can be overcomed, by means of a limit procedure as
follows.

When G is a compact topological group, E and BG can be ob-

tained as limit of finite dimensional compact spaces:

E = 1lim Ek BG = lim BkG
ke ® k——m®
related to the bundles G
|
Tk
\
EK/G = BkG.

The action of G on Ek is free,

30 the Morse relation is obtained for each k, and we pass to the
limit using the stabilizing properties of cohomology:

if (Ml,...Mn) is an admissible ordering of a Morse decomposition
of S and each Mj is G-invariant, then

‘{(Ml x E )/G,.v... (Mn X Ek)/G}

is a Morse decomposition for the isolated invariant set (S x Ek)/G.

Observe that the flow in S x Ek is defined in the trivial way, as

in S x E. Also: if (N,N ) is an index pair with N and N G-inva-
riant for the G-invariant isolated invariant set I, then

((N x Ek)/G,(N— x Ek)/G) = (Nk,N_k)

™

is an index pair for (I x hk)/c.
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So, if we denote by hk(I) the (homotopy) index associated to any

pair (Nk,N_k) of (I i Ek)/G, we obtain:
(4.3.7) jj;lpt(hk(Mj)) = pt(hk(S)) + (1 + £)Q

k
t b
k=1, 2,...

We pass now to the limit in (4.3.7) for k-=>®, using the stabi-
lization of the cohomology for the classifying space (we still
refer to |50| and relative references); that is:

for E = lim E. and BG = lim Ek/G' for each i€ N there exists m(i)

k
e N s.t.:
kK = m(i) == H (E) X Hl(Ek) and
i ~ i
H (BG) = H (5,/G).
Hence we o3otain
n
G T
(4.3.8) £p, 0(h(1.)) = p %h(s)) + (1 + %) 0.0,
=1 t J t t

- where the Poincaré =eries ptG(h(S)) (resp. ptG(h(Mj))) represents
the cohomology of the pair ((N x E)/G,(N x E)/G) if (N,N ) is =
G-invariant index pair for S (resp. for Mj)’ that is the equiva-
riant cohomology of (N,N ).

If G acts on a space X and E is defined by (4.3.6), hten the e-
quivariant cohomology of X, H*G(X) is: H*G(X) = H*(XG), where

KG = (X x E)/G.

If x = {XO}, then H*G(xo) = H*(BG), that is H*(BG) is the equi-
variant cohomology of a point.

If G acts freely on X, then the map

p: X, ——=> X/G

Zs an homotopy equivalence. Hence
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H*.(X) = H*(X/G),
that is the equivariant cohomology of X is the cohomology of the
quotient space X/G.
Now: the homotopy type of the pair ((N x E)/G,(N x E)/G) will be
denoted by hG(I) and called the equivariant (homotopy) index of T.
With this understood, (4.3.8) becomes

n
G
(4.3.9) 22 (1)) = o, (Bg(8)) + (1 + €10,

J_
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4,4 FORCED OSCILLATIONS OF PERTURBED SYSTEMS VIA MORSE THEORY

We want to spend now some more words on the Morse theory for
critical submanifolds, which allows to treat the case of funcfions
having nondegenerate critical orbits. (Recall that alternatively
the study of equivariant gradient flows in presence of particular
symmetries is exposed in |13| and |12], using a geometrical index
as a replacement for the Lyusternik-Schnirelman category).

Definition 4.4.1: We say that a connected submanifold TCM is an

isolatea critical manifold if
i) each point p€ T is a critical point of f,
ii) T is isolated as a critical point set.

From i) and ii) it follows that T is an isolated invariant set
for the gradient flow x = -V f(x).
Then T has an homotopy index h{(T) as always. We will next see how
this can be computed in the case when T is '"nondegenerate'". Non-
degenerate means that 1) is satisfied and also

m

ii') the hessian of f is nondegenerate in the normal direction to T.

e , . ' B
ii') means that if (Xl""xk’ Xk+l""xn) is a system of local co

ordinate in M, centered at p, s.t. near peT is given by the n - k

equations: xk+l = O,...xrl = 0, then:

horhood MS(T), fibered over T
by the normal discs to T, re- -

lative to some Riemannian
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structure on M. Thus ii'’) means that f, restricted to each normal
disc, 1s nondegenerate.

Moreover ii') implies ii); that is: each nondegenerate critical
manifold is also isolated.

We denote by ¥ (T) the normal bundle of T endowed with a Riemann
metric and by H.f the hessian of f on V(T).

If we set (ATx,y) = HTf(x,y), with x, y€ v(T), then we define a
selfadjoint endomorphism AT from Y (T) to ¥(T). Hypothesis ii')

implies that A_ does not have zero as an eigenvalue and hence V{T)

T
can be decomposed into the direct sum
+ —
Vv (T) =V (T) @ ¥ (T)
where V+(T) and V (T) are spanned respectively by the positive and

negative eigenvectors of AT.

Definition 4.4.2: The fiber dimension AT of V—(T) will be called

the index of T as a critical submanifold of f.

We want to write the Morse identity (4.3.5) for a smooth fun-
ction, whose critical setes are only nondegenerate critical mani-
folds.

The contribution in the Morse polynomial of the critical manifold
T is

i if -
(4.4.3) ﬂﬂt(T) = T tTrank HC{U (T)},

where Hé denotes the compactly supported cohomology. (If X is a

locally compact topological space, Hi(X) = Hl(X), i=1, 2..., whe-
re X is the one-point compactification of X).
By the Thom isomorphism
i 1k
HC{V (T)} =H (T, sK),

where K is a ring, 0 1s the orientation bundle of Vv (T) and
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H#(T,? &K) is the cohomology with local ccefficients. Hence (4.4.3)
becomes
m "o (10"
T) = R
t( ) =t Pt(T,ﬁ =K )
In particular when the bundle V (T) is orientable,
Pt(T,ﬁ—&K) = Pt(T,K). Then, if we consider a Morse decomposition

of M, given by the nondegenerate critical manifolds of f, (4.3.5)

becomes

‘where the sum is taken over all the critical manifolds of f.

This theory (developed by Bott (see for instance |22|) and
then adapted to Hilbert manifolds by Wassermann (|69|)) together
with the perturbation methods in critical point theory, developed
by Marino-Prodi (]43]|) are at the basis of the papers |6| and [32].

In |6| the existence of critical points is studied for per-
turbations f£ of functionals f, whose critical points appear in
manifolds. This is the case when f is invariant under the action
of a continuos group and the perturbation fE breaks such a symme--
Try.

The main motivation for such an investigation is in |[6| the study

of hamiltonian systems such as

2h

p = Y + shl(t)
(H_) .
q = ’D_}; + 81’12('{:)

2
where (p,q)eR n, h. and h2 are T-periodic and we look for T-perio-

1

dic solutions of (HS) for ¢ > 0 small.

. . 1.
Here the umperturbed system (Hq) is autonomous and hence S -inva-
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riant, while this is no more true for (Hs), e >0, in view of the
forcing terms hl and h2.
In the paper two theorems are proved in the abstract setting of
critical point theory.

In the first theorem it is supposed that the umperturbed functio-
nal f has a minimum consisting of a manifold of ecritical points Z.
Assuming that Z has two nontrivial homology groups, it is shown
that f, has at least two critical points at levels near f(Z). The
nroof does not require any nondegeneracy assumption on Z.

In the second theorem the case when Z is a compact, connected ma—
nifold of critical points of f, possibly not at the minimum level,
is considered. Assuming a suitable nondegeneracy (which turns out
to be the most general one in the framework of applications to
(Ha)> it is proved that fs has, for e small enough, at least
cat (Z) critical points near Z.

These results are for hamiltonian systems of the form (He), with
the hamiltonian satisfying some technichal assumptions, among
which convexity.

It is seen that near a nondegenerate orbit of (HO) there are at
least two forced oscillations of (Ha>' Moreover if (HO) is com-
pletely integrable then there are at least n + 1 forced oscilla—
tions.

In 133], using the same techniques and tools, the existence
of 27 —periodic solutions of second order, this time not convex,
hamiltonian systems

- X = V_V.(%,x)

. s . 2 o
is studied, where V£ : Sl x R --> R is of class C , asymptoti-
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cally quadratic in x, and Vo(t,x) = V(x) is time independent.

On min-max techniques and Morse theory methods rely also the
detailed papers of Bahri and Berestycki |8| and I9], concerning
forced vibrations.

In |8| the existence of T-periodic solutions for hamiltonian
systems of type
(4.4.4) z = JvVh(z) + f(t)
is studied, with h = h(z)e CZ(RZH,R), f: R ——> éZn of class Cl,
T-periodic; h is supposed superquadratic and verifying an additio-
nal growth condition.

The main result asserts that with these hypotheses the system

(4.4.4) has infinitely many T-periodic solutions { z } and

k keN’

lzlew -=>+ @ as k->+w.

The first step in proving it is to construct critical values for
the Lagrangian functional associated with the autonomous system
(4.4.5) z = Jvh(z).

This construction is based on a min-max principle, which relies on
the Sl—invariance and an approximation of the space. Then the cri-
tical values are shown to be "stable" in a topological sense: the
homotopy groups of the level sets associated with those values are
seen to be not trivial and to remain so under "small" perturbations.
Sharp estimates on the growth of the critical values are required.
Finally, combining the preceding results and using Morse theory,
the existence of infinitely many critical values for some pertur-
bation of the autonomous system is obtained.

In |9] the second order system of nonlinear ordinary differeri—

tial equations of the form
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{(4.4.8) X+ VV(x) = £(t)

X : R —> R, Ve C5(R%,R), £ : R ——> R® a T-periodic forcing term,
are studied, and forced vibrations (of period T) are seeked.

The main result is that, if V is superquadratic at ® , for any gi-
ven feLioc(R,Rn) which is T-periodic the system (4.4.6) admits in-
finitely many T-periodic solutions.

This is achieved by a procedure similar to the one in |8|: first a
sequence of critical values <Ck)keN for the autonomous system
(4.4.7) X+ vV(x) =0

is constructed by means of min-max principles. Hence the level sets
of the functional associated with (4.4.6), corresponding to the
numbers c,, are shown to have some topological property, which is
in some sense stable under perturbations. It is also required a
sharp estimate from below on the growth of the ck's as k->+m.

The conclusion uses a perturbation argument on the autonomous fun--

ctional.
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5.1 LOCAL QUESTIONS

In conclusion we will concern ourselves with some local results:
we will discuss the problem of finding periodic solutions of an ha-
miltonian system
(5.1.1) z = JVh(z),

2n 2,.2n
?

peeed sDyseeeP e R7, heC (R

. R), h(0) = 0,

zZ = (ql
in a neighborhood of the origin of RZn’ which we assume to be an e-
quilibrium point.

If the linearized equation is
(5.1.2) % = Az, AeL(RS™),
the presence of purely imaginary eigenvalues of A is clearly neces-
sary for our goal. In fact, if A would be nonsingular with none of
its eigenvalues purely imaginary, then the rest point z = 0 would
be hyperbolic for (5.1.2) as well as for (5.1.1). (The flow of
(5.1.1) would be, close to O, topologically conjugate to those of
the linearized system). No periodic solution, except the trivial o-
ne, could then exist in a neighborhood of O.

Well: we will assume A diagonalizable with all its eigenvalues

EEREE l,...—An) imaginary.

at lea sk

In such a case there exist for (5.1.2)'n families of periodic solu-
tions (called normal modes), and the problem becomes to see if theyr
survive after the perturbation including the nonlinear terms.

If the Ai’ i =1,...n, do not satisfy resonance condition, in
the sense that Ai/kj £k, ke Z, ¥i # j, then a well known theorem
due to Liapunov assures that (5.1.1) has at leést n periodic solu-

cloge

tions with periods“to those of the normal modes on every eneray
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surface h_l(c) with ¢ sufficiently small and positive. Hence (5.1.2)
still has at least n one-parameter famulies of periodic solutions in
a neighborhood of the origin (the energy being the parameter).

What the Liapunov theorem tells us is more precisely that, if Ai/kj

¢z ¥ i # j, then the existence of a one-parameter family of closed

orbits is garantued, with period~vgjli.

J
The nonresonance assumption is in general necessary for the vali--

dity of the theorem, as it is shown by the following example, taken
from |65]:
Example 5.1.3: With the cubic polynomial

2 2 2 2 1, 2

1 2
bo=s0g vy - (g + ) + xy x4 slxy — vy,

as hamiltonian function, the corresponding system becomes

YL T X Fe T Y,
. 1, 2 2
X, = -2y, + =(x, - y.)
(5.1.4) 2 2 271 1
TS B - B )
Yo = 2%y — XYy
with the obvious equilibrium solution Xl = x2 = yl = y2 = 0 and eigen-—

values of the linearized system: i, 2i, -i, -2i.
kl/kz = 1/2, which is not an integer, and this implies the exi-

stence of a one-parameter family of periodic solutions with approxi-

5 ni
mate period —é%i = n . These solutions can be readily exhibited: in-

deed the uniqueness theorem for 0.D.E. implies that for initial va-

= 0, the general solution is: x_= 0, y. = O,

lues x. =y 1 1

1 1

x2 = acos 2t - Bsin2t, y2 = asin2t + Pcos2t, with « and B constants,
i.e. a circle in the x2—y2 plane, traversed in time ©m , with no de-

pendence on the radius. In this case the period is equal to =n exa-

ctly, rather than only in first approximation.
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On the other hand 12/11 = 2; hence the condition for the exi-
stence theorem is violated. As we have Just seen all solutions with
initial values Xl = yl = 0 have périod and we show now that there
are no other periodic solutions. By the uniqueness theorem for 0.D.E.
the quantity p = xi + yi remains strictly positive throughout for
the other solutions. Calling q = X: + yg, a simple calculation ai-
ded by a suitable combination of the terms in complex form leads
from (5.1.4) to the differential equation: ; = 4pg + p2.

Since p2j> 0, 4pg = O, it follows that p is a stictly convex fun-
ction of t and therefore certainly not periodic. Thus apart from the
given circular orbits there are no additional periodic orbits for
this system.

In contrast to Liapunov theorem, A. Weinstein showed in [70]
that, if the hamiltonian function is definite, e.g. positive defi-
nite, at the equilibrium point, then on every energy surface h_l(c)
(c sufficiently small and positive) there are n orbits with period
closed to the one of the normal modes. No nonresonance conditions
are assumed. In stead the quadratic form h2 in the Taylor expansion
h = hO + hl + h2 +... (where hO = hl = 0) is asked to be positive
definite.

Remark 5.1.5: these two results are interesting because they carr:

informations on the localization as well as on the periods, gararn-

tueing these to be not very large. On the contrary the hamiltonian
closing lemma of Pugh garantues for almost all h the existence of

infinitely many periodic orbits on each energy level, but it makes
no estimate of the periods.

Remark 5.1.6: If we merely assume that O is a nondegenerate criti-
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cal point of h, then we can get results like the mentioned one of
Weinstein, with n replaced by the dimension of certain subspaces,
on which the hessian of h is positive or negative definite.

The original proof of Weinstein uses algebraic topology (in
particular the Lyusternik-Schnirelman category) and tools from the
theory of Lagrangian submanifolds.

In |46| Moser gave a new proof, extending at the same time the ap-—
plicability to systems not necessarily hamiltonian, possessing an
integral G(z) with GZ(O) = 0 and positive definite hessian GZZ(O}.
His proof relies on a variant of the method of Liapunov-Schmidt to
reduce the problem to that of finding critical points of a Cl fur-
ction on a finite dimensional manifold. Once more topological pro-
perties of the manifold, Morse and Lyusternik-Schnirelman theory
are the most natural ingredients for the proof. In another remar-
kable paper of Moser (|47|) the "averaging method" on a manifold is
éxposed and used to study vectrofields on a compact manifold, which
are closed to one, having only periodic orbits. As an application

2 perturbation of the Kepler problem is considered. The restricted
three-body problem can be seen as an example of such a perturbation.

Other results are disponible if one imposes conditions on the
nonlinearity. But we don't intend to describe them there. Rather
we want to mention some recent observations on this topic, due to
Dell'Antonio-D'Onofrio and contained in [35].

There an hamiltonian system in R4 is considered, having the o-
rigin as isolated equilibrium point. The hamiltonian h, which has
to be of class C" (m 2 3), is assumed to have a diagonalizable qua-

dratic part ho with frequencies vl and VO, s.t. VQ = k)ﬁ, kez.
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{i.e, h2 = vl(xi + yi) + Vz(xg + yg)). A resonance condition is
hence explicitely assumed, without requirements on the definitness
of h2. In the paper a lower bound is provided for the families of
periodic solutions near the origin. Precisely the following is
shown:

a) when h is of definite sign at the origin, there are at least
two one-parameter familes of periodic solutions, with frequencies
close to those of the linearized system. Their energy can be used
as a parameter. And here there is nothing new with respect to the
papers of Weinstein and Moser;

b) when h is not of definite sign at the origin, i.e. V1V2 <0
fassume Ivgl > lvll), then

if V2 £ —2Vl, the same situation as in (a) holdes "generically",
Sty = —2»1, "generically" there is only one family of periodic

2

solutions with frequencies close to VZ'
"Generic" refers to a set in the space of parameters, which

can be specified by means of the normal form of h. Let us see it

a little bit more carefully: a polyinomial p of order s is in nor-

mal form with respect to h2 if it is invariant with respect to the

aroup generated by h Every polynomial p of order s in normal

5
form is a sum of monomials in normal form. The coefficientsof p
with respect to a fixed basis of monomials can then be regarded as
elements of a vector spaceIZ. We denote ¢ an element of .=.

We say that a property P of the hamiltonian system holds generi-
cally to orders if it is possible to find a set I inzz, of codi-

mension one, s.t. P holds whenever one of the normal forms of

hO + ... + h_ correspond to an element ce & . If we consider nor-
&)
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mal forms of least possible order 23, we simply write "generical-
ly'".

(We remark that to hO + ees + hS there correspondteyeval normal
forms, obtained one from the other by a transformation in a parti-
cular group. For more details see [35].)

In conclusion "generically'" has to be understood roughly as some-
thing like "for almost all the cases", but it also means some-
thing more: the region where the property P holds (if it holds
generically) is the complement of regular submanifolds and it corn-
tain large pieces.

The result above explains why the case'V2 = —ZLE is the ea-
siest to use to provide counterexamples to the existence of n fa-
milies of closed orbits in resonance conditions.

It relies on a prevalently analytical approach: large use is
done of the implicit function theorem; a central role is played
by the properties of normal forms and by bifurcation arguments.

We remark that more regularity is required for h, than is done in
|70] and |46].

In |36]| the analysis, which in |35| was done in R2n, n=2,
is extended to the case n >2 (see also |34]). A geometric inter-
pretation is furnished and a major use of topological methods is
done. Also the theories described in the preceding sections are
used: Morse theory for example, especially in its equivariant

form. Often in fact the solution of the problem is reduced to the

study of stationary points of a function on a manifold.
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5.2 SOME REMARKS ABOUT STABILITY

Finally we recall that nonlinear oscillations near an equili-
brium sclution ca be seen as a bifurcation problem.

We want to mention the paper |25], where the hamiltonian Hopf
bifurcation in a resonance case is considered in a general treat-
ment of families of periodic solutions of hamiltonian systems. An
example of one system verifying the assumptions of this paper 1s
given by the planar restricted three-body problem in Celestial Me--
chanics.

An alternative approach to bifurcation of periodic orbits is
possible by use of stability theory. As showed for example in |a2!,
[20], |61 in fact, stability arguments can be used not only for
analyzing the qualitative behaviour of a flow near the bifurcation
sets, which are in certain cases periodic orbits, but also to prove
the existence itself of these sets.

Estimations on the number of bifurcating periodic orbits are
given in [20], |61], [62] in terms of stability properties of bhe
zero solution of a differential equation, appropriately associated
To the umperturbed one in consideration.

In the line of this appfoach also informations on the stabili-
Ty of the bifurcating orbits (a question of relevant physical inte-
rest) can be obtained. This is done in the paper |45].

But these stability results hold true for systems, for which the
trivial equilibrium solution is h-asymptotically stable or h-—com-
pletely unstable, properties which cannot hold for autonomous ha—

miltonian system. (For the definitions of h-asymptotic stability
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and h-complete instability we refer to the mentioned papers).

The desire arises naturally to be able to say something also
about the stability of the periodic orbits, of which we deduced
existence.

But we observe that for hamiltonian equations the orbit struc-
ture is indeed very complicated. Stable behaviour cannot be separa-
ted in general from unstable behaviour. And it seems absolutely
hopeless to solve the initial value problem to get an insight into
the longtime behaviour.

Just to clarify these statements, we recall that, for example,
when studing the gqualitative behaviour of a 4-dimensional hamilto-
nian system near a periodic orbit for all times, an idea is to stu-
dy the iterates of the Poincaré mapping of a transversal section in

the energy surface. This mapping is a local diffeomorphism f on the

plane, defined in an open neighborhood of a fixed point (corre-
sponding to the closed orbit) and it is area preserving.

The eigenvalues of the linear part (df)o at the point 0 (the fixed
noint) lie in the set {zeC | |z| = 1} U {zeC | im z = O}.

If there is a real eigenvalue A, the fixed point is called hyperbo-
lic. And an hyperbolic fixed point is always unstable for an area
preserving map: as a necessary condition for stability the fixed

noint has to be elliptic; the elgenvalues must all lie on the unit
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circle. Let us suppose that this is the case; and let us exclude
the nongeneric case: A = i1,

In these hypotheses it is known, after the workvof Kolmogorov, Ar-
nold, Moser, that, under smoothness assumptions on f, there exist,
close to 0, many invariant curves on the transversal section (which
are sections of invariant tori in the energy surface). They don't
form a one-parameter family, but a rather complicated set, which
is closed, nowhere dense and of positive measure.

If we "take a microscope" and focus on the region between two of
these curves (the so called zone of instability), we see that the
orbit structure is very irregular and unpredictable: there are el-

liptic an hyperbolic periodic points with homoclinic points, giving

rise to hyperbolic sets. It is proved in |72| that an elliptic fi-
xed point of an even analytic diffeomorphism is "in general" a
cluster point of homoclinic points.

Actually in the case of two degree of freedom a sort of stability
for the closed orbit (corresponding to the elliptic fixed point) is

obtained. In fact the mentioned invariant tori delimit invariant
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regions in the three-dimensional energy surface; and the orbits
starting in these regions cannot excape from them.

But the picture above is sufficient to give a "feeling" of how
complicated the situation is in general.

Once understood that the kind of stability, which we can ex-
pect to find for closed orbits of hamiltonian systems, is éifferent
from the one which can hold for nonconservative systems, we recall
a "stability" result contained in |6].

There (for existence results we refer to section 4.4, where the pa-
per was mentioned) forced oscillations are obtained substantially
as bifurcating orbits of a system (He)’ perturbed of an autonomous
hamiltonian system (HO). We add now that also some information is
given on the stability of these forced odcillations. It is shown,
for instance, the following: if the periodic orbit zO of (HO), from
which the forced oscillations bifurcate, is nondegenerate and its

Floquet multipliers (1,l,k3,...A2n

) are s.t. [Ail =1 ¥i, and all

the Ai for i >.3 are simple, then one of the bifurcating orbits
(let us say zi is '"stable" (in the sense that Ixi(e)l =1 ¥1i),

while anotherone (zi) is "unstable" (meaning by that that the con-

dition |x:,2L(a)] =1 ¥1i is not verified).
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