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INTRODUCTTIOTHN

The following thesis is devoted to the analysis of the complex
problem of the fermion masses and mixing angles. In particular, Chapter
0. is a general introduction to the subject. 1In Chapters 1. and 2. we
will briefly recover the usual Renormalization Group analysis of the
fermion masses, while in Chapters 3. and 4. we will analyze the effect of

the presence of heavy right-handed Majorana neutrinos, due to the working

of the Gell-Mann-Ramond-Slansky mechanism FZO), beyond the tree-level

(26), finding relevant modifications of the standard Renormalization

Group equations. In the last chapter, we will discuss a tree-level

(27) which recovers the positive aspects both of the

Georgi-Jarslkog model (15) (16), and the Fritzsch model (17). The

natural model

predictions for masses and mixing angles are in agreement with the

phenomenclogy.



0. GENERAL ASPECTS OF THE FERMION MASS MATRIX

One of the fundamental problems of particle physics concerns the
explanation of fermion masses and the mixing angles in terms of elementary
principles.

The general framework of elementary particle physics is the framework of

(L

gauge theories in which it is possible to construct unifying models of

the elementary interactions which explain the phenomenological ratios of the
different gauge coupling constants(z) (strong, weak and electromagnetic).
However, the situation is much more difficult for the fermion masses and
mixing angles which are fundamental parameters in defining weak and strong
interactions of every elementary particle. Inside the framework of gauge
theories, the purpose is to predict successful relations between masses and
mixings whose wvalidity 1is not destroyed by thigher order effects (3
(Weinberg's naturalness). As we will see, this requisite is very stringent
and it is difficult to find a natural model which can explain the entire

spectrum of fermion masses.

In the Standard Hodel“‘) (S.M.) there is no relation. between fermion

masses, because the Yukawa coupling constants for up, down and leptons are all
independent. Moreover, the neutrino has =zero mass(S), so the mixing angles
in the lepton sector are zero and there is no possibility of neutrino
oscillations. 1In the framework of Grand Unification Theories(Z) (GUTs) we
have a link between quarks and leptons so that there is the possibility to
have some relations between fermion masses, at least inside every family, and

non-zero neutrino masses, with mixings also in the leptonic sector.

First of all we will analize the phenomenological status of the problem
and then we will present some phenomenological model or anszatz which should
explain different aspects of the general problem. The final goal is to
combine these models in a unitary theory having, in this way, the biggest

possible number of predictions for fermion masses and mixing angles.



0.1 Phenomenology of masses

First of all we can observe that the phenomenological fermioniec spectrum
goes from 0.5 MeV (electron) to 40 GeV (top, if confirmed), with a very large
spread of 103 —_ lO4 orders of magnitude. However, it 1is possible to
extract a general structure if we look at the fermions family, per family;
then it is possible to see a jump of 101-‘.—- 102 orders of magnitude between
one family and the following. This fact seems strongly to suggest a great
relevance of radiative corrections which can be originated by the third family

(6). In this sense we could produce fermion

as a sort of radiative cascade
masses in terms of the Fermi scale (being the top mass very close to the W

mass).

However, it 1is very difficult to realize such a mechanism of mass
generation by radiative corrections in a way compatible with renormalization
(this is the condition of naturalness(s)). The spectrum of charged fermions
is essentially known, except for the top quark. UAl has a few events of the
type W —p t + P which, if confirmed, would imply the existence of the top with

a mass around 40 GeV.

The situation for neutrinos is much more different. Up to now it has
been believed that their masses are exactly zero because people have strongly
believed in the exact conservation of lepton number. However, from the
theoretical point of view, there is no reason to consider lepton number, which
is a global symmetry, as a fundamental symmetry. From this point of view,
neutrinos can have very small Majorana masses at the breaking scale of lepton
number (7). More generally, also the existence of right-handed neutrinos
can be considered)re~establishing the parity symmetry of the theory, and so
the possibility of a very light Dirac mass, but as we will see, the case of

Majorana masses is more directly and naturally implemented in modern theories

of elementary particles.

From the experimental point of view the existence of a double 6—decay
would imply the Majorana nature of neutrinos(s); in fact, it is described

by the diagram:
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which is non-zero only if

the possible reaction

(9

+
\)L\\_ £ 0 The actual experiments are based on
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for which at the moment we have only a bound T > 102
- . (9)
of the reaction .

ys on the decay time

The single $~decay cannot distinguish the nature (Majorana or Dirac) of
mass

neutrino mass, in any case, at this moment there is an evidence for a non-zero
of the electron neutrino. More precisely, Lyubimov and
collaborators( ) studying the reaction
3H -—-93He +e + VY
give us the following limits:
14 ev < m, < 46 eV
e
However, the estimation of the nuclear contributions to the end of the
electron spectrum in the momentum is not yet completely clear,
moment this data also is not very significative.

and so at the

There are also many experiments on the oscillations of neutrinos

(1L,
the greater evidence for oscillations has been found for solar neutrinos



for which we have a reduction of the solar flux received on the Earth of a
factor of 3. This is in agreement with oscillations with L\m% > lO—lO
eVZ. However, also this experiment cannot be accepted without criticism,
because the extracted data are based on a theoretical model of solar emission
which is not yet completely confirmed. There are also many reactor and
atmosphere experiments which, however, do not have conclusive data except for

a very recent experiment which must be confirmed, which has measured(g)

FAN m:f, ~ 0.2 ev?

sinZ28~0.25

The conclusion is that the only certain experimental data are:

m <35 eV , m < 510KeVv , m < 100 MeV
\’e VP \Jz

for the rest, we have many different experimental (Lyubimov, solar neutrinos)
and cosmological(lz) ( z m, < 100 eV) indications, for which light
v

neutrinos could exist with a mass my 5 lev.

At this point, the situation of fermion masses seems to be much more

puzzling, with charged fermions in the range 1MeV =+ 10GeV and the neutrinos

placed at the hierarchical suppressed scale of 1 eV or smaller.

0.2 Phenomenoloqgy of mixings

From a phenomenological point of view, after symmetry breaking via the
Higgs mechanism, we will have a non-diagonal fermion mass matrix, which once
diagonalised, will imply the existence of generation mixings represented by
unitary matrices (GIM mechanism), in the charged currents of the theory. As

we have said, there is no precise information at the moment for the leptonic



mixings. They are compatible with zero, but the situation is clearer for
quark mixings. They are represented by a wunitary 3 x 3 matrix(IZ)Uc
(Kobayashi-Maskawa matrix) which is represented by three angles 9; (i =1,2,3)
and only one phase € (using the phase freedom of quark fields). @l
corresponds essentially to the Cabibbo angle, while 2 may be responsible for

the breaking of CP symmetry(la).

Let us write Uc in the K.M. parametrization:

S.\C3 SlS3

. W8 g
Uc - -S¢, C&0378,5;,0 0 ¢, 5.¢5c. (0.1)

S s ) ;
T2 IS e L AR CRC I JEX @®

~

where ¢, = cos 9 , 8. = sin %
i i i i

From the measurement of |Uu d | from @—-decays, we extract the value :
s, = 0.227; the determination of IUusl from strange particle decays
connected with the request of unitarity gives us the bound: S, < 0.5;

another important date 1is > 0.032 extracted from the b lifetime:

o .|
12 cb

’Cb < l.4 x 10 s. So we have a sharp measurement only for el,

however, some general phenomenological aspects may, in any case, be
extracted. The principal fact is that all mixings are small, so Uc can be

(14)

parametrized, as suggested by Wolfenstein , in the following way:

1- X N NAR-1m)

(0.2)

Ve = - -2 AN

NAG-g-Im) —AR A



with )\ = 0.227 as an expansion parameter and A, g, fYL are of order 1.

It is now evident that not only all mixings are small, but the mixing
becomes weaker as the generation gap increases. Physically, this gives the
cascade pattern of decay as the observed decay b-d c-ps, or the predicted one

tosb—pc—us.

While we do have the approximate range of values of the quark mixing
elements matrix, we do not yet have sharp information about the angles o
. 9,

phenomenological structure of Uc is clear enough.

2
and especially about the phase 6 . In any case, the general

The principal difficulty in the estimation of% is that the connection of
this parameter with the measured ones ¢ , E\/E in the CP violation sector is
affected by big errors in the estimation of other parameters (such as the B

hadronic parameter). The experimental situation gives:

Re € = (1.536 + 0.062) x 10>

!
-EE-— = -0.0046 + 0.0053 (Chicago-Saclay)

\
= +0.0017 + 0.0084 (Brookhaven-Yale)

oM

for the measurement of CP violation effects in the K-K system. However, this

(13) due to some

experimental information cannot say anything about &
theoretical uncertainties (B-parameter, penguin diagrams, long-range
contributions) in the calculation of € and & /% . 1If new measurements
of €' /€ will decrease its upper bound, then the K.M. phase will not be
sufficient to explain the CP violating effects and also some other mechanism
must be responsible for CP violation such as Higgs scalars, or more generally,

new particle interactions.



0.3 Models for charged fermion masses

One of the most exciting relation for fermion masses concerns the ratio
of the b-quark mass to the T« -lepton mass(ls). If we rescale the values of
these masses from low energy to the Grand Unification point, via the standard
equations of the renormalization group, we find the very simple relation

b/T 2 1.

These calculations can be extended to down-quarks and leptons of the
other generations having larger errors than the previous case because of the
(15) s/

173, d/e 22 3. We can add another interesting relation to these ones

infrared behaviour of QCD. However the indications are that

connecting the Cabibbo angle with the ratio of down and strange masses, the
so-called Oakes relation: ecﬁ VYd/s.

Georgi and Jarlskdg (GJ) have constructed a Grand Unification model which
predicts all these phenomeclogical relations(ls). More presicely, the GJ
model constructed in SU(5) gives the relation gc’_"_ N\-\/E/—; where /VLis a
free parameter of the theory, but if the GJ model is constructed in S0(10) (as
(1le)

done by Georgi and Nanopoulos ) we predict the Oakes relation because it
must be ’\’L = 1 in SO(10), with a full realization of naturality. The Yukawa

coupling of scalar Higgs in generation space is:

0 lOl 0
101 126 0 (0.3)
0 0 lO2

and the factor 3 in the GJ relations for the first and second generation has a
geometrical origin, being produced by the presence of 126. This model
predicts the GJ down-lepton mass relations and the Oakes relation. However,

it also predicts 92 - 9 3 =S = 0, so no mixing in the third generation
sector (the b quark would be stable!), and no CP violation effect due to the

K.M. mechanism. So the GJ model cannot be sufficient by itself and it must be



extended to include CP violation effects in the K.M. matrix and mnmixings
between the third generation and the others. An attempt to obtain a relation
between mixing angles and masses in order to provide a satisfactory derivation
and a generalization of the Oakes relation (leaving open the problem of mass

(17). The model in its first form does

relations) has been done by Fritzsch
not necessarily need the support of a Grand Unification Group such as SU(5) or
S0(10), so it is at a more phenomenological level and it is based on the

simple observation that the 2 x 2 matrix

(0.4)

with a<<b has eigenvalues b, —aZ/b, and is diagonalized by an orthogonal
matrix with angle 9 2 a/b. For the case of three generations Fritzsch has

proposed to use a matrix of the form:

0 a
a<cbece , a 0 b
(0.5)
0 b c

both for down and up quarks. So he can predict some interesting relations for

quark mixing parameters, in particular:

[ %Y
SA "x\\/%— +J%- < ( (0.6a)

U s
~ |22 .G
S, = 2

(0.6b)

which are in good agreement with the present phenomenological status, if

8 = tTUZ is chosen. (Clearly this is an external input.)
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The Fritzsch model is unable to say anything about fermion masses and if
it is implemented in a GUT model (SU(5) or S0(10)) it can reproduce b = T,
but it necessarily will give wrong predictions for the other down-lepton mass

ratios.

In the last chapter we will see how to construct a natural S0(10) model
which could combine the Fritzsch model with the GJ model to recover both the
GJ mass relations, both a K.M. mixing matrix of the Fritzsch type. We wish to
conclude this discussion by mentioning a very amusing observation done by

Glashow(la). He suggests that the following determinant must be zero:

u c +
d s b -0 (0.7)

e /L T

first of all we note that (0.7) can be written in a renormalization group

invariant way:

‘_l_~— . d b s =0 (0.8)

cs

and then that (0.8) is simply a phenomenological prediction for the t-quark.
In any case we consider that (0.7) must be valid at the Grand Unification
point. It is interesting to implement (0.7) through a more simple relation,

such as a proportionality relation between up and down quarks:

t _ ¢ (0.9)
b T s

ae

.
—

(0.9) is essentially renormalization group invariant and it predicts (using

Leutwyler's running masses(lg)) a top with a mass of 45 GeV at the scale of
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1 GeV in pgood agreement with the present UAl data. However, (0.9) fails on
the up-quark because it predicts a mass of 69 MeV against the true value of 5
MeV attributed to the running mass of the u quark at the scale of 1 GeV.
Another difficulty of (0.9) is that it is very hard to extract it from a
satisfactory theoretical model. At present, no one has succeeded in this (the
simpler implementation of (0.9) in GUT's models should imply Uc = 1.
However, this relation seems to be a good prediction for top and the fact that
up and down masses are proportional at the Grand Unification point is not so
irrelevant. It is interesting to think that (0.9) is valid at the Grand
Unification point, but that it is not valid at low energy scales, especially
for the case of the first generation. This situation may be realised if (0.9)
is not invariant under renormalization group rescaling, and that may happen if
the standard renormalization group equations are modified by radiative
corrections not yet considered. We will see that this 1is precisely the
situation in SO0(l0), due to the presence of very heavy Majorana neutrinos.
The possible effect of these particles on the standard renormalization group
equations is one of the principal reasons to explore the role of right-handed

Majorana neutrinos beyond the tree level.

0.4 Neutrino masses

We have seen how interesting it is to construct models for which neutrino
masses are non-zero, or better, predictable. The more characterizing aspect
of neutrino masses is the enormous gap between them and the charged fermion
masses. This aspect has a natural explanation in left-right symmetric models
due to the presence of the right-handed neutrinos and the working of the

Gell-Mann-Ramond-Slansky (GRS) mechanism(ZO).

First of all, let us examine the situation in SU(5). Every family is a 5
+ 10 and the right-handed neutrino can be introduced as a singlet, so
increasing the number of Yukawa constants of the theory. But the big problem
is that the neutrino Dirac mass must be at a much smaller scale than the W

mass, increasing in this way the non-naturalness of the models. If we do not
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introduce the right-handed neutrino, we can produce a Majorana mass for the
left-handed neutrino via the explicit breaking of the global B-L symmetry
through the introduction of a scalar 15. But again, we will have a problem of
naturalness and the neutrino mass would acquire a deeper meaning if B-L became
a local symmetry of the theory. It is not possible to realize this idea in
SU(5) since Tr(B-L) # 0; so we must enlarge the rank of the group. The
simplest solution is given by S0(10), for which B-L is an element of the

(5 and every family is an irreducible 16, where the new

(2L

Cartan subalgebra

state is identified as a right-handed Majorana neutrino

The principal goal of S0(l0) is that it is possible to predict a mass
scale m,for the left-handed Majorana neutrinos of order m, ~ ft;%;-% , being
M‘R the mass scale for right-handed Majorana neutrinos and m the typical mass
scale of charged fermions. 1In this way, looking at MR as the breaking scale
of B-L symmetry, more or less close to the Grand Unification scale, we have a
natural and suggestive explanation of the hierarchical gap between the
neutrino mass scale and the charged fermion mass scale.

This project is directly implemented in S0(10) throught the so called GRS
mechanism(zz). It is based on the fact that a 126 of Higgses can give a
heavy Majorana mass HR to the right-handed neutrino. Every 10 or 126 of
Higgses will give Dirac masses m to neutrinos of the same order of the

corresponding up masses (due to the nature of the S0(1l0) symmetry). Thus we

can write the following mass matrix:

/
M“R m
(0.10)
m 0
whose diagonalization on the pure Majorana states will give:
HR 0
(0.1L)

0 —(m/l{R)m
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The left-handed neutrino acquires a Majorana mass suppressed of m/HR with
respect to the typical mass m of charged fermions. This argument is mnot
affected by the possible direct contribution of 126 to a Majorana mass for
left-handed neutrinos as shown with a general argument by Maag and

Wetterich(zs).

Before concluding, we wish to note that the GRS mechanism may also be

(24)

implemented if the scalar 126 is not present. 1In fact, Witten has shown
that it is possible to have a Majorana mass MR for the right-handed neutrino
as a radiative effect at the two-loop level if in the S0(10) model a scalar

16 is present which breaks the B-L symmetry.

0.5 Conclusions and purposes

To conclude, we wish to recall the essential points of the fermion mass

spectrum:

i) b=

{n

strong support for SU(5)
ii) M=3s ; e=1/34d

iii) relations between angles and mass ratio_s: Ei;::l%;fé and extentions of
S

this one.

iv) Hierarchically suppressed neutrino masses:

m <« 10 °n
~d

\Y) “,

1t is now interesting to note that the theoretical models (or mechanisms)

previously presented solve only some of points i) to iv); in particular:
- Minimal SU(5): 1) O.K.; 1ii), iii), iv) NO

- GJ model: i), 1ii) 0.X.; iii) 0.X. for ec’ NC for 92,
©,,9;iv) difficult

— Pritzsch model: i), iii) O0.K.; 1ii) WNO; iv) difficult
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-~ GRS mechanism: iv) O0.K.; not yet incorporated in a natural and

satisfactory wéy in models attempting to explain i), ii), iii).

Because of difficulties of finding a unitary model explaining i) to iv)
perhaps the fundamental fermion mass spectrum at the Grand Unification point
is different from the standard extrapolation of the renormalization group

(25)

equations or has significant corrections due to additional interactions
(perhaps one has to use a different group rather than SU(5) or S0(10)) or
because the symmetry breaking pattern implies additional significant
corrections to the tree level. Due to the success of the GRS mechanism in
explaining questions of principle (point iv)), we will examine it further,

beyond the tree level.

In particular, we will explore the role of right-handed neutrinos beyond
the tree level. Because of their heavy masses and of the presence of
opportune gauge interactions with up-quarks in the framework of S0(10) (or
else larger groups such as E6), we will have a not negligible radiative
contribution to the standard renormalization group equations for up-quarks
masses due to the presence of right-handed Majorana neutrinos(%), implying
the possibility to have simpler mass relations between up-quarks and the other

charged fermions at the Grand Unification point.

Another aim 1is the construction of a tree order SC(l0) model which
incorporates in an unitary scheme, the positive aspects and predictions of the
GJ and Fritzsch models, leaving open, however, the possibility that some free
parameters of the model could be explained through radiative corrections in a

(27)

more fundamental scheme

Our point of view is to look, with the aim of obtaining a unified
picture, at the various promising mechanisms presented (GJ, Fritzsch, GRS) and
to look for possible relevant effects of radiative corrections to enlighten

the complex problem of fermion masses and mixings.
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1. GENERAL ASPECTS OF THE RENORMALIZATION GROUP

A general quantum field theory is essentially characterized by a coupling
constant g and the physical amplitudes are calculated as power expansions in
g. This in gene‘;l, produces divergences which must be treated in such a way

as to extract finite results.

(28)

This leads to different kinds of quantum field theories. A field

theory is called non-renormalizable if the number of divergent Green's

functions is infinite and they cannot be made finite (order by order) only

with a redefinition of the Lagrangian parameters. It is called renormalizable

if only a finite number of Green's functions gives rise to overall divergences
and the theory may be made finite (order by order) only with a redefinition of
the Lagrangian parameters. TIf the number of divergent Green's functions is

finite, the theory is called super-renormalizable.

However, the renormalization procedure introduce an arbitrary mass
scale }\& in the theory, or more generally, every renormalization scheme will
produce different renormalized Lagrangians, but the physical observables must
be independent of the particular renormalization scheme used. This kind of

. . . . 29
invariance is called Renormalization Group Invarlance( >(RGI).

1.1 The Callan-Svmanzik equation

Let us now consider the implications of RGI for a general gauge theory.

Givenv ( Ti ) a renormalized (bare) lPI Green's function, we will have:

TRy a% we, b)) = Z4n,€)- T () o g, , whe, €) (1.1)

with M the renormalization scale; € is a regulator for the bare theory; & =
32/4‘41 with g gauge gauge coupling;S is the gauge fixing parameter. RGI
implies that T: must be independent of)ﬁ , 1.e.

)*%1 L(ps oo, %, whe, €) = © 1.2)
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So from (1.1) and (1.2):

? 2 d3 9 2
(PRor e kTR

(1.3)

f&;[%& _ m%(&)&/-&i> (1.4a)
/

L& %‘;_:_ = _\6'(@) %,3)i3 (1.4b)

- (l.4c)
= 3(« &)75/2§ e

eq. (1.3) can be written:

T\ (1.5)

41N

n 3 ’ O\l \
op . Tax | 9% 2 z
and it is called the Callan~Symanzik(29) eq. Then the RGI implies that
every 1PI Green's functions must satisfy (1.5), so in this senseia gauge
. . s . { 7z
theory 1is characterized by the unlver:sal’ functions @/ Y ) 81 = » H‘ .
This set of functions is independent of € since it 1is possible to write

(1.5) for the set of renormalised Green's functions with primitive divergences
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and then solving the system of algebraic equations. Moreover, from the
non-renormalizability of the gauge-fixing term in the Faddeev-Popov effective

Lagrangian(Bo it is easy to derive:

S = ‘é(r\z:; o %&3\ (1.6)

in which 23 is the wave function renormalization factor for gauge bosons,

so S = 0 for 3 = 0 which is called the Landau gauge. 1In this gauge (1.5) will

assume the simplest form
) 3 L) \T‘ —
—_— g AR e WYy — — N =0 (1.7)
( AT Poa " Maw ©

with ‘(‘-\1 K___ depending on F .

1.2 Effective parameters

The form of the functions Qb , \’ ) g ) \<v depends on the
renormalization scheme used. In the )&—subtraction scheme, they will depend
in a non-trivial way, on the zf) and m/}« variables, while in the t'Hooft

minimal subtraction scheme, the universal functions do not depend on m/}a

and are also independent of E (29)

Given a P(?} ol)%i WA ]“-) function of dimension D, it must be true

only for dimensional reasons, that

)\3—-«-%?—-—«- -D\V\)\ % W n)=0 1.8
defining t = ln)\ and subtracting (1.85 from (1.5):
? 9 .52 \ d (1.9
- —— A = —_— - WA —
{ SR s S U U

€D =\ ) TSy o3, m, 1) =
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this eq. governs the behaviour of Green's functions when all momenta are
scaled up with a common factor, at fixed )4. . Given now the solutions of the

following equations (called effective parameters):

dAE® — - (1.10a)
- = dl®) =k
.t b g

&}éﬁ) - ) %-LO) -3 (1.10b)
‘-L__-—ﬁm: (PO Wey =w e
we can obtain the solution for (1.9):
TOB s o3, w ) = X TG %%, ™ 1)
(1.1L)

L XD 1 - &t&t \@'@&t}} }

so the behaviour of \1 is governed by the flow of the effective parameters and

by a change in the overall scaling factor:

1 o ey ) £ - e o) |

for this reason \({. is called the anomalous dimension of \—‘

From another point of view, if the renormalization point )A.| is c;hanged

into )/\1—-/\&‘ Qf:’; defining ),\':)t\\Q_tand 04(7;.«,) = 5‘(_(@) , we will have:

_ . dw e da) | ARb) -
B = p q\%):fxoe, i Rl el
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Sod\Jis exactly the effective coupling comstant of (L1.10a) and'&'%,): od)'\,), so
given the value o at a certain renormalization point M, the value ot at
another point )4‘ = }4. et is simply given byau:l In this sense we introduce

the renormalization group transformation:

T :)‘L-V)Aet

and we can consider 0(_——?&@3) as a certain representation of the
renormalization group elements. For the mass it will be: ﬁ(tz) = m( }-&2)
-t

e ¢, if we are interested in the study of m()«_) we can consider the (1.4b)

eq.:

% .o\_\j%;;&_) - \(ch;) E\rﬁ\.g) (1.4b)

as we will see, in the Standard Model Y and g’: do not depend on 3 and m,

even in the}«k-—renormalization scheme if m/r\, << 1. 1In this case:

wip) IS
g %—'—:— = - \(@()‘\‘)\ é—)%- (1.12)

W) ™

and for (l.4a):
)

W () = MU‘UQ)\P} & @z:) ‘%\f'\i (1.13)

The value of ?_(o() for a SU(N) gauge theory is(ao):

@(u):-_l_.(lg\_}{__%_gxo( (1.14)

27

with( being the number of fermion fundamental representatiomns.
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2. RENORMALIZATION GROUP FOR THE STANDARD MODEL

The general expression for the ¢ -regularized fermion propagator is
i
P e

with 2(‘5,?.) the 1PI fermion self-energy which has the gereral structure

Z'(?;?) = Z‘(?‘l:t) + (%I"‘ M) zg_(?zi E) (2.1)

In the j’\—renormalizati.on scheme m(}k}- is defined in such a way that the

fermion propagator at pz = - jv\z is of the form(sl)
\ k
P-w(p) Va2
AN
- 2. _wl
wlpny = %:;3 (W&(t) * Zk(p = )'\,?3)3 (2.2)

withz‘containing m(';.&) instead of m.

By definition:

M()-\) = uﬂ}&.\) i 1'(7\3) }-&zo) (2.3)

whére il(f\l; )419) = i‘(?‘l: -)’3"‘5) - i'(?l: -)"\za )‘Z) is a
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finite quantity. ForY we will have

_ 4
“%M?)'*MN" "K\w?f‘ ¥=opf, ) 5

i

'”IA’(W(NZ(? )\i))*”i‘%awm

o(\)«(w\y\)i = i)x N "ul'(;?)'

so ifz‘xs evaluated at the l-loop order we can write:

Y=-p ff\(ﬁ%i\wz- £9)

2.1 RG for fermion masses in SU(N)

=-p

(2.4)

Let us consider a SU(N) theory with the fermions in the fundamental

representation. The interaction term is:
JE— ol
L= T Eyr v A (2.6)

with t* representing the group generators in the fermion representation. We

wish to evaluate the following loop:

'y
M
=\ — W e a
¥4 7 >
P P-% P
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It is:

- i(?,‘z) = H &% ("‘ %‘\ thQXr

ﬂ“ \(°.

52

(2.7

where we perform the integral in 4 - € dimensions to regularize the
divergences, and M is an arbitrary mass scale which appears when g is taken

dimensionless.

So,

A - s VT vy

(2.8)
Vg e D S f")“ g o)
!
. E‘? “‘K)L" M‘L‘g Q(z)l

B - Y ow) = W - ) + 20 P (2.9)

and introducing the Feynman parametrization, we can write:

A2 =g ae m\,ﬁ\( % - \4(’*%)\0\\5«\‘0( S
+(1-3) %1 ':‘.Elﬁ ( - B- -¢) S&x
N (Z “)4-‘5 E"— “UF QL&
. 4% 2 x
£Q 7@% T 2 p¥ S&x e,

(2.10)
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where

Q = pl-x Qz: - x) (- x\?’*) (2.11)

The translation K -?W= Q, in 4 - ¢ dimensions does not give rise to surface

terms, so:
< 4 Ty
43 = _% &ix“ &@’0"‘" G z\{)‘(xxx ~+ U Y +

DL pa-0-m) - 220 250K ORI

+ PRL—0+ YO 'ﬂz)l z

(2.12)

and after Wick rotation and symmetric integratiomn:

) oy T c\“ N
A2 = A %&xm : e

Faa (\&E R

t &-Hywm A\-@\:USQ -x)- w\\j 5 (L\{\;"{\_ ¥ -

1)

X
wE « R

_.ngédc

(2.13)

Using now the general formula:

d d _« _4 2.14
x éxlwv-_z =T\A\/1KQ1Y2: ) VQ’L z) (2.4
&\/Qe-\-(l) \_‘@l)
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we obtain:

5«4'£K;_ 1-%/ { n2vTh
IR I z < (2.15a)
(RE+ Rl)l ! (Q ) v (2’)

44 Ewre

¥ -\~ &/,
Qel ()\:.)3 - “Tl ‘(Qz o V(‘v —) (2.15b)

4-%
N N PR ERL

QQE N R (2.15¢)
inserting (2.15)'s in{2.13) after some algebraic manipulation
\
2 NI-L e v
Z.(%}i) % 1Y (%“a)\ A Y\kz) \:\x BAE
. E\;(-z%ﬂx(%ﬁ =D -3 -0F- M\l *
P 2
01 e L a0t - 0-1))xx {
2 (2.16)
Writing (2.16) in the (2.1) form we can extract_i :
T
269= ¢ Gy TR wv) \é‘ ‘
.12M(1-X)-Mi(x—X)+(\-‘§) wAll-2%) +
(2.17)

2
H-3)xT-x) ME.X?I WA )(
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expandingi in powers of ¢ :

ZL?I'E) % ———--——- c\x& Q«"‘-B—:—«-Q\«\.‘\-T~\(E+O(§.)§.

16>

: llu(z-x) = WAZL =) (=) mL-2 %)

2
? V"\ } (2.18)
_X?

where \(E is the Euler's constant. We must now remember that to extract ‘( we

+Q-3) T xli-%)

must replace m—&m(}-\.) in (2.18), so:

\ X N
= A Ny 2 T
M\m T o) = & 2N %:\X&‘é“* Cmgomex )

+ Q4w - \(E\-)L 2(2 —x) =gl =) *(\:p(bz X) 4

-}’*~Z (2.19)
\Akfy}’\)z*g X}{l

DT
2
where o =g /4 1T .

Now wusing (2.5), ignoring higher orders in O(QW) and performing
the © —P? 0 limit, we obtain:

v = \o\x ks (z-x>+~(\-§)“ (-27)
Al zN

IM-\-X)’\ g X)\

. _ )‘\I\M.z
A0 F }

(2.20)
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and the final expression is:

J(Q;O\t._)_"ﬁ *%%szﬂ;) OJ"\Q* %%Y;\_ 2 (2.21)

In particular in the Landau gauge'3= 0:

\(- S U é__(\\_ wAE Q/«A.Q& ),\7- \ (2.22)

but in any case, if m()&)//« «< 4

1 1\ 2
= X N -3 3+3 wms Qo A WA ) (2.23)
V= = TNKL-\— vy “")‘i’o(),\—z

so the leading term

v = & M- S (2.24)
mo2N 2

does not depend on m and g in such approximation.

In particular, for the SU(3)c theory we find

\(. _ 28 (2.25)
- ,
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and we can now extract the RG eqs. for masses in QCD. Using (1.13):

oLy
W) = wm(M) QX?},- s S Ok,o.z_s (2.26)
w-2 £ %
TN
v
wip) = wm{) 0\ (2.27)

e,

where choosing for M the Grand Unification point , O(.s(M) must be
exactly OLq = gi/lﬂfi‘ where Bg is the Grand Unification coupling
(25)

constant . The (2.27) represents a sort of resummation of a series in

o(s(r\-) whose leading term is

!
w\.(;'\‘) - M&\a)( 4o X R ﬁ.\ (2.28)
~ I }v&?’

2.2 RG for fermion masses in SU(N) L

Let us now consider the case of a gauge group SU(HN) for which the left-handed
fermions are in the fundamental representation and the right-handed fermions

are singlets. The interaction term is:

il - _%-\?Lt\% \(r\ \%\"L_ A}Ad - (2.29)

= —Q(.\’(’ tua(\(}" \\;ZXLS \tﬂ A}«o(
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where the same notation of the previous case has been used. Since it is

2= S (@R LR Y LA A s

¥ %l{”\‘:td\(rh?utp\(o‘gu ’%@P\ =

-\ ( - -
= i(“A"L_ ! AR} (2.30)

*
. . . . < ® o
A R is obtained from AL simply replacing \“_-—s) \(’R and t - t. Now:

&~ " | X 3 N
A= YOS o g L €

(2w “‘f“ 2 Bof-m 7
—.‘\ \I(’ \(

I 7 _(\= 9
K"Uﬂ« \ ?’) ‘5@‘3 (2.31)

(%)"0 "Q"?Q X \‘QQ (2.32)
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The calculation is very similar to the previous one except for the fact

that we will not have m in the numerator; so from (2.16):

L= tlo
=R S VUX‘\" k)

N LD F « - e-0F - (e X —Q{ 1= XY g -

(- |

(2.33)

[XR is now obtained simply replacing X% —D-\{S in ZXL_ so:

O < 'Q%T z\\\ (\é 2 T(Q\A\K

AT xg 2 07 Loz Toat-n ¥ -

...(\-'So)x)?)(

(2.34)

It is now possible to extractji :

= Q/\«__\l_. +QJV\4€T = |-
2= & e W\é\x M \(\
| B
.l_wx e (-1 2ml =) QDT x(-x) A )(

(2.35)
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After some calculation, we obtain:

_ ) Nl ey KX
Y= Z.Q‘; ““X"\"%‘ x]«’-*(\ 3) w £ x p

wat &

~ _ ﬁle
) Cwle xy0)° }»

(2.36)

So:

- ol 1~ 2 1\& Z\"
=3 ) ‘:L_\L_\. N _\:A.i_x%jq,\ﬁ@ J%}\
2w 2N e \NM WA 4 (2.37)

and in the Landau gauge we obtaln\{— 0. This fact is easily understood if we
take the divergent part of i
div, \
ol “"%
\ T

0 Z,

mass renormalization. This faet is mnot absurd because the previous

is finite at the l-loop order in the Landau gauge and we do not have

calculation has been performed in the presence of a mass term which breaks
explicitly the SU(Z)L symmetry. One must also consider the scalar Higgses

which spontaneously break the SU(Z)L. However, as we will see, their effect
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is smaller than O0(gt ) effects in the Landau gauge. So we can conclude that
= 0 at the order 0( o) in the Landau gauge(ls). In particular the
calculation has been performed for m, = my, but it is easy to see that ‘( =0

in the Landau gauge at order O(®t ) also if more generally mu?‘ my.

2.3 RG for fermion masses in U(l) theories

Let us take a U(l) gauge group with, in general, different quantum
numbers for left-handed and right-handed fermions. The interaction is of the

ilz—%?v“(\\%s YL* \_—_Z_X_S \{R\\\ﬁ A)‘ (2.38)

where YL(YR) is the left-handed (right-handed) quantum number.

Again:
_.:\ 2_ = &7_(—\\ AL_—‘\ A-Q\ (2.39)
s
AL m R

SA = YCE \9\“ e A R A

(zw)*

F¥ -
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N ) (D) e

‘:\A\,: —‘{L \/‘-NR TCC SA\( \zf_‘.(‘(' i)\*'\-(\‘@‘”‘-kh_w) Y 1\&7‘ 1

e \e 5 5
“ \(23.[)4&( %) \gr : Y X‘ K W\Y \E%YL.

'%(({w %) Bﬁ\ﬁ\ W‘Y\ )y =2 Ve

Qwtt

Y T Ve LT

(2.41)

=K e (\ S ) T‘(——)\,@: -Owm - w ¢
AN R R v "14‘\_‘@)33\“@3[? l\ik-m}xm

H -] ) e T T F- 0D

(2.42)

AR is obtained replacing \{5 -y — \(b so:

i(%,'ﬂ) = %2 \/\_\tq m‘i{q \i E‘L)!' ( )Y(A‘ —aw (- 33“&-&

+§_(\/E*\{é)m-wv@\g LA }umw—
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N R RIS LR SO SEY B e

So Y is given by:

Y =-p %)LQ('L Y= Tg—?n’-\\:\x (% « U ,\:gi cUndm - \(r-}

(e Jg 20« - e 50

(2.44)

So finally:

AR - A A

PRIy k-5 e )
(2.45)

In the Landau gauge
; 1 2 l
LD, \{‘-\{RX;‘ Loy QM(\* Ili» \ (2.46)
2T A wmE /=
the dominant term in the limit m()«)/}k'<< 1 being:

XN | (2.47)
\' - ‘-ﬁ" \IL\lR
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The 9~function for a U(l) theory is

(&‘X}“‘ ‘%\ (2.48)

if the U(l) generator is normalized to “e such as SU(S) . In this case

u&r}
q\\L\{R- Ao(\ (2.49)

3 2%

M(}c) = w0 exp \:‘

SO:

q\lu\{a
W) = ALY - (-—-—-— | (2.50)

in fact since M is chosen as the Grand Unification point we will haveO(‘(E{) =

0(,5(14) = O(Qbecause of the good normalization chosen for the U(l) generator.

2.4 RG for fermion masses in the Standard Model

The Standard Model (SM) is a gauge theory of fundamental interaction
based on the group SU(3)c X SU(Z)L x U(l)y . The breaking to SU(3)c X
U(].)em is realized via Higgs mechanism so at least one physical scalar is
needed. 1If moreover, the SHM is used as an effective theory between low energy
scales and the Grand Unification scale we will have a lot of scalars
responsible for the breaking of the Grand Unification group. We can, however,
ignore these contributions in a first approximation since in the Landau gauge
they are generally of order h2 (with h being the Yukawa coupling) and so
negligible respect to the gauge contributions(s) if we adopt the idea that h

<< g, for example h~ gz.

This is the strongest argument to choose the Landau gauge in our
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calculation. To this one, we can add the fact that in this gauge, we do not
have renormalization for the 3 parameter (8 = 0), at last we have showed
that \( = 0 for SU(Z)L and the other \( ‘s are depending only on the coupling
constants in the limit m(}*)/)ﬂ- << 1. For all these reasons, we will perform

all calculations in the Landau gauge.

We wish to remember that we have used a space-like renormalization
point. However, the possible time-like correction for the b-quark is Amb/

(25)

/My~ 4% (see Buras 1977) so we do not worry about this problem

The previous calculations have been performed for gauge theories without
symmetry breaking, therefore with zero mass for vector bosons. This is not
true for the SU(Z)L x U(l) sector of the SHM. However since we are
interested in extrapolating the RG to the Grand Unification point N =M, we
may 1in general consider MW’Z/}J\ << 1, and so we put Mw,zg 0 in our
calculation. Moreover, since the Cabibbo mixing angle can be present only in
the SU(Z)L part of X > and since Y:O for SU(Z)L in the Landau gauge, we

will not have the presence of Cabibbo mixing in RG eqs. in the Landau gauge.

Finally, we may write the RG eqs. for the fermion masses in the SM:

‘ -QZzo
e AR GO BRI ¢

e

W (1) B M;\Qﬁ)‘ oL (2.51a)

324

: 4
() n . % |
&_, _ wgJt) Us\14) )L\-%.g ' (N\f\/}«)j
g

.

We) W)\ ol

(2.51b)

where we have used YL R =V 3/5 .('J?3 L.R Q) and the U(l) normalization
¥ d 9

factorVY3/5 is such that oLS(M) = XM = Oi.q

We will see that the (2.51la) will be modified by the presence of heavy

Majorana neutrinos, admitted in SO(10) or Eéze) Since the (2.51b) will



- 36 —

remain essentially unchanged, we will again have the Georgi-Jarlskog mass

relations for the down-lepton sector:
lﬁfgg}g. ..-i \N&J@k) . l_ Ltiégi&l = 3

which if rescaled to low energy will give down-lepton mass ratios very close

to the phenomenological ones(ls).
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3. MAJORANA NEUTRINOS RADIATIVE CORRECTIONS TO THE STANDARD
RENORMALIZATION GROUP EQUATIONS

The very suggestive idea that the fundamental interactions have a common
origin at a scale M ~ 10]'5 GeV 1is successfully implemented in the Grand
Unification Theories (GUT's) which establish a connection between quarks and
leptons because they are in the same irreducible representation of the simple
Grand Unified Group which contains SU(:«I)c X SU(2)L x U(l) as a

(2)(2L)
subgroup .

The unpleasant aspect of this kind of theories is the big number of
scalars needed to break the symmetries and to give mass to the fermions. But
we must remember that the Higgs mechanism is only a particularly simple
mechanism to break symmetries and it is possible that it is only a mimic of a
more fundamental non-perturbative mechanism because of which we must look at
the scalars as classical fields representing the phenomena of fermion

(32)

condensation (something similar to what happens in a superconductor in

the BCS theory).

In the minimal SU(S5) model parity is explicitly broken and the fermions
are assigned in a reducible representation leaving unsolved the problem of
cancellation of anomalies. Moreover there is no satisfactory explanation for

non-vanishing neutrino masses and B-L breaking.

On the contrary, in a S80(10) theory parity is spontaneously broken and
every family is in an irreducible representation and the anomaly cancellation

(33). The B-L breaking is

is understood simply in terms of group reasons
connected to the presence of Majorana masses for right-handed neutrinos. 1In
particular S0(10) breaking patterns like to link together the up-quark masses
m, and the neutrino masses m,, and it becomes non-trivial to explain the
hierarchical ratios m, /m,~ 10_5. This strongly points in the direction of
the Gell-Mann-Ramond-Slansky (GRS) ﬁechanism which mnaturally predicts a
neutrino mass m, ~ mi/M.R, where M‘R is the Majorana mass scale for the

right-handed neutrinos, not very far from the grand unification scale.
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We will exploit the GRS mechanism beyond the tree approximation. 1In
particular, we will be interested in the radiative corrections to the
renormalization group equations for fermion masses induced by the

(right-handed) Majorana neutrinos of mass HR (26).

3.1 The currents

The adjoint representation of S0(10) is a 45 which under SU(5) has

the following branching rule (34):

1=
+
=

45 = 24 + 10 +
so we have a SU(5) 10 of leptoquarks whose corresponding currents are
(26) (classified according to SU(B)c and SU(Z)L):

(3,1), B-L = -4/3, Q = -2/3

, \ A c - Ve ¢
S O SR (YR QP

(3,2), B-L = -2/3, Q = 2/3
Y Ted A% T (3.1b)
\E‘A = ‘_T—‘ VL\{” Lx \(}" 21?\‘;\( a\i_ \gy G\L,,\a

H
H

(3,2), B-L = -2/3, Q = -1/3

‘T«\ [ —‘ QC\E\,.. .:I.W} (3.1c)
SpE L L—\(r"'—*‘l»\r“\ =LA {p

(1,1}, B-L. =0, Q=1

p— \ L_C.\ R c"\ -é:c, \{ C ] (3.1d)
Q)ﬂ‘— NEX CXL_ \Qabkﬂ_'* L F‘Ol_

and a 10 associated with the hermitian conjugates of these currents ("i

22 e

is a ceolour index).

3.2 Mixing of leptoquarks

First of all we want to examine the mixing of the previous

leptoquarks. The (3.1a) leptoquark and (3.1b) may mix if B-L and SU(Z)L
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are broken; if, in particular, Cb is a 16 or 126, we will have a mixing
2
}&.12 between the vector bosons wl associated to the (3.1a) and

the vector bosons W, associated to the hermitian conjugate of (3.1b).

2
In particular, we will have

/"{Ln_: ¢ %"(QS&QWS =C Qé\{‘% X \'\4&\#5\ < (3.2)

where dE‘) wa denote the SU(5) singlet component and the SU(2) breaking
component of , respectively. For the 16 representation c¢=1/2, for
the 126, ¢ = 4. Denoting by )Al, }&2 the eigen ~values of the

wfwz mass matrix and by 3 the mixing angle, we will have

Siwy = \f&z\
)«’;_)«’;_ | (3.3)

If we write N N \/X/‘\
N P i\ i
-+ by

Lan WO e e )

. . 5 \ 21 L2 2
where it has been considered that | M 14“’1;»% and we can

ANV AR ;1 cos? -Sin |
[N R |
W, ] e @l cos Y NN ) e

o

where S‘\WS is given by (3.3) and -ﬁl , are vector bosons mass eigen-

states. So it is very easy to see:
X R -R\(K-'-“t X “‘TB (3.5)
thz = s eesy @ N W RN,
| W— N""—x

Before concluding this part, we write down the masses )*i, )“\.;

in terms of QQS and ‘('b\lé '

1 Z
#5= 8- &t + {490 EldgOL 0o
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M= 8%{’ L4 < 5(45@4)37} % gt ¥ (3.60)

and clearly, there is a degeneracy in the limit in which Ck@-“«) L QU),
because in this limit we have dominant breaking S0(10)—v SU(5) x U(1l) and

wl and wz will be degenerate in mass being both in a 10 of SU(5).

3.3 Neutrino dynamics

For the reasons previously discussed, we adopt the GRS scheme at the

tree level, yielding a neutrino mass matrix of the form

: Nt
(V3 Vig WA,
/\{\’\ = ) \\ (3.7)
W? WAL J

. . c

in the Weyl ©basis ( OL.:'G\L ;) ‘3‘_ ), where € stands for the
transpose, M‘R’ m, mL are matrices in generation space, M.R (mL} is
the Majorana mass for right-(left) handed neutrinos and m is the Dirac

neutrino mass, in general related (by S0(10) breaking) to the up-quark

mass.
- . Aandl
If det MR # 0 by a unitary congruence {{\ can be brought to the
form
[~ S N
\\ e Y
( R \
|
R
\ o W owCTEw

This kind of diagonalization will produce a mixing of order m/l{R, this
could give, from (3.1la) contracting with itself, a 1l-loop contribution to

up masses of order %A‘:. L, while the contraction of (3.1a) with (3.1lb)
R

will give
2
S‘Mg-\_’v m\_ ~ _&l‘i L Y (3.8)
R g
P B

e
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in the limit Cbﬁélfl-) <L Ck\zék\) in which the dominant breaking is
S0(10) —P» SU(5) x U(L). So, in general, we will ignore this kind of
mixing.

To this end, we must consider that, in general, H‘R and mu are
non-diagonal matrices in generation space. Their diagonalization will
produce some unitary matrices in the (3.1) currents. For simplicity we
will not consider these matrices as non-diagonal, since first of all, we
are interested in evaluating the essence of the Majorana neutrino

contribution to the RG for light fermions. In general, the presence of

these unitary matrices will give a i‘s of the form:
N\ ) — B 3
AL PGS )

ko

, \
in which z\RLrefers to the term YRZ* \’(‘L and ?f\‘_a= i\QL
So the most general Ea is a matrix obeying the rule i‘i = \@gi:"%’o, then,
in general, we will have not diagonal counter-terms 3 and so, defining
not diagonal anomalous dimensions \‘( , not diagonal RG equations in the
generation space. Only at the end can we extract from the non diagonal

m(j:ud matrix the real eigen-~values which are the physical masses.

For the moment, we want bto avoid this kind of technical complication
and we will consider E{R and mu real and diagonal, and at the same
time,\{: o in the (3.2) and (3.5). So we are making the a&m%\b\,%w‘r&%
assumption that the 126 has only real vacuum expectation values with the
same sign. This is only a technical simplification, not a fundamental
hypothesis; in the end it will be easy to see what happens in the general

case.

3.4 Neutrinec exchange

The only possible interactions of light fermions with heavy Majorgna

neutrinos ( \)E in Weyl basis) are in the 10 and 10 since the 24
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gives the standard SU(5) interactions. For the up-quarks there are three

types of 1-loop diagrams, with a virtual Majorana neutrino, involving the

+ + +
propagators wlﬂz, %EE; and szz. The last two

contributions involve vertices with the same chirality, right-right and

left-left respectively, while the first one involves different chiralities.

For the down-quarks and leptons we will have only contributions with the
same chirality as we can see from (3.1lc) and (3.1d). We will see that the

same chirality contributions is mnegligible with respect to the standard

contributions, and so the only interesting case is given by the different

chirality contribution present only for the up-quarks.

3.5 Majorana neutrino radiative corrections to standard R.G. for

down-quarks

As we have said, the only interesting contribution is given by the

interaction term:

L= - ANV X % e =

(3.11)

SIS T P

Z

where we have defined a "right-handed” Majorana neutrino q} :

c
\)L.
’Y\; (3.12)
c ¥
_.GI*OL_

It is convenient to use the Majorana (four components) fields rather than Weyl
(two components) fields, because then the propagators have the same form as

the Dirac propagators.
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It is:

2 =3 (S S A
%-?3‘ % ‘J%\e\\@ ‘JSW‘”W

(3.13)
= \5_(-\ AL AQ) |
whereAR is obtained from AL replacing \('S‘P‘Yg and d—-? é\c ,

So

- _ T c}\é{_i W (—j&i \‘\‘\{5 A \‘\'\(g
SiA= T (w2 = );S—)éc\‘(g\(v z

Rves )’\A%N -(~3%) jaValals _\2;&3\

(3.14)
where
x)“
1’3
d
i 7 P
v P-X P

Choosing the Landau gauge for the same reasons of Section 2, we have:
B 3 é\di‘t\v{ 4 ”\f‘ -\-Y\{\Q \4{_\@
i} A—}_ - &‘ & L?JU ‘i \( T Q} \Q)Q' Yt\l \€
\47' )«3( il \ (3.15)
2 4:»—'5
RPN S« nv RO

\fé(}é \K)\ﬁé‘“ (3.16)
\&) “ 1@( )'\5)

<t
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defining:

Q=pl—x R*=4- W= xS G

we can write:

< 2 \- e atT +€ (% \ X 1
VA= "-&Z— \—;5“ XLZW;‘%YS\K‘? Ty Yé)l S{“ @_ Q«)‘L—-QLI’L*

L y- <l 44 ) g
N %‘ ‘i\gs X \@‘{)‘&‘-il@ k)%b T R ) W

(3.18)

Using again Feynman parametrization:

2\ (E Q4T s _ \ \ 4
= %_ __g T | s %_\’RS 3 el %)1\?"@(_%1‘_&1‘&1

(@)™

— \ R \
“+ Z(\? \K)\K’ 2\‘30( &5\\{{@* Q)q_- L‘k )”\%\(13

(3.19)

shifting ‘,Q——QK%Q“ and remembering (3.13) *

-\ Z(‘ﬁ <) =‘\§_§W’% d Ry }/\3\.&{2}@)‘\-2) ix?_&b@_ R';,) -

(.?:w)“f'

- \&x\&\/ 4(25—:—\—‘%*/??1@%)) LM\3 i (3.20)

having done the symmetric integration and the Wick rotation. Integrating

'nW with the usual (2.15) formulas:

o=kt T n x&x . z%yz

\&x 4

T‘ﬂ

\—("L e 2
R%- 15y

(3.21)
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using (2.1):

2_)_\(?7323': - %7; %&&}" (3x -2 —<%) (-%-\-QM%.\_QAA <m-\(i\_
- g&xi&iy(\-xfg b (?_ JCQM._\-L?_'___. {_QMQ;[_YE\ N

DERAN R y&y
* g;&x Xi\:\( (% *QM R\}j)—\’ﬂ?%m - XE\ 2( (3.22)

using (2.5) (ignoring higher orders in %,):

\ txi-%) (¢ X 2 —x
sl

4 \ Xo )t _ﬁ_——-—
-)&3:)1 Sfuagg\\f 2 =) ey z (3.23)

and so the contribution of (3.23) to the RG for down-quarks is:

"
W) SV
w28 L\ v A 2 e 2 )
w0 e ) (3.24)

with M being the Grand Unification point:

vl L - (\'\’L{-X}%}{-}'\LX
%wf'):’z;\(&gxq%( AN 3
wall) {— \e% \OX( ) ( -X)Qﬁz%’(}\l) +)'\73X !

+%c\xi&1 0. (UG O+ ey
> (L~ (T G+ Xﬂ') * }’\éb“\()
(3.25)

Y C 2| o YC B
- Xi\x \j\\( . \(\- K)ma’i—)()*\l) *]*73{\*'\{) (\-x)k\'(T,Q+XT\I)f}"‘%Q“\()1




- 46 -

ignoring higher orders in .

2
Choosing /.g at low energy, so /v\_<< )‘\3' “R , and writing &__: o(q—_ §_o{,‘_
3

4T
W () « (2 < Yt
o -W%C) {&A ® ) o G- X)“({-?)‘%

v X \'(" & )J(L .-
*\ix\éz\fg‘“u-x)\ﬁtﬁ““‘t) %& \ 1 e
(3.26)

where we have considered the limit ™M M"R’ )43’ as a sort of step
approximation. This kind of contribution is of order oL/G‘W and so
negligible for down and up for which the S.M. gives a contribution of
order one. For the leptons the S.M. contribution is

QM _ 2x» o, 5 5

‘__-——- — y_ e

QLO'Q q' :LQ4% SCKQ \2Z

again dominant with respect 0(./ 6w

So the radiative contributions of the type with the same chirality are not

relevant. However, the only contribution of the type with different
(26)

chirality is present only for up-quarks. We will now calculate

this kind of contribution.

3.6 Majorana neutrino radiative corrections to standard RG

for up-guarks

We have to calculate only the different chirality contributions, so

we consider:

il,_——% V"L.\{r\) W -—FQ(zWL.Yr\O W "c\'\ c. =

\HQQ‘W\{}" \){/J"‘- 5 ?(1\"'\{3*‘&\(8 N\.W *\"‘c‘(3.27),

where we have used the relation:

_\EL\(}"\)E. = "vf’x \(T"\A"\ (3.28)



Since we are interested only in the contractions of the type wlw;
we can write: =
T = L (-t W oy o
__\2____ - \2\1\\(}_\ T M \(Q\YSULW}«\)Q/
2 2 PR 2 MR C

- —_— e — * ’
i &a&z"\’\‘(r‘zt’“‘&\(o SEq W R “w\p e

]

. x&i&d\< \*;YS L&,YK/7\\0§/ x ~_—§— At)&,\*;xs U\V\\{ \:%;S-A\‘vo?«fw&é?N\
3

= 5 (AT 4 A 3 AL)

(3.29)
It is:
R ‘ AQ, - N 7 \\ N\ N
So: < - /4 2
P Ys K ‘%
2 v P

SAL = Y\ A Ge bl S 0,

Guy++ 2 B-¥-Ty 2
\’Q\;

3 2= -
%\K%QSDQ‘Qz‘},@k v-\l_)'ﬂi\ \?@T‘Q JAW?-_ ) (3.30)where  we

have chosen the Landau gauge and, in the notation, we have redefined

the 3 angle as {
e

We will have:

VAo .KS S‘»J:)COSE % %Z (3—?1)“Q SJ\& S Sg\x

)4—*7.

\
.;.{Q&-Q,‘;l— A (e - Q)= QT2 { (3.31)

where:

2
Q:—.PQ-X) , Q‘if:(l—X)h'ﬁZ‘x z)*}\?:.zx (3.32)
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using a shifting \,(-‘Q\QfQ. and a Wick rotation:
'

Y R 3- \ At Ex,

(WAPS > \%m'gCosg = %,%J(p\ %x T

(3.33)

\ {
. =5 A2\L T T AN
1 &+ RT)" (k& &
Remembering (3.29), it is easy to understand that:

4T We

2= - 355 R~ Y \ o

\ \ (3.34)
‘ )L(Wé*{l’:)” T (wERLY
Taking the limit, we obtain{( € -p 0) :
A Z ~ (A
3 ~ Y &c\ Qu e =% F) £
T\ — . = Siw2CaS : .
Z (¥ =~ g b SIS T (o o e e e e
(3.35)

and so the Majorana neutrino radiative contribution to the up-quarks mass

is finite (26), and, at the point pl-_—.-.}v& given by:

\ 1 J ]
P Wy - o3 % ST o< XA‘Y‘ Q‘“L\-x)m,qw()i)*y\,_x
ZL? - )«) gzﬁz%\ 2 < 3“& o &\.‘x)(\\_{%‘“’fxr\l\}“‘{ }A’%%
(3.36)
Taking tl:;_e derivative of i&?‘—:‘-}»ﬂwith respect to /\A we observe that
&%iﬂ/é&)‘\‘x%\} ,50 we will ignore these terms (as previously done for 0(5)

and we will assume a very slow dependence on)« for MR and Z . We can

write:

2 (F=p0) = S, AN ST WD |

where we have used the definition:

A z . 7 zx
) = \d QM(HKBULQ*X)*\)*‘)'\
R Eo X TG~ x},\g*_){;_x

(3.38)
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Remembering that:

YQA): - TM%:) “’%“ iﬁ?l:‘r@) (3.39)

we will have

- 332“ %&)4)%2()&)3\\53&3‘3 l}fb 1&}") (3.40)

where we have defined

gy =-) %}l\‘)ﬂ)‘\ (3.41)

. \ Lt (=)= 1)
o= Sj\xu\ o0 X+ }«}x'g.@sx)k‘(ﬁf Xy\l) *r)"?ixl

(3.42)

and we have assumed a slow variation of MR and z in the /4, variable.
To evaluate I( }dL) we can introduce the functions Js (}A) (V= \, Z )
defined by:

, As O
3-\({\)} O“Qw A\*O\ *: + ﬁ—(ﬂ} A O\ -tx
t o

(3.43)
Qo LvTi-4g
where: L tt*&;‘
—T A2 M2
A; =todv2zel] ™
(3.44)
2 2 1 2
O~ = “Q‘)’\.‘ C-= “‘D\‘\")«x‘

i

).47_ J v )_‘\‘1.
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and I(}u.) is expressed in terms of the JL()A) through the relation:

1()«) = 7-@.(;«) - Sztrk)\ (3.45)

Let ws now consider the case in which H§ L4 }*1?. In fact,
looking at the (3.6) and assuming that the Yukawa coupling h is such
that h & g. it lS obvious that HR )«. , and so it is reasonable that
HR A~ (107 25 10~ ) /V\‘ otherwise we should have too small neutrino

«

masses via the GRS mechanism. So the previous assumption 1is very

reasonable.

In this case

(3.46)

and:

\
31(]“3 =5 QW\&\ ¥ :—c:\ (3.47)

In this case we will write:

Y = %‘E%Ayw T Singedh ::__SA). Y 508

where:

Somason

G = T - TR

(3.49)

and:

Z 7
?I()’\)EZ- % QJALH- '):\'i\ (3.50)
Ja
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4. CORRECTIONS TO STANDARD RG EQUATIONS FOR UP-QUARKS

We want to consider the effect of the Majorana neutrinos, previously
calculated in terms of Y , in the RG equations for the up-quarks. We

have to consider that for (3.42)
M \
\1(}«\) é)*T = = ROV «Wp = R
I (4.1)

since M is the Grand Unification point for which (i.e. in the step

approximation) H(M) = 0. Remembering that:

Pl Awg«) _
wpny A a

where in \< we have the sum of all the possible 1-loop contribution for

(4.2)

the up-quarks, we have:

)
EEANEYS

- L 2 iy — = xn)
== = SO =t )

- _ZQR(\J\} %z()"‘) S\ﬂbc‘“g% Mk"\ *\)A) (4.3)

where obviously again we will consider very slow the dependence of 3

and l% in )J\ . The (4.3) can be written in the form:

A;_.Si‘) 7_015(}\)*_,___&%\)) __LL -

(4.4)

32 l% (T\)%zt)’q S \\—Cg Co§ )4‘ I(}A)
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The (4.4) is a differential equation of the type:

\t’\* QO = %Q«) (4.5)

whose solution is:

N, A) QC . g‘ﬁm%ms) Afc)

(4.6)

where
R

A(Z‘i = \ (&) A\t

4.7)
and C is an arbitrary constant. 1In our case we will have:
n
- A .
w(p) = §o (wm)- x .3.3&1%,&;«‘> YA siwycosy.
T

. A O\
‘——/H‘ L) < o\)f\ )
where:
A - P('z. P « L_u\(}-s‘)\ C&ﬁ
YO = \NFTST Yo M

Y (4.9)

is the standard term, so:

— 4 QLU\ Q&SQA) . ji— Qﬁﬁ'éi§Z:l
Ago= - n-24 g ok g,

(4.10)
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\g\r)%itr)ltp) 3 9‘ ‘ﬂt - - %(ﬁ)%&)«mg«)g A \ +
M

S\{(,«)Q, A [gg«)%z(;«) &AW : (%&;*)g(ytﬂlo\)«

(4.11a)We can

jﬂ".\ \N Tron A(I"\)A\( AP
G984 - _
g“% PO TGO -){l L MR T
£ EQ0 %QL) R + %;«\-QQ«‘) R Q(%‘ﬁ &)«‘
i (4.11b)

2
and since H(]JL‘) is a regular function (typically 0 < H()-*f )(QM % ), we

. . . z
can consider only the dominant terms and we will write:

Wy = @ (W\Q‘() ¢ SO RO P sigcesy G -

- é{%m)%zm) s“m'gcos‘g\’( 2 RO )

(4.8b)

or better:

N T, - -
WA — Qﬁgw tdms S ALPRE ()

- e AW ( m) 3 QQKTU %zm\)S\wECOSE“Q \'\(TQX

(4.8¢)
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To obtain a more simple formula for numerical estimations, we remember
that H(M) 2 0, and only at this point, we will use the following

approximation:

R ) 5 MEUSTAY

4N 4T

- Olg = gi.@l

At the end we obtain

Wi = a0 = S Cesy Yo W)

(4.12),.
Finally, we can write the complete RG equations for up-quarks in which the
standard contribution in the Landau gauge (the first term‘35)) is

modified by the Majorana neutrino contribution (the second term):
o M) ";{—4—1—_" oLl ’3{\0{
J -= ¢ }
u@#«):\ﬂ(ﬁ&)-(\,ilt.> SQ,Qféﬁ—\ +
olg g

! % \w3gCes RS )
+T*{$\ J éﬁg\"\f‘ (4.13)

In the next section, we will see that the Majorana neutrino contribution
is not negligible, at least for the first generation, and can be a strong
support for very simple mass relations between up and down at the Grand

Unification point.

4.1 Approximations concerning the Majorana contribution

Let us now consider an explicit form of the function H(fx) in the
kS
case }{l/]ﬂ\ , }&?/Yié ¢4 1 which is the case of interest for our

discussion; it is:
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v P
)\ (=x) =2 4 2=y & X
W) = &&x U S - NONPAY
0 (=) D& s £ 4 x I~
P 2
(4.14)
We can write:
2
Hgn = g0 - R « U 2)} 15
where:
SRR
)*‘ A
(4.16)
and so:
1\
© ~ ( “9\ \ _}'i \ x(-x)
Ik ) g&x Q,.«,\&l ~x) R x|+ o \f; O
° G G

it is now easy to extract

?‘ == ———L—-‘;_" - D‘ QM\. “R ﬂ . }
() e ( = )«k-\' )é‘\ + O(%
r&

(4.18)

and since Mé{-’./\&.zi (as seen previously) and )A2<<T‘12{

the
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leading term is:

?;(]«) ~oo- Ta 0 T
7\\ )4& (4.19)

and finally:
W ~ QM“R “RQV\“MOM_.E
)J\" )1?. )«‘ m )/&1(4.20)

Remembering equations (3.6) we can write:

2
A

T = Ax< (4.21)
e
where
9o 0,24
T = ) 5 A
. N 2 .
32+ 9 \d?kZéU )\, Q&@‘(‘\ ) (4.22)
({)l
45~
in the case ‘b&éz'é') <4 \'k‘@é\} , in which the dominant breaking is
SO0(10)— SU(S5) x U(l)( 6). In this case, the leading term in H(}A) is:

H()«)NQM)A‘ E-———&QAA\'{\
)«7‘ Y‘z )V\z.

(4.23)

or more simple:

Hgr) o Qi &
ra

(4.24)
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because Hé{( /;\21 .

The ({1.24) is general, in the sense that it is wvalid also
if M A 'S. as it is easily seen from (4.20). So we can use (4.24)

withgl:i?: any particular restriction on the breaking pattern of S0(10).

However, in the case in which the following approximations are valid:

2
T

1 2 L .2
VA RPPIPY “f’\<<{_ B4 )*_____...“)’\" 44
)J\z 7 y) ‘—(‘L 2 (

' s R o (4.25)

we can write:

H()'\)?-QAA [f‘?; e @1‘
2 P

(4.26)
and the (4.13) becomes:
3\ d

4 _
\ -2
w(iszQ\-g.Qdf\)} 3%‘ 08\32)) .
G

1_1
+ é%;‘<S\LK§(;QS%5\d(Q‘- }«‘ 1r«1

b
2

(4.27)

4 ) Numerical estimation

Let us call for simplicity §WA the radiative contribution of Majorana

neutrinos to the standard RG equations for up-quarks. So, by definition:

(4.28)

D= %“Q \___..__}’\%i\
z

where we have used (3.3) and the fact that sin 3 <<1. Remembering (3.2)
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and assuming that %@‘N )’\.1 and %(?wrv “wwe can write:

v (4.29)

P

where Hw represents the typical scale of the mass of the W. TIf M‘R is

close enough to }Az and so to the Grand Unification point (MRN 10_1/A.1))
we will have that the typical scale forSw\, is Sw\, ~s 100 MeV. So we can
conclude that the effect of Majorana neutrinos in the standard RG
equations is, in general, negligible, except for the up-quark of the first
generation, in the case in which H‘R is sufficiently close to the Grand
Unification point. 1In this case the (2.51a) for the first generation must

be modified in the feollowing way:

- Q
Wl w0 ‘Um Y2 fi e T Ty

Wi w0 e =R gy i, @

with the sign plus in the case in which X = 0 in the (3.2) (Q,and &_w
with the same sign), and the sign minus in the case in which \( =T in the
(3.2) (éi and waith opposite sign). A particular example which shows in
practice the relevance of this radiative effect is given by the previously
discussed relation:

-
—

“w _c . L
d S b (4.31)
in fa;:t we can now assume that (4.31) is valid at the Grand Unification
point without implying its validity also at low energy. 1In particular, at
low energy, we will still have c/g :-_'.f;/b, which is in good agreement
with the phenomenological situwation, but it will not be true that u/d 2
c/s due to the presence of the term SM.N 100 MeV. In particular, it is
not excluded that the new RG equations could reproduce the correct mass of

the up-quark at low energies.
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Since the typical scale of %M is 100 MeV, it is possible that the
effect of Majorana mneutrino radiative corrections is to lower the big
value of the up-quark mass at low energies derived from (4.31) and the

standard RG equations, to the phenomenologically correct one.

4.3 Conclusions

In conclusion, we want to recall the essential points concerning

radiative effects mediated by right-handed Majorana neutrinos:

(1) We have corrections of the same order of the typical masses of the
first generation, and the radiative contribution for the second one is not

completely negligible.

(ii) The radiative effect is essentially relevant only for up-quarks
while it is negligible for the down-quarks and leptons, and so the GJ mass
relations can be considered valid also in the presence of radiative
effects due to the presence of heavy Majorana neutrinos. In particular,

the b =T remains still valid.

(iii) Another important aspect is that the 1-loop correction term for
(26)

up—-quarks 1is a finite term and so it could be interesting to

prospect the possibility of having a radiative generation of up-quark

masses.
(iv) The radiative correction term for down-quark masses is completely
different. The diagonalization of up and down mass matrices is thus

modified by the radiative corrections and one expects in general the
generation of non-trivial, but small, Cabibbo angles, depending on the

(26)

Majorana mass matrix of right-handed neutrinos.

However, the realization of point (iv) in a way compatible with the
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constraint of naturalness is not so easy It is then interesting to
explore tree level models with the maximum number of phenomenological
predictions. Once a satisfacotry model of this kind has been found, one
can prospect the possibility that radiative effects could reduce the
number of arbitrary parameters, and so the possibility to derive a more
fundamental model explaining the structure of the fermion mass matrix in a

deeper way.
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5. A NATURAL SO(10) MODEL OF THE FERMION MASS MATRIX

We now want to explore the possibility of constructing a model which,
at the tree level, shares the positive features of the GJ model and of the

Fritzsch model.

5 .
(15) (16) gives very appealing

As we have discussed, the GJ model
mass relations in the down-lepton sector together with the Oakes relation
for the Cabibbo angle, but it yields 92=93=% = 0 predicting a stable
b-quark and no CP violation phase in the KM matrix. A phenomenologically
attractive ans-;z'atz about up and down mass matrices has been made by
Fritzsch (17), yielding the mixing angles as functions of the masses.
However, the construction of a natural S0(10) model of the Fritzsch type
seems to meet non-trivial difficulties (in particular for the down-lepton
mass relations). For a recent revival of the Fritzsch model, see the

papers by the Harvard group (37) .

1 2D hich

In this chapter, we will suggest a natural S0(10) mode
reproduces the GJ mass relations, it predicts relations between the KM
mixing angles and the masses, similarly to the Fritzsch mass matrix |,
without the difficulties of the Fritzsch model, and it involves a rather
economical Higgs structure (only two complex 10's and one 126

representation).

5.1 The model and mass relations

The idea is to extend the GJ model in a natural way to produce
non-zero mixings between the third family and the first two. More

precisely, we consider the following Higgs fermion coupling matrix:

0 101 0
101 1.36 101
0 101 10

(5.1
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which can be naturally obtained by imposing, for example, the following

discrete symmetry:

. i
\(‘r?-w\—g " w L . ™
P 6,2 6,76, F g oy, N
-\4p) X 12 (4pw) T
\Ot“P\O\Q P & \07_-—9 \OZQ\ ( P )4
- I . w
— — -2 2=
\ 26 —9 \26 R “x \GH—D\GRQ‘ Nz (5.2)
where 16;6:1,1,3) are the fermion families, and 16, is a scalar

representation.

This allows the presence of the following terms:(i—ﬁ-fa)é, (16\'?4, 16“16‘*10‘
in the scalar potential. The 16 representation may allow to exploit the
(24)

Witten mechanism to produce hierarchically suppressed neutrino masses.

The success of the model for the charged fermion sector will be an
encouragement to explore in a more detailed way the presence of possible
predictions for the neutrino sector. For the moment, we will dedicate our

attention to the charged fermion sector.

The corresponding mass matrices for down-quarks and leptons are:

o e Q}O( o
“c\ = W XQQ}“ \)Q_“Qi Q Q' (5.33)
0 Qe Q
> et o
T = Mot —3be'l Q—‘f»"d
o o Q:’ux Q\\( (5.3b)

with a,b, m > 0; we have chosen real Yukawa coupling constants to have a
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spontaneous CP breaking. H has the same form as that of M 4 with
different elements (w\,-—v M\ Q_ —2Q b-e \o‘ o -ped' (5—\7 @', Y-—D \(‘ \ N
ot
o Aale o
ol e V-t
T(“_:: v >\Q.\.Q L:‘Q‘(s Q <
a WY
O Q A
(5.3¢)

We can write the mass term in the form:

PR W OF WO V.ol PV |

(5.4)
and to search for a biunitary transformation such that:
d o
d =004
[ [ . - . AT Yi _ c\
b o SRR
& R (5.5)

where-'Yﬂg is the diagonal and positive down mass matrix. To simplify

the diagonalization we will consider that:

0 )\0.. Q
WA= kf“é\\(i" WA - Aa b o

o 'K
< Q (5.6?"

where \e;— (31'2.0(‘? Y and:
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\< A\ Q:\(% )

Q'-Zw( Q\@ 5.7

The problem has been reduced to the diagonalization of A (it will be the
same technique for up-quarks and leptons). The diagonalization becomes
rather simple in the range of parameters in which )\Q} is very small

( >\03<"\i ). This will actually turn out to be the region of parameters
corresponding to the experimental mass ratios: mb>>ms>>md. So, as

(17)

previously done by Fritzsch 5 in particular we will have:

o  (-ye®) e et

SAS = | (-ehhe ezt o

* (5.8)
et o SRR
where § = Q. \O*Q\‘{’ and:
\-b?
A o 0O
— L 51 * - *’_.
S=| o el € , $5=55"=4
o ¥ \.~—\ik€€z (5.9)
Ignoring terms of order )\0} we can write:
O AQ O
"(' -~
SAS = | Y LoV o
(5.10)

0 0 et ¥
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which can be easily reduced to the diagonal form:

v QY ' =% /b
T Q_“\)(’\ STAS[ 0 T =p X
\ .
! Q‘\e (5.11)
where !
coSW, Swwwly o
T = -Siww, CoSW, o Syuwd, Az >.§‘_l:
g b
)
) % (5.12)

Finally, with the biunitary transformation:

e
Y kﬁsf‘ \\\T

A d o\ 3 -\
\)R = \'<R S (QY\\T{ \Q:“e (5.13)

we obtain the down-quark masses:

)

1 (5.14)

This yields the GJ mass relations:

M= W ] Mr‘“e‘ﬂ“’\s‘“o\\; Wo=Wz (515

at the Grand Unification point.
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5.2 The model and mixing angles

Since £ is a small number, we can write:

bee' ¥ ;

. v A 3Y
T=Q z\gle' " =siuw, 2
V- b (5.16)
then:
A c" Qv‘*“ S\ Q-‘\r O
- A‘ —_ “0
SRy R
3,522 5,V ¢,
(5.17)
where s;;s‘mw.\)“\-;{p. )
The KM mixing matrix Uc is obtained from:
e Y - (5.18)

To simplify the calculation we observe that it is possible to write:

\~2: - :XVC*\VCfT ¥< \VC%':SA

(5.19)
where: 3 *P
30 (\ \ Q\o\ : T 1(\Q . K= I‘TK?K% ™
c, s, o
A= ~6,S, e s,
SS. -c¢s, c,

(5.20)
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and similarly for the up-quarks. Ignoring the redefinition of quark
fields we have:

k)c = VLULT K : V:l (5.21)
. where:

Q\(u\-l O+ g)
K = ~e

c

Q\(M\- X)

(5.22)

11

with: /\\:R}.—(&', x=V-V, 8

v - - i
of - ) g = ‘{” {’ .
If we use the new definitions:

Q,-Nl'_gzo- , 29--x =z W

we obtain Uc in the following form:

k3

E)‘k;/

1yl o o
AR AV CARSE A (R

r a(\\)ij‘&‘ )'\ZQ} ® )

. Ve o Mo Lwo gt
= -)41‘\‘\7‘@‘0\ AN U 7—)4‘ 2

N ‘e
\ wr \01 QZ'Q- A}‘LZQ‘

5 ‘T
-3 5 1)*’Q» }"\w.\)z.
Yo S\ o T n A T Vw2 L gt
‘?‘{?z% —VLQ‘ )J\I.Q" - VQZQ‘ )\sz‘zq t Q, (‘ - i }‘\?_""7: J1)
(5.23)

which is of the same form of the Fritzsch's mixing matrix, but now)‘\z,
\72 are different functions of the masses. (7
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Redefining the quark fields in the following way:

\ %
V, —» e:‘(sra Tard) e b
¢ Barba-y) et
(5.
with: .
L -V epet? ) 5= |- 9, ) 2

\'\7\* )’\\Q.IO\\

‘\\X - qu}G\* )«zQ:‘r

\\J'LQ}O\‘ )AZQ}t\
)ALQ:\O\"‘ \)le:\t
PR

'R =\ 1p, Shue

T = \)«,_Q_\a\-— \}‘LQ

Q\%s AR \k’}*\zv $\u\u -T) - )’\\9‘___‘5\»&(/\\

vt

\*c\

S\w%}

T O e A R A
S (5.25)
we obtain Uc in the KM form:
2 .
- S S, S.0,
1 .
A 2 61' Xg Y
Je = -9, -GS %-99.0" ©;x9e
A 2 A2\ -
9.9, -9,-9,20 99, (- @;2;. -%)e‘g

(5.26)
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with:

§=N-0 | e\:\'\?\*’)«\@o‘\
88, = PulLe ™o €%, 9.6, = Ve, |

(5.27)

where we have kept only terms up to second order, and:

W, V= - WAY V2
S ) :\w,———
Mo~ WAy WA — WL

v

, [

- x—\tw\&(wc-w\“ﬂl‘ Mﬂ N Q:n{‘
WAy WM

M

>\-~Ewg\(\*:i aﬂ \w S Y
b

(5.28)

5.3 Predictions about the fermion mass matrix

We have just seen that our model has non-trivial predictions for the

masses of down-quarks and leptons (GJ relations):

W =WAyg W‘)«'MQ""BQMS’M&) , W =Wy
(5.29)

at the Grand Unification point.

We also have a non-trivial mixing matrix with a non-zero CP violating phase
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§=T-0n = Toseas 4= pap-f

(5.30)

and non-zero mixing angles 9“92) 93. In particular, we predict the

following relations:

i - l[ .
[ T e 1|

kaMs"MA,) l{z
wid (WM e - Wew )

which are the same relations predicted by Fritzsch.

i

°,

(5.31a)

. ©,

9, =

(5.31b)

From a phenomenological point of view, the above relation implies:

2
U \ WA
\———\"-1 = A 2 (4x1)x1073
\\\)C\A WA - WK\A (5.32)
and so:

T(b>ued)

Tb —c eV)

R ~ (13206 )x\0"3

1l

(5.33)

compatible with the experimental bound R < 4x10"2.

Depending on the magnitude of f; , the Cabibbo angle varies between 9.5°
and 170; the experimental value is well reproduced by S:jﬁ/z , in

this case:

G, =13.8° + 4.1° (5.34)
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while 9‘“9 = 13.2° + 0.4°. The choice d=%W/2 was not free of
problems in the Fritzsch model, in contrast with the present case.(l7)
. . . . (38)
From the analysis for B lifetime we can derive:
\ \ 5 2. 2
= = 55 Ve NSl e sy 2853 ¢
8 2%2 (5.35)

where m and 1:8 are in GeV and psec respectively, X} = 3.2 is the

phase space factor with QCD corrections. For 1:B= 0.7 psec, we have:

‘ \/q
S,+S,Cs <(S2est«25,5;¢5) = 0.018

(5.36)
and thus s, 0.078. Using B = 1 we obtain:
€' -3
= 2 \0
(5.37)

In the case 5‘2‘3T(f2 s, Wwe will have a saturation of the previous bound, in

particular:
B, = 0.01%¢ (5.38)

Since in our model (27

91,:_ )\—x\/“&;\:kc Q}O\‘_\[U’\&G\\N\s Q:‘t
v WA,

ne NoWWA Mg 00073 N\ | (5.39)
WA,
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the good value of (5.38) is reproduced if >\’.‘:.. 1/10, in this case we will
have E\/ e 10“3 in agreement with the present experimental

situation.

Finally, +the above determination of the mixing angles yields a

determination of the ¢ parameter in agreement with the experimental data.

In fact, for th'. 30 GeV, 529_'. 0.07, mcg 1.4 GeV, we get: (39)
-3
\lel a2 1.95 x 107> B (5.40)
and so for B = 1, we will have a good agreement with the experimental

value \EQXP\ 2.3 x 107,

5.4 Conclusions

In conclusion, we have constructed a mnatural S0(10) model whose

fundamental aspects are the following:

(1) Fermion mass predictions of the GJ type:

IMg= W W Whe=3WAmwd) W= e

(i1) Non-trivial CP violating phase & and non-trivial mixing angles
9 1’ 9 21 83

(iii) 9 3 is predicted to be very small throughout the relation:
wy) Ve
g =] o= [I°A
Mé\(\“‘c w) |
(iv) 1If g‘—‘: 3—“/7— we predict
© -13.8+4.1°

1 —

in good agreement with the phenomenology.
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(v) If we choose the free paramenter >\ to be: )\"_{. 1/10, we have 9 2 AN
0.07, and so the calculation of E‘/‘E and € in the model is in good

agreement with the phenomenology; in fact, we will have:

\
T a0l , \Ttlx~= 2% \o™3
T

To conclude, it 1is interesting to speculate about the possibility

¢

that the value )x’-‘-’ 1/10 could be explained by a two-loop radiative
mechanism in a more fundamental model. This can be an important
possibility to speculate about and, in fact, we have previously verified
the relevance of other radiative mechanisms to understand the structure of
the fermion mass matrix, such as the Witten mechanism or the radiative
corrections to fermion masses mediated by the exchange of heavy Majorana
neutrinos. However, this possibility cannot be supported at present by
explicit arguments and it needs a more detailed analysis of the Yukawa

couplings and of the fermion mass matrix.
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