ISAS - INTERNATIONAL SCHOOL

FOR ADVANCED STUDIES

October 1985

BUBBLE GROWTH IN AN EXPANDING UNIVERSE

Thesis submitted for the degree

of

Master of Philosophy

Candidate Supervisor

Ornella Pantano Prof S A Bonometto

TRIESTE




CONTENTS

11

19

24

27

33

33

40

43

49

52

53

56

60

62

PREFACE

NOTATION

I

INTRODUCTION

IT

QCD AND CHARACTER OF CONFINEMENT-DEFINEMENT TRANSITION

2.1 Thermodynamical relations

2.2 Quantum Chromodynamics

2.3 Use of QCD results in cosmology

2.4 Models for quark and hadron matter near the transition

2.5 First order phase transition and thermal nucleation theory

ITT

BUBBLE GROWTH IN AN EXPANDING UNIVERSE

3.1 Relativistic hydrodynamics of a spherically symmetric
perfect fluid

3.2 Surface layer in General Relativity

3.3 Complete set of junction conditions

3.4 Initial conditions

v

CHARACTERISTICS METHOD AND EXACT JUNCTION CONDITIONS TREATMENT
4,1 Hydrodynamical equations in a characteristics form

4.2 Discontinuity boints

4.3 Future research

BIBLIOGRAPHY



PREFACE

This thesis is concerned with the growth of a bubble in a
first érder phase transition in the early universe. We are inter-
ested, in particular, in a possible first order phase transition
connected with the change of properties of strong interacting
matter at energy densities higher than nuclear density. The rela—
tivistic hydrodynamical equation of a spherical symmetric fluid
and the Gauss-Codazzi equations for a singular hypersurface are
presented for describing the growth of a stable hadron bubble in an
expanding background where the strong interacting matter is in super-—
cooled quark-gluon plasma state. The characteristic equations of
motion for a relativistic fluid are also presented in this thesis.

The first chapter is a general introduction to the scenarios
connected with a quark-hadron phase transition in the early universe.
Tn the second chapter our present knowledge of confinement- deconfinement
transition and the characteristics of a first order phase transition
are reviewed. The third chapter is concerned with the relativistic
hydrodynamic equations for a spherical symmetric fluid. The discon-
tinuity in the fluid properties due to the transition are described
using the Israel method for singular hypersurfaces. In the fourth
chapter, the characteristic forms of the equations of motion of a
relativistic fluid are also derived. They will be used in a success-
ive numerical analysis for solving the junction conditions across the

transition discontinuity.
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NOTATION

The metric signature is - + + + .

Latin indices run over the four coordinate labels.

Repeated indices are summed.

The natural units h=c=k =1 are used.



CHAPTER QNE

INTRODUCTION

In recent years, Quantum Chromodynamics (QCD) has become tﬁe
leading theory for describing the strong interacting particles cal-
led hadrons. The idea of hadrons as composite particles, whose con-
stituents are called quarks, was introduced in the early sixties as
an attempt to classify the rich hadronic spectrum obtained in the ex
periments. The theory of QCD as a dynamical theory of the interaction
of quarks was developed by Fritzch and Gell-Mann(1972).

QCD is able to explain two important characteristics of the
particles forming hadrons: the observed absence of free quarks in na_
ture (confinement); and the behaviour of quarks inside nucleons (asym_
ptotic freedom). Deep inelastic scattering of electrons by protons
shows, in fact, that protons behaves as if their constituents move
independently of one another.

The asymptotic freedom property of QCD, i.e. the fact that at
short distances the effective coupling strength goes to zero, has an
important consequence on the state of strong interacting matter at
high densities and temperatures: detailed analytic calculations show
that at high energy densities strong interacting matter behave like a
free gas of quarks and glﬁons (Kapusta 1979, Kalashnikov -1gg4),

At energy densities far below nuclear density strong intera-
cting matter is composed of widely separated hadrons and, since the

range of strong interactions is finite, these hadrons, on the average,




interact weakly. Hadronic matter becomes an ideal hadron gas at the-
se low energy densities.

The natural scale at which we expect a drastic change in the
behaviour of strong interacting matter can be obtained on the basis
of simple considerations. Because of their composite character, ha-
drons have a finite Volumé and at an energy density of the order of
nuclear matter, they begin to overlap. Then quarks are no longer
confined to individual hadrons and they may move through the system.
At this point the properties of hadronic matter change drastically
and a true phase change is not excluded. The energy density corri-
sponding to this possible phase change should be of the order of that
inside a proton e ¥ M/(4 r3/3)3500 MeV fm_3 where we have used the value
1 Gev for the mass M of proton and @.8 fm for the radius r corrispon-
ding to the r. f.s. charge radius of the proton. This energy density
is only few times that of nuclear matter ( eNMf 150 MeVv fm——3 ).

Phase transition are often associated with a spontaneous break-
ing or realiZzation of symmetry. In the confinement-deconfinement case
the phase transition seems connected with the restoration at high den-
sity of the chiral symmetry (Fucito et al.l1985, Gavai et al.1984).
This is a symmetry of QCD interactions for massless up and down quarks
(Shuryak 1981, Pisarski 1982). Numerical calculations show, in fact,
a rapid change in the thermodynamical quantities at the same tempera-
ture at which chiral symmetry is restored (Polonyi et al.1984, Celik
et al.1985 , MclLerran 1985).

Different methods have been used until now in the numerical ana-
lysis, but because of computational difficulties, a complete answer
is not yet available. It is likely that the transition is first
order (Fucito et.al. 1984, Celik et al. 1985) as has been demonstrated

for a Yang-Mills system, i.e. a system of only gluons (Borgs-Seiler



1983, Kogut et al. 1985, Celik et al. 1983). All numerical results
agree on a rapid change in the energy density at a temperature TC
between 100 - 400 MeV. A definitive answer on the character of the
transition is hoped not only for a complete understanding of the QCD
theory but also for the description of several physically interesting
situations dealing with very high density matter. Ultrarelativistic
heavy ion collisions (e~ 10 - 100 eNM’ for a review, see Cleymans et
al. 1985) and cores of neutron stars are two widely studied systemé
where the effect of deconfinement is likely to be observed. Accord-
ing to the big bang theory, the early universe is another possible
context where we can study the effects of a transition from a quark-
gluon plasma to a gas of hadrons.

At a sufficiently early stage of the history of the universe
(T>> 200 MeV) the strong interacting matter is in the quark-gluon
plasma state. As the temperature decreaseé the colour forces become
more and more important and below some critical temperature TC, the
hadron phase becomes energetically favoured. In the case of a first
order phase transition, we expect some supercooling, i.e. if the
system evolves through equilibrium states, it does not change phase
immediately at TC, but it continue to stay in a metastable quark-
gluon phase. The degree of supercooling depends on the mechanism
causing the formation of seeds of the new hadron phase in the super-
cooled plasma (DeGrand—Kéjantie 1984, Van Hove 1985). First order
phase transitions are usually mediated by impurities. In the early
universe, however, if the hypothesis of homogeneity is well satisfied,
it is most likely that haaron bubbles are nucleated by thermal fluc-
tuations (Laudau-Lifshitz 1980). Moreover, because of the creation
of an interphase region, only nuclei whose size is above a definite

value r (T) can survive. Bubbles of critical radius r are formed
cr cr



in equilibrium with the surrounding medium and, as the temperature
further decreases, they begin to grow. The length of the transition
and its effects are related to the Way in which bubble nucleation ana
growth operates.

The purpose in studying the details of the cosmological quark-
hadron transition is to see which kinds of consequences it can have
on later evolution of the universe (Bonometto-Masiero 1985). First
analyses, made by Olive (1981) and Suhonen (1982), were based on a’
two phase model and discussed the temperature of the transition and
its length. The existence of a long '"plateau" of temperature was
then showed using QCD results on lattice {Bonometto-Pantano 1984, Bo-
nometto-Sakellariadou 1984). The case of a first order phase tran-
sition without supercooling has been studied in several papers: K&ll-
man(1982), Ka&mpfer<Schulz (1984), Bonometto-Matarrese (1983), Loden-
quai-Dixit (1983). The creation of black holes or very collapsed stru-
ctures due to density fluctuations or turbolence produced by the tran-
sition,was firstexamined by Crawford-Shramm(1982) (Shramm-0live 1984).

Recently several authors have analysed another possible effect
suggested by Witten (1984),i.e., the formation of nuggets of stable
quark matter or, at least, the concentration of baryon in the region
where, at the end of the transition, strong interacting matter is again
in the quark phase. If guark nuggets survive until now, they can
solve completely the dark matter problem in the present universe. It
seems, however, that a simple baryon concentration is more likely
(Bonometto et al.1985, Applegate-Hogan 1985, Iso et al. 1985, Alcock-
Farhi 1985). If inhomogeneities persist until the nucleosynthesis,
they can cause distorsions in cosmic elements aboundances (Madsen-

Risager 1985), and also the present limit on baryonic matter density
need to be rediscussed (Yang et al. 1984). It has been also proposed

(Iso et al. 1985) -



that these concentrated baryon clouds may, eventually, form invisible
stellar objects with planetary masses after recombination. The baryon
concentration effect was obtained comparing the equilibrium density

of baryon number in the two phases assuming T=$TC and equal chemical
potential (thermodynamical equilibrium).

An hydrodynamical description of a first order quark-hadron
transition was first made by Gyulassy et al. (1984) where two classes
of processes were studied in 1+1 dimensions. They discussed separate-
ly the case in which the velocity of the transition front is super-
sonic (detonation front) or subsonic (deflagration front) respect to
the medium ahead. In a successive paper Kurki-Suonio (1984) extended
the analysis to a 3+1 dimensional deflagration process using similar-
ity solution. In both these papers the transition is studied in a
Minkowski space-time and surface effects related to the transition
layer are neglected. The analysis of Gyulassi et al. shows that de-
tonation requires significantly more supercooling than deflagration:
and therefore a subsonic front is more likely in a quark-hadron
transition.

In order to consider also surface effects and expansion of the
universe Maeda (1985) has applied Israel(1966)'s singular hypersurface
method for deriving the equation of motion of a spherical bubble in an
expanding universe. Using the hypothesis that the space is uniform
inside and.outside the shell the description of the system appears sim-
plified. The equation of motion of the shell can be written explicitly.

In this thesis the complete set of hydrodynamic and junction
condition equations governing the motion of a relativistic spherically
symmetric fluid appearing in two different phases will be presented.
These phases are separated by a layer of negligible thickness where a

first order phase transition is transforming one phase into the other.



For the transition layer Israel's method is used and the junction
conditions are derived in the limit in which surface tension is
equal to the surface energy density. The equation are formulated
in a comoving (Lagragian) coordinate system.

In order to solve the junction conditions across the time-
like hypersuface describing the evolution of the transition layer;
we must know the fluid variables just behind and ahead of the di-
scontinuity front. In the finite difference method, that we will
use for integrate numerically our hydrodynamic equations, the fluid
variables are known only at some fixed points that do not, usually,
coincide with the position membrane. For this purpose we derive the
relativistic hydrodynamic equations also in the '"characteristic form"
This formulation allows to compute in a very elegant and accurate way

the fluid variables near the transition hypersurface.

In the first analysis, we will use the bag model for describing
the quark-gluon phase and we will consider the hadrons as an ideal gas
of massless pions. The baryon number will be assumed to be zero.
Notwithstanding the simplification of the equation of state, this
model has the basic physical characteristics of a first order quark-
hadron transition and we should be able to derive some important indi-
cations on the bubble growth velocity and on the possible formation
of shocks. In a successive step we will modify the equation of state
in order to introduce perturbative expansion in the quark phase and a
wider spectrum with finite volume corrections in the hadron phase.
Finally, a finite baryon number density bill also be introduced in
order to see whether and in which way possible inhomogeneities in the

baryon number are formed.



CHAPTER TWO

QCD AND CHARACTER OF CONFINEMENT-DECONFINEMENT TRANSITION

The present knwoledge of confinement-deconfinement transition
and the properties of a first order phase transition are reviewed
briefly in this chapter.

After an introduction on the fundamental thermodynamic relations
for a many particles system, the transition temperature and the order
of the transition are discussed mainly refering to the recent results
on lattiée.

Subsequently,two models are presented for describing the quark
and the hadron phase near the transition point.

Finally, a general introduction on first order phase transitions

and nucleation processes is presented.

2.1 THERMODYNAMICAL RELATIONS

The thermodynamical properties of a system governed by an Hamil-

tonian ﬁlnaybe derived from the knowledge of the partition function

]

T. ~pln- A

e

23}

where B8=1/T is the inverse of the temperature and/ﬁ is the chemical
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potential conjugate to the charge Ni. Knowing the partition function

the mean value of the observable 0 is given by

. affi-RN)
(2) <> = __j_ [z Oe[%( /

A well known result of statistical mechanics is the relation between

the thermodynamical potential and the partition function is

(3) O = =T 2

From eq. (1) and (3) we obtain the average number density as-
sociated with a conserved charge (for example the total baryon number) ,

differentiating with respect to the conjugate chemical potential /x;

(4) m, = < Ni» S 0N
v v 0

The average energy density is similarly given by

) e = £ :-L{4,Ti>_-“’9_,g&
V \% oT a -
b
The same expressions could be obtained from the thermodynamical
relations
- E - - 'A/,,' = - PV
(7) )'L(T,\/,/q>_ E-TS - 2
(8) 4 =-5dT —PJ\/_Z;N;A/A:

where E is the energy, S the entropy and P the pressure. We have also:
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(7) p= - T e 2
Vv

In the case of a free gas of particles and antiparticles with mass m,
chemical potential./L(consider for simplicity only one kind of con-
served charge ) and degeneracy factor gin alarge volume limit, the

partition function is

-~ i A

4 4 : 4

(9) I 2(T p V). 3V Jdk k 4 . .
( /‘ ) £m T (ka+ MA)‘/; e B (k% m ) —/“-L_,vz 1{5[(‘(_ ) +/“J+oz

o -

with q =+1 for fermions and’ﬂ:—l for bosons.

For massless fermions we obtain

= ? nrTé Tt 4
(10) (T%Z)g— %X(ﬁrw F AT o

and for massless bosons with zero chemical potential

(11) (Tguzk - 5_5,_\'_/ WLT4
80

2.2 QUANTUM CHROMODYNAMICS

QCD is a non-abelian gauge theory describing the strong inte-
racting elementary particles known as quarks. The whole spectrum of
hadrons , in fact, can be explained introducing gseveral '"flavours" of
quarks: at present there is experimental evidence of six distinct
flavour : up, down, strange, charme, bottom and top. The strong inte-
raction between quarks, however, is concerned with another attribute

namely, their colour properties. Each quark is characterised by a
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colour index o, with®=1,2,3 (the three colour states are also called
red, blue and green). If we think of the colour as forming a three-
dimensional abstract space, QCD theéry is constructing requiring that
gauge transformations be invariant under SU(3) transformations in

this space.

The Lagragian of QCD is

Ed

(1) frzf %#“i (,i §0y *2’—33;; /—1;=<>_ ﬁ“ggfm] %ﬁ“ Z"F‘é F i

where }2gis the quark field, f refers to the flavour and A to the
colour index. A? are the gluon fiels, with&= 1.. 8, mediating the
strong interactions between quarks, g is the coupling constant, m
the quark mass and
(2) F'é = DL Qé’ - Dd A j ﬁo(@b/ . J
Let % be the eight generators of the SU(3) colour gauge group
ol
normalized so that tr gt eh.2d ¢ , Then «By are the structure
. o (3 - . )/
constants of SU(3), defined by [T’, z J = 20 ¥k95 =
A term ifczf *{5? T@ must be added to (1) in case of baryon
number different from zero. Once the Lagrangian is given, the
analysis of the thermodynamical properties of QCD at finite tempera-
ture is, at least in principle, a well defined problem.
The partition function in the path integration formulation is

given by

+.5

@z J[aR][de][9n]

where [ } means the sum over all the possible configurations of the
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system and S is the euclidean QCD action.

(4) S= JBAC desx fs(%’:ﬁ’.ﬂ;)

where ‘fE is the euclidean Lagrangian density obtained from (1) by a
Wick rotation in the complex plane t such that € =it. The fields

have to satisfy the periodicity conditions
A (R, 0) = A (%,8)

¢ (Fo)=-w(7, p) , FE-¥(Fp)

These conditions allow us to interpret B as the inverse of the
temperature. Then, all the thermodynamical quantities are derived

from (3) using the relations we have seen in section 1.

a) Perturbative QCD

In practise the evaluation of SU is not very simple. Pertur-
bation theory involving weak coupling expansion associated with
renormalization group method can be used with success only at high
temperature and density when the effect of particle interactions are small
by Kalashnikov-Klimov (1979) and Kalashnikov (1984),(see also Toimela

1984), in the lowest order of pertubation theory are

5) A - - & oniTe 1T R, 2T T
(5) A o4 - %_4SnT+A/Tg[Z/~+6O ]

+ Snbxeﬁf (T)(%,T“,L /\/1(3 (fz T }%:_Lﬂ
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with b/elf\e (T) = __fs’______,.___,__—

(33-2Wp) & T/A
where A is the QCD scale parameter, Ng is the number of quark
flavours. For A % 120 MeV and Nf= 3, the critical temperature To

at which thé pressure becomes negative is about 240 MeV.

In the high density region it results

(S35

R (ARt Tas RS

with Y - § -

xfzf(f) (33—2A!)e)€««/“//uo
where f¢,>3 A . The pressure becomes negafive for ny 0.2 fm-3 (Ng=3).
From the equations (5) and $6), it is possible to see immediately that
for high temperatures and baryon densities, vanishes and the sys=
tem behaves like a free gas of quarks and gluons. The appearance of
a negative pressure for temperatures and densities below TO and ng

ca n be interpreted as sign of a phase transition.

guark-giuon
plasma

hadron
matier

fig. 1. Phase transition diagram.



b) Numerical QCD

In order to know the behaviour of strong interacting matter
for the whole range of temperature, pertubation theory cannot be used
because its prevision are reliable only in the case of weak interac-
tion. TFor this reason, in this last years numerical methods have
been more and more widely used in studying QCD theory (for a review
see Cleymans et al.1985). In numerical QCD, the partition function
is evaluated on a lattice where point are separated by multiple of
some spacing a, thus the possible momenta range between 1/a and 1/Na,
where Na is the linear lattice size. The results are, hence, indi-

t

the number of lattice sites in the time and space direction respect-

pendant from infrared and ultraviolet divergences. Let N_ and NS be

ively, then the volume and the temperature of the system are equal
to V = Nsa3 and 1/T = Nia.

The action is rewritten in terms of link variables Ai and site
variables J(x), i.e., the gauge field is defined along the links be-
tween lattice points, while the fermionic field is defined in the
lattice points. Moreover the lattice action must satisfy the local
gauge invariance and in the limit a » 0 it must reduce to the conti-
nuum form.

Physical observables must, of course, be indipendent of the
choise of the lattice. This is garantee by renormalization group

theory through a relation between lattice spacing and coupling g

L - Sl .
QAL = {//'{ Vg g S exp {_. 24w 5

4¢ T /”f”;§&

where A, is a dimensionful parameter which characterised the intera-—
ction scale. All physical quantities are then calculated by computer

simulations techniques in terms of the free parameter . Their va-
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lue in physical units is obtained, at the end, fixing the arbitrary
lattice scale‘ALby calculating some known quantity, like the mass of
proton.

The observables that have been most commonly used in finite
temperature investigations of QCD are:

i) the total energy density: the results of lattice calculationé are
shown in fig. 2. We can see that energy density has an abrupt change
from values comparable with which of a gas of free mesons to values.
approaching the energy density of an ideal gas of quarks and gluons.
Thus, also in numerical analysis is evident the Stefan-Boltzman beha-

viour that we have already seen in pertubation theory.(Cleymans et al.

1985).
E/ESB
10 e
0 o ©
08} °
o]
0.6}~
04 o
0 y
[e]
0 ! [ N N T I I | i ! i | I |
80 100 150 200 250 300 400 500 600
T/AN=2

fig. 2. The total energy density, normalized to the ideal gas limit ,
as a function of the temperature. It is also shown the ideal gas limits
for the quark-gluon plasma(dashed line) and for a system of , and
mesons(Celik et al. 1985).
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ii) the average quantity<§hy> which is an order parameter for the
spontaneous breaking of chiral symmetry. This is a quasi-exact sym-
metry of QCD equation of motion resfored at high temperature in the
limit of zero mass for the flavours up, down and posssibly strange.
(Fucito et al. 1985, Gavai et al. 1984).

iii) the thermal Wilson loop ¢ L > which is related to the free en-
ergy of an isolated quark. Actually ¢ly represents a true order
parameter of the phase transition in the case of a Yang-Mills
system. Its expectation value is, in fact, zero in the confined pha-
se and finite in the deconfined one according to an infinite and fi-
nite, respectively, free energy of an isolated quarkv(Polonyi et al.

1984, Celik et al. 1985, Fucito et al. 1984).

A(PYy a3 L
-41.5
0.06+
- -1.0
0.04}1-
—0.5
0.02-
0 | | 1 0
5.0 6.0 7.0
6/g?

fig. 3. The chiral symmetry restoration measure ¢¢¢>(open circles) and
the deconfinement measure L (full circles) as function of 6/g ~ T/Aw.
‘(Celik et al. 1985)
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The critical temperature T, is found to be of the order of 200 MeV
within an uncertainty of a factor 2.
The problem of the order of'the transition is completely solved
for Yang-Mills systems in which analytic (Borgs-Seiler 1983) and
numerical calculations agree on the existence of a first order phase'
transition arising as a consequence of the breaking of the symmétry
of the system with respect to the centre Z3 of the group SU(3). The
latent heat released during this transition is evaluated to be .
1.5*0.5 GeV/fm3 (Kogut et al. 1983b/Celik et al. 1983, Svetisky-
Fucito 1983). The value of TC is determined by computing ¢« L » or the
specific heat. For a Yang-Mills system, TC =(150-170) £50 MeV/fm3.
At present, however, a definitive answef is not yet available for the
full QCD theory. The introduction of dynamical quarks causes
numerical problems that are not completely solved up to now.
Some consideration can be made on the results obtained with
different methods
a) at a temperature of the order of 200 MeV, the energy density
presents a rapid variation and the Stefan-Boltzmann limit is
approached at higher temperatures

b) a rapid variation of both ¢L> and «?kV; quantities at almost the
same temperature (see fig. 3) suggested the possibility of a
deconfinement transition connected with chiral symmetry
restoration.

Most of the studies of QCD on lattice refers to the case Mu=0.
Recently the case M#0 has also been analysed. As we expect tran-
sition temperature decreases for increasing value of/u (Engels-Satz
1985, Damgard 1985; see fig. 4).

The results for a pure Yang-Mills theory and the behaviour of

physical quantities like ﬁ,<l¥\f> and ¢ L> strongly'suggests the
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existence of a first order phase transition in the full QCD theory.
In view of this possibility, we think that it is worth studying the

effect of this transition in the early universe.

200 —

T/A L

100

100 200
gl

fig. 4. Deconfinement phase diagram, for dynamical quarks of mass
my= 400 (e), 170 (o) and 20 MeV (4); the curves are only to guide
the eye( Engels-Satz 1985).

2.3 USE OF QCD RESULTS IN COSMOLOGY

The QCD results on lattice was first use in cosmology by
Bonometto and Pantano (1983). On the bases of temperature dependence

of energy density and pressure obtained in lattice computations. We
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worked out how the temperature and scale factor deviate from the one
of a radiation-dominated universe as a result of confinement forces.
According to the standard model we assume that for température
T>> 200 MeV, the universe is homogeneous and isotropic. Thus, in a
system of comoving coordinate (Z,e,w), the metric is the Robertson-

Walker one

> 2
de' o 2 d9 v 2aim® dy
|-k z

(1) ds* = dt° - & (t) [

where k=+1, O or -1 for a closed, flat or open universe respectively.
t is the proper time of a comoving observer. Once one knows the
equation of state of the cosmological fluid, the scale factor a(t) is
calculated from the Einstein equations, that in this case reduce to

the formulae

o) . 8ub K
(2) <§;) - _gé___ e 1 e
(3) - & ‘_ljgg (’e+ P )

If no dissipative phenomenon presents and the system evolves through

equilibrium states, the entropy S for a comoving volume is conserved,

(4) S = &f(t) £€+ P) . cowrtout
T

In the case of a radiation-dominated universe, this implies the well
known relation a T= constant. Consider now the confinement period

and assume that the transition from a state of an ideal gquark-gluon
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plasma to an ideal hadron gas is continous, even if very rapid. The
contribution of strong interacting matter to the total energy density
and pressure is derived from latti§e~results, while the contribution
of radiation-like particles is given by e, = 3 Pe = gﬁ_ 3L T*

where §, is the total degeneracy factor. When the energy and the preé—
sure depend only on the temperature, eq. (4) is true also during the
confinement period, then we can work out the behaviour of the quanti-
ty aT as a function of T over the temperature range (80=800)A, .

The deviation from a radiation-dominated universe is very clear in
fig. 5. As the confinement forces become important, the

temperature rapidly stabilises at a value of the order of 80 AL
(A= 2.0t 0.6 MeV). During the whole process quarks and gluons are

transformed in leptons and photons as it can be seen from the increase

0.5 ) 4

1 |

1 1 .
80 90 10 150 - 200 400 600 800
T/4,

Fig. 5. The deviation of a(T) from its behaviour in a radiation
dominated model is shown, by plotting the temperature
dependence of a{(T)T. '
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i ] { 1 1] T 1 ]
100 1
8- i
Q » g
" 0BF i
04L |
a2l e
80 90 100 50 200 400 500 300

T/4,

Fig. 6. The amount of entropy in photon-lepton form is plotted.
Its sharp increase in correspondence with the onset of

confinement is shown.

of entropy fraction of photons and leptons respect to the total
entropy. (See fig. 6.)

The integration of Einstein equations gives a(t) and, using
equation (4), T(t) (Bonometto-Sakellaradiou 1984). The plateau of
temperature (see fig. 7) obtained in the integration is very long
(% lO—5 s) compared with the age of the universe at the beginning of
the .nfinement (t =x= 10—6 s).

exp

If during this period the system goes through a first order
phase transition, the evolution must be studied more carefully. 1In
the case of negligible supercooling, i.e., in the case in which it
is possible to neglect density fluctuations related to the nucleation
process, the analysis of a first order phase transition can be made
assuming the whole system in equilibrium at the critical temperature

Tc and pressure pc. For an isothermal and isobaric transition equa-

tion (4) is still valid and the Einstein equations can be integrated
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analytically (Bonometto-Matarrese 1983, Bonometto-Sakellaradiou 1984,
Lodenquai-Dixit 1984). Under this assumption, the length of the
actual transition appears very short( = 10_75) compared with the

length of temperature plateau. Thié comparision suggests that confi-
nement forces may be important also before the actual phase transition.

Their importance, however; depends on the detailed behaviour of both

energy and pressure. Since our analysis only the data concerning

8 T T T T T 1 T T ] T T
6 - —
<
D 4 —
=
- -
2 —]
0 | 1 | ; | | | 1 | 1 | L | 1
0.2 06 1.0 14 18 2.2 2.6 3.0

(t /10 sec)(A, MeV)’

fig. 7. The time dependence of the temperature at the epoch of the
quark-hadron phase transition is shown; the error bars are

due to lattice QCD data.
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the energy density have been improved while no more data on the pre-
ssure have been computed. Then accurate QCD computation on lattice
appears to be important not only fof.knowing the character of the
transition but also for a good description of the thermodynamical
quantities near the critiqal temperature.

The existence of a long plateau of temperature can effect
sensibly cosmological constraints on supersymmetric particles.
Preliminary computation shows a shift at least of 20% in the predicted
masses of é particle heavier than 200 MeV (Goldberg 1983, Lee-Weinberg

1977) .

2.4 MODELS FOR QUARK AND HADRON MATTER NEAR THE TRANSITION

Numerical analysis of QCD allowes us to see the rapid change
in some physical quantities, but, up to now, it has not been able to
give complete description of the thermodynamics of QCD useful for
studying the effect of the transition in a physical context. Except
for a few cases, like the pressure computation made by Montvay-
Pietarinen (1982), and the more recent paper on specific heat (Celik
et al. 1983) and sound velocity (Gavai-Gocksch 1985), only the energy
density has been repeatedly calculated. For this reason many models
has been proposed in order to describe in a suitable way, the effect
of strong interaction near the transition point.(Karsch-Satz 1980,01ive

1981, Suhonen 1982,Killman 1982,Kapusta 1982,Hagerdon 1985)
Bag model

A simple model for a first order confinement phase transition

can be based on the M.I.T. bag model (Chodos et al. 1974). Although,

as we will see. this model neglects certain QCD interactions and
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treats the hadronic phase in a simplified manner, if does contain the
basic physical characteristics of strong interacting matter, i.e.,
the confinement and the asymptotic freedom of quarks at low and high
temperature respectively. Moreover, the trnasition temperature and
the latent heat per unit volume also agree with lattice QCD.

In the bag model, fhe interaction between quarks are neglected
or treated in the lowest order of perturbation theory. The ground
state of quark-gluon matter enclosed in a finite volume V is repre-
sented by a shift from the physical vacuum obtained adding a term
ln.ZvaczzBV'/T to the partition function given by perturbation theory.

At the lowest order in perturbative expansion, fogﬂ:O, we have

(Kalashnikov 1984) (see eqs (1.5) and (2.5)):

T 4 v - a4 2 —( 4
(1) P = %U T, 5% T Aj‘f’ + 3T DQﬁ(T)ZZT +§_Z
L 2o, 7"
(2) { - 5*— T gl (4-— ‘%— Me%(l—aﬁ‘T/,\)}{'w "J{ [i—i_ ofr
with

3 X (T) s b
( ) Cg( ) (53-2/\/€>‘&41/A J
From equations (1) and (2), we see that, neglecting perturbative

corrections, the entropy is independent of the bag constant B and it

is formally equal to the expression one gets for an ideal gas of
quarks and gluons. This implies, from equation (3.5), that the pro-
duct a T is constant until the actual phase transition occurs. In
the last section, however, we saw that a T may deviate sensibly from

the radiation-dominated case before TC.

7%
145 ey < 3 < 235 Mev
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Finite volume model in the hadron phase

The approximation of pions as point-like particles is quite
restrictive also for temperature of the order of bion mass. The mean
distance between particles derived from point-like statistics

-1/3
(d~ n /:

1.4 T-l) is slightly bigger than intrinsic pion size (~ )
also for temperature of the order of pion mass. Moreover, the situa-
tion is even worse if we consider hadrons with mass bigger than pion.
Although at TC contributions of heavier hadron species to the total
particle number are suppressed by a Boltgmann factor e’m/T, their
spectrum 1s very rich and their importance increases with temperature
(Pantano 1983).

Different models have been introduced for describing the
interactions between hadrons (Karsh-Satz 1980, Olive 1981, Kapusta-—
Olive 1983).

An useful approximation for their interaction is the intro-
duction of an infinite potential at radius vi@_(Karsh—Satz 1980)

that, physically, expresses the requirement of non-overlapping of

hadrons. In this model, the partition function for,ﬁ::O is

vive

(1) 2(1v). 2 uw) T j Lo dues pla) ep [

N= o

2 2 . .th . .
(¢ = qi +m, , m, is the mass of i particle) where f(m) yields the
. i i

hadron spectrum

s/2 -¥2
(2) ?@M): ;i 3k S(w-/wk)-+ c $(W-ML°)7) o

Here we distinguish between a discrete and a continuum part;

moz 1200 MeV is the mass scale above which the continuum spectrum is

supposed to start. TH is the hagedorn temperatura and in order to
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avoid a divergent result, it must be TH> T . Moreover,
n C
i
(3) v (w)s (v- Ny ) ‘ Ve = 4V,

-3
where VO'-—-(/Jr‘ﬂ’/B)m\T is the proper volume of hadrons which we con-

sider as constant. In the thermodynamic limit, V-» o0, we have

(4) p(T) - L (x)

o
Vg

where (kl and k2 are Bessel functions)

(5) 535: X = Ve T j d au fﬁu) e ka(%§>

2ur

and

B
"

(6)

2xt (H— B)(,

The generalization in the case/A#O has been examined by Bonometto

(1983) and Bonometto et al. (1985).

2.5 FIRST ORDER PHASE TRANSITION AND THERMAL NUCLEATION THEORY

A first order phase transition is characterised by a finite
discontinuity in the first derivatives of the thermodynamic potential.
In fig.8 the equilibrium curves fora system that undergoes a first
order phase transition are drawn. At a temperature Tc’ the two pha-
ses can coexist in equilibrium since their pressures are equal. For

temperature different from T the system is in the phase of maximum
c

S R ION C N CO R

s
T

)
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pressure (minimum thermodynamib potential). A first order phase
transition is not usually immediate, but, if the system evolves
through equilibrium states, it is often associated with supercoolingA
or superheating phenomena. In our specific case, as the temperature
decreases, the strong interacting matter may continue to stay in the
quark phase that becomes metastable.

In a homogeneous medium, the change from a metastable to a
stable phase occurs as a result of fluctuations whose form that form
small quantities of the new phase. Although the new phase is the
stable one, the energetically unfavourable process of creation of an

interface has the result that nuclei below a certain size are unstable

and disappear.

Jr

Fig. 8. Temperature dependence of
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The thermodynamical prdperties of such an interface are entire-
ly described by one quantitiy ' (function of state of the system)
called surface tension. It is defined in the following way: let S
be the area of the interface, there the work done in increasing the

area of an amount dS is equal to
(1) dR =Yy ds

From (1) we see that can be interpreted as a negative pressure

K==y * In a constant volume V, the differential d.2 becomes

di = - SAdT ~Nd e 4 «ds
and JL is now
(2) SL = Sl + XS

wherejlo refers to the bulk matter.

A nucleus of the new phase can coexist in equilibrium with
the old phase if the ocndition of thermodynamical equilibrium is
satisfied. That means that the temperature and the chemical poten-

tial of the two phase are equal
(3) T, =T, =T

fe (P )= M (o .7 )

and the sum of the forces acting on each phase is zero. The presence

in the two phases are different; The relation between them is
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obtained from the condition of minimum forfl, at a fixed total

volume V, keeping/4 and T constant.
(4) o= -7V, -7 + Y53

where 1 refers to the nucleus of the new phase and 2 to the metastable
phase. For a spherical nucleus the condition of mechanical equili-

brium gives

(5) P:‘ P?— = 2
)7‘64,

From equation (1.7), we can derive the surface part of the entropy

(6) Sg= - (l&) - _s dy(0)
9T T d7
Then the surface energy Gé density is (under the assumption that no

particle is contained in the interface, equation (1.7)

5 & y(m)
Ce = - yir
(7) <= (v ’&T>

Generally it results &é,g | . Since we cannot know the exact behaviour
of ¥ (T), as it depends on the detail interaction between particles
in the transition layer, we will assume in our computation (Witten

1984, DeGrand-Kajantie 1983)
(8) X = “—S = b/o T:

According to fluctuaiton theory (Landau-~Lifshitz 1980, 1981), the

probability oI producing a nucleus is proportionail to exp(-R . /T)
min
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where R in is the minimum work needed in forming the nucleus; Since
m

the equilibrium condition requires that the chemical potential and

the temperature are the same in the two phases, this work is equal

to the variation of Jl. . For the critical radius of equation (3) the

probability per unit space and time is

()= oLt wp - AT |
ST (P )
where pO is an unknown quantity that we will assume to be of the
order one; the characteristic time and length of strong interaction
appear in the factor TC4. (See also Hogan 1983.)
Using the bag model in its simplest form, the nucleation rate

becomes (without perturbative correction and finite volume effect),

TN A e sy

(4-7
Wp = léﬂras/s[(%;-gqe lz.]L

So
where % :T/TC; gi and gf are the degeneracy factors of particles
before and after the transition. The nucleation rate has a maximum
for T* =0.58 TC. The transition needs to be completed before T*,
otherwise it will never be completed (Guth-Weinberg 1981). Assuming
that the space outside the bubble is not effected by the transition

and neglecting the initial size of the bubble, the fraction of space

in the hadron phase at temperature T is (DeGrand-Kajantie 1985)

3

(1) ¥ %[&5(;?—‘2&)- Lo - S8 o J

Vi 5633 A6 (4-T)

where vdef is the velocity, considered constant, at which the bubble

deflagrates. In this analysis, the transition appears completed at
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a temperature

———

50

T > (4- W>T

The main contribution in completing the transition comes from the

bubbles nucleated with a critical size 5{,/(J¢bgﬂ> at a tempefature
Wi
=T - OT.
N= PT 8000 c 1
For WO in the range (10 — 100), i.e., for the range of nucleation

T

temperatures (0.80 —0.99) T , the critical radius range between 8

c
and 4 fm. The hydrodynamical treatment can be done on all the range
of temperature although it is very suitable for small supercooling

(WO< 10).
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CHAPTER THREE

BUBBLE GROWTH IN AN EXPANDING UNIVERSE

The aim of this thesis is to present a formalism for describing
the growth of a spherical bubble of hadrons in a supercooled quark-—
gluon plasma in an expanding background.

In this chapter we will derive the hydrodynamic equations for a
spherical symmetric relativistic fluid.

Succesively, the Gauss-Codazzi formalism will be presented as a
suitable method for describing the evolution of the transition layer.
The width of the shell where the transition is going on is of the or-
der of the strong interaction length scale,i.e., ¥ 1 fm . When the
dimensions of the bubble are sufficiently large,one can regard this
membrane as a zero-thickness surface. A surface energy density and a
surface tension must be associated to the surface,as a result of the
change of bulk matter properties across it.

The complete set of junction conditions for the fluid variables
and the metric components will be settled down explicitly across the

timelike hypersurface describing the motion of the transition layer.

3.1 RELATIVISTIC HYDRODYNAMICS FOR A SPHERICAL SYMMETRIC PERFECT FLUID

The well known expression for the stress-energy tensor for a

perfect fluid is
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(1) TI}: (P-t-e_) LL|“LK<; + P 3"6’

. i i
where p is the pressure, e the proper energy density and ul= ax /dz

is the four- velocity of the fluid normalized so that
(2) U.Iu;:~/.(.

In the case of spatial spherical symmetry the metric can be written

in the general form
PA 2 2 2 R
ds® = -« dx® 4 B+ R AR

with d: 4Bt 4 ser® clupl

where «, @ and R are function of x and x only .

An usually conveniant choice of coordinates is the one in which
the four-velocity of the fluid is proportional to (:VDﬂ so that the
spatial coordinates are constant along the world line of any fluid
element. This choice determines a comoving or Lagrangian frame.

If we denote with t and/u the time and the radial coordinates respec-—

tively,the metric can be written as

(3) ASL;-—&,ZQHJZ-I— Lzo‘/ul +EL<JEL
Using condition (2) the fluid four-velocity is
(4) u':= (G{',OIO‘O>

The function R is called circumference coordinate since it measures
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the proper circumference of a sphere of radial coordinate/u at the

time t
)rés = Jaee‘/z— 49 - 2u R—(/a,’t)

In the newtonian or speciai relativistic limit, R represents the
position or eulerian coordinate at the time t of the shell of fluid
labelled by the comoving coordinate/}L.

Where one has to follow the propagation of disturbancies in
the fluid, it is also convenient to consider an Eulerian frame. The
closest relativistic analogue of the classical Eulerian frame is the
Schwarzschild one in which R is taken to be the radial coordinate.

In this coordinate system, the metric is
2 z Z 2 2‘ z JLL
(5) ds": ~A dT '+ B AR + R d

where A and B are functions of R and T only.

The fluid velocity normalized according to eq.(2),is
: _ 2 2 \72
(6) W= (A (ae Bu)T, w00

Here the radial component of the four-velocity is denoted simply by u.
For a spherically symmetric fluid,described by the metric (3),

the Einstein egs reduce (May & White 1966, Misner 1968) to

(7) 4u Ge RRe = L[K+ RR, R Ru } (%)
2 Q* b Jm
(8) 4% 6 p RR, = —‘—[R+ Ry R&ff} (7, )
i 2 Qr Lo Je
476 (o4 L RRL Py L
@ AamsfenR - [eomsl 2 e g ) - ()
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. -t
(10) 8. R, ¢+ be Ry . Rup =0 (To )

& 5
(the subscripts " " and "t" denote partial derivatives with respect to

M and t respectively)

If the fluid obeys a one-parameter equation of state
(11) p=p (e)

the state of the system is completely determined by set of eqgs(7-11).
In general ,howewer,the equation of state of the fluid depends on
two parameters; for example the proper energy density and the baryon
number density. In this case the set of eqs(7-11) is no longer suffi-
cient to solve completely the problem and an additional equation must
be considered. For a fluid with net baryon number different from zero,

the local conservation of baryon number is expressed by the law
(12) {(nu );. =0

i
where n is the proper baryon number density and u is the fluid four-

velocity, and a semicolon is used to denote covariant derivatives.

In the comoving frame eq.(12) reduces to

®) b .
(13) ﬁ_(mlan m‘&)_o

As a consequence of this equation ,the total baryon number A con-

tained within a spherical surface of radius 4«

s 2
(14) A = J m 47?5 R %/“

o
is conserved.
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This property provides a natural way of defining the radial coordinate
M In fact we can identify/y. with A and so/k- represents the
total baryon number contained within'ﬁhe sphere labeled by /# .

From eq.(14) we can see that the choice of the radial coordinate

fixes also the value of the metric coefficient b

(15) b=
4w mR*

We will see below that eq.(12) can be used in the computations
also in the case of zero baryon number density,reinterpreting 1/n as
the proper volume of an element of fluid and n as the proper number
density of elements of fluid. Then the definition of the radial coordi-
nate assumes also in this case a precise physical meaning : it repre-
sents the number of fluid elements contained within//ﬁ as it was defined
at the initial time.

In order to leave the relativistic equations of motion in a form
analogous to the classical ones, we shall write explicitly the laws
of local conservation of energy and momentum,although they are already

contained in the Einstein equations
(17) T.7;. =0

In the comoving frame we have

(18) TO ;=0

(19) T

<
1
o

It 'is convenient to introduce the quantities
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(20) M=Ru/b

(21) w- R, [a

It can be easily checked that ( Rt/a ) is the radial component of the -
fluid four-velocity in the Schwarzschield frame.

Using relations(20) and (21) and eq.(10), eq.(18) can be rewrit-

ten as

(22) gk Q/(}A_ ' Z.&) (&-«- P):O
R R
If we define a function m such that
2

2
(24) T

using definitions (20) and (21), eq.(7) then becomes

(25) {—1 = A+ /‘ML - M
R
with
, M )
(26) /V\’L(/A"t>: J 4‘aeRR/ucj/u

0

From eqs (23),(24) and (26) we can interpret mQ/A,t) as the total
energy of a sphere of matter contained within//~.
7 is a factor which corrects the local rest frame energy for

the kinetic energy and the gravitational binding energy.
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Using def.(21) and the constraint eqs(25) and (10), the equation of

motion (8) can be written as

:-9\__‘-" G_'_Aﬁ_. 4o Go R

Finally, using the definition of u and equation (10), the baryon

number conservation law (13) becomes

(Nu R1>e = - & M

The complete set of equations we shall use for studying the
dynamics of the fluids on the two sides of the confinement layer is

the following :

27 W= - [0 Po_ G mu 4% G
(27 ¢ [b(m)+T:*+“PR]
(28) Ry = auw
(29) £&:~&(£+f)[-‘%¢+ %%]
/
(30) &/: - & P
(4+p)
- 2
(31) pos (pe k) w ]czmk Re d o
(%
(32) P=pr(e)
(33) M= Ru/k
(34) mr ) | _ e e
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The boundary conditions are
u=20, R=0, n =1 at /:o
a=1 at /u—-q.x

The second condition syncronizes the coordinate time with the proper
time of the fluid at the boundary. The condition M =1 at the
origin represents the request of local flatness; it was used in inte-

grating eq.(7) to obtain eq.(25)

3.2 SURFACE LAYER IN GENERAL RELATIVITY

In the last section we have seen the hydrodynamic equation for a
sphercally symmetric fluid. When a bubble of hadrons nucleates in the
supercooled plasma of quarks and gluons,it appears a thin shell where
the hydrodynamic quantities change rapidly between the equilibrium
bulk values in the two fluids. The thickness of this layer will be of
the order of the strong interaction length scale ( fm ) and,when
the bubble radius is of the order of few fermi,we can approximate it
as zero thickness surface. The evolution of the confinement region
can then be described by a time like hypersurface which separates
the four-dimensional space-time in two different regions that we will
denote by V+ and V

We shall follow here Israel (1968) treatement of singular hyper-
surface in general relativity. In this method the history of such
hypersurfaces is characterised in a geometrical way by the extrinsic

curvature of their embeddings in space-time. If the hypersurface is
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m
embedded in a space-time V with metric tensor gij ,curvature R"l
1]
and Einstein tensor Gij’ then the main relations which describe the
hypersurface are the Gauss-Codazzi equations:
G o 2 Doy
(1) R +\C;(,'k*—\<=—z6;&-uw’
Here K. . is the extrinsic curvature three-tensor of S (it measures

in which way 2 '"bends" in V )

(3) K = h. h. u(l;m)

ni is the unit normal to £ , which is space like

(4) n n, = +1 and

(5) h . =g. .- n.n.

is the induced metric on 2 which decribes intrinsic characters.

Finally D_. denotes the intrinsic covariant derivative (i.e. associa-
i

ted with h, )

1J
(6) p. ot - ™y al
i T i jm
In our physical context the hypersurface divides the space-

time in two regions in which the strong interacting matter is in a
different phase; mathematically the change of phase is related to a

d-function singularity on Z of the stress—energy tensor T, .
1]
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S
This implies that the two extrinsic curvatures K -
1]

with its embedding in V+ and V are different (here after the labels

of associated

"+" and "-" will refer to the quark-gluon phase and hadron phase
+

respectively). The time-like hypersurface for which LK___ .
1 J

# K,
J i

are usually called "surface layer'".
' +
Let's define two kinds of brackets i AX'“ and [AJ t such

that for every field variable A we have
+ + - + + -
{A%— = A + A~ [A}— = A - A

where the labels '"4+" refer to values immediately in front and behind

the surface.

Accorrding to Israel we introduce K, , and S, .  as
iJ 1]
t
B [ e s amasy oy by s]
H ¢ 2 ¢
* k
. - 9
(8) {k,,&g ) &
i
where S =g J Sij . The symmetric tensor Sij defined by eq. (7)

is called surface energy-momentum tensor, in fact it is equal to

£

. . s 14
(9) Sii = T Bv R dx

3 me M H

£ w0
4
where x 1is the proper distance through & in the direction of the
i

normal vector +n .
The sum and difference of egs (1) and (2) , using Einstein equation
G .. =8Th T  and relations (7) and (8) , yields the set of

13 1]
equations



- 43 -

@ PRSI "ol oy GLTY rrm *
(10) R + it:&-tc_K;-léﬁé(s;és-zs)_o"u { .dg
~ "d'. 3 fa' +
(11) < St o= !_TE m;m; ]
v ~ . . +
(12) Dy = Dk = 476 {tz e HMB
: . £ amn T
(13) Sitiy 7o [ Ts e 9“"”“]

In the next section we will concentrate our attention on egs(11l) and
{(13) that,in highly symmetric problem as the one in which we are
interested,describe completely the evolution of the shell,once they
have been coupled to the Einstein equations in Vi. Egs (10) and (12),
instead,should be solved only if one is interested in the form of
fictitious background space §,such that 2 is regular in it with

~

extrinsic curvature K_ ..
1

3.3 COMPLETE SET OF JUNCTION CONDITIONS

Let's consider a perfect fluid type of matter,then S, . and

1]
T . take the form
1]
(1) sy = (vowt YWTAY 4w Ry
_ * + + VL £ 0t
(2) t% = ( P+ e ) W ud + P 3'}

where ¢ and o on the surface energy density and the two-dimensional

t + + -
pressure; p- , € and u are the pressure,the energy density and

i
the four-velocities of the fluids in the two different phases; v 1is
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the unit time-like vector tangent to 2. ..

These relations should now be explicitly expressed for our
problém. For a spherically symmetric system there exist two space-
e?A) ( A=2,3 ) thch span the épace—time. Then
the unit normal nl ,the time-like tangent vector vl and the two

like Killing vectors
Killing vectors form an orthonormal tetrad system on S . They are

related to the metric tensor gij through the relation

(1) (2)
v, ] e, n.
1 1 1

1l

where f? AR = ( diag -1,1,1,1 ) and e,

il

In our comoving frame let /Uz(t) be the location of the tran-
sition layer at the coordinate time t and/pg the "layer speed”%/u@f.

The equation of the hypersurface 2 is then

@ fe peomlE)eo

Therefore the normal n; is given by

@ me WD W (o a0

where N 1is a constant obtained with the normalization condition (2.4)

N = ab :
(Qt LDE/L;ISZ )/L

The tangent vector to the hypersurface along the stream line is

(6) /\I"._-_ Ax;‘ = : </"/;510!O>
de QZ—BjA;'

/U':/‘)_' = -4

'
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where Ja’- (&fg*l~ bL%J'>A' is the proper time of the shell.
i
Contracting eq.(2.13) with v and using the perfect fluid form for

S.. and T .  we have
1] 1]

(7) TB.[ (tr+o<)ﬁf"]~ I [ (?z+ ez)(“izM"MwDZﬁ‘ﬂ

4

Contracting eq.(2.13) with the other vectors of the tetrad we have

LO'—vL ol )M,' "r'. B,‘ ,O—d: =0

@+ <) E,(A’J; DAt =0

i j -
Because of the symmetry v Div‘J =0, the last two egs are trivial.
Eq.(7) represents the energy conservation law across 2 .

With assumption (2.4.8 ) eq.(7) reduces to

(8) [(Pz*€z>(‘*:z"":)(“gd-€)1:0

The assumption implies that there is no energy flux onto 5 from V
and the increase of the total surface energy is due only to superficial
stress forces.

i
Using the explicit form of n. and v , eq.(8) reduces to

Eg.(2.11l yields a second junction condition across § . Expressing

the acceleration vector in terms of the extrinsic curvature

BM; - —»l"'\;/\re‘/\)-wl kem
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and using the relation derived from (1) and (3)

. - e '-' N J(A) N~ ) —
NN kg = éf (S* - €b)€ ) }c% J3 O

it is possible to rewrite (2.11) in the following form

(g

; - ; + . +
a0y Ky e - z"'f“‘ o | (e )b ) e

For a spherically symmetric system

- : +
(11) e e ® [m‘ () ) g
v ! s

Using assumption (2.4.8 ) and relation (11), eq.(10) becomes

' B ' +
(12) g{gMC _%_f.. o g!%r‘.' ﬁt: [(f’z*ez‘)(wf'u;)h FEI

In our comoving frame we have

(13) n Re o YE(/“"Z Beop L %‘)
R " R i

where Y= 2 é%ﬂﬂc - &'/ (Q‘_ Bi/;sa )VL

The acceleration is

de Y der ob  de

(14) m Dot E[ ey 2be yda +(%‘:F‘E¢:)(Jﬁ—): :‘Qij
2

After some manipulations eq.(12) becomes

+
(15) N o R P
[“Q/UZJ"NJ Z{f?w(
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/.
T z -
where C = ( & - lD /"3 >

The two junction conditions we_have seen. up to now don't
exaust the whole set of junction conditions that we need in order to
specify completely the problem. Instead of manipulating the Gauss-—
Codazzi equation it is siﬁpler to fix the junction condition on the
metric,considering directly the interval ds separating two points
on the world surface of the shell and imposing that it must be the.
same for a comoving observer just behind the membrane and a comoving

observer just ahed of it. Thus

+

- 2 4 A ¢
Lwdéf s hidu v RN 1;0
Considering the particular case dps=dt =0 we have
= *
(16) LR} = O
i.e. R is continuous as we expect according to its meaning. This

implies

t

[ Lt o c’/:J=° or

(17) [QL-EL/JS r:O

The complete set of junction conditions is

[ ot (pore)] -0

t L o-
22 L P4 [h ks ¢ _l,(lo , u QF’_>
2 .Qig/us + ,P Q J = Z_ c -—-—-QID 51‘ (T>+ O:f_ + Te /"‘z z+ s
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[r]%-0

4

{QL-— 52/,'.; :&—:O ‘ 3k (C)tzo

In the case of net baryon number different from zero,an additio-
nal junction condition musf be considered guarantee the baryon number
conservation across the membrane. Assuming that the net baryon number
in the shell is equal to zero,the baryon flux conservation is expres-

sed by the equation
(18) L Mmoo My 1 = 0
It is not worth writing explicitly the previous relation in the como-

ving frame since we obtain a trivial relation.. Let's consider the

Schwarzschield frame. The equation of 2 in these coordinates is

S
and the normal
- of A
(19) M, o= . - S, , 0,0
-2t )
(20) S= dR
a7

*
(21) LMu°S~M%] =0

0
It can be shown that S and u can be written the following
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way

S = Qe+ bl uw A Pie
ot + b %/A '
W r

Using these relations relations eq.(21) becomes

[ mb (0o ) r: o
o+ lb\-k/u

o

Because of the definition of b (1.15) and by the continuity of R (16)

L 18 *
(22) { (PL’ w ) - O
ot = Bu/}

In the case of zero baryon number, eq.(22) represents the conservation

of the fluid element across the membrane.

3.4 INITIAL CONDITIONS

During our analysis we plan to follow the evolution of the
bubble since its formation. According to thermal nucleation theory
the nuclei with critical size of the new phase are formed at rest

respect to the surrounding medium. The junction conditions, that
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have to be verified during the expansion of the bubble, must also be
true, as a limit, at the initial time. Then initial conditions have
to be consistent with the junctionAcondition equations.

We assume that before the beginning of bubble nucleation, the

universe is well described by the Robertson-Walker metric
2 L 2 z T b
(1) ds” = - 4 +&(+)[A/* s Jn]

here, we have taken k, the curvature constant, to be zero, and the
time coordinate represents the proper time of cosmic fluid.

| The formation of a bubble cannot affect the medium far away
from it, and therefore the metric (1) is still valid at long distance.
Locally one could expect an input of energy in the medium ahead of
the bubble, but one can easily show that the input is negligible
with respect to the total energy contained within a radius ten times
bigger than the radius of the bubble. Moreover, this surplus of
energy can be rapidly spread out by neutrino diffusion before the
bubble begins to grow. Then the metric (1) can be assumed valid up

to the membrane. This implies

(2) (0% = 4

+
Q = 4
Va

Since at the initial time the bubble is at rest,the junction condi-

tion (3.17) for the gOO metric function gives

(3) CL+ = Q = /.L
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Moreover, we assume that inside the bubble the condition %%=.O is
also true.
Under the condition equation (3.15) becomes
t - £
R

Before nucleation, as the universe is spatially flat, is equal to

1. The small dimension of the bubble (T ¢ 10 fm) implies that |

U~ 10*17 , Tthen u2 and (2M/R) are so small that although they slight-
ly changed because of thermal fluctuations We can assume [ = 1 also
after the nucleation of the bubble. Relation (2) reduces to. the
classical expression for a critical radius we have seen in section

2.4

(5) R, = 2o
Pt~ P-
where o= -y , y surface tension.
Another condition which must be satisfied is the energy flux

equation (3.9), which reduces to
<?+‘+ T+ > N, = (?“ Y P- > s A= l/%“

This equation gives the relation between the proper volume of an
element of fluid in the quark and in the hadron phases respectively.
Here (e+~+p+) (e +p ) the confinement causes a growth of the comov-
ing volume of an element of fluid. In fact, according to the bag

model equation of state, it results (v /v )™ 3.
-t
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CHAPTER FOUR

CHARACTERISTICS METHOD AND EXACT JUNCTION CONDITIONS TREATMENT

The system of equations and junctions conditions we have
presented in section 3.1-ahd 3.3 does not allow an analytic solution
and we have to solve it numerically. The most widely used technique
in this kind of problems is the finite difference methods in which
a suitable grid is superimposed on the space-time. The discrétization
of space-time implies that the fluid variables are computed only at
some particular points. This lack of knowledge does not usually pre-
vent the treatment of possible discontinuities like shotks. In these
cases, in fact, it is possible to introduce artificial dissipative
terms into the original equations so that the discontinuities are
spread out into narrow but finite regions across which the fluid va-
riables change rapidly but continuossly.

On the contrary the kind of discontinuity which we are dealing
with need to be studied exactly because the transition layer separates
two different phases of strong interacting matter whose thermodynami-

cal properties are discontinous if the transition if first order.

Therefore, in our system, the junction conditions must be applied ex-
actly and this requires us to know at each time step the values of

fluid variables immediately behind and ahead of the transition layer.

For this purpose it is presented in this chapter a different
form of relativistic hydrodynamical equations that allows us to~compute

the fluid variables near the discontinuity .




- 53 -

4.1 HYDRODYNAMICAL EQUATIONS IN A CHARACTERISTICS FORM.

When in a fluid such as viscosity and heat conduction can be
neglected, the partial differential equations of motion that in this
case are hyperbolic and so possess real characteristics, can be
combined so that the resulting equations contain derivative in one
direction only. The one parameter families of curves defined by
these directions are simply called characteristics. (Courant-Friedrichs
1948, Hoskin 1963).

Consider the equation of motion of a relativistic perfect fluid

we have written in the Lagrangian form:

_ nopa G 4 4T G R]
W, = - @ G s
(1) r [ 5 @) RS P
(2) (m(z"’h - - 8 U
mR* R u
(3 L be 2 Ry 2 = O
) g ( o + = >( F)

These are the relativistic analogues of the classical Euler, mass con-
servation and energy conservation equations,respectively.

Using the relations

gﬁ= F/4W€M—

we can rewrite eq.(2) in the form

(4) %ﬁ'_+ 2w 4 &u/u da R m _ 4
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It result, also, for an adiabatic fluid

’)./‘L:(QA«_ 7 " with @_."_‘-) -
op ot

The last equation is derived from the first law of thermodynamics
with CSZ=CDF76e>S being the sound speed and w :‘73E the specific

enthalpy. Then equation (4) becomes

l P 4R MU, - - 24
¥ AT
A Y 7 R
After multiplying equation (5) by M° W~ and equation (1) by (W/ )7,
their sum and difference are respectively
' P R" w dn R
6 e, 45 K mc )+ f.<gl + IR mec_ U >:
(6) /“Cs( a s oo r Q s
:,zv,(zu e My am mazr)
r R R*
! e - 4FR moe >+ W ("(t- dg R m e, w -
7 s A4 B —_ =
() (\"CS (-Q/ F o} S/‘-)
= - _%(2& c I G M 4:6';12)
K R Q*E

Now equations (6) and (7) are in a characteristic form and may be

rewritten as

du - -2 (auﬂ,cst G M+ 4:6FR>4+

! 4
R F R R*

(9) along dp= F4m R m ey & db
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where the sign + refers to positive or forward characteristics and
- refers to the negative or backwards characteristics.
Consider finally equation (3) and combine it with baryon number

conservation equation, we can write
(10) Ly — My, w =0

and there being Qt: .L: Pt we have the advective equation
C

z

SW&M = O

(11) AF - c

along d/u =0

From the characteristic form of the equation of motion, it
appears more clear how the state of the fluid at some time t is
influenced by the state of the fluid of precedent times. Consider,
for example, the two time steps t and t+dt and assume that the state
of the fluid is completely known at time t.

In order to determine the state of the system at the point P
at time t +dt, we have drawn from P the backward and forward charac-
teristics, using quaiton (9) and have computed the space coordinates
of points M and L where they intersect the time level t. As we know
completely the state of the system at time t is now possible, using
the equaton of motion (8), to compute the velocity and the pressure
at P. Then the advective equation (11) and the equaton of state give
the baryon number density and the energy density at the same point P.
TheAlast two quantities a and R are coumputed by the advective equa-
tion Rt=a.u and by equation (3.1.30). Actually the whole system of

equations has to be solved iteratively until all variables have
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converged. If the numerical calculation is done on a finite mesh
defined in advance (see fig. 1 the points A, B, C and P), it is
ussually necessary to perform interpolations at L and M as the

calculation proceeds.

dt // \\

Fig. 1. Calculation of an ordinary point in the equal time mode.
LP and MP are characteristics.

4.2 DISCONTINUITY POINTS

In the analysis made by Gyuloassy et al. (1984) in the case of
a l-dimensional flow in a Minkowski space time, it emerged that two
possiblee situation can arrive in the transition front. For a strong
supercooling, the transition is mediated by a shock wave (detonation
front) and the hadronic matter is produced in a superheated state.
In the case of a small supercooling, that is, in fact, the most
likely situation, the transition proceeds as a slow conbustion sub-
sonically with respect to the quark-gluon phase. This transition
front is called deflagration front. We are going to see now the
difference between the two situations in terms of characteristic

curves.
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a) Strong detonation front
According to the Jouguet's rule (Courant-Friedrichs 1976,
pg. 215), a strong detonation front is supersonic with respect to
the medium ahead énd subonic with respect to the medium behind. This

situation is shown in fig. 2.

‘

S Fig.2. Calculation of

3 A a detonation in
,?}T\ the equal-time
{/ s mode. SS' is

L4, : the path of the
’ / 4 b
” \ detonation

’ 7 U 5 front. .

4
K SL Z M

The unknown quantities on each side are the fluid velocity u, the
presssure p, the baryon number density n, the Schwarzschild radius R
and the 00 metric component a (remenber that the coefficient b in
the metric (3.13) is expressed in terms of n and R because of our
particular choice of comoving coordinates), and eventually detonation
velocity. The energy density is derived from the equation of state.
As we have done before for an ordinary point of the fluid, we
assume, again, the knowledge of all the quantities at the time level
t. From fig. 2 we see that the state of the fluid can be completely
determined ahead of detonation front because the discontinuity is
supersonic with respect to this region and the fluid cannot be in-
fluenced by it. In the medium behind, on the contrary, only the
forward characteristic is present: all the other information is given

by the five junction conditions we have seen in section 3.3. (two for
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the metric and three due to momentum, energy and baryon number con-
servation). So, at the end, we are able to determine completely the
state of the fluid ahead and behind the discontinuity and also the

velocity of detonation front.

b) Weak deflagration front
In this case, the reaction front is subsonic with respect to

the medium on both sides. The situation is illustrated in fig. 3.

7 A - Fig.3. Calculation of
17 \ a deflagration
i V4 AN ' in the equal-
t 7 4 AN time mode. SS'

// / \ is the path of
v 7 \ - the deflagration
front.

We see immediately that,compared to the previous case, thereis a
lack of knowledge because there is not the forward characteristics
in the medium ahead, there the state of the system cannot be complete
ly determined without an additional information. For this purpose,
it is necessary either to study in detail the dynamics in the tran-
sition layer, or to make some suitable assumption about one of the
variables of the system.

In our particular case, 1t appears very reasonable to assume
that the temperature is the same on the two sides of the layer. The
fact that strong interacting matter is, in the early universe, at
this temperature, in equilibrium with lepton and photons and, in

particular, the presence of neutrinos that are not yet decoupled from
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the other particle species, should assure the thermal equilibrium
between the two sides of the transition layer.

There, assuming T+-=T_, the characteristic equations and the
junction conditions allow us to compute the fluid variables and the
deflagraiton velocity.

Let us concentraté on the deflagration case that seems more
likely in our problem. The most practical way for calculating the
state of the system at S' is the following:

1) Estimate the position of S' at the time step t +dt using the
deflagration velocity jk5 at S.

2) Extrapolate the value of T at S from the value of T at the defla-
gration front in the two previous time steps. |

3) For the element of fluid immediately ahead we can cumpute
i) u+(T) using the backward characteristic;
ii) n+(T) using the advective equation (1.11);
iii) R‘=R(/J using the advective eqaution Rt =au
iv) a+ from the metric condition (3.1.30).
For the fluid element behind
i) u_(T) using the forward characteristics.

4) The junction conditions presented in section 3.3 are then used for

calculating a_,/ﬁbl, b_ and a better estimate of T (actually

appears more convenient to use T4 as p and e depend only on T4).

For the numerical calculation it is more convenient to rewrite the

Jjunction condition in the following form

(1) N{L{P_LJr (ﬁzu4z >x4— 2 17(3 (u+ u_ + f\Z l",j‘_)xa + [f*’[lﬁz(r'+
—Of%fﬂf*ZF(qu+ ﬂﬁ)x ,(uf+§p;>: o

[

U 2

-+

)
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(3) T T L DL L.
Ms by (O’ZX‘)*’F‘“U')

ob d

<

LN J . > /’I W
o ()

= [5!9’-/:‘?-/-(4'*‘ PQ}/T‘;JI

where we have introduced the notation

From equation (4), we have the new estimate of TS'
5) }lg allows a better estimate of S' and then thecycle is repeated

from 2) until all the quantities have converged.

4.3 FUTURE RESEARCH

The system of equations we have presented in section 3.2,
3.3 and 4.1, we will allowed us to fallowed in detail the growth

of a spherical bubble, once known the equations of state of the

>}f
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two phases and the surface tension of the separation layer. Our
method does not give a full description of a first order phase
transition, but the knowledge of thé-dynamics of a bubble is
essential for a better understanding of the whole transition.

In our numerical analysis we plan to compute the velocity
of the transition front and how this velocity depends on the
degree of supercooling. We expect that the transition propagates
as a deflagration, but the detonation case (Steinhardt 1982) is not,

a priori, excluded. We want also to check if any shock discontinuity
is formed ahead of the confinement front in the case of deflagration,
The comparison between these velocities is important because, if shock
discontinuity propagates rapidly, far aWay from the deflagration,
their collisions can cause turbolent medium where the successive
growth of the bubbles will be slowed down. Eventually, we will

modify the equation of state of the two phases in order to consider a
net baryon number density,/t# 0.

From the numerical analysis, we should be able to see where any
inhomogeneity in baryon number density is formed. We plan also to
include in the hydrodynamical equations neutrino transport term as its
effect should be important especially for a high temperature gradient.
The knowledge of bubble growth velocity and nucleation probability
will allow us to compute also the length of the tr sition.

The final part of the transition when bubbles meet and collide
(Midorikawa 1985, Hawking et al. 1982) cannot be treated in our con-
text but our method is again suitable for treating the shrinking of

the regions left in the quark phase at the end of the transition.
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