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I. Introduction

Prediction of the absclute and relative stability of
different solid modification of & substance at zimospheric
pressure, and the effects of varying externsl conditions
on stability, is a important aspect of the theory of cche-
sion in selids. The theory of varicus structure phase
transition in the selid stete is really a difficult cne,
as the energy difference between different phases is in

meny cases & very small fraction of the totel cochesive
energy, of magnitude comparable with the asccuracy of the
cohesive energy itself. Alkali halides system is suffici-
entlly simple and well studied class of solide 3020 {pat
‘may create favourable conditions for overcoming this diffi-
culty. The rocksalt phase ( as B1 ) to cesium  chloride
(B2) transformation in Alkali halides has been studied
both eyperlmeptally and theoretically by a large number of
inverstigators 3]

by Slater ﬁij, The transfcrm?tien has been found to be a
15 n
. . The

since the discovery of this transition

first order and reversible trensitions which have

been most extensively studied are the structure changes of
the chlorides, bromides and iodides of potassium and rubl-

dium to the B2 structure at pressures of the order of 20

and SKb respectively H6j, and of cesium chloride to B1

structure at &5006[17]. The X-ray studies under pressure

have Tevealed transitions to the B2 struciure for the fluo=

1183

rides of potassium, rubidium and cesium and for sodium

)
chloride ﬁ’Jg The neutron scatiering has been used to elu-

cidate the microscopic mechanism of the Bf to B2 transfor-

matzon*gm .

The first detailed thecretical studies of the Bt to B2

. 1

transformation were those of acoss‘21}‘ & summary of the
~%

subject was given by Born andﬁHuangig i A more detailed

I3 ~ o . m & ]-’17

survey is to be found in the review by Tosi and b¥ai ©7

. . . [24] .
by Tosi and Fum1"4j. More recenily, the spirit of various
[

and

. . . 25,
theoretical approaches has been reviewed by Gordon and Kim+-—~°
26l + oan ,
Cohen and Gerdoni used the parzmeter free potential
- : - . , ] -
functions developed by Gordon and Kim (2 s to study the B1

—— * . : - fh}
to B2 transition and this study w extended by Bc"eriﬁ8

who included the effect of harmonic vibrations in the calcu-
the free energy; this however did not materially

[

B




affect the conclusions baSed on static caleulation.
”“@hé”kimetics”éf,§dlymdrphic'ﬁfanSEfiﬁﬁfhas,not“feééivea“m'

much attention because of the intrimsic diffieulty of the pro-
‘blem, Different microscopic mechanlsmq for the transformation
From B1 to B2 structure have been postulated by many authors.

As early as 1931 Shsji‘29>had described a lattice deformaticon
based on geometrical arguments, transforming +the B1 to B2 stru-

z o - L . . .
(%0) 11liustrated this mechenism which consistis of

cture. Buerger
& compression along the [1,1 é? direction and a dilation perpen-

dicular to it.Later Fraser and Kennedy ‘“Q)and Watanabe et. a1 (z2)

—yreseﬁ»éﬁ further deformation mechanisms. However, most of-these
theories are based only on the orleng&tzaﬁal ”‘relaz_gn_abse*ye@

during the transformation in some alkall-nalldes and 4id not

give a description of the micrescopi@ origin of the proposed
geometrical deformations. Recently, the encouraging progress has
been made by Blaschko et.al. In thier neutron scattering siudies
of the Bl %o B2 transformation in Rbl,Blaschko et.a;.(zs”(??/"{7é’
investigated the changes in the mosaic structure ( due e the
nucleation of the B2 phase including in the Bl matrix ) below

=

a
and near the actuzl transition point and gave some insights into
s involved in the transformation, Based on the re-

1"

'.l

se erperimental investigations , a model for the

-
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®

of the B1 to B2 transztian in RbI was put forws
at the
.L
L

ve

H
(..l.

v%

e
s

The main idea of the model is centered arcund the fact
e

!4..1 o

can transform ito the B2 structure by =z colle
n of ions in the B1{(0,0,%1) alternztive planes. Thi

{' 0

o gue-
litzative mechanism put forward describes an inhomogeneous trans
gtion, which starts in regions of high diglocation densities.
+ wos shown that a transformation hysteresis depen-
ous thermal and mechanical treatments of the

o
W
&
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ng an actual transformation pressure different
from the thermoéyn&mic eguilibrium point.However mgny aspects of
enon have not been theoretically understood.

Recent advance in the method of computer simuletion of
solids make us to believe that a new molecular dynamic method
developed by Parrinello and Eahman(37>may shed light on the man-
ner in which the system of interest traverses its configuration

o
=

race to achieve a polymorphic transition.

@
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*ﬁethoé to the polymorphic transision of KCl1 msing a paraneterized

.

Parrinello &nd Rah@@;fﬁajagplied their new computational

form of the Gordon—Kim»pcteniialiZ?{‘The calculation was descri=

~ bed in details to show the dynamical history of the occurrence of

s BY1 to B2 tramsition, A new microscopic mechanism has been pro-
posed to describe the accompanying changes in particle position
in details. It should be noticed that the two proposed micresco-
pic mechanism of the B{ to B2 transition— one proposed by
Parrinello and Rehmen based on their MD studies; the other by Bla
schko et al. based on their experimental studies—— coincide with

ezch other, even though described independently in different manr-

CNEeTS.

Parrinello and Rehman pointed out that the B1 to the B2
transition can be described as a phonon scftening assciated with
z spontaneous uniaxial deformation of the crystal. However the
pressure and temperatures needed to accomplish the transforma-
tion on he computer simelatiom were much larger then thkose ex-~

perimentzlly observed and in disagreement with the predictions
made by Eoyer{ga}ﬁn the basis of a2 harmonic free energy calcu-
lation that used the same Gordon-¥Xim potential. This lead us to
believe that a correct description of the transitions reguires
rot ornly an accurate evaluation of the free energy difference
between the two phases but also & reasonable estimate of the en-
ergy barriers that hinder the transition.

The work of Parrinelloc and Rahman describes the path in

ot
rs-

-

the configuration space that the system follows in going Irom
one phase into the other,Thus we are now in the position to eva-
luate the free energy barriers and the effect on them of warious
choices of the potential and of the presence of defects that can
help nucleating the different phases. )

As 211uded to before the mechanism of the BY to B2 tran-

(=z8)

sition has been described /by Parrinello and Rahman 2s an

uniaxial [0,1,1/deformation of the BY structure plus a softening

~of a transvers [1,0,0} phonon mode.A full calculation of the free

energy variation along this path is obviously = difficult task,

 thus we will confine ourselves to use of the harmonic approxima-

tion,Furthermore we will achieve the effect of deforming the B1

v ..g.. o : . & . . . - Ry
Biructure in the [O,;,i}dlrectzon by & convenient uniaxial ten-
sile load.




" In our preliminary static study, a uniaxial loading was
applied to KC1 crystal in addition to a hydrostatic pressure.
Our mein sims are as follows: to investigate how the system evVO-
1ves its configuration +0 reach a instable point after which the
transition may follow; how the height of the free energy barrier
veries with the thermonamic parameters.We will present the results
of the zero temperat&re;case neglecting the harmonic vibrations.
This study will naturelly be extended to including theveffects
of the harmonic vibrations in the cases of the zero and finite
“temperatures. R B

;~W“~~“??hewé§ganizaiieﬁ—cf~this theseswismas,follews;MSeciLQnmz -
discusses some geometrical aspects of the B4 snd B2 structures
concerning the microscopic mechanism of polymorphic transitions
in alkeli halides. In section 7 a brief review of the MD method
will be introduced. In section 4 our static calculation, &5 mel-
+ioned above , will De presented.. Tn +he eoncluding remarks ¥e

will briefiy outline our nev study directions.




and r

It is convenient to gather together here @& number
of geometrical considerations of the Bf and B2 siructures,
which sre utilized throughout the theses, as a starting point
of our discussion. 4 detailed gescription can be found in
textbooks B | ye are dealing with cohesive property of
Alkal helides und various external conditions, both dis=
torted and undisto tions should be discussed.

Some microscopic m
be described in detei

(1) Crystal Structure of BY1 and B2 FPhase

B4 {or B2) structure is composed of two interpenetrating
face-centered cubic (or simple cubic) Bravais lattices. V¥ith
reference to the cube axes the Bi (or B2) structure is composed
of two fcc {or SC) lattices, one for each species of ions,shif=
ted by al$,+,t) relative to one another, as illustirated in Figi.
The fundamentzl translation vectors of the fcc lattice are
:3(:(}5%’9%')9 §2=&(‘},O,%>, —E:)?:&(”}y%’o)y (2.1)

-

—3

amdly

and these of the SC lattice are

araln

=2(1,0,0), 3,=2(0,1,0), &,=a(0,0,1). (2.2)

The reciprocal lattices of the fcc and SC Bravais lattices
attic

are body-centered cubic and simple cubic 1 es respectively.
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Figet1. (a) & lattice cell and (b) a unit cell of

the Bf structure. (¢) 4 unit cell of the B2 structure.
The blackened circle and the continuous circle pr65c“€
the ions of the cell.



tranelation

¥ith reference to the cube axes, thier fundamental
vector are given by
% 27, ¥ 27 % 27 \ SN
a§=a i\“’;‘ggﬁ)f az=__é_~(§*m1ﬁf)9 ajwa {1"f"‘§[’ cel)
andé by
=F oy —F T —¥®_2A 5 s 5
E.i:'"‘*é"(’;gop‘g)s &zz?égst gg)s aj=-é&€},09?}§ (24
respectively. Fig.2 shows the sssociated first Brilloum Zones.
We have indicated on these figures the various symmetry points
and symzetry syes. The notation fellows that of Boucksgerdt,
- . 8 . .
Smoluchowski and W gnerM J, Different structure may be charac-
terigzed by ionic shells with certain shell distance and ccordi-

nation numbers. Table 1 gives the comparision between B1 and

B2 structures.
Tn the table the first line 5ives the nearest neighbor

distances. Denoting ion coordinate by (x,7,2z) in +a units,
note that different type of ions has different parities of
z+y+z Tfor both cases of B1 and B2 structure . In fta units,
x,V,z can be anv integer for B structure; should be simultane-
usly even ér simultaneously odcd numbers for B2 structure.
Tgble 1: Tonic shells of BY and B2 structure
Bf structure B2 structure
Ton Number Distance Ton Kunber Distance
coordinates of ions from(0,0,0) coordinates of ioms TromgO 0,0)
(in +a2 unit) (in +2 unit) (in +a unit) iln a Lnlt,
(1,0,0) 1 (11,1) 8 K
(1,1,0) 12 2 (2,0,0) 6 =
(1,1,2) 8 3 (2,2,9) 12 3
(2,0,0) & 2 (2,2,2) 8 2
(2,1,0) 24 /5 (%,1,1) 24 i3
(2,1,1) 24 3 (2,%,1) 24 157
(2,2,0) 12 2 (3,3,73) 8 %
(2,2,1) 24 3 (4,0,0) 6 33
(2,2,2) g 2z (4,2,0) 24 ANET]
(%,0,0) 6 3 (4,2,2) 24 2/2
(3,1,0) 2 ) (4,4,0) 12 4E
(Z,1,1) 24 I (4,4,2) 24 2J3,
(%,2,0) 24 I (4,4,4) 8 4



I T (b

FiQQE. Brillonin zones for {(a) face-centered cubic
{p) simple cubic latticese.

(2) Reiationship between B1 and B2 structure, a disgeu-
sion on microscope mechanism of transformation from Bt to

“structure.

-}

Sho,jiZ e} poiﬁ%ed out the possibility of a relative
expansion along one of the thyeefold axes for transforming
the B2 lattice to the BY, but did not consider this a realistic
explanation. However this mechanism was illustrated by Buer-
ger P9 | 45 shown in Fig1(b) and (c), the unit all of the B2
structure can be obtained from the unit cell of Bt structure
by a contrection along the (III) axis and ezpasion at right
angles to this axis. This deformation maintains the contact

c
of the siy ions at the face ceniers with the ion at the cube

W)

center,while it brings the two ions on the cube corners in
contact with it. It wes conjectured that the change occurred

c
+ o, G .
by & trigonal lattice of angle 60 which is a fecc laitt

ice;
becomiﬁg & trigonal lattice of zngle 90° which is a simple
cubic lattice. The deformation consistis o; g uniform ceontrace-
tion and a set of 044 type shear strains{ﬁ ’. Hardy and Ean”GE

indicated that B1 structure can be forced to become unstable
for short wave length vibrations in the {(1,0,0) transverse
acoustic branch.

-7 -
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Menory et. air 7J were the first to use single crystals

itio

me y i thod. The existence of definite

orientation of B9 (4,0,0) B2 (1,4,0) in the transition beiween

the BY end B2 structure was repoted by & number ¢f investiga-
50, =22] ( ; [Z1] that i

tors : « Frazser snd Kenmedy* hes propesed that this
I . . - 22

transition is cooperative. Furthermore Watenabe et al +- ] put

rd a transition mechanism, which is expland gs being du
combinetion of two systematic movement ¢f ions: intralayer
arrengement and interlayer translaztion. As shown in Fig 3
is mechanism was supported by the fact that & unirial expan-
sion paralled to cone of the twofald axes in the B2 structure
( or the fourfold sxes in the BY structure) attending the
transition was observed under th he optical microscope.

Recently Bleschko et.algﬁ ] pointed out that in the Bt
and in the BZ siructure two ¢rystallographic planes, i.e. B
(0,0,1) and B2 (1,1,0) are topologically rather similar. Without
changing the cccupation of the lattice site the B1 (0,0,1) plane
can be transformed to the B2 (1,1,0) plane by simply adjusting

RaCi config. CsCl config.

b
P — z\j’;/v-’:
,A»\ !

(&}

FIG. 4, Compsrison of the corresponding planes 001}
of the NeCl end (110} of the CeCl configurstion with top-
olcgically equivelent occupstion. (g} Arrangemeni within
and stecking of two ediscent planes ip the two configurs-
tione. The CsCl type of stacking can be achieved by
S ghifting one plane by & vector of @, 4, 0) in the NaCl
eIl ihe eonfiguration. &) Three-dimensional plot of the two
*' e BIallaype | eonfigurations. The unlt celle ere cir&wn with boid
ipieniel €% pmmogmﬁ:‘a& gensition. lines. The difference in the steclking is indicated by the

) vestor 8,




istances.between the atoms (Fig 4(z)). In the real trans-
on, therefore, an 81(0,0,1) plane can trensform 1o an

,0) plane by resranging the atomic distances in the planes.
B2(4,1,0)

)
n the transformation shows the importance of this correspodence
ce

Y

1
he presence of the crientation relation B1(0,0,1

£ the transformation mechanism, which has been d4i used in
¢

®
o
o
]
B
bto
m
H
=
w0
)

e section 4, is iliustrated in Fig 4. This m
ssed on the following experimental facis:

(a) The transformation is IinhomOgEnecus, i.e. well defiged
B2 inclusions sppear, whereas the B1 matriz is still presentléO{

(p) The occurence of & strong orientaﬁiaﬁ relation between
the two phase, i.€e B1(0,0,1) BZ{?,?,O){ZQJQ

(¢) Phonon frequency anomalies occur for transverse-acoustic
phonons mainly for the T4(0,0,%) branch1202¢

It was proposed that the occurence of collective shift of
sons in the alternative B1(0,0,1) planes described by a trans-
lation (+,%,0) vector, which may be created by & shear transfor-
mation, should influence the phonon frequencies, especially
those of the TA(0,0,%) branch with =z polarization in the (1,1,0)
directione.

Experimental'results show that real mechanism for various
+ransition may be intricate, while systematic theoretical inves-
tigation is till lacking.

As mentioned in the section 1, the mechanism proposed by
Blaschko .et,a2l, coincides in & mechanism based on theoretical
[38]

Parrinello and Rahman pointed out that it is important to

investigion of Parrinello and Rahman

understand the following ‘gecmetrical fact when study the struc-

ture transformestions. As shown in FigS, a body centered tetra-
gonal lezttice with edges i,?,i? is an fec structure and inver-
sely a tetragonal faced centered littice with edges 2, 7,1 is

a bee structure. Moreover, a tetragonal bzsed centered lattice

with edges J?,If,? is a sc structure, if the sguare face is
specified as the base.

Based on the new MD calculation for Bt to B2 transforma-
tion of KCl,’Parrinella and Eahmanﬁjg] have presented a micros-—
copic mechanism of the tyansformation. 4 particle by particle
analysis of the transformation revesls how the B1 toc B2 trans-
formation occurs (Fig.6).



(2!} (b) (¢)

Fig.5. (a) B structure, & body centered tetragonal
1attice with a basis consisting of s ion at the origin
and & oppositely charged ion at the centerT cf & sguare
face; (b) b.c.c. lattice; (¢) B2 structure, & base cen-
tered tetragonal 1gttice with = basis consisting of &
ion at the origion and & Gpp@Slbaly charged ion at the
center of & rectangle face.

Fig.6h shows 2 body-centered tetragonal lattice, lattice
vectors a,b 6, length a,a,f§a respectivelye The atoms are indi-
cated by € - This is an fcc 1attice of e ionse The other

species, shown &8 O, completes the B4 structure.

o T o
R .
o ! |
v i i
? # & i
. ! @ i O Ko
{ . !
O O
e
b o \ b o N
e DN
g H
Fig. é;: petail of rocksalt to cesium chloride found to occur in this calculation.
Thick arrow in A indicates @ dilatation, resgiting in 8. Fine arrows in B indicate
displacements of particies with a common £ direction coordinale, rest slting in the
finsl structure C. A is 2 81 and C a B2 structure.



ilatation of amount /2 in the
e thick arrow in Fig.64.

—
g e

as ated b

. 'h"'t“l') oty =

he result is shown in Fig.éB &,b,¢ become 2°',Db
r f alternate planes in the ¢

Operation7f 2: A move o T direc=
tion as indicated by the fine arrows in Fig.6B. The result is
hown in Fig.6C; the center of the sguare face formed by 2,
ce vy & . An ato
it

Fig.6C shows & simple cubic lattic

-v .

b::lm
Ny
w
ok

l1ike &nd unlike ions together forming a

in Fige 500

(%) The face-centered tetragonal lattice (f,c, t) and
deformed f,c,t, lattice.

The microscopic mechanism of Bf to B2 raaner¢atien
discussed 1éi last subsection implies that *n general cases T.c.C.
lattice will be deformed to be f.c.t lattice or deformed f.c.t
lattice. The basic vectors of crystallographic unit cell are
shown in Fig.7.

(2) The simple tetragonal lattice (s,t).
In retangular coordinate the basic vector for the direct
and reciprocal lattices are given by

-=a€?‘?,0.0}, %ﬁ=a(o,ﬁ2goﬁ T -=a(0,0,7,), (2.5)

¥ i * - )
S=tL (01,0, Bl L (0,07), (2.6)

The dlrect lattice point is eznressed as

—,0,0), ©

m

— E

and B, o =2 5

.
R =m{§?+ééﬁd+m§% -fmi,m ,m?] with MMyl 80Y 1ntegerw; A
general point in the B.Z may be expressed as E~uai+vb +a07
=£u,v,w}, K would be 2 reciprocal lasttice vector if u,v,wv are
all integers. ‘

(b) The face-centered tetragonal lattice (f.c.t).

In rectangular coordinate svsbe“k, the basic wvecter for

the direct and recip rocal lattices are follows:
B,=3(0,A, /), B,=5(,,0.7,), B.=5(7;.71,,0), (2.7)
)*»2 Loy i / { =% 2 . ] —# 2 / | ._;
By= “A 7L = — = L2 Ly, (2.
ﬁ» & % ﬂisﬁz! ﬂz)’ EE 2 ER[ »ﬁz,>, D,j a (ﬂ‘ ,ﬂ;!ﬂzi (2 8

However, it is convenient to express ithe direct and reciprocal

- 1 -
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(a) (b (C)

p—

Pig.7. Schematic representation to show that (a) 2.,
H

nd crystallgraphic unit cell of fec lattice with

"?n
N

m

fe!

—_—

éé |=a and agia idB, it is =z simple cubic

5 spand that of f.c.t lsttice with D] =%,

=My, ?$=?1a, '12rﬂ1 and aT“aELaB, it is a simple

tetragonal; (c) E},Ezsc spand that of deformed f.c.%
— , . g
lattice with {32§ Iz ,} 8 231%ﬂﬁ35‘12 Fllys andiéch,,

e

c?Lc2, but q?#90

h\ \

lattice vector of the f.c.t in terms of he basis wvectors in S.T.

This gives TR =M B,+M B +M.B.=m D, +m b +m'§ =[m , &
m {71 2Tz T3TE 171 272 1772

m,,m.,m., any integers simultsneously or one is a integer and
17723

sW, | with
-«

the other are cdé imtegers divided by €. A genersl point in
¥

Py — «
the B.Z is K= “BQ+? 2;%3l—ub3+vb2+wb7={u,v;wj. K becomes &

(’3
’L;

"rocal lattice vector when vu,v,w are simultanecusly even inte-
gers or simultaneously o0dd integers.
The wvolume of primitive unit cell is

T 2 ’z ~
?\/:.%."'E”Tﬂ /* <509}
¥hen the tgll graphic cell of E1 structure is deformed
to be f.c.t lattw e, the basic vector are '

EE =(0,0,0), g, ==

1 1

(2.10)

— a e i
r't '2' L,ats A#/‘i )9 Q.,t =1,

2 2

p—

each basic vector Ty associates & point charge a4 respecti=-

Jodta

vely. The structure fasctor is

- 12 =




(-2, if u,v,w are simultaneously odd, (2.11)
< 0, otherwis

( e de
In rectangular coordinate systems, ithe basis vector for
the direct and reciprocal lattices are given by

- _ 2

E,=%5N2 cosz(0,1,1),

-y 7y Qs Ey Ay Lpsind) -
g2’2§ﬂ1’??‘ccsz sing), Zlcos; uihz,), (2.12)
7 =&~ 752 jﬁ -—"f iz { qg_c i‘
ﬁ3~2(“?,7?{c082¢51n2), 25&00»2 ulﬁzj),

g*zg’!’é - ,j. ‘/72‘ - J—E, Q}}

1 a ﬂ1’ 2n,cos%’ 271,c085" "

Te 2l o1 =] /2 SN
Fom e - - =z
A3="% ( .t an Sini’2ﬂ sinZ) (2.132)

1 2 2 2
-E*__g_z €1 FZT "“JZ —)
a7’ 21 51nf’27As;n e

Note that if ¢ =90°, i.e. cosf=0, (2.12) and (2.13) would coin-
cide in equation (2,7) and (2.8) respectively: and if7L s =o=1
and cosf=0, (2.12) and (2.13) become equation (2.1) and (2 3)
respectively. It is convenient to express the direct and recip-
rocal lattice vector of the deformed f.c.t in terms of the basis

— A s PR Y BT
vectors CT’C2’03 and 31’32*93 in deformed s.t. as shown in
Fig.7(c), where

—

Cﬁ=(;ﬂ1a; 0,0,
2, ¢ ¢ /2 A AR
+sint), 7l.a s (cost-si .14
2 ={0, Npa 5 (cosy n7 )y 7,875 (bODC inz)), (2.44)
C.=(0 2 (cost-sind l,a—% (cosztsind)
2 ( ﬁza (c 087~ 2}, P (co S+ei 2,},
and
CT: o { TL?EU’G')’
ner (5 L& ' .
S*em 2 (0 cos? +sind  -(cos? -sznf»)} (2.15)
-~ ~ : g & = i .
z 85511’&7" /iz § ﬂ? §
';*ﬂgﬂ;iz;_go ~{cosZ -sinf ) cos? +sini )
v?-. - ” Lo
2 alsinf? 7o s 7o :
with
— {
Ci'Cj—gﬁ ijt {29?6}

- 47 -




Thi i i3 q T T F 4m e < ‘ ‘i with
This gives Rm~m?ﬁ€+M2A2+A3m3~m§Ci?mzcg m?cw im §m2,
B, sHy, 0y &TE simultanecusly integer or one is a zﬂtege* and
the other two zre odd integers divided by two. 4 genersl point
) N e S e T
in the B.Z. is E=UL,+VA +WA,=ul +VC *WC, = U, ¥ w}. If o, v,w
are simulteneocusly even or simultaneously odd integers, then
E is a reciprocsl lattice vector.
The volume of primitive unit cell is
4 2 ’zv y =
?:1?}-4728/31'& & {-{g?[’}
% &
The basic vectors in this case are
?t =(0,0,0), 9y ==1% o
1 1 (2.18)
— &g/ 7 = £
¥, == 2A.cost 2A,cos%) =
.t2 d‘; /’Ljsf o 25 ¢ »'712 (= d," q’tz 1 °
If we express the reciprocal lattice vector by K
K—EA1*V£ +WA7
< §
the structure ;act is
.f‘{—a
-iK-r
K
S(K)= t q.e 1
§ =2, if U+V+V¥W is odd integer, {z.19)
0, otherwvisee.

To enclose this subsection we show that the configuration
corresponding to Fig.6B is a deformed f.c.t lattice specified
by parameters ﬁ.,,ﬂz and cos® , with;ﬂ2=15224?11,cos? 0.2322,
: i Oe ¢ . i .
ice. $=70.5% This configuration generalll y can be obtained
by simutaneously dilation on (0,1,4) direction and suppression

1,0,0) direction.
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fethod
:

re molecular dynamics

o
s have become wicdely used techni

nte Carlo (MC) caleculati ues
for the study of condensed systems., Thier importance resis lar-
gely on the fact that they provide essentially exsct.,guasiezpe~-
rimental dats on well=de? t is possibl

the the advantiage of allowing the study of time-ce
omensa. Our concern will be only with MD method. Tke salient fea-
tures of the ¥D technique was outlined in the lectures given by
Rah$an.I5ﬂ

The first molecular dvnaM1cs calculation were made by Alder
and Wainwrlght[‘d’ﬁd] The apul%ﬁatlon of MD to realistic sys
was first described by Rahman LS“L6J and was extended by a large

[57=[60]

number of investigators Even though the largest amount

»

of effort nas’gone into the study of fluids, considerzble work
on perfect solids at high temperaturehas alsoc been done. A
detiled account of work on molten alkali halides was given by
Sangster and Dixon[éija It should be remarked here that a study
of the tranditional MD technique, which has been confined 1o &
perfect and prefized crystalline arrangement of the atoms.

It hes now bedome possible 1o study this structure change B
by computer simulation. Recent work of Parrinellc and Ra hmaﬁzfﬁ
has show that by using an zppropriate Lagrangion one can sei up
g molecular dyngmics calculation in which both the volume and
the shape of the periadiﬂally repeating cell change with time

217 the vtility of these new dynamical

They have demonsirat ﬂ&"
eguation by applying them to simple monatomic systems and showed
if =& sygbem of Lennard-Jones atoms is given & bec structure then
under suitable density, temperaziure conditions the dynamicel
equations themselver mske the system change its struciur
close packed one, Applying this new ¥MD method to poly
transitions in single ﬁryszalsi“’j showed that this
7  pe:timent to the ﬁisaassign the behavious of solids unt
"~ the combined effects of external st*ess and of temperature.
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(1) & Brief Survey on Tranditional MD Method.

Tn the MD simulstion the Newtonian egqustion of motion of
a set of N particle are solved numerically. The particles inte-
ract through a potential Vy(r,,-c---c,ry) which, in most inves-
tigations is taken to be

V=2 Z Plr, ) (=
A F i3 .

- —t — ot "““A = - o]
where ?ij [T, 3{ ir, rii and T, is the coordinates of the

. el i

particie i. Rewbon*s equations are then

mi'-?i > - “ 'f"i,.lj, i=1,2,-e, N, (7.2)

#iT13%Ts 3

‘where my is the mass of particle i.

To sclve these equation one needs to specify initisl pesi-
tions and velocities of all the particles. The problem is to
convert the differential equations into a set of difference
64,57 for the

numerical integrations. The initial values for the velocities

equation by using a suitably chosen algorithm

of the E particles arelchosen to be subjected to the conatraint
on the totzl momentum

I\ :—& E%E
Z m-—;r~§_Q$ (%)
i=1 - -

The initisl positions are chosen to be on a regular array of
points of suituble geometry or as above with suitubly rando
small displacements, avoiding situations of extremely

bt

potentiasl energye.
In simulating 2 bulk system the common praciice is to
periodic baun&avv conditions which have the merit of remov

M
=]
O

- 16 -




the surface effects in 8 mathematically wel
These zre obiained by periodically re n
volume fL containing the N particles by suita
Periodic boundary conditions obvicusly giv

the N particles are slways ¢

te

o
without loss of generality every pe
at the "center". In other wo
) extends over the infinite svstem genera
oundary conditions.
The integration of the Eq(7,2,) then
particles for subsequent (and

ot
)
=
[0}
<
O
-
<
®
9]
}t
—}-
[ 284
=
)
]
C«{_
®
<
M
st
ot
=
Y
ot
]
<
n
m
HooW
ot QO D
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in its dynamical and siruciure prope
. . .
rages of interest are calculated from T.(t).and T.
as temporal averages over the
phase space. . z
A»::‘Lim_——f A(I‘T \‘I}) peanad I’N('E) (Z) L prTxéz}E)dtg (305:}
T ) _
Ls a consequence of V, being = ;unctlon of Ty onlv, the solu-
tion of Eq{(?.2) conserves the total energy E of the system:

E= 4,7 NkT+ V), =const. (7.6)
This conversation condition can be used as a cr¢u§r1 for jud-
ging the accuracy of the trajectories generated JTF g the sta-
tistical ensemble generated in a conventional MD calculation is
a sE,N) ensemble or & microcaronical ensemble.

L detziled survey on the MD technigue was givezm by Rahman.
Some of physical properties {(of molten =zlkali hilides) giving
e

definitions and indicating the metrods of ¥D calculation were
. - - s 61l .
listed by Sangste rd ﬁzxow.hjhere also .discussi cn perfor-

r the energy and force
m

" )
. 67]

Singer's method was reviewed by Rehman and Vashientain detials,

The restriction that the MD cell be kept constant ir vol-
ume and in shape severely restricts the applicability of therme-
thod to problems involving crystal ructure transformation. In
ord t rcome this difficulty 4n “sent’}bave presented a2

e
n

r changes in volume of the MD cell but not in

o)
crystal structure itransformaetions are inhibited




(2) New Molecular Dynamics ¥ethog. .
For a gtudy of the structurel phase transformztions

)
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In this new ¥D method a new Lagrangian formulsztion is in-
n be used to make molecular dynamical celeculaticr
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gding to dynamical eguations given by this Lagragiin,
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¥D technique is well suited to the study of structurel

nsformations in soligds under external stress and at finite

o
H
o

temperature.
A time-dependent metric tensor was introduced, it allows the
volume and the shape of the YD cell 1o vary with time,

Let the edges of the ¥MD cell be‘g;g,and‘é (in a spaced
fizedcoordinate system), and let them be time depepdent,Perigw
dically repeating ”D cells will fill up &ll Space. Let h be the
matrix formed byiE,T cfg} aeth~a,bxc is the volume of the MD
cell contai ning N particiese The position of particle i will he
ru-féy b+jfc hE. i whereggg has components (; ,ﬁ ,§l) each -oirg

-
fr@m 0 to 7. Obvzously r.= slei, where G=h'h is the metric ten=-

sor, the tra anspose being dencted by a prime, ..
e
(4).The case when only hydrostatic pressure is applied
In Ref(77) variability in the shape and size of the ¥

cell was obtaineg as follows: the “Usval set of =k dyvnzmical va-

rieble, that degeribe +he positions of the N particies,was aug-
ted by the nire components of h., The time evoluation of the

Zi+9 variables was then obtained from the Lagrangian

I R , o
--i ...;' P ‘3 . - & & o ]
“Eigimisigsi“ iz 3**1%(" i /tzWirh'h ~Fr (37)
where P is the hyd e

‘drostatic pressure. W has dimerisions of mass, -
“he lagrangian equations of motion can be written down :
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bid? =f ,é'! (=2 = e ;L . feesa T (z.8)
== m, (B, V(5. -5,)-6"" G5, i=1,-= .
=74y ms 13)‘ i e ’
Wh=(7l - P)o (Z«9)
Here §(r) is pair potential;The matrix &
a "f’ > —d e ¥ '
o =fht 7=itmc, CAE, af{Sf (z 10)

cerrieg InfOrmation concerning the size and crientation of the

e‘!“
tion (2¢9), using- the usual dyadic notation,

MD cell. In egua
ot °
N !
and writing Vizgsl
JLit= 2 VY,-2 = (&'/r. 7. .7, 2414
= 1 Ti'ii i jei ijftigtid (ze11)

When h=const.,i.e,wvhen the ¥D cell is time independent,
G=0 and "Eq(?t8) becomes identical to the Newton eguation in the
trenditional MD method, i.e,Eq(%e2).

Note that the Lagrangian in Eq(3.7) generates a (P,H,N)

]

ensemble,and here

H=E+F (ze12)
B= Zdn,ve + & 2 F(r.. Te 17
STHTR Y i ji*i*"{ 1;}) (Ze17)
(B). The case when a general siress is applied
In order to make above framwork to extend to the case
when a'generai stress is epplied , a reference state was intro-
[
auceﬁé/nghig ference state of the system can defined by its

i
matirixz !} ; rolume =fh . s : .
B =0 - JQO ’-Gf.iﬁ this reference state a point in
Spacte given by the coordinate vector s is at the position
el ot -
Lhomogeneous distortion of the gystem changes by to h,moving
— — !
r~ 10 T,¥here
(&
- -t . V}.—-—t
' T = bS= nh. T, (Ze15)
giving the displacement u due %o the stortic
o -
U=7 - T, =(hh>'o)7
0 . (z.16)
Followin Landau and szshzzﬁejtc define the strein
and using %, To denote the corponents of E%




1 D J%QW ¢ (Z.47)
S PR Car T ’

The expression of é,has been given by Parrinelloc zndé Hehkman as

(w1

-4 - ;-
€ =H(u 7 eng" - 1) (z-18)
Having identified the strain & ,an expressicn for the ela=
gtic energj;vel,cah be now written.If £ is the external siress
and p the hydrostatic pressure;
p o . = 3
Vea=p(=11,) +f1,Tr(8 -pl& (zi9)

[
(@]
Ifx
jon
ot

seneralize the Lagrangian of Eq(Z«7),we nee o
tute V of Eq(7¢19) in place of ga,zn Bq{7«7) forf .This gives
e new Lagrangiana§s, '

L, =L4rrZe (z.20)

-

where the symmetric tepsovzi is related to the stress S:

Z=x3'(3 - p)ng R (2
n

g Eq(Z%<20) to write the Lagrangian equations of mo-

AN

21)

s
tion we get Eq(7.8) as before but Eg(3:9) is now replaced by

Z.22)

"

Vo= (I-plg-b&

t is easy to see that , analogous to Eq(%.12) the Lagran-
gives rise to a (S, Ssu) ensemble where the generalized

H =5 =z e
2, =B + Vel (7e27)

where E is g-iven by (343) and Veq BY Eq(Z.19).
L brief comparison between the t

e
technigues is g iven in the following table.

Tranditional MD New MD
Conistant cell”™ volume Variable cell shape snd cell
volume
Number of particles constant Humber of particles constant
Density constant,pressure Pressure constart, density
varies with time varies with time
tnergy E=constant Enthalpy H=?+Vel=caﬁstant
3F variasbles ZE+S variables




The additional 9 dynamical variables describe the time
dependence of the shape of the MD cell .The change in shape of
the YD cell is determined by difference between inter nal (kine
tic + potential) stress tensor and the externally applied stress,

IVe A Static Study
(1).Brief Description of Potassium Chloride Crystal
Before going to study our main subject, the unixial app-
lied stress (in addition to isotropic pressure ) induced Bt to
B2 transformation in EKCl1 at zero temperaturey;it is convenient to
gzqe 2 short description of XC1 crystal, This description would

ake of

induced transformation on our modefl will be discussed here.
experimental fact that the alkali

in the BY structure in standart thermodynamic conditions,

our modef of discussion clear. Some aspect isotropic pres-

m
sure

=

it is =& halides crys-—
tellize

with the exception of cessium chloride,bromide gnd iodide,which

crystallize in the B2 structure.Theoretically discussion of the
tv

tual structure is determined by the

relative stabili between different structure shows that the ac-

£e

Gibbs free energy

¢ =T+ PV - TS (4e¢1)
the structure, which is thermodynamically the most stable,has the
lowest free energv.At zero pressure and the absolute zero tempe-
rature a2 solid crvstallizes in the structure with the lowest
energy U,
The static energy per unit cell,u=U/N, is given by
. _ Y o ~ 2 -5
up =68, o(a/2) + 6%, ([Za/2) +6&..([2a/2) -7.4952¢%/a (4.2)
for the B1 structure,and
vy,=8%, . ([72/2)+78,  (2) +3%,.(a) +6%,, ([2a) +6Z, ([Za)
‘u2.075é62fa (4.7)
for the B2 structure,where a is the corresponding lattice cons-
tant and e is the electronic ﬂharg e.In cur studies we use the
o 2 - = 3 (| -}
parameterized Gordon-¥im potential lﬁ?iuklch takes following

-21
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Table. (4:1)

ion pair B 53@‘ ?,}32 *—‘\‘ Cg':z 634
XTC1T =1 -=84,.75 97.07 -11.77 - 716
BT s g=2 -828. 4 7422, -144 .1 -18.81
c17CL” Y 3E- -85,21 60,85 ~7.061 ~0.710

ion pair B, B.. B.- B,dmww
77017 5=t 1.5573? 1;4%5 1,220 og§?7
0 G 2.586 2,477 1,942 1,877
Ci7Cc17y j=-7 1.799 1.210 0.955 0.756

b e
=

Fere the atomic units with energy in Harirees azre used.

Using +the potentizl {(4.4),in writting (4:2) ang (4.7)
three more assumptions have been made:{a) fThe crvstals are com-
rosed of the free ions; (b) The interzetions of ions are pair-
wise additive:;(c) The short-range interactions for B1 phase zre
restricted to first and second nearest neighbors,while in the

E2 phase first-,second- and third-nearest-neighbors are consgi-
dered.

-

¥Minimizing Eq(4.2) and Eg(4.7?) with respect to lattice
constant we got the egquilibriim lattice constant and the static
energy per unit cell for E1 and B2 structure at zero temperature
and zero pressure respectively. The results are given in-the

teble (4.2)

Table. (4.2) -
i I Bt structure B2 structure
Lattice constant a | 11.7%z.u.=5.994A 6.76%2.u.=7.5824
Lettice energy u -.2875a.u. -.28552 .1,
g =180 9.




W

Wote that the energy ﬁifferénce petween “two phases &s 1.26

Kesl /mole,less than one percent of the 1attice energy itself. =

+ 0%°K the Gibbs frce energies of two phases ( per pair)

are
_ s 1 3 .
Ggﬁ-uﬁ1(r)'+§r P {4.5)
and
=
Gp, = upy(z') * TP (4.6)

where T and r' are the 1attice constant in these phases.
A isotropie pressure induced phase transition is marked
by the identity of the Gibbs free energy of the %woc phases:

I T . I (4.7

ohis gives the pressure nesded for triggering the transitionch,
i‘e,PC=1?.4Kbar; and 631(Pc}=GBZ(PC)=-€71,SSKoal/ﬁole. Comparing
i e P =0)=0 this pives  G=0 - =0)=
with JBT(F" ) uBi(aB?},yma gives & UB‘%(’PC) GBﬁ(P 0}=8,77%
Kcal /mole, which is approximatelly egual to the work to be done
in order to trigger the tramnsition <A schematical representation

o

of the zbove discussions are given in the Fig.(4.1)

f‘@{Hartreefunit*cell) ////

- 2875

s, P(¥bar)

Fig. (4.1) & schematical representation of the pressure
"~ induced Bi to B2 transition; the points a and b in-
dicate the local minimum energy for the Bi and B2

phases respectively.




»

At t‘:s 'trans;tlan poznt 'bhe lattice zmns%ant of K L for

the BY and B2 structures are decseaﬂea to 5. 91& and 3.543£}
respectively. Notice that the volume e‘f“ the unit cell for Bi
and B2 structure are VB‘}""W3§ and ’%’Bﬁ,-aBg respectively., This
cives~ » AY/V=1% approximately,i.e,the relative volume change
of smount of 1% can be found in the transition. -

The eypression for the elastic constants can be obtained
by comparing the long~-wavelength 1imit of the dynamical matrﬁy

with the corresponding results from the elasticity theory 22)
For the B1 structure this yields
- ,w'— - . ez i »-1VA-:‘§¥I ,,,,, . ) " - 7 7‘%1[7y‘w~ 7 e
: s O L - .
gﬁ 4. 2780 - * T ( AT «:»‘?EHH L,
/ ’
ul—rzgﬁgﬁ +E, N (2.8)
= ses-f 4+ L (=L _ 4 1(F_ ’
C,, = 0.0565 = - ( = %’az + 2Ly +§§‘é
5 (3 ’
b0 s A (LT (T LB ).
Chy = 0679035 + (3 g +3(Ep + £,,)
2,3 = \
z%gfﬁ + &5, ) (4.10)

where the derivatives of the ?p patential are evaluated at

ot 3 + =1 - : = - o

r,=ta, and the derivatives of Z,, and gy &t ro=v2 /2 .Since

the eypressions give: the elastic behavior of the stat lattice

as a function of lattice constant we shall refer to them as a
astic constants .

C,, = 5.714; C,, = 0.8914; C,, = 0.8914 . (4.11)

[
]

the units of 10 'aynes/cm® .Note that the relation of C, o=
L4 is satisfied .

©

Teble. (4.'.’) gives some experimental data for the KC1 cry-
stal 2t room temperature and st atmespheric pressure.



A X fﬁgvib ﬁv ?C
unit A ?O‘izcmzdyne-? fﬁ'?zerg iG“gserg Xbar
value| 6.294 5.77% G.254 8.04 12

K ‘sp/T 2T’y K'21p e
unit 10" 14, gdvne 1oﬁddeg”1 Keal /mole
value =0 0.0574 2.5 165.8

1§ere ‘A"W*'ls uhe latbzﬂe ccnkta ‘Aé = e
Cv is the heat capacity at constant volume ;{The coef-
ficient of volum thermal erxypasion eguals to 11.01X

?0'4deg7§,)

wvib is the vibrational energy ;

X is the iscthermal compressibility ’

PC is the trznsition pressure

De is the cohesive BEE“gV room temperature.{The co-
hesiw

=1

e energy at O °% is 150.5 ¥cal /mole) .

K11 these data are taken from Ref.(8) .

(2). Potassim Chloride Crystal under uniaxial tensile
loading,

Recently Parrinello and Ra nmaﬁ<? )have presented g micro-
scopic mechanism of KC1 transformln& from the B! fo the B2 siru-
cture, as described in section 2 ,The process of the transforma=-
tion consists of itwo steps. During the firsti step the B! (fcc)
lattice contineously modifies its configuratien and finglly re-
aches 'a deformed fct lattice characterized by parame?ers4ﬁ2 =
?.42ﬁ7ﬁ ; cosd = 0.333% ,i,e,f= 70.52° ,vhe second step comple-

€d by a collective ion jumps :i.e,ions of alternate planes in
the (100) direction collectively jump slong the (0,-1,%1) direc—

tion.The jump can be described by & translation vecter(o,-%;g)ag

- 25 -
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unit cell of uvndistorted snd distorted

configurations are ’
Fa- | (4.20)
Jrz.o" Ea 3 1
- * . =z -~
=374 7, sin9 a- (4.50)2
The strain tensor € is given by
B
5 O
E = “z - 4 4 2 A
- 0 5 *é{ccscg -+) I (4.214)
2 o X - i
0 ﬂq(CGs‘% ~1) -5~é-- j
The erternsl stress tensor S is
/ 0 0 0
Q -~ k] -
é_ . 1
\ 0 2555 7555 |

i
The Eg (4.19) can be obtained by substituting Eq.(4.20),(2.21)
and (4.22) into the Eg.(4.19).

For a fizxed externzly applied stress,we minimize the G
in Bg(4.17%) with respect to the configuration parametersfﬂhJﬂL

and cos?ﬁwe get the configuration characterized b jh,ﬁa)casgf
/
¢

[

n

ju}

local minimum Gibbs free energy.Then the configuraticnfii
g |

e, cos{ﬁis the relative stable configuration under the cor-
responding ©xternal stress.Substituting the configuration para

e Y

o =, =t . - . ; .
ﬁﬁﬁﬁﬂﬂiﬁtG the free energy {(now is the lattice energv)
[ [

tep ,repeate the above procedures we ecan fol-
in which the system ‘gvolves its configurations.

order to monitor the instability of each configura-
ed , we set up a dynamical matrix depending on
tion parameters fﬁqlﬁ;}cch§.The general expresion

T the dynamical matrix of an ionic crystel with pairwise

o orces are given in Marsdudin et.alg?Q}Diaéona-

izing the dynamical matriy for a wave vector g ,we get the

freguencies for that q.

.

8 «

!
N




W= 0 (k=1, «°=== =, 70) (4.24)
as the microscopic stsbility condition. & purely imaginary fre~
guency of vibrations implies that & normal mode of vibration
would grow exponentially either in the pasl OT 1n the future,
2 1€ 3 1

sround the equilibrinm conti

(B). FHumerical methor and results.

Opvicusly minimizing Bg.(4.1%) can not be d

o
ticellv.Our numerical method is simply evaluate Eq.l4.17

entlv large sumber of configurations specifi

7q/ﬁ¢pos$§for cach externaly epplied stress.

‘-'5 4y

)

Hoow

0]

[

)

4

0]
e et

figurations can b€ carefully chosen around & center configura="
o hich ean be predicted by elastic theery for small st
stimzted by the last step of calculation.Then for

s

e

c iguration we get a value of G; Among those values

the lowest one can be taken as minimum of G approximaitlveﬂb«
i 1

o

viously the sccurracy depends on +hat how fine the mesh of
the configuration space will be.

Qur procedures are &S follows: Applying tensile uni-
ayial loading along (0,1,1) direction describecd in Eql4.22),
in addition to a certain isotropic pressure P. First we fixed

the value of P,the%;aised the tensile load from 0 to S
.t

i
[}

[

ugh & series of smail intermediate steps &t 32

P
2AS,. ., +v+-+2 oIn this éalculatienqA822=z.9ih5ar& Here S
i of 8 5 ,under this value of appli

e
ed lattice becomes insteble.Repeat

stress distor ng above Pro-
cedures for each velue of ng we can follow the path in which
5 I
he system modifies its configuration to reach & instable

rder to look: - for the roles of the zdditionally
ot ropic pressure,for esch value of P we repeated the
edures. In the present woxk the input data of F

re P =0, 12E¥bar and 44Kbar respectivelye.

The results are summarized in tables (4,4)-(4£.9) .

= 20 -



‘?&hiS;»{&'ﬁ>4

sotropic pressure P=0. A - -
Tgpp ] =l g2 g0s® - —EMAD S TV
g 000000 | 1.0000 i.0000 90.0000 . TT.3peasl  DED986 -.287460 _
T ..0pogig L9992 3.0025 0160 —.308002 20560 _—.ZBIE4L
-_gggagg - .9983  1.00%7 D330 “N:ﬁ3075f3 ,¢“1§20}37 -.287382
‘&99930-,f@€9?9‘,; 9085  .D530  -.3p6871 - LD19615 TL.P87256
 -.000040 | .9956 1 L0115 LOT00 .3@53&@ e} -
;w,bwcvﬁa_ 9940 1.0155 ~ .UBEO —.305532 65
-.p0po60 } .9920 1. gge0 L1100 —.394&39 | B
-.00pQUTO | L9898 1.0850 -1300 303676 917511 -.2B616%
-.poooBo | .8876 1.0305  .1480 - 3&2@@: L016911  -.285730
—»aseﬁeﬁ" .9p48  1.0370 1700 - 301424 L016284 —.2B5130
00p100 | .9BIZ 1.0455 ,mffg%ﬁwm 1399923 .0p15599  -.284324
. T.oppi1i0 ] .9T6B 1.0565  EZ4D %y?§0?_»ww~§%%§$17?¥;l§%§§%;
m-,QQGEEG 9713 1.0716 2540 -.295651 g 52160
j-,gﬂﬁijﬁ ogb24 1.0%88 Toeegy  ~L29IFIETT = i EEG2
-. 0001311 9608 1. 1050 “:3650 , —62§1i27 .013088  -.278039
_.%F0gpizz] .9576 1.1ibEL . L3200 3@82?j:f”:§€?9§2”‘11 235844
Table. (4.5)
otropic pressure rp=12 ¥bar. '
£22 i =l 14 cos! EMAD EY E
5 G00000 | 1-0000 1.0800 FTioo0  -.312036  .GESTTE - 287158
. opooipi 5994 1.0018 L0160  -.212607 L0p5423 425?3
- 0UOOZY | G986 1.004s L0360 -.312113 L2494 T 287171
C.o0p0301 .9%76 1.0066 L0560 -.3119636 ;:jy2é536 —2EBT10D
~.o000a0 1 .9964 1.0090 L0760  -.310999 0R4016 _,1:zg eB4
C.opopsp | <8950 1.0G126 .p960 -.310387 023538 S 286808
-.000060 9935 1.0:160 .1120 - 309635 023005 ~,256£3&
-.p600701 9916 1.9200 ‘1360  -.308733  -028487 -, 2842586 .
- 000 0B0 gg%6 1.[pE&d L1560 -.307784 D21 858 -.283928
- eo,s;a L9874 1.0B2%4 1760 -.308727 LD21228  —s28%499
_-.p00i00F 9840 1.0356 L2000  -.305419 ”»,.§2&532V”v«§28%85?
i f~;gyg 197 .9B20 1-0420 Tiz00  -.304137 . 019867 ~-.28427
-.g6c120 | .8786 1.9500 L2440  -.302582 0191587 -‘;53*;5
_ 5501301 .DTas 1.0604 L2720 —.300642 Lpi1838e  -.282257
"EMAD £V E
T 322031  -037867. ﬂzsénzé
=-.321777 L037185  -.2BabiR
efﬁziéﬁz_pAwfs3é?§1 _ -.EB4B3T
..320976 =0364D3 ~.284833
= 326’354 L . s{I}ESés . -'ni&ﬁ‘?%i?
V,f,gz§5§? L 038297 _ =L 2Ba360
. 3188%4 03474 ,,._sazzf
,J;‘%e L036110 2 -.2B3ETY
935 i ig‘? . ,&3351 Wg—_;g_ﬁg%?‘%
~.316597 Tp33p19 - -.283378
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iable. (ﬁ;f J
sotropic pressure P=C. )
-842 T4 ’f‘a2 La To1 ToZ Lo

(0,-1,1)(0,1,1) (1,0,0) (0,=1,1) (0,1,1) 41,0,0)
500000 7RG T.F756  2.-000 Z.1790 71290 ,euf S
0.00004% | 1.7726 1.,4049 z, 7260 7906’ %, 1076 ., 0794
0.00002 | 1.2959 1.4457 7.2281 2.986 z.,0796 =,0748
0.00007 | 1.2522 1,4975 T,.7564 2¢89?& z.0788 72,0684
0.00004 | 1.2175 15777 TS c.8z4é Z.,0012 7.062?
0.00005 | 1.172¢€ 1.5771 22,4018 . 7487 2.9478 2.057%5%
0. Ou@C& 1.1194 1.62892 24770 2.6109 2.8804 %, 0427
0.000 1.06%4 1.6772 7., 4687 2.50?7 2.807%6 77,0299
ogéOOOS 1.0272 1.72%2 z,.507% 2.7896 2. 7177 0150
0.00009 | 0.9618 1.777% 7.5502 2.2622 2.6077 2.9962
0.00040 | 0. 8892 1.8748 Z. 6122 2. 1088 2. 4640 g701
0.00011 | 0.7870 1.90149 Z, 6880 1,8277 2.276S 2.9746
0.000192 | 0,6682 1.9787 Z,7882 1.6981 2.0477 2.8827
0,00017 | 0.4281 2.087¢ 2,9557 17477 1.4842 2.7879
0.000474 0.7716 2.1171 77,9856 1.2707 1.761S 2.7609
0.000172 0.2269 2.1502 4,0486 1.,1702 1. 1474 2.7187

Table. (4.8)

Tsotropic pressure P=12 Kbar.

-372 Fa i Ta?’ La To1 To? Lo
0.0000C0 1.7185 1.7185 Z,6769 T 4425 T L4225 72,0958
0.00001 1.,2802 i.,7°588 7, 6467 . 7785 R LT27 Z,0928
Q. OOOOa 1.2747 1.,4087 Z,.6625 3.2926 . 4114 Z.0887%
6.00007 1, 1805 1.4576 Z, 6748 . 2160 7.7975 77,0846
0.00004 1,1284 1.5068 7 ,.6941 3 1256 z,7658 2.0792
0, 00005 1.0777 1,552 21174 2. 0772 "L ETEE2 . 07%4
0.0GGOé $.0285 1.5850 Z,.7406 2.9900 Z,2854 ;.0665
0.00007 O.?&dé 1.6524 2, 7748 2.8417 Z,275¢6 7, 0579
0.00008 0.8892 11,7040 Z,.8092 2.73%60 Z. 1707 7 L0487
0.00009 0.8187 1. 7500 *.8472 2.6274 Z.0926 7.0762
0.00010 C.7221 1.8087 7.8965 2.4909 2.9978 ?.0206
0.00011 0.6742 1.857¢ 7,9425 2.7660 Z2.88%5 77,0075
o 09?42 0.4949 1,9461 4,0046 2.2185 2.7489 E.JBSO
0.,00047 0.2480 1.9875 4.0826 2.0417 2.5684 2.980¢6

Teble. (4.9)
Isotropic pressure P=44 ¥baTe
-322 Ta Ta? La Ta4 To2 Lo

0.00CC0 i.177 1177 4.7%=0 4,085 4,085 7,069
0.00001 1,087 1.247 4,740 z.,098 4.101 7,068
0.00002 1,024 1.705 4,751 7,816 4,111 7,068
¢.00007 0.978 1771 4,779 7,829 4,124 7. 068
0.00004 0.845 1,477 4,779 7,772 4,121 7,067
0. 00005 0.751 1,496 4,400 z,672 4.105 7,066
@ 00006 0.628 1.558 4,426 2,529 4,091 z, 064

00007 0,494 1.616 4,451 T A22 4,058 2,062
O.Q?OOB 0.%72% 1.668 4,480 .72 4,021 = 060
0.000085] 0.477 1,698 4,495 7,267 4,005 7,058

The units in table (é 1 )=(4.9) are as follows : -

1. Energy in unit of Hartreg per cell.
2. Freguency in unit of 108 Hg,
=, Siress in unit of 0.2942 10° Fbar



The notstions used in tables (4.4)--(4.6) are as follows:
e evternal stress along (011 dgirection; A 7,,c08¢ &s
e configurational parameters with reference to the

S.. is Tl
o2 ~ 7

ussual =&

reference state.At P=0,as mentioned before, the reference state

t+tice with lattice constant a=11.333.u.;

et

b

H

a
¥hern the only hydrostatic pressure P,P#0,arplied,the crystal
bs i t e

i.e,a fee lattic tice

¥bar the lattice constant decreases
aéz?1,‘68 a.u. and a2= 0.851 z2.u. respectively.In the ¢
P+0,we take this contracted perfect Icc latiice as & Te
state. EVMAD is Madlung energy; EV is the short range part en-
erzyv. B is the free energy (now is lattice energy),i.e,sum of
EMAD and EV‘”Eéch'row in the table corresponds to one confi-
guration. The coniiguration in the last row is very close to
the instable point.From the table (4.4)--(4.6) we can see how

the configuration and lattice energy vary with the external

The tables (4.7)--(4.9) show how the freguencies of the
various branches of (4,0,0) zone boundary phonon vary with
the external stiress.The titles of the six columns,i.e. Ta,la,

3

t

Torend LO, mean the freguencies of transverse acoustic,longi-
tudinal ascoustic,transverse optical and longitudinal optical
modes respectively.%he polarizaticon vectors are indicated un-
der the each title. Note that the freguency of a transverse
acoustic mode with polarization vector in (0O,~1,1) direction
at the last row of each table is very close 1o zero.

m the numerical results we come to the conclusions th
2). The numerical results agree with the elastic theory in
T

strein~stress relestion for small stress.In the case

‘,2 and 055 we can .evaluate the correspondent strzins
K 8 4, 0
i¢ theorv “:

’s o
Loy =38,57(Cy + 5 - 262,70, ) (4.25)
z -~

tress ,knowing the externasl stress and ithe elastic con-



081 . /
Hvdrostatic pressure F=0 /
07
061
05 T
041
07}
<021
LO01k
0 : £ s i s £ i { ! { : { 5 b 35,
2 4 6 8 10 12 14 €2
Fig. (4.2) A comparision numerical results with the &lg-
stic theory.the curve (az) and (b) are the plots of
tabvle (4.4) and the Eq (4.25) respectively.Here 82”
) - u é
is in unit of Z2.94Kbar.
and
~ -y PN A / - o~
Cos§ =28,,/(C, A7) (4.27
On the other hand from the our results we can geti sirains
ag follows:
& - A -~
é::f:\? - /52- 4‘ {40&5}
and
= 7/ -
Z,, = 7= 1
T b g L ™ [ = . 3 » o
The table (4.10) will give numerical coparison for some
mall stireses.




i
o
4
W]
ot

he wvalues of C, 36?

by Ba. {4.11).

and C£4 tn Eg {4.25)~(4,273 are given

322 éyv éyy éxy Exx cos¢ cosg
1 0025 . 0027 | .0008 00077 016 016
Z <0051 0047 | 0017 0015 LO77 077
z . 0085 0070 | .0C70 00z2 057 050
4. 0115 L0097 i.OOﬂA . 0029 .070 . 0865

Ls the ewternal stress increases the deviation from the
relation become largér ané larger,and Tfinally bIbW‘up
he slightly increasing the stress.The system is going
ch a instable point. ‘

omparising the last rows of table (4.4)={(4.6),0ne czn
t the higher adéitionally applied hydrestatic pressure

Y oomax

t
the less B system needed to trigger the transition.¥ore-
the pressure would suppress the free energy barrier,we

will denote it as AE.A comparison is given in the table (4,11).

Table .(4.11)

? K. ; S ﬁa 1K ) AE
(¥bar) pomay (2+94Kbar) AE(Kcal/mole)
o > 17,7 6.69
1 z 17 7.26
44 = 8.5 2.56
c).4 discussion on phonon behaviours:
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o
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-
5N

tie,{(1,0,07,

v e ous
one boundary phoncn with polarigation vector in
¢l

ezses with the increase
f the evternal stiress.iAnd the SDEJ%? depends on
the additiorally appli€d hyérostatic pressure;the
larger pressure ,the less bEZmay .

reguencies depend

the configuratior parameters 7, 7l.,C08 ,whern a generral
rese is aprlied(of course éepend on the lattice constant).
the case of P=0 and 5, =0,i.e, 4=1, =1,cos¥=0.and lattice
nstant a=1{.%% a.u. ,we get the phonon dispersion curves for
,a8 shown in Pig.{(4.7).Fote that the transverse btranches
e degenerated and it is so when only hvdrestatic pressure
applied.




AY

ternal tensile loading aprlies glong (0,1,1) di-

When & €7LET
rection the degenerated transvers scoustic and optical branch
each split into two: OmE€ with polarization vecter in (C,451)
girection (i.e,Ta? and To2);the otber with polarization vector
in (0,=-1,1) direction. (i.e,Tat and To1). ¥e are interesting in
+het how the freguencleés of the various branches of (1,0,0) zone
voundary phonon vary with the external Siress.

From +eble (£.7)-(4.9) one can see that Lo and Le are
not sensitive to the evternal stress. The To! and To2 decrease
monotonously with inceasing the eryternal siress; Ta?2 grow up
with increasing the eyternal stress. Among 211 these the Ta!
je lowest. When the eyternal stress 1nCreases 51 drop down
slmost linearly at first; as the siress increases up to certain

nsta-

1
value and after that Tat 4rops down steeply to reach the inst
hich depends on the 23ditionally applied hydrostatic

d). It should be roticed here that:

5).At the case of P=0,i.e,a pure uniaxial external

- 0 @

loading applies to the crystal ,as 322 increases 10 S?zmay Te 1
recomes © imeginary,it means the system becomes microscopi

instable.As mentioned before at SEZ:SZEmaX the strain & blows

At 4
up steeply with slightly increasing the external stressigt may
means the system also becomes elactically instable.
ii).At the cases of P¥0,e.g,the case of P=44Kbar,
when svsiem becomes microscopically instable and may still be

1y stable,as one can See€ from the last row of table

elscticail

Iy Y - — + < .
(£.9),2% 8.,750pas ‘he gevistion of the system from the linear
gtrsin-stress relation is not very far.

We may come to the conclusion that for a real transt
e

to exiend our studv to including the effects
of ¢ vibrations we sttempt to use the "many point sche
for evaluating the BZ sum in Bq(4.12).4 brief discussion will Dbe
givern in the next subsection.



(7). Baldereschi Point and Many Points Scheme for

Evalueting Brillouin Zone Sum '

The determination of many physical properties of crystal
ie.g, the total energy of the crystal, the charge deﬁsityge#c)
often recuires integretions of periodic functions over the
Brillouin Zone (B.Z:). Ordinarily, the periodic functions does
not have & simple analytic form, the evaluation of the integraznt
for & great number of points in the B.Z. is very complicated and
time consuming. FPreviously, various approximate methods(/O}hav
beern used to obtain these functional values throughout th%?.z.

u
by interpolzticn schemes which reguire @& knowledge of the func-
e number of points.Recently an alterna-
in which only a single " Ealdereschi
A>or a few careffully chosen special
points®’ " in the B.Z. are. used in order to give a good ap-
proximation. The Baldereschi point and the many 83901a1 points
e

cubic lattices have becn gen erateu(7 )(7
1

;for some non
(773(78) We

ces have been presented will discuss the
central idea of this method and present the specisl points of
the tetragenal face-centered (f.c.t) lattice and deformed f.c.t

lattice based on our calculation.

(4). The Many Special Point Schene.
Les us denote some periocdic function by f(k), which can
be expanded in a Fourier series :
e
;o= t— .
fim) = T +Z__; f A <~"f} (492,,)
Q 4 om
where =
\ gl
.A(E} = Z——i FLTT S
m !§ }zd erp(ik R ) § m=1,2 covvne (4.29)
m m
dm ig the m-th nearest-~neighbor distance and dm<:‘dm+1 . We have
{ .—‘\ -"J 5
Jg.g Ay(k) dk =0 (4.70)
A usually dreps rapidly in msgrnitude as m increases.
. R L. nd N
Integration of f{k) over the B.Z. gives

iy [ O
“Ten Bz TlE) ok




On ihe other hand ,we a&lso have

oo .
. k) —
Ff o= £ {} - E £ 3 4,%
m=1
Thus
-4
£, = 2(F,) (.3%)
provided
e -
A (k) =0 for m=1,2, .- Kz (4.734)
(74) %

aldereschi first obtained & " mean value point" ,k_  ,which

0o
obevs Bq (4.74) for m=1,2,7 .This point gives T:if(ig) if f_ be-
. it

comes very small for m> 4 .

2

In order to obtain a better spproximation to the integral,

- ma Y (75) -~ 1 = - . -Lh .
g many-point scheme becomes necessary .I1f k, and k, are the
points which satisfy (k )=0 for s'=s,, s,,-----» and & (k,)=0
2
Tfor t =t$, t2"""‘ thep the set of points g, which aye ge-
nerated from k, and fg using the following relat;on :
T o= T4 (4.35)
= ¥, s B e >
€4 k§+!T kZ g

6)

‘ol

n
;{: x4 (g ) =0 for m=s$,52~wv,t3,t?r~~'(é.
i=1 ‘ )

Here the T, range over all the operations of the lsttice point

group 0f order K , Some of the §i so generated are related to
each other by cone of the symmetry operations Ti . ¥We group
these points together , give a weighting factozmii to the groupn
and sum over onlyv those §;s which are not related by Ti «There-
fore, n€ll in Eq(4.3%6) .After this set of points is obtained the
integral in Eg(4.31) may be written as

- 5 w— ~ -}
5 JI(E) - Fr 2ol (E) (4.37)
i=3 | 1,1 N .
In the many $oint apprcyzma%zsn sWe ignore the second term in
Eq(4.77) ,i.e.
n., .
I =71 =2 f(g) (4.38)
o = 1 1 . -
Lkote that
B
o, = 9 (4.79)
m 'l:_"ﬁ
+his becomes an excellent approximation if Egl 6) is




~ satisfied for m covering & large number of neighbours.In cases

__where an even higher degree of sccuracy is sought, one may re—-

peat the above procedure in order to generate a mew set of points
g which satisfies Eq(4.736) for more value of m.The new set of

pai“gs
=0 for
from s

4
¥, =—fl(
Z a
¥ 2T
5 =
. oy
b =ik
F 2

2
x =—<%
S =&

is obtained by choosing s point k which satisfies A {k )

T=TygTnp o " and the r includes same value dl*zerent
and ;to
For the sszke of clarity we shall list Baldereschi mean
value point for fcc, sc and bece lagttice as follows @
Table. (é 12)
lattice . Dalaeres hi point (B-Mvp)
DR T o
fee ¥ =—£= ( 0,622%, 0.2953, O)
o a
P\?z .
st k¥ = :
SR
o 1 1 1
v o =a ( 6 fF 6 * 2 )
The two seis of many specizl points for fce l=zttice
by Chadi and Cohen are listed 2s follows:
C.C-set(1) : Two special points
2% 3
k’i— s ( T s % k] % ,} 7 °<@‘= % N
. o 5 E i )
e (FaraE e m
C.C-zet(2) : Ten speciel poinis
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brimm Lattice constant by using

uild i
eschi point and many point scheme

ended our study to including the harmonic vibra-
celculating the free energy at zero and finite tempere-
tures, First we need to predict the eguilibrium lattice constant

1 t21 .7t is simply to minimize the BEg.(4.12) with re-
ant =.Note thet assuming that Xcl cryste-

2
tructure,the static energy u and the phonon

¥
frequency fi are _ functions of a.In order to follow the proce-
dures described in the 1astdsubsection,we need to evaluate the
free enerey F in Eq.(4.12) for each assumed lattice constant.
Using B ereschi mean value point for fcc lattice Eq. (4.12)

e
mately written as ;oll oOwWS ¢

where k_ is Baldereschi point ; r sum rangeé Over the six branches
cf phonon meodes of k _.
o — -
=z . . A R ~ ~ o —
If we krow & set of msny special points {kl ,s%l, 1—Lﬁ»~nj
then Eo.(4.12) becomes
6. I - - 1L -
Fo=ou o+ %2232511;Jki)+KTZ“231n(1~eyp(-hZ§ k. )/ET)) (4.41)
= 1 - r i
Einimige Eq(4.40) or BEg(4.41) with respect to lattice cors-
tant , Wwe get the eguilibrium lattice comnstant at temperature
-0 - . - .
1= 80t~ ¥, respectively,the results are given in

o 1 ) . : o
SCheme Eguilibrium lattice constant (=A )
o~ Or,’ m - -
T=0°% 1=%300%  T=500%% T=800°%

B-Hvp €.017 6.05¢ £.090 6.174
C.C-set(1) £.017 6.054 6.107 £.190
CeCusezéigi £.017 6.054 6.096 6.482
cher’u‘au) £.02 6.06 6.10 6.18

comparison,the last row of the table gives the zesulis of

- . . o

boyer who showeo that the summation over ¥ was found to be ade~
c

P

onverged for Na1000,here N is ¢the number of regularly

. —
¢ points k in “he B.Z. .




This is a example to show the efficiency of the specisl po-
flnt ‘scheme, of céﬁfSéfif“Vé”ﬁeed.evenwhigher~ﬁegree«af«aecaracy,'

we can turn to more special points for helrp.

(C). A Exercise : The special points for fct and aeformed
fct lattice.

As mentioned before when a fcc lattice is subjected by =
unisyial stress, it may be deformed %o be & fct or deformed fct
lattice. In order to use the many point scheme in calculating
the free energy we need to generate the special points for the
- fct and Ge formed fct latti ce. |

I+ shouvld be ﬂGulGEd tha when fcec 1at titice is deformed to

fet or & e point group is reduced

formed fct la btiee,the lattic
rely. The "shell" of lattice wveciors

Q
+
ol
AN
%
4
1))
m
o]
4]
Q
ot
-t
o
(D

1
the "shell™s obviously depend on the ratio of thefg . In the
most cases we are interesting in the case of %%{g;. The ¢if-
ferent range of ratio value should be treated SEje}atelyc
We rep as follows :

=2 (o) =7
':?:;22 ‘E;zg “E%z ""--«’—’%.37:17.‘3 ’ Q(?:jg :
Set IT1 twenty points :

k=22 (& mmm) 0 Yo EmoEnoEn)
el (g oamooEn) Rl - - AP
r=2l (gm0 R e oEoE )
k’?:ni'iz {;“:}r; #gg_ fé’%l) ) ES"Za {g';% ’é%z ;*8"%1 ) s
koo (g omm mm) 0 N G oEmoER)




7 2% (5 _Z 54 2 .20 7 _1 _1
k=5 (5% 57 5% ) 0 F12=a (&% BmoEm )
% 2% (5 2 _1- T o2 5 1 5
k=0~ (87 o5n.08m ) + %1~ e (& oowncBm)
2 2 I 3 2 3 _.2n 5 3 3
k35- a 8% *BA "872:,) # k’is 2 {877.; 87 ’8711) #
7 -2 (T 1 3 -2 (1 1 3
17 a 8% '8/ 87 4 48 s ‘87‘; *87,; *8BN, / ?
’;‘;___7.3_(_5;_3;.1) '§\.__._'_.2_7£{.__3_1_.’§)
®197 a ‘8% *Bn; '87, 20" a ‘8M *8n 87, .
with the wieghting factors o =1/24 , i=1,2,-----* ,16
o= 1/42 , $=17,18,19 and 20,
s=o——ii) Special points for deformed fct lattice :
Set III two points:
¥ .27 (1 B B o1
k=5 (Gm o Tn, 0T ) T2 F
... 28, % _h _h =1
kzh 2 {—5771 ’ﬁz P47, : 9(’2-',\ e

where ' 1

b= (J2 costq )
Set IV Eight poinis :
¥ -—2E Z_ Zh Zh ¥ _2E (1 _b by
1" a ° 8 *ER '8, : " T a ‘B7 '8, '8m ’

T —-2E 2 _h 3 ¥ =——2E (-1 Zh Zh

22T \ B B B ! 4= & ‘EBm '8 'Bm !

‘Q:_...Qﬁ(_ziéfﬁ T o——2E (1 _h by

5 a 87, 87, *87, 7 * 6 =a ‘8n’8n, 8w’ ?

T =2 2 Zh 3b, 7 =27 {_.E_Q_li":

7 s 8% '8wm, 82,0 ' -0 T ' 8R4 '8M’EM. .
with equal weighting factor of,=1/8 , i=1,2,-----# ,8 ;3 a
h is given by kg(4.45) .,

The validity of these sets of the special po
should be proved in practice.

{4.473)

(4.44)

P
P
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LSt
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Concluding Remarks
1) In conclusion we emphasise that our static results are
incomplete and in the nature cf 2 preliminary survey tec indicate

the role of & uwniaxisl stress in addition to a hydrosistic pre-
ssure plays in the transformation. This study will be extended to
include the harmonic vikbrations at zero and finite iemperatfure.
It would tell us the effects of temperature on the transformation,
By using the procedure described in the section IV and incorpo-
rating the many ncint scheme in evalustion the B.Z. sums, this
in principle can be done. The problem is that , on one hand to pre-

—dict-correct configuration. “needs-very-high accurracy in calcula-
ting Gibbs free energy:; on the other hand using more special po-
ints reguires more eomputatioﬂal work.So a compronmise should be
made 1o ensure a sufficient accurracy.

2) As mentioned , a detialed eyperimental description on B
to B2 transformation in RbI has been presented. It is instructive
to give a similar theoretical calculation for Rbl. The pesultis
will then be mpared with the experimental facits.

%) I+t was shown that a static calculastion usuelly gives a
satisfactory result for a system zt eguilibrium or near equi-
librium conditions: ¥hile as the system evolves its configura=-
tions to reach & instable point, the theoretical argumentation

will not be mathemsticelly consistent., Now we can turn toc new

MD method for help . This new MD method provides a

o
0
£
o

1 ;,‘.s
£
ot
o

for the investigation of polymorphic transitions. In

once the model is given ,the results can be obtaine

theoreticelly consistent way for any reasonable thermodynamic

conditions. We will use this new MD method to study

stress (in addition to hydrostatic pressure) induced B1 to B2

nsformation in ECl. In order to keep on our cslculation® as
eter free one, afp *1rst the pzrameterized Gordon-Kim po-

izl will be used.

ing the new ¥D method to investigate the roles played

ects in the transformation. It is possible that these

tﬁe crystal may induce local stresses that trigger the




Acknowledgmentis

T would like to express my sincere thanks to my super-
visor Prof. ﬁ.?arriaelloAfcr,introéucing'me to this very in-
teresting field, for his earnest and fireless imstructions,
and for his invaluable encouragemen% during the course of
the worke. I wish to thank the following Professors: A.Balde-
reschi,G.C.CGhirardi,P.Giaguinta, K.Majlis, A.Fobile,M.Parri-
nello,R.Resta,A.Stelila,F. Toigo ,E. Tosatti,M. Tosi,and C.Verzeg-

‘nassi. I have benefited greatly from their lectures.-Prof.R.
Besta is acknowledged for his several enlighienipg discussions

on lattice dynamics, Hrartfelt thanks are due to Prof.A.Nobile
for a lot of helpful advices on computer programming., I am
grateful to Prof. P@Budinich,i&anda and the International
School for Advanced Studies in Trieste for a fellowship and
for their hospitality. The SISSA staff and the ICTIP library
are gratefully acknowledged for their helpful services.




Heferences

(1JE.Madelung. Phys.Z.11,898,(1910)

(2J¥,Born and J.E.Mayver,Z2.Phys. 5 Li(1972)

(23¥,Born,Dynamik der Eristallglitter(teubner,leiprig,19i5)

(4}A.Bylleraus,Z.Phys.6%,771(1930)

(5)R.Landshoff,Z.Phys.102,120,(1976)

(6}J;YamashitagJ.Pnys.Soc,Jap,79284(f?ﬁ?)

(7)8.0.Lundqvist,Ark.Fys,8,177(1954)

(8)¥.P.Tosi,in"501lid St.Phys."16,1,(1964),and references therein

(9)P.0.Lowdin,Adv.Fhys. i(’956}

(16)4,%.Basu and b,Sengupna Phys.Rev,B3,14,2633(197¢)

(11)Jai.Shanker,V.C.Jain and J.P.Singh Phys Rev B,22,1082(1980)

(12)¢.D.Merchant,¥” .X.Srivastava,l.D.Pandey,CRC Critical Rev in
Sol.St.Science,451{197%)

(17)W.L.Basse+t,T.Takahashi and L,Z.uamylell Trens.im.Crysta-
llogr.Ass5c,5,97(1969) and references trerein.

(14)J.C.S8later,Phys rev,27,488(1924)

(15)4.lacam and J.Peyronneau,Rev.Phvs.Appl,1§,297(1975)

(16)F.W.Brideman in "Phys.of Figh Pressure " Chap.vi! *,G.Bell.
London(1249)

(17)6.Wagner end Z.Lippert,Z.Phys.Chem,B21,471(1973);Z.Phys,
Chem,B71,262(1936)

(18)C.E.Weir ard ¢.J.Piermarini,J.Res.nat.Bar.Stand 68a, 105,

& [ 2 [ &
{2z2)M.Born =nd V.Huang "vaamzca7 Theory of Crystsl Lattice "
(Cxford 1954
Forome Yer ooy 3 ¢ - - - -
tef)i.F.Tosl and” .A¥ai, in "Advances inHigh Fressure Research"

1
e « = =
(24)V.P.Tosi and F.G.Fumi,Int.Jd.Phys.Chem.S0l,23,759,(1962)
(25)Y.5.¥im and R.G.Gordon,Prys.Rev B9,7548(1974)
& - - ~ - —~

(2€)h.J.Cokhen and R.G.Gordon,Phyvs.RevB12,7228(1975);7.5,%im and

R.G.Gordon.d.Chem.Phve, 60,4%72(4974)

) i [ A e ha < il ~ sk
(27)R.G.Gordon arnd V.S J.Chem,Prvs 5€,7122(1972)




(28)L.L.Boyer.Phys Rev B27,7677 (1981) .
(29)¥.8hoji,Z.Fristellogr,Fristallgeorn,Kristallchen,77,281,
(1977)
(Z0)¥.J.Buerger,in " Phase Transformation in Solids®™ Edited by
R.Smoluchowski,J.E.Faver ard W.A.Weyl(V¥Wilev,New York,195%)
{(Z1)¥W.L.Fraser 2nd S5.W.Yennedy,hActa Urystallosr.Scc A7Z0,173(195
(F2)¥ ., VWatanabe,¥.Tokonami and I.rimoto,Acta Urystallogr Sec &
%2,2%4(1977)
{??}6?8l052u$0e61sal.;gfhyS(PaTlS} *8,407,(1977)
(74)0.Bloschko.etr.a2l.Rev.Sci.Instrum,45,256(1974)
(75J0.Bloschko.et.al.Phys.Rev.B11,7960(197%)
(76)0.Blosch¥o.et.al.Prys.Rev B2Z,7017(1981)
(*7)¥.Parrinello and A.Rahman,Phves Rev.Letter.45,1196(71980)
(?8)M.Parrinello and L.Rahman,d.De.Phys Ce,511(1981)
(?9)¥M.Parrinello and A.Rahman.JAppl.Phys 52,7182(1981)
(40)¥.Parrinello andA.Rahman,J.Chem.Phvs 76,2662(1982)
(41)F."Mlstein and B.Farber.Phrs Rev Lett.44,277(1980)
(@2}N;C;3am1k.et.al,ErysaRev Lett. 42,456(1979)
(47)J.¥.Buzare.et.al.Fhys Rev.Lett.42,465(1979)
{44)C.Kittel,"Introduction to Solid State Phys"{5th egdition),
John Wiley Inc, 1976
(45)N.W.Ashcroft and ¥.D.Mermin,"S0lid State Phys","olt Rine-
hart,Xinston,{(1976)
(46)L.FP.Bonckaerdt,R,Smoluchowski ard Wigner,Phys Rev,50,5€
(1926) o
(47)W.E.Dauiels and C.S.Smith.in" The Phys and Chem of High
Pressures" F.50,50ciety of Chemical Industry,London{1967)
(48)J7.7.%2rdy and A.H :

b
& -
) .4 nT = - 2 R T
HM.Varo,in "Lattice Dynamics " BEd,.bv R.F.

(54)Jd.F.nansen-ana I.E.RcDornald,in "Theory of Simple Liguide"
Chap 7,Academic Fress,London,Vew York,Zan Fracisco (41976)
(52)4.Rerman,in "Correlation Function and Quasiparticle Inter-
acticzs in Condenced Matter "(Ed.J.Woods Falley,Plenum, 197
(63)B.J.L1der and T.E.Weinwrigh},J.Chem.Phys.27,1208(1957)
(5¢)B.J.£16er end T.E.Wainwright.J.Chem.Phys.?1,459 {1959)

el

N



m
"
o
frt
R

n

o

-

PN

w0

~J

[0

e

Ay

st

(o8

{6?)%;&;@ Sengster and %,Dix

references therein.

2 M. Parri .Rahm end P.Vaeshishta,tc be published.

(62 )M.Parrinelilo, s

(62 )L . Ranman and P.?ashishtag in "Mglecular Dynamics Studys ol
Superionic ry,Argonne,

nductors ",Argonne National Laborato

lio
(64) a).C.W.Gear,ANL Report 7126,Arg onne Eationel Lasboratory,
{(1966).

1 Value Problem in Ordinary

o
]

.C.¥.Gear, "Numerical Initi

-

etice Tgll,Eng lewood Clifrs

2
" (Pref

zg4 (1980)
0]

Differential Eguations
j‘:c" ﬁg?'ﬁ)

H.C.Andersen,

[EATEN e
N

vy of Elasticity, (Perga-

e
(6
Frt? St
e
o]
o
Jod
f
]
bl
o
o
A

(67% A critical examination of 2l can be
found in M.J.Clumgsion,Ad 78).
(68) P.P.Ewald.Ann,Physik(4) £4
(69) C.Kittle," A Introduction " Appendiw
A,2nd edition,Wilev,Inc(
(70} AL Maradudin,E.¥W.Montrol 4G .F.Weil "Theory of La-
ttice Dynamics in the Harz ecited by
F .Seitz and D.Turnbuid {
(71) J.R.Hardy.Phil.Mag,7,715
(72)G.F.Zoster,In "Solid State
{77)4i.Baldereschi,Phys.Rev.E7,
{(74)4.Baldereschi,Bull.An.Phys
{78} D.J.Chad: andé¥.L.Cohen,Phy .
{76} ¥.J.¥onkhort and J.D.Pack 1975 ).
{(7%)V.X.Bashenov and VY.Bardash hyvs.Stat.Sol.
| 20 E89 (1977)
.Lin-Chung,Phys Stat Sol (b),85,747 (1978). ”




