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LIST OF SYMBOLS

B(H) : vector space of bounded linear operators on the Hilbert space H
B(H)i : vector space of trace class operators on H
A

“ lp
B(H)p : vector spaces of compact operators A for which ﬁ:’ \A;Pl Ct® |, 04p e

B(H)c': : positive elements of B(H),.

B(H)::') : self adjoint elements of B(H),.

CO(H) : vector space of finite range operators.

K(H) : convex set of density matrices on H (state space).
h-4 : usual norm on B(H).

iq- {, : trace norm. ’

- \\? : [Tﬂ&\?luia (norms for p>1, p=1)

<.,.> : duality product between linear spaces.

[.,.] : semi-inner product in a Banach space (s.i.p.).
TI.] : operation on B(H)

T*[.] : dual operation on B(H).

Z:{Zhg%osemigroup on B(H), .

i:iz:}: dual semigroup on B(H).
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INTRODUCTION

The purpose of this work is to study some of the mathematical aspects and
some of the phisical consequences of the dynamical model proposed by
G.C.GHIRARDI, A.RIMINI, T WEBER in ref. [1].

It consists of a modification of the usual Hamiltonian dynamics for a
physical system.

Quite generally we can look at it as at a special kind of interaction
between a microsystem and an unspecified reservoir.

This interaction produces a reduced dynamics for the microsystem which is
typical of the open systems [2]. !

The model possesses the far reaching property of providing the same type
of modified dynamics for the centre of mass of the composite systems.

It is this nice feature that allows to get rid of the linear
superpositions of macroétates and to obtain a classical motion for the centre
of mass of, let us say, a crystal or an almost rigid body[1].

By a suitable choice of the parameters in the dissipative term modifying
the Hamiltonian dynamics, the authors [1] can indeed show that quantum
interference effects between far away localized macrostates are forbidden.

On the other hand, with the same choice, it is also shown that the usual
evolution for microsystems is affected only after an enormous amount of time.

These features of the model allowed the authors to set up a program of
unification of macro and micro-dynamics, once a common quantum ground for the

two is accepted.



Following these lines it has also been provided a model of quantum
measurement process which exhibits all the required physical properties but
the unpleasant presence of linear superpositions of the apparatus-pointer
positions.

It is also immediate to derive the well-known Von Neumann formula for the
wave-packet reduction.

The modified dynamics is given by :

[ﬁ,%h] - Ag-i—. + dTLE]

A .
dee | _L
- <I.1>
ot #
in the Schroedinger picture and from now on it will be indicated as
QUANTUM MECHANICS with SPONTANEOUS LOCALIZATIONS (Q.M.S.L.).
A
In <I.1> H is the quantum mechanical Hamiltonian and ;h is the evolved

e
of the density matrix € describing the physical system at time t=0.

~T.E§£] is an instantaneous process affecting the system with mean

t

frequency .~ , given by:
— s
{ L?S] - E‘( olx ® ey & <I.2>
i -0

where % is the usual position operator in one dimension.

The spontaneous processes TT-1 could be considered as the result of a
coupling between the microsystem and a suitable surrounding after reduction to
the microphysical degrees of freedom only.

What is important here is the fact that, whatever the coupling and the

reservoir configuration be, a sort of localization in position for the

N
microsystem in the state ?t is derived.



The parameters which have to be chosen, are the mean frequency o
-1

the precision ¢ of the localizations.

and

The Q.M.S.L. <I.1> has been solved in the free particle case [1], having

A
as a solution 2&? which in the g-representation is given by:

\ + 10 +§ ..()».7“.‘ ‘ ) . ‘
a2, 89'> = — [ 4rl 7 FlA pog-qht ) 2qe7] Sstq'+7 >
-0 -l

<I.3>
LT
where:
_igH gt
A £ PAE A A~ PITY ~
e e
S’SC = § <I.4>
and
[ Al
.A: - ﬁ /._.\.'- — A
& 3
B | 10 e A ol
I~ —
Tl q-qht) = ¢ & <I.5>
Putting q_e{‘.‘?, FCA;/\»,*‘,““) satisfies;
- —-dA Bk
FC d P P MRS B ﬁ
<L.6>
e A~ J—"K_T‘ e f : B r"\
P = 1Ll
Va v /[y <I.7>
—~ < .3
4 — F(4 0, o/'l-) & “AZ'_‘ t <I.8>
Hh WP
Using these three properties the authors [1], were able to show that:
(a) the matrix elements of Z+§ between two eigenvectors of % : \C(‘?, l‘}“?" such

that \‘!‘-Y“\<"" or q'=q" behave as in the pure Schroedinger case, for

T

t<<T , T depending on the parameters A , % and the mass of the system;



. t
(b) the matrix elements of jz*g s when.\q—q“\?l- are suppressed in time with a

} l {a
mean life ¥= :g

Within this amount of time the state of the system goes into a

statistical mixture of localized states with precision not less than INF .

At this point it is of great importance to investigate how the Q.M.S.L.
extends to systems with a high number of particles, assuming that each of them
is subjected to localizations processes occuring with frequency AL for the
i~-th particle.

The main result is that, when a composite system is such that the

A o
internal and the centre of mass dynamics decouple ( #= RQ'¥ Hz,), then:

A .o~ 0 AG N FAG «
0\_..3; = —‘:iﬁ L ﬁi«z,?tl - (Z;* Ai} z"isv, - T@. [gill <I.9>
d

where N 1is the number of constituents.

Moreover, if the structure of the composite system is rigid, then:

A . AT
doy - - L [ He, 8¢ <I.10>
ot &
A Gy (v) o
= 1o et .
? & ‘-TT &Zgﬁ?s :partial trace w.r.t. internal coordinates;
A “T‘Ui) a1 :partial trace w.r.t. b tri dinates;
®p o= ¢ {éiﬁiji ipart .T.t. barycentric coordina ;

Equation <I.9> holds because of the following property of T

.
?

T: T el]

DY

™

<I.1lla>

If the macrosystem is almost rigid then the result is stronger:
Talf:1= TL3:] <I.11b>
Here "TH ﬂ-:l is the spontaneous localization process affecting the

i-th constituent.
<I.11b> tells that every process occurring with frequency A; is a
process on the centre of mass which in turn is thus affected with

&
frequency }?; A



If we choose the parameters in an appropriate way, for
- -6
example: “‘\, c\;=\0 4¢c ( nearly one localization process on the single

10 .
constituent every \02 years), d=10 uul, one obtains for a macroscepic body

( l\Iev\O23 ) having mass m=1lgr.:

' )

s = 10" ‘ <6 gt 2.
A=‘-NA,:=10" ol , T = 10 e for |q'~q%]= ¥ =4-10 cn
The main result is that the linear superpositions of macrostates

4
separated by a distance more than 10 " ¢em are turned into statistical matrices

in a time of the ordér of \dnesec.

Furthermore, the choice of A; and o makes the microdynamics almost
unaffected by the localization processes. '
These features of Q.M.S.L allow a nice application to the measurement

problem [3].
The next obvious step is to study the interaction of a microsystem with a

macroscopic measuring apparatus.

Let us use a simple model and consider a system whose Hamiltonian is

given by: ?.’G’)Ir
. i —
P ,g.?, 30 AL 1?3 {I/,
H= P . dB% f(e)E | <I.12>
M dt <. 7 »fi .4

{05

¥ .
ﬁs‘
(1

H describes a coupling between a microsystem and an apparatus
characterized by the function in fig. 1, in the reference frame in which the
microsystem is at rest, the apparatus being used to measure the observable 2
on it and schematized through its pointer centre of mass position.[4].

This Hamiltonian is able to account for the correlations between the

position of the pointer, whose barycentric coordinates are Q,P, and the

A
values §-ﬁ“§ of € , set up by the interaction.



Unpleasantly if we solve the Schroedinger equation for the Hamiltonian
given by <I.12> we get the interference effects between different macrostates
of the pointer localized around different positions fq(c‘.)andﬂfm)on the scale,
with dispersions much less than the space separation of any couple of them.

According with the new scheme, we can think of the pointer as éffected by
localization processes with a very high frequency d , and,disregarding the

ineffective localization processes on the microsystem, we get:

58 L TR0 28] a0 (0P 58] - A58 . A TEG
a st_,Lw,z:ng L B[R 2E] - 42,7« a T3]

<I.13>
ot S
A . .
® now represents the preparation state of the system particle plus

apparatus (pointer) before the starting of the interaction.

A
The model has been solved [3]; denoting by LW&,} the eigenstates of €

and by {&> those of the centre of mass position of the pointer, we have:

¢@, ¥l L0\ &, ¥ -

T e '-\')*7[{‘ i=0 b
= "'L' el As w4 - )
B T4 J_wD‘ J—bo 7 & ¥. (A/ﬂ)(" G“l-”*) ?u,\“ (6*{‘716‘*7!'{_)
3 - <I1.14>
Fuim (4o 24) = eplodt JJ;‘@ WPE.A*;‘E“’*Ei‘@“}-f—(cwﬂh(ﬂ:%C%-z}j]& e

A:*O = N ~ ) ‘F\j_ Al R }
£ myun (67, 6oy, +) = <Y, @y W?Eﬂ‘%‘{ ® "‘?;‘%SW"?’* &Y > <I.16>
If the initial state of the composite system is:
. s a
les> @188 > = (S cutyin)@ ¥4y & weH <T.17>

where }é.;?) is a well-localized state of the center of mass of the pointer
around the position zero on the scale with dispersion 4@ & \—f(eg,,)—i(fi)l YE

, then the purely Hamiltonian evolution gives the state:

YN> = L |92 >@1e4
\ G ¥R @R <T.18>



after the interaction took place, where:
\ épa > ‘ is a pointer macrostate localized around :Kﬁu) with
dispersion Zﬁ_&ﬁ DG (due to its macroscopic features).

The gorresponding density matrix exhibits off-diagonalities :

L@ >l = 3 GGl (s avil 8 L4hW> Lehw) <I.19>
e

The modified dynamics, on the contrary, because of the properties of ETQA%”‘7)+>
L AN

gives:
2.8 = Zocalleivevi] @ el Ll wxw (e $iad)
<I.20>
where: ¢
8= 3,8 = 2 cuche las>crlle 9> eee) <1.21>
ST mua

Performing the trace over the pointer degrees of freedom in <I.21> , we
&
see that the state of the microsystem Q:TQ ¢ transforms as:

n where: <I1.22>
correspending to the wave-packet reduction of the usual quantum mechanics.

In this scheme the reduction is thus given by a dynamical effect,
contained in the evolution model.

The modified dynamics as a general kind of quantum evolution does not

require any ultimate observer for cutting the Von Neumann chain and, by

physical arguments, indicates how to overcome the quantum measurement problems.



CHAPTER 1

Paragraph 1

This chapter is devoted to give an ocutline of the mathematical and
phisical background of the Q.M.S.L.model.

The instantaneous processes which are supposed to affect the physical
systems during their dynamics, are known as "covariant instruments™ in the
literature{2]. |

This concépt is closely related to that of "generalized observable"[2],
and both can be thought of as generalization of what is understood as
“reduction of the wave packets"” or "measurement process”.

The simplest way of discussing it is to reduce the problem to the
measuremen£ process of a, so called, "yes-no "observable described by a
projection operator, a , on some Hilbert space.

In this case, after the interaction with the measuring apparatus, the
initial state 63L of a statistical ensemble of N identically prepared

. o)
physical systems, has changed into a final state VVi where:
3

A

N AN
<Y BN P S oA
Wiy = TN (Pwil

ii L v

<1.1.1>
Ay A A A"(/%"‘e> / A AL P
Wy = (T-FIW Te {(A-FY W)

<1l.1.2>
“ A -~ A ALH A A
\N(:}3 = P ‘i\‘}.},P + (B=-POWe (A-P) <1.1.3>

The first two final states describe the selected ensemble of those
systems which did or did not trigger the apparatus, the third one the case in

which no selection has been made.



Two assumptions lie behind this simple and well known scheme.

The firsﬁiassumption i; about the existence of an apparatus being able to
discriminate, with infinite efficiency, between the eigenvalue 1 or 0 of
, through the interaction with the systems of the statistical ensemble.

The secdnd one is that this scheme forces ourselves in considering only

A A p A
the class of ideal measurements, for which if W;=P then Wj: P without
distorsion.

There are many critizisms [2], [5] against thése restrictions and in
general all the theory of "operations and effects™ [61, [7], [8], [9] tries to
give a more phisically and mathematically consistent description of what
happens during the measurement process. !

As it has been pointed out in ref.[10], an "operation" causes a state
change on the physical system generating 2 new positive, linear, functional on
the algebra of the observables.

Generally this algebra is the self-adjoint part of a C*-Algebra and
the normalized, positive, linear functionals defined on it are the states of
the system.

In [10] the so called "pure operations” are in one-to-one corraspondence

ra)
with those elements E of e¥ such that:

WEl &1 <1.1.4>

1f %> is a state, the state change due to the operation 'T& , provides us

with the new state 495 given by:

j>)
e
~

de (£) = BLE
< (&

N
* At b% <1.1.5>

fivy
-‘-
™3
S

2T
where ¢>G.E> is a normalization factor and represents the transition

probability between the two states.



Paragraph 2

The connection between the algebraic approach and the usual Hilbert space
formulation of Quantum Mechanics is given by the following:

THEOREM 1.2.1 [11]

Let e‘l) be a state on a Von Neumann Algebra 'W[ acting on the Hilbert

space H.

The following conditions are equivalent:
(L) dP is normal;
(2) %3 is ultra-weakly continuous;

A A A
(3) there exists a density matrix ¢ such that éPQA) = Tx Eé‘ A:S

end

(see appendix A.1 for the definitions and theorems of this paragraph )

Translating <1.1.5> into the usual language we have:

n(}a [a )
2, Air - T {g*‘?ﬁ ‘Qgﬂ/”ﬁgg%gfgg <1.2.2>

Using the properties of the trace, from <1.2.2> we obtain:

— —— I S S A o A
“{/3\%:3—4 \“iefapc'/}]/’r"iE?f.};Ei—S ¥ Ae W <1.2.3>

A
Considering A= le>Lw) YEH |, nyil=\ we can set:

A N —
S

<1.2.4>

10



<1.2.4> enables us to introduce the "operation” as a map from Bﬁﬂ‘into BGH‘.

Disregarding the subscripts and considering the transformation:

— e. N A a . A

TIL%] = LTvit-rE -8 =[miF il 8
<1.2.5>
we see that:
T is linear <l.2.6a>
T is positive <1.2.6b>
~  ata . o '
F=€ & 1is an observable and WFllsal <1l.2.6c>
at A a A
if €=6=F then T can be associated with the selection of those
o)

systems which gave the answer yes in the measurement of E <1l.2.6d>

A Iy A
since v {F’?S iz T} A't.?é:i"~(lv‘)w.=, have F e d <1.2.6e>

Thus we are led to consider, as buildings blocks of general measurements
™
processes, not only the projections but also the more general F s called
“effects™ [9].

The set of all possible effects is convex and its extremal points are the

projections [2], which are weakly dense [2].

2 Y
LS P
[
11
—
7l
PRSEC

>
w
[
f A——
e

o~
Since and 8§ 1is of trace 1, we have:

TCE) = Te{TIY 5 ) ?& w i)
<1.2.7>
Hence we see that there is a correspondence between the selective
operation T and the effect g
We shall see that ‘s is uniquely determined by T and that this

correspondence is not one-to-one.

In order to prove that, it is necessary to extend T +to all of 20w, .

11



Up to now it has been considered as a map from K(W) into BCW), .
This can be easily done obtaining a positive, complex linear map which is
continuos on B(.“)\ with respect to the trace-norm topology (see appendix A.2).

It then follows t_hat:

| ™ {%- 7oAl e WM WAW Xencw , ¥ A e mcu),

<1.2.8>

From the duality between BM),, BCWY) given by the duality product:

A A T S'K?(S A A
CAsRe = v ACBLD, , L& BCW) <1.2.9>
A)t XK~
we have a unique XK'= T \-21 such that:
la) A A A A
TV(L?('TEAJg = T; {T [7(1 A3 Cail <1.2.10>

T* is the adjoint map of T and it is complex linear, positive and

ultraweakly continuos on BW) (see appendix A.2).

From <1.2.7> we have *hkabt

<1.2.11>

Hence: <1l.2.12>

12



Paragraph 3

It seems reasonable to require a more general kind of positivity for the
map T and its adjoint T . In this
paragraph it will be discussed the request of complete positivity
[81, [91, [12]

For more technical details the interested reader is refferred to [13].

Given two Hilbert spaces, H ang U“ » By fiﬁite dimensional, the
Cx-Algebra of bounded operators on H® H .y is isomorphic to the algebra of

NxN matrices with entries in B(H):

BLUBWL) = BB Ny <1.3.1>
~ A ..
Xe BCAU@ Up) is the matrix: C Kfél Laz b, N <1.3.2>
in the representation: -
T(X)\w»@ler = 2 [Xji1e>] ® 15> <1.3.3>

\¢>e R, lﬁé'> 4=t N-o wwlt vectow

. '\ .
Hence: ,;{ ?("4 o XA 1e> <1.3.4>
A ) N . 3
T(E) lwaBlei> = | 1 Rimw e ] | Zoe e
a.s o : Al
Xl - RAN o] Ky L

Given a positive linear map T on Bl we can extend it to a linear map

on RWB np) in the following way:

[T%;é] <1.3.5»

1

—
§ >
[ —
1)

If T 1is positive for any N, then it is called completely positive.

It is easy to show that if T is N-positive it is also positive, being

sufficient to observe that:

... 0O

X 0. N
—_ o
x=1° O 3o =» IX]= : O >0
o o

13



Indeed B
Cw@ el TX\1Y@e,> 20 Yiwy el

means:

(¢, 0,...,0) T(EQZ}O-"O >
SN D] = ew1 TLAILYDY 20

o o

What it is not trivial is the N-positivity of T if it is only positive.

An example of a positive map which is not 2—pbsitive is given in ref.[14].

The physical reasonableness of this property is shown by two arguments.

The first one is typical of the operational approach to quantum mechanics.

Let us consider two non interacting systems, one of them being an N-level
system and described in a Hilbert space

Let us suppose the other is affected by a selective operation which does
not interfere with the N-level system.

Phisycally it should be possible to extend T to an operation I onBlelin

such a way that:

<1.3.6>

whereéh;&%@g&is the state of the N-level system and &&¥U$)the state of the
other one.

Clearly, as an operation, T has to be positive, and, by <1.3.6>,
N-positive.

Since this is independent of N, T has to becompletely positive.

To be extremely rigorous one would have to prove that T is an operation
on B(H®Wu) once it is on BCW), .

That is mo difficult.

More interesting is the following:

14



THEOREM 1.3.7 [8], [9]

T is a completely positive map on B(R), iff its adjoint T* is a

completely positive map on RBLW).

end

The second argument is strictly connected with the interpretation of the
Q.M.S.L model as an evolution typical of the open systems once it has been
proven it comes out disregarding the degrees of freedom of some "reservoir".

It is worthwhile reproducing the argument of ref. [61, [7] ,in order to
compare that with the similar situation in the derivation of a quantum
dynamical semigroup evolution [14], [15], [16], [17].

Let us consider a closed system compound by a microsystem M and an
apparatus A.

~ A IN

N copies of it are prepared in an initial state WI = WHQ"",{;Q K(-HAQ“”,
GQM and QJA being the normalized states of M and A respectively.

The interaction from which the measurements process arises, can be
studied as a diffusion process governed by a scattering S-matrix S on Rﬁ@QA.

After the interaction being over, the new state of the closed system is
given by:

N )
S W, E;r <1.3.8>

1Z2
i

A
If the measurement of a yes-no observable Q4 1is performed on the

apparatus, the resulting state, according to Von Neumann, is:

Wg= (8,8G,) W (1,8 a’*)/’ﬂ‘{(&@i\?fd Q'\!j <1.3.9>

15



This happens if we select those systems giving yes answer.
an -
The VV; state of the microsystems is obtained by tracing over the
degrees of freedom of the apparatus:

A (A) 4
Wy = T wy <1.3.10>

H
We recognize the selective operation T on VWA as given by:

A YV A o A A @t Ve ot
TLWa] = T (18 Qa)W (8,864))- T ™ [(Hu06s) s W st] <1.3.11>
N
Let us consider now the spectral resolution of VJA :

s . A A A

WA = E-a ?Q' 18¢‘>48 &
<1.3.12>
with 2] g'}:\ <1.3.13>

where, for sake of semplicity, although very roughly, we consider non
degenerate the spectrum of a possible macroobject.
A
Taking the trace we use an orthonormal basis in the range of Qq :

Hence, for any \$% and |w> belonging to 'HH , we have:

0, TUWAL &) = x;5; o (wesd, (An®&4)sWadlighhatt 758 0d)

“ A
= 23 5% (vei?, e B gy afistiiee)

S /
<1.3.13>
~ ey A
Calling f\fd = ( 35,23 o ) <1.3.14>
rt 1,0
and consequently: A g o (8(1', ' 4 \') <1.3.15>

we have

. 14 et
(0, TET ) = 22 6 e Byl ao

16



— A A At
(LwWnl = RN % Ay Wa Ay

<1.3.17>
From <1.3.11> it follows that:
cn) T, (At @a
TLWal (A B8,) wy 4|
i L 3 i 3 <1.3.18>
therefore:
A (M .
¥ Wae R(Hp) L3¢5 A A'] an
<1.3.19>
Hence:
C oo AR L
2y oy A Al &4 <1.3.20>
A a »t o
We recognize in the sum <1.3.20> an effect [ = -‘z‘& 4 A;'é' A;a <1.3.21>
]

All the convergence problems are taken care of by the following theorem

where a better formulation of the above results is given.

THEOREM 1.3.22 [9]

S
For an arbitrary operation T, there exist operators A«;_ , ke X ( a finite

or countably infinite index set) on the Hilbert space H , satisfying:

A

~ A
P At&Ag._ ¢ A for all finite subsets Koo K <1.3.22a>
keko

A A
such that, with arbitrary 96 ®BW), and X &8®(W) , themaps T and T* are

given by:

17



R A AAT
TL31 = 5 A.5h
e ek <1.3.22b>

-

and
Ib.‘. AP
"[‘*[:2]: 2 AQ_X Ag_
Rek <1.3.22¢>
respectively.
A .
In particular, the effect F coresponding to T 4is given by:
A 21 T %L A1
F= 2 Agbe = LAl <1.3.22d>

er

If the index set is infinite, <1.3.22b> implies that, independently of
the ordering of K , the infinite sum in <1.3.22b> converges in the trace norm
topology, while those in <1.3.22¢> and <1.3.22d> converge ultraweakly.

Viceversa, given any countably or even uncountably infinite set of
operators 2% on H, ke K, satisfying condition <1.3.22a>, then <1.3.22b>
defines an operation T , whose adjoint T%* and the corresponding effect

are given by <1.3.22c> and <1.3.22d> respectively.

end

We can now proof that any map of the type <1.3.22c> is completely
positive,once <1.3.22a> is satisfied, [8], [9], and therefore, by THEOREM
1.3.7, <1.3.22b> too.

AT A A A )
Let us, indeed, consider the sum: {Z—- (As_®ﬁ.~) \AF;@/BH Yo ©X <1.3.23>
& Xo
A
where ’q“ is the identity operator on an N-dimensional Hilbert space Wy .
By <1.3.22a> the operator in <1.3.23> is bounded by the identity operator

on “@HH

A A A
Hence, by the fact that éf.: AQ_@ﬂN, we can construct the adjoint of an



operation on B(.“@u”)\ :

at [0 ~ y
T¥ix1= 5. (Agely) X (Ae.®4v) <1.3.24>
Rek

A A
Since )_(_’-‘ X® Ay, T* satisfies the conditions for the N-positivity.

A A n —

In fact: 'L’E’ﬂ = (‘{‘;K,AE Aﬁ)®‘6”° = LTtKJ(A“):S <1.3.25>

Complete positivity follows from being N any ﬁatural number.
It finds its physical justification when we derive the state change produced
by considering a microsystem as an open system in interaction with some
apparatus, like during a measurement process, or with some surroundings, like
a thermal bath. |

It should be stressed that the operators ‘g‘ﬁ in THEOREM 1.3.22, or
theE‘% g‘d in the Kraus'argument [8] contain all the features of what has been
called apparatus (its efficiency, for example).

In the last above mentioned case, we deal with a system S in interaction
with a reservoir R : R+S evolves unitarily as a closed system.

Let /g\ be the initial state of R and 2 that of S , the evolution of §,
disregarding R , is given by:

s) - A’A - T, rAg e UT/a @7,\91
T L 2,6 As) N Ls = TR <1.3.26>

where U 1is the Hamiltonian evolution operator on the C*-Algebra B(Ug® s )
A
Concluding this paragraph we show that the correspondence between

operations and effects is not one-to-one.
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‘ . A Ay Ay A
Let us consider two index setg K,:its and KL:E""E with A.“-‘J F ) Ay= E ! AU 5 _

& ~
, U being unitary.

a

A 4
F- F and F, =

i 2

[ S v 1Y

d‘f’“ A A A
* EU UE = F= F means that

two different operations can be associated to the same effect.

This is not other but the fact that two different devices can be used to
measure the same observable.

Note that this is impossible if the operation‘transforms pure states into
pure states [6], [10].

~ ia 2

In the above mentioned case that happens if and only if U=e /ﬂ .

Indeed:
T [lvrer ] = J?M’)G:’N F o= |$>eabl
<1.3.27>
- N A
TLLw>dwl] = L e +é Uld> 4l U <1.3.28>
pA
Paragraph 4 o

What briefly discussed at the end of the last paragraph can be better
explained by using the concept of generalized observable [2] (see also

Appendix A.3).

a At 2&
First of all it is convenient to stress that the effect : F = 2. A\& g
s
. . A 6 o ot ke
is connected with the operation i [wl = 2. Ap W A% which

Relk
describes how a phisical state changes due to the interaction with an

instruments "f".
although
Different instrumentss can measure the same effect and thereforerelonglng

to the same equivalence class , they determine different operations.

The same apparatus can be used for selecting those systems by which it
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was not tirggered.-
This corfesponds to an operation complementary to T : T°
~P
Both together realize a non selective operation |

Such a situation is easy analized in terms of what we already know.

N
Given an index set J and operators A;. such that :

AT A A
z_;:—-a AjAy = <1.4.1>
and two complementary subsets K, K' : KUK' =J ; we have:
" A ot
Tinle 2. AgWAYL | ¥ W e wan)
kek <1.4.2>
A A H r\-i' A
TLwls Z AeWAp ¥V Weku)
fer! / <1.4.3>
~ N . A‘ n AT, N
T (wl-= %—a Ad WAY /% We K(H) <l.4.4>
Note that:
- “ . T AA ) 1 n . T AT SR
_T“'S,“'W-S“ ivgrwgél/ TVE'TLW-I‘}'-”{r Wjél
p fLi1- Zt Agh
where: Fo= ("T‘) L4l = K‘i BTk <1.4.5>
But:
~ AnT 0-1:/\ . & B — A .
Tl Tz AR =T (2 By - w]= T w sy
4<3 s <l.4.6>

~
for all We&w(w).
oJ
Therefore | is a trace and probability preserving map.

Let us consider a positive, normalized, integrable function on the real

+ + e
line: fl R—s R j '{—-w 8G) dr=| <1.4.7>
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We construct a POSITIVE OPERATOR VALUED ( P.0.V.) measure ( see appendix
A.3) as follows:

. e n
F‘(&%‘j ($# e )q) d B @@

<1.4.8>
E belongs to the Borel 6 -algebra of the real line .
A
al Pq (=) = 19> 4ql o\% is the spectral measure of the usual position
10
operator ’c\‘ , and (ﬂ*'}(a)(q): J w‘,}(ﬁ-—x)’){ﬁ (%) O\«
By this way <1.4.8> becomes;
A~ + P tb ~ N
FCE) - &-we\q _(‘:\x ‘g(%‘x) (X‘:‘Oﬂ dﬂ‘%{) = JEO\K g("t ”) <1.4.9>

just considering the usual notion of function of an operator.

A
~ + e T tw .
Since FOR) = _(_w d"_{ﬂw dq ’%Q‘”“) la><ql = f—h g eqiolq = T

[aY
FC‘} is a P.0.V. measure on the real line.

Let us choose 2 = = e so that :
1
~ . ~d(§-x)*®
te (B) = Eg e elx
g

<1.4.10>

Iad
Let us compute the weak limit 0? &) as a0 ¥ 7 %7  we have :

. A . + 2 '_d(q_x)?.
A-PO o c -t

-p O ®

—
-

+ 0 — —_— AN
IE d,‘j d“l S(c!_.,,) AP Cy) Ple) "»("’J{QX) &) olx = ( )T';(E) ‘F) <1.4.11>
- Lo =8

In the limit of zero dispersion we get the usual projection-valued

. . . - A
measure on the real line associated with the position operator g .
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We can thus think of %;lé) as of the effect relative to the measurement
of the presencé of a particle within the open set E , being this one
performed by an instrument of finite, non zero dispersion 6 s@z:k)-‘.

We can go further and show that this "generalized position observable"l
follows from an "instrument" that is from a "POSITIVE MAP VALUED" (P.M.V.)
measure (see appendix A.3).

This one is a generalization of the concept of “operation".

In the case of the usual spectral measure of :1\ , once a partition {E.’E
of the real line has been chosen, the state change is given by:

a ~ oo .
= P (e W P, (&
Tiwle 20 % 2 (80 <1.4.12>

in the non selective case.
This map is partition dependent and as such not covariant.
Let us now introduce a P.M.V measure in the following way:

[a
for any Eeet —Borel é-algebra on the real line, for any WeX(H) :

A 2 A 2
s, —a(g-2)" o -£(4-a)
2 e W e dlx <1.4.13>

]

SHORLAES

=

<A.3.10> and <A.3.11> are satisfied and: .

+ 1 v - %(4-5)2,\
5 L ol W

a
»Lodc\ vy <3l e

Lo

+w A P ~a(q-x)¢
— f e\cl <u,iw\°x>J dx@.e = TeW= 1 <1.4.14>
-0 ~i2 i

Hence éd(.'ﬁ is an "instrument".

Moreover:
~ot(q-n)?t

EER NG E\w><aet]}=fem e L))
~lo

- iy
fid

<1l.4.15>

23



Compare with:
. d(g-x)*

A . v
3 ﬁta)[wuw]} = Ljﬂj:t@- Zql e ly><bla?

-0 (q-x1% <l.4.16>
= J“’g\c, J'_oix {% 3 1Y) i®
- c
Pl
This is true for all |¢> in H , hence for all W &K(H) .
[
Therefore ﬁ(ﬁ) is the effect associated to the operation &‘(E) .
It is covariant too:
1
b - ¢ (g-%) -4 (§-x)°
- o
if E=(a,b) then: EC 5) EWJ = \}% L. six & ¢ =
b i fg  ~%&% Py oA -ifAm -430 PPy
- L X o x < & “ € w ¢ e ® e
= = o L
ote  -d(Gen)t. -#(4x)
— 9 9
EGE+)TN]- {;f. dx e * We?* =
Yo e
L] E s 7. A (e
b it - ~44% (fom (Pay n ~iFRy ~ipen -23 1Py |
= Fjo\xe‘?c/“c‘?m‘&zq&eﬁﬂ?qwc he TR et F
T o
i dc I T L LT RPN BT LS X700 B L/
= e‘_f/*‘ Lie\xe e * e c © e+ ¢ c
i Jo
DA A
A LSS A
W, = e w
. a A
-V P/ I;S(./g(\ ~1gckq VP
EEealAl- = je@[e The TRl
Concluding:

we identify the instantaneous processes in the ®.M.s.L. model as non selective
operations given as P.M.V. measure on the real line.
éd (.')
Each of them is connected with a covariant "instrument® measuring the

Fal
"generalized observable” T:d(:' D as P.O.V. measure, or, analagously the usual

position observable with finite efficiency \FOZ
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The non selective character of the process is expressed by:
T {TIwli=
the selection being obtained when wehave ,iustead of T .
TeIwl = &) [W]
We also stress that:

A ‘ —ﬁC%»X)z A
F;(x?\}hj%j;\xa& =

accordingly with <1.4.4> and <1.4.5>.
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CHAPTER 2

Paragraph 1

Here we will deal with the Q.M.S.L.model:

d248 . -1 (8,381 -425 + 4 TL2z]
ot + <2.1.1>

where H is the free quantum Hamiltonian for a particle of mass m, and:

ds e £ e C femmm”

,_d A 2 —d A 2
J L34 Z(C\ x) n :(q “)
-t J

<2.1.2>

From now on the r.h.s. of <2.1.1> will be indicated as: L. [2+3

It will be shown that L 1is the generator of a strongly continuous,
positivity preserving semigroup of contraction operators on E»(“)T.

W

B(HJ, is the real Banach space of self-adjoint trace class operators.

Among them the physical states are represented by the positive ones with
trace 1.

k
It is sufficient to restrict ourselves to E5Q9>‘ instead of working with

LU8-2%1 A emew,,
2 2

A - A s Iy
since, by linearity and by the fact that: P = 1L ?‘fgfl -
we can extend all the conclusions to BCr),

In order to get a more familiar form for the linear positive map

we use the following argument [3].

Let us consider the position representation of 1L 83

A —i’w "é - A& 2 - ‘_.& Z
£\ TLel\qi 2> = EJ six e 2la-2 <cﬂ?l"1'> . z(4-»)
'l
*-%C‘i“l‘ﬁz A
= ¢ < elgls <2.1.3>
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We can obtain formula <2.1.3> by considering:

o N n N
TL3] = %M Au ¢ Bw

<2.1.4>

with

1
Mg
-0

<2.1.5>

1}

Aw (e)”‘;‘z q e

Indeed:
b ' --d\ 2 2
w0 ~ o V8 m & ( + ql )
uffa b s By« Lo (G e CHOY g,

A “& (4% 4 fqq
- L9l L \qi> & &

Noting that:

A A
2w Au b= A <2.1.6>

we recognize <2.1.4> as a non selective operation on E“;H); .
It then follows that the sum converges in the trace norm and that there
—k A e a n D A
exists the adjoint map T*, given by: l CXJ = ng Aum £ L , Xe BCH)

where the sum is ultraweakly convergent (see appendix A.2).

We stress here two important consequences of <2.1.4>.

Writing:
LC6l = LoCél o LaLsl
<2.1.7>
where: n
LoLd= ...:%EH,ﬁ <2.1.8>
LO}£31=~A§‘*JTE?1 <2.1.9>
Trel= S Aut Au <2.1.10>

it follows:
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b)

c)

d)

le
conbvactiongon  BW), : 2. = {‘Z«ES

,llTEQZ\u‘ e WEl, ¥3e chf‘ <2.1.11>

W
Indeed: if §eBCW), , then £ =fu - 6. with:
§{. = Q«- 18l and 3.- = 18]-2¢ the positive parts of /g\
Since TLgl= TC .,?‘-%] - TL ?—J and TLE&:], TLE)  are

positive trace class operators it follows that:

NTC8ll = T TC8T] e TefTrdal]s Twds = U221, <2.1.125

due to <2.1.6> and to the cyclicity of the trace.

Hence, being || \l‘ a norm, we get <2.1.11>.

Defining the norm of T as: Wl = we CTTRIN, /g,

P& 8L}
we have: || Tl 41 and, since “T[}_‘m‘,___ heil, if g& 3(5)? , it
follows that: T =1

b
From a) and b) we obtain that L,,[ is a bounded operator on B(W) with

norm: Mhall= U-dg =+ dT | ¢ 2d <2.1.13>

b
We can use c¢) and the duality between BQM‘ and Bcu)kgiven by the trace,
* b
in order to construct the adjoint Ld of Log on B(H) , which turns out

to be bounded and such that: iFg\l= Ll [21] <2.1.14>
We want to proof the following:

STATEMENT 1

. = l_,,3 + L o is the generator of a strongly continuous semigroup of

¥z0

Moreover: Z preserves positivity.
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Since the Hamiltonian H in Lo is unbounded, we cannot use the results in
ref.[12] aboutl the general form of a completely positive dynamical semigroups.

We will face this problem introducing the concept of dissipativeness of
an operator on a Banach space [23], and studying the operator L,l in <2.1.9> as _
a linear perturbation of L., [11], [26].

In the following we will deal with general unbounded self adjoint

Hamiltonian H.

The first step consists in defining a semi-inner product (s.i.p) on the

W .
Banach space B(W),, as follows: (2,3‘) —> [&,3%] 3 a,j\ € BCH),
where:
A A A ~oa re 4 ~A A la
EGI‘:‘-\"?LI‘: [GIS‘]*LCJIL} C‘Sllfl C‘&CH); <2.1.15>
A AY 1P A A
[6)A31— ‘*Ls,’}]‘ é\;gea‘:“}:\ ; Aeﬂ}.
<2.1.16>
£2,8) 20 fov £ e mew é+o
’ Y N <2.1.17>
A A FT-: AN 2 A L‘.
LLe 51l ¢ JCd, 81 Lesl €, e BLW, <2.1.18>
It is always possible to equip a Banach space X with a (s.i.p)
. . . %
compatible with the norm ‘,l‘i\;{ in the sense that: i\ A \\?{ = {:A/A] , AeX

b,
In the case in which X= B(W), the construction of such a (s.1.p) is the
following.

P 9 k a‘
Let us consider the linear functional % in L%CM,] given by:
A A T T o k <2.1.19>
Felél= 1ty T (W8] 52 e e

0n
- ”
where W is the partial isometry appearing in the polar decomposition of P

[30= [3T7 = w's  [a7]
Felil= 00, RiN 2] = ngu, gt = wso?
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Hence: Ef;zl": T“gtal is the required compatible (s.i.p).

Indeed: | C&8l= FTpL2l-= S :
and: L8, a0l = wen AT gt e3¢ udw,nén, = i Jrod
the <2.1.15> and <2.1.16> being trivially verified by <2.1.19>.

F}[-] is also called tangent functional at ?

DEFINITION 2.1.20.[23]
A linear operator A on a Banach space X 1is dissipative if:

Re [, Ax] ¢ 0 for at least a (s.i.p.), ¥xeX.
We will need the following:

THEOREM 2.1.21.[23]
A necessary and sufficient condition for a linear operator A, with dense
domain in a Banach space X, to generate a stongly continuous semigroup of

contractions is that A be dissipative and that Ran(I-A)=X .

STATEMENT 2

b
Lo generates a strongly continuous group of isometries on BC(H), .

proof

Being H unbounded, .o Benerates a group on B(H) which is continuous in
the strong operators-topology.

This means that it is also continuous in the weak operators-topology on
B(H).

If g‘TtSJ;ei the group generated by L, , it then follows that Tg? is

Pl
weakly convergent to § as t goes to zero for every £ in K(H).

o~ b . A A
Since every 6 ¢ B(W), can be written as: &= Cg4 S C__?_‘ where:
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N 2 A a a
= ﬂij~ ;s B-= 6 - y Cp = —GL 6+ C. = T é.-
.10
Te s TE- ’

N
by linearity —T; e converges weakly to 2 as t goes to zero.
By a theorem of Wehrl[28] we have that: if a sequence of density

A . . .
matriceségn} converges weakly to a density matrix ? , then it also converges

in trace norm to the same ’_§

Then: | Tee~-51l, —ro art o ¥ fe mowd)t
Hence: | Tee - elly 2 cell Tl *f-l-“, + C. \\Te./s‘-.—'ﬁ_l\l —r 0 an L —ro
Moreover: l["ﬂ;gu; & U'f;h\&li-U‘I;E-u; 2 ﬁei.u _t.ug‘,ul —:ué‘ll‘

I
A A
. . TREG A -l A
since _T; is positivity preserving and T le‘ A 64 & A 3: Tv €
L
Therefore T;. is a strongly continuous group of isometries on BCH)‘ .

end

By Theorem 2.1.21. and Statement 2 it follows that Le and —Lo are

strong-densely defined and dissipative with respect to every (s.i.p.) on Bﬁu)‘k.

STATEMENT 3

L-o\ is dissipative.

proof
l
We equip %{R\)i with a (s.i.p.) compatible with the trace norm.

Hence:

Qc[g)Lx‘gj = Re [€,-423]1 & Re Egle\’rﬁejl

. . A
Lodneu +d 080 nTLell, 0 ¥ Eemaw,

by <2.1.11>.

Since Ld is bounded and dissipative and L. generates a group of isometries
which is strong-continuous on gcu)f“ , the following theorem allows us to

show that L= Le +L o generates a strong-continuous semigroup of

b
contractions on BCH)‘ .
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THEOREM 2.1.22.[11], [26]

Let S bia the generator of a strong-continuous semigroup of
contractions, on the Banach space X , and P a dissipative operator
with D(S)&D®)and WPAlle a A+ blUsAl
for.all AeD(s), for some &Ppo and bsl .

It follows that S+P generates a strong-continuous semigroup of

contractions on X .

Concluding: the semigroup iZtS generated by L 1is such that:

tro
A “ A \4«
(1) ?_\___24;_6_, = L[Zw] in the strong sense ¥ &se 'B(H)tﬁD(J‘) <2.1.23>
o\i: ~ A A Lb
(ii) VI Wz, ¢6~ 5“1"‘0 ¥ Ee BCW, <2.1.24>
t-Fo+ \ |
(iii) N, & WS, ¥ &6 sCH) <2.1.25>

Moreover, if geV\(.H) and ge’DQ\_) we have:

R e S L R

Therefore: T §fz 2l =Tegal and: 4= T?-EZ%_E sNzil 2ngl, = |
ks R !

feo

Hence I 24-_? “l = U¢ \\1 ’s—o‘f _§e KCi) and I\Z& l=] ;thus:

(iv) L generates a semigroup of contbraclions , novew y««:scwimé on lk(.uv).<2'1'26>

We know that the strong continuity of the semigroup {Zti coincides with
tv o0
the weak continuity (see ref.[11], Chap.3, par.3.1.1.).

b
That 1is izt}f is continuous in the trace norm topology of B(W), and also
10
. . Ak b
in the topology induced by the functionals in [BCRY, ]*: BCH)

This topology is obviously weaker than the previous one; a typical

L ~ u S eyt
neighbourhood of some ’§ & E,C.H):‘ is given by: {2& BCH), lTv’i;([f—-dji(& j £>O/Xe‘&§)~
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¥ W
It will be indicated by GCX,X ), where XK= BCH),
Weak cont‘inuity of iZ;‘}‘ means continuity in t of every function given
30
A A kL. W
by: FrU2,8] = Ta {x-2,%¢ 5 XeB' , ¢e BCK),
b
and (%, x¥) - 6(x,%x*) continuity of 2., in the sense that, if F;Q e B(W)
V h
then F;(ozé also belongs to B(H)
This very fact allows the definition of the adjoint of Z{: as a
X k.
£ _ t3 3 *: Z* X= B
c(x IX) continuous semigroup 2. 5' tj{'?,oon A .
=FF101 = F202,8] <2.1.27>
that is:

]R8 = T"{%'Ztﬂ; XeBuw ) feBal <2128

¥

E. turns out to be a semigroup of c¢onbvactious ,continuous in the
b k
topology induced on B(H) by the elements of B(H), thought of as linear
7%
functionals on BCH) .
s l~
This topology will be indicated by GCX) X*) , where X = BCH) ,
W
due to the fact that BCH), is the predual of BCH)™
We already know who 6(X, X#) is in this case: it is the ultraweak
W
topology on B(H) (see appendix A.2.).
Therefore: };*: {ztS{-?o is an ultraweak continuous semigroup of
/‘

. : L,
conbraclions on BCY) , generated by the dual L* of L and satisfying:

(1) L*E—]:,}EEH,'J ~dA oxa TL ] <2.1.29>
A
A A A "
an 42X . FLETE] for %6 DOF)NBOD <2.1.305
T
in the ultraweak sense.
(i) we | T SL3Fx-%1Y =0 wpe BCW <2.1.31>
t-pot
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X
=5 =1 : <2.1.32>

(iv)
N ® A . . . . b
vy “Tv {3 [2¢ X]} is a continuous linear functional on  BCH)
equipped with the ultraweak topology. <2.1.33>
A A
We observe now that X=41 implies:
~ A

|¥CQ4l=0 and foﬁ = <2.1.34>

In order to conlude the proof of Statement 1 , we need demonstrate the
last point:

STATEMENT 4
V¢ ¥30 ‘2}2 {25%}%?0 is positivity preserving.
'/

proof

We shall use the following:

THEOREM 2.2.35.[21]
Let U be a C*-algebra and ¢« a linear functional on it.

. -
If & 1is continuous and llwll = ﬁuaﬁ w(Eq) for some approximate

identity of U, then «* 1is a state, hence positive.

Now the situation is the following:

SF o eawmdt s momd™ <2.1.36>

“;E: b=\ <2.1.37>
A N

£ L <2.1.38>
S50 = 4

;Zf , by linearity, can be extended to a bounded map from the

C*-algebra B(H) into itself.
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Let us consider a state wWg(:)="In i?'f‘]} on B(H), with & e KCH)

and hence [z =1|

& . . . .
e L] = (wft 2y ) DA 1s a continuous linear functional on B(H)
such that:
W} ¥
Lol 2 newpli=ftl =1 <2.1.395
L (4) = wsCd) =4 <2.1.40>
By the above Theorem JW is positive, wathever § be.
A
Thus: ¥ §ewel) , Xe BCH)’  implies Tr{$ Z¥X] 3o
2 :
It then follows that ZrXpo and, by duality, that {ztgﬂ}a o

is also positivity preserving.
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Paragraph 2

In this paragraph it will be shown that the Von Neumann entropy of a state ?

increases in time under the dynamics with spontaneous localizations.

STATEMENT 1

h=, el = wsn, ' <2.2.1>
L=2,420, 6 15W, <2.2.2>

A

for R € K(H).

proof

Since §,2~t preserves the positivity and §>,o we have:

43,0
oo 4o vy afpy/,g‘
L2 el = Tz, 21 = d d/d F(d, + «71%
$2 4 {2:8] Lw ﬁJ-w 1) on czw—t’. Cdupy o, 4) cqeyitsllqey)
=17
= %¥(d,0,0,t a 0
(d,0,0,%) j_w q 4ql F5ci) ly>
- TV{?SC*)S = T\r{:ég = &?u; <2.2.3>
Since Nz, 72 \\2,‘ = Te ifzégf EZ%?J?} = Tv {C%?Jzﬂ , if e § L2217
decreases in time, also does Hzi,?ili
Indeed: o3 AU = 2 0200, o027
at olf
implies:
oS U2l 20 5 Iz, 210, = I Zo?“z’—' 11?1\1
el b
But this is really the case, since:
LNt R R L A L L B RN
elt o
+ Rfd 2,8-TI2] - L2 LH,23]] =0
where the third term is zero by cyclicity when 24? belongs to D(L).
Indeed:
. +o . .
§2,8. TL250) = [ 91 <al . Tilhie =
4+
=j;“dqj dqt <91 242190491 TLE ;119> <2.2.4>
- ~o
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tw YR )& ..gl ) 2
where:  Lq'L TL2¢llg> = J_%" J‘w de € 2 g 3,08 1q> € 20

- (a-4')
e 4

i
™|

44‘ Z+Fl‘l>

+ 0 T n 2 "%"(‘i"‘t')z
Hence <2.2.4> becomes: o °\qJ wdq‘ &gl Z,¢la>1 e
+{e + (P 2 a
& _koxqj__wdf-;‘ léq‘\Z}?MN = TY{EZ‘WJzJ
thus:
o Tp£3481% 4o

elk

end

Note that 2+'§ is Hilbert-Schmidt, that is W3, W, ¢+ since 2,§  is

N Pa) .
trace class if L is.

DEFINITION 2.2.5

We shall indicate by BCH)F those subensembles of bounded operators for

- A l/
which: uﬁnp-=thAW1‘°<rw OLp st

REMARK

BCH) | is the ensemble of trace class operators.

BLu); that of Hilbert-Schmidt's.
What we know about B(w), and B(W), extends to any ®CWdp with

THEOREM 2.2.6.[20]

For p2i, W-llg is a norm and with this norm BCW), is a Banach sgpace.

THEOREM 2.2.7.[20]

The finite range operators are dense in any BCH)P

topologies.
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REMARK

Density 1s also true for O<p<l , but the | '\lp 's are not norms in

this case.

THEOREM 2.2.8.[20]

£ A belongs to B(W, and B to ‘E;CH'}Q , then: l\ﬁ\gl\t ¢ A o \\6!\3
with %*Z‘f"i?ﬂ’/‘ :
THEOREM 2.2.9.[22], [25].
If T is a linear map from W©CH)q into BCWe, and
from BCH)q, into B¢,
defined on the finite range operators, satisfying:
¢ 1) [TAlUp, & M LA,
( i1) L TAlp & M2 WA Vg,
then, for t in the interval [0,1] and p, q such that:
(ii1) 4/p = Q=3%)p, + */f2
Civ) 4 /q = Q-~4)/q * t/q

we have:
S S o
z

ITAN, = A7 AD WAl

The proof of this theorem is given in appendix A.5.
DEFINITION 2.2.10.[28]

We shall call « -entropies the following maps from W(M) into Wv—k

S4(§) - A W VLS xe -5y, fexew

THEOREM 2.2.11

B Su(8) = S(F)= — Teidm?]
o1

proof

A
AR VL R T

pizo Yy

/

where ?‘; is an eigenvalue of _f'e‘ and they all are repeated according to the
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A
multiplicity (finite), and pd' is the corresponding projection.

W A W [Ze] - - e b f sy g4 1] -

d-pi I-d a1 olo
. oU?u . e . ) .
vl 5. §o ald ™38

end

In the present situation the linear map Z'—h satisfies the requirements

of theorem 2.1.9. with:
K=l 5 K=
Pimy=2 ;) = 9.= |
Then: i\t Zg?“;.; & l\é\“p I'W ng_ “i‘*fl = T:E <2.2.12>
That is <2.2.12> holds for any p belonging to the interval [1, 2].

- g e a Iy

Hence: L T i 124-3\?3.1 ¢ | l“i U'W‘H Py pE Cua]
Consequently: T {12“’-’\?3 & Tef l.}‘\TS ¥pe Lui]
But § is a density matrix and 21.,? too, that is: |gl=¢ ; \2*?\:‘_ 20 !
Thus:

Te { [231%) 2 ™[ ¢§7]

b [Tef 02,2088] = & [Tv {778]

= W DT fozpdfdl > e[ Tei8P3]  ¥p e [hnel

\-p -p

Se(2,48) » 3.(#) ¥ pe a2l

and: 5 (2Z2) 2 5(F)

by theorem 2.5.11.

end
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APPENDIX A.1 [11], [13], [181, [19], [20]

It is appropriate to give here all the definitions and properties

concerning the mathematical technicalities in Chapter 1.

DEFINITION A.1.1

A C*-Algebra is a normed algebra e* such that:
ot is complete in the norm W -1ll  (Banach algebra) <i>
u¥ possesses an involution x: el —» et :
*(AB)=B*AX ; WA®l=WAN ; *(uA+pe)=d AR Fe¥; 4pcet ;4pe € <ids

LA¥ANL = LA®L AN = hau™ <iii>

a A
For example B(H) is a C*-Algebra under the norm: WA ll= sop Nawll . AeB(¥)  vyed
Wil
DEFINITION A.1.2
A
A *-Subalgebra q% of CA”EK“)such that it coicides with its bicommutant

is a Von Neumann Algebra.
REMARK A.1.3.

By the Von NWeumann bicommutant theorem %3 coincides with its strong and

weak closure.
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We can now examine some subclasses of B(H) and their features.
DEFINITION A.1l.4.

P

Ae®(H) is compact if and only if it transforms weakly convergent

sequences of vectors in H into strong convergent ones.

THEOREM A.1.5.

The set of compact operators is a linear space which is closed in the
norm |} -|i.
It is a two sided ideal in B(H) and coincides with the norm closure of the

linear space of finite range-operators.

THEOREM A.1l.6.
A . Ay S .
If AeB(H) then there exists |Al=|3TA and an isometry W such

that A=WIA|

DEFINITION A.1.7
~

The set of all operators A 1in B(H) such that —F«'lA\uvD is the set of the

trace class operators: ’B()—\)‘ .

DEFINITION A.1.8.
A

A
The set of all operators A in B(H) such that T A1 ¢4 w is the set

of Hilbert-Schmidt operators: ®(w), .
THEOREM A.1 .9.
A A AN ) A A
A €D, is of the form A=CB with Ce®(W),, Be BCH),

and for any X € BCH) , TefAX} = T\»ﬁ,?\} holds.
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THEOREM A.1.10

The following statements are equivalent:

Ae s, | <i>
Al e BCu), <iis
(i3l e mcwn <iiis
Teldlz+ w <ivs

DEFINITION A.1.11.

The sub-classes of compact operators such that:

- A l/ A

CTeia1e]® croo | 0ocpPére , Ae BCwd <i>
or

CrANIP VP

D2y @] trw <ii>

where: {)za'(.ﬁ\j

are the eigenvalues of {ﬁ&, will be indicated byl BC P‘-)P . <iii>

THEOREM A.1.12.[20]

[N ~ >,
1f g‘s"use 8(Ws 1is a sequence of operators such that {far® "T‘“up TP a8 W, u ke

n "~ A
then there exists a compact operator T such that Tu - T (in the topology

of B(l&)?) as U—p oo

THEOREM A.1.13.[20]
H
Let T be compact.
n
Then there exists a sequence {Tu?)of compact operators, having finite

dimensional ranges, such that:

Fal ™
Tu —+ T in the uniform topology as <i>
& ~ A
N =Tlo»o as m—rw if Te BCH), <ii>
N - . A PR
BTully - WTll, a5 w—eewe if T e B, <iii>
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THEOREM A.1.14.[20]

We have B(H)P S BMGif peypl ; Il -y decreases as p increases. <i>
AN a 4O
1f T, T, are in B(Wp , then N+ isin BCHp ciis
and: a | A 4 <iii>
UG eTl, e2® SuTitp « 0Tally3 p 2
A A AP A
T -l-Tz.“,: £ 2 iu‘ﬁug»*-“"'zugﬁ Oepel <iv>
o A nA
if T, is in dW), and 1, is in BCH)tz , then T T2 is in BCHe
where A/z |+ (= I/ <>
i/ “« A
Moreover: I '(1\: %a. uq, 227" Tl z, Tl T, <vi>

" A A A ~AA
If T is in ®(W,and A is bounded, then AT and TA are in BCH), <vii>

Moreover: “a'?'i\,,_ A l\Xl\l&?‘lig 5 ‘k\"'?‘ﬁll,l P2 \\'“rllq “All <viii>

THEOREM A.1.15.[20]
-} =l
Let l2p<+w and let gqtp=1.
Let (, denote the set of non zero operators with finite dimensional ranges.

A
Then if A 1is in 'BC\D?:

WA, = sp LT LARY

BeCo  NBlg <i>
Let p and q be as above, let K be in '&(»D(?and g in %C\;)a .
Then:
Te g ARY « T iR 4] i
and
| W ABY 2 nAW UB Ny <iii>

rOA
Let p, q, A, B be as above.

Then:
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NABN, & bANp WBIq s

A
Let p be as above and A, 4&\ be in BUWp.

Then:

WA+ Al ¢ NANL + H A, <>

We can assign different topologies of 1ocally.convex space to B(H).
These are determined by different families of seminorms which fix what sets
are open.

We usually work with:
the norm topology given by: ll;ll\ =u:;?; l\A‘-?l\ J Y& H

the strong topology given by the following family of seminorms: Py (A)= WAwl ;Y€ H

the weak topology given by the family: Py, &(8)= \ (¥ 46| ’ ¥, € e i

We introduce here a further topology: the ultraweak one.
It is determined by the following family of seminorms: ?_"Eg q 3
e =
A
?giq(ﬁ\)’= % ‘.(gm,AYZM)l
T [ 2 1\ \2 Lt

where §:9§,} and ‘i£={*'1n3 are sequences of vectors in H such that %.\\ Full j%-\’?ﬁs\‘ (e

A generating family of neighbourhoods is given by sets in B(H) of the

form:

- N - N 3 z
1.&&%(.\01 ’Pg‘)q‘(A)<£;§ )33;:;)...);4. g0 J. “§L“z(-f(, , Z“_l\gf,,“cwoj

THEOREM A.1.16 [11]

The ultraweak topology is finer than the weak one and the two coincide on very

bounded set in B(H).
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REMARK A.1.17.

Given a vector space E and its algebraic dual E%, the initial topology
on E 1is the one making all the linear functionals in E* continuous.

Considering E** we can assign to E* two different topologies: the initial
one and the weak*topology.

The last is obtained as follows:
for any x ¢ E » JX is an element of E", the topological dual of E' with the
sup norm, where J : €—P E"  ig such that < Tx,$>=4%,5>

The weak*-topology on E' is the one making continuous all the functionals
on E'of the type Jx.

A generating family of neighbourhoods is given by sets of the form:
S fe Bl [ <Tx, 3ol = 1e®vl ey ¥egvo P21, m ]

Since in general E é;E“ the weak*-topology is less fine than the weak
(initial) one generated by the following neighbourhoods:
Qfetts laFifrlca fere TreR' i=ueon ]

THEOREM A.1.18 [11]

In the duality given by:

¥

ral
T ~ .
7 A BOWD

=

Ter (X,T) —» vy ) %eacmx
B(H) is the topological dual of BCH), .
The ultraweak topology coincide with the weak*-topology.
REMARK A.1.19
The space of the ultraweakly continuous linear functionals on B(H) is in
one to one correspondence with the elements of oW, .
Indeed the seminorms defining that topology are of the form:
PrCR) = L TviRTIL 5 Xe mew, Fencw),
REMARK A.1.20.

2 A A
Since WNTH, = ;UF ITe £ %731 , from the Hahn-Banach theorem and its
WRuel
corollaries it follows that: WXy = wp | To {'Q ?31
W=

-2
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APPENDIX A.2. [6], [7]1, [8], [9]

In this appendix we want to discuss some of the properties of the
"operations™ : T : ®CH), —» BCHI,
introduced in Chapter 1

It will be useful to see how the formalism of the perevious appendix
works.

The first aspect we face is the continuity of' T with respect to the
trace norm topology given by: I A\l‘ = T+ lf’:l

By linear convexity T, which is initially defined only on the set of
density matrices K(H), can be extended to a positive, linear map on B(HJy.

Let us consider the action of T on %C\-D?which is the real
Banach-subspace of the self-adjoint operators in B(H),‘.

Every ;:\ in ’b(.%)‘:' can be decomposed as follows:

A—.: Ag—-— I/\\- <A.2.1>

A A
where A+ and A- are positive self-adjoint operators given by:

A A\ A A y A
Ar= AxlAl o A< 1AL~ A with |Al=[atd= | A* <A.2.2>
2, 2
We have:
” A A

“A“L = )PL\'{H = o Ay o« = A <A.2.3>

and .
A A a
&"l“,ﬁ\: \,Tv.a-y —-TVA—*\ £ Ay « TrA- =“A”l <A.2.4>

n A A
WE construct Wi = A+ and W_. =

Tv As

-

:they are elements of K(H).

A
o>
|
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Hence:

WTCAll, = wp Vv L2-TLAYL - sp | Te § %[ A - TOW] - Te Ao TOW-I}|

WRH =1 WAW= |

6 sop [ Wby T XTIV 4 Redo T 2 TIN-T]

uRl =1
£ wop WAL JTeA . 0TOWIN  TAMTOVINT & c Al , o
T Rz o
where we used THEOREM A.1.15 and REMARK A.1.20 , setting: Q = P BTERIN <
We Ki)
R A
Therefore Tv {X' T [333 is a linear continuous functional on BCH),“,
Indeed:
A A A A A A
| R §X- TCATY) 2 WXL ATIAJN, ¢ uRu AW, <A.2.6>

: 2o uy 1F . h h
By the duality ®BCHW)=|[BCW) ! (see A.1.), which also holds for BCH) , BCY),

we have:

[Tq. i’;(Tililﬂ.: TT-{;’\“/XJ <A.2.7>

with X wuniquely determined by X* [21].
. SX . xS
We write: XK= \*]:X] <A.2.8>
thus defining T* as the linear map dual of T 1in the above defined duality.

T* is real linear and can be extended to B(H).

Moreover:
“—T#L,’QM\ c:)? l—]}{ 'T*Y.gﬂ ﬁll = F;J? &TQEQ'TL%JS} £ LRI <A.2.9>
W&,z Nam=

Hence T* is a continuos linear map on B(H).

A W
For any B & B(H), it then follows:

ITE8IN = wp | ®l&. TIBIY = wp | To| TT&I-B]

Il =1 1 e <A.2.10>

that is the continuity of T on all of BUY),

47



T* is also normal, that is ultraweakly continuous on B(H).

< A A .
Indeed: given a sequence {K\.S' converging to X in %C\Dk , we have:

| Te{ TELR-Ru] - A= | [ Cf-Fu] TCATY| & nR-Run, uTh o,

<A.2.11>
M
which goes to zero as n goes to infinity for any & eBCH) |
Let us now consider:
foaT
TLA) = Ze T AT
® <A.2.12>
~ .5 S
TFXI= Le Tex T,
k <A.2.13>
~ DA g A
ro= ';Z{f*- Te. lg A <A.2.14>

A
where ﬁ(—‘.—’BC&Ql , REBCH) .
R
The set K 1is at most countable by condition <A.2.1l4> and F‘;'—‘ Z‘L T; lg
is a bounded, increasing sequence of positive operators in B(H).

As such it is weakly and ultraweakly convergent in B(H) to some operator
st N

~
Fe20ToTs .
LS

Let us consider:

AT o4 &

A m
s o3
X, = Z;g e X Te X & BH) <A.2.15>

/

A
{}(“E is an increasing bounded sequence of positive operators in B(H).
~ P o P ~
Indeed: O¢ Xyu & WX\ Fu ¢U0X0N-4 H#ueh
x A, #TI\ s
Hence it is weakly and ultraweakly convergent to some T [:?4]= %—- Tg X Tg.
By linearity the argument extends to all of B(H), independently of the
order of summation.
A v AT )
written: A, = 3. Tp A 2

3

Ac Bw}f <A.2.16>
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A +
since BU)| is a two sided ideal in B(H), {Aug is a sequence in B(W), which
is a Cauchy sequence of positive operators.

Thence:

ot TE T T (A1)

vt <A.2.17>
N
=T¢{Eﬁ‘u"‘{-—m]'ak -t O oA M, uk — P oo
by ultraweakly convergence of {E‘“S in B(H).
A ' s o A ‘ N a —f
Hence 2A“§ is trace norm convergent to a positive operator |} LAl = é.i e Alg

in B, .

By linearity this is true for any A\ e B, , independently of the
order of summation.

We have now the ultraweakly convergence of the second and third series in
<A.2.13> and <A.2.14> and the trace norm convergence of that in <A.2.12>.

It remains to be proved the duality between T and T%

We have to show that:

T &;2 TC.&]} = T i’("“[ﬁl : ﬁg ¥ X e BCy)  ¥Aemw), cao1ss

e A " gt A A
By ultraweakly convergence: b iXu A} —;Lw [w § . A} <A.2.19>

But:

§

and: | T § X-CTEAI-AW3] | & BRU ITCAY- Aull, — o
by trace norm convergence of i‘a“ﬁ'

Hence:

T {THRD A LS b [T LR - el [Tef% 4] - Tf{sz.mgj
M- 00
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APPENDIX A.3.[2]

A self adjoint operator A is usually expressed in terms of its spectral

resolution.
A A T
Let A be such that A = A and:
A d? )
= 4 K
A- 5,131 A <A.3.1>
? .

‘a . A
where S?[ 1 is the bounded or unbounded spectrum of A ,
A
o\PA(,Q is the “projection valued measure" on 5? [3‘]
"
Generally ’PA =) is a map from the Borelian ¢ -algebra of a measure

set Jly into the positive operators on a Hilbert space H such that:

B,(6) 3 Pal9) =0 ¥ Teed
<A.3.2>
NOUPENE + 6
?ALE) = ?A (‘) € et
<A.3.3>
> N A o ) i
Z; R = RldE] A {eect . Eing=g
L <A.3.4>
ﬁ(a) ‘QA(FM %ACE) L E,F: E£cF
<A.3.5>
®, (0) = 4
ar ) <A.3.6>
i
This map: '%,(_-) : et —b Bln)

A
is uniquely determined by the observable (self adjoint operator) A .
Since we stressed the opportunity of using more general effects than the
projections, we introduce the following:

N
POSITIVE OPERATOR VALUED MEASURE (P.0.V.): TL) @ et—e BUW
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It satisfies:’

<A.3.7>
YoBe = FLOE] ¥ {EQeAs LNE= g
J;’ Bl = a2t <A.3.8>
y)
T?(Jb) = <A.3.9>
This f}(r) is called "generalized observable”.
fal
Given a state W , the probability of finding a value of the
generalized observable Efﬂ)within a set E of et is given by:
S " = 2
TYiQ'F‘LC)E - J-TY L. eFe] <A.3.10>
e
A
and the mean value in the state W by:
<%> = ;.;Tvi\?fc\%(ﬁ)}
“ & s <A.3.11>

The serie in <A.3.8> and the above integral, if convergent, are to be

understood as strong or ultraweakly limits in B(H).
A
In such a case F'C-) determines a self adjoint operator:

§>_— S Xd%cx) <A.3.12>
e

The correspondence is not one to omne.

A
Since B = %’r

o~
, B it is also determined by its unique projection valued
measure.

We find here the mathematical expression of the fact that an observable

51



is specified by the measurements we can perform on it, using a whole
equivalence ciéss of instruments [9], each of them providing a different
operation on the physical states.

The set of the "operations" on the state space K(H) is a convex set
within the linear space of the bounded, linear transformations on K(H):

It can be topologized in two ways: by the norm given by:

W70« wp WTowll,

N e wew <A.3.13>
or by the seminorms in g where:
Pa (,,'T) = \\T?“x <A.3.14>
The last one is called the strong topology on ﬁ(&(u))
We are now able to introduce the following:
+
POSITIVE MAP VALUED MEASURE (P.M.V): & : C+ —b ﬁ CKCH))

i*(t&@«\}) is the cowne o% all ?ogitiv: Liveny maps ou I»CV\CH}D/,

which satisfies:

EE) » £(p) =0 4 Ee et <A.3.15>
o & oy -~
E[08). 20 E(E) ¥ {E]eet : Eingy= ¢
iz 1 <A.3.16>
'rvs_ Ebm)E@JSf 1 ¥ fe xcn) <A.3.17>

This P.M.V. will be called an "instruments".

The sum in <A.3.16> converges in the strong topology.
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This is a natural generalization of what has been called "operation” in
Chapter 1.

In that case the set b is countable and g ¢) is a pure point P.M.V.
measure.

As for the discrete case we can show that a P.M.V. measure uniquely
determines a P.0.V. measure on the same set and therefore a unique
generalized observable.

The rule is obviously given by the correspondence:

TLEDIMLs TR Y Ly Bexan

The proof is similar to that presented in A.2.: it has only to be proved

Fa
that Fr(') is a P.0.V., but this easily follows from the properties of

and the strong convergence of the sum in <A.3.16>.
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APPENDIX A.4.

We want now to investigate the solution of the modified dynamics in the
free case, whose formal properties have been pointed out in chapter 1.
The solution, as discussed in the introduction, is:

t e —ipyig
cqlzyglal> = L J_wob«j dy ¢ Flp g-alk) 2qry ) ese 1o +7>

2%k <A.4.1>
I A A )]olz
F(“a)“z‘l"‘i‘;’!’) = & c
<A.4.2>
AL . A2
- P I3 T .{:
B . e Mg o b
Ss i <A.4.3>
Let us formally manipulate the formula <A.4.1> as follows:
we write  T{d,, g-q!,}) as:
+° —
F(4, 0 9~ q')t) = j»w ol» $(»-gqux q1) T(d,pu,» +)
H - )
= A Ya +wo\x e Heraral
T ek I_V, Lw Tl 2, +) <A.4.4>

Hence <A.4.1> becomes:

Tw 20 iY;(/Y’ Ay
<ql 2, % \lq'> = (—;—;)7_ ‘( wo\ﬂj uwf e ca,/ < e

% e {%ﬂiq“ﬂ} L4y} FsCl g ey
Remembering that: [ i—- "3"?‘7{;;3 a7 = 19+7>
we obtain:

tw ~iPR/y g
Lal 2,% \gi>= (:;:Q"\S o o\«)J ! d~/ e e L’;c

A F(&, 0, 1) 4l w?{ﬁggmyif?%-%ﬂgf‘ wfi:; _;,zgmyﬁ,tg@

thus:

. t .
Zkg = j B\?(jﬂ d7 ?(A'Y/"‘)’\-) W (%7) Ut.f U, W(x‘,-}/)

<A.4.5>
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jm J'HP M -ivx/R
O

A = A dv e e
Fl&hynt) 21k Voo o dets Flasnd) <A.4.6>
N 42.1:
-8 =1y - :mﬁ
ch,\/) = @ ) U‘:= e <A.4.7>

Since ‘FG‘;)#,\’,’(') is only locally integrable, being bounded and going as a
constant at infinity, it can be interpreted as a regular, tempered distribution
on the Schwartz space ES , for any t>0.

The linear functional F,[*] on 4 the functién F(o, ,",'1') gives rise is
positive for any t>0.

Its Fourier transform %;[C?lcﬂ [Ql , ®ed » gives a meaning to
formula <A.4.6>.

Formula <A.4.5> is meaningful in the weak convergence of the integral.

Indeed, compactness and self-adjointness of j;‘e 5(3)?‘ allows to restrict

ourselves to the simpler case:

LY
Z, [leren] = —‘-'j °\xj dy (00 WT(x.ﬂ Uplw> 2ol vf Wixy)
Zﬁk -2 -e
<A.4.8>
with: > e W = L3 R)
For any &>, ¥y e , L&) Zhilb?’?%%’l'] (b > is well defined:

+ v A N
4| 2, Tlvrent]ld> - ;\:’{J g"j:ﬂdy Flagn N Batn)® = RUETR]

-l

@4: and @:;h being square-integrable on TRZ .

This result comes out from:

T tw 2 tv o 1w ) P2
2 Ay =3 - i
I feW= | ko\xjﬂmo\y el | x| by |4IW (ir) U L7

~ o
<A.4.9>
» A * A \
rp VYRl AR/ Ly )
¥ - lq D) <q)e c l9e> ©
NI DR = da 93 & 1 &
L\ 2% 4 J.,, <A.4.10>
Since: Ny v A P, ‘A A 94
e\qx/x\ Ve 7/ . e“[ /% elp?’/k; e 24 ; Vo) = :»nz
and we put: W2 = Vely>
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Thus: o .
; » — i x/ VXY Lo
<A.4.10>= ‘{ Z °\°l () e A Y (a-v) e

+ + ¢ i CQ‘qlJK/’r\ - . —
| :p dx j‘:vz‘y j “aq L““x ¢ $@) &(q)) Hr(a-7) Habv)

~Ve

<A.4.95=
= o J—Tawd?'f.?“‘: |1 \PaCq-701 ¢

being |$»and |¥ ) square-integrable on the real line.
Note that this result is independent of t since/ for any t/ U(t)
maps I-%f&) into f-h?-).
Due to the fact that: Q< Fld,m»¥) &l , the expression
<A.4.8> has a meaning uniformly in t .
Therefore we can perform the weak limit:
Wotis S ¢ e J dej 1%7 j?&)‘jmd" c")’"}’/&, enwx/%:\ "FCA,;.,&’,G)W{:C"H)?N("'?/J

b ot g (7R )" d-te “to

= ["Pdy | ax 8 5GO wiear) 4 wed = §
~le

S PP
We can obviously state more by the results of Chapter 2, paragraph 1.
For what concern us here, it is enough to give a mathematical meaning to
the following formal calculations.

We want to proof that Z+€ exhibits the semigroup property:

Ztlc Z"\'z. = Z”Cmt,. ¥ &% 2o

Let I Dbe: 1o
A Y +p NY) +i@ +p + 0 +0
—_ " ) o\» d.j elx / ol f ol A«
T= 202,21~ j-ud)“j-f‘“kw v‘.‘w ‘f{'w S Sy g R Che k)"
x FCa, v, 0) T, 0y, % ,8) wep E—-%[ Pt pae + 0% H Y]] x
,r
® Wr(ﬁ,?‘a) g, wiin,y.) Vg, UT;‘_ W*z,¥2) Ve, W&

A
We shall call Ty the product of operators in the integral:

A « A v a3 (X0 tA ,t“z‘k

o A i9% 1P Y Al Y WL \phj TR

'?f = ;‘\\'g AT where: A = e s, e o, e fowty e % e e 4h
and : ene 1-:‘;?15. e §i’m = e ;[3"5*]"7&’“ {_;;,Zh
' P PITE S P 5 &ﬁ WYSE AP R £ =
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iq ¥ (§at ~ 182 (hrh)
A RS/ X R{V/3 L (ge P h)xe ¢ (hrte
Hence: A= e c e ue >7'K‘ e b
C ira-B pe ~i8tx -1t
GJE(q %h)fq_ - ‘9%, e Yt e o]
i 67\/{‘ l%#g/,g % Q ¥ "\7\ /% VX2 7y [y
) e VL Y - A
i < —t&l 18 e ) /g e uuky
Thus: A= e e (7(‘ Loy ) € ¢
and: " ¥ +
W™ = W*(‘!‘*"t ¢ Tt '—&.—:‘—? ) uh+ ' ’§ Ut sty W(-K‘*x‘:'?’l*'ﬁ"—-‘&{‘)
First change of variables: 3‘ YitTa= W T i (_“ O‘ )} 2]
Yi = W
e I T e “,a\x ol“ < 1 .
I= L dp s wd)‘z’ J—WD\‘)‘ !»wdvl I—wd‘\ !-” : “ f (e5RY

x Tl puvi,ti) FOL, pa, 70 ,b)  wep {—JE [om =madw J:;«;W«»wmﬂ’m]} N

- £
® W+C*M’*’1;W" t—-——-H.i ) Ubiet, § Uber, WERIt 2, W "%:éé)

Integrating in W and P2 we obtain:

I= g +W°\)“ J "": ol v, J“'U‘ alv z_] c\mn{ dxz j_ olw Q.r’c;)s ’F("l)‘l,”x,")?(éd‘u”z,h)x

xm?i"%fv\x;+vzxz +)44.WJ3 'n’(.x”xmlwﬁt;x,_,w) b+ ta)
Sechd change of variables: {‘ X = X4 K2 — \ (4 - )l,l

?('1_’-: v o !

% A Ty +10 tin
= e e [ [T [ e [Ty A Tl B T, )

x Uep E—E‘ [(V;""‘L)V + VK 1‘)‘1“’]} T (&, w- B1vyy,, Bitta)

Third change of variables: £t
: et e (2 ][
E= Vv °© ‘

I= g%-ma\)*\ j Hﬂg\ v\ j"wo\"'z Jf:elj f -( ol 2 )c(.z‘\;ﬂ ?Cé,ju,,v,)t )F(A)j‘x)"z E }x

\ A
X wr%—-ﬁ(wm A Y +)*z'£%f]3 x M(KY,E,+t2)

+1# +w 1w 4+ o
D\)hj 0“"1} 9‘7 d)( ®
o

Integrating in % and ‘}z we obtain: L = (uh ),‘

x Tl iy 1) ?Cr‘;)"tn’;—')\_;_!.r?) ¥.) « ""'f’i"% [v,x-r)n{l} ~ T (%7, Bitta)
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—-d+ d Ja € O\T
Now: F(‘\?}‘l"l }) = & e ,-J:l,(,;,,ﬁﬁ‘t'
IV TW e
= é-éi‘ Vx.f { jEﬁJL e olz }
Vap |y
Hence: A "é"’s fﬁt‘ﬁ.‘
F [P
'F(A,)At,\’a)+») F(c‘.,)h) ")")_HTAE‘)*‘;_ ) = e—A('\.HhD W?izwclj e—clo\_‘j‘
-Qﬂ-rﬁpxg’nﬂﬂ @p _‘_ﬂ_},\?t
< exp S_ L e =
\ra)‘“ i o d M = 1:‘(‘4;/“3: Yy J bie tl)
2 = WA
Finally: .
- LIV IS + + A
Sul5] = L 9\,‘] by Fdy,m bt W) Vg § Vet Womd = 2, ¢
TR Jeto J-1n

We want to stress here the following fact.

The above property is valid for all telR , not only for positive times.

Nonetheless EZ& is a semigroup and not a group.

Infact the modified dynamics does not remain unaltered by time-reversing:

o%;{__é\_ - -% [H,3:8]« d 2,8 = dTLZ2] i» the QA s L. fov bt
2 3

The semigroup property and the consequent lack of reversibility comesin

from the very beginning, that is in the construction of the dynamical model.

The formal expression in <A.4.5> allows an easy derivation of the

semigropup dual to EZ...:;?)

tro
Indeed: ) . . \
T [%3,8]= *L2fx. ¢ XeBCH)  § e BCH]
awd!
A 1w LA At
-0 -0

58



e

We want tpAuée the expression:

-

A v +
SHk . an-ii | e[ oy Blanah Ul wem R Wien o, A.0.11>

in order to derive some interesting results and to compare them with those
obtained in [1].

In the following some well known relations will be used:

A . a - P
9 Wfﬁ‘%}% = Oep L%ZSH ‘ﬁ7] <A.4.12>
A2 . N
q “xcp 21%3’3 = ?’*?i—‘—ﬁg?} L4% 274 1“/2’ﬁJ <A.4.13>
P oy 2‘—?1;:5-3 =  o®p 5*‘%3 [f- 3?‘_] <A.4.14>
° op 5_"34;’533 = %Piﬁfi [#'~anf « xzﬁj <A.4.15>
T A s A * A »
g LY wry wPi i) = emp ; "'Y—’%_?} <A.4.16>
’_‘L A A _’,'_ A L 3
Writing: W(*’P/) = e % (3“’"?7} = e B f7‘3 {';C{X <l éb/
we will evaluate:
+ . 3 '
Ve Wﬁé‘ ?73 e’“?{'}"‘/‘\"j x “"”‘d’i‘%"l ""‘?5;‘;?7}; <A.4.17>
in the cases:
A A
X-:’&l\ <A.4.18> X =% <A.4.19>
A A A
X =gt <A.4.20> X = 3% <A.4.21> Y= 47 <A.4.225>
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These are not bounded operators of course, nonetheless it is significant

to study how they ‘evolve in time due to the fact that we can always study how

their mean values evolve in an opportune state.

U: SR &Qe EA T S LN 4~ v A
by<A.4.12>
( ;2%4 Ui% U,L :that is the Heisenberg evolved of ;\C
1 _ia s A A ) A
Ui‘k c B R B P e AXA 1PV/4 Uy = ?H_K/n

by<A.4.14>

A A rA
v, Sl 7B LA 4 SV CIRS 2 VAN LY |
by<A.4.13>

. i A 1ax 16 A
e,'L@W*‘ o 1¥/A 133' S A 2 Up = @i—rz_x?t-r x* 4

vl
by<A.4.15>

__‘A A 2A
UI &1?7/,1; e—tch/t, Z\? N LY S/ AA

How: & tw A ~
Zi)e | ax[ ay Plosd) [4, %43

- o 4
Z:‘[?]: .‘ L' J oy (r‘, b)) TPe v J
o ,_L_wmh
28101 ] £ (85 s ]

Z*L?J J s\x'/ bM[f;ﬂKf.&#K’/ﬂl

ZHE81 = [ e[l BCam b [y 1 80nd, -y 4]
4 qp I P e ———L;—’&”‘ + 0 4

We shall use the following properties of the function F(“‘;_y,?,%)

v L
3| Flbynt) = Fldo04) - 4
~V LA
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€, F(&, p,7,4) \ = ©

MEYZ O

Ql’ F(A;/‘,i’)"') l =z O

prer2gp

R Fl4 pyv,1) | = —4d 3

Z P
M =3 -1 b

z F1
rbv Fld, 00, h) l)‘_‘_ho = —% £
2
e F(puw,t) lheveo = 44¢
Thus:
+V e P tu Fe i -1 Px/H
s\aj o v Fla,,m ) :J ‘mj oy [ e ] Ha e
I I e i AT i P
+
-.,.1.%,] dp AulsQ] Fld,p, 0 +)
-lo :
= ”lts G#?(A,o,o,{-): o
by <A.4.29>

+y tu A poid ¥ +ie -
J bﬁ\&J MQ\*{ 72' F‘(ri;?/?ﬁg") :J {ilx' She ! d?/ d)& e
} 2T k% Bl S -

Ealt/

P ol
=~ 42 [ o AL TE] FCA,p, 0, 4)

= - B OLFde0,4) o Bad 43
fwmt
by <A.4.31>

By the same kind of calculations:

+~ip + A
‘I a\xj_wdh/ < F(d,v,%+) = 0

-l

by<A.4.30>
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<A.4.32>
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IHIA‘J ?Md\7 xz, M . M L2
aw

- -0 21 & <A.4.37>
by <A.4.32> A
T T A » +oo
(L e[ ey Flyxb ’C\Ljfd).‘] v [, 501)] [ 56)] T, p,0,4)
LR ~le ~lo
== b Wy Tld0,04) = - _e(_t’zli\zt <A.4.38>

by <A.4.33>.
All these manipulations with Dirac deltas and its derivatives are justified in
the sense of tempered distributions by the properties of the function 'F(A,)A,u,{-)'

Hence:

<A.4.23> = Zf C4) =3¢

<A.4.24> = Zf Lfl=ps

<A.4.25> = Z:E‘Aﬂ‘*‘ /‘1\:* gﬁﬁ:ﬁ,ﬁ
c w

as26s = IRT 8= Fo 4«*‘Mzt‘ i
4

<A.4.27> = Zz L971= 4epe +;‘££zl_32 i

Computing the mean values of these evolved unbounded operators in an

A
opportune state Q we obtain exactly the results in [1].

More rigorously we can study how the Weyl Algebra evolves under the

semigroup {Zfi .
o
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We evaluate:

A
Zi[cws/“] se R

{

<A.4.390>
iA
ZE[T] e
<A.4.40>
Using:
Y -\xse t8sp i4xfr #13 Co=iysle ads
U{._e F/q dx/e, ‘i/nect/ﬁcfﬂﬁuh: - hcm/q
<A.4.41>

by<A.4.16> : ‘A A s A . 4
- Al x | n 1
Ur P Ve, R I LT ;l%x/e, o PV U, = o\ el
LAL, 420
by<A.4.16>
we obtain:
LA F N
_ s Vgsy KR vk
<A.4.39> = Z’L [C. _] = A {J e %\C‘"‘i7/x)+)j
i
IQ"'S/K tw < WA
= e 5[_ » ()«d‘i/!_gi" 5(1/)‘}':(4,);,;:,4-)}
©A
= s/ [des
= !(ﬂ’.‘S)C‘/‘}) e = F(A,S,O){“) e 1t /K
‘A oy tp A ixnfk
(A.4.40> = zt*[ﬁ‘?n‘/b‘l = ﬁ‘PT/K {‘] dxf d‘/ € 4::(d)//;":“}-)ﬁ
~leo it 27K

A
= '8 peao e k)
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Since: T
s A o ¢ A LEA
SETVE] SN[ TS) L ST

(FLY [94s -\ ox
= F(40,7,4) F(d,0,-x, 1) F(ds,04) e P L LR A5

i 4
= a0, 0 )2 Fld,s,04) o /6 o 05k

and:

A N » A
2:‘ A e”qm)sh‘] = ¥(d,50,%) e IR iesty

with:

F(d, 0, x,1) # | o T#o
we see that the Weyl relations are not preserved in time by the map Zij‘
which is thus not an autom-orphism of the algebra.

But it is not surprising since if it were such an automorphism, we would

have:

o>

A SFLA
ot

1 - az2ftd] 2Y[8) « 2}LA] d 37 [8]
dt et

That is: L-*EA@J = L¥EA] %—{-AL*[%_]

where Alg & DCLF)
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APPENDIX 4.5 (23], [24]

We want to present here a proof of theorem 2.2.9 which is an adaptation

of that given in [22] for .ﬁ? spaces.

THEOREM 2.3.4

If T 1is a linear map, defined on the finite range operators, such that:

ITANe, ¢ MibAlLg, <i>

WTAlp, & M WANq, <ii>
with A & Co (W)

then, for any %ele] and p, q satisfying:

{% - ’i:é%- ’*—E— <iiis>
&
4, —t L i
aq =3 _,C_‘__: -+ 4. <1V>
we have:  \TAllp 2 ni™t mt Wdu, : <v>

and by continuity T extends to the whole of H»ﬂiwith the inequality 2v)>

preserved.

proof

We introduce the following complex quantities:

A o Azt o2

PR \ P2
® ied
e SO ER I

q(&) 1 qa2

o
A , . .
A general operator in Ce¢(4) has the form: F= 2;'& Ad Loy 4623‘

o A Py A
From the Hoelder's inequality we know that: (A 3“\ = DAL, W8l

A A
+d 2l , AE DL , BeBcH),
)

]
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A A
This is certainly true for A and B in C,,(K) » since it is dense in any 'B(.H)f‘

By THEOREM A.1.15 it follows:

AA
MAu, e sop LiABIL fed=

Beco ud s
We choose a value for t in [0,1], thus fixing 1/p and 1/q too.

of |

Let us suppose p>1 and q>0 .

Setting p*=1/(1-1/p), we consider:

WTRN, = we | Te TR}
ha Ugp =t
[ " Iy iv&
F o= 5:;.5 ile ? Lyoed] ; E.:?:_,; ldele ™ pm >4yel

%‘%’)‘Sxa-&é N 1“*’57’3 lejep ) U“Q}lggm ) {\Yf')}“_‘m belonging to H.

N ~
We can always choose F and E such that:

“lg'llcl::\ <iii>
and
\\Eup":l <iv>
We aet L) = Tvg_’r?%ﬁ
Let us introduce:
A N q/‘{(%\ i“d R
= = ZA‘ \)“6 [\ 1\.PGP>4<§=&I
{
K T WV
g__!.—: 2.6 \ég\@*( f‘*’) c }Tg > < Y\

66



Note that: -~

Re 3‘ Q&) L [ q ‘W !
I V- FY Y 2
Re i'f’k (1~ ,‘,t&, & = P Re [ P Fe X
Fol=loly oA - 4 e Wi
Q&' i ‘l(%} ‘1 QC L K —-E\’Z} Q‘L Y

ety iyl e A
Re iﬁ(/‘—?ta)sa P Re [ | T e %{] i

and that (-t
. J M Uhw 7P ¢ ?u’) Vwve) ~
)= T TR Bz 52, Iyl Ll o I 4l o

is an holomorphic function of z , due to the fact that b:a\ and \Aq\ are

positive numbers and:
A = A2 o 2
q2) I 42
A— Ao o A= =t 2

-

Pl P P

Using Hoelder's inequality and the properties <i>, <ii> we obtain:

A A ~
(G| & t\TF‘.~, W NErllpr 2 #y L Fy g, “E""“?{* <A.5.1>

L e IT iy o WELel s ¢ my)

\1‘7\% \Ei*‘V“ F <A.5.2>
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Now by <iii> and <iv> we have:

1]

I N 1V Sl RS- PR T M
) i

atl
o GG P I ST g
W Eipler = Se el | = Ze el = WE G <)
A
a N -3—". qzb o ~
By = 35 Lrsl 9050 | 50 S0 a7 gl
n A ph(4- —y ff nm F o4 et
“ E"\'T?“P}: = Z\-ﬁ \{Ac,l POy ‘ = Zlﬂ 1:1&1 = lll‘?l)r* =\

Hence <A.5.1> and <A.5.2> become:

|bCrrdl & M | Citivd| & 4,

p

In order to conclude the argument we need the following:

LEMMA A.5.1

Suppose that &(,%) , continuous and bounded in the strip S and regular

in the interior of S , satisfies the conditions:

[$Cariyd\ e My, 5 1f(privd] ¢ My Hy

Then , if L(t) is a linear function taking the values 1 and o for t=a

and t=b respectively, we have: \f(xc 1?7’0)\ . H’L(am) le—- L{xe) ¥ Ve

end
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In the prese'nf case we choose L(t)=1-t.

Thus:
I +
lb (kaiyodl & H7T A ¥
Hence: '
LB, = swp  L€W] e a7 HF
“g u;p'\':\
Choosing:

A
F‘

A
G/ ‘\arnq
we arrive at the desired result:

W, e 7t ad ndg

The extension to all of &CH)q is possible because of the continuity of

T on CM)and the density of it in any %Cg}c‘.

end
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