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CHAPTER I
GENERALITIES ON NON-TWO-BODY EFFECTS
IN THE PROPERTIES OF GOLD

1.1. Introduction

Caloculating ab initio the properties of a material is a
véry difficult task. Even if we are not interested in the
electronic properties of the system, but only in ionic pro-
perties (for instance, vibrations or surface structures), we
must fully take into account the electronic aspect of the
prmhlem. This is particularly true in the case of metals,
where the conduction and valence electrons play a key role

in determining the main characteristics of the bonding.

Simply stated, the problem we wish to solve is the fol-
lowing: given a set of N nuclei with some positions E‘,..,fé
and liﬁear momenta 54,..,$N, which are the forces that they
experience 7?7 Knowing +the answer to this guestion would
allow us to find the most stable structures in nresence of
surfaces or defects, simply by relaxing the nuclei until the
forces reduce to zero. ﬁoren?er, it would be possible to
perform computer simulation of systewms at finite tempera-

tures, thus exploring the statistical wechanical properties.

in the Born-Oppenheimer adiabatic approximation C11,
the iforces can  be obtained by considering the nuclei as
fixed and searching for the minimum energy state of the
electronic system. The force acting on a nucleus is then
determined as the gradient of ﬁhe total gnergy respect to a
displacement of that nucleus. After all nuclei have been
moved accordingly to the forces computed in this way, the
whole‘ process may be iterated for the new configuration,
thus performing a dynamical calculation. This apgrmach,
however, isycnmputatianally very expensive and not feasible

>when the humbér of particles is large.
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A more efficient calculational scheme, where the adia-
batic approximation is not required, 1is the recently
appeared Car-Parrinello method [£27. In this scheme the time
evolution of a system containing nuclei and electrons can bhe
followed by using an unified Lagrangian eguation of motion
where the electrons are treated within the frame of density
functional theory. However, even using modern supercomput-
ers, it is not possible to follow this approach in problems
involving a large number of particles <(of the order of
several hundreds or thousands), due to the great amount of
computations regquired for each configuration. This is espe-
cially true for transition or noble metals like gold, where
the simultaneous presence of core, valence and conduction
electrons calls for a very finely grained mesh to represent
adeguately the rapid variations of the electron density in

the material.

Therefore, there is still a need for simple and empiri-
cal calculational schemes, where the total potential energy

of the system is a function only of the nuclei coordinates :
Vo= VB, By ,..,0n0 (1)

Here, the electrons do not appear explicitly, but of course
their presence is reflected in the form of V. The most com-
mon choice is to express V as a sum of pairwise interac-—

tions:s

Yy o= %Z%@nﬁf} (23
(4#0)

where r% is the distance between nuclei i and j, and the

factor 1/2 avoids double counting. The problem is now

reduced to the determination of & single function of one

variable, 1i.e. the pair potential ¢(r}, This is of course

an enormous simplification in the description of a material,

which allows us to perform computer simulations very easily.



However, we should consider now in which cases this approxi-

mation can be justified.

In rare gas solids, cohesion is due to the van der
Waals attractive forces which do not exactly have a two-body
nature, but can be treated as such to a good approximation.
It is in fact well known that this kind of materials can in
practice be described guite accurately using pair poten-

tials, such as the Lennard-Jones potential [31.

On the other hand, the properties of a metal are dom—
inated by the conduction electrons. How these electrons
respond to ionic motions determines the form of the atomic
interactions. Qur problem is whether it is possible to
describe these interactions in terms of two-body forces

hetween ions or not.

Metals are divided in two general classes: simple and
non-simple. Simple metals, like sodium, can be thought of
as non-overlapping ions immersed in a sea of nearly-free
conduction electrons. Each ion consists of a nucleus sur-
rounded by closed shells of tightly bound core electrons.
In pseudopotential theory the ions, treated as point
charges, are screened by the conduction electrons which tend
to follow the ions adiabatically. The result is that for
several purposes the metal can be describéd by effective

pairwise forces betwesen the ions [43].

Non-simple metals, like transition wetals, are wmore
complex. The free atoms contain partially filled shells of
d-electrons, and s and p valence electrons. When the atoms
are - brought together to form the metal, a rather complex
band structure appears, with d-bands and sp-bands above and
below the Fermi level. If we displace an ion, the rear-
rangement of the electrons cannot be described as a cloud of
charge following the ion. Therefore, it is clear that the
pairwise\apprnximatinn will generally not work in the case

of transition metals [43, although it may still serve foar



some particular study, e.g., bulk phonons [57].
extracting an effective pair potential from first principles
is difficult C431,

it

In any case,

and the usual choice consists in

bulk

building

empirically by fitting known properties of the

material, such as the lattice constant, the cohesive energy,

the phonon frequencies and s0 on. However, it will be shown

in the next Section that there are seriogus intrinsic

the

some

drawbacks 1in pair potential approach which prevent an

accurate description of a non-simple metal like gold.

1.Z. FEailures of pair potentials in metallic materials
Let us define the dimensionless ratio € = Ec/kgTy,
where E, is the cohesive energy, T, the melting temperature

and kg the Boltzmann constant. We can see from Table 1 that

€ is about 10 in rare gas solids, but around 30 in metals.

Using two-body forces, the cohesive energy is simply
due to the bonds that must be broken to remove an atom, and
can be easily calculated for a given crystal structure. For

gexample, for a first-neighbours potential we have

IMaterial f Ec Trm € Sm  AV7Y '{
TNeon TTOT0Z 2% g.7 17464 I57371
argon P 0.080 84 11.1 1.469 14.4 |
IKrypton P O0.116 117 11.5 1.69 15.1 |
gXEﬂDﬂ é 0.17 161 12.3 1.71 15.14 :
taluminum | 3.34 P33 4.5 1.39 H.5 |
ILead I 2.04 601 39 .4 0.946 3.6 |
INickel I 4,435 1728 29.8 1.22 5.4 |
IPalliadium | 3.936 1825 25.0 1.13 5.9 1
IPlatinum | 5.852 2042 33.3 1.16 b.b
|Copper I 3.50 1357 29.9 1.16 4.2 |
ISilver I 2.964 1234 27.8 1.10 3.8 |
lGold I 3.78 1336 3Z.8 1.13 5.2 §
|
Table 1
Cohesive energles (in eV/atom), melting tewperatures
{in degrees Kelvind, ratios C=E./kgTm, entrop{ changes on
melting S» (in kg /atom) and volume changes on melting AV/ Vg
Cin  %. for several fcec solids. Cohesive energies are from
ref. L&, all other data from ref. [71.



Ee = «%@(d)

where d is the first neighbour distance and N the coordina-
tion number (12 for the fcc structure). The melting tem—
perature can be extracted from computer simulations <(with
the molecular dynamics technigue). It turns out that the
calculated € is always of the order of 10. This implies
that in metals E. and T, cannot be reproduced simultanecusly
using pair potentials. A system with the correct cohesion
is stiff compared to the real material and melts at a much
higher temperature, while a system with a nearly correct Tm

has a cohesion too low [53].

Table 1 shows also that wmetals have a low entropy
change and volume change on melting when compared with rare
gas solids. Again, these characteristics are not well
reproduced by pairwise forces. For example, a system
described by the Lennard-Jones potential ¢=4é[(0/rf2—{qfr}63
has, at the triple point, C=12.8, GSn=Z.18& kg/atom,
AV/iNe =17.7% [8&1.

Another difficulty with two-body potentials is that the
vacancy formation energy E, is nearly egual to the cohesive
energy E.. In fact, the energy required to create a vacancy

is given by
Ev = En — En

where Ey is the total energy of a systewm with M particles in
M ocrystal sites (no vacanecyl), and Ez is the total energy of
a system with N particles in N+l crystal sites, i.e. with a
VAacancy. In the pairwise schewme, if we neglect atom relaxa-

tions around the vacancy, we have

%
En = Eneq = MNPt

- Ey = -E. = %cbm)

and thereiore



E, = —-/_!%47(:13 = E

On the other hand, Table Z shows that in metals E,/E, is
about one third. The fact that it is relatively esasy to
create defects in the material is of course connected with

the low melting temperature [13].

Another discrepancy between two-body and metallic sys-
tems 1is related to the so~called "Cauchy relation" between
two of the three independent elastic constants in a cubic

crystal @
Cp = C#k €30

Its validity is a mathematical consequence of using pairwise
central forces [14,153; but, as Table 3 shows, it is far
from being satisfied in metals. The low value of (g , which
is one of the shear moduli, is related to the high ductility

and malleability of these materials (in particular of goldl.

Surface properties are also a guite severe test for the
validity of interatomic fovrces. For example, it can be
shown [17,181 that a two-body potential without oscilla-

tions, such as the classical Lemnnmard-Jones or Morse poten-

:maEEPIaT f E, Ev7Eg Rei’ ;
INeon 10,021 1708 cel |
Fargon I 0.076 0.95 Le1  d
%Kryptun { 0.077 .86 £E%3 :
lAluminum | O0.76 0.23 ciol i
lLead | 0.49 0.24 C113 |
INickel I 1.39 0.31 L1231 1
IPlatinum | 1.51 0.26 L1073 |
i Copper I 1.14 g.33 Ci103 1
ISilver 1 1.08 0.36 1073 |
faold i 0.95 0.25 £103 %

Vacancy formation energies (in &V) and their ratios to
the cohesive energies for several fccoc solids.



lﬁaEeExaT"“T""t‘ """""""" Co 7 Cor ﬁéf"‘;
TNEEE """""" T UTGISE"""@.GEEE"”"@ G095 TC1637
fArgon I 0.042 0.0z4 0.0zz2 C1&67 i
IKrypton I 0.051 0.0z8 0.027 L1460 |}
EXenon ; 0.053 0.0z28 0.030 L1463 !
faluminum | 1.143 0.617 0.316 L&
ILead I 0.555 0.454 O0.194 L6l |
INickel I 2.612 1.508 1.317 L& |
IPalladium | 2.341 1.761 0.712 E&3
|Copper I 1.762 1.249 0.818 L&l |
I8ilver I 1.315 0.273 0.511% L6 i
}Gald i 2.016 1.697 0.454 L& ;
Table 3
Elastic constants at T=0°K (in 10&‘ dyne/cm27 for

several fcoc solids.

tials, always leads to an outwards relaxation of the first
surface layer (i.e., the distance between the first and the
second layer exceeds the bulk interplanar distance). On the
other hand, metals usually exhibit an inwards relaxation of
the first layer [193 [#1. Moreover, it is clear that the
occurrence of surface reconstructions cannot be explained by
two-body schemes (unless, of course, a different potential

is used for surface atoms [Z13).

Another,; perhaps more serious problem which occurs at
surfaces of two-body systems is an extremely high evapora-
tion rate near the melting temperature, as seen from molecu-
lar dynamics simulations [22,233. This results in a very
high value for the vapour tension. Again, this is a situa-
tion typical, for example, of rare gas solids but not of
metal surfaces, where the evaporation rate is so low that no
atoms leaving the surface should be seen at reasonable tem—
peratures on the size and time scales used in computer simu-
lations (of course, this is anocther aspect of the impossi-
bility of obtaining at the same time a good cohesive energy

and a good mwmelting temperatured. In summary, the surface

C#1 Inwards relaxations can he T dig
~

e ted, however, by
potentials with an oscillatory tail [18,203



properties predicted by two-body potentials are generally

vastly different from those of the real metal.

Some of the difificulties described above can be avoided
by adding a volume-dependent term to the total potential
energy 024,253, In its simple form, this correction con-

tains a term linear in the volume:

v = gza'écb(%) + RS2 C4)
)
where p, is a constant and fL the total volume of the system.
In particular, it can be shown that by choosing

Py =% (Cap = Cay? (53

IS1 N

we obtain correct values for the elastic constants, i.e. the
Cauchy relation no longer holds. For this reason, the guan-
tity (Cpp—Cl /2 is called the "Cauchy pressure”. While this
approach may be helpful for a better representation of the
bulk, it raises new problems when applied on surfaces
texternal or internal, as in vacancies, cracks, .., where

the volume is not unambiguously defined L[26,277.

Therefore, one is led to the conclusion that a scheme
based on pair interactions does not describe a metal in an
adequate way, in particular when surface properties are con-
sidered. In the next Chapter, an ewmpirical many-body hamil-
tonian, which overcomes all the difficulties wmentioned in

this Section,; will be introduced.
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CHAPTER 11
THE GLUE MODEL

£.1. The ‘‘glue

As discussed in the previous Chapter, the presence of
the conduction electrons in non-simple metals is responsible
for the presence of non-two-body effects in the physical
properties of these materials. Roughly speaking, these
electrons constitute a sort of "glue" which accounts for the
strong cohesive character of the metallic bond. An ion
which is immersed in this "glue" can move around in a rela-
tively esasy way, but pulling an atom out of the system has a

high energetic cost.

When attempting to model this situation, the key vari-
able to consider is the local atomic coordination, i.e. the
number of neighbours of a given ion. Aszuming that the
coordination around an ion represents in some way the amount
of local electronic density, we can take this coordination
as the variable characterizing the environment in which our

ion is situated.

Then we can propose the following schematic picture of
an ion moving inside the metal: when its coordination is
nearly equal to the bulk coordination, the ion moves in a
more or less "normal” way, interacting with the other ions
through an effective two~body potential [283. However,
motions which tend to change the coordination in an appreci-
able way are greatly discouraged by their high energetic

cost.

Such a mechanism cannot be modeled by two-body forces,
for one simple reason: a two-body scheme implies a linear

dependence of the energy of an atom upon its coordination.

The strength of any alternative scheme should be based on
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Let us consider, for example, the formation of a
vacancy. In an fce crystal structure, it implies the change
in coordination of the 12 neighbouring atomws from 12 to 11.
In our picture, this change is rather small and leaves
almost unchanged the local environment, so the vacancy for-
mation energy will be low. On the other hand, extracting a
single atom from the system implies changing its coordina-
tion from 12 to 0. This is a dramatic change, and the asso-
ciated energy cost (which is the cohesive energy?) will be
high. It is evident here that the difference between E, and
E¢ is an expression of the non-linearity of the energy of an

atom as a function of its coordination.

2.

L]

. The glue hamiltonian

The concepts developed in the previous Section can be
expressed in a mathematical form by writing as follows the
total potential energy of a system of N particles <(hen-

ceforth called "atoms"):

v = 'g"zié¢(ﬁ§) + Z;. U(n:) (6
(4#)

A standard two-body part is still present,'tngether with the
new many-body term which replaces the volume-dependent term
in eg. (4). Here, ny is the coordination of atom i, which
will be later defined in more detail. The function Utn)
associates an energy value to this coordination, thereby
including the previously discussed "gluing" effects of the
conduction electrons. For this reason, U(n) has been nick-
named the “Yglue®, and eqg. (6 the '"glue hamiltonian”

L23,2%,307.

It is natural to impose
ucagy = o0 (713

In this way, the total energy is referred to that of a sys-



tem of N atoms at rest, infinitely far each from the other.
0f course, we expect U(n} to be negative in the coordination

range of our interest.

In order to use (&6} in computer simulations, we need a
procedure to compute n; for each atom in the system. Since
our purpose is to write a hamiltonian of the form (1), that
is, where only the atom coordinates appear, it must be

n

= ng (B, 4By e sEn) (8)
The simplest choice consists in building n; as a superposi-

tion of contributions coming from the neighbours of atom i :

ng = .IDQ%) - (9
Q¢§

where‘pir} is a short-ranged, monotonically decreasing funec-
tion of the distance. Equation (92 essentially counts the
number of neighbours of atom i. This is done in a continu-
ous way, so that nearby atoms give a contribution to i
larger than far atoms. The final result for n; is a real
number that generalizes the usual idea of coordination.

This generalized coordination n; is a dynamical variable of

aur hamiltonian.

It should be noted here that the units fer‘p tand nl
are arbitrary, because they are only auxiliary guantities in
this scheme. In particular, given P(r) and Uiny, the new

pair

i

Pero epir)

~ (101
Uin? = Uin/c)

describes the same physics, i.e., it gives rise to the same
forces for an arbitrary value of c. 5o we have the fresdom
to define a scale for n. A convenient choice is to make it

coincident with the ordinary coordination number for a bulk



atom. Assuming an fcc (or heocp? crystal structure, this
means that we are at freedom to fix arbitrarily, but sugges-—

tively
n. = 17 (112

where n, indicates the result of applying eqg. (92 to a bulk
atom in an undistorted lattice. HWhen p(r) has a range lim-
ited to the first neighbours, it is n, = 12P(d) where d is
the first neighbours distance, and therefore condition (11D

becomes simply
_.P(d) = 1 (123

This normalization will bhe adopted from now on.

The glue hamiltonian is particularly convenient from
the computational point of view, since the atomic positions
appear only in the form of distances between pairs. In
spite of the intrinsic many-body character of the glue,
there are no explicit three-body or wmore cowmplex terms in
the expressions for the forces. In fact, the force Ek ackt-
ing on a particle i is given by the following formula,

obtained by derivation of eg. (&) (and using (9)):

o= v =) dle™ "E -[U'(“a)*U'("’)] )24 (13
Z/ad) 3 r;,‘.s .43 ‘3 P rq.‘lj
where

b R N
Ty = Dy — Ty

and the prime indicates derivation. The extension of a
standard wmolecular dynamics program to  include the glue
forces is relatively easy to accowmplish, and is discussed in

the Appendix.

Finally, let us note an interesting feature of eg. (13}

29,463,451, If r, is the cutoff range associated to P(r),
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it is clear that EL depends on the value of n, for all atoms
j whose distance from i is less than r,. But ng s in turn,
depends on the positions of all atoms k within a distance r,
from j. Thus, the position of an atom k at a distance up to
2ry, from an atom i has a direct influence on the force act-
ing on i, so that the "effective interaction range” of the
glue forces is twice the range of P{r). In an fecec struc-
ture, this means that a first-neighbours ranged P(r) can

couple together neighbours up to the seventh shell.

and

We have introduced the glue hamiltonian from a purely
empirical point of view. However, it should be pointed out
that some alternative approaches lead to the same scheme for
the hamiltonian by starting from first principles considera-
tions. In particular, two families of such approaches can
be found in literature: one is thes "embedded-atom—-method"”
(or EAM), the other is in connection with the tight-binding

model .

Daw and BRaskes [31,32] have introduced this hamiltonian
within the frame of density-functional theory. 1t has been
subseguently used to study a wide range of bulk and surface
properties of solid and ligquid wmetals and of alloys [31-381.
In their interpretation, each atom of the metal is seen as
an “Yimpurity” embedded in a host system consisting of all
other atoms. In the density-functional theory framework,
using the uniform density approximation [39,401, the energy
of this impurity can be written as a function of the host
electron density (i.e., before the introduction of the

impurity? nh(?) at the impurity site R:
EM? = Fing, (R

Starting from this observation, Daw and Baskes take the fol-
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lowing ansatz for the total energy of the system:

E&at = Z‘: F(n{_)

where n; is the electron density at the site of atom i of a

system in which atom i is missing.

Two further assumptions are required:
1Y A two~-body part is also needed to account for the core-
core repulsion. The potential is assumed to be purely
repulsive.
22 n

of atomic densities:

. can be approximatively constructed as a superposition

n, = E:_ Crped
(_‘,ﬁf’ i
)
Here, p(r) is the electron density distribution of a free

atom, taken from Hartree-Fock calculations [41,423.

The resulting hamiltonian is thus formally identical to
the glue hamiltonian. However, due to the large number of
approximations involved, this connection with first princi-
ples cannot be of too much practical help in finding the
gptimal functions for a given wmetal, so that it remains

necessary to resort to an empirical {it procedure.

The wain practical difference betwesen this scheme
(called by Daw and Baskes "embedded-atom—-method”}) and our
glue, is that the functinn‘P(r) is fixed in the EAM, while
it is available for the fit procedure in the glue scheme.
We have used this additional freedom to characterize well
the thermal behavior and the surface properties of the sys-
tem, as discussed in Section 2.7. & wmore “philosophical”
difference iz that n is the electronic density in the EAM,
while in the glue scheme it is simply an auxiliary variable

which is not identified with & precise physical guantity.
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A hamiltonian based on the same spirit as the glue ham-
iltonian has been proposed by Finnis and Sinclair £433 for
use in beoo transition metals. This model has been used to
calculate vacancy and surface energies [43-453. The Finnis
and Sinclair hamiltonian is a glue hamiltonian where the

glue has the analytic form
Utn) = -AyR

while ¢Cr) and p(r) are built ewmpirically. This particular
form for U(n) comes frow the second moment approximation to
the tight binding wmodel L[C46,477. A& similar scheme has

recently been used by Tom&nek and Bennemann to study surface

reconstructions [487].

4. & ‘‘gauge invariance’’ in the glue hamiltonian

)

In some of the "first principles" derivations described
above, the glue part supplies the electronic cohesion while
the two-body potential simulateszs the core-core repulsion
between the ions. While this physical distinction seems
appealing, it will be shown in this Section that no such
distinction really exists when considering the glue hawmil-~
tonian in practice, because of the existence of a peculiar,

gauge-like, invariance property.

Let us consider the full expression for the total

potential energy:

A )
Vo= Z’.—Zua ¢(r‘;§) + X&U(qu)(ﬁsv (143
(4%:) (i)
If U is a linear function of n:s

U¢n) = An (153

then (14) reduces to a two-body expression:
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v o= g—z%\}'(ﬁé) (16)

(#)

where the “"effective potential” ?(r) is given by
prr = §r) + 2Aptro (173

Therefore, a glue term which is a linear function of coordi-
nation is eguivalent to a two-body terwm:; the physical mean-
ing of this statement has been already discussed in Section
2'.1l

We can go a little further by enunciating the following

"gauge invariance" property of the glue hamiltonians:

& glue hamiltonian defined by ¢(r), Uind, P(r) gives rise to
forces which remain unchanged when these functions are

replaced by ¢m(r), U*(n), P(r), where

¢$(r)

U cno

ery + 2 pord
Uind - An

and A is an arbitrary real number.

(1813

The demonstration is straightforward: in going from
$:u,p  to $*,u”,p, we add and subtract the same guantity in
the expression (143. This situation is rewiniscent of the
"gauge invariance' of electromagnetic potentials in classi-

cal electromagnetism.

This has some practical consequences. In particular,
there is no unigue choice for ¢ and U, since a term linear
in the coordination can be transferred from the two-body
part to the glue part and viceversa without any change in
the physiecs. For instance, one may have a system where the
two~-body potential is purely repulsive and all the attrac-
tion is supplied by the glue; at the eguilibrium lattice
spacing, these two forces balance exactly. But with the

appropriate "gauge transformation” it is also possible to
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construct a completely equivalent hamiltonian where both the
two-body part alone and the glue part alone predict the

same, equilibrium lattice spacing.

Therefore, in spite of the physical reasoning which led
us to conceive the glue U(n) and the glue hamiltonian, we
are not able to attach a physical meaning to either Uin) or
¢(r) when considered separately. More generally, we can

state that, as usual, only gauge-invariant guantities can be

Some examples of gauge invariants are P(P) itself, the
second derivative of the glue U"{n), and the "effective
potential” [29.32,437

Ylrsn = Prr + ZU’ (nIp(r) (19)
Another obvious consequence of the ‘“gauge invariance"
is that a ‘"gauge condition" «can be arbitrarily imposed,

thereby removing the ambiguity. A particularly convenient

choice is
U'lng? = 0O (200

With this condition, Ui{n) has a minimum in correspondence
with the bulk coordination ng, and for this reason it will
be called the "bulk gauge”. From a purely practical point
of view, working in the bulk gauge has the advantage of mak-
ing easier the fitting process. In particular, as it will
be shown in the next Section, with +this choice the
transverse phonon freguencies depend only on the two-body
potential. From now Dh, condition (20} will be assumed to

hold.
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‘In this Section, we derive some relations connecting

the glue hamiltonian with a certain number of physical guan-

tities. These relations will be useful in building ¢, P, U
by fitting these guantities to the experimental values for a

given material. The following will be assumed:
- an fce crystal structure
- a first-neighbours range for ¢(r) and Ped

- the normalizations (113 and (12) for n and P Ng =12,
pPidr=1

- the "bulk gauge" (200: U’ (ngi=0

These restrictions allow us to write simple formulas, which
will be used in Bec. 2.8 +to fit the hamiltonian to the
experimental data for gold. HMore general formulas can be

found in refs. [£291 and [321.
Let us consider the potential energy per atom in a per-
fect lattice where R is the first-neighbours distance:

- 42 .
E(R}Y = _Z.qm) + UC1ZpCRY)

In the general case the system is not in equilibrium, =so

that there is a net pressure

dE E \/- ! ’ '
L _3%%{ = ~%[¢(R)+2p(ﬁ)u (312;)(‘{))]

where £%=R3/J§ is the volume occupied by an atom. of
course, when R is egqual to the/equilipvium distance d this
pressure vanishes:

pld) = —%g [é*ccn + EP'(d)U’HE}] = 0
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Since we are adopting the bulk gauge, this condition reduces

to the ordinary equilibrium condition for two-body poten-

tials
¢’ ¢dy = 0O (217

E(R) has a minimum for R=d, which is, apart of the sign, the

cohesive energy:
Ee = - E(d) = ~[&¢(d) + u<124 (22)

Finally, the bulk modulus of the system is given by

oo - gdE Ve JE
aszo “dn: 9 Aa’-

o
i

22 . AeVT 92
=ZVS dugy + 22YE [’(d) Une12) (23)
2 e :

Eguations (213, (22} and (23) give us three relations that

can be used in the fit.

Eg. (23) deserves some extra comments. It can be shown
L2931, by calculating the dynamical matrix for the glue ham-
iltonian, that in the bulk gauge [#3J the glue term does not
have any effect on the transverse phonon freguencies: that
are completely determwmined by the two-body potential. This
fact can be intuitively understood by noting that the atomic
density (or the coordination in our scheme) remains roughly
constant in a transverse mode, while it is strongly modu-
lated in a longitudinal wmode. This fact iwmplies that the
elastic constants associated to the transverse modes in the
limit ﬁ—#ﬂ, which are the shear moduli G, and (Qﬂ—Qm)fz or a
combination of them, are also determined only by the two-

body part. Therefore, the expressions obtained for a two-

L#3 The following results can be expressed i eneral
ge by substituting the two-body patentxal &(P) with the
ective potential (19) calculated for n=12.

i}l
el L
I



body system [49,241]

V2 .
€y =—Z;—¢ (dJ (24)
A L V2 -
F(Ch =Gy od ¢ (dy (253

are still valid when the glue terw is added. If we rewrite

eq. (23 by expressing B in terms of the three elastic con-

stants
._i ~ y = 2V2 i d6V2 : 2 it g -
B =3 (Cy+2Cyy) —-g-—-: drcdy + d“ [p (d)] RN G ) (26)

then we can solve for the elastic constants the linear sys-
tem composed by (24), (25 and (26). It turns out that the

many-—body tecm in the expression for the bulk modulus is

what has been called "the Cauchy pressure” in Section 1.2:

/{ 8vz £ . Z E11 § S ¥
5% = ] (P f.d.)] U" 12 (27)
Therefore, the glue hamiltonian CEMOVEeSs the Cauchy

discrepancy in the elastic constants. It may be noted here
that a system based egxclusively on many-body forces of the

glue type would bhave (¢ =0, C =C and therefore it would be

G At
unstable under shear deformations: two-body forces remain
essential for a faithful description of the physical system.
In other words, realistic two-body forces are such that they

can not be '"gauged away”.

#s stated above, the glue term does not have any effect
on the transverse phonon frequencies. Moreover, it has been
shown [291 that it does not have any effect for all ; points
that 1lie on the Brillouin zone boundaries. Therefore, all
the phonon freqguencies at the standard points of the Bril-
louin zone can be expressed in terwms of the two-body poten-

tial. The relations are the following [&9,2470:
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Point X, branch L Mwt= 8¢"(d) (283

Point X, branch T : Mwt= 46" (d) (297
Point W, branch T : Mw®= 66" (d) (300
Point W, branch A : Mwt= 44" (d) (31)
Point L, branch L : Mw®= 8¢"(d> (323
Paint L, branch T : Mw®= 24" (d) (33)

where M is the atomic mass. All these frequencies, as well
as the shear wmoduli, depend on a single parameter, namely
®"(d). Clearly, some kind of compromise must be adopted in

the fitting process.

The glue hamiltonian solves the problem of +the low
vacancy formation energy compared to the cohesive energy; in
fact the former, neglecting relaxations,; is the enefgy asso-
ciated with the breaking of 12 bonds, and the change of

coordination of the 12 neighbour atowms from 12 to 11:

E, = - &fidd + 12[U(11}-U(12ﬂ (34
while the latter is given by (2Z}). The two guantities

differ by virtue of the non-linearity of the glue.

To coneclude this Section; the surface energy per atom
on a (111 unrelaxed fcec face is obtaied by removing 3

bonds and changing the coordination from 12 to 9:

Eg = —-§-¢(d) + U(9) - Ui (35)
0f course, these energies will be further lowered by relaxa-
tion efiects, as will be discussed in detail later oan.

2.6« A comment on the lack of angular forces

It follows from the results of the previous Section
that from the point of view of fitting the lattice vibration

spectrum a glue hamiltonian is not substantially better than
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a two-body description. The origin of this difficulty lies
in the fact that the glue is central, or non-directional,
i.e. the glue energy depends only on the number of neigh-
bours around an atom, while how these neighbours are
disposed is not relevant. On the other hand, we expect that
in real materials different angular arrangements of the
atoms should make & significant difference to the energy.
This picture is supported by the fact that it is possible to
obtain an excellent agreement between the calculated and the
experimental phonon dispersion relations by using three-body

force constants with an angular dependence [50,517.

Another consequence of the lack of angular forces in
the glue scheme is that, if the interaction range is limited
to the first or second neighbours, the fec and hecp crystal
structures are predicted to have the same energy [261. This
is due to the fact that in these crystal structures the
first two shells contain the same number of neighbours
{respectively 12 and 6 at the same distances. On the other
hand, there is a difference in the gpngular disposition of
the second neighbours, and from a physical point of view

this, rather than the different number of third neighbours,

is likely to be the origin of the fcc—hop energy difference.

This spherical symmetry is perhaps the most important
shorﬁcaming of the glue hamiltonian when compared to other
empirical many-body schewmes. However, the simplification,
resulting in a saving of computing power for a wmolecular
dynamics or MonteCarlo simulation, is enormous, and can

hardly be underestimated.

There is obviously a large amount of arbitrariness in
the glue hawmiltonian, which so far is specified by three
continuous funchtigns, rather than by a2 bhandful of parame-

ters. While the relations given in Section 2.5 provide some
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fit points for ¢Xr), ﬁ%r), Uln) or their derivatives at cer-
tain fixed values of the arguments, there remains a large
freedom in the shape of these functions far from these fit-
ting points. Therefore, i1t is possible to construct many
different triplets of functions ¢, P, Uy all of which fit
the same quantities (lattice spacing, cohesive energy, bulk
modulus ...}, yet describe different physical systems. It
may be said that in this freedom lie both the strength and
the weakness of the glue hamiltonian. One can confidently
hope to find in the large space of all the possible choices
a realization with overall properties similar to those of
the real material. However, in order to restrict the number
of candidates, some powerful selective tests need to he
introduced. These tests, of course, should be able to
extract new informations from the hamiltonian by probing

more properties than those that have been fitted.

Thermal properties constitute the wmost useful test
bench. In fact, when the atoms vibrate they sample wide
regions of the three functions ¢{P,U, so that the behavior
of the system depends on their whole shape, even relatively
far from the fit points. The "thermal test” is particularly
severe at high temperatures, where anharmonic effects play
an important role. FProperties like the thermal expansion
coefficient or the melting temperature are very sensitive to
tiny details in the shape of ¢ﬂ3 and U. For instance, the
slope of the core region in the two-body potential turns outb
to be crucial in determining the melting temperature. HMore-
aver, a crystal structure which is found to be stable at T=0
with a certain glue hamiltonian, may, if allowed to, undergo
a transition towards another structure at a finite tempera-
ture. If this is not the case for the real material. such a

hamiltonian must be rejected.

0f course, investigating the thermal propercties
requires the use of a molecular dynamics or MonteCarlo simu-

lation already during the construction phase of the glue
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hamiltonian, just to try out successive realizations and

discard the bad anes.

Another stringent test for a glue hamiltonian is the
accurate description of defects, and in particular of sur-
face properties. The interactions between surface atoms are
very different from those between hulk atoms, because the
coordination is lower and therefore a different part of Udin)
becomes relevant. The resulting relaxation effects tend
usually to reduce the bond lengths, so that also the
behavior of 4¢(r) and pPir? at distances lower than the bulk
first neighbours distance is important in determining the
final structure. For example, the amount of first-layer
contraction, when experimentally known, may be another
independent guantity that can be fitted. In materials which
exhibit surface reconstructions, like gold, the recon-
structed surface should have a surface enargy lower than the
non-reconstructed surface; and the contrary should ococur in

materials whose surfaces do not reconstruct.

Thermal and surface properties depend on the details of
the glue hamiltonian in a complex way, so they are not easy
to fit. However, by using molecular dynamics and a trial-
and-error approach, it is possible to reproduce them rather
accurately. This work requires a suitable parametrization
of ¢, P; U, flexible enough to allow shape variations of the

functions within the constraints given by the fit points.

To conclude, it should be emphasized that we are gen-
erally wunable f(and wunwilling) +to detecmine an “optimal®
realization of the glue. The search for a hamiltonian, con-
ducted following the guidelines depicted above, terminates
when a "satisfactory" realization is found;y i.e., when some
previously defined "design goals" have been attained within
a reasonable margin. In particular, the three functions are
not expected to be meaningful for values of their arguments

outside of the range sampled in simulations (e.g., r deep in



the core region, n near 0 or extremely large, etc.). In
fact, changing the functions in these regions does not
modify the behavior of the system, when tested under normal

conditions.

2.8, Construction of a glue hamiltonian for gold

In the fitting procedure described in this Section, the
four conditions listed at the beginning of Sec. 2.5 have
been adopted, so all the relations there reported can be

applied. It should be noted that

i3 an fcoc structure is assumed as a starting point, but
its stability is not guaranteed and therefore it must

be verified.

B
"

the first-neighbours range for ¢(r) and p(r) a pos-
teriori proved to be a valid choice in the case of
gold; but this does not imply that such a2 short range

is adequate for all the materials.

The following experimental data have been fitted

exactly @

- T=0 lattice parameter, a,= 4.0704 .

- Cohesive energy, E,= 3.78 eV/atom [&1.

- Surface energy, I = 946.8 mev/&% [523. This value has
been fitted on a not reconstructed but relaxed (111D
face. This case has been considered to be guite typi-
cal in the case of gold, where all surfaces reconstruct

in order to achieve a closely-packed structure.
: . = 4t 2
- Bulk modulus, B = 1.803-107 dyne/em™ [531,

- Frequency of the transverse phonons at point X of the
Brillouin zone, Wp(X)= 2.75 THz [541.

Moreover, we have attempted to reproduce at least reasonably

(as explained in the previous Section? the following guanti-
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ties:

- Vacancy formation energy, E,= 0.95 eV [1037.

~& = o
- Thermal expansion coefficient, of = 15.8 10 °K at

T=600°K [551],
- Melting temperature, T,= 133&6°K [553].

- Instability of the ideal surface structures (in partic-
ular, the (100} reconstruction which will be discussed
in Chapter IV) [74].

As explained in Sec. 2.5, the phonon dispersion rela-
tions can be fitted only in an approximate way, because only
two parameters are available. One of them is the bulk
modulus; the other has been chosen to be the transverse pho-
non freguency at the X point to reproduce accurately the
lattice vibrations where the density of states is larger.
The effect of this choice on the elastic constants and on

other fregquencies is shown in Table 4.

In the following three Subsections, the analytic forms
used and the details of the fit procedure are discussed for

each of the three functions ¢, P and U. It should be kept

fQuantity : Experimental Glue Model g
i

Tm-TTETTTTT T {17803 1.EB03 i
| Cud | 2.016 Z2.203 |
! Ci | 1.697 1.603 I
| C ] 0.454 0.&600 |
S SR 4. 61 3.89 I
Iowe( X0 ] 2.75 2.75 ]
I wg{W) | 3.63 3.37 i
P ! .63 2.75 |
Iow L) I 4,70 3.89 |
ool ] 1.864 1.94 ;
| b !

Table 4

Experimental bulk wodulus B, elastic constants (in _10*
dyne/cm®, from ref. [531) and phonon frequencies at points
XsW and L of the Brillouin zone (in THz, from ref. [547)
compared with the values given by a glue hamiltonian fitted
on B and WL(X).
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in mind that these details can generally be dependent on the
material which we are trying to reproduce, so that different
materials may require a different procedure and/or different

analytic forws.

The following analytical forw has been used for 4Xr)s

3

k.2

X

T

aixq+ agx toayxTE agw + oag v d
$irr = al x® + gg xS+ a¥ut+ alx3+ alxt+ alx + al dgrir,

0 I o
where

and d is the first neighbours distance.

Td T TOUZB782073% 2T T723EF0T
0.3700000000000000E+01
-0.8000000000000000E~01
-0.8000000000000000E-01
0.0000000000000000E+00
0.7619231375231362E+00
~0.8333333333333333E+00
—0.12114834464993159E+00
-0.8000000000000000E~01
0.0000000000000000E+00D
0.7619231375231362E+00
-0.8333333333333333E+00
~-0.1096009851140349E+01

|
|
|
1 o
!
!

]
!
|
|
|
!
!
i
!
]
l
|
i
|
]
!
!
!
]
i
!
!
]
|
|
!
!
|
|
!

Table &
Coefficients for §(rd (gold fit).



The 12 coefficients are determined by the following

conditions:

dtdr = @, (supplied)
¢’€d) = 0 {lattice parameter, eg. (210
¢ (dy = Muﬁ(X)ié {transverse phonons. eg. (29))
&) = ¢ (supplied)
¢(r*) = 1 eV (supplied)
@Crc) = 0 (going to zero smoothly at r=pc0
¢'(rc) = 0 ¢ " " " " o)
¢"(rc) = 0 ¢ " " " " o)

O(r) continuous in r=d

¢.' () W T 1y

¢f!’ {r) i 114 123

¢J:1(P'} ] [ 13

} Four parameters are supplied externally: ¢% s Te s r*
and ;'. d% is the depth of the pctéﬁtial, which (in the
bulk gauge) determines the partition of the cohesion between
the two-body part and the glue part. It also determines, to
some extent,; the anharmonicity of the potential: due to the
first-neighbours constraint, a deep potential is more har-
moenic than a shallow one. This has visible effects, for
instance, in the thermal expension coefficient. Once ﬁ,has
been fixed, there is a very narrow range of possible values
for g if wild oscillations of the derivatives of $(r) are
to be avoided. The last two parameters control the shape of
the core region, which has a deep influence on melting and
on surface properties. This point is discussed {further in

Subsection 2.8.3.

The parameters found for gold are given in Table 5, and

the corresponding ¢(r) is shown on Fig. 1.
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Figure 1. The pair potential ¢(r}.

I

8.2 Construction of the density function

The following analytical form has been used for P(r):

bl (r-d?® + bl (r-d® + bl (r-d> + bf <d
_ b co~d?® + b¥ (p-d?* + bT(r-dy + b¥ d¢r<r,
prer = b§{r~rmf + Hgﬁr—nwf + b?(r-rm} + bET Cpariry,
0 L&l

where d is the first neighbours distance.

The 12 coefficients are determined by the following

conditions:



}’a”"I'“ﬁ??B?SEﬁ?ZIET#I’??SEiﬁT' :
;rb ; 0.3500000000000000E+01 |
|

|vm | 0.3900000000000000E+01 !
ibg'i 0.1000000000000000E+01 |
:bﬁ ; -0.6800000000000000E+00 i
ib% § 0.7500000000000000E+00 |
|

%p§ | -0.1333333333333333E+01 !
:bf | 0.1000000000000000E+01 !
ib% i -0.4800000000CG0000E+00 !
{bg | 0.7500000000000000E+00 |
ibg | -0.1527241171296038E+01 |
}bg B 0.0000000000000000E+00 !
gb? | 0.0000000000000000E+00 ]
{b? ! 0.5578188675490974E+01 |
: x
lb?k: 0.613297§68872?435E+01v§

Table &
Coefficients for plry (gold fitd.

pidr =1 ‘ (normalization, eqg. (12))
ptd) =r§ (supplied) '
prlcdD ==P; (supplied)
Pt =fﬂ' (réd) (supplied)
P(rb} = f% {(zupplied) A
P{rm} = 0 ; (going tc‘zero smoothly at o=,
pliry) =0 ¢ v " noon
P(r) continuous in r=d
prov
.P"(F) " wooon
p(r} - 1 r=ry
,P'(P) " oo

Here, six parameters are supplied externally: ©rys I

) . i . -
f%, fb s fﬁ" and fh . This leaves a great freedom in



determining the shape of this function.

It is worthwhile to note that FKr) itself cannot fit
any physical property, since it operates "“within" U{n) in
the hamiltonian. Only suitable combinations of P(r) and
Uin) are related to quantities of the physical system. One
of such combinations is eq. (26! for the bulk wmodulus. From
this equation, it is seen that the choice of Fg is qguite
important, because fitting the bulk modulus then forces a
particular value for U"{(12}, ¢"(d) being fixed by the
transverse phonons. This value for U"{(12} may result to be
incompatible with the general behavior of U(n), which is
governed by other considerations such as the surface energy.
Adctually, the inverse route has been followed: first, a rea-
sonable value for U"(1Z2) is selected, then fﬁ is determined
by fitting the bulk modulus. This regquires a sort of self-
consistency in the fitting process, since U(n), as explained
in the next Subsection, must be constructed after P(r}, and
gnly at this last stage it is apparent whether the original
choice for U"{(12) was really good or not. & valid, if qual-
itative, gquality test is the smoothness of U’ (n) and U "(nd,

i.e. they should be free from spurious oscillations.

The value for fﬁ resulting from this procedure gives a
rather flat curve around r=d. The shape of P(r) sgen in
Fig. 2 is the result of the competition between this small
slope around r=3 & and the short-range requirement. The
"outoff region" between rp,=3.5 2 and =89 £ has been
located in correspondence with the minimum between the
first— and the second-neighbours shell in the pair correla-
tion function {(as determined by high temperature simula-~
tions). In this way, the effect of this region on the pro-

perties of the system has been reduced to a minimum.

113
The control provided by the two parameters fﬁ and f@
permits to  adjust the shape of P(P) in the very important

region around r=d, which determines how the atoms gain and
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Figure 2. The density function P(r},

lose coordination when their mutual distances are varied.
Since the energies associated with coordination changes are
large, slight modifications on P(r) around the first neigh-
bours distance can easily induce dramatic changes in the
thermal behavior and in the surface properties. For exam-
ple, the presence of surface reconstructions can be switched

on or aoff by acting an‘P(r) for rd{d.

The parameters found for gold are given in Table 6, and

the corresponding P(r) is shown on Fig. 2.

The following analytical formwm has been used for U(ni:

; 2
cﬁ(n—nsf'+ c§(n-n5)3+ cg(n~n£) + cﬁ(n—nﬁl + cﬁ n<Tig
Uini = cf(n-no)%+ cg(n—noﬁ + D%(n—no)a+ cf(n—n@) + 6%
NeEMing
é%fn—no)3+ d%(n—nof‘+ &?(n—na) + c?' Nig

\



where n,=12 (bulk coordination), and ng is the

coordination on a relaxed

34

The 14 coefficients are determined by

conditions:

1"
ing

!
T

k&
o
3
<
b
1cf

T"'"DTTEUGDDDUDUUUDEGGEiﬁﬁ"

0.9358157767784574E+01
-0 279338861677 146FBE+01
-0.3420000000000000E+00
0.37202327808424106E~-01
0.75588:2995%1858879E-02
0.3090472511796849E~03
-0.33000Q0000000000E+01
0.0000000000000000E+00
0.8618226772941980E~-01
0.4344701445034724E~-02
~0.3044398779375916E-03
-0.3300000000000000E+01
0.0000000000000000E+00
0.8618226772941980E~01

Table 7

Coefficients for Udnd (gold fit).

first layer

the

(111} surface (defined below).

following



Uea: = 0 (by definition, eg. (7))
Uiz = U {cohesive energy, eg. (2222
U iz = 0 (bulk gauge, esg. (2032
ur7¢12y = ug (bulk modulus, esg. (261)
uen®y = o (supplied?
Ulng? = Ug {surface energy, eg. (36
U’ ingt = Ug (supplied)

Uin?) continuous in n=12
UI (‘ .!_!) (32 183 11
Ul Fs (n) . 1] 1 11
11} it ey

Uin? N=ng
UI {n) 11 11} 131
UJ’ £ (n) it i (1]

U!I!(n) 12 131 13

Here, only two parameters are supplied externally: n¥

and Ug . Wwoois greater than 12 and cantrols the shape of
Uin) for large coordinations. For gold, the value chosen
(n*=17.48 is such that the glug function rises rather
rapidly above n=12. This rise corresponds to a sort of
core-core  repulsion, but obtained through the glue term
instead of the two-body term. This peculiar behavior solves
the following problewm. In order to obtain a system with the
correct melting temperature, the core region of the two-body
potential should be soft enough to allow large vibrational
amplitudes of the atoms. Suech a "sopft" system, however,
would not be enough anharmonic to yvield a realistic thermal
gxpansion. A potential with a hard core region, on the
other hand; gives a system which expands well but is too
stiffi and melts at a temperature which is teoo high. In the
gold realization described here, the potential is soft and
the anharmonicity is supplied by the glue: at high tempera-
tures, in fact, the shape of the glue around n=12 favours

fluctuations which tend to decrease,; rather than increase,

the loecal coordination. The system reacts by increasing



slightly the lattice parameter. Surface reconstructions
involving large atom rearrangements are also favoured by

soft two-body potentials [743.

The surface energy fit also deserves some comments.
Once ¢£r) has been assigned, U(12) is known by fitting the
cohesive energy feg. (22} and at this point U(9) can be
caloculated wusing the expression (35) far the surface energy
of a (111} face. However, this expression refers to an
unrelaxed surface; relaxations raise the first layer coordi-
nation above 9, thus reducing the effective surface energy.
Ta avoid this problem, a more sophisticated fitting pro-
cedure must be adopted. Assuming that only the distance
between the first and the second layver is varied from the
unrelaxed value so=v57§'d to a certain value s, the expres-
sion  for the surface energy per atom can be generalized as

follows:

-

Figure 3. The glue function Uin}.
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Eg(s) = -§4>ccs> + —f;cycd') + %cb(a’) + Utng) + Ulng) - 2U(12)
(3&)

where d is the bulk first neighbours distance, d’=V52+dz/3
the distance between an atom in the first layer and a first
neighbour in the second laver, a'=V52+4d2/3 the distance
between an atom in the first layer and a second neighbour in
the sscond layer, n3=6pid}+§p{d’)+§p(a’) the first layer
coordination, and n2=9pfd)+§F(d’)+3F(a’) the second layer
coordination. Some second neighbours terms are present
because,; due to a possible contraction, it is not guaranteed
that a’ is larger than the range of ¢€r3 or P(r?. (36 is
more complicated +than (353, but can be straightforwardly

caloulated for a given value of s.

Dur fitting procedure self-consistently solves the two

egquatians

Eg(s) = @A

EJ ()

(373

i
o

where 0 is the experimental surface energy per unit area and
A=sz§/2 is the area occupied by an atom. Eguations (37
ensure that the correct surface energy is obtained in
correspondence  with the eguilibrium relaxation. They are

zplved by using the following iterative method:

1. Build the region of Uind with n>*12; this can be done

from the initial conditions, and will be never changed.

Assume an initial value for s.

f-3

&

Given s, calculate d’, a’, Ne and Ny -

(53]

b

. Salve (36) for Ulngl. Note that Uinyg) is  known, since

n, ¥1%. This gives the condition Uingl=Ug.
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5. Now all the coefficients of Uin) can be determined, so

that Uin) becomes known for all nis.
& Solve E¢ts)=0. This yields a solution 5 #s.

7. It Is-s'1<g; and IE (s)-Ec(s’)14& (where & and & are
very small tolerances) then terminate, otherwise rename

s’ as s and go back to step 3.

Note that the final shape for Utn) is controlled by the
parametbter Ué which is supplied externally. If a reasonable
value is given to this parameter, the procedure converges
within ten iterations. Relaxation effects hetween the
second and the third layer and between deeper layers,
neglected by this method, lead to a very small (~0.2%)
corrgction, as a molecular dynamics caloculation established
later. This correction is surely negligible in comparison
with the error asspoeciated with the experimental estimate of

the surface energy LRZID.

The parameters found for gold are given in Table 7, and

the corresponding Uin? is shown on Fig. 3.



CHAPTER II1I
MOLECULAR DYNAMICE STUDIES OF BULK PROPERTIES

10sd

1. FEgo stability and thermal expansion

The bulk thermal properties of the system have been
studied using the Parrinello-Rahman molecular dynamics tech-
nigue [563. In this method, the box containing the parti-
cles (and extended to infinity through periodic boundary
conditions? can vary in volume and shape, under the action
of internal stresses and, if present, an externally applied
pressure or anisobropic stresses. It has been shown [543
that changes in the shape of the bhox allow the {(previously
impossiblel observation by molecular dynamics of solid-solid
transformations,; such as that of an fcoc crystal into a boco
and viceversa. These phase transformations can be induced
by applying external forces, but they may also occur spon-
taneously if at a certain temperature the two phases have

the same free energy [BE71.

The stability of the fcec structure of gold (as
described by the glue hamiltonian’ against the becec structure
C#1 has been therefores verified up to the welting tempera-
ture through Parvinello-Rahman simulations in the absence of

pressure or stress.

The variation of the lattice parameter with the tem-
peraturs, shown on Fig. 4, is in excellent agreement with
the experimental data FEB81. It should be noted that the
thermal sxpansion curve is one of the guantities fitted in

the generalized sense discussed in Sec. 2.7.

Lx#1 The foce-hop stability is more delicate, because it
irnvolves atowm displacements relative to the box, as well as
variations in the box shape [5631. No conclusion can be
drawn about this point. Note that at T=0, with the glue
hamiltonian, the fce is favoured over the beoce, while fce and
hep have the same energy.
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Figure 4. Lattice arameter a as a function of the
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simulation; the dots are the experimental data [587.

2. Melting point

The melting temperature has been determined by computer
simulation [5H%1. A bulk simulation is not well suited for
this purpose hecause, lacking any defects, it undergoes
overheating and supercooling, i.e. it exhibits a large hys-
teresis effect which makes it difficult to locate even
approximately the melting point £&601. A& system with a free
surface overcomes this problem, because the melt can easily
rmucleate at or near the surface and then propagate into the

bulk E61,Z2,233.

In orderto determine the melting temperature, the fol-
lowing procedure has been followed. A system with a free
surface is heated until a spontaneous nucleation of the
liguid phase ocours at the surface. The systewm is then kept
hot, to allow for the motion of the liguid-scolid interface

into the bulk. In this way we produce a sample with a
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liquid phase and & solid phase simultaneously present,
although not in perfect eguilibrium. Starting from this
sample, the melting temperature, at which by definition the
liguid-solid interface remains stationary, is searched by

trial-and-error.

The melting temperature is a function of the pressure
ar,; more generally, of the stress applied on the system. HWe
have kept the stress equal to zero hy adjusting the lattice
parameter of the crystalline phase to match the value
obtained by the thermal expansion curve at each temperature.
This is doneg by scaling of the molecular dynamics eell. The
liquid is not under pressure due to the presence of the free

surface.

The resulting value for the melting temperature is
Tmw = 1357 £ 5°K

At T=1350°K, we observe a motion of the liquid-solid inter-
face in the direction of the solid, eventually leading to a
complete recrystallization of the sample; at T=1360°K, on
the other hand, the melt is seen to proceed inte the bulk.
The estimate of the melting temperature is based on the dif-
ferent interface velocities observed at these btwo tempera-
tures. The value obtained for Tw is in good agreement with

the experimental datum, ﬂ§P=133&°K.

We have also estimated the latent heat of fusion by
comparing the average energy per particle in the ligquid and
in the solid phase. The result is

AH, = 0.115 £ 0.00% eV/atom

The entropy change on fusion is therefore

Sm = AHpn/T,, = 0.98 + 0.05 kg/atom



These values are only slightly lower than the gxperimental

values (see Table 1), which is very satisfactory.

The volume change on melting has alsoc heen estimated.
In this case, the value obtained (0.6%) is one order of mag-
nitude smaller than the experimental value (5.2%, from Table
1. WHe can attribute this discrepancy tentatively to the
extreme softness of the core af our two-body potential.
This feature is however essential in producing the extreme
"ductility” of our model system, which allows among other
things all rearrangements to ococur in a reasonably short

time in terms of a molecular dynamics simulation.

At the time of writing, a detailed study of the melting

transition is in progress [£593.

el
lipd

Liguid structure

The pair correlation function g(r> of the ligquid
predicted by the glue hamiltonian has been calculated using
molecular dynamics. The box used in the simdation contains
500 particles and is extended to infinity in all the direc-—
tions by periodiec boundary conditions. The conditions

assumed are zero pressure and a temperature of 1600°%.

Starting {froem a ocrystalline state, the system is
brought at T=2000° in order to melt guickly. After 3000
steps of equilibration, the temperature is decreased to
1600°K, and the system is eguilibrated again for 3000 steps.
The pair correlation function has been measured in the sub-
sequent 1000 steps; the result is shown on Fig. 5, compared
with the experimental gi{r} at T=1573°K L[&2J. There is a
substantial agreement on the position, height and width of
the first peak. The calculated g(r) has, however, the first
minimum too deep, and the second shell slightly too close

when compared with the experimental gir).

From the same calculation, the self-diffusion coeffi-

cient has also been extracted by using the relation [&633
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< IR(EY - B Py = 4Dt

The resulting value (averaged on the 500 atams) is

-5 .
D=2.2-10 cm®/sec. Unfortunately, no experimental values

have been found in literature for liquid gold.
observation, it may be noted from gir) that

As a final

the distance between a pair of particles, in practice, is

always larger than 2 A; in this simulation it is also seen

that the distribution of the coordinations n (in the glue

hamiltonian sense)

F-14 {(with an average

of the atoms is confined in the interval
value of 11.6). At surfaces, the
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lower bound of the coordination distribution decreases to
about 7. As discussed at the end of Sec. 2.7; these values
indicate the limits of validity for the functions in the
glue hamiltonian: we do not expect that modifications made
to these functions out of the ranges sampled in siwmulations
would vield visible effects on the properties of the system.

The validity range can be thus summarized: p>2 &, Tinil4.,

g.4%. Vavancy formabtion

As already stated in Sec 1.2, the vacancy formation

anergy is given by

where Ey is the energy of a system with N particles in N
perfect orystal sites, while Ez iz the energy of a system
with N particles in N+1 crystal sites, that is, when a
vacancy is present. In the sawme terms we can define the

vacancy formabtion volume:
o
Q‘f - QN-—QN

Neglecting relaxations, the formation energy predicted
by the glue hamiltonian can be calculated using eq. (34).

This gives
E® = 1.458 ev

which is about 50% higher +than the experimental value,
E€?= 0.95 eV 41037, Atom relaxations around the vacancy,

however, reduce the formation energy.

Relaxations effects have been included by using molecu-
lar dynamics. The procedure consists in performing a simu-
lated quenching, where the atoms are wmoved accordingly to

the instantaneous forces but their velocities are rescaled
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by a factor «¢1 at every time step of the simulation. In
this way, kinetic energy is continuously removed until the
system eventually reaches a stationary state where all the
atoms are at rest in their relaxed equilibrium positions and

the energy is minimized.

A problem lies in the fact that a point defect in a
crystal generates an elastic strain which at large distances
falls as 1/r3 L6475 but in molecular dynamics calculations
the range of the distortion is limited by the size of the
computational box (subjected to the usual periodic boundary
conditions), so that long-range contributions are lost.
However, these contributions can be estimated by noting that
the density of elastic energy wir? at a distance r from the
defect decays like 1/r® (the square of the straind. There-
fore, the total elastic =snergy W{(R) associated to deforma-
tions at distances r*R falls, for large R, as

)
W(R) ¥ J;ﬂ’rzw(rbdr ~ é%
R
For this reason, we expect that vacancy formation energy
caloculations performed on & cubic box of size La (where a is
the lattice parameter}) should exhibit a dependence en L of
the kind

E, (LY ¥ E, + & (38)

By fitting this relation to the values of E, (L) extracted

from the simulations, the asymptotic term E, can be

sstimated.

Two sets of calculations have been performed, with

L=3,4,5,6, and N=4L>-1=107,255,499,843.

S5et a3
In this set, the volume of the box is kept f{ixed

accordingly to the T=0 lattice spacing of the periect
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crystal. This corresponds to imposing a vacancy forma-
tion volume equal to the atomic volume f1.. The result-
ing energies are given in the second column of Table &,
while in the third column these energies have been fit-

ted by eg. (38, with Ev=i.2624 eV and A=+1.0482 eV.

Set bl
In this set, the volume of the box is allowed to vary
in order to compensate the internal pressure induced by
the vacancy. In +this case, the vacancy formation
volume becomes less than f,and can be measured. The
results are given in Table 9. The {fit parameters in

eg. (38) are E,=1.2620 eV and A=-0.6404 eV.

S5et al) palculations overestimate the formation Bnergy,
while set b) calculations underestimate it. The explanation
lies probably in the fact that in set b), the attractive

interaction between the vacancy and the other image

{E """"" E;_'"”'EﬁTTZBT':
T3 771730137 TTIT301IET
] 1.2787 1.2788 |
I 1.2705 1.2708 |
] 1. i
I

2676 1.2673

Table 8

Vacancy farmation energies E, (in eV) from constant
volume calculations, and best fit fromw eq. (38).

{E """"" Es 77 EETTSE?_"Z§7§;’""ﬁ;Zﬁ;"“i

T3 1723837 172383 T T TR0CET T COTIROE T

| 4 1.2518 1.2520 -0.11 0.1459 |

i5 1.256467 1.256%9 ~0.06 O.1476 |

i 1.2592 1.2590 ~-0.03 0.1484 ;

S

Table 9

Vacancy formation energies E, (in_ eV from zero
ressure calculations, best fit from eq. (38), corresponding
attice parameter variation Aa/a, (in % and Vacancy

formation volume in atomic volume units.
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vacancies in the nearby computational boxes is stronger than
in set a), where it is almost nullified by the constant
volume constraint. The two sets are in remarkable agreement

for the wvalue of Ev- Dropping the last digit, we can thus

assume

as the vacancy formation energy predicted by the glue hamil-

tonian and, from set b,

Q,= 0.150,
as the vacancy formation volume, which is only weakly depen-
dent on the box size. This value appears to be low compared

with the esxperimental datum,fﬁ&;D.SQ°E65].

Finally, the relaxations of the first four atomic
shells around the vacancy in the case L=5 are given in Table
10, together with the atomic coordinations n  (in the glue
hamiltonian sense). It can be seen that all the four shells

move towards the vacancy. It is interesting to note [&63

TEReIT 7777 RT77777 ARTTTTTTTT n
}Set al :
I FLBIERT T TEOTOEEET T TITITEOS T
| 2 4. 0205 ~-0.0499 12.109 1
i 3 b FhL47 -0.0405% 12.041 1
= 4 5.725%5 -.0309 12.009 g
=13 S !
i 1 Z2.8298 ~0.0484 11.219 |
| ey 4.0184 ~0.0520 12.123 |
] 3 L£,.,941 4 -0.0436 12.055% |
] & 5.7220 ~0.0344 12.022 !
L
Table 10

Distance R from the vacancy (in_ &), relaxation AR
respect to the unrelaxed distance (in &) and coordination n
for the first four atomic shells around the vacancy. Set aj
is the constant volume ocalculation, set b) is the zero
pressure calculation.
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that in two-body systems with interactions not limited to

the first neighbours, the first shell relaxes towards the

vacancy but the other shells move away from it.
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CHAPTER 1V
AuCi00) SURFACE RECONSTRUCTION

4.1. Au(i00Y: experimental evidence

The (100) surface of gold has long been known to recon-
struct [&7-7671. It is by now well established that the
reconstruction is characterized by a close-packed triangular
cverlayer on a square substrate. The first, low-resolution
LEED measurements [467,68] indicated a (1x5) reconstruction
cell. This pattern was interpreted as due to a geometry
where six rows of atoms lie on top of five [0113 rows of
substrate atoms in a [01711 direction (henceforth direction
y}, while the registry with the substrate is preserved in
the orthogonal L0143 direction <(henceforth direction xJ.
This arrangement requires a 3.77% contraction of a perfect
triangular lattice in the é-onto-5 (y) direction. Later,
LEED measurements with improved resolution [711 suggested
120x5) as a better unit cell for the reconstruction. This
was interpreted to imply a small contraction alse in the x
direction, so0 as to accommodate one extra row over 20 [CO0113
substrate rows. Subsequently, LEED [741 and He-scattering
L7571 studies suggested a much larger unit cell such as
c(Z6%68), as the result of the additional contraction in the
y direction. In a recent scanning-tunneling-microscope
{8TM} real-space investigation [761, Binnig, Rohrer, Gerber
and Stoll propose a (25453 unit cell where ~-5{Zg0, implying
an additional y contraction but also the possibility of a
small rotation (about 0.1 degrees) of the whole overlayer

aver the substrate.

From the physical point of view, the most important
feature of the Auli00) reconstruction is the close packing
achieved by the topwost layer. This indicates the surface
density increase as the driving force behind reconstruction.
The energy of the system is lowered by this density

increase, overcoming the strain energy cost caused by the



migsfit between the sguare substrate and the triangular over-

laver.

While plausible but speculative arguments have been
advanced to Jjustify such behavior, there exists as yet no
detailed theoretical description of the phenomenon. At the
"ab initio"  microscopic level the task is certainly a very
difficult one, dus to the great complexity of the electronic
problem L[773. On the other hand, the phenomenological
scheme provided by the glue hamiltonian constitutes a useful
tool to study surface reconstructions. The rise of U(n) for
decreasing coordinations, such as one finds at a surface,
provides & natural driving force for reconstruction: since
the coordination of a surface atom is poor, it pays to

reconstruct into a denser layer, with better coordination.

An  investigation of the Au(i100) surface structure
predicted by the glue hamiltonian has been carried out using
molecular dynamics. This is done by studies of slabs with
in-plane periodic boundary conditions and initially 5x5=25
atoms per (100 plane. The area of the slab and its sguare
shape are kept rigid to prevent transformation into a (111)
slab. The area is readjusted at each temperature +to match
the bulk therwmal expansion, taken frow the calculation
described in Sec. 3.1. It is found that a number of layers

L=14 is sufficient to decouple the two surfaces.

First of all, the energetics have been studied by using
molecular dynamics mainly as a tool to generate the minimal
energy configuration. The typical procedure consists of
warming the slab up to about T,/2 and, after eqguilibration,
of gradually cooling back to T=0. The total length of the
cycle is of the oarder of 10000 molecular dynamics steps
(1 step = 7~1dwgsecond5}g This method does not guarantee
attainment of the absclute minimum. However, it is always

possible to improve one’s confidence in a given
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configuration by trying different annealing schedules, and

by starting from different initial conditions.

This procedure has been first applied to the clean,
unreconstructed (100> faces. Figure &(a) shows the appear-
ance of the first atomic layer after annealing. One can
note that the surface atoms have shrunken together, leading
to formation of close-packed stripes (five atomic rows each?
separated by a gap [%J. This gap in turn can be seen as
leading to the formation of two monoatomic steps, here still
very near to ong another. The second layer has remained a
basically perfect (100) plane. This is a clear indication
that our (100) surface wants te reconstruct into a denser

layer, even within the constraint of our small 5x5 cell.

To pursue further this idea, we have made a series of
runs  where a number n of extra adatoms is added on top of
the first layer. n is varied throughout the range from n=1
to n=25. For n small, the extra atoms are absorbed into the
first layer giving rise, after annealing, to a denser pack-
ing. At  the same time, we find a decrease of surface

energy, of surface energy, defined as

_ E (N)"’ NEC
S 2A

Sind

where M=25L+Zn is the total number of particles in the sam-
ple, E(N) +the total energy of the slab, E. the cohesive
energys; & the surface aresa and the factor 2 accounts for two
surfaces. A minimum of di(n) is obtained for n=5, as shown
by Fig. 7. The corrvesponding first-layer arrangement of
Fig. &¢(b) is a good candidate for explaining the Audi0O)
reconstruction. The sscond and deeper layers retain a

strained (100} character, in agreement with the experimental

C#3 By a careful gquench of a perfect crystal, not
preceded b% heating and thermal equilibration, a relaxed but
perfect (100} surface has been indeed produced. Its surface
BNergy, hcwever% is higher than §ha of the configuration
with %he gaps (128.5 vs. 109.46 meV/A2%2),.
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Figure &. Side views of minimum_ energy configurations
of (100 slabs after thermal eguilibration and subseguent
annealing. Two wmolecular dynamics cells are shown for
clarcity.
tay The starting configuration was a perfect (100) slab.

The atoms have shrunken in 5-rows wide stripes, leaving

a gap f(indicated by the arrow) in between. The surface

energy is 109.4 meV/A82.

(kY 5 additional adatoms resant in the startin%

configuration. They are absorbed, giving rise to a 20

denser gquasi-triangular reconstructed first laver with
a ABCCRBA stacking. The surface energy is 102.3 mev/82.

(o) Same as (b)Y, but the registry is different and EDE
stacking is ABCDCB. The surface energy is 102.&6 meV/A®.

All atcmic_pusitinns-shawn to scale (not schematic) but
atom radii are arbitrary.. Vertical (z) direction EiGD],
horizontal (y3 direction CO111. ,



findings L[7231. The amplitudes of the corrugation predicted
for the first 4 layers are §,=0.47 &, £,=0.21 &, £,=0.13 &,
éh=D,DB A. The relaxations of the distances between average
layer positions are Aqm=+3.&%§ Ad8=+2‘2%’ Ad%=—0.2%. The
increase of dy and dy is due to excessive coordination in
the second layer, caused by the first-layver reconstruction.
The stacking of the rows is ABCCBA, as on Fig. &(b). &
local energy minimum has been alsc found at another stacking
ABCDCE, shown in Fig. &(co. In this arrangement the surface
energy is slightly higher and the corrugation is larger
(€4=Dx74 £, In all cases the strain is not uniformly dis-
tributed: +the surface density is higher in a hilltop COW,
and lower in a valley row, where the atoms are not far from

their ideal hollow-site positions over the sguare substrate.

0f course the role played by the cell size in these
calculations is not a minor one. The n=5% "best" configura-
tion has a (1x5) reconstructed structure which fits very
wall in our 5x5% gell. On the other hand, the use of dif-
ferent cells may reveal the existence of reconstructed sur-
faces with a still lower surface energy. Following this
idea, calcoulations of the same kind have been performed,
with ocells suited to the following reconstruction patterns:
CIx7y, (IxlZy, (1x8), (ix3), respectively of the kind 8-
onto-7, 14-onto-12; 10-onto-8&, 4-onto-3 (in increasing order
of surface density?. All these surfaces reconstruct intoc a
denser overlayer, and the surface energies are (in the
order) 103.7, 103.2, 103.3, 108.6 meV/&z C#1. Since they
are all higher than the (ix5) surface energy (102.3 mev /&
for the ARCCRPA registry or 102.6 mev /&% for the ABCDCR

registry?, the (1x5) is the preferred pattern.

L3 0f course, the absg;gte level of confidence on the
energetic arauraG{ the glue scheme is far from the level
of the meV per om The accuracy of relative ener?y
differences, huwever can be very different, and shou
hasically be as good as the physical descrlptlon behind the
hamiltonian, In this sense, it is meaningful to seek the
optimal configuration, even among possibilifies which are
energetically very close.
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114

o 5 10 15 20 25

Figure 7. SBurface energy of the final configurations as
a function of the number of adatoms Eresent at the start in
a (5x5} 100 slab. The minimum at n=5 corresponds to the
configuration in fig. &¢(bl).

[
]

(34u52 ‘‘solitonic’’ reconstruction

S0 far we have considered only the reconstruction alang
the five-fpld vy ce1ia direction, which gives rise to the
basic (1x5) pattern. In this geometry, the quasi-triangular
overlayer is contracted on the average by 3.77% in the ¥
direction while it is in registry with the underlying lat-
tice in the x [0111 direction. On the other hand, the unit
cell has heen regarded as a (20x5) for a long time L7473,
indicating a 4.76% average contraction along x. More recent

5TM measurements [743 suggest a more accurate (286483
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structure, where the contractions are 3.83% along x and

L. 42% along y.

The optimal contraction in the x direction at T=0 has
been seacrched by studying the surface energies of recon-
structed (Mx5) i12Z-layers slabs. No nrovision is made for an
additional contraction in the y direction or a small overall
rotation (both leading to much larger unit cells? and for
finite temperature effects. The results are summarized in

Fig. 8. This analysis leads to the following interesting

400 (1x5) ABCDCB
200
> B
ol ijCﬁ)c;
=-
3
5 o (1x5) ABCCBA
<]
I ABCCBA
B R T:)

Figure &. Differences of surface energies of (Mx5)-
reconstructed slabs, respect to a f1x5)~reconstructed ABCCEA
slag sz a function of M. The twao basic PEElStFlES
(ARCLBA and AECDC83 show different behav1ors, or each

istry, the odd g is slightly disfavoured. The
Dp imal surface is EB?C M=34,
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points:

1) After annealing, some of the small distortions that
take place break the exact mirror plane symmetry of
ABCCBA. The relaxed surfaces have instead a lower SYym-
metry of the type ABCCBA, where A and A, B and B, C and

€ are different as discussed below.

(2> the ABCCBA arrangement provides the overall surface
energy minimum, and leads to larger unit cells than
ARBCDCRE.

(3) the best length M of the (Mx5) unit cell is M=34, but
the minimum of the surface energy is so flat as to make
this precise value almost meaningless: any value of ™
between 28 and 38 is about equally good. In particu-
lar, the surface energy of (34x5) is only O0.003% less
than (26x5), which is a unit cell very close to the
suggested experimental cell (Z6%48) [7&81. This can be

regarded as a pretty good agreement.

43 the odd M cells cost more energy to realize than the
even M ocells. This has to do with the presence of a
defect [781. The defect-free situation is that of even
My, which therefore must be taken as representative of

the perfect surface.

Let us now consider the structural features of the
optimal (1002  surface arrangement, i.e. EBach, (34u5), as
resulting from the molecular dynamics minimization. A more
detailed discussion can be found in ref. [793. Fig. 9(a’
shows a perspective view of the first three layers of this
slab. The contraction along x induced by the density
increase is not uniform but localized in soliton-type
regions [803J, stacked to give rise to a slightly distorted
centered rectangular superlattice. In correspondence with
the soliton centers, the corrugation in the y direction has

a double-maximum—double-minimum structure (due to the alter-
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nating stacking of solitons) and is large (0.8 &>. In the
middle of the regions between the solitons, the corrugation
and the overall structure are very similar +to the ABCCBA
Cink) cell. Here, the y-corrugation is 0.5 &, single-
maximum-single-minimum. This corrugation coincides numeri-
cally with the value suggested by the He-scattering analysis
of Rieder st al. [751. The solitons slightly compress the
surface atoms in these middle regions. The resulting glue
energy gain more than compensates the formation energy of
the solitons. Also the multilayer relaxations, generally

close to those of the (1x5) above, become soliton-modulated.

The detailed discussion provided by Binnig, Rohrer,
Gerber and Stoll of the Auli00) surface morphology obtained
by 8TM allows some further comparison with our calculated
structure. Their STM micrograph, shown on Fig. 10, exhibits
an alternation of "smooth ribbons"” with "rough ribbons". In
the former, the wrrugation is single-minimum-single-maximum
with an amplitude of ~0.5 & L8173, while in the latter the
corrugation is double-maximum~double-minimum with a +total
amplitude of ~1 &. We can identify the "rough ribbons" as
the stripes joining solitons along [D'l'-f]5 and the “smooth
ribbons" as the wide flat regions in between. The rough
ribbons seem narrower in our calculation than in the STHM
picture. However, it is possible that this could be due to

temperature smearing, rather than a genuine disagreement.

While differing in several ways from the hard-sphere
model wused in Ref. [761 to interpret the experimental
results, the present structure seems generally more plausi-
ble, and no less compatible with the data. A more recent
STM experiment [82] appears to confirm the correctness of

this solitonic descripbtion.

In conclusion, it has been shown how an extremely
detailed picture of the reconstructed Au(i00) surface can be

obtained by starting from the same glue hawmiltonian which
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Figure 10. STM micrographs of Au(i00), taken from ref.
L761. They show the alternating sequences of "rough
ribbons”, with a double-maximum-double-minimum corrugation
pattern, and “swooth ribbons", with a single-maximum-
single-minimum pattern. These ribbons are grlented alon
C0111. Division on the axes correspond to 5 . The bol
lines show the unit cell, “(2&x48). [011] is direction x
and [O01T3 direction y in Figure 9.
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reproduces the bulk properties. The resulting energetics
and surface atomic arrangement appear realistic, and compare

favourably with known experimental facts.
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CHAPTER V
CONCLUSIONS AND OUTLOOK

The glue hamiltonian is a completely empirical way to
represent atomic interactions in a metallic system. It con-
stitutes a major step forward respect to standard two-body
descriptions: in fact, all the wmain faults of pairwise
forces are overcome without introducing a significant COompu-

tational overhead.

This study has shown that a detailed picture of the
Auli00) surface reconstruction can be achieved, together
with a good description of bulk cohesive and thermal proper-
ties of gold. Moreover, the Au(110) "missing row" recon-
struction L[&831 and the Au(il1i) reconstruction [84] are also
well reproduced and characterized by the glue model. There-
fore, the glue hamiltonian appears as an extremely useful
tool to study the properties of metals by caomputer simula-

tion in a realistic way.

Other studies presently planned or under way concern
surface phonons on reconstructed Au(ii1) [851, the melting
transition with particular attention to surface effects
£593, melting and structural properties of small gold clus-
ters L8612, bulk defects, as well as extensions to other

metals.
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APPENDLX
GLUE FORCES IN MOLECULAR DYNAMICS

A standard molecular dynamics program based on two—-body
interactions can be weasily extended to include the glue
forces (given by equation (13)): the number of computations

required is roughly doubled.

The procedure requires two passes over all the
interacting pairs [#*1. In the first pass, the two-baody
forces and the total coordinations are calculated for each
particle. In the second pass, the glue forces are computed.
This splitting is necessary because all the coordination n;

must be known to calculate the glue forces.

The first pass can be schematized as follows {using

pseudocodel:

/¥ Reset to zero arrays forcex, forcey, forcez, coord #/

do i;i,N—j N
o Jg=1+1,
/% Compute the distance rij= Vxijl+ yij?+ zij® #/
/% between particles i and j */
if {rijd<pe} hen
/¥ Compute f = -(1/vifdd’ (rijy #/
forcex(i) = forcex(i) + fxij
forcey(i) = forcey(i) + f#yi]
forcez(i) = forcez (i) + f#zi]
forcex(j) = forcex(j) - f#xiJ
forcey(3) = forcey(j) - f#yi
forcez(3) = forcez(3) - f#zi]
endif

if (rijdm then

/#  Compute rhoij = QA(rij) #/
coord{i) = cogord(i) + rhoij
coord(j) = coord(j} + rhoij
endif
enddo

endda

An intermediate single loop is required at this point
to calculate the first derivative of the glue as a function

of the total coordination for each particle:

L#] By "interactin pairs"” we intend here pairs of
particles whose distance is less than max(r, ,r,?, where 8
is the range of ¢(r) and r, is the range of P(r),
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do i=1,N
uderiv{(i) = U’ {cooprd(i)?
enddo

In the second pass, the glue forces are added to the

two-body forces calculated in the first pass:

do i;i,N—1 1N
o j=i+
/¥ ompute the distance rij=\/§ijz+ yijl+ zijz */
/*%  between garticles i and j #/
if {(rijd<rm? then
/% Compute g = —(i/rij)f’ (rij) #/
f =g % ( uderiv(i) + uderiv(jy) 3
forcex(i}) = forcex(i) + foxij
forcey(i) = forcey(i} + f¥yi]
forcez(i) = forcez(i) + f#zi]
forcex(j} = forcex(j) - f#xi]
forcey(3) = forcey(3) - foyiy
forcez(3) = forcez(3) - f#zi3
endif
enddo
enddo

0f course, a real world program should have some sort
of bookkeeping mechanism, such as a neighbours list C873, to
keep track of the pairs which are close enough to interact.
This avoids the expensive computation of all the N(N-1)/%2
distances at each time step. Due to the short range of the
functions employed, the benefits of using this technigue are

very large when N is of the order of 1000 or more.

Also, it is suggested to use numerical tables for ¢(P),
‘P(r), Utnd, instead of caleculating them analytically. By
constructing the tables of @(r) and P(D) through a uniform
sampling in r? rather than in r, the square roots computa-

tions can he avoided.



