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1.INTRODUCTION

That the two concepts mentioned in the title, "super-
symmetry" and "baryon number non-conservation”, have some-
thing to do with reality, it is far from being proven, in
the sense that any clear experimental support for them is
still lacking. I feel therefore obliged to sketch in this
chapter the main motivations for : a) introducing super-
symmetry into particle physics; b) taking into account the
possibility that baryon number, B ( and lepton number, L ),
might be only approximately conserved quantities. A plan

of the thesis will close this introduction.

1.1: Why supersymmetry in particle physics?

The most obvious prediction of exact supersymmetry [1.11,
namely the degeneracy of boson and fermion masses, is
clearly in contrast with experiment. One is therefore led
to envisage that supersymmetry, if realized in Nature, is
badly broken at the scale of present accelerator energies.
Thus the only reasons leading to the belief that supersym-—
metry may play a fundamental role in particle physics are

theoretical ones. A tentative list is the following :

- It is the only non-trivial extension of the space-time
Poincaré symmetry which allows particle multiplets of
different spin and statistics : more precisely, the su-
persymmetry algebra is the only graded Lie algebra of
symmetries of the S-matrix consistent with relativistic
quantum field theory [1.2].

- It provides a "raison d'&tre" for the existence of ele-

mentary scalar fields in ordinary spontaneously broken



gauge theories ( for instance, the standard model of

strong and electro-weak interactions ) .

It unifies matter with radiation, to the extent that
vector gauge fields ( and the tensor gravitational
field ) necessarily have their associated fermionic
partners.

It may ultimately lead to the unification of all ele-
mentary forces of Nature; at least, supergravity [1.3]
provides a possible theoretical framework for this a-
chievement : in the context of N=8 extended supergra-
vity [1.4] all elementary fields, including the gravi-
ton, sit in a single irreducible representation of the
supersymmetry algebra. ’

- It implies a-softening of quantum divergencies, due-to
mutual cancellations between boson and fermion loops in
Feynman diagrams : supersymmetry not only survives
quantization but improves the ultraviolet behaviour of
relativistic quantum field theories. In particular, the
vanishing of the B-function to all orders in perturba-
tion theory for the N=4 supersymmetric Yang-Mills theo-
ry [1.5] and the greatly improved divergence structure
of N=8 supergravity [1.61 open up the hope of achieving
a finite field theory.

It may solve ( and this is the most popular argument in
favour of supersymmetry ) the so-called "hierarchy prob-
lem" [1.7] of ordinary interactions : there is no natu-
ral explanatlon of why the weak interaction scale ( m e~
~10?% Gev ) is so small compared with the natural ultra~
vioclet cutoff of the theory, i.e. the grand-unification
scale ( Mx~«1015 Gev ) or the Planck scale ( MP'\AO19

GeV ). In the framework of perturbative unification the

hierarchy problem has also a more technical aspect :



even if one adjusts the parameters of the theory to en-
sure the desired hierarchy at the tree level ( mw<<Mx

or MP ), this hierarchy is not stable under radiative
corrections. This problem is related to the fact that

in a general renormalizable theory scalar masses are not
protected by any symmetry ( in contrast with fermion
masses, which are protected by chiral symmetry ), and
receive quadratically divergent radiative corrections :
even if a scalar field has zero mass at the tree level,
after guantum corrections its mass will be naturally of
order Mx ( or Mp ), unless an unnatural "fine-tuning"

is made. Supersymmetry is the only known symmetry which
prevents scalar self-energy diagrams to be gquadratically
divergent. Othef problems of similar type, whose solu-
tion may come from supersymmetry, are the smallness of
Einstein's cosmological constant [1.8} and of the CP-
violating O-parameter of QCD {1.9] .

1.2: Why baryon number might be non-conserved ?

The conservation law of baryon number is certainly well
satisfied : up to now there is no clear evidence of any
process which can violate it [1.10] . Nevertheless, there
are strong theoretical motivations for believing that B

is not exactly conserved in Nature :

- It seems very unlikely that the apparent conservation
of B may be linked to an exact local symmetry : a mass-
less gauge boson coupled to baryon number would intro-
duce discrepancies in the E8tv8s experiment unless its

coupling were incredibly weak [1.11].

- In the standard model of strong and electro-weak inter-

actions the global symmetries associated to the conser-



vation of B and L in renormalizable interactions are in-
cidental consequences of the choice of the fundamental
fields and of the gauge invariance with respect to SU(3)c
XSU(Z)leH)y : there is no need to introduce indepen-
dently a conservation principle for baryon and lepton
number. In the extensions of the standard model this
might be no longer true, due to the presence of addition-
al particles which could participate in renormalizable

B and/or L non-conserving interactions. Of course, one
could simply impose B and L conservation laws as global
symmetries of these models. This does not seem to be

the most fruitful approach : global symmetries, like
strangeness, isospin, etc., increasingly appear to us

as incidental cdnsequences of gauge symmetries and re-
normalizability, with no status as a priori constraints

on a fundamental level.

The existence of new interactions with AB#0O and/or AL#O
is naturally predicted by mdst‘of the grand unified mo-
dels of strong and electro-weak interactions {1.12,1.13].
In these models there is also the intriguing possibility
of baryon decay catalyzed by grand-unified monopoles [1.
14].

Even in the standard model B and L are not exactly con-
served quantities, due to non-perturbative effects (which
are however negligible from an experimental point of view )
[1.151. Non-perturbative guantum gravitational effects
such as virtual black holes may also lead to baryon de-

cay [1.16].

A phenomenological explanation of the apparent excess of
baryons over antibaryons in our universe seems to be pos-
sible, thanks to the interplay of baryon number viola-
tion, CP violation and disequilibrium in the very early

universe [1.17].



1.3: Plan of the thesis

Baryon number violating processes have been widely in-
vestigated in the context of non-supersymmetric unified
models [1.17]. In this thesis I shall try to review the
different possibilities for B non-conservation which arise
in supersymmetric models of strong and e€lectro-weak inter-
actions ( without and with grand-unification or super-uni-
fication ), limiting the discussion to the framework of a

perturbative treatment.

Chapter 2 is devoted to a general analysis of the su-
persymmetric and gauge-invariant operators, carrying non-
vanishing baryon and/or lepton number, that correspond to
different choices of the gauge group. Chapters 3 and 4 are
dedicated to a more detailed study of the mechanisms that
can give rise to two particular processes : nucleon decay
and neutron-antineutron oscillations. Some well-known re-
sults, frequently used but not explicitly mentioned in the

text, are collected in the Appendices.



2 .GENERAL OPERATOR ANALYSIS

This chapter is devoted to the construction ( for dif-
ferent choices of the gauge group and of the associated
set of fundamental superfields ) of the lowest-dimension-
al supersymmetric and gauge-invariant operators with AB#O
and/or AL#0, corresponding to some possible selection rules.
A preliminary analysis of their phenomenological implica-
tions, taking into account only the general features of
supersymmetry and gauge-symmetry breaking, is carried out
for some of them. The remaining ones, which can give rise
to nucleon decay or neutfon—antineutron oscillations in
the context of specific models, will be studied in detail

in the fecllowing chapters.

2.1: The standard gauge group SU(3)ﬁxSU(2)le(1)y

2.1.1: General form of the lagrangian and related troubles

To begin with, let us consider supersymmetric models
of strong and electro-weak interactions based on the stan-
dard gauge group GOESU(3)éxSU(2)le(1)y. Such models will
be regarded as effective low-energy theories (°), descri-
bed by a renormalizable (°°) lagrangian, Qf (expressed in
terms of low-energy fields only ), which can be written
as the sum of a globally supersymmetric part,$£mSy , plus

(°) Here and in the following "low-energy" will stand for "EX 1-10
Tev".
(°°) The possibility of non-renormalizable effective interactions
between low-energy fields will be considered in subsection 2.1.4.




a soft supersymmetry-breaking part,&a%ﬁ-(o).

In general, Qfgwf will contain mass terms for scalar bo-
sons and gauge fermions, as well as particular trilinear
couplings among scalar bosons. Several models have been
constructed, based on N=1 supergravity [2.2], in which su-
persymmetry is broken by wvacuum expectation valués of sca-
lar fields in a "hidden sector", and the effects of the
breaking are transmitted to ordinary matter ( the "obser-
vable sector" ) only through gravity : they give rise to a
éﬂbﬁ‘ whose form is highly constrained, depending only on
a few parameters of the underlying supergravity model. For
the time being, however, I do not want to commit myself
with the specific form of a&wpr, in order to keep the ana-

lysis as general as possible.

To construct the supersymmetric and gauge-invariant la-
grangian,a"fguw ; one has to decide :

1) the set of chiral superfields appearing in the low-en-
ergy theory and their transformation properties with
respect to GO;

2) the superpotential, i.e. an arbitrary gauge-invariant
polynomial of at most degree three in the chiral super-

fields ( or, equivalently, in their scalar components ).

If one wants to give masses to quarks and leptons and
break SU(2)le(1)y down to U(1)e.m. according to the stan-
dard perturbative mechanism, avoiding at the same time SU(Z)1
xU(1)y anomalies, a minimal set of left-handed chiral su-
perfields is that appearing in Table I [2.3]. To fix the
noﬁation, gauge vector superfields are also collected in
Table II. Other conventions used in the following may be

found in Apeendix A.

(O) Soft breaking of supersymmetry is studied in reference [2-1].



Table I

Minimal set of chiral superfields for supersymmetric models based on
the standard gauge group SU(3) xSU(2), xU(1)y . Chiral superfields are
denoted by capital letters, their spin-O components by capital script
letters, their spin~1/2 components by lower case letters. Quantum
numbers are indicated with respect to Gy, with the convention Quu= Y+
+ Ty . Index o= 1,2,3 refers to SU(3), , index i=1,2 to SU(2), , while
a=1,2,3 is a generation index.

Superfield Component fields Quantum numbers
Oy Q% ds Eag) (3,2,+1/6)
U;u(. (zﬂ;d eU§¢ fFﬁ,\‘ag() (§I1I—2/3)
e @aa - ae (Firsa) (3,1,+1/3)
Li (s 13 oRY) (1,2,-1/2)
E; (g; Ieg rFE‘a) (1111 +1 )
Hé (#*,h" RS (1,2,-1/2)
H'* (*' 0 B (1,2,+1/2)
Table II

Gauge vector superfields associated to the standard group G,&SU(3)
xSU(2)e xU(1)y . Vector superfields are denoted by capital letters,
their spin-1 components by the general symbol v™, their spin-1/2
components by the general symbol 2. The Wess-Zumino gauge is adopted.
Index A=1,2,...,8 refers to SU(3)e, index I=1,2,3 to SU(2)y . Quantum
numbers are given with respect to Gg.

Superfield Component fields Quantum numbers
A
GA (‘Q“AI ﬁ(’ IDQ ) (8I1IO)
w* (" s Aw Dy ) (1,3,0)
B (Vg + Qg ,Dg ) - (1,1,0)

In terms of the chiral superfields of Table I, the most
general form of the superpotential is the following :



£=f£ + £+ £ (2.1)

£ = LE®H + oD®H + QUH' + HH' (2.2)

£ = LH' + LE°L + ODCL (2.3)
— +iCACC

fIII = U°D"D (2.4)

In the above formulas, in order to make clear the physical
content of each term, a synthetic notation has been used,
omitting all coefficients as well as group and generation
indices. The explicit expressions corresponding to the dif-
ferent terms have been collected, for future reference, in
Table III. Note that terms of the form HE®H would be iden-
tically zero, while terms U°p°D® and LE®L vanish for super-
fields belonging to the same generation. Note also that,
with the usual assignments of baryon and lepton number to
chiral superfields, recalled in Table IV, f_ is character-

I
ized by AB=AL=0, fII by AB=0,AL=-1 and fI by AL=0,AB=+1.

II

Table III

Explicit expressions of the different terms appearing in the Gg-inva-
riant superpotential £. Symbolsefﬁ( @ ,p,¥=1,2,3) and eua(i,j 1,2)
are completely antisymmetric tensors of SU(3)¢ and SU(2), , respecti-
vely, normalized according to the following conventions : e =41,
€4y =+1.

Term Explicit expression
LE®H rée e, .nt E i
ab ija
c d dl C 43
QDH ab 1]Qa bﬁH
QUCH' Qal c H'j

ab 1] a ba
1 |J
HH uein H



Table III (continued)

LH' m_e, . Lig'd
a ij"a
LECL rtl e 1igfrd
abc ij a b ¢
c L2 i c 3
QD L Fabceian DbuLc
c.c.cC B apf .c _C _C
U"'DD Fabce UaanaDcK
Table IV

Usual assignments of baryon and lepton number to the fundamental chi-
ral superfields of Table I. Note that, in presence of the terms in fy ,
which induce mixing between L and H, the assignment of lepton number

is not obvious : this point is crucial in the discussion of lepton num-
ber violations [2.4,2.5], but will be skipped in the context of the
present analysis, focused on baryon number non-conservation.

Superfield: 0] U D L E H H'
B s+ -1 -1 0 o) 0 0
L : 0o o} o} +1 -1 o} 0

As can be easily seen, the situation here is radically
different from the standard ( non-supersymmetric ) model :
there gauge invariance and representation content were suf-
ficient to ensure B and L conservation in all renormaliza-
ble interactions; here, due to the presence of new particles
( the scalar superpartners of quarks and leptons and the
fermion superpartners of Higgs bosons ), those accidental
symmetries are lost, and one has to face B and L non-conser-
vation already at the level of renormalizable interactions

among low-energy particles [2.3,2.6].




Let us see immediately the most spectacular conseqguence
of the new B and L violating interactions. The simultaneocus
preence of the two terms QDL and U°D®D® in the superpoten-
tial induces in the supersymmetric lagrangian<i2w, ; among

the others (°), the following Yukawa couplings :

c . _pL2 (i, j aC
gl , or : Tapcfi39s 12 o‘bm (2.5)
C JCayxX . _-B CATTB qyckRY
uCaw*, or : I7 b ofupy Uy Gy g)c (2.6)

Those two interactions conspire, through the exchange of
virtual scalar gquarks of electric charge -1/3, to origina-
te graphs like that in Fig.1, inducing AB=AL nucleon decay
at the tree level.

9 ue

4 a
Figure 1 - Graph inducing AB= AL nucleon decay at the tree level, me-

diated by the exchange of a virtual scalar quark of charge -1/3 and

originated by the terms op°L and U°D°D® in the superpotential. Indices

are omitted for simplicity.

Even neglecting the details of gauge and supersymmetry
breaking, it seems natural to assume that scalar quarks
have masses Mg of order 102— 103 GeV : this turns out to

(O) The general form of a renormalizable, supersymmetric and gauge-in-
variant lagrangian is recalled in Appendix B, together with its
expression in terms of component fields ( in the Wess-Zumino gauge ).



be the case in many realistic models and is compatible with

both the present experimental limits [2.71 and the solution

of the technical aspect of the gauge-hierarchy problem.

B L2 _.L
(b#c) and Pabc_r ;, the

nucleon decay rate corresponding to the graph of Fig.1 is

Then, putting for simplicity TibC=T

roughly given by :

r o= :——w———m; lv(o)|? , (2.7)

where m, is the proton mass and [W(0)|222x10'3GeV3 is a fac-
tor taking into account wave-function effects, which can be
naively interpreted as the probability of finding two inter-
acting gquarks at the same point inside the nucleon (°). Tak-
ing for the nucleon lifetime the conservative limit 3(211031
years, consistency with experiment regquires the strong con-
dition :

< 107°°=- 10 . (2.8)

In other words, to avoid conflict with micleon decay expe-
riments, at least one of the Yukawa coupling constants FB,
rY must be fine-tuned to an incredibly small value, several
orders of magnitude smaller than the typical values appear-

ing in fI.

(°) In formula (2.7) numerical factors of order unity, irrelevant for
the present discussion, have been omitted for simplicity : for a
detailed treatment see, for example, reference [ 2.8].



2.1.2: A possible way out : additional global symmetries

The situation outlined in the preceeding subsection,
even if technically natural, is clearly unsatisfactory.
One possible way out is well known : there must be a sym-
metry reason underlying the incredible smallness of the Yuka-
wa coupling constants r® or rP. The most obvious choice is of
course to impose the global symmetries associated to baryon
and lepton number. This radical solution, however, is in
contrast with the spirit of the present work, as explained
in the introduction. On the other hand, leaving aside .for
the moment the possibility of extending the gauge group,
there are many other global symmetries, weaker than B and
L, that can forbid at least one of the dangerous terms oD°L
and U°D®D® in the superpotential. A tentative list is the

following :

Matter-parity [2.3] : it is a discrete reflection symmetry

under which gquark and lepton sﬁperfields change their sign,
while all the other superfields remain unchanged. Imposing
matter-parity forbids all B and L violating terms in the

superpotential ( those contained in fII and fIII ), allow-

ing only the AB=AL=0 terms contained in fI.

R-parity [2.4] : it acts on superfields exactly in the sa-
me way as matter-parity, but in addition it changes the sign
of the anticommuting coordinates 6 and §; operaticnally it
is perfectly equivalent to matter-parity, since every ver-
tex involves an even number of fermions; it must not be con-

fused with the continuous global R-invariance.

SY-parity [2.61 : introduced in this context by Sakai and
Yanagida, it is a multiplicative parity which leaves vector
superfields unchanged and acts on chiral superfields in the

following way :




¢, E®+-£°, pD%+D®, 1oL, Hs-H, H'-H';

Q+-Q, U°+-U
these apparently strange assignments are clearly inspired

by SU(5) grand unification; imposing SY-parity forbids all
IT and fIII’ with the

exception of the superrenormalizable term LH', and in addi-

B and L violating terms contained in £

tion it forbids the Higgs mass term HH' contained in fI.

Lepton-parity [2.4,2.9} : weaker than matter-parity, it
changes the sign only of lepton superfields (L,EC), leaving
all the other superfields unchanged; in the superpotential
it forbids all the L violating terms contained in fII, but
it allows, in addition to fI, also the B violating term
U°D°D® of £ ___.

Quark-parity [2.4,2.9] : weaker than matter-parity, it

changes the sign only of gquark superfields (0,u%,D%, leav-
ing all the other superfields unchanged; in the superpoten-
111’ but it allows,

in addition to fI, also the L violating terms contained in

fII'

tial it forbids the B violating term £

Fiveness [2.6] : it is a global U(1) symmetry, eguivalent

to B-L through the relation B-L = ("fiveness"+4Y)/5 ; all
vector superfields of GO have zero fiveness, while the fi-
veness assignments of the chiral superfields are the follow-
ing :

Q(+1), US(+1), ES(+1), D°(-3), L(-3), H(+2), H'(-2);

such a symmetry is clearly suggested by ordinary SU(5)

grand unification, and forbids all terms in fII and £

Iit’
while allowing all those in fI.

R-invariance [2.6] : it is a global U(1) symmetry acting

non-trivially on superfield coordinates; its action on a

generic chiral superfield @i(x,e) is the following :

@i(x,e) — eZiI‘-"t @i(x,e-ﬁxe)



and the corresponding action on the antichiral conjugate :
dz(x,é) — g 2in @I(x,eﬁx§),

where o is a real parameter and r, is called the R-charac-
ter of @i. Clearly, R-invariance regquires that all 06-terms
have R-character r=+1, all 68-terms r=-1 and all 6666-terms
r=0. The R-characters of the chiral superfields of Table I
are assigned as follows :

r=+1/2 for 0,u%,p%,L,E®; r=0 for H,H'.
In this way R-invariance forbids all the terms contained in
fII and fIII, and, in addition, the term HH' contained in
fI.
The action of the global symmetries considered above on the
chiral superfields of Table I, as well as their consequences
on the terms appearing in the most general superpotential £,

are summarized in Tables V and VI.

Table V

Transformation properties of the fundamental chiral superfields of Ta-
ble I under some global symmetries, introduced to prevent renormaliza-
ble interactions leading to a too fast nucleon decay.

Chiral \\\siébal Matter SY  Lepton Qua?k Fiveness R'
superfield\ symmetry parity parity parity parity invariance
Q -1 -1 +1 -1 +1 +1/2
u© -1 -1 +1 -1 +1 +1/2
D° -1 +1 +1 -1 -3 +1/2
L -1 +1 -1 +1 -3 +1/2
E® -1 -1 -1 +1 +1 +1/2
H +1 -1 +1 +1 +2 o
H' +1 +1 +1 +1 -2 O




Table VI

Action of the global symmetries of Table V on the terms appearing in
the most general Gg-invariant superpotential f.

\\Eiobal Mat?er S¥ Lepton Quark Fiveness A
Term\ symmetry parity parity parity parity invariance
LE®H yes ves yes yes ves yes
OD°H ves yes yes yes yes yes
QuH" yes yes yes yes yes yes
HH' yes  no yes  yes yes yes
LH' no ves no ves no no
LE°L no no no yes no no
oD°L no ° no no yes no no
U°p°D¢ no no yes no no no

A few comments are now in order. One can see from Table
VI that all the global symmetries considered above achieve
the desired goal, i.e. they forbid at least one of the dan-
gerous terms QDCL and U°D®D® in the superpotential, allow-
ing at the same time the terms LE“H, OD“H and QU“H', which
are needed to give masses to guarks and leptons according
to the standard mechanism of gauge-symmetry breaking. How-
ever, there are many other symmetries, both discrete and
continuous, which can do that job : those listed above are
considered the least artificial possibilities, in the sense
that one can hope to explain their origin, in the context
of a more fundamental theory ( grand unification, composi-
teness, etc. ), in terms of gauge symmetries and/or dyna-

mical effects.



The symmetries considered above can be divided into two
groups. In a first group one can put those symmetries ( SY-
parity, lepton-parity, gquark-parity ) which do not forbid
all B and L violating terms in the superpotential : in this
case there are still some possibilities for B or L non-con-
serving renormalizable interactions among low-energy parti-
cles, one of which will be examined in subsection 2.1.3.
In a second group one can put those symmetries (matter-pa-
rity, fiveness, R-invariance ) which forbid all B and L vio-
lating terms in the superpotential, so that there are no B
and L non-conserving renormalizable interactions. among low-
energy particles. This does not mean, however, that B and
I are exactly conserved ; even in this case one can construct
B and/or L violating non-renormalizable interactions ( inva-
riant under supersymmetry, gauge-symmetry and the additional
global symmetry ), which can be interpreted as effective in-
teractions arising from the exchange of heavy particles of
an underlying theory : this possibility will be examined in
subsection 2.1.4.

2.1.3: A residual possibility for B violating renormalizable

interactions between low-energy particles

Among the global symmetries considered in the preceeding
subsection, there are some which still allow B or L viola-
ting interactions in renormalizable terms.

On one hand, the imposition of SY-parity or quark-parity
makes B an exact symmetry of the renormalizable supersymme-
tric lagrangian,ée&w,. However, some terms appearing in the
L violating part fII of the superpotential are still allow-
ed. The discussion of the corresponding phenomenoclogy of
lepton number violations [2.4,2.5] ( which is, by the way,



rather complicated and strongly model-dependent ) is outsi-
de the purpose of the present work and will not bé pursued
further. ,

On the other hand, the imposition of lepton-parity re-
'sults into a superpotential which conserves exactly lepton
—_— What is

the pattern of B non-conservation arising from such a con-

number L, but contains the B violating term f

text ? I have discussed this problem in a recent paper (2.
9].

First of all, one has to examine the opportunities for
nucleon decay. Since lepton number is exactly conserved in
renormalizable terms, neglecting for the moment the possi-
bilty of non-renormalizable interactions originated by the
exchange of "exotic™® heavy particles, nucleon decay can OC-
cur only according to the selection rule AB=-1,AL=0. Let us

consider the general reaction :
nucleon (B=1,L=0) — final state (B=0,L=0).

Arngular momentum conservation, combined with the AB=-1,AL=0
selection rule, requires a final state containing, among the
other things, either a bosonic superpartner of an ordinary
fermion ( squark, slepton ) or a fermionic superpartner of
an ordinary boson ( gaugino, higgsino ).

At this point, in order to determine the kinematically
allowed channels, sbme model-dependent information about the
particle mass spectrum is needed. To keep the treatment as
general as possible, let us consider two opposite possibi-
lities :

1) at least one of the superpartners guoted above is sensi-
bly lighter than the nucleon ( as an illustrative exam-
ple I shall take the case of a photino, kx, with a mass
of order 100 MeV );

2) all the superpartners guoted above have masses higher



than the typical nucleon mass, mx’”‘ GeV. .
Both cases can apparently occur in realistic models ( in
which, however, the possible existence of the terms fII and
£, ;7 has been often ignored ) [2.2].

In the first case AB=-1,AL=0 decay is therefore pecssible,
being induced, for example, by the graph in Fig.2, which can

give rise to reactions of the type : nucleon — photino +

mesons.
T e
u(
[
. 9
N e
a 2.

¥

Figure 2 -~ Graph inducing AB=-1,AL=0 ﬁucléon decay into photino (2;)
plus mesons, generated by the B violating term T =U°D°D° in the su-

perpotential ( e stands for the electromagnetic gauge coupling con-
stant ).

A rough order-of-magnitude estimate, based on dymensional
"analysis, is sufficient to see that, assuming squark masses
not much higher than 1 TeV and Yukawa couplings in r® not
much smaller than 10_6, the graph in Fig.2 induces nucleon
decay at a catastrophic rate with respect to the experimen-
tal limits, even taking into account the unconventional se-
lection rule under consideration.

The situation is radically different in the second case,
where the process of Fig.2 is forbidden by energy conserva-
tion, and nucleon becomes stable, even i1f B is not a symme-

try of the renormalizable lagrangian. However, |AB|=2,AL=0



transitions are still possible, in particular neuyron~anti—
neutron oscillations, described by graphs like that repre-

sented in Fig.3.
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Figure 3 - Graph describing !AB|=2 neutron-antineutron oscillations,
induced by the B vioclating term fg =U‘D°D'c in the superpotential. Sym-
bols g5 and g, stand for the gauge couplihg constants of gluino and
bino, respectively. The presence of a Majorana mass term for ﬁéand

25 in the soft supersymmetry-breaking part of the lagrangian,éﬁgmﬁﬁ,is
assumed.

Let us give an estimate of the neutron-antineutron oscilla-

tion time, T 57 roughly given by the formula :

2
2_B 2 4 -
-1 _ k°T
T - o= —-—-——L—-4 REC)R (2.9)
m
sq g.,b

where k represents the intergenerational mixing when one
expresses interaction eigenstates in terms of mass eigensta-
tes, while IW(O)[4 is a factor taking into account wave-
function effects ( corresponding to the factor [\P(O)i2 ap-

pearing in formula (2.7) for the nucleon lifetime ). Reason-



able assignments of the parameters seem to be the following
[2.9] : x~071, 121078, g1, g~107h, [¥(0) [ A ax107%cev®,
msa-nag~nug~3oo GeV. This corresponds, in the most favoura-
ble case of gluino exchange, to an oscillation time T __ ~
107_Bsec, which is just in the region of interest fornZXpe—
rimentalists [1.10].

Let us summarize the main result of this subsection .
There may exist supersymmetric models, based on the gauge
group SU(3)CXSU(2)LXU(1)Y,

of the global symmetry imposed to the superpotential in or-

in which an unconventional choice

der to prevent a too fast AB=AL nucleon decay gives rise to
the following scenario : lepton number is exactly conserved
and proton is stable for kinematical reasons, while n-n os-
cillation arise naturally.

A word of caution must be spent at this point about the
choice of lepton-parity, which is not entirely appealing :
discriminating between quarks and leptons, lepton~-parity
does not make much sense in a context of grand unification,
where there are quarks and leptons sitting together in ir-
reducible multiplets of the grand unification group G. How-
ever, one could hope to find a different framework, for ex-
ample a supersymmetric composite model in which guarks and
leptons have different substructures, where lepton parity

can possibly arise.

2.1.4: B and/or L non-conserving effective interactions

Even if renormalizable interactions among low—-energy par-
ticles automatically conserve B and L ( and this is the case
when matter-parity, fiveness or R-invariance are imposed to

the supersymmetric lagrangian ), nevertheless B and/or L vio-




lating processes among these particles can still take pla-
ce, by means of the exchange of "exotic" heavy pa;ticles,
not appearing in Tables I and II : such processes will be
described in the effective low-energy theory by non-renor-
malizable operators, of dimension d, in units of mass,
greater than four.

It is therefore useful to catalogue the different B and/
or L non-conserving, supersymmetric and gauge-invariant ef-
fective interactions among the low-energy superfields (°)
I shall do that in the present subsection, following mainly
a work done in collaboration with G.Costa and F.Feruglio [2.
10}. As a general rule, each operator will be accompanied by
an effective coupling constant proportional to M4-d, where
M is the typical mass of the heavy particles exchanged :
for this reason only the lowest-dimensional interactions
corresponding to the different selection rules will be con-
sidered. Moreover, I shall restrict my attention to the
couplings among chiral superfields, imposing gauge invarian-
ce only under global Go—transformations : the inclusion of
gauge couplings with vector superfields ( or extra deriva-
tives ) in an effective interaction would generally increase
its dimension without leading to new opportunities for B
and L non-conservation. Obviously, the possibility of con-
structing certain operators. does not mean thatithey are ac-
tually realized in the more fundamental theory, which will
eventually include possible heavy degrees of freedom : the
occurrence of each operator should be checked everytime in

the context of the specific model under consideration.

(O) The possibility that supersymmetry-breaking effective interactions
might not be negligible with respect to the supersymmetric ones
will be briefly commented in subsection 3.1.1, for the case of AB=
AL nucleon decay.



Let us proceed then with the list of the lowes?-dimen-
sional operators corresponding to the different selection

rules.

|AB|=1,AL=0 - The lowest~-dimensional non-renormalizable op-

erators have d=5 and are of the form [2.6] :

[oop*] 55 + h.c.

ToooH] g0 + h.c.
The remaining operators obeying this selection rule have all
d>5. However, one can easily prove that all |AB|=1,AL=0 op-
erators, of any dimension d, are strictly forbidden when
matter-parity, fiveness or R-invariance are imposed to the

supersymmetric effective lagrangian.

AB=0, |AL|=1 - Among.the renormalizable operators, not in-

cluded in the tree level lagrangian but possibly generated

by radiative corrections, there are those of the form {LH*Lwéé
+ h.c., which are however forbidden by matter-parity, five-
ness and R-invariance. Even for this selection rule one can
construct supersymmetric and gauge¥invariant operators of
dimension d>4, but it is easily proven that they are all
forbidden by matter-parity, fiveness or R-invariance, what-

ever dimension they have.

AB=AL=F1 - The lowest-dimensional operatcrs of this type
have d=5 and are of the form [2.3,2.6] :
[00o0rl, + h.c.
[UC*UC"DC"'EC"I@@ + h.c.

The above operators are allowed by matter-parity and five-
ness, while they are forbidden by R-invariance. The lowest-
dimensional operators allowed by R-invariance have d=6 :

[UC*DCTQL}e&éé + h.c.

[ooutE®|ges5 + h.c.
The remaining operators obeying this selection rule have
all d>6.




AB=-AL=F1 - The lowest-dimensional operators of this type
have d=6 and are of the form [2.10} :

(0 0D E 5z + h.c.

\'_DC"'DC*'QL*']eggé + h.c.

p*ptp¥r¥utlgs + h.c.

[ pstuctrrutlsgs + h.c.
All the above operators are allowed by matter-parity, but
forbidden by fiveness and R-invariance. Moreover fiveness,
being equivalent to B-L, forbids AB=-AL=¥1 operators of any
dimension, while to get R-invariant operators of this kind

one must go to d=7 ( where there are several ).

AB=0, |AL|=2 - The operators of minimum dimension have d=5
and are of the form [2.3] :

[LLE'H]ge + h.c.
All the other operators of this type have dimension da>5.

The above operators are allowed by matter-parity and R-in-
variance, but of course forbidden by fiveness, which, being

equivalent to B-L, forbids every operator with AB=0, | AL|=2.

|AB|=2,AL=0 - The operators of minimum dimension have d=7
and are of the form [2.10,2.16} H
[uefuetoetoetpetpetizs + n.c.

They are allowed by matter-parity, forbidden by fiveness and

R-invariance. Of course fiveness, being equivalent to B-L,
forbids all the operators of this sort, of any dimension.
On the other hand, to get R-invariant |AB|=2,AL=0 operators

one has to go to d=8 ( where there are several ).

The list given above does not exhaust all the possible
selection rules for B and/or L non-conservation. For instan-
ce, one could consider [2.10] AB=(AL/3)=F1, AB=-(AL/3)=%1,
AB=AL=F2, etc. : however, until now no convincing mechanism
has been proposed that can generate such operators in super-

symmetric models, so they will be omitted in the present



digcussion. .

A remarkable feature of the supersymmetric operators
listed above is that they have, in general, lower dimensio-
nalities than the corresponding operators that one can con-
struct in terms of ordinary fields (°) only E2.11,2.121.

To allow for a direct comparison, the situation is summari-

zed in Table VII.

o , . ;
(7) "ordinary fields" means here "quarks,leptons,gauge vector bosons
and Higgs scalar bosocons”.

Table VII

Baryon and/or lepton number violating operators corresponding to the
different selection rules. On the left there are the lowest-dimension-—
al supersymmetric operators allowed by matter-parity. On the right
there are the corresponding lowest-dimensional operators that one can
construct in terms of ordinary fields only.

Selection

rule Operators | d Operators d
|AB|=1, AL=0 - - - -
AB=0, | AL |=1 - - - -
AB=AL=-1 f000L] 4 5 qgql _ 6

[t utpte*lgs 5 uuafe® 6
(vt ¥or) ses 6 u‘d‘ql 6
loou ¥ e 1053 6 qquid 6
AB==AL=-1 [DC*DC*DC*EC}&gs 6 - -
DY ortleeas 6 - -
ct _ct_ct 4. 41— ——
(o J(D +L H'13% 6 TRIIHY -
[DC*DC*DC L¥H" 0085 7
4 . — e
EDC:DC UC':L H' ) 2 6 T4 ;
o o tuet L] o3z 7
cr 4 i, ——
{oop ch+ H 038 7 gqqa1 M 7




Table VII (continued)

®

[0 ot 0E°H] ys T Pl He 7
EDCQ’DC*QECH A P
4B=0,AL=-2  [LLH'H']g, 5 113* T 5
pB=-2,01=0 [uTustpetpetpetpetly 7 Tatatatatac
[ooutptptn¥ 1055 8§ qgquoacacac
[QQQQDCBC‘: 5653 8 qqqqaﬁga

In principle, therefore, the supersymmetric context seems
more favourable for the generation cof baryon and lepton num-
ber violating processes than the non-supersymmetric one. To
get a definite answer, however, one must carry out an expli-
cit analysis, specifying how effective operators are gene-
rated and how one can pass from them to graphs in which all
the external lines represent ordinary particles. For the se-
lection rules AB=AL=-1 and AB=-AL=-=1, corresponding to nu-
cleon decay, this will be done in Chapter 3. For the selec-
tion rule |AB|=2,AL=0, corresponding to neutron-antineutron
oscillations, this will be done in Chapter 4. Dimension five
operators corresponding to the selection rule AB=0,|AL|=2
can originate, through graphs in which two scalar fields
annihilate into‘the vacuum, Majorana neutrino masses : how-
ever, lepton number violations lie outside the subject of

the present work, so they will not be discussed here.

2.2: Extensions of the standard gauge group

It has been shown in subsection 2.1.1 that dangerous B
and/or L violating renormalizable couplings among low-ener-

gy particles tend to be present in the most general super-




symmetric lagrangian based on the standard gauge . group G6a
SU(B)CXSU(Z)LXU(1)Y. A possible way of eliminating the un-
wanted terms, imposing additional global symmetries, has
been explored in subsection 2.1.2. From an aesthetical
point of view, however, it would be preferable to under-—
stand B and L conservation in renormalizable interactions
among low-energy particles in terms of gauge-invariance and
representation content only, as in the case of the non-su-
persymmetric standard model. In this section I shall try
to outline ( without going into details ) the possibility
of forcing B and L conservation in the renormalizable low-
energy lagrangian by means of an extension of the gauge
group of the theory, from Go to some larger group. Three
cases will be considered, in cne-to-one correspondence

with the following three subsections.

2.2.1: Extra U(1)-factor

Let us consider supersymmetric models in which the gau-
ge group is not just GOESU(3)CXSU(2)LXU(1)Y, but contains
an additicnal factor‘5(1)?. Historically these models were
introduced by Fayet, in order to reconcile spontaneous
breaking of global supersymmetry with an acceptable tree-
level mass spectrum for the spin-O partners of guarks and
leptons [2.13]. It was subseguently emphasized by Weinberg
[2.3} that this extra‘g(1) may be used to forbid the unwant-
ed B and/or L violating terms in the superpotential; it is
sufficient to make the following assignments of the new
guantum number‘§'to the low-energy superfields of Table T :
0(+1), uS(+1), DS (+1), L(+1), ES(+1), H(-2), H'(-2).
In fact, gauge-invariance with respect to 3%1)? forbids all B




and/or L vioclating terms in the superpotential, and also
the Higgs mass term HH', allowing only the terms LECH,QDCH
and QUCH', Moreover, ﬁ%1)—invariance forbids all the effec-
tive non-renormalizable interactions considered in subsec-
tion 2.1.4, with the only exception of the AB=AL=F1 inter-
actions of dimension six.

However, it must be pointed out that, while these models
have no troubles for what concerns B and L non-conservation,
they present many other serious drawbacks [2.14} : they tend
to break SU(B)C and/or U(1)e=m. if supersymmetry is brcken;
they tend to have Adler-Bell-Jackiw anomalies associated to
the new gauge interaction; they are not unifiable, i.e. GOX
'5(1)? cannot be embedded in a simple gauge group G without
restoring supersymmétry or losing asymptotic freedom; they
" also tend to have an approximate R-symmetry which keeps the
gaugino masses too light with respect to the experimental

bounds.

2.2.2: Left-right symmetry

Another class of models in which renormalizable B and/or
L violating terms involving matter superfields are natu-
rally suppressed in the gauge-invariant superpotential are
those based on the left-right symmetric group GLRESU(3)CX
SU(Z)LXSU(Z)RXU(1)B_L. Neglecting Higgs superfields respon-
sible for the breaking of SU(Z)RXU(‘!)B_L
ter and Higgs superfields are assigned to the following re-

down to U(1)Y, mat~—

presentations of GTR ( the notation used below is self-ex-
planatory ) :
Q~(3,2,1,+1/3) L ~(1,2,1,-1)

. . H~(1,2,2,0)
Q' ~(3,1,2,-1/3) Lo~(1,1,2,+1)



Tn terms of the above chiral superfields, the mest general
renormalizable and gauge-invariant superpotentiai has the
form £ _ = 00°H + LL°H + HH, so that it conserves automa-
tically B and L. In particular, dangerous trilinear coupl-
ings among matter superfields are completely forbidden,
even in presence of a richer Higgs sector. Analogous consi-
derations apply also to supersymmetric grand unified models
based on the group SO(10) : matter superfields transform
according to the spinorial representation 16 of S0(10), so
that trilinear couplings among them are strictly forbidden

by gauge-invariance [2.5].

2.2.3: Extra family-group

Let us imagine a supersymmetric model in which, in order
to explain the generational structure of guarks and leptons,
the standard gauge group GOESU(3)CxSU(2)LxU(1)Y is supple-
mented by an additional factor GH, corresponding to an hori-
zontal gauge symmetry. If matter superfields on the one hand,
Higgs superfields on the other, are assigned to different
representations of the family group GH, chosen in such a

way that none of the couplings in fI and fIII are family~-

group invariant, one has automaticaliy B and L conservation
in renormalizable terms, as long as the family-group is un-
broken [2.5,2.15]. When GH is spontaneocusly broken at a cer-
tain scale m e one expects the appearance of the dangerous

B and L violating terms, but they would be naturally sup-

pressed by inverse powers of m_ .




2.3: Grand unification in SU(5)

This section is mainly devoted to the embedding of the
results of section 2.1 into the framework of supersymmetric
grand-unified models based on the simple gauge group SU(5) .,
having in mind, even in this case, an effective theory de-
scribed by a renormalizable lagrangian of the form ;f:=§§%d-
+;£%WT-

First of all, in order to fix the notation, let us show
in Table VIII a partial list of the fundamental superfields
and their transformation properties with respect to SU(5);
let us show then in Table IX their decomposition in terms

of multiplets of the subgroup GOESU(B)CXSU(Z)LXU(1)Y.

Table VIII

Partial list of the fundamental superfields appearing in supersymme-
tric SU(5) models, together with their transformation properties. In-
dices x,y=1,2,...,;5 refer to Su(5), while a=1,2,3 is a generation in-
dex. All superfields are chiral ones, with the exception of the gauge
vector supermultiplet appearing in the last line : index R=1l,...,24
spans the adjoint representation of Su(5).

-

Superfield Component fields SU(5) representation
v L v =
Max (ng'max'ﬂfax) >
X X X X \
meY (}{ay,maY,sz ) 10
Hx (%xrhx it X) g
'
H'® A0 L L 5

R mR R R
A (v ,ﬁA,DA) 24




Table IX

Decomposition of the superfields of Table VIII in terms of multiplets
of the subgroup SU(3)c xSU(2)_xU(1)y < SU(5). A symbolic notation is us-
ed : for the detailed embeddings see, for example, reference [2.81.
M'(5) — L{1,2,-1/2) + D°43,1,+1/3)

M(10) — E°(1,1,+1) + U°(3,1,-2/3) + Q(3,2,+1/6)

H(5) — H,(1,2,-1/2) + H5(3,1,+1/3)

H'(5) —= H£(1,2,+1/2) + H§(3,1,—1/3)

AR(24) -» B(1,1,0) + W(1,3,0) + G(8,1,0) + X(3,2,-5/6) +
xt(3,2,+5/6)

At this point an important remark is in order. The list
of superfields given in Table VIII is certainly not comple-
te, in the sense that those superfields are not sufficient
to construct a consistent model. However, in order to rea-
lize the different stages of gauge-symmetry breaking in a
way consistent with a realistic mass spectrum, various me=
chanisms have been proposed, each of which relies on a par-
ticular choice of additional Higgs superfields [2.2]. For
this reason I have chosen to work only with those super-
fields, which are in practice determined by the low—energy
content of the theory : this will be sufficient for the pur-
pose of the present discussion.

We are now ready to look for those renormalizable coupl-
ings, appearing in the supersymmetric and gauge-invariant
lagrangian Q;%qand expressed in terms of the superfields of

Table VIII, which can describe baryon and/or lepton number

violations ( the general form of a supersymmetric and gauge-



invariant lagrangian is recalled in Appendix B );

Consider first the gauge couplings, which contain, among
the various terms, those of the following form :

q+ — . - +X R R, x —
Dﬁ M'Aléese ; Or [ gSM; AT (T) yM;ylﬁ%ﬁe’

+ s . _ 4 R, RV ZX -
(M malgees + or ¢ [ 2g M7 A (T7) ¥ M2 l@eeé'
where Iy is the gauge coupling constant associated to SU(5)
and (TR/Z)Xy are the generators in the fundamental repre-
sentation 5. In terms of Gomsubmultiplets, the above inter-
actions decompose in the following way :
utwal s — ([DC*LX*}Ggg + h.c.),
Ueteal o —» ([UToxlagss + hoco) + ([ETox]eess + hoc.).
A detailed discussion of the resulting baryon and lepton

number violations will be given in section 3.2.

Let us turn now to the most general form of the super-—
potential ( or, better, of the part of the superpotential
containing only chiral superfields of Table VIII ). In the

usual synthetic notation, it is given by :

£f_=f +

5 A fB'

fA = MM'H + MMH' + HH',
fB = M'MM' + M'H'.

The explicit expressions corresponding to the above ones
are collected in Table X. The content of each piece in
terms of Go—submultiplets is explicited in Table XI. Note
that terms of the form HMH would be identically zero, whi-
le terms of the form M'MM' vanish for superfields belong-

ing to the same generation.



Table X

Explicit expressions for the different terms appearing in the SU(5)-
invariant superpotential fg, constructed from the chiral superfields
of Table VIII. Symbol &M%uwﬂ stands for the completely antisymmetric
tensor of SU(5), normalized according to €iaqg =+1.

Term Explicit expression
1 XV
f‘i“ s X §
' H Fabwa be -
MMH Fibexyuva:yMgvHEw
HH' pH H'F
M MM Bl M M*YM?

abc ax b cy
MTH' ‘ m M' H'®

a ax

Table XI

Decomposition in terms of Gg-multiplets {as defined in Table IX) of
the different terms appearing in the SU(5)-invariant superpotential fB'

_y . c c CriCry_ _
M'MH op°H, + LEH, + D°U°Hs + QLHg
| Cere CrmCorry T
MMH Qu°H} + USESH] + QQH |
I — LIS '
HH HH) + HgHJ
M'MM' — U°D°DS + LECL + QDL
LI 3 TR, Cest '
M'H DEH) + LH)

Several terms, both in fA and in fB, can give rise to ba-
ryon and/or lepton number violations. The most dangerous
of all are undoubtedly those of the form M'MM', which aloc-
ne are sufficient to give rise to squark-mediated AB=AL
nucleon decay : the mechanism 1is completely analogous to

that discussed the framework of SU(B)CXSU(Z)LxU(1)Y~moéels.




Even in this case a possible way out consists in.imposing
to the lagrangian some additional global symmetry, able to
forbid the unwanted M'MM' terms in the superpotential. Sui-
table global symmetries are the trivial extensionsof those
encountered in subsection 2.1.1 ( apart from lepton-parity
ard guark-parity, which, as pointed out before, do not make
sense in a framework of grand unification ). The action of
such global symmetries on the fundamental superfields, as
well as on the different terms of the superpotential, are

summarized in Tables XII and XIII, respectively.

Table XIT

Transformation properties of the fundamental chiral superfields of
SU(5)-models under some global symmetries, introduced to prevent the
unwanted terms M'MM' in the superpotential.

Chiral Global Matter SY R

superfield symmetry parity parity Fiveness. invariance
M' -1 +1 -3 +1/2
M -1 -1 +1 +1/2
H +1 -1 +2 0
H' +1 +1 -2 O
Table XIIT

Action of the global symmetries of Table XII on the terms appearing
in the SU(5)-invariant superpotential fg. '

Gicbhal Matter SY . R
. N Fiveness . .
Term symmetry parity parity invariance
M*MH ves yes ves yes

MMH ' yes yes

g
M
n

yes



Table XIII (continued) .
HH' yes no yes no
M'MM' no no no no
M'H' no ves no no

While all the symmetries considered above forbid the un-
wanted terms M'MM', they do not completely eliminate the
sources of baryon and lepton number violation contained

in the superpotential f5. Leaving aside the terms M'H',
which, allowed by SY-parity only, can give rise to Majo-
rana neutrino masses, and will not be discussed here {2.4,
2;5}, also the terms M'MH and MMH' can give rise to baryon
and lepton number violations : such terms will be discus-

sed in more detail in Chapter 3.

For what concerns the n0n~renormalizable’interactions
allowed by the above global symmetries, the situation in
SU(5) closely reproduces that encountered in SU(B)CXSU(Z)L
xU(1)Y: each Ga—invariaﬁt interaction considered in sub-
section 2.1.4 can be embedded in a corresponding SU(5)~in=-
variant interaction, with the same transformation proper-
ties with respect to the additional global symmetries. A
detailed list of the SU(5)-invariant interactions would be
tedious; let us conclude this section giving only a few
examples, relevant for the discussion which will be done

in Chapter 3 :
[mom'] g — [000L]oe + [UCu°DeE®] o
Doomtmtloggg o p°%orl 35 + hec-.

Do tt] pazg = KQQUC*EC*I%% + h.c..




3.NUCLEON DECAY

This chapter is devoted to the discussion of nucleon
decay in supersymmetric models : the most part of it will
concerne the selection rule AB=AL=-1, but a brief account
will be also given of the possibility of AB=-AL=-1 nucleon
decay. After writing down the explicit expressions for the
supersymmetric interactions constructed in subsection 2.1.
4, two main problems will be considered : how such opera-
tors can be generated in the context of specific models of
supersymmetric grand unification and how one can pass from
them to four~fermion graphs describing baryon decay. Some
indications about decay rates and branching ratics will be
given, but no detailed calculation of hadronic matrix ele-
ments will be performed : only the gualitative features
that can characterize nucleon decay in supersymmetric mo-

dels will be emphasized.

3.1: AB=AL supersymmetric operators of dimension five

3.1.1: Universal features

First of all, let us write down the explicit expressions
of the AB=AL=-1 supersymmetric interactions of dimension
five [2.3,2,5], introduced in subsection 2.1.4 :

Lo A1 B gkl )
(000 ]ge Oabcd‘[gﬂi&x‘eijelea ofof La}ee (3-D

[oefostotectlas « of  =lewey vt gt peti gety s (32

abcd
A few comments are in order. Operators of the type Oibcd
.. . o L L
, - va—
are symmetric in the indices a and b (Obacd Oabcd)' a

nish for guark superfields belonging to the same genera-

tion (Oaa =0), and possess the additional symmetry pro-

ad



L
perty : O_y.gq * Ocabd + Obcad = 0. Operators of Ehe type

R . . o =
agcd are antisymmetric in the indices a and b (0p, .57
“Oapcal’

. . R
ing to the same generation : Oaacd

the moment, guark superfields are to be taken in the in-

so they also vanish for Uck superfields belong-

= 0. Remember that, for

teraction basis : we shall see later how to pass to mass

eigenstates.

It is interesting to see how cperators O and OR can be
generated, at the tree level, by the exchange of exotic
particles : I shall do this in a diagrammatic way, making
use of supergraphs.

L . .
Operators of the form O can arise as shown in Fig.4.
P

Q Q
%; ) %3 ‘4////}{////
\\L

Q

(a)

(3,3,-1/3) J/////'

(3,3, +1/3)\\\\\<\\\\
Q

Figure 4 - Tree- level supergraphs giving rise to cperators of the

form O%.

(b)
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convenisnce it is customary to define
basis in generation space
1 w2
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M and M' such that I'" is diagonal, ta-
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It is evident from the abhove formula that the dominant nuc—

lecn decay modes arej{w+ %K and ‘{L» U Tx.

The calculation of the total decay rate, analod

Supersymmetric models have been proposed 13.?3} with
an enlarged Higgs secto containin in addition to the
priee] 7 I
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Tn the above formula: Gi?iy is the effective coupling con-
staﬂt.{with dimension {%ass)“gi}aggociried to the supersym-—
metric interaction (4.1); the term inside the sqguare brack-
ets is a factor associated to each loop of Fig.12, under the
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sions
: SR =8 2.3
Qzﬂ 4 V'i'd‘?‘-’: a _ A g™ 3‘: 2 4 D"h® _
o= g” Yian " 2
. Fle . 4 N
X / Y
- § ¢ AT A v, where
V‘:{..ﬁg = ',% \;V; %Wv‘\’*a + _%Em‘,w L ﬁb ;
2
. F o AL s Y amw L i
'f% A 0 ’é‘,% & & (@m%ﬁ”g’&i}ﬁ Ll + T
3 IO ey ; . M
» o ANy T » T "5‘} i 3,
o B e N
*  +i2g JAU Y ) w@,fx -3 (1) %A@} .s.'
, ‘ L a \ a0 :
S A LAT (v 35 (9aAd) ~ €3 ATYG )y A -
P 3%, ey 4 @ B2l 3 )
“%v Vﬂq:ﬁ\ ‘i ‘Eé{‘i iak;ﬁ\ _%%sj;i\&*\l)é,% ;
“§= iy s

egua-

=




70

[ ‘Q a F
.Hw\. L
. e
- ooy e
s 4 5
P =
34 gy
- s
vt
“
3 =
Y St
i e
o4
.
H -y | —
o g
- Led




Zppendix C:

jelds listed in

3
5
o
-
D
).—.5
-
‘«t-
O
Se]
I
P
i
D
had
=
[
r-‘»‘
s SR Y
[y
oy
it
w
Ql
=
jor
[
i
O
o)
if}
[
i~
<y
J~tn
=,
4
i
i
Yo

superpotential s




72

eC
ings
on

Y
1y

X

re—
e
v--%;:‘
al
Jiz)

nlin

i

v

7
o
3o
=
&
@
b
§
&
=

i
¢
o
£ o i
& -
e

m - ) 5 b & 2
=i I m Kool ¢ ¥ (o} 1}
oot b 0 S o = [ " v L aQ o
N . o M moom
et el e N 0 @ e oS @
© G o o e w0m
>0 D “ow & D O
- S (v 2 “
e 0 -y s} e [ )
- e - o et Q0 ot N m.ﬁ
u bt w o i 3 Y
= o [ [ ™ = Uy [13] PR
5t it ﬁm il H M (S0 . oA e wr et
O et iin] A N e R i 40 e X
R - B - o s T = g oy O
i TR o S 0 = e
£y ~ oyt i '
Y R S =0 N
e 1=t L i L (8]
s o W (o] I} e
“p Lm0 wd T
i..w b et 14y = o e
(6] il = (10 S o

Q@ EN

©oon = g 0 o

] S A O L
@ 0 O PR o S ey W
e [9)] ot £ et o o
o0 S o (8]
T IS, 18] [} LN
i t ~ i
(ORI i L w RO
i o a @ - - [
a3 o o it O e M

[iv) - o o iy
o E [} [T,
45 EATEE A S
Qv a sk

o St 4
+ 0 fisd Qo

et

a0 e e} .
>y oo O e
i I ity ] [ an
[ .o ] EA 0
S [ o [ R 6}
= O y Q e -y

= R v % L
o oy B = P [
& S P o Lo T i ]
Oy [ e [ o ks ) i Ko
0 Nowr woood v D w9



-+
ﬂb\ L]
«E!H
™

s

ey

s T
I B
s .
-
&?‘ﬂ
P
Ml
EL ]
et
7

Y T4 % 4% 7TV ¢ 71 4% (T P
[ 4% FLENE v AR (T . Hpe
e i I E) R WAL ()R

Yy Fag T oo ¢ TLX A
Loeid ";i R/ ug’@{ Dy - 2y Az |+

i & [ [ Y : . .
#j%‘%z@b ! #g.d and ffﬂ%;@ﬁ» are trilinear couplings

involving two scalar bosons and the gauge bosons of SV,

SU@2)y  and  Uldly

o

s & L ¥
Qfﬁmb ' Tﬁeglgb and 42%{% are guadrilinea;
involving two scalar hosons and two

5U2)e and  U4)y, respectively,




o o
characterized by the sqguares of the gauge C

Sl P \,& 13
IR Y I o e T R Y
Qiﬁg&g contains Yukawa couplings between
- . - o 1. .
snd scalar boscns, 2nd is given by :

. 3 Py 2 s

A ol ¢ YYi Fe, 4 ¢ g%

Eﬂ_égz%é~%ﬁﬁ% vag Wt dugh
bl S LN :

.

Qfa; contains interactions involving onl
i

<
Y4

& b R . —
and, denoting with ¢%s the generic scalar
by s

o

o

3r

"y ig.
AR W

Re
W
-
b
) S
[eSe g
?‘%,sm
,W

0
oy
it
¥t
.
Hh
X

-
oot |
e
o)
]
4]



[.2]

R. Haag, J. Lopuszanski and M. Sohnius, Nucl. Phvs.

%
L

D.7. Freedman, P. van Nieuwenhuizen and S. Ferrara,

For a review, sze

and Nucl. Phys. B159, 141 (1379);

8. de Wit and H. Wicolai, Phys. Lett. 1088, 285 (1981)

and HNucl. PI

zndelstam, CERN preprint TH.3285

S
M. Crisaru and W. Siegel, Phys. Lett.
and ¥ocl. Phys. B201, 292 (1282).
E. Gildener, Phys. Rev. D14, 1667 (1976) ;
£. Gildener and S. Weinberg, Phys. Rev. D15, 3333 (1976).
B. Zumino, Nucl. Phys. B89, 535 {(1975).
J and D.V. Nancpoulocs, Phys.
e, the talks of E. Fiorini, L.Sulak,
E. Tarocci and G. Puglierin at the EPS Conference on

High Energy Physics, Brighton, July 1983.




r o
me11] T

D
T : 3 9, —
[1.12] J.c. Pati and A. Salam, Phys. Rev. Lett. 31, 6

[l
Y
—

"~ .
Li.??] For a review, see, for exam;

3] H. Georgi and S.L. Glashow, Phys. Rev. Lett. 32,

A
Naznopoulos, Nucl. Phys. B135, 66 {(1978).

or a review, see, for example: P. Langacker,
S

Phys. B203, 311 (1982);

C.G. Callan, Phys. Rev., D26, 2058 (7932).

-

"
]
=
{0
{1
V7]
)

Y
\Q
Q0
N
®

1] I.. Girardello and M.T. Grisaru, Nucl. Fhys. B1¢2

65 {1282).

2] For a review, and a detailed list of reference

R. Barbieri and S. Ferrara, CERN preprint TH.3
{1383); C.A. Savoy, CEN-SACLAY preprint SPhT/8
(1283); J. Ellis, CERN preprint TH.3718 (1283)

D.V. Nanopoulos, CERN preprint TH.36%9 (1883).

3] s. weinberg, Phys. Rev. D26, 287 (1982).

in the Universe", World Scientific, Singa

547
3/73




4] L.J. Hall and M., Suzuki, Berkeley preprint
LBL-16150 (1983}.

5] M.J. Bowick, M.K. Chase and P. Ramond, University

(1982).
7] See, for example: G.L. Kane, Invited Talk at the

Fourth Workshop on Grand Unification, Philadelphia

[2.9 ] F. Zwirner, Universita di Padova preprint (limited

EZ,TGJ G. Costa, F. Feruglic and F, Zwirner, Nuo.

circulation), to appear on Phys. Lett. B (1983},

O
@
3‘

70A; 20% (1882) .

[2.13] P. Fayet, Phys. Lett, 64B, 159 (1976}, 698, 489

[2.15] B.B. Deo and U. Sarkar, I

(1977), 708, 461 (1977) and £4B, 416 (1979).

.143 See, for example: §. Ferrara, Lectures given at ths

LTI
g

21st Course of the International School of Subnucle

i

{

Physics, Erice, August 1983,
CTe

TP preprint IC/83/102 (1983).

[2.16] Y. Fujimoto and 2. Zhiyong, ICTP preprint IC/62/60

(1882) .

[3. 1] S. Dimopoulos and H. Georgi, Nucl. Phys. Bi93, 150
(1981); N. Sakai, %
j S. Dimopoulos, S. Raby and F. Wilczek, Phys. Lett,

1128, 133 (1982},



[3.11]

[aann
[¥8)
Y
)

-1

. 78 -

Phys. B202, 43 (1982).
. Ellis and D.V.Neropouwlos , Phys. Lett. 110B,
44 (1882);

.M. aliev and M.I. Vysotsky, Phys. Lett. 120B,
9

J. Ellis, J.S. Hagelin, D.V. Nanopoulcs and K.
t 4

[¥4]
]
)
et
ot
-
[
-
@
-
-
(a2
(e
o
-
co
I8
e
.

D.R.T. Jones, Nucl. Phys. B196, 475 (1982).

P. Salati and J.C. Wallet, Nucl. Phys. B209, 3&9
(1282); W. Lucha, Nucl. Phys. B221, 300 (1983);
S. Chadha and M. Daniel, Rutherford Appleton Labo-
ratory preprint RL-83-056 (1983); S

J. Ellis, J.S. Hagelin and C.T. Sachrajda, Stanford




[3.13)]

[3.14]

[
=Y

[
i=N

5]

A, Masiero, D.V. WNancpoulos, K. Tamvakis and
T. Vanagida, Phys. Lett. 115B, 228 (1282);
Y

/. Igarashi, J. Kubo and S. Sakakibara, Phys.

V.A. Kuz'min , JETP Lett. 12, 228 (1270).

S.L. Glashow, in "Quaerks and Leptons”, Froceedings
t

M. Levy et al. editors, Plenum, New York, 1380,
A. Masiero and R.N.Mghapatra, Phys. Lett. 103B,

343 (1981); D. List, A. Masiero and M. Roncadelli,

{198

L
L
N

For a review, and a detailed list of references,

see, for example: G. Fidecaro, CERN preprint

}
=]
w

ERP/83~-102 (15
R.N. Mchapatra and R.E. Marshak, Phys. Rev. Lett.
44, 1316 (1980}; L.N. Chang and N.P. Chang, Phys.
Lett. 92B, 103 (1980); G. Costa and A.H. Zimerman,
Nuo.Cim. 54A, 285 (1381).

T.K. Xvo and S.T. Love , Phys. Rev. Lett. 45, 93
(1380).

R.N. Mohapatra, in Proceedings of the Har

Workshop on Neutron-Antineutron Mixing, April 1982
(M.S.Goodman, M.Machacek and ?,D.Miller eds.}.

A. Raychaudhuri and P.ROYr Pramana

D, Liist, A. Masiero and M. Roncadelli, Phys. Rev.

D25, 3096 (1982).




4. 8] G. Costa, F. Feruglio and F. Zwirner, Nucl.,

Phys. B209, 183 (1982),

s. Bz20

E4. 91 A. §Ok©rac, "Boris Kidrid" Institute preprint
BKI/LTP (1282) .

F4.10] D. Liéist, Phys. Lett. 1258, 255 (1983).

[4.11] S. Kalara snd R.N. Mohapatra, Phys. Lett. 1298,

57 (1983).

a.1]

oy
)
o
0
v
vy

and J. Bagger, “Supersymmetry and Super-

o]
et
]
<
75,.! .
.

L
o

rinceton University Press, 13982,




