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Chapter 1

INTRODUCTION

The problem of the existence of periodic solution for differentiable systems

dx

2 = o) (1.1

in R™ has been investigated widely in the literature because of its intrinsic interest as a

source of models to which employ the methods of nonlinear analysis.

Among the various useful tools introduced in the qualitative analysis of the equation
(1.1) the Poincaré-Bendixson Theorem and Massera’s Theorem play an important role
for the study of the autonomous and non-autonomous systems, respectively. However
such results have both a strict limitation in the applicability since they work in two
dimensional spaces, this limitation prevents the possibility of good application to higher
order differential equations of higher order without placing more restrictions on the class

of the equations.

In 1961, D'Heedene R. N. [7] published a counterexample showing that no simple
generalization of Poincaré-Bendixson Theorem to n > 3 case is possible. His example

consist of a third-order system

do _
a7

9!3 =z—x

dt

dz

E}: S Z(I:,y,,?:)

and he proved that this system has almost periodic solutions but not periodic solutions.
In 1949 Massera constructed an example that without adding more restrictive general
assumptions the existence of periodic solutions cannot occur although the hypothesis of

his second Theorem are satisfied, see Massera [14), Theorem 8.




In recent years many authors (see Bingxi Li [2] and Reissig R., Sansone G. Conti R.
[16]) have tryed to overcome such difficulty and have proposed partial extensions of

Poincaré-Bendixson and Massera's theorems to higher dimensional spaces.

From 1979 R. A. Smith in a series of papers [21, 22, 23, 24, 25, 26,] proposed a general
method for extending to differential systems in R™ various results which are known for
the two dimensional case. His idea mainly consist in the construction of a projection to a
plane determined by the choice of a quadratic form which behaves like Liapunov function
when evaluated along two solutions of equation (1.1). However the use of such quadratic
form does not permit to have a sharp applications to some first order differential systems
of Lotka-Volterra systems type. For such system, K. Gopalsamy [10] have obtained some
results of the existence and uniqueness of periodic solution by using different class of Lia-
punov function which are not differentiable (given for instance, by the sum of the absolute
value of the coordinates} but to calculate the derivate along the solution Gopalsamy used

Dini’s derivative.

Last year, analogue idea have been used too by H. Smith and Mallet-Paret {13]. They
study a particular class of systems known like cooperation-competition and the selection of
the projection is doing over two components and it is justified by the particular structure

of the system.

The aim of this thesis is to describe R. A. Smith approach with a suitable generality

as to obtain good application Lotka-Volterra system as well.

Chapter 2 is devoted to Massera’s Theorem. In section 2.1, we give, following along
the line of R. A. Smith [24] the Massera’s convergence Theorem. In section 2.2 we analyse
a special type of solution , amenable solution, which permit to get a generalization of
Massera’s second Theorem and later to speak about orbital stability.

Chapter 3 contains the generalization of Poincaré-Bendixson Theorem, like the pre-
vious chapter, in the same line of R. A. Smith [22] we get a Theorem for existence and
uniqueness of periodic orbits of an autonomous system, this Poincaré-Bendixson Theorem
does not give any result about stability. In section 3.2 we give some sufficient condition
for the orbital stability.



Chapter 4 is devoted to the applications. In section 4.1 we consider equations of Lotka-
Volterra system type and we prove the existence of solution which lying in a compact set
Sp. In the section 4.2 we study equations in which it is natural to work in a domain with

holes.

The main application shows how the general method developed along the thesis per-

mits to induce in this extended approach some results by Gopalsamy which are not con-

tained in the original development of R. A. Smith.

In this work we will consider the following notation:

The real space [R™ is treated with the usual inner product <,> and equivalent norm

defined by
P — L~ [P
EIDIEEEY

where ||-||? is the [P-norm in R" and {v;, %=1,...,n} is any basis of R™. Let us consider

the following set
H={zeR":z = Z<z,v;>u;}.
i€A

Now we can rewrite any ¢ € R™ as

Tz = Z<x,vi>v; +Z<$,Ui>vi = XAt XB
14 FY=g-1
and we will denote it by = = (xa,xm), with 4 = {f = 1,..,7} and
B = {i=7+1,...,n}. Since note that is possible to write

”I“I:, = Z|<$:U;>|p + Z|<x,v,~> B
iEA icB

Let K :[R — R the following function

1, <zu>>0 or <z,v;>=0 and & < z,0;>> 0,

K(<z,v; >) = 0, < z,u; >anndf—t-<z,v;>=O,
-1, <z,v;><0 or <z,v;>=0 and %<z,v;><0,

and it depends of the solution z(t) of (1.1).




Chapter 2

MASSERA’S THEOREM

2.1. Massera’s Convergence Theorem.

Let consider the non-autonomous ordinary differential equation

dz

a = f{t,z) (2.1)

in which f(t,z) = f : R x § — RR"™ is a continuous function such that for some open
subset S C R™, f satisfles the local Lipschitz condition in z (uniformly in £). We assume

the following restriction for the parameter ¢.

[Hi] Thereis a constant T >0 such that f(t,z) = f(t+T,z) for all t € R, and all
T€ES.

If we consider the particular case when Sy C S is a compact set, the Lipschitz
condition permits us to guarantee the global Lipschitz condition over the compact set

[0, T] % S, that is, there is a non-negative constant L(So) such that the following inequality
17(t,21) — £(t,2)] < L(So)|o1 — 2] (22)

holds for allt € R and =z, z5 € S3. From Gronwall’s inequality we can ensure that if
z1{t), 72(¢) are solutions of (2.1) such that z,(t), z5(t) € So for 8 < t < 7 then (2.2) gives

[£1(0) — m2(8)|e™E 150N < gy (7) — m5(r)] <

< |z (0) — zo(8)|eE(50)7=0), (2.3)

Massera made a discussion about the sufficient conditions which imply the

existence of at least one T'—periodic solution for systems of differential equations of the

- 4



type (2.1). His first Theorem known like Massera’s convergence Theorem {Massera [14],

Yoshizawa [30]) is referred for scalar equations, i.e. n =1 and can be stated as follows:

TuEoREM 2.1. (Massera) Assume [H| and suppose S =R andn =1. If y(t) is a solution
of (2.1) which is bounded in an interval (to,+co) then y(t) must converge to a T-periodic

solution u(t) of (2.1) ast — +oo.

At this point the uniqueness of the T'—periodic solution is not assumed. We can
observe that this theorem gives a relation between y(¢), 2 bounded solution of (2.1), and
u(t) T-periodic solution of (2.1), which is the limit. Trying to extend this result to the
case n = 2, Massera observed that the conditions of the Theorem 2.1 are not enough to
ensure the existence of T—periodic solutions of (2:1). In fact, Massera gave an example

which shows that for the case n = 2, the boundedness of a solution does not imply the

existence of a T'—periodic solution.

ExamMmrrs 2.1.

Consider the system in R? (see Yoshizawa [30])

d .
_c_ii;i = flu,v) cos> wt — g(u,v) stnwt cos nt — 7y
(2.4)
dy o .
- = g{u,v) cos® wt + f(u,v) sinwt cos 7t + 7z
and
u = Tcoswt+ ysin 7w,
(2.5)

v = ycoswt— xsinmt,

The functions f and g are supposed to satisfy the following assumptions:

]




(a) £, g have continuous first partial derivatives,
(6) fl-u,~v) = f(u,v), g{~u,—v} = g{y,v),
(¢) [f(1,0) = g(1,0) = 0, F(0,v) =0, g(0,v) > 0 for all v,

oo

d —t _dy < 27.
( ) —{0 Q(O,UJ

The condition (a) implies the local lipschitzianity and we can easily see that (2.4) is
periodic of period 1 in ¢, because of assumption (3).

For example, it is possible choice of f and ¢ is given by f = uv, ¢ = (1 ~u)2(1 + v)?c
where ¢ is suitable constant, for instance -’-’;—

In the variables (u,v) system (2.4) becomes

% = f(u,v) cosmt,

(2.6)
dv
- = g(u,v) cos wt

It is clear that u(t) = 0, v = v(t) is a solution of (2.6) because of the uniqueness
we conclude that the first component, u(t) of any solution of (2.6) has constant sign.

Moreover, since by (¢) u = %1, v = 0 are solutions of (2.6), we obtain that

(z = coswt,y = sinwt) and

(z = ~cosmt, y = —sin 7t)

are two periodic solutions of (2.4), of period 2.

On the other hand there are not solution (z(t),y(t)) of (2.4) of period 1 because if
(z(t),y(¢)) is a solution of period 1, then

u(t +1) = =t + 1)cos(nt + x) + y(t + 1)sin(rt + ) =

= mz(t)coswt - y(f)smﬂ’t,

which shows that v must change signs and u = 0.

Hence, suppose that v = 0, v = v(t) is a certain solution of (2.6). Then v(t) will be
given by

t
dv 1, . .
/g(O,v) =/cos Tidt = ;r-(szmrthsznwto).

vy tg



Finally, integrating if ¢ could increase from ué to +é, we have

o(3)

[X]

1
9(0,v)

o(-4)

which contradicts {d). Hence v(t) cannot be defined for all ¢ and the corresponding (z,y)

2
dy = —
-

solution cannot be periodic {cannot exist in the future).

This example shows that if n = 2 the system (2.1) may have periodic solutions of
period 2 without having periodic solutions of period 1. It is even possible to select f and g
in such way that every solution is of period 2 except for a one-parameter family of solutions

which do not exist for all values of £.

The present section is devoted to give an analogue of Massera’s convergence Theorem
in higher dimension which will be called as such generalization. We say analogue because if
we consider Theorem 2.3 for n = 1 we do not get exactly Massera’s convergence Theorem,
since there is an extra hypothesis, [Hg] for n = 1, which is like monotonicity condition.

Now we consider the following restrictions:

[H,] The coefficients

forall 1=1,...,n.

[Hg] There exist constants A >0, € > 0 such that for allt € R
AZG," < Ty — Ta,v; > P+
i=1
+pZa1-K(< Ty — To,V; >)| <z —To,v; > |PTE < flt,zy) — St z2),v; >< (2.8)
=1

T
< —EZl<$1—$2,%‘£> P
i=1




for all solutions z,(t), z2(t) of (2.1) and 1 < p < +oco, with K a function defined in
Chapter 1.

T
Let us consider the scalar function V(z(t)) = 3 aif < ={t),z: > |P with =z(t) a
t=1
solution of (2.1). Let us consider z(¢} any differentiable function and we observe that for

any function |z(t)|, the Dini’s derivative is

DHa(t)| = K(2() &

(the definition of the function K depends only of the function z(t)). For z1(t), z2(2)
solutions of (2.1)

Dt [e”V(ml(i‘) — Zo (t))] = g7t [.«\V (::."1 — .'Eg) + D+V(:.r:1 — :1:2)] =

n
=e'\t AZ(L;‘] < I — Tp,V; > lp+

ey |
n
+pZa,-K(< Ty — Tog,V; >)| <zp—To,v; > P < fltiz) — ft,z2), v > <
=1

N .
< mse‘“2| < Ty — To,v; > |P.

=1

Then we can conclude that

DH[MV (21(8) = 22(1))] < e 2 (t) — 2ot} [? (2.9)

and this holds for all ¢ such that z,(t), z2(t) € §. For the details related to Dini’s

derivative see Rouche, Habet’s, Laloy [17] appendix I and Lakshmikanthan, Leela [12] pag.
7.

REMARK 2.1
1) It is easy to verify from the definition of D7|z(t)| that

dz 2(t)

D¥|a(t)] = K(=(t) =, = |2(8)]

s



2) If p > 1 the term

ia,’K(< Il(t)—.’ﬂg(f),‘ui >)| < u:l(t)—-:cg(t),u,; > |p—l < f(t,zl(t))ﬂf(t,rg(t)),v,- >

i=1
can be simplified without using K function. From (1) we can write this term

ia;[ < z(t) — z2(t),v: > |p_2 <z (t) — za(t),vs >< F(t,31{¢)) — Ft,za(t)),vi >.

i=1

Note that if we consider the particular case for p = 2 with this replacement we get in
[H ] the same restriction obtained by R. A. Smith in {22, 24 |.

Suppose that z.(t), z2(t) € S for t € [8,7]. The relation (2.9) shows us that the
function eMV (zl(t) — z4(t)) is monotonic decreasing in {#,7] and strictly decreasing for

2y (t) # z4(t) for all t € [4,7]. By integrating (2.9) over the interval [6,7] we get

T

s/ ||z, (t) — :r:g(t)H‘;dt < e*?V (z,(8) — z2(0)) — e*V (z1(r) — z2(r)). (2.10)
@

In fact, by following the Smith’s in [24], along the same line, there is two possibilities. The
first one is the case A = 0. In this situation a comparison with Massera’s Theorem, shows
that the new result not only preserves the convergence to a T'—periodic solution u(t), but

it also ensures that u(t} is the only T'—periodic solution in S.

THEOREM 2.2. Suppose that (2.1) satisfies {Hy|, [H2| and [Hg), for A = 0. If (2.1} has
a solution y(t) € So, a compact set in S, for all t € [tg,+00) then (2.1) has a T-periodic
solution u(t) such that y(t) — u{t) — 0 for ¢t — +co. Furthermore, u(t) is the only one
T'-periodic solution that lies in S for all 1.

Proof. Let us consider z(t), y(t) solutions of {2.1) in So a compact set, for all
t € [to,+00). There exist a non-negative constant M such that |V (z(t) — y(t))] < M
holds, for all t > ;.




By placing A = 0 in (2.10) we get

“+oo
for all 7 > 4. Then [ {lz(t) - y(t)[{" dt converges. From the left-hand inequality in (2.3)
9

we gei

e~ PL(S0)(t=0) gy <

t=(8) —w(a)" lz() — y()[12 dt < M

cn\.é.
q:\%—

That is,

I2(0) ~ y(O)|F, ey <

|t} — y(t)”“; dt for all 8 > to.

r.':‘\-gl-

Then we conclude that
z(8) ~ y(6) — 0,  for 8 — +oo. (2.7)

Condition (2.7) holds in particular when z(f) = y(t+T) as y(t+T) is a so-
lution in Sp for all ¢ > ¢9. Since Sy is a compact set by Weierstrass’s Theorem.
There exist a strictly increasing sequence of positive integers m(1), m(2), m(3),..., and
¢ € S such that y(to + m(h)T) —> ¢, ash — co. Let u(t) be the solution of (2.1)
such that u{tp) = ¢ in fact, we can ensure that «(t) is in S for all ¢, <t < a. Then
y(to + m(h)T) — u(t) as k — +oco point wise for ¢¢ < ¢ < a. We observe that the
solution u(¢) cannot leave the compact set Sy in [to, a). In fact, if it does so there is a
neighborhood in which y(to + m(h)T) does it too for all k> hy and this is absurd, be-
cause we supposed that y(t) € So for all ¢ > tg. For this we can ensure that u(t) € Sy for
all [tg,+co) and y(to + m(h)T) — u(t) as h — oo point wise for tq <t < a holds.

Finally u(t) is a T-periodic solution for all ¢ because
u(to + T) = hIiI_]I_J y(to+T + m(r)T) = hIiJEIhl y(to + m{k)T) = ¢ = u{ty),

and this equality holds for (2.7), ie. y(t+7T)— y{t) = 0 as ¢ — +oo.

For the uniqueness, let us consider (t) another T-periodic solution and we select
So C 5 the bigger compact set which includes u(t) and @(¢) for all £. Then for (2.7) we

10



conclude that u(t) — @(t) — 0 as t — +oo. This happens only if u(t), ©(t) coincide. This

establishes Theorem 2.2.

From this Theorem we can get the following Corollary, whose proof is omitted because

is completely similar to the previous one.

COROLLARY 2.2. Suppose that (2.1) satisfies [Hy), [Ha| and [Hg], for A = 0. If (2.1) has
a solution y(t) € So, a compact set in S, for all t € (—co,to] then (2.1) has a T-periodic
solution u(t) such that y(t) — u(t) — 0 for t — —oo. Furthermore, u(t) is the only one

T-periodic solution who lies in S for all t.

For the second possibility A, we consider
113
V(z) = Z a;| < z,v; > P
=1
a continuous function and P :R™ — H CR™ a linear map defined by
Pz = Z < z,v; > v;, forevery x €R".

iEA

We assume in the sequel that dim A =1 and dim B = n~— 1. In this case the image

of this map P is a straight line in R™.

Since
P _ . P — b
(e 2 | < 20> P =V () + 2] Pa|f”.
We have
V{z) + 2|P=|® = [|P=] (2.11)

for every z € R™.

TuroreM 2.3 . Suppose that (2.1) satisfies [Hy], [Ha) and {Hgl, for A > 0 and 7 = 1.
If (2.1) has a solution y(t) € So, a compact set in S, for all t € [tg,+oo) then (2.1) has a
T-periodic solution u(t) such that y(¢) — u(t) - 0 for t — +oco0.

11




Let consider the following example given for R. A. Smith [24] to explain the analogy

between Theorem 2.2 and Theorem 2.3.

ExaAMPLE 2.2.

Consider the following bidimensional system,

dip

(2.12)
dn
MCE = —un,

with p a positive constant . It is clear that this system is of the form (2.1). If we suppose
that

(a) a1 = —1, as = 1,

(6) A=p—e,

(¢) S = RZ,

(d} vi =(1,0); we=(0,1).

The system (2.12) verify hypothesis [Hs], provided that with the consideration did in
Remark 2.1,

—[1 — 26]jby — Wa|® < |ib1 — | lp(t, 1) — (¢, 1)), (2.13)
for ¢y, ¢ €R.

In the special case when the partial derivative $s(t, 1) exist and satisfies

4 < inf g (t, %)

the condition (2.13) holds for ¢ — 0. Then the system (2.12) satisfies [Hjg] with A > 0,
j =1, § = R% Theorem 2.2, gives us a version of Massera’s Theorem for the scalar

equation %'f = ¢(t,1), with the extra restriction —pu < iI}f Pe(t, %), this is satisfied in the
special case when

Bt ) = Susin,

12



for which the periodic solution of (2.12) are the constants solutions ¥ = hw, n = 0, with
integer h. The set § may contain many different periodic solutions when the conditions
of the Theorem 2.3 holds. In This case, Theorem 2.3 is more relaxed than Theorem 2.2.
And we can observe that Theorem 2.3 is not a really generalization of Massera’s Theorem

because for the linear equation (2.12) we need to suppose in addition that —u < i1;1f de{t, ¥).

Proof. (Theorem 2.2) We suppose the case for 7 = 1, then the linear application Pz
can be understood as a real function, if we restrict to the hyperplane H, all the real line
properties, (P :R™ — H). Let us consider y(t + T) and v(t) solutions of (2.1) t > ¢,
then from (2.9) we know that the function e**V (z1(¢) — z2(¢)) is monotonic decreasing in

t € [to, +00).

The proof of this Theorem will be divided in two cases, the first we consider
V(y(f) — y(f+ T)) < 0 for some ¢ > . From (2.11) follows that

Z]<y J~y(t+T) v > P =
= V(y( )= v+ 1)) + 20P () -y +T))|” < (2.14)

<2 P(u(t) ~yle + )7

for all ¢ > £. For this reason the real function (referred to H) P(y(t) —y(t + T)) has a
constant sign in [f,c0). Then, the sequence {P (y(f + hT) — y(f + AT + T )}h>1 has a
constant sign, consequently the sequence {Py (t+hT) } A1 is monotonic and, it is bounded
because {y t+ hAT) }h>1 lies in Sy a compact set. For this reason the series converges and
then

> _lIP ) — v + D)

converges. Then for the relation (2.14) we show that the series

>l —y+ )P

converges for all 1 < p < co. This permits us to affirm that

lim ||{y(t ——y(t—}—T))Hi =0

h——+co

13




therefore {y(f + hT)} h>y S B Cauchy sequence in [R™. Then there is ¢ € Sy such that
hkxfm y(t + hT) = c.

Let us consider u(t) a solution of (2.1) such that its initial condition u{ti) € § for
all f < «, therefore the sequence {y(t + AT)} converges to u(t) point wise for all t < a,
when h — co. This function u(t) cannot leave the set Sy because if this happens in some
neichborhood, the solution y(¢ + AT) does it too and this is an absurd because y(t) € Sy
for all £ > tg. For this u(t) € Sq for all £ > g

w(t+T) = hggrlmy(£+T+ hT) = thfmy(£+hT) = ¢ = u(t),
moreover y(t) — u(t) — O for ¢ — +co, because
y(f + hT) — u(f + AT) = y(f +hT) — u(f) — O
when A — +co. Then Theorem 2.3 is established for V (y(t) — y(f + T)) < O for some

> to.

Now let us consider the another case when V(y(f) — y(f—i— T)) >0forallt>tg. In
fact, if we z{t) = y(t + T') in (2.10), then

T

e / eMly(t + T) — y(@)II7 dt < ¥’ (u(8 + T) — y(0)) — & (y(r + T) - y(r)).

for alt 7 > 0 > to. From this inequality and Cauchy-Schwarz inequality
T 24 T M
A 1y
{ / ny(t—+—T)-y(t)u,,dt} <M [[Fle+D)-00], ] 2 < T A Iu0+7) v
) 9

holds for all # < r and



1, 1 _
such that 5 -+ i 1.

We get an upper bound which does not depend on of 7. For 7 — +co we get
+ca
/ eM||ly(t + T) — y(t)]] ,dt  converges for all 8 > ¢, (2.15)
o

If we replace in the inequality (2.3) z(t), 7, 6 by respectively y(t + T), ¢, 6 + hT
respectively

DI <UB+AT) —y(0+ T +hT),0; > [PemPEEN=0) < N | < y(r) —y(r + T),0; > |?
i=1 =1

and if we integrate this inequality in (6 + AT, 8 + T + hT) with respect to the variable ¢
then:

0+T~hT 84T +hT
TP 0 - T) @+ T+ TS [ e T) - wolP e
6+hT 84-hT

that is, if we consider the constant M = m(l - e“”L(SD)T) then

0+T-+hAT
Mly(6 + hT) = y(0 + T + AT)|, < / ly(8 +AT) = y(@ + T + k)|
O+nT

for all # > t;. With this relation we can conclude that

MZ||ye+hT)—y(e+T+hTuP</ny )= sl + 1)

this is for all § > ¢4, by using (2.15) we can ensure the convergence of the series

Z ly(0+ hT) = y(0 + T+ AT)|F"
h=1

15




for all § > to. Therefore {y(8+hT)}n>1 is a Cauchy sequence in R™. From this follows, like
in the other case, that y(t) converges to u(t) a T'—periodic solution in Sq. This establishes
Theorem 2.2.

As before we consider the following corollary of this Theorem, we should observe that

the demonstration of this corollary fails if we consider ¢ by —t.

COROLLARY 2.4. Suppose that (2.1) satisfies [H;|, [H3| and [Hgl, for A > 0 and 5 = 1.
If (2.1) has a solution §{t) € So, a compact set in S, for all t € (—co,to] then (2.1) has a
T-periodic solution G(t)in Sy such that g(t) — @(t) — 0 for £ — —oco.

Proof. Sp is a compact set, V (§(t) — #(t — T)) is bounded for all —co < ¢ < to and
eV (§(t) —§(t —T)) — 0 as t — —co. It follows that eV (5(t) = §(t—T)) < 0foralltin
(—o0, to] because this function is monotonic decreasing by (2.9). If §(t) is not T—periodic,
it is strictly decreasing, then V(ﬁ(t) —g(t — T)) < 0 for all —oo < t < t5. From this
relation and (2.11) we get

2l Pg(t) —g(t-T)I7 2 V(G -(t-T)) + |Pg() =g -T)I" = l|g(t) -g(t-T)|" (2.16)

for all t < t3. The function P (g(t) - gt — T)) has a constant sign in (—oo,tp]. Then
{P( (to — AT) )}h>1 is a monotonic sequence. Sy is a compact set, then the sequence is

also bounded and the series

o0

Z |Pi(te — hT) — P§(to — hT —T)|" converges.

h=1

By using (2.16) the series

Z (to — RT) — §(to — AT — T)|? also converges.

Then {P( {to — hT))}h21 is a Cauchy sequence in R"™. From this, like in proof of
Theorem 2.3, the equation (2.1) has a T—periodic solution #(t) such that §(t) —4(¢) — 0
for £ = —oo. This establishes Corollary 2.4.
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2.2. Amenable Stability.

In this section we consider a characterization of the amenable solution of (2.1). By
arguing like Smith in [24, 25] the notion of amenable solution will be useful for the gener-
alization of Massera’s second Theorem in this chapter and for the orbital stability in the

next chapter. In this section we will not consider the restriction [Hy].

DEFINITION 2.5. A solution z(t) of (2.1) is said to be amenable if there exists an n in R™
such that z(t) € S for all t € (—oo,n] and

n
f ePM| < z(t),v; > |Pdt  converges for 1 < p < 0.

T

==

—Cca

Note that every solution of (2.1) in S which is bounded in t € (—o0, 7] is obviously
amenable. In particular, every periodic solution in S is amenable.

Furthermore instead of to consider solutions z;, z» of (2.1) we consider amenable
solutions of {2.1), then not only (2.9) holds, but if we integrate it for some interval (f,7)

we get an analogue relation to (2.10) but for amenable solutions,

7

A1V (z1(n) = zal)) < PV (24(6) ~ 22(6) — [ e*lma(8) — za (0]
8

forz;, o€ Sand forall 4 <t < 7.

If we consider this relation and in addition we suppose that ¢*| < z4(t),v; > | and
e*t| < za(t),v; > | are in LP(—co,n) then e | < ;p(t) — za(t),v; > | is in LP(—o0,7).
Therefore

AV (1) - 2a(n)) < = [ X1 (1) — za(e) s < 0
4]
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for each pair of amenable solutions of (2.1), because
E'\Gh; < :171(31-,_) e zg(ﬂh),v,— > |p !

for some sequence {#x}r>1 such that 8, — —co as h — co.

with this previous analysis we can conclude the following result

LEMMA 2.6. Suppose that z(t), y(t) are solution of (2.1) in S.
a) if z(t), y(t) are amenable solutions then V(zz(t) —y(t)) <0 for all ¢,
b) if y(t) is an amenable solution and V (z(t) — y(t)) < O for all t then the solution z(t)

is also amenable.

From Lemma 2.6 and (2.11) follows that for all amenable solutions z(t), y(t) following
holds:

2| Pa() - Pyla)|” >
2 V(alt) - (1)) + 20Ps() - Py()? =

=3 1<l - y@w > P 2 1250 - Pyd)]”. (2.17)

This relation shows that if Pz(t) = Py(t) for some value of t < 5 then z(¢) = y(t) for all
values ¢ < 7. If h, k are positive constants, the amenable solution z(t — &), y(t — k) lie
in § throughout —co < ¢ <75 and can therefore replace z(¢), y(¢) in (2.17). This implies
that if ', T'o are the amenable orbits described by z(t), y(t) respectively, then

Vip—a) + 2(Pp—Pq|® =

= |<p—qu>["> I1Pp—Pql® (2.18)

(153
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for all p€ T and all g € Tp.
Note that if the curves PT, PTy intersect then Pp = Pgq for some p, g. From (2.18)
follows that p = ¢ and therefore T = Ty

Consider r £ [R. We denote A, C § the set
A, ={z(r) € S: z(t) is an amenable solution of (21) in S for all t € (—co,r]}

which will be known as a amenable set of (2.1) in §.

When (2.1) satisfies [Hg| note that A, is the union of all amenable orbits of (2.1) in
S. Then (2.18) shows that P : A, — PA, is a linear one-one and bicontinuous map, that

is A, is homeomorphic PA, C H.

If ¢ : PA, — A, is the inverse mapping of this homeomorphism then (2.18) shows
that

2ll¢y — s‘z“z =
2 V(o) — () + 2[|Pé(cr) — ¢l =

=22 1< 8le) = $lea) i > 2 fou — sl
Tm=x]

for all ¢;, ¢3 in PA,

TuroreM 2.7. Suppose that (3.1) satisfies [H2], [Hs]. IfTq is a closed trajectory in S
and it is amenable stable then Ty is orbitally stable.

Proof. By following the idea of Smith [25] with the opportune changes, it is possible
to prove this Theorem.

If o(t) satisfies (2.1) and ¢(¢) = Pz(t) then

19




d¢ _dz

dt T dt
because P : R™ — H ¢ [R™ is linear. Some results which are related with amenable
solution of (2.1) will be treated in the next section because they are useful to show the

generalization of Massera’s second Theorem.

2.3. Massera’s Second Theorem

In this section, not only will be proved the Massera’s second Theorem, but we will
give some relation between the amenable solutions of (2.1) and the j-dimensional equation
(2.22). The proof of Massera’s second theorem will'be realized with the help of Corollary
2.11. In fact, to guarantee the existence of a T-periodic solution of (2.1), Smith in [24]
ensured the existence of T-periodic solution u(t) for the system (2.22) (in our case over the
hyperplane H) with the help of the following theorem and its allow to find the candidate
to be T-periodic solution of (2.1) by using the map ¢ (:PA, — A, the inverse mapping
of this homeomorphism).

Let us consider the following theorem, for dimension 2.

THEOREM .. Let consider (2.1} with a T—periodic solution function on S = R? and n = 2.
Suppose that all solutions of (2.1) are defined in an interval of the form (8, c0) and if once
of them, y(t), is bounded in some interval [to,o0) then there exist at least one T —periodic
solution u(t) of (2.1).

This theorem is knowed like Massera’s Second Theorem and it does not give any
relation y(t) and u(t) like in Theorem 2.1. This theorem is an extension of the convergence
theorem and we can observe that Massera needed to suppose that all solution should be
defined in an interval (4, co).

Our interest is to give such generalization of this Theorem for this in this section we

will consider the definition of (2.1) holds for § = R™. Suppose the following restriction

[H4] Each solution of (2.1} is defined in an interval of the form (6, 00).
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The following Theorem will be refereed to as the generalization of Massera’s second

Theorem.

TuEoREM 2.8. Suppose that (2.1) satisfies [H;}, [Ha|, [Hs] and [Hy] for § = R”,
A>0and j = 2. If (2.1) has a solution y(t) which is bounded for all interval [tg,c0) then

(2.1) has at least one T'—periodic solution.

Under the same assumptions of this theorem we will study the following results related

with amenable solutions.

LenmMa 2.9. Suppose that y(t) is an amenable solution of (2.1}, If¢ € H and 8, r € R with
§ < r then there exist a solution z(t) of (2.1) defined on 8§ <t < oo such that ¢ = Pzy(r)
and V (z5(r) — y(t)) <0 for all t € [4, c0).

Proof. Let Pz = x4 in H for any z € R™ and we denote by z(t, x4,8) any solution
of (2.1) such that z(6) = y(8) + (x.4,0) (see Chapter 1) with y(f), the value of t = 8 in
y(t) an amenable solution. The solution z(f, x.4,8) there exist for all § <t < co for [Hy).

If x4 =0, we have z(¢,0, 8) = y(¢) in this situation

and when we replace by z in the definition of the function V', we get

Vixh —x3,0) =~ Zl < z(f,x4,8) —2(8,x%,8),v: > |P =
1CA

==Y | < z(8) — z2(8), v > |7
iICA
From (2.5) we know that the function eV (.’L‘(t,}(}q, 9) — z(t,xi,ﬂ)) is decreasing in

[6, c0) wherefore the following relation

%V (z(8, x4,0) — (8,%3,0)) = —€* > | < 1 (0) — 32(6),0; > P >
ieA
> MY (z(t,xi,ﬁ) — m(t,xi,ﬁ)), (2.15)
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hold for all ¢ > §. If we consider (2.8) result

2012 (=(t, x4, 6) — (8, x5, ) IIP =
2 V(:J:(t,x}q,ﬁ) - =z(t, X 6))+2|]P (m(t’ Xa,0) — z{t, Xi! 9))”‘;? (2.16)

this for all # < ¢. That is

~V{(2(t. x4,0) — 2(t,x5,0)) < 1P (2(t, x4, 8) — =(t, x5, )17

From this and (2.15)

EABZ' < ""‘.1(6) - 'TQ(B)’U%' > |1:J < eAt”P(I(t! X..lfng) - x(tax?ﬁag))”;;’ (2'17)
i€A '

forall ¢t > 4.

For any 8,r, with 8 < r let us consider Gy : H — H a continuous map such that

Gg = Pz(r,xa,0) for all x4 € H. If we replace t = r, results from (2.17)

XY | < z(0) — wo(6),v: > |F < | Golxh) = GolxA)IP (2.18)
i€
for x4, x2 e H
The relation (2.18), shows that Gy is a one-one map and by using Brouwer’s Theorem
on invariance of domain the set Gy(H) is an open subset in H. Now we will prove that
Go(H) = H which is useful to show that ¢ = Pzy(r).

In fact, suppose, by contradiction, that Gy{H) is not the whole H, then there exist
be 3(Ga(H)) because Gy(H) is an open set. Then there is {Gg (xﬁ)}h>l < H such that
lim Gy (X}:i) = b. This means {G’g(xg)}hZI is a Cauchy sequence in H and for (2.18)
follows that {(x%)} >y converges in H. Then there exist ¢ € H such that x% — a. Hence
lim Gy(x%) = Gp(a) = b , that is, b€ int(Go(H)). If we give ¢ € H, we can find b(8)
in H such that ¢ = Gy(b(8)) = Pz(r,b(6),9).

If we denote by zp(t) = =(t,5(8),0) a solution of (2.
y(t) = z(t,0,6), if we consider x4 = b(8), x% = 0 from (2
for all § < t. This establish Lemma 2.9. .

1) in [0, 00) then ¢ = Pz(r). For
.15) we deduce V {zo(2)—y(t)) <0



TueorEM 2.10. Suppose that (2.1) satisfies [Ha|, [Hg] and [Hy for § =R™, X > 0 and
J > 1. If (2.1} has at least one amenable solution then PA. = H for all r € R and the

restriction P : A, — H is an homeomorphism.

Proof. It is sufficient to show for every ¢ € H, there is an amenable solution u(t) of
(2.1) such that ¢ = Pu(t) to prove H C PA,. The solution u(t) will be find like a limit
of some sequence of the solutions zy(t) = x(¢,5(8),#) which we have seen before in the
previous Lemma 2.9.

Let us consider ¢ = Pz(r) = Px(r,b(6),8), =(t,0,8) = y(t) and by putting
xa =b{8), x3 =0, t =r in (2.16) results

2ll¢ = Py(r)lI” >V (z0(r) — y(r)) + 2[l¢ — Py(r)l?, forallf <r (2.19)

If we consider z(t) = z(¢,5(6),0), r =r in (2.6) and later by using (2.15) we get,

r

=V (2, 0(0),6) = 4(0)) 2 = [ Ma(s,5(0),8) ~ y(O)”
0

This relation and (2.19) give

T

| lete,00),0) — )17 e < 2o = pyo)e (2.0),
)
for all § < r. The boundness of ||z(r,b(6), 6) |” holds for (2.19), this for all § < r. We are
interested to find the solution u(t), for this let us consider the sequence of real numbers
{gh}hgl such that z(r,b6(84),0,) ~ ¢ and 8, — —co, as h — oo, for g € H. Let u(t) be
a solution of (2.1) such that u(r) = ¢, from the hypothesis [H4] follows that u(f) exist in
[r,00). Furthermore Pu(r) = ¢ because ¢ = Pz(r,b(0,),6:) for all k.

Now we will show that u(t) exist for (—co,7]. A sufficient condition is to show that
u(t) exist in an interval [B,7] for all B < r. If we take & large, 8;, < 8~ 1 and (2.20), we
get
B
[ a0, 00) ~vio7 2 < 2 — ooy
B—1
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Applying the mean value Theorem to this integral there exist ip € [8 — 1, 8] such that

2
6= || z(t, b(01), 00) — w(en)|I7, < Ze*lls = Py(r)|”-

We can observe that, when £ is fixed, follows that || z(tx, b(8x), 8)||° and tx are bounded
for all large k. In consequence of the Weierstrass subsequence Theorem we can suppose that
there exist a sequence tp — { such that z(tn, b(01),0,) — p as h — oo, for le[B—1,0]
and p e R".

Now if we denote by w(t) the solution of (2.1) such that w(l) = p, by [FL4] the solution
w(t) exist in (I, o). Since the solutions vary continuously with their initial values, we can
conclude, in analogous way like before that z{t,b(0x),9) — w(t) point wise in [/, co) when

h — co. In particular

w(r) = lim z(r, b(81),05) = u(r)

h=—rca

and then w(t) is an extension of u(t) in [f,r}. Hence [ < f, there exist u{t) in {8, c0)
and this for all 8 < r. For this u(¢) exist in all (—co,00).

The last thing which we need to prove is u(t) is an amenable solution. For t > 0,
(2.15) gives 0 > V{z(¢,b(0n),08) — y(t)). When h — oo, this gives 0 > V(y(t) — w(t)) for
all ¢ > [. Since u(t) coincides with w(t) this follows that 0 > V (y(t) — u(t)) in [B, o) for
all § < r. That is, 0 > V (y(t) — u(t)) for all (—co.c0). Since y(t) is an amenable solution
from Lemma 2.6 results that u(t) is an amenable solution too. Then u(r) € A.. We proved
above that ¢ = Pu(r) and therefore ¢ € PA, for each ¢ € H. That is H = PA,. In (2.14)
we showed that the map P : H — PH is an homeomorphism, this establishes the proof
of the Theorem 2.10.

An application directly of this theorem is the following
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CoroLLARY 2.11. Suppose that (2.1) satisfies [Ha|, [Hg] and [Hy) for § = R",
A>0andy > 1. If (2.1) has at least one amenable solution then there is a continu-
ous function ¢(t,¢) : R x H — R™ such that the relations

¢(t) = Pz(t)
z(t) = ¢, ¢(t)) (2.21)

give a correspondence between amenable solution z(t) and the solutions ¢(t) of the

j—dimensional equation

() (2.22)

Proof. 1f suppose that (¢,¢) € R x H, the Theorem 2.10 give us the existence of
only one point ¢(¢,¢) in A¢ such that ¢ = Pqﬁ(t,g:). It is possible to define a function
¢ :R x H — R™ which verifies £ = ¢(¢, Pz) for all z € A; because A C R™. Furthermore
(2.14) gives the following

20P50(t) ~ 2207 2 19(t,) — Bt P 2
2 [[Pz.(t) — z2(2)I7. (2.28)

Now we will show that ¢(¢,¢) is a continuous function for all point (r,¢&%) € R x H. From
the definition of A, there exist an amenable solution zq(t) of (2.1) such that ¢(r,¢) € A,

and zo(r) = ¢(r,¢p). Then ¢ = Pz4(r). Furthermore for ¢ € R fixed, zo(t) € A; then hold
za(t) = ¢(t, Pzg (t)) for all ¢. For this and (2.23)

16(6:) — @l o), < 2l = Pao(e)IF, + llmoft) — so(r)f7.

From (2.8) follows
l20(r) = 2 (A1 2 o - Pao(®)|?
Then ¢ is a continuous function at the point (r,¢0) because

li¢(.¢) = d(r. )12 < 3lzo(t) — = (r)2.
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Since the map P : R® — H < R™ does not depend an explicit way of the variable ¢

and is a linear map, this allows us fo write
—(Pz(t)) = P(=) = Pft,=(t)) (2.24)

for all solution z(t) of (2.1).

Moreover if z(t) is an amenable solution then z(t) € A and then z(f) = o(t, Pz(t)).
Then -4 (Px(t)) = Pf(t,$(t, P=(t))) and for ¢(t) = Pz(f) (2.21) and (2.22) hold. The last
part which we need to prove is whether each solution of (2.22) has the same form. It is
clear from (2.22) that the continuity and local Lipschitz condition for f is verified in each
point (r,¢) € R x H. By Picard’s Theorem there is only one solution ¢(¢) of (2.22). Hence
every solution of ¢(t) of (2.22)is of the form Px(t), where z(t) is amenable solution of (2.1).
This establishes the Corollary 2.11.

Proof of Theorem 2.8. We suppose that (2.1) should have a solution y(t) such that
it is bounded in [tg,00), this means that there is a non negative constant M such that
ly(t)| € M for all t € [tg,c0). There exist a sequence of integer positives such that
y(myT) — a as h — co, with @ € R™. Suppose that the solution z(a,t) with initial
condition z(0,a) = @ exist for all ¢ such that r <t < s, withs, reR and r < 0 < 5. From
[H] holds that y(t + msT) is a solution of (2.1) defined in [to — mpT,c0) and then the
sequence y(t + mpT) — z(a,t) converges point wise in [, 8], for h — co. For h sufficiently
large |y(t + mpT)| < M for all r < ¢t < s and then |z(t,a)| < M for r <¢ < s. This shows
that there exist a point z(t,e) € R™ which can never meet the boundary of the set NV,

N={zeR":|z| <1+ M}

The solution z(t,a) exists and lies in N, for all ¢t such that —co < t < oco. Hence (2.1)
has a amenable solution which satisfies the conditions of the Corollary 2.8. For j = 2
the T—periodic differential equation (2.22) is bidimensional. There exist all the solutions
for all t € (—oo, o0}, because 2.1 verifies [Hj). Since it has the bounded solution Pz(t,a)
Massera’s second Theorem shows that (2.22) has at least one T—periodic solution ¢(t).
Then Corollary 2.10 shows that ¢(t,¢(t)) is a T—periodic solution of (2.1) because ¢{t +
T,¢) = ¢(t,¢) for all {¢,¢) in R x [R7. This establishes the Theorem 2.8.
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Chapter 3

POINCARE - BENDIXSON THEOREM

3.1. Existence and Uniqueness Theorems.

Let us consider the autonomous ordinary differential equation

dz
Pl 3.1

“ = () (3.1
in which f : § — R"™ is a continuous function such that for some closed subset S C R"”,
f satisfies the local Lipschitz condition in S, such that f(z) satisfy the Lipschitz condition

in B(z).

We call =z a critical point {equilibrium point or singular point) of (3.1) if
f(zo) = 0, that is, if =g is a constant solution of (3.1). If we consider z(t) a so-
lution of (3.1), then the locus of z(t) for t; <t < +o0 I is called a complete
orbit of {3.1). For z(¢) a periodic solution of (3.1), its complete orbit or pericdic orbit is
a closed curve in R™. A point p € R™ is called w-limit point of T if there exist a sequence
{th}r>t C [to, +oo) such that ¢, — co and z(t) — p. We denote by Q(T) the set
of all w-limit points of T'. {I(I') has the property to be an invariant set, that is, if z(¢) is
a solution of (3.1) such that z(tg) € Q(T') for some tp in R then, the solution z(t) exists
throughout (—oo,+o0} and z(t) € N(T') for all £. We could observe that 0 is a union of
complete orbits of (3.1} if ' is contained in a compact set, {}(T'} is bounded, non empty,

closed, invariant set. See Bathia-Szego [1], Cronin J. [6].

In this chapter we will give a sufficient condition for the set (T) to include a periodic
orbit of (3.1).

There are a lot of methods used to show the existence of periodic orbits of autonomous
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ordinary differential equations Bingxi Li [2]. One of them is the following:

THEOREM 3.1, {Poincaré-Bendixson) If S C R*includes a bounded semi-orbit T of (3.1)
and the set O(T) includes no critical peints (3.1) then Q(T') consist of a periodic orbit of

(3.1).

It is well known that the full extension of the Poincaré-Bendixson Theorem to the
case n > 2 is not possible without adding further hypothesis. Recently, R. A. Smith gave
assumptions which are easier than other methods and following his results we obtain some
restrictions which permits us to apply the Poincaré -Bendixson Generalized Theorem in

an easy way for a wider class of ordinary differential equations.

Now, let us have the following hypothesis:

[F11] There is a continuous function U : R* — R

U(z) = Z a;| < z,v; > |P, (3.2)

i=1

such that U(zy—1z3) €0 in (—oo,-co) for every pair of bounded solutions zi, o of
(3.1) which lies in S throughout (—co,+00).

Moreover we will suppose

[Ha| The coefficients

forall i=1,..,n.

In this chapter, we assume that dim A = 2 and dim B = n — 2. Let us consider the
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following hyperplane in IR™

H={z€[R“:z=Z <z,v._->v.,-}
icA

and let P :[R™ — R"™ be a linear map defined by

)G

Pzr=2 Z < z,v;>v;, foreveryxe€R", and 1 <p < +oo.
icA

We can observe that
lall? =3 | < zvi > P = U) + |17,
i=1

we have

20l > P22 = |22 ~ Ul) (3.)

for every z € R™.

Before giving the Generalization of Poincaré-Bendixson Theorem we should observe

the following properties of P a linear map.

Lemma 3.3. If z,(t), zo(t) are bounded solutions of (3.1) in (—oo,-+o00) such that
Uz (t) — z2(t)) < 0 then , the following relations hold:

() N1P2(t) = Pza(t)ll, 2 ll=1(2) — 22(t)]] ,
() & Pe@)l > 1420, ,  forall realt.

Proof. Let us consider z,(t), z2(t) bounded solutions of (3.1} which lie in S through-
out (—oo,+o0). If we replace z(t) by z1(t) — z3(¢) in (3.1) and from hypothesis we

get

2% |1 (t) — 22(t)]]

P

2 1P2ult) = Poa(9)ll, > llzalt) —za()] | forallt.  (3.4)

29




Since P is a linear map then Pz (t) is differentiable and the following equality
d dI]_
= = iy
Lon) = 2 (F0)
holds. If we replace z,(t) in (3.4) by the solution z;(f + k) for any constant k then
[Peuft +h) = Pes(@)]l, 2 l=a(t+h) — aa(t)],

for every ¢t and h real numbers. Dividing by |4| and letting [h| — O we get

14 e, > 120, (3.5)

this establishes Lemma 3.3.

Remark 3.4. We have observed that {1 is a union of complete orbits of (3.1) because
Q(T) do not include critical points. Since any two points y;, y2 of ((T') can be written as
£1(0), z2(0) for suitable solutions z (¢}, za(t) of (3.1), it then follows from (3.4) that

2%{|y1——yg||p > ||Py1mpy2||p.>.. ||y1—yg||p

for every yi, y2 € ((T). This relation shows that P : 1 — Pl gives a bicontinuous

and one-one mapping. Then

a) disjoint complete orbits in (L") are mapped into disjoint plane curves,

b} periodic orbits in (2{I') are mapped into simple closed curves,

¢) if the complete orbit T'y € f(T') is not periodic then the plane curve PI'y; does not
intersect itself,

d) if z(t) a solution of (3.1) describes a complete orbit I'; in 2(I') then the tangent vector
to the plane curve PT; at the point Pz;(t) is the vector & (Pz,(t)) which is nonzero
by (3.5),

e) Ty C QT) because 2(I') is a closed set.

THEOREM 3.3. Suppose that (3.1) satisfies [Hq| and [Ha4|. If (3.1) has a bounded semi-
orbit ' C 8 and QU(T') contains no critical points of (3.1), then Q(T'} includes at least one
periodic orbit of (3.1).
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Proof. This demonstration is based on Theorem 3.1. Let z(f), z2{t), za(t) be
solutions of (3.1) such that the complete orbits I'y, I'a, '3 verify respectively the following
assumptions: 'y C Q(T), Tz C Q(T;) and T3 € Q(T,) then (T:) < Q(T;) C Q)
because each one of them is a closed set. Suppose z3(0) = ¢ is a point of I's and
v o= P%} be the nonzero vector which is tangential to the plane curve PT's at the point
Pg. Let us consider an open disc D included in H with center Pg and radius (small) § > 0.

Since ¢ € 'g, g is w—limit point of T'y and I'y then the arcs of the plane curves PT,
and PT'y must pass through the disc D an infinite number of times for ¢ — +co. Then

(3.4) shows that if
Pri(t) — Pg, zi(t) — a.

From (3.1} it follows that if

dIl dq

E(t) — dt’ then

d:Bl dq U
Pt Pg=v

Hence, if the radius § is small then along all of arcs PT; in D the tangent vector is
approximately equal to v. These arcs PI'; are close to the straight line segments parallel
to v. For PI'5 the same argument is also true.

We define the transversal R to be the diameter of D such that it is perpendicular to v.
Then each arc PT'; and PT'5 cuts R at most once while remaining in 2. We will prove that
either I'y or 'y is a periodic orbit. We suppose that neither of them are periodic orbits.
From Remark 3.3, ¢}, the plane curves PT'y, PT's do not intersect themselves respectively.

Each time that PT, intersects the transversal R it does so in different points. Let
us consider o, § &€ T's such that Pa and Pg are successive intersections of PT5 with
R then Pa # PB. o and g are w—limits of [y because 'y ¢ (}(T'). The orientation of
the plane curve PT will be selected in the same direction of the vector v, that is the curve

PT intersect the transversal R in the direction of v.

From the Fig. 3.1, it is clear that, PT; intersects R close to Pa and later intersects
E close to PB. T'; cannot intersect R again close to Pe because PT; cannot cross itself.
Then this is a contradiction because we supposed that « is an w—limit point of the orbits
I'y then at least one of the orbits T'y, I's is periodic. This establishes Theorem 3.3.
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Fig. 3.1
We should observe that Theorem 3.2 is not a generalization of Poincaré - Bendixson

Theorem because it allows the possibility that 2(T) includes more than one periodic orbit.

For this reason we will suppose the following restrictions,

Tl
[Hg] There exist constants A >0, £, > 0 and V(z)= 3, a;i| <z,u; >|P such that

i1
r. n
AZail < Ly~ To,v; > ]p+p2a.;K(< Ty — To,U; >)| <zp—3p,v; > PL
iz}l i=1

< f(21) = flze),v > < (3.6)

n
< _5£ZI<31”IZ:U:'> P

i=1
for all't € R", for all solutions z4(t), z4(t) of (3.1) and p > 1.
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T
[Hl4] There exist constants u > 0, €3 > 0 and there exist W(z) = 3. b < z,v; > |? such
=1

that
kel L2
“F"Zbi| < Ty — To,u; > P —i—pr.;K(( Ty — Tg, >)[ < Ty — 3o, v > [P L
i=1 i=1

< f(m1) = Flza)w > < (3.7)

T
< "EQZ|<I]_‘“.T2,U-£> |

i=1

for allt € R™, for all solutions z1(t), za(t) of (3.1) and p > 1.

S

[Hs] The coefficients

b= -1, }fiEA;
GTW=Y 1, ifieB.

forall v=1,...,n.

TumoreM 3.4. Suppose that (3.1) satisfles (H1], [Hs| ,[Hy4] If (3.1) has a bounded semi-
orbit I' C § and Q(T) contains no critical points of (3.1), then (T) consist of a single
periodic orbit of (3.1).

Proof. Theorem 3.2 is the principal tool to ensure the existence of periodic orbits of

(3.1}, from this we need to consider § C R™ the closed set like before and, the closure of
I',I' =5, C 5. The relations (3.6) and (3.7) can be written respectively as

DHeMV (za(t) ~ 22(t))] < —e1e™|[za(t) — z2{t)|? (3.8)

D}V (m1(t) = a(6)] < —eae™{lms (1) - a(8)7. (3.9)

If the solutions z,(t), z2(t) of (3.1) lies in Sq for all ¢ € (—o0,+0o0) the boundness
of z1(t), z2(t) allows us to say
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lim eV (zy(t) — z2(t)) = lim e #W(zy(t) — z2(t)) = 0.

ot = OO m=—+-+co

From (3.8) and (3.9) we can deduce that the functions
eV (z1(t) — z2(t)) and e ¥ W (z1(t) = za(t))
are monotonic decreasing in (~o0,+co) and therefore satisfy the relation
eV (z1(t) — 22(t)) <0< e™#W (z1(2) - za(t))

for all t. Then V (z) < 0 and W (z) > 0 for all t. Let U(z) = V(z) — W(x), i.e.,

T
Z ;= b)) < Ty (t) — za(t),v: > |P.
1=1
This implies that U(z 1t) — mg(t)) < 0 in (—o0, +oco). Then all the hypothesis of Theorem
3.2 holds if we replace S by Sg. Then (1(T) includes at least one periodic orbit I'g.

It remains to prove that this periodic orbit 7o is the whole set {2(I'). Let us consider
Ty, T solutions of (3.1) such that describing I', ' respectively. then we have the conditions
of the lemma 1.2 {see Appendix). Suppose that (7} of this lemma holds, then z; — zo —+ 0
as t — oo, we can ensure that Q(T) = Q(To) = To. If (¢) fails, then (#z) holds for all
t > 7(t) and all 0 < A < k. We consider the case when & is chosen to be the period T of
s, (i¢) shows that the arc of PT with ¢ > 7(T) could intersect PT'q only if I' intersects
Do, then T' =Ty and Q(T) = Q(Tp) = ['y. Let us therefore delete from T' the arc on which
t < 7(k) and suppose henceforth that PT does not intersect PT'g. This implies that I is not
a periodic orbit., This implies that T is not a periodic orbit. Also (23) shows that Pz, (¢) is
close to PTq only if z4(t) is close to T'g. In Lemma 1.2 let us now take z.(t) = =, (¢t + %T),
where z(t) is the solution which describes I'. If (1.2.(z) ) holds then (1.2.(¢7) ) must hold.
That is

1 1
|$1(t) - I]_(t‘i‘h-'i" ET)' < |$P$U]_(t) - P.T,]_(f*}"h‘{" '2-)|.,

for all ¢ > 7(k) and 0 < A < k. Since T is not periodic this shows that

Pzi(t)# Pzt +h+ %T) (3.10)

when t > (T), 0<h <t

Here we have chosen k& = T where T is the period o T'y. We know prove that the
simple closed curve PT', is approached spirally by PT' as { — co. Choose any point RanT
on [ and let T be a transversal with center at PR perpendicular to the nonzero tangent
vector of Py at PR.
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Fig. 3.2

Since R € (T}, there exist points of intersection of 7 and PT' as near as we please to
PR. We can therefore choose intersection points P; = Pzi(ty), Py = Pz2(ta) of PT with
T so that 7(T) < t; <ty and P; lies between P; and PR. We can suppose that P, is so
close to PR that Pz, (t)remains close to PT', throughout ¢, <t < ¢, + 37

Then there are at least two more intersections of PI' with T in the interval
t2 S ¢ < t2+37, namely P3, P, close to the points Pzi(ta+T), Pzi(ta+2T), respectively,‘
(see Fig 2.2). If P, did not lie between P and P, then the arc P2 P3 of PTwould intersect
the arc P3Py at a point where Pzi(t) =P z1(t+d) with d approximately equal to 7. This
would contradict (3.10). Hence, P; must lie between Pz and Py. If we assume first that P,
lies between P, and PR then Py lies between Py and PR. By repeat use of (3.10) it follows
that successive arcs Py Py, Py Ps, Ps, P, ..., of PI" encircle PTy without intersecting each
other and meet T in the sequence of the points Pj, Py, Ps,..., which tend monotonically
to PR. That is PT approaches PT spirally as t — oo, We now consider the possibility
that Ps might not lie between P; and PR and show that this leads to a contradiction. In
this case, P; would lie between P53 and PR. Then (8.10) would show that if PTis followed
backwards from Ps, successive arcs of it encircle PTy and cut T at points nearer to PR on
each occasion until the point P, on PT is reached. This implies that Py lies between PR

and Ps, contradicting the way in which Py, P, where chosen. This contradiction proves
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that Ps must lie between P» and PR and therefore PTgis approached spirally by PT as
t — co. Hence, PTy = PQ(T) and (32) gives I'g = ((T'). This establishes Theorem 3.4.

3.2. Orbital Stability.

Up to now we discussed about the existence of periodic orbits for autonomous systems
but this results do not ensure that orbitally stable closed orbit exist. This is a big disad-
vantage of this theory if we are interested to apply in practice, for example in a physical or
biological systems. Erle [9] made a deeper study of Poincaré-Bendixson Theorem (n=2) in
the case when some closed trajectories are non isolated. Smith in [25, 26} showed how this
theory can be used to prove the existence of a stable trajectory of autonomous ordinary
differential equations in R™. Let S an open subset of [R™ considered at the beginning of
this chapter. Let z(¢) a non-constant solution of (3.1) and Ty its correspondent orbit.
If the system (3.1) verify all the conditions of the generalization of Poincaré-Bendixson
Theorem, we can ensure that the existence of one orbit which coincides with Q(T).

We denote

N(To,8) = {:l:(t) e R*: d(z(t),T) < 6}

a neighborhood of T';.
We say that I'g is orbitally stable if for all £ > Othere exist §{g) > 0 such that

z(t) € N(6{(e),To), =z(t) e SNN(T,e) throughout ¢ <1 < co.

Moreover if

lim d{z(¢},Tq) =0

t—roo
then I'y is asymptotic orbitally stable. Note that if we consider z(¢) an amenable solution
z(t) of (3.1) in the previous definition of orbital stability we get the definition for amenable
stability. We can observe that in most of the cases the is easier to verify amenable stability
than orbital stability but this does not means that amenable stability is weaker than orbital

stability, in fact, by Theorem 2.7

In addition I'y is also an isolated periodic orbit. The converse of this proposition is

the following
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THEOREM 3.5. Suppose that (3.1) verify [Hal, [Hs] . If (3.1) has a closed trajectory
T'yp C S which is isolated and orbitally stable, then I'gis asymptotically stable.

Proof. See Smith [25].

Now we will consider the equations which satisfies the following condition

[Hg) There exist an open bounded set C € § C [R™ with closure C C S such that its
boundary 8C is crossed inward by any solution of (3.1) with meet it.

This restriction means that if any solution with z(to) € 8C for some ¢ then z(t) e C
for all £ > ¢y and there exist ¢t; > ¢p such that z(t) € C for all £ > ¢, i.e. there is not
critical points of (3.1)on 8C.

In the particular case when f(z) is an analytic function in S, that is, if f may be
written as a multiple power series in the coordinates of z — zg, there exist precisely results
about the stability. '

TuEOREM 3.6. Suppose that (3.1} verify [Ha|, [Hg| in C. If (3.1) does not have critical
points then each semiorbit in C' converges to a closed trajectory as t — oo and C contains
one closed trajectory which is orbitally stable. Moreover in the case that f(z) is an analytic
function in S, C contains only a finite number or closed irajectories and at least one of

them is asymptotically orbitally stable.

We can note that there exist cases for the set C' such that it contains at least one
critical point and these cases are not possible to be treated by this Theorem, for example,
when C is an spherical ball which satisfies [Hsg], the Brouwer fixed point Theorem shows

that C has at least one critical point. For this reason we have the more general result

TazoreMm 3.7 Suppose that (3.1) verify [H,], [Hs], [He] and has only one critical point
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k in C. If f(z) is a continuously differentiable function in some neighborhood of k such

that for all eigenvalues of it n X n-jacobian matrix at k verify

rezy >reze > 0>rez; =,..,2rez,

|

then each semiorbit in C converges to k or to a closed trajectory ast — oo and C contains
at least one closed trajectory which is orbitally stable. Moreover if f (z) is analytic in S then
C contains a finite number of closed trajectories and at least one of these is asymptotically

orbitally st;bIe.

Proof. See Appendix, Lemma 1.7 establish proof of theorems 3.6 and 3.7.
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Chapter 4

APPLICATIONS

In this chapter we will apply the results of the previous chapters. More precisely, in
section 4.1 we prove the existence of positives solution of a first order Lotka-Volterra type
and for this end we will apply the result from section 2.1. In section 4.2 we do the same
than the previous section for autonomous systems, with the evaluation in which is natural
to choose the set W as a domain with holes , and for it we use theorems of the section 3.1

with the help of Wazewski’s principle, Conley [4,5], Srzednicky [27, 28].

4.1, Non-Autonomous Case.

The following problem was treated by Gopalsamy [10] and he showed, by using a Lia-
punov function V' (z) and Brouwer fixed point Theorem, the existence of periodic solutions.
In our case we will treat it with generalization of Massera’s Convergence Theorem and in
this particular case not only we can give some sufficient conditions but uniqueness for the
T —periodic solution.

Let us consider the Lotka-Volterra equations of competition species type and consider

the following n-dimensional system

dI{
dt

= z:(t) [ () - Zﬁu(ﬂxa‘(ﬂ] (4.1)

fort >0, n € IN and ¢ = 1,...,n. Suppose that ai, b;; : R — R are continuous,
T'—periodic (for some T > 0) functions, for all 4,7 = 1, ..., n.
We denote

R} = {z = (z1,-.,2n) € R" such that z; > 0,i=1,..,n},

gijr = max g;(t) = supg:(i),
ol = max gi(t) = sup g (1)
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|l = min g:(t} = inf g:(t),
lo:l = mmin 6:(¢) = inf 0:(t)

[g:]F = maz{g:,0},

{g:]” = min{g;,0}.

To analyse this particular system we need to define some compact set Sop C S in R"
such that [Hy], [H3] and [Hs| hold. We will denote by

Filt, z) = ze () [aus(2) — Z Bi;(t)z5(t)] (4.2)

forallt=1,...,n for all ¢.
Any values of the population densities z;, with ¢ = 1,...,n can be represented as points
on the space R™. Since the densities z; cannot be negative because we are interested that

the species compete, then we consider
S ={z=(z1,.,2,) ER™: =z(t) > 0}

As a first step, we build a positively invariant compact set Sp C §. The form of Sp
will be the following

So = [e) B1] % oo X [£, B

with £ > 0 sufficiently small.
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Fig 41

To build this compact set Sy we will get some condition from the coefficients o, By

of (4.2} in such way the flow f;(t,z) can verify the following assummptions,

(1) fi(t,z) > O such that z; = & with € > 0 a small number for some i = 1,...,n and

€ < z; < Ry, with E; > 0 some real number, for j = 1,...,n and j # 1, for all £.

o (t) — efaa(t) — [i Bi(t) xj] >0

is sufficient to consider

esle — elgalf — [> 185 =] > 0

if € — 0 we obtain
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o] > [Xn:[ﬁis']ﬁ Rs’] (4.3)

a
-

-
-

in analogous way we can do for the another case,

fi{t,z) < 0 such that z; = R; with R; > O a some real number for some ¢t = 1,...,n

and € < r; < R;, with € > 0 (small) real number, for j =1,...,n and 7 5 ¢, for all ¢.

To get

calt) = Ribist) — [3Bil8) 3] < 0

is sufficient to consider

(el — R:i[Biz]p — [i[ﬁta]z :1:3-] <0

If we suppose

el — Rl <[00z ] (w4

we get the conditions for (2)

Under restrictions (4.3) and (4.4) we built the compact set

Sp = {:c = (%1, Tn) ERY  such that &< z(t) <R, 1= 1,...,n}

for all t. Furthermore we can observe that this set is invariant with respect to (4.1}, i.e.

if any solution z(t) of (4.1) which has initial condition z({0} in Sg, then z(t) € S for all ¢.

From the previous analysis we have obtained the following
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ProrosiTioN 4.1. Let consider the system (4.1). Suppose that o;(t) > 0 and §;; > 0 for
all t, for 1,7 = 1,...,n. If there exist Ry,..., R, real constants such that the inequalities.

(4.3) and (4.4} hold, then there exist an € > O such that the n—dimensional rectangle Sy
is an invariant set.

From the Generalization of Massera’s Theorem we will check that the following hy-
pothesis holds (see [Hg] with p=1)
There exits constants A > 0, € > 0 such that for allt e R

n n
AZG;' < ETy — Lo, U; > I + ZG,’K(< Iy — Io, W >)l < f(t, -T'l) - f(t,z:g),vi >S
i=1 =1

23
< msZ|<:cl—$2,v,;>I

=]

for z(t), y(t) solution of (4.1) in S. With a;j = 1if j =1,...,7 and K like in Chapter 1.
Let consider

Xi=logz;, and Y;=logy; (4.5)

with z;, y; solutions of (4.1) defined in Sy (a sufficient condition is to require z{0), y(0) €
So for any solutions of {4.1)).

From (4.1} and (4.5) that

5; (X,- . y;-) = —B::(t) [exdﬂ . eY-(f)] - f: Biy(t) [g‘fﬂﬂ . e*’f{ﬂ} (4.6)

I

for ¢ = 1,..,n. We know that DT|z(¢)| = K(z(t))9. For the scalar function
V(z) = 3 |z:(t)] (with a; = 1) and for z, y solutions of (4.1) we can obtain
=1

D* [e“V(:c — y)] = A"V (g~ y) + MDDV (z —y) =

=M} X - Yil+
i=1

Fe DK = Y)Y Bl - ) =
i=1 i=1
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dert i: |X; — Yi|—
i=1
s i {ﬁ-:i(t)(ﬂx" —e¥i) — M Zﬁij(t)lex{ h EY‘.I] B

i=1

_z\e'\tZIX{—ﬁ‘—
—e* Z[u() — *"Ie“Zﬁ,J “"‘—el’*l]=
1=1 =1

¥

J#i
71
=A6At§:|X-ﬁ—“}ril Z[ 11 Zﬁt] :i - '.|
i=1 =1 JP&‘
Then if we consider A =0 and
0<e < ﬁn Zﬁzj (4'7)’
J#t
we can conclude that
d n
Xi Yi| — . — )
&EV T—y —sZ]e —e |—“E;|I’,(t) vi(t)]

Now we have all the sufficient conditions to apply the generalization of Massera’s
Theorem and we can ensure that if (4.1) has a solution y(t) € Sp such that the initial
condition y(0) € Sy not only there exist u(t) a T—periodic orbit in S, such that y(t) -
u(t) — 0 for ¢ — oo more over, this u(t} is unique in Sp. Now if we consider the case
studied by Gopalsamy [10] we can observe that it is a particular case of our analysis, in fact,
if we replace the coefficients of (4.1) by the correspondents coefficients §;; > 0, & 7t =
bij, bij” = O the relations (4.3) and (4.4) become

> (st B < (o),

and
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o (t) _
Bat) -

That is, is possible to obtain the invariant compact set Sy if we consider the following

restriction for the coefficients of (4.1)

i

D (Bt G < (o),

With the same Theorem 8.3, we can conclude that the periodic solution u(t) of (4.1)
is globally asymptotically stable in the sense gave by Gopalsamy in [10], that is, for every
other solution y(t) of (4.1) such that the initial condition y;{0) € Sy and is defined by all
>0,

lim |u;(¢) — y;(t)| =0

t—rco

foralli=1,...,n.

4.2, Autonomous Case.

We pass now to the investigation of a class of autonomous systems of Lotka-Volterra

type, we consider the equation

d.’t«;
= = (=) (4.9)

where f; : R™ — IR is a locally lipschitzian function. Our purpose is to outline two

different possible applications of the generalized Poincaré-Bendixson Theorem.

First of all, we observe that, in the situation described for the preceding example of

non-autonomeus equation, if we can find a n—th dimensional rectangle
SQ = [E,Rl] X o X [E,Rn],

which is positively invariant for the flow induced by (4.9}, then there is at least one

equilibrium point z* € S,.
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Indeed, this is a standard consequence of Brouwer fixed point Theorem and of a basic
lemma from the theory of dynamical systems (fix for any h € N, the period Tj = % and
observe that, by Brouwer Theorem, there is zj € Sg, an initial point of a Tj-periodic
solution of (4.9). Then passing to a subsequences =, — z* with f(z*) = 0). Such z* lies
in the interior of S of R7. Now the problem arises whether there are non trivial periodic

solutions for equation (4.9) which are contained in 5.

To this end, the generalized Massera’s Theorem still can be used in order to get a

negative answer.

Tor instance if we are in the situation of the case {4.1) with the autonomous equation

dz;
dt

= z;(t) [s — Z Biszi(t)] (4.10)

with .
T
B;; >0, Bis > Eﬁ.;j and
Jj=1

i
n o
o > Zﬁ-;j"ﬁ—?_,
=1 73
then we know that for each T > 0, there is a T—periodic solution zr(t) such that
Jim |z (t) —y(t)| =0
—0a

for every y(t) solution of (4.10) such that y(0) € So (see section 4.1).

In this cases necessarily, we get that zp(f) = z. =constant with respect to ¢ and

therefore z* is the unique periodic solution of (4.10) which is contained in So.

With this remark, we get immediately that also the result by Gopalsamy for au-

tonomous equations ([7, Theorem 4.1]) is a particular case of our analysis.

Now, we try to propose some other situations for which the existence of nontrivial
periodic solutions is guaranteed. In order to obtain such results we can choose two different
ways.

A first possibility consist into a modification of the structure of the equations so that

the flow-invariance property of the rectangle Sy is preserved, but the equilibrium point
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z* is no more asymptotically stable and, precisely, two eigenvalues of the Jacobian matrix
f1(z*) have positive real part, while all the other eigenvalues have negative real part. This
is the case considered by R. A. Smith in [22, 24]. Roughly speaking, in this situation, we
find a two-dimensional unstable manifold U passing through z* and we can try to use the
projection technique in order to get a limit cycle of equation (4.9) whose projection on U
is a closed curve. Of course, because of the preceding remark, we cannot hope to get such
result for equations of the form (4.10) since in this case the conditions which are needed to
ensure the flow-invariance property are also sufficient to guarantee the asymptotic stability
of the internal equilibrium point. A single example for this approach is given in the next

example 4.1.

A second possibility consists into a modification of the conditions for the flow of {4.1)
at the boundary of Sp. In order to explain better the situation, we assume, for sake of
simplicity, that the flow enters all the boundary of Sy except that for two opposite faces.

This situation can be easily achieved if we assume that there is i € {1,...,n} such that
fi(I}.: sy Ti— 1, By Bipl g ooy $n) <0< f‘i(ﬂ:l: ceey i1, Rig Tigdyaeny $n)

for all e < z; < Ry, for j # 1,

fj(rlz---;-"ﬂj—l,s, T’j—i—l:“';zn) >0 > fj(xl:-"15_7'--1)RJ'153'-{-11""3;71-)

foralle <z < Ry, k5.
Under the above conditions, the flow enters in Sy at the faces z; = €, z; = Ry for

J 7 1, while it is directed outward at the faces z; = ¢, z; = R,.

Next, assume that the equilibrium point =* € Sy is repeller, that is all the eigenvalues
of fi(z*) have positive real part. In this cases it is a standard from Conley index theory
that it is possible to find a sufficiently small neighborhood U(z*) of z* homeomorphic to
a ball such that all the points of its boundary are egress points for the considered flow.

Finally, we define
W = 55\ U(z").

By the above required properties, it is possible to check that W is a Wazewski set (see R.
Srzednicki [27])and its set of egress points is given by W~ = Fy U F,, where F; and F,

are the opposite faces ; = ¢, z; = R;.
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Such situation may be represented though the following figure

A

)
o1
]

Fig 4.2

Assume, besides the above conditions, that the phase space R™ has odd dimension. In
this case, we have that W is homeomorphic to the n—dimensional closed ball with one
hole which, in turns has the same Euler Characteristic of the (n — 1)—dimensional sphere.
Since n — 1 is even, then we get x(W) = 2.

On the other hand

xW™) = (F) +(F2) —(FinFy) =1+1-2=0
so that by R. Srzednicki formula we compute

dp(f,intW,0) = x(W) — x(W") =2-2=0.

Then this fact confirm which we told before, that there is not critical points in int W,
see Srzednicki [28]. Furthermore, W™ is not a strong deformation retract of W because
W~ is not a connected set, while W is connected, then from Wazewski's criterion, see

Conley [4,5] or Wazewski [29], there exist solutions which stay included in W, for all ¢ > 0.
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The fact that dg(f,intW,0) = 0, do not prevent the possibility of other equilibrium
points in 1t W, but this condition at least guarantee that a function f without zeroes in
int W, but with the prescribed behavior on the boundary can be found.

At this point, we are in the position to say that, if n is odd, then function [ exists
such that the flow induced by equation (4.9) is like the one depicted in Fig. 4.2 and
f(z) #0for all z € W. Then we can apply Wazewski retract Theorem which ensures the
existence of at least one solution z(t) of (4.9) such that z(¢) € W, for all t > 0. Then
the w~limit of z(t) is a subset of W which does not include critical points. Hence, if f
satisfles suitable conditions for the projections technique we can produce the existence of
a non trivial periodic solution contained in W.

Such second possibility, seems to be more suitable for producing examples than to
prove the existence theorems. Nevertheless, our purpose was find that of outlining possible
situations which were not considered by R. A. Smith, in order to avoid the presence of
critical points in the limit sets. It is also clear that we easily can modify the above
discussion varying the number of the exit faces and assuming, at the same time other
conditions on the eigenvalues.

We end this section, showing a simple example in which the first possibility is ex-

ploited.

Examrre 4.1.

Consider the following system in R,

%;E = o[ k+ap(z) -y + $(2)]
Y[k bpl) + o — (a)]
%‘g = 2(k — 2)(z, v, 2)

with ¢, ¥ :R — R, § : R® — R are continuous and differentiable functions such
that ¢(k) =(k) =0 for k > 0 and a, b > O real constants such that ab > 1.

We can observe that K = (k,k, k) is the critical point of the previous system and the
Jacobian matrix evaluated in K has two eigenvalues with positive real part and the third
one with negative real part. If we restrict to the manifold which passing through K, more
precisely, for z = k, and by using the projection technique we can find the limit cycle of
the system, which Iyes in the three-dimensional rectangle given by the assumptions which
we will see later, whose projection is on this manifold.
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Suppose the following assumption over the coefficients of the previous system.
Fr=cforalle<y< Rpande<zZ B3

k + ag(e) — Ra + [#]z > 0.
IFz=R,foralle<y< Byande<z< Ry
k4 ag(Ra) + [¥]r < 0.
IFy=cforalle<z< Ryande<z< Hs
—k + bgp(e) + [¢]r > O.
Fy=Roforalile<z< Ryande<z< A3
—k + bp{Rs) + Ra + [¥]r < 0.

Then we pet the positive invariance of the set Sg.
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APPENDIX
Appendix A

In this section we consider some lemmas which are needed in the proof of the unique-
ness of the solution from (3.1) (Lemmas 1.1 and 1.2) and the sufficient conditions for the
orbital stability (Lemmas 1.3 - 1.7}, i.e. in the proof of the theorems 3.6 and 3.7 is needed

the lemma 1.7 in such way needs the previous lemmas.

Lemma 1.1, If f(z) satisfy the local the local Lipschitz condition in z, then for each
compact Sg of 5 there exist a constant L(Sp} > 0 such that

DI<F@) = FWhivs > 1P < L(S0) D | < =(t) — y(t)s: > |P

i=1 i=1

for all t € R™ and z(t), y(t) € So.

Lemma 1.2. Let us consider z1(t), za(t) solutions of (2.1} in [tg, +o0). If z,(t), zo{t) are
in 5 for allt > {o then at least one of the following statements 1), 1) is true:

i) there exist constants h > 0, ¢ > 0 such that

lz2(t) = z2(t + A)||, <ee™™  forall t>tg (1.1)
11) for each k > 0 there exist T(k) > O such that

lz(t) = walt + W), < [1P2(t) = Paalt + B, (12)

for allt > T(k) and all h with0 < h < k.

To prove this lemma we consider Sp, the closure of the orbit T', P linear map replaced
by II linear map and U(z) = W (z) — V(z) as in the proof of the Theorem 3.4 then by R.
A. Smith in [22], we obtain such proof.

We need to prove the theorems related with the orbital stability for autonomous
systems in the chapter 3.
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LemMa 1.3. IfTg is both internally and externally stable then T'y is amenably stable.

LemMa 1.4. Each chain Q and B has an upper bound I'y, and a lower bound T';. Further-

more we can suppose that either Ty € @ is an externally stable closed trajectory.

LeMMA 1.5. B contains an externally stable closed trajectory.

LEMMA 1.6. B contains an orbitally stable closed trajectory.

For the proof of all the previous lemmas see R. A. Smith [25].

LeMMA 1.7. If the critical point k € Q(T') for some semi-orbit I' C C then QU(T') contains

no other points.

Proof. See R. A. Smith in [21, 25] . The proofs of this lemmas are omitted because
we can get them in Smith. Essentially Lemma 1.6 permit us to prove the theorems about
the orbital stability, that is, Theorem 3.6 and 3.7.

52



Appendix B

Let So C R™ such that is a compact ENR. From the definition of the Lefschetz number
see Dold (8], Conley [4].

[ms)

MF) = D _(=1)Pir(f)

=1

with fp, + Hy(R™) — H,(R"), a continuous function defined over H,(R") the
p—dimensional homology group of R™ with coeflicients which are rational numbers and
the graded vector space Hp(R") = {H,(R")} 2, of finite type.

The Euler Characteristic of Sy, x(So), is the Lefschetz number of the identity map
Idg, over Sp. We note that

By definition of singular homology and from homotopy axioms, follow that the Euler
Characteristic may be introduced by the following properties for compact ENR sets:
(1)  Additivity:
For A, B compact ENR sets of R™

x(AU B) = x(4) + x(B) — x(4n B).

(2) Normalization:

x(4) =1 if A isa convex set,
x(0) = 0.
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(3) Homotopy Equivalence:
If 4 and B compact sets of R™ have the same ho-
motopy type, then

Note that Fuler characteristic does not depend from the connected decomposition.
For example, let us consider the set A the n—dimensional ball with a “hole” and B the
n—dimensional ball inside A (hole). The computation of Euler Characteristic for A follows
from (1) and (2) that

x(AUB) = x(4) + x(B) — x(4Nn B)
and x{AuB) = x(B) =1
then x(AnB) = x(4).

b

Since

0, if n is even
x(AnB) = x(4) = x(ball) = {2, ifn is odd.

The Euler characteristic can be used in order to apply topological methods in the
research of periodic solutions to differential systems. Specifically it is used like the topo-
logical degree, in fact if x¥(Sp) # 0 in some cases implies the existence of periodic solutions
of such differential system. See Conley C. [4,5]. For example in R. Srzednicki [28] consider
for a system

dz
da = f(t, z)
Iy :E(to)

the following result
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THEOREM 2.1. Assume that § is an open subset of R™ and f : R™*x S —— R™ is continuous,
differentiable and T-periodic in t. Let W a block of the type (p — ¢). If W and W™ are
compact ANR (absolute neighborhood retract) and x(W) # x(W ™) then there exist a
point zg € 1ntW such that the solution z(t) of the previous system is T—periodic in t.

Moreover, z(t) € W for each t € R™.
For the opportune definitions like ANR, block of the type (p— ¢}, see C. Conley [4,5].
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