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1. INTRODUCTION .

We will study the problem of the existence of

solutions to the differential inclusion

X'(t) e F(t,x(t) (1)

where x' = dx/dt and F is a multivalued function defined on a
subset of RN*! | taking as values closed subsets of R

Such type of equations arise rather naturally in any
kind of experimental processes in which the parameters are
known only within a certain degree of approximation ; in Control
Theory one often faces equations with a parameter which are
particular cases of equation (1) . One can also represent an

implicit differential equation of the form
f(t,x(),x'(t)) = 0
as a differential inclusion of the type (1) , with
F(t,x) ={v:f{txv)=0}

Differential inclusions can also be employed in the study of
differential equations with non-continuous right hand side (see
e.g. [3]).

In order to prove the existence of solutions to the

differential inclusion (1) we will need some assumptions on F




which will be essentially of two different kinds :  continuity (in
some sense to be specified) , and regularity of the values (like
e.g. convexity and compactness) .

Early results were obtained essentially by Marchaud
[27] and Zaremba [36] in the thirties by assuming the continuity
of F and the convexity of its values . Later, equations of the
type (1) were studied by many authors including Filippov [12]
and Wazewski [35] . However most results were obtained under
the assumption that F had convex values . Filippov [13] was the
first to avoid this assumption and he finally proved the existence
of a solution to (1) by asking the continuity of F (in the sense
of the Hausdorff topology ) and only compactness for the values
of F.

In the following vyears, the pioneering work of
Filippov has been improved in various directions. Kaczynski and
Olech [21] and Antosiewicz and Cellina [1] proved the existence
of solutions by assuming Caratheodory conditions on F : the
technique used by the formers was a refinement of Filippov's,
while the latters used a completely new fixed point approach
based on a continuous selection argument . This new approach
gave the impulse to the study of the existence of continuous
selections for multivalued maps taking as values decomposable
subsets of L'. Fryszkowski [14] proved the existence of a
continuous selection from a lower semicontinuous map with
decomposable values, while Cellina, Colombo and Fonda [9]
obtained continuous approximate selections for an upper

semicontinuous map . These results have been later improved by




Bressan and Colombo [5] by assuming the domain of the
multifunction to be only paracompact .

A generalization to the previous existence results
for (1) was given by Olech [29], while Lojasiewicz [26] and
Himmelberg and Van Vieck [20] weakened the compactness
condition on the values of F .

In 1980 two papers by Bressan [4] and Lojasiewicz
[25] appeared , in which the lower semicontinuous case was
analyzed : Bressan's approach followed that of Antosiewicz -
Cellina 's while Lojasiewicz's followed the one of Kaczynski -
Olech .

In this paper we shall give a survey on the most
remarkable results obtained in the study of the existence of
solutions to equations of the type (1) , concentrating on the case
in which F does not have convex values . We shall try to
emphazize the different techniques and the main difficulties
involved in each of them . Some technical proofs will be omitted,
but the main ideas will be sketched.

Section 2 contains the main notations and basic
definitions which will be used throughout the paper; some
interrelations between the various definitions of continuity for a
multivalued map are also given.

Section 3 is a bﬁef survey on some classical
results which can be obtained when the multivalued map F s
convex valued. We also present here the Michael Selection
Theorem for lower semicontinuous multivalued maps and the

Cellina Approximate Selection Theorem for upper semicontinuous




maps.

Section 4 is the central part of this paper ; we
analyze here the case when the multivalued map F involved in
the differential inclusion (1) has non-convex values . At first we
prove Filippov's theorem ; then the case in which F satisfies
Caratheodory type conditions is studied in detail by presenting
both the different approaches of Kaczynski - Olech and of
Antosiewicz - Cellina . An abstract theorem of Fryszkowski is
presented and we show how it can be applied in order to obtain
further generalizations of the abové results. We also present the
result in some sense complementary obtained by Cellina, Colombo
and Fonda , together with the improvements obtained by Bressan
and Colombo . Finally we survey the papers by Himmelberg - Van
Vleck and Lojasiewicz by showing how the compactness
assumption on the values of F can be remarkably weakened.

Section 5 is concentrated on the problem of the

existence of solutions to the differential inclusion
X'(t) e Ax{t) + F{t,x(t)

where A is a maximal monotone operator and F is a compact -
valued multivalued map . We present the result of Colombo, Fonda
and Ornelas [11] which is a generalization of a previous paper by
Cellina and Marchi [10] .




2. NOTATIONS AND BASIC DEFINITIONS .

In a metric space X with metric d , we will denote
by h(.,.) the Hausdorff pseudomeiric defined on the space of

nonempty , closed subsets of X :

h(A,B) = max {sup inf d(x,y) , sup inf d(xy) }

XeEA yeB yER X &M

As usual we set B(a,r) [B[ar]] to bethe open [ closed] ball
of radius r about a point a . Analogously B(Ar) [B[Ar]] will

be the open [ closed ] r - neighborhood of a set A .

Let XY be metric spaces and F be a multifunction
from X to the set of subsets of Y . We will use the following

definitions .

F is said to have closed graph at x5 e X iff, for each

sequence (x,) converging to x, and each sequence (y,) with
Yyne Fxp), yh— Yo implies yje F(xg) .

F is lower semicontinuous (ls.c.) at xge X iff, for each
open set V such that V n F(x,) =@ , there exists a neighborhood

U(xg) of x4 suchthat V. n F(x) =@ foreach x e U(xy) .

o)
F is upper semicontinuous (us.c.) at x, e X iff, for each

open set V such that F(xg) = V  there exists a neighborhood

U(xqy) of xg such that F(x)=V for any x e U(xg)




F is & - upper semicontinuous at Xg € X iff, for each
e > 0 there exists a neighborhood U(xg) of x5 such that F(x)c
B(F(xg),e) foreach x e U(xg) -

F is continuous at Xg iff it is continuous at Xo with

respect to the Hausdorff pseudomeiric h on the space of

nonempty subsets of Y

We will say that one of the above properties holds

on X iff the property holds for all x e X.

Remark . We will use sometimes the following equivalent
formulations .

F is lLs.c. on X iff for every closed subset C of Y, the
set {x: F(x)= C} is closed .

F is us.c. on X iff for every closed subset C of Y, the

set {x:F(x) n C= @} isclosed.

Let us now summarize in a schematic way the main

relationships between the above concepts (for the proofs,see [3]).

(@) If F(xy) is closed, then the following holds at Xg !

us.c. = e-usc = closed graph

continuity = g-usc & Lls.c.




(b) If F(x,) is compact, then at Xy We have :

Uus.c. & e-US.C. =  closed graph

continuity & us.c. & ls.c.

(c) I Y is compact and F(xy) is closed, then at x, we have :

0
u.s.c. & g-usce & closed graph

continuity = us.c. & ls.c.

Finally, F will be said to be measurable iff the set
{x: F(x) n C= @} is measurable for any closed subset C of Y.

A rather complete treatment of measurable multifunctions can be
found in [19] orin [34].

In sections 4 and 5 we will deal with subsets of L'

having the following property.

Definition 2.1 . A subset K of L'(T,E) is said to be
decomposable iff, taken u,v e K and any measurable subset A

of T, we have

uy[A] + vy[T\A] € K

where y[A] and [T \ A] stand for the characteristic functions

of A and T\ A respectively .




3. DIFFERENTIAL INCLUSIONS WITH CONVEX VALUES.

In this section we will show some classical results

concerning differential inclusions of the type

X'(t) e F(t,x{) , x(0) = Xq (1)

where F is a multivalued map defined on an open subset Q of
RN+ taking values into the set of nonempty, closed and convex
subsets of R™. The existence results of this section can be easily
proved by using classical continuous selection results (cf. [3]) .
We Dbegin by stating the Michael's continuous

selection theorem.

THEOREM 3.1 (Michael). Let X be a metric space, Y a Banach

space . Let F from X into the closed convex subsets of Y be
lower semicontinuous. Then there exists f:X — Y , a continuous

selection from F.

As an easy consequence we have the following

existence result.

THEOREM. 3.2. Let F be Is.c. from some open region Q of

R into the nonempty, closed and convex subsets of R" . Let




(0,xg) € Q . Then there exists a solution to (1) defined on a

neighborhood of 0 .

A similar approach can be used in the upper
semicontinuous case; we will obtain an existence result by
applying the following Approximate Selection Theorem of Cellina
(see [3] ).

THEOREM 3.3 (Cellina) . Let X be a metric space, Y a Banach

space, F a map from X into the convex subsets of Y upper

semicontinuous. Then for every e > 0 there exists a locally

Lipschitzean map ., from X to Y such that

Graph (f;) = Graph (F) + B

By applying Theorem 3.3 we obtain the following

existence result.

THEOREM 3.4 . Let Q <R™'  be an open set containing (0.%5)

andlet F be an us.c. map from Q into the nonempty closed

convex subsets of R" . We assume moreover the map {t,x) —
m(F(t,x)) to be locally compact . Then there exists an interval

[0,TI, T > 0 over which a solutionto (1) is defined .




4. DIFFERENTIAL INCLUSIONS WITH NON - CONVEX VAL UES.

4.1 _Introduction. A method frequently employed in the study

of the existence of solutions to a differential inclusion

Xt e Fitx() , x(0)=x, (1)

- or to an ordinary differential equation as well - consists in
constructing a sequence x,(.) of " approximate solutions " , i.e.
such that there exists a sequence e,(.) tending (uniformly) to

zero and such that

d(x'n(t) , F(t, xp(t) - ep)) — 0 . (2)

Then one ftries to prove that the sequence x,(.) contains a

subsequence uniformly converging to a certain limit x,() , and

that this limit is a solution to the equation in question

Unfortunately , when dealing with differential inclusions, there is

a main difficulty in trying to make the derivatives X' ()
converge . In fact, the convergence of x,(.) to x,(.) can be often
obtained as a strong convergence .in the space of absolutely
continuous functions , and this only implies x',(.) — xg()

weakly in L' | while we should try to have at least a pointwise

-10 -




convergence . As an immediate consequence of the fact that

closed convex sets are also weakly closed , and of the uniform

convergence of x,(.) and e,(.) , from (2) we obtain:

Xot) € (Y cleco\U F(ix) a.e. in [0,1] . (3)

€>0 Ix-x (E)f <€

where cl co stands for the closed convex hull . If the right hand
side of (3) is equal to F(t,x) , which is equivalent to say that
F(t,x) is convex and F(t,.) is upper semicontinuous for each fixed

t, then (3) means that x,() is indeed a solution to (1) . In

general, when this is not the case, we will have to construct
approximate selections in some accurate way in order to have a
subsequence converging to a solution.

First of all we will prove an existence result by
Filippov [13]. Then the generalization to Caratheodory type
conditions by Kaczynski and Olech [21] and Antosiewicz and
Cellina [1] will be examined analyzing their different methods of
proof. The Theorem of Fryszkowski [14] , generalizing the proof
in [1] , and the complementary one of Cellina, Colombo and Fonda
[9], together with the improvements of Bressan and Colombo [5]
are surveyed in section 4.3 . Finally the results contained in
Bressan [4] , Lojasiewicz [25] ,and the ones in Himmelberg - Van
Vieck [20] and again in Lojasiewicz [26] are presented with

some comments and remarks .

-11 -




4.2 Filippov's result . We will follow here the presentation in

3] .

THEOREM 4.2.1. (Filippov) . Let Q be an open subset of RN*1
containing (0,x,) , and let F be a continuous map from Q to the

nonempty compact subsets of R" . Then there exists T>0 and
an absolutely continuous function x(.) defined on [0,T], a

solution to the differential inclusion

Xt e FEx®) . x(0)=x,

Moreover, the derivative x'(.) is regulated .

Proof . We will construct piecewise linear approximate solutions.
In order to make the derivatives converge, we will need the
following compactness Lemma on the space a(I,R") of bounded

functions from an interval | of R to RM.

Lemma . Assume that a subset #<3(1,R™) of bounded functions
satisfies
() Vie |, #H(t)={x{t) | x(.) e #} is precompact ;
(B) 4 is equioscillating, i.e. Ve>0 3 a finite

partition of | into subintervals Jk (k = 1,....,1
such that, Vx(.) e #,Vke {1,.1},

sup ix{t4) - x(t < €.
£4/tLE§)l (t1) - x(to)]

-12-




Then s is precompact in 3(1,R") .

Let a,b > 0 be such that [-a,a] x B[Xxq,b] = Q ; we will

consider F restricted to [-a,a] x B[xgy,b] , which is uniformly

continuous and takes values into a certain ball B[O,M] . Set T =
min {a , b/M} .

Once we set mn) = 2'k, by the uniform continuity
there exists § such that |t -] <8, and |x- x| < M-§)  imply

h(F(t,x) , F(I',x)) <mn .
We will now define the partitions of the interval | =
[0,T] . Choose a number hy smaller than & and such that T/hy

is an integer ; define the first partition of | by the intervals
[ihy, (i+1)hqy[ . In general, the m-th partition is obtained by
subdividing each interval of the preceding partition into a finite

number of right-open intervals each of equal length hp, , with h

<8y - The points ih,, are the nodal points of the m-th partition.

When 1t is a nodal point, we denote by O(t) the order of the
partition where < first appears as a nodal point. When O(z) > 1,
we set s(t) to be the initial point of the interval of the (O(z) -
1)-th partition to which 1 belongs.

We will now define the m-approximate solution x,

-13-




as an absolutely continuous function verifying Xk(0) = x5 , whose

derivative is constant on the intervals of the k-th partition of | .

We will use an induction argument on the nodal points of the k-th

partition. If © =0, then x is obviously defined on [0,7] . Assume

by induction that xj is defined on [0,2*[ , and moreover that :

(a) at each nodal point t e [0,7*], X'(t) € F(t,x) (1)) ;

(b) at each nodal point te[0,7"[, d(X'\(t), X'k (s(1))) S“O(TH

Since

7" - s()] < ho -1 dix(r*)  Xic(s(1") < Mhyp#).1

we have

h(F(E* Xe(e) » FS@) X)) < oty

By (@), xyk(s(t*)) € F(s(t*),xy(s(t"))) J and so there exists v e

F(t*,x (%)) such that d(v,x,(s(t"))) < NO(r*)-1 - Set

X() = X (@) + (-, toon I, Thy].

Then the inductive hypotheses are satisfied up to t*+h, . So the

existence of x, is proved on the whole [0,T] .

-14 -




It is not difficult to see that the sequence (x k) s

indeed equioscillating (see [3] ). This is a consequence of the fact

that our functions were constructed inductively satisfying

property (b) above. The oscillation of each X, on the intervals

of the r-th partition comes out to be at most

S n; = 1/200)-2

J200n-1

thus not depending on k . Applying the Lemma, we have that both

xg(.) and X (.) converge uniformly to an absolutely continuous

function x*(.) and to a regulated function v*{.) , respectively.

Indeed, v* is the derivative of x* , x*(0) = Xq » and it can be

shown that
div(), Fitx*®) = 0

which implies
X*(t) = V') e Fx®) . m

-15 -




4.3 Existence under Caratheodorv type conditions . The result

of Filippov has been improved by Kaczynski and Olech [21] and
Antosiewicz and Cellina [1] , by assuming on F Caratheodory
type conditions . Their proofs follow completely different
approaches . Kaczynski and Olech use the "approximate solutions"
approach , generalizing Filippov's construction , while
Antosiewicz and Cellina use a completely new - for non-convex
valued differential inclusions - fixed point approach, based on the
construction of a continuous selection for a certain "integral”
map. Since all the generalizations which were given in the
following years were in some way inspired on these two
approaches, we believe useful to report here both of them. Here is

the result.

THEOREM 4.3.1 . Assume F(.,.) is a multivalued map from | x R"

(I = [0,1] ) into the compact subsets of R" satisfying the
following conditions:
(i) foreach xe R, t - F(t,x) is measurable in | ;
(i) for each te | , x — F(t,x) is continuous in R" ;
(i) F is integrably bounded , i.e. there exists m e L'(])

such that, for each t and x, F(i,x) < B(0,m{t)) .

Then there exists an absolutely continuous function x(.) of |

into R" such that, for almost every te I,

Xt e FEx®) .  x0)=x, . (1)

-16 -




Proof by Kaczynski and QOlech. We can suppose without loosing

generality that x, = 0 . The first thing we are going to do is to

construct an L'- compact family of measurable functions which
will be used for the choice of the derivatives of the approximate

solutions. Let K be the closed ball in R™ about the origin, with

radius M = jl m(t) dt . By (iii), any solution of (1) assumes

values in K. Let us introduce a modulus of continuity for F
n(tr) = max {h(F(ty), F{tx)) | xye K, [x-y|[ <1}

It can be checked that n is integrable in t for each fixed r, and

continuous non increasing in r for each fixed t. Take ), a
sequence of real numbers converging to zero and such that fipq <

r /4 and moreover

J, T it di < 4o

ez

Let Ai be a finite ri+1/2 - net for K. For aq,---,8p such that

a;e A; (i=1,.,n)and Iy

i -a.4l < (i = 2,..,n), choose an

integrable function u(ay,....a,)(.) : 1 - R" satisfying

u(@y,...ap)t) e Flta,) vi

and, if n>1,

-17 -




lu@q,...ap)(t) - u(@q,....ap. 1)) < n(tra.1)-

(Such a function exists as a measurable selection of the proper

measurable map
F(t,ay) n {x: |x - u(@y,...,an_1))] < ntrp.1k )

Let h;

i be chosen in such a way that 1/h; and hi/hi+1 are

integers greater than one and moreover

t+hi

jt m(s) ds < /4, i=1.2,.. .

Given a sequence ai”(.) :1 - A; of maps which are constant on
the intervals [kh;,(k+1)h;) (k = 0,....,1/(h;-1) ) , it is not difficult

to show that the set
u@y" ()" (), i= 1,2, 02}
is a compact set in L'. It is in this set that we are going to

define the derivatives of our approximate solutions. In fact one

can define sequences ain(.) of the above kind and x,(.) such that

X' (1) = u(@q"(t),....a,"0) ()

and

-18 -




X, (1) - &) <y

by using an induction argument (see [21] ) . As a consequénce, the

functions x,(.) are indeed approximate solutions, equicontinuous

and uniformly bounded; hence there exists a subsequence

uniformly converging to a certain x5(.) , and because of the above

construction we can choose a subsequence whose derivatives

converge pointwisely to x', . Finally x, is easily proved io be a
p 0 0

solutionto (1) . [

Proof by Antosiewicz_and Cellina. The proof will be based on the

following continuous selection result.

Proposition.  Let F be as in the Theorem. Define on the space X

of the absolutely continuous mappings u :|1— R™ such that u(0) =

Xq and [[u@)]l <M EJI m(t)dt the map G :

G(u)() = Ftu() (4)

There exists a continuous mapping g: X — L' such that, for every

ue K, g(u)t) e G(u)t) at almost every tel.

Proof. Let us consider the restriction of F to |xB[0,M] , and

-19-




assume first that F is continuous - hence uniformly continuous.

First of all we will prove the existence of an

approximate selection, i.e. for every &> 0 there exists a

continuous mapping ge such that

d(gg(u)(t) , Gu)(t)) < e (5)

at almost every t e |.Let ¢ > 0 be given. By the uniform

continuity of F there exists & > 0 such that

[t-s]<8& , [x- yll <8 = h(F(t,x), F(s,y)) <¢

Since x is a compact subset of the set of continuous functions,

we can select a finite covering {B(u;,8/2) :i =1,..m} of % and,
since each G(u;) is measurable, we can choose vj € LYy (i =

1,...,m) such that vit) € G(u;)() at almost every t e | . Let
(Pj)i=1 ... m Dbe a continuous partition of unity associate to the
above covering, and set, for each u e %,

o) =0 , 7(u)=1_q(u) + p;(u) (i=1,..,m).

Define the interval Jj(u) = [t;_q(u),7(u)[ for every i, and denote

-20 -




by x[Jj(u)] the characteristic function of Ji(u) . Finally we

define

ge(U) = 2 X[ ()] v; on [0,1]

and g (u)(1) = vj(1) , where j = min {i 21 tti(u) = 1} . It can be
easily checked that the map g. has the required property (5) .

By using a procedure similar to the one above, one
can construct a sequence of continuous mappings g" : x— L'(I)

with the properties that, for each u e %,

d(g"(u)t) , Gu)(t) < 21 (6)

at almost every t e |, and
ufte 1: lg”(tl)(’i)-g'?“1 min<2".

As a result there will exist for each u e % a measurable mapping
g(u) of I into R™ such that the sequence (g"(u)) converges to
g(u) a.e. in measure and that a subsequence of (g"(u)) converges
to g(u) a.e.in 1. Thus, by (6) we will have that, for each u e x,
g(u)(t) e G(u)(t) at almost every te |.

For the general case of F satisfying the hypothesis

in Theorem 4.3.1 , it can be proved that for each u,

-9 -




G(u) : t -  F(t,u(t)) remains measurable in | ; moreover the

following holds true:

for each e > 0 there exists a closed subset E of |
with p(NE) <e such that the family (F(t,.))ic g is

uniformly equicontinuous.

These facts permit to construct the desired function g by

choosing an invading family of sets E, having the above property

with & = 1/n, and defining g separately on the sets E,_. {\E,

(see [1] for details) . : |

End of the proof of Theorem 4.3.1 . By the above Proposition,

there exists a continuous mapping g : X— L'(l) such that, for
each u e %, g(u)(t) e F(,ut)) at almost every t e |. Let h(u),

for each u e %, be the mapping of | into R" defined by setting

t
hw® = J_ g)s) s

for every t e 1. It is immediately seen that h is a continuous

function mapping %« into itself. Hence, by Schauder's Theorem ,
there exists a point x e K for which x = h(x) , i.e., x({t) = h(x)(t)
at every te | . This implies that x(0) = 0 and Xx'(t) = g(x)(t) e

F(t,x(t)) at almost every te I. |

-2o.




4.4 Multivalued maps_with decomposable values . As we have

shown in section 4.3 , most of the effort in the proof of
Antosiewicz and Cellina has been done in constructing a
continuous selection from the map G . This was accomplished by
"piecing" together several given L' maps . The subsets of L'
which are closed under this operation of "piecing" are said to be
"decomposable” (see Definition 2.1) . The paper by Antosiewicz
and Cellina initiated the problem of whether decomposability
could be used as a substitute for convexity (see [18], [31] ) .
Fryszkowski [14] proved an analogue of Michael's Continuous
Selection Theorem with decomposability instead of convexity,
and Cellina, Colombo and Fondé [9] proved the analogue of
Cellina's Approximate Selection Theorem . These results were
proved essentially under the assumption of compactness of the
domain of the multivalued map under consideration . However,
Bressan and Colombo [5] succeded in eliminating this assumption,
too. Here we state the analogues of Theorems 3.1 and 3.3 in the

case of multivalued maps with decomposable values.

THEOREM 4.4.1. Let X be a separable metric space , T a measure
space with a nonatomic measure u,, and E a Banach space . Let

F be alower semicontinuous multivalued map from X to the
closed decomposable subsets of L'(T,E). Then F has a continuous

selection .

THEOREM 4.4.2. Let X, T, and E be as above, and F bean ¢-

-23.-




upper semicontinuous multivalued map defined on X , taking as

values decomposable subsets of L'(T,E). Then for every € >0

there exists a continuous map fe 1 X — LYT,E) such that

Graph (f. ) = B( Graph(F), &)

Without entering the technical details in the proofs
of Theorems 4.4.1 and 4.4.2 above, we will only give here the
proof of Theorem 4.4.2 in the simplified case when the metric

space X is supposed to be compact (see [9] ) .

Proof .  We show that Theorem 4.4.2 is true when X is compact.
Fix € > 0 ; by the upper semicontinuity of F , for each s e S
thereisa  §(s) > 0 suchthat F (s") = B (F(s), ¢/3) whenever s'

e Bf(s, 8(s)). We can choose §(s) <¢/3. Since X is compact and

{B(s, 6(s)/2): s e X} is an open covering of X , there exist Sq seees

S, € X such that, setting 5; = 8(sj)/2 , the balls B (s &)
(i=1,..., n) form a finite subcovering of X . Let {pj 1 i=1,..,n} be a
continuous partition of unity subordinate to it, and choose
arbitrarily  u; € F(s;) (i=1,...,n). We shall construct f.(s) as an

appropriate decomposition of these maps.

Let us choose vij € F(sj) (i,j = 1,...,n) such that
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a1 (ups vi) = I3 100 - vor ang

< inf J‘T uj(t) - v(t)] dug +e/3 = dq (ui,F(Sj)) + &/3

and define the set functions

wiE =l O -viOldn izt

for every measurable subset E of T . It is easy to see that for
each i,j e {1,..,n}, Hij is a finite non atomic measure on T .

Following an idea of Fryszkowski [14] we apply here a

consequence of Lyapunov's theorem (cf.[16]) : there exists a

family  (Ag)q e [0,1] of measurable subsets of T such that:
Py) Ag < Ag if o<p
P2) mjj (Ag) = o ;i (T) (ij = 1,...n)
Pg) po (Ay) = 0o py (D)

Set a® =0, oi(s) = p{(s)+...+p; (s) and define the approximate

selection as

fe (8) = Z Ui % )\AH( )]

We claim that f. has the required properties. First of all fo is
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continuous. In fact, fix s° ; then

1Te(8) - Te(sMM =] |2 uiix[Agis) \ Agii(s 1= x[Agigso) \ Agit(so)] ||
< Z '[T !ui(t)l'IX[Aai(S) \ A(xH(S)] (t) - X[AOCB(SO)\ Aai-*l(sr:»)] M1 du,

<X IT Uil {lxlAgi(s)l - x[Agisoyl T+ XA (g)] - A Ag-1(s0)] I} g
= Z {J. Aai(S)AA(xi(S°) IUi! duo + j-Aoci'1(S)AAo¢E'1 (s9) [ui] dp.o }

and, by the integrability of up and (P3 ) , the continuity of fe
follows.

It is clear that if F(S) is decomposable then f(8) = F(S).

It remains to verify that fo isan e-approximate selection of F.

For this purpose, fix s e S and let I(s) = {i € {1,...,n}: pi(s) > 0}
and j e I(s) such that 8j = max {§; :ie I(s)}.

Then, for every i< I(s), we have:

s; € B(s;,25))

<%

so that

F(s;) = B(F(Sj), €/3)
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and
u”(T) dq(u;,F( J))+e/3£(2/3)e.

Moreover, since F(sj) is decomposable, we have that

= Vil Agis) AgHi(s)] € Fls)

Finally,

d((s.fe(6) . (sp0)) < disis) + || 2 ;- vip) MAGis) A1)l
+ 2 1us -vip x[Agis) A (s)] Il
<efB+ 2 ni(Agis)Agi(s))
3 + 2o ()] w(T)

<e/3 + (2/3)e 2, py(s)

=g
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4.5 . Further existence resulis . First of all we will show how

Theorem 4.4.1 can be applied in order to prove the following

result by Bressan [4] and Lojasiewicz [25]

THEOREM 4.51 . Let F (.,.) be a lower semicontinuous
multivalued map defined on a compact subset K of RN+1 , taking
compact values in a bounded region of R" . Then there exists a

solution to the problem

X() e Fitx(t) , x(©0)=xg - (1)

In order to prove Theorem 4.5.1 , we need the

following

Proposition . The map G , defined on the set of absolutely

continuous functions by
G(u)={ve L':v(t)e F(tu@t) for a.e. t}
is lower semicontinuous .

Proof . Let M be such that F(t,x) = B[0,M] for every t,x, and
let K=1xB[0,b] . Fix ug(.) andlet e >0 be given . According to

classical results of Scorza - Dragoni type (see [4] , [26] ), we
can find a compact set Ec| anda p >0 suchthat p(0\E) < e/2M

and
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u()-ug()l<p = Ftugt) <= BlF(tu(t) , e/2T]

for every t € E . Take now any fo € G(uy) and any u(.) with
[u(.)-ug ()l < p. What we have to show is that there exists an f e
G(u) such that |f - f5]; <e .In order to do this, define the

following multivalued map:

H(t) = F(t,u®) n BI{f, ()} , &/2T] if te E

= F(t,u() if te \E

Since the map H is measurable, we can select a measurable

selection f:1 — R" ; clearly, fe ‘G(u) and moreover

-toly = el -foiat + J g e - foon ot

< T-e2T + 2M - e¢/2M = ¢

Proof of Theorem 4.5.1 . The proposition above together with

Theorem 4.4.1 permits us to define a continuous function g from

the space of absolutely continuous functions to L'(1,R") such that
gu)(t) e F(tu)
for every u(.) and almost every t e |. Define now the map h
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If we define X to be the set of absolutely continuous functions u

such that u(0) = x5 and |ju'(t)]| < M at almost every t in |, then

it is easily seen that % is a nonempty, compact and convex
subset of the set of continuous functions, and that h s a
continuous function mapping K into itself . By Schauder's
Theorem, h has a fixed point x(.)*, which is the solution we are

looking for . , &

We are now going to present some recent results
which generalize the theorem presented in section 4.4  with
Caratheodory type conditions on the map F . Himmelberg and Van
Vleck  [20] and Lojasiewicz [26] succeded in weakening
considerably condition (ili) in Theorem 4.3.1 (which vyields in
particular the compactness of the values of F) , by asking F to

be weakly integrably bounded, i.e.

DEFINITION . a map F is said to be weakly integrably bounded ift

there exists m e L'(I) such that for each t and x, F(t,x)
B(O,m(t)) = @ ; we will say that F is locally weakly integrably
bounded iff for each p > 0, F is weakly integrably bounded for |x|

< p by a function m_ e L'() .

P
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Condition (ii) is also generalized (see also Olech
[29]) in order to include classical results obtained for convex

valued maps F . Here are their main resulis:

THEOREM 452 . ([20]). Assume F safisfies the following

conditions:
(i F is measurable in t for each x;
(i) for each t, F(t,.) has closed graph and, at each
point x for which F(t,x) is not convex, F(t,.)
is lower semicontinuous ;
(iii"y F is weakly integrably bounded [locally weakly

integrably bounded)].

Then there exists a global [local] solution to

Xty e Ftx({) , x(0) = xq4 - (1)

THEOREM 4.5.3 . ([26]). Assume F satisfies the following

conditions:

(") F is measurable in (t,x) ;
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(ii") for a.e. t, for each point x , either F(t,.) has
closed graph at x and F(t,x) is convex, or
F(t,.) restricted to some neighborhood of x s
lower semicontinuous ;

(iii")y F is locally weakly integrably bounded .

Then (1) has a local solution .

Remark . Comparing conditions (ii') and (ii") above, one can see
that (ii') requires stronger upper semicontinuity  conditions,

while (ii") requires more lower semicontinuity .

We will give here the proof of Theorem 4.5.2 due to
Himmelberg and Van Vleck. The proof will be carried out by
following an “approximate solutions" approach, refining the
previous approaches by Filippov [13] , Kaczynski and Olech [21] ,
and Olech [29].

Proof of Theorem 4.5.2 .In order to reconduct ourselves to a

differential inclusion with an integrably bounded multivalued
map, we will have to consider the following auxiliary

multifunction

F(t,x) = (F(tX) ~B[0,2m)]) L 9B[0,2m(t)]
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If F satisfies the hypotheses of Theorem 4.5.2, it can be shown
that the map F , besides Dbeing integrably bounded with compact
values, has the properties that for each t, E(t,.) has closed graph
and lé(t,.) is lower semicontinuous whenever F(i,.) is lower
semicontinuous.

For technical reasons to be explained later, we also

need to introduce the map

Fix) = Mc U Ft,2)
ErD z2eZ
1Z-X[< &

where Z is an appropriate countable dense subset of R". It can

be shown (see [20]) that F* has the following properties:

(@) F*(tx) < F(tx) for each tx :

(b) (F*)*(t,x) = F*(t,x) for each t,x ;

(c) F* is weakly integrably bounded by m ;

(d) F* is integrably bounded by 2m ;

(e) F* satisfies (i) ;

(f) F* has closed graph;

(g) F*(t,.) is lower semicontinuous at every x for

which F(t,x) is not convex .

We will now introduce an appropriate modulus of

continuity. Let M = Jrl 2m(t) dt . Let H*(t) be the set of values
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x at which F*(t,.) is continuous ; for s > 0 set
K*(t,8) = {x € B[0,2M] : B(x,2s) < H*(t)}
Define the functions o* and n* as follows:
a*(t,r,x) = sup {h(F*(t,x),F*ty)) 1y € R", [x-y| < 1}

n*(tr,s) = sup {a*(t,r,x) : x e K*(t,8)} if K*t,s)=@

=0 otherwise,

where r >0, s > 0 are given.

We will not prove here the measurability of the
function w*(,r,s) . This is a consequence of property (b) of the
map F*, and this is the reason why we have to use the auxiliary
map F* . The proof of this fact is due to Olech [30] and the
details can be found in [20] .

As in the proof of Theorem 4.4.1 due to Kaczynski and
Olech, we are going to construct an L'-compact family of
functions which will be used for the definition of the derivatives

of our approximate solutions.

Fix a sequence (s;) that decreases to zero. Then i

is possible to choose a sequence (r;) , also decreasing to zero,

with the following properties:
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r1s1 and ri+1<ri/2 for i=12,.. .

f [En trs]dt<f|mtdt

W(E) =p(lt :n*(tr,s) > my2h) < 172 for i=12,. .

Let A; be a finite r;, 4/2 net for B[0,2M] .For
ay,--,8, suchthat a;e A; (i=1,.,n) and |a-a_4/<r (i=1,..

n) , choose an integrable function u@q,....ap)(-) 11— R satisfying

u(aT,...,an)(t) € F*(t,an) NnBO,(d+12+ .. + 1/2”'1) m(t)] (7)
and, for n> 1,

U@y,.-ap)t) - uf@y,...an.1)O] < ety q,a0.1) (8)

for te (\Ep.q)nit:a,.qe Ks,q)}

In order to do this, set, for any aq € Ay, ufaq)(.) to be a
measurable selector for the measurable multifunction F*(,aq) 0
B[O,m(.)] , which is nonempty by (c) above . Once u(@q,...,an.1)()

has been defined, taking values in F*( n-1), and a, e A, with
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lan - an 11 < rp, we define u(aq,...,an)(.) as follows. For te
(NEp_q) N {tra,y e K, Sp-1)} , choose a measurable function
u*(.) such that

u*(t) e F*(t,an)
and

Ju*(t) - u@q,....,ap) (] < o (trp_1,85.1)

This can be done by choosing a measurable selection from the
measurable multivalued map

F*(.ap) O Blu@q,-8n-1)() » €l y-1,301)]

which has nonempty values since lan.1 - apl S 1y < rp.q implies
h(F"‘(t,an,1) , F*(t,an)) < oc*(t,rn_1,an_1) and since

U(a1,...,an_1)(t) € F*(t,an_1) .

One also has u*(t) e B[O, (1 + 1/2 + ... + 12" ym@)]  since

u(aq,..,an.1)() e B[O, (1 + 12 + ... + ‘!/2”'2)m("t)] and

N (trn.q.8p.1) < m2"T (for te E,_q).

Finally, set

u(@q,...an)t) = U if te (NEp.q) A {t:ayqe Ks, 1)}

= () elsewhere |,
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where U(.) is taken to be a measurable selection from F*(t.a,) n
B[O,m(t)] . Then u(@y,...,ay)(.) satisfies the required properties

(7) and (8) .  Moreover u(@y,....ap)(t) € F(ta,) since F'(ta,)c

n

s

E(t,an) , by property (a) , and F(t.a,) » B[O,Am(t)] = F(tag) n

BIO,Am()] for any A with 0<A <2,

Let us now define the partition of our interval 1. Let

h; > 0 be such that 1/h;, hi/h; .1 are integers and

th;
jt 2m(t) dt < ri+1/4 .

The interval | is subdivided into subintervals of the form

[khy, (k+1)h] .

We are going to define approximate solutions Xp(-)

of (1) ; the derivatives x',(.) will be appropriately choosen
among the maps we have constructed above.

Let us construct sequences of maps ai”‘(.) - Ay
constant on the intervals [kh;,(k+1)h;) (k = 0,...,1/h-1) , and of

absolutely continuous maps x,(.) in such a way that
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and

p(khy) - g k)l <1472, (k=0,...,1/hi-1)

for i=1,..,n.
We will use an induction argument to define the above functions

on the intervals [khy,(k+1)h,) (k = 0,...,1/h,-1) . On the first
interval [0,h,) we set ai”(t) = @; , where aq,...,a, are choosen so

that [a; - x,| <1, 4/2 . Moreover we define

t
xn(t)=Jo u(@;"(s),...a,s))(s)ds  (te [O,h,]) .

We have

t
[Xp (1) - ai”(t)l = |[XpM) - g < Uo u(a1“(s),...,an”(s))(s) dssl + Tjq/2

hn
S'[o 2m(s) ds + 1, q/2 Sy 44+ q/2 <15,

for te [0O,hy] and i=1,.,n .
Now assume by induction that x, is defined on

[0,kh,] and the corresponding ai” 's are defined at least on
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[0,kh,) . Let us first see how to define the no

ai S on

[khn,(k+1)hn) . There exists an integer | = j(k) such that khp/h;

is an integer for i

Il

j,--.n and is not an integer for i = 1,...,j-1 .

For i=1,.,-1, set m(i) to be an integer such that

m(i)h; < khy < (m(i)+1)h; , and put a"(t) = & (m(i)h;) for te
[khp,(k+1)h) .

: - X

For i =j,..,n, choose gj € Ai so that laE

A (kho)l <

n/t =
ri.1/2 and set a"(t) = a; for te [kh,(k+1)h,) .

The functions ai”(.) defined above are clearly constant on the

intervals  [kh;, (k+1)h;) .

Define finally x, as

t
Xp(t) = I o u(aq (s),....a,"(s)(s) ds

Now we check that the above properties indeed hold true for
ai”(.) and xn(.) insuch a way defined. On [khp,(k+1)h,) we have:

If i>j, then

X (1) - & (O] < xp(0) - Xp(kh)l + g (khy) - & (1)]

< rn+1/4 + r|+1/2 < ri

-39-




If i<j,then

Xn(®) - &M OF < Ixp () - xq (M| + [xp(m(Dhy) - 8" ()]

< I'H_1/4 + r|+1/2 < Ti .

So (9) holds true; the remaining properties can be proved by a

similar procedure.
The constructed sequence (xn) is a sequence of

approximate solutions, i.e.
Xn() = u(as"(W),...an"O)1) € Fta,"®) = F(t, x () - en(®)

where e (t) = x,(t) - an”(t) tends uniformly to zeroas n — .

Now it remains to show that the sequence (Xp ()

constructed above possesses a subsequence uniformly converging

to a certain x4(.) and that x, is indeed a solution to problem (1) .
Since  x' () is contained in B[0,2m(t)] , it is in fact true that
there exists a subsequence - again denoted by (xn) - uniformly
converging to X, , and such that x', — X' weakly in L1(!) . Since

X'n() e F(ta,"(t), we have, by standard arguments,
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Xolt)e coF(t,x,(1) ae.inl.

Let G(t) = {x : F(t,x) is not convex} , T = {t : Xo(t) € G(t)} . We want
to show that X'g(t) € F(t,x,(t)) holds for almost all t e T, since

it clearly holds already a.e. on INT . Set Tg*= {t @ B(xg(t),8) <

H*(1)} . One can prove that G(f) is an open set contained in H*(t)

and hence S)UO Tg"2 T . Therefore we need only show that the
b4
sequence (x'y) is L'-compact on Tg", for each fixed s . In order

to do this we will prove, for any ¢ > 0, the existence of an e-net

for the set {x',(.)} .

Fix € > 0. There exists a & > 0 such that m(E) < &

implies f 2m(t) dt < e/4 . Choose an integer m such that

1/2M < §/2 J.Z n* tr,,s)dt<e/2 and r; < s/4, S; < s/4 for

iLzm

iz2m. For te () [(NE)n {t:a"*Pw) e K*(t,s)}l , we have

l—,m

wrp-q

|u(a1,...,an+p)(t) - u(@y,...,an) M)l «-’2 ot (tr,a;)
and , since by construction we have

Xt = U@y "P),an PO |
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whpel

Xoplt) - u@y "P0)....an PO < 2ot P()

By (9) , Ixp(t) - ai”(t)] <1, and hence there is an N such that if

nzN,izn,andp =0, then

lai™ P () - xo M < 1™ *P(t) - Xnapl + Xnp(t) - X5 M)

Sri+s/4<s/2.

(N can be chosen in order to be greater than m). Hence we have

B(a;""P(1),25)) = Ba"*P(1).5/2) = Blxy(t)hs) = HY) if te Ty

and n2N,i2n,p20.Thus, a"*P(t) e K*(t,s) and so

n¥p-i

X'nep® - ul@g"P),..a, " PO)W) < E n* (1,8

ntp-{
for te () (NE)nTg*. So, if we set (U E)nTg*, we
LEh , Lxm

obtain
lX'n+p(") - u(aq n+p(t),...,ann“"p(t))(mu(.'::)

LEMm

< e Boap® - u@y P ),.a, PO ot + Ji el n*trsplat

<2 IE 2m(t) dt + &/2

<€ .
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Remember now that the set {u(ay"*P(),...a,"P())() 1p=01,.} ,
n fixed, is finite. Hence the above inequalities tell us we have

found the finite e-net we were looking for . The set {Xp() :n2z1}
is therefore L'-compact in L'(Tg*) .

We can conclude that (X'n) converges strongly in

L1(TS*) and pointwsely almost everywhere to X'5- By the facts
that |x,() - a,"() - 0 and x,(t) € F(ta,"@) , recalling that

F(t,.) has closed graph, we can conclude that X'g{l) € F(t,xg(1))

a.e. on Tg" Since T< U Tg*, the proof is complete . [
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5. LOWER SEMICONTINUOUS PERTURBATIONS OF MAXIMAL MONOTONE

DIFFERENTIAL INCLUSIONS

5.1.Introduction.

In [0], Cellina and Marchi proved an existence result for

differential inclusions of the form
(1) X € - Ax + F(t,x) ,

where A 1is a maximal monotone operator and F 1is a continuous
map with compact (not necessarily convex) values which verifies
a sublinear growth condition. The main tool used in their proof

is a continuous selection theorem for the map
(2) x = {u€ LI(I) : u(t) € F(t,x(t)) a.e.}

defined on a compact subset of LI (I, Rﬁ) . This approach goes

back to a paper of Antosiewicz and Cellina [1] , who considered
the special case A = 0 with no convexity assumptions on  the
values of F , The results in [1] were generalized by Bressan

[4] and Lojasiewicz [25] assuming the map F to be:

(a) jointly measurable in (t,x)

(b) lower semicontinuous in X

In this paper we show that (1) still has a solution if A
is a maximal monotone operator and F satisfies only (a) and
(b) above and the same sublinear growth condition. Cur proof
follows the same fixed point argument of [jgl and is based on a
selection theorem of Fryszkowski [14 , which contains the selection
theorems used in {41, [1] and [ 3 . In fact, Fryszkowski's result
permits a general treatment of operators of the type (2). The
main part of this paper consists thus in proving that the operator

(2) satisfies the assumptions of Fryszkowski's theorem.
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5.2. Assumption§ and statement of the main result.

In what follows, A 1is a maximal monotone operator in m@,
i.e. a set-valued map from a subset D(A) of R' into the subsets

of R , with the following two properties:

(Al) Jplel)xZeD(A) ,¥Vi€AXi,i:1,2,

A%
(e
-

<V1-V2,X1"X2>

(A2) the range of I + A is all of R"

It is known that D(A) 1is convex, and that Ax is convex closed
for any x &€ D(A) (see lg] )
We will consider a map F from [a,+» ) x D(A) into the compact

subsets of R with the following properties:

(F1) F(.,.) is Hod -measurable, i.e. for any closed set
n
CelR the set

F Q) :={ (t,x) € [a,+» ) x D(A) : F(t,x) 1 C= ¢}

belongs to the o-algebra generated by the sets of the form L x B,
where L 1s a Lebesgue measurable subset of [a,+» ) and B is

a Borel subset of D(A) ;

(F2) for each t 2 a , F(t,.) is lower semicontinuous, i.e.

for any closed set C c R"  the set
F(t,.)7(C) := {xe D(A): F(t,x) ¢ C }
is closed in Rp ;

(F3) there exist two non-negative locally integrable functions a , b :

- :La,+» ) - R such that, for every (t,x) € [a,+ «) x D(A),

[F(t,x)] := swf{ |y| : ye F(t,x)} < a(t) |x|+ b(t)
In the present paper we study the existence of solutions to
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the initial value problem
(P) X € - Ax + F(t,%) , x(a) = x" e D(A)

By a solution of (P) we mean a function x € C ( [a,+») , mﬁ)
which is absolutely continuous on every compact subset of (a,+w)
and is such that x(a) = x’ and x(t) € D(A) for a.e. t > a and,

for some measurable selection f(.) from F(.,x(.)) ,

(Pf) X € - Ax + f(t) for a.e. t=a

(see [10] and (2] ).

Our main result is the following:

THEOREM 5.2.1 If A is a maximal monotone operator and (Fl) - (F3)
hold, then problem (P) has a solution for any x” e D(A)

5.3.Some known results

In this section we state some known facts which will be used in
the following. The first lemma illustrates the properties of a
maximal monotone differential inclusion. For any compact interval I

in [a,+x) , we denote by l-! i1 the usual norm in Ll(I) 1=
Ll(I, Rp) , and we set Lioc([a,+mﬂ) = LY

1 .
1OC(Fa,+aﬂ, R} (@

1]

1 or

i = o),

LEMMA 5.3.1. ([ 2 ,Thm 1.2 ]) For any f € Lioc(fa,+aﬂ) and any

initial value x"€ D(A) there exists a unique solution u,. to

f
(Pf) . For every t 2 a , ‘
lug(t) - u (0] = j; [£(s) - g(s) ] ds
and, given any interval I :=T[ T , T + T] , there exists a constant
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depending only on A such that

|, 11,1 < CT(1+T+ |fll,I)-( 1+ quloo’I) AMOIE

As a straightforward consequence of Lemma 3.1 we have that the

map i Ly (Ta,+=)) ~ 11 ([a,+))

f = uf

is well - defined and continuous. The next lemma gives a kind of
a priori estimate on the solutions of (P
with £ =0 .

f) . We denote by u (-)
0

the solution of (Pf)

LEMMA 5.3.2 ([10o, Lemma 2.1]) . Set
t t
P(t) = /a (aCS)luo (s)| + b(S))'eXp(]S a(1)dl)ds

Fix a function w : [a,+») » D(A) and let f£(-) be a measurable

selection from F(-,w(")) . The following holds:

if  |w(t) - uo(t)[ < Y(t) then also |uf(t) - ()] <)

We now need the following

DEFINITION . A subset H of L*(I) is called decomposable if,

whenever u, v € H and E 1is a measurable set in I , we have

UXgt VXp\ g € H . By Dec L'(I) we denote the set of all closed

and decomposable subsets of L!(I)

The following proposition will play a central role in the proof

of our result.

PROPOSITION 5-3.3 (Fryszkowski) . Let S be a compact metric space

and G : S > Dec L'(I) be a lower semicontinuous multivalued map .

Then there exists g : S - L'(I) , a continuous selection from G.
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For the proof, see [14 and [5, Thm 3] .
In the following h*(A,B) will denote the separation of a set

A from a set B, i.e.

h*(A,B) := sup d(a,B)
o E A

5.4. Proof of the main result.

In order to apply the selection theorem of Fryszkowski, we need

the following result .

PROPOSITION 5.4.1. Let F be as in Section 2 , I be a compact

interval in [a,+») and let K be a compact subset of L!(I),

bounded in Lm(I) . Then the operator

G : K+ Dec LY(D)
x+ {uel'(I) : u(t) eF(t,x(t)) for a.e. tel}

is well - defined and lower semicontinuous.

Proof. It is easily seen that G(x ) = G(x ) whenever x (:) = x ()
a. e. . Moreover G(x) clearly isldecompozable, for any %c€K . ’

In order to prove the lower semjcontinuity, let C be a closed subset
of LY(I) and let (xn) be a sequence in K converging in L!(I)

to some X in K and such that G(xn) c C . We just need to prove

0
that G(xo) c C or, since C 1is closed, that
(3) h*(G(xo) , G(xn)) >0 as n > o .

Let Qn (resp. X ) be Borel functions such that in =X, a.e. (resp.
0

X =X a.e.) . We begin by proving the following

fh*(F(t,io(t)),F(t,a‘cn(t))) dt >~ 0
I

as n - o

Proof of the €laim . Set




h (8 = h*(F(e,% (£) , F(e,% (0)) , n_ = _//£n<t) dt

S
First of all we remark that the maps

t»F&&J@) , e F(GX ()

are measurable. Next we show that hn(-) is measurable. By Theorem
3.5 ¢e) in 19, the map

(t,2) = d(z,F(t,x (£)))

is Carath&odory, and by Theorem 6.5 in the same paper the multivalued

map given by
9(t) = {d(z,Fee,x (1)) : z € F(t,x (£)))

is weakly measurable. Hence Theorem 6.6 again in [1d gives the
measurability of hn(-)

Now we will prove that every subsequence (nn } of (nn) has
a subsequence converging to 0 . In fact (xn (-)% contains a sub-
sequence (still denoted (Xn(']) ) converggng to xc(-) a.e,
Then the lower semicontinuity of F(t,-) together with the fact that
the values of F are compact imply that hn (t) >0 for a.e. tel .

Moreover, by (F3) , *

hy (0 h*(F(t,% (1)) , F(t,x (8)))

K k
h*(F(t,x (£)) , {01 + h*({0} , F(t,% (£)))
0 nk

IA

A

!F(t,io(t))l+ IF(t,an(t))i

IN

a(){ X (0] + |x (0]} + 2b(D)
0 nk

IN

2 Ma(t) + b()}

for a suitable constant M . The Lebesgue dominated convergence

theorem gives

n = ,//h (t) dt =+ 0 | as k » o
My T Mk

and this proves the glaim.
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Finally, in order to prove (3), fix uoé G(x ) and consider
0

the multivalued function
Fn Tote B(ug(t) s hn(t) + 1/n) nF (t,xn(t)) s

which clearly has closed nonempty values. To show that Tn is

measurable, it 1is enough to prove the measurability of the map

V. t+» ﬁ(uo{t) s hn(t) + 1/n)
(see 19, Thm. 4.11 ). But ¥ is the composition of the measurable
map t# (u (t) , hn(t) + 1/n) with the continuous map

_ 0

(x,r)¥>» B(x,r) , hence is measurable. Therefore we can choose a
L' selection u from T . Clearly u_ € G(x_) and we have

n n n n

lu - uoll,I < i (h (t) + 1/n) dt

By the above claim, the r.h.s. of this inequality converges to 0

as n >~ , uwiformly in u, . Hence (3) 1is proved.

Proof of Theorem 5.2.1. We will follow essentially the proof of Thm.

2.2 in [14 . Define K as the closure in Lioéfa,+w)) of the set

of those absolutely continuous functions v having the following

properties:
(1)  v(a) = x" and v(t) € D(A) Tt 2 a) ;
(i1)  |v(t) - uo(t)' < P (t) (t 2 a) ;

(iii) for every interval I =[ T, T + TI (t =2 a)

[y

v, < CE(1+ T+ N (1+MD) + ()71 ,

1,17
where
M(I) = exp( ./ a(t)de ) f(a(t)lu ]+ be)de + ful,
I I ‘ 0
N(I) = M(I) J/fa(t)dt + d//;(t)dt ,
I I
T T
r(r) = fu @] + 2/3 (a(t) fu (&) ] + b(t)) em(% a(s)ds)dt
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It is easily seen (as in [jgl ) that K is nonempty, convex,
. 1 . oo o
compact in Lloc([a,+uﬂ) and bounded in Lloc([a,+ ))

Set, for n = 1,2,..., I :=fa,a+n], K := {Vlln: VEK} c Ll(In)

We will construct recursively a sequence of continuous maps g, Kn +—L1(In)
verifying, for each x eKn s

(4) gn(x)(t) € F(t,x(t)) for a.e. tel ,

!

(5) if n>1, gn(x)(t) = gn_l(x)(t] for a.e. t G‘In—l

Define the operator G  in the same way as G with K in place
1 1

of K, and, for n > 1 , assuming that g has already been defined,

n-1
define the operator

G : K_ =+ Dec LY(I)
n n I

x+ {u LI(IH) : u(t) € F(t,x(t)) for a.e. tel and

u(t) = gn_l(x)(t) for a.e. t & In-l}

By Proposition 5.4.1 and Proposition 5.3.3 , the operator G has

a continuous selection g1 . Therefore we can consider thé operator

G2 , and it is not difficult to see , in view of Proposition 5.4.1 ,

that it is lower semicontinuous. Applying again Proposition 5.3.3 ,

we see that G  admits a continuous selection gz which by construction
satisfies (4) ;nd (5) . Similarly, for any n > 2 , we obtain g,

from 8.1 satisfying (4) and (5) . Now we define

i 1 o
g : K~ Lloc([a,+ )

by setting g(x)]I = gn(x) , n=1,2,...
Using (4) and (5) ? it is easy to see that g is well-defined and

continuous and satisfies

ﬁ
v
Y

g(x)(t) € F(t,x(t)) for a.e.

To conclude the proof we define, as in [1gl,
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s : K *‘L;OC([a,+w)]
x > i(g(x))

The map s 1is continuous and, by Lemma 532  s(K) c K
Since K is compact and convex, the theorem of Schauder - Tichonov

yields a fixed point of s , which is a solution to (P)
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