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Abstract

This thesis deals with the study of the large scale structure in the nonlinear regime.

In particular, it focuses on two main topics: the impact of massive neutrinos on the

cosmic web and the modeling of void profiles and void bias.

Neutrinos are known to be massive particles and thus to participate to the matter

content of the Universe and to its evolution. In this era of precision cosmology, the

analysis of observational datasets must account for neutrinos, both because cosmology

can put strong constraints on the sum of their masses, and because ignoring them can

bias the estimation of other cosmological parameters. Having this in mind, we provide a

theoretical model to describe the nonlinear matter power spectrum in massive neutrino

cosmologies. This model is obtained by generalizing the already existing halo model, to

account for the presence of massive neutrinos. Then, we also discuss the clustering of

galaxies in the same framework and provide a comparison with N-body simulations.

A promising environment where to study neutrinos is represented by cosmic voids.

We perform a numerical analysis of statistical properties of voids, identified both in

ΛCDM and massive neutrino cosmologies. The aim of this project is to understand

how neutrinos change the void properties and which of them are more sensitive to their

presence. This is the starting point for thinking about constraining neutrino masses

using cosmic voids.

Voids are very interesting objects, that have been studied much less than halos and

clusters. We present here a model for describing the void density profile. In particular,

we present different models describing the abundance and spatial distribution of both

halos and voids in the Lagrangian field, and explain how they can be applied to compute

density profiles. Then, we evolve these Lagrangian profiles to the Eulerian space, where

actual measurements are performed. We discuss the evolution described by the spherical

model and the Zel’dovich approximations. Since the density profile around tracers is

the cross-correlation between the tracers and the matter field, this quantity is sensitive

to the bias of tracers with respect to the matter field. We discuss the void linear bias

in Lagrangian and Eulerian space, and how it differs from the linear bias of halos.
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Foreword

N-body simulations show that the spatial distribution of matter in the Universe

resembles a network, the so called cosmic web. The knots of this network represent

highly dense regions, called halos, which are the main hosts of the galaxies we observe.

Halos are connected by filaments, i.e. relatively thin and low density regions; between

knots and filaments, voids are the less dense portions of the cosmic web. Nowadays, we

have a good understanding of the evolution of the cosmological structures at the linear

perturbation level, but we lack a description at the fully nonlinear level. This regime

needs to be understood in order to interpret the observations of sky surveys.

In the Standard Cosmological Model, the majority of the matter content of the

Universe is in the form of Cold Dark Matter (CDM), which forms the cosmic web

together with baryons. However, a third species of massive particle is also known

to fill the Universe: the neutrinos. The standard model of particle physics describe

neutrinos as fermions of spin 1/2, neutral and massless. However, neutrino oscillation

experiments have pointed out that they are massive (see [42,72] for review), giving one

of the clearest evidences pointing towards the existence of physics beyond the standard

model. In this era of precision cosmology, the analysis of observational datasets must

account for neutrinos, both because cosmology can put strong constraints on the sum

of their masses, and because ignoring them can bias the estimation of other parameters.

This thesis is dedicated to the study of structures in the fully nonlinear regime,

also in the presence of massive neutrinos.

In the first part we introduce all the main results achieved in the literature that are

useful to understand the original work presented later. In particular, in Chapter 1 we

review the statistical description of a random Gaussian field - which is how the matter

density field in the early Universe is usually described - and the models describing the

statistics of extrema of the density field. In Chapter 2 we focus on the minima of the

matter field, i.e. the cosmic voids. A review of massive neutrinos and their impact at

the linear level is presented in Chapter 3, together with an explanation of numerical

tools to describe their nonlinear regime. Chapter 4 presents the N-body simulations

and the void finder used in this thesis.

In Part II we present a theoretical model to quantify the effects of massive neutrinos

on the matter power spectrum. Although N-body simulations allow to model these

effects, they are computationally expensive and do not directly provide physical insight.

A physically motivated model, the halo model, has been developed in the framework

of the ΛCDM paradigm (where neutrinos are massless particles) in order to describe

the clustering of matter at the nonlinear level. In Chapter 5 we review this model

and in Chapter 6 we extend it to account for the presence of massive neutrinos, as
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follows. Massive neutrinos have large, although non-relativistic, thermal velocities

at low redshift. These large thermal velocities prevent their clustering within CDM

halos. However, neutrinos from the low-velocity tail of the momentum distribution

can cluster within the halo potential wells. Thus, we model the neutrino field as the

sum of two components: a smoothed linear part and a clustered non-linear one. Two

other important ingredients of the halo model are the halo mass function and bias,

which have to be computed as a function of the linear CDM power spectrum only (not

CDM+neutrinos) in order for the former to be universal and for the latter to be scale

independent on large scale (as pointed out by [23]). The halo model can describe the

clustering of galaxy as well. In Chapter 7 we present its extension to massive neutrino

cosmologies, assuming an Halo Occupation Distribution (HOD) framework.

Part III shows how the presence of massive neutrinos modifies the statistical

properties of cosmological voids. Voids, as elements of the cosmic web, can in principle

be used as a complementary probe to halos for constraining neutrino masses. It is

therefore important to understand how massive neutrinos impact their properties. Here,

we perform a comprehensive numerical study of the statistical properties of voids,

identified both in the matter and galaxy distributions, looking at relative differences

arising in different cosmologies due to the presence of massive neutrinos. We analyze

several independent N-body simulations with cold dark matter and neutrino particles

in cosmologies with different values for the neutrino masses. Galaxies were modeled by

populating the dark matter halos in simulations via an HOD. The properties considered

are: void abundance, void density and velocity profiles, and void correlation function.

Part IV focuses on voids in ΛCDM cosmology (where neutrinos are massless) and

presents a model to describe the void density profiles. In the past few years many

studies addressed the phenomenology of void profiles from N-body simulations and real

galaxy observations, but a theoretical understanding of these findings is still missing

and highly needed. Here, we develop a theoretical description for the void density

profiles as the cross-correlation between the voids and the matter field. The model is

built on excursion set arguments in the initial Lagrangian space, as shown in Chapter

10. A description of their nonlinear evolution from the Lagrangian to the Eulerian

space, together with their time evolution in the latter, are presented in Chapter 11.

Having a model for the void profiles is useful for many purposes, e.g. the study and

test of modified theories of gravity since voids are under-dense regions where some

screening mechanisms are expected not to work.
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Chapter 1

Statistics of extrema

In the standard cosmological paradigm, the structures that we see today are thought to

form from the evolution of primordial matter density perturbations, via gravitational

instability. The early Universe was almost homogeneous with some small amplitude

density fluctuations set by inflation: a short but violent period in which the universe

expanded so fast that quantum fluctuations were stretched outside the horizon scale,

becoming classical perturbations of the density field. We will assume them to be

Gaussian, even if many inflationary models predict the presence of primordial non-

gaussianities. As the universe evolves, perturbations grow under the influence of gravity,

which introduces some late non-gaussianities. The growth is linear until the amplitude of

perturbations is small, then the evolution becomes nonlinear and leads to the formation

of the complex structures that we see today.

In this chapter we describe the statistical properties of the linear matter pertur-

bations at early times and explain how the linear regime can be used to predict fully

nonlinear quantities at later times, in a statistical sense. First, we review the important

statistical quantities for describing the matter density field and present its evolution

using linear theory and the spherical collapse model. Then we will discuss the theory

for predicting the abundance of structures in the universe, i.e. the excursion set theory

and the excursion set of peaks. In this last part we will focus on the maxima extrema

of the density field, the overdensities, since these models have been developed for

describing the statistics of halos, rather then voids. However, they can be generalized

to underdensities as well. We discuss this case in Chapter 2 and Part IV.

Notice that here we consider the cold dark matter as the only matter component

in the Universe. We discuss the presence of neutrinos in Chapter 3.

1.1 Linear density field and evolved objects

1.1.1 The initial Gaussian random field

The matter density fluctuations can be described in terms of the density contrast,

δ(~x) ≡ ρ(~x)

ρ̄
− 1 , (1.1)

where ρ(~x) is the matter density at the comoving position ~x and ρ̄ = 〈ρ(~x)〉 is the mean

background density. The average 〈...〉 is taken over all space. The real space density

5



6 CHAPTER 1. STATISTICS OF EXTREMA

contrast can be written as a sum over Fourier modes,

δ(~x) =

∫
d3k

(2π)3
δ(~k) e−i

~k·~x , (1.2)

with inverse Fourier transform,

δ(~k) =

∫
d3x δ(~x) ei

~k·~x . (1.3)

The primordial density contrast is a statistically homogeneous and isotropic Gaus-

sian random field with mean value equal to zero, by definition. The two point correlation

function, 〈δ(~x1)δ(~x2)〉 = ξ(~x1, ~x2), is then invariant under translations and rotations,

which means that it is only function of the separation distance r = |~x1 − ~x2| between

the two points where it is evaluated. It has the form

ξ(r) =

∫
d3k

(2π)3
P (k) e−i

~k·~x =

∫
k3

2π2
P (k)

sin(kr)

kr
d ln k , (1.4)

where we used the definition for the power spectrum P (k),

〈δ(~k1)δ(~k2)〉 ≡ (2π)3δD(~k1 + ~k2)P (k1) . (1.5)

The power spectrum has the dimension of a volume and it is often convenient to use

its dimensionless form,

∆2(k) ≡ k3P (k)

2π2
. (1.6)

In the standard scenario overdense patches in the initial density field are expected

to evolve into galaxies and clusters, while underdense regions should give rise to voids.

The way to describe patches is to smooth the initial density field at their characteristic

scale. Moreover, in N-body simulations and in surveys we observe the density field

averaged at some resolution scale. Therefore, a relevant quantity is the initial density

field δ(~x,R) smoothed by some window function W (R) at scale R,

δ(~x,R) ≡
∫
d3y δ(~y)W (|~y − ~x|, R) , (1.7)

where W (R) = W ′(R)/VR has units of inverse volume, W ′ is a dimensionless window

and VR is its associated volume VR =
∫
d3xW ′(x). A convolution in real space become

a product in momentum space, where the smooth density is simply,

δ(~k,R) = W (~k,R)δ(~k) , (1.8)

with W (~k,R) being the Fourier transform of the window function. The window function

can have arbitrary shapes. The ones commonly used in cosmology and adopted in this

thesis are three:

a) Top-hat in real space,

W (r,R) = Θ(1− r/R)
(
4π/3R3

)−1
, (1.9)

W (k,R) =
[
3/t3

]
(sin t− t cos t) , t ≡ kR , (1.10)
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b) Gaussian:

W (r,R) = exp
[
−(r/R)2/2

]√
2πR2 , (1.11)

W (k,R) = exp(−k2R2/2) , (1.12)

c) Sharp k-space:

W (r,R) =
[
3/t3

]
(sin t− t cos t)

(
4π/3R3

)
, t ≡ r/R , (1.13)

W (k,R) = Θ(1− kR) . (1.14)

In real space, the top-hat filter acts averaging the density field inside a sphere of radius

R. In this case, the volume of the filter is well defined and the associated mass is

M = 4πR3ρ̄/3. This is not the case for the sharp-k and the gaussian windows, which

are however used because they are convenient from the analytic point of view. Moreover,

it has been recently shown that halos identified in simulations should be described by a

combinations of gaussian and top-hat windows in the initial conditions (ICs) [25].

The variance of the smoothed field is,

sR0 ≡ σ2(R) = 〈δ(~x,R)2〉 =

∫
d ln k∆2(k)W (kR)2 , (1.15)

from which is clear that ∆2(k) is the contribution to the variance from modes in a

logarithmic interval in wavenumber. At late times, the variance is computed using the

initial power spectrum, evolved to a later time via linear theory. The linear evolution

will be described in the following section.

We can generalize the definition of variance as follows,

sRR
′

j ≡ σ2
j (R,R

′) =

∫
d ln k k2j∆2(k)W (kR)W (kR′) , (1.16)

where the density field has been smoothed at two different scales, R and R′. We will

use these quantities in Part IV.

1.1.2 Linear theory

Let us describe how the initial Gaussian density fluctuations evolve via gravitational

instability, using linear theory.

The evolution of the matter density is described by the Euler equation,

∂(a~v)

∂t
+ (~v · ~∇x)~v = −1

ρ
~∇xP − ~∇xΦ, (1.17)

the continuity equation,
∂ρ

∂t
+ 3Hρ+

1

a
~∇x · (ρ~v) = 0, (1.18)

and the Poisson equation,

∇2
xΦ = 4πGa2(ρ− ρ̄), (1.19)

where Φ is the gravitational potential, P is the pressure, a is the scale factor, H is

the Hubble parameter and ~v(~x, t) = a(t)~̇x(t) is the peculiar velocity (overdots denote

derivatives with respect to t).
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The matter density can be written in terms of the density contrast as in Eq. (1.1).

In the same way the quantities ~v and Φ can be expressed in terms of perturbations

with respect to the background. For simplicity we replace the last quantities with their

perturbation terms. Being in the linear regime means that δ � 1, |v| � 1 and |Φ| � 1.

Then Eqs. (1.17), (1.18) and (1.19) can be linearized as,

∂(~v)

∂t
+H~v = −

~∇xP
ρa
−
~∇xΦ

a
, (1.20)

∂δ

∂t
= −1

a
~∇x · ~v , (1.21)

∇2
xΦ = 4πGa2ρ̄δ , (1.22)

respectively. These relations provide a good description of gravitational instability at

very early times and from them we can obtain a second order differential equation for

the density contrast δ(~x),

∂2δ

∂t2
+ 2H

∂δ

∂t
− 4πGρ̄δ =

∇2
xP

ρ̄a2
. (1.23)

Cold dark matter is a pressureless fluid with initial isentropic perturbations, i.e. it

does not have initial entropy perturbations. In this case Eq. (1.23) reduces to

∂2δ

∂t2
+ 2H

∂δ

∂t
− 4πGρ̄δ = 0 . (1.24)

In a matter-dominated spatially flat Universe the mean density has the behavior

ρ̄ ∼ t−2 [38]. If we demand that the solution take the form δ(~x, t) = D(t)δ(~x), then

Eq.(1.24) admits two linear independent solutions δ(~x, t) = D±(t)δ(~x), where

D+(t) ∝ a(t) ∝ t2/3 (1.25)

D−(t) ∝ a(t)−3/2 ∝ t−1 (1.26)

are the growing and decaying modes, respectively. The final solution will be a su-

perposition of the two. However, at early times all fluctuations were very small and

it is reasonable to assume that at more recent epochs only the growing mode has a

significant amplitude. For a ΛCDM cosmology, the linear growth factor Dz evolves as

Dz ≡ D+(z) =
5

2
ΩmH(z)

∫ ∞

z
dz

1 + z

H(z)3
, (1.27)

where Ωm is the matter density today and H(z) is the Hubble parameter at redshift z.

In general, for isentropic initial perturbations with adiabatic evolution the pressure

variation is ~∇xP = (∂P/∂ρ)~∇xρ = c2
s
~∇xρ, where cs ≡

√
∂P/∂ρ is the adiabatic sound

speed and ~∇xρ = ρ̄ ~∇xδ. Then Eq.(1.23) yields

∂2δ

∂t2
+ 2H

∂δ

∂t
−
[
4πGρ̄+

(cs
a

)2
∇2
x

]
δ = 0. (1.28)

In Fourier space it becomes

δ̈k + 2Hδ̇k + ω2
kδk = 0 , ω2

k ≡
k2c2

s

a2
− 4πGρ̄ . (1.29)
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This equation describes a damped oscillator where the damping is due to the expansion

of the Universe via the Hubble parameter. The condition ω2
k = 0 defines the so-called

Jeans-wavenumber, kJ ,

kJ ≡
a
√

4πGρ̄

cs
. (1.30)

Matter density perturbation with length λ > λJ = 2πa/kJ remain unaffected by

pressure force and continue to grow in accordance with Eq.(1.24). On the other hand,

small scale perturbations, λ < λJ = 2πa/kJ , feel the effects of pressure gradients and

oscillate as acoustic waves with a decreasing amplitude.

1.1.3 Spherical collapse model

Growing modes D+ of the cold dark matter perturbations evolve, increasing their

amplitude, into high density regions and lead to gravitational collapse of matter.

During this process the density contrast becomes δ � 1 and linear theory breaks down.

The simplest description for the evolution of perturbations into collapse objects is

given by the spherical collapse model, which is a nonlinear approximation that involves

extrapolations of linear properties of the density field into the nonlinear regime. The

description of this model is given in the following; the Lagrangian space will be the

frame where small perturbations are evolved using linear theory, while the Eulerian

space will be the one where perturbations have undergone fully nonlinear evolution.

We assume a zero-pressure and collision-less fluid. These assumptions describe

cold dark matter, but do not apply to baryons. Indeed the later stages of collapse for

baryons would be different from that of cold dark matter but, since they constitute

only a small fraction of the total mass, this does not significantly affect the collapse of

cold dark matter.

Since the temperature anistropies of the cosmic microwave background (CMB) are

of the order of 10−5, the matter fluctuations were very small at the time of photon

decoupling and the nonlinear collapse of structures happened during matter or Λ

domination. For simplicity, in this section we consider a flat matter dominated universe,

also called Einstein–de Sitter universe, with Ω = Ωm = 1. A generalization to ΛCDM

cosmology is then possible.

Let us consider a spherical perturbation expanding in the homogeneous and isotropic

background. In particular we consider a patch with initial radius Ri and uniform density

|δi| � 1, i.e. the density of a region smoothed with a top-hat filter at scale Ri. The

mass inside this region is Mi = 4πR3
i ρ̄(1 + δi)/3. The density parameter Ω′ associated

to the patch is different from the one of the background universe, Ω. A patch with

Ω′ > Ω corresponds to an overdensity and it will evolve like a close universe (Ω′ > 1): it

will expand to maximum size, turn around and then collapse. A spherical region with

Ω′ < Ω corresponds to an underdensity and it will mimic an open universe (Ω′ < 1):

it will always expand. Therefore, over and under dense regions in the initial field

are thought to be proto-halos and proto-voids that will evolve into halos and voids,

respectively.

The conservation of energy applied to the considered spherical region guarantees

that

E =
1

2
Ṙ2 − GM

R
= const , (1.31)
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where R and M are the radius and the mass of the region at generic time. Since the

mass is conserved inside the patch, M = Mi always. The equations of motion for the

radius R(t) can be found in a parametric way by integrating Eq.(1.18) and performing

a change of variables,

R = A(1− cos θ) (1.32)

t = B(θ − sin θ)

for E < 0 corresponding to δi > 0, and

R = A(cosh θ − 1) (1.33)

t = B(sinh θ − θ)

for E > 0 corresponding to δi < 0. The parameters A and B are,

A =
GM

2|E| , B =
GM

(2|E|)3/2
. (1.34)

Overdensities

Let us focus on the overdensities. The solution in Eq.(1.32) implies that the sphere

expands from R = 0 at θ = 0, reaches a maximum radius Rta = A at θ = π, turn

around and then it collapses back to R = 0 at θ = 2π. The corresponding times are

tta = πB for the maximum (or turnaround) radius, and tcol = 2πB = 2tta for the

collapse to R = 0. In principle the mass re-expands, actually other physical effects

prevent this. Moreover, at collapse R(tcol) = 0 and the density should be infinite. We

will discuss all of this later.

Using Eq.(1.32), the mean density inside the sphere is given by

ρ(t) =
3M

4πR3
=

3M

4πA3

1

(1− cos θ)3
. (1.35)

In a flat matter dominated Universe the background density reads [38]

ρ̄(t) =
1

6πGt2
=

1

6πGB2

1

(θ − sin θ)2
, (1.36)

where the last expression is obtained using the solution (1.32). Then in Eulerian space

the density contrast (generally nonlinear) inside the sphere is given by

δ =
ρ

ρ̄
− 1 =

9(θ − sin θ)2

2(1− cos θ)3
− 1. (1.37)

It is interesting to investigate the connection of the above equation with linear theory.

Start considering the behavior of δ at small t, which corresponds to small θ. We can

expand in Taylor series sin θ and cos θ, for θ � 1, which corresponds to t� 1. Thus,

the density contrast at t� tta is given by

δ ' 3

20
(6π)2/3

(
t

tta

)2/3

, (1.38)
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which reproduce the growing mode of the linear perturbation theory δ ∝ t2/3. For some

early time ti � tta we have δ = δi given by

δi =
3

20
(6π)2/3

(
ti
tta

)2/3

. (1.39)

From now on, we distinguish between the Eulerian nonlinear overdensity δE and the

Lagrangian overdensity δL, extrapolated at the same time according to linear theory.

By definition, for all t the latter evolves as,

δL(t) = δi

(
t

ti

)2/3

=
3

20
(6π)2/3

(
t

tta

)2/3

. (1.40)

Let us compute the different values of δE and δL at specific times. At the turnaround,

t = tta, the Lagrangian overdensity is

δL(tta) =
3

20
(6π)2/3 = 1.062, (1.41)

while, using Eq.(1.37), the actual nonlinear overdensity is given by

1 + δE(tta) =
9π2

16
= 5.55. (1.42)

At the collapse, t = tcol = 2tta, the Eulerian density is infinite and linear one reads,

δsc ≡ δL(tcol) =
3

20
(12π)2/3 = 1.686 . (1.43)

The quantity δsc is very important since it describes the value for the initial overdensity,

linearly evolved at tcoll, that will form a halo in the Eulerian space. Therefore, it is

assumed to be the threshold scale in the Lagrangian space for the spherical collapse

to happen. Its value is weakly sensitive to the cosmology [62], and Eq.(1.43) can be

consider valid also in ΛCDM.

According to the spherical collapse model, a uniform sphere collapses down to a

point with infinite density before re-expanding, but this is not physically realistic. In

reality, the sphere will contain density inhomogeneities, which will generate random

velocities in the dark matter during the collapse, leading to an equilibrium configuration

in which the velocity dispersion of the dark matter balances its gravity. This dynamical

process is called virialization. We therefore assume that the final dark matter sphere,

the halo, is in dynamical equilibrium and so obeys the virial theorem:

2Kf + Uf = 0. (1.44)

Kf is the final total kinetic energy in random motions which reads Kf = Mσ2
v/2, where

σv is the velocity dispersion, Uf = −(3/5)(GM2/Rvir) is the total gravitational binding

energy and Rvir is the radius of the virialized object. At maximum expansion, the

sphere is at rest, so the kinetic energy vanishes. The total energy at the turnaround is

then Eta = Uta = −3GM2/(5Rta). The total energy of the sphere is conserved during

the collapse since we assumed that the dark matter is collisionless. Thus, the radius

of the virialized object is Rvir = Rta/2 and the final density is 8 times the density
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at turnaround. Virialization can be considered to happen at tvir ' tcol. Then, since

the background density varies as ρ̄ ∝ t−2 in a flat matter-dominated Universe and

tcol = 2tta, the background density at turnaround is 4 times the background density

at virialization. Finally, we obtain that the ratio ∆vir between the viarialized object’s

density and the background density at virialization is

∆vir ≡
ρ(tvir)

ρ̄(tvir)
=

(
ρ(tta)

ρ̄(tta)

)(
ρ(tvir)

ρ(tta)

)(
ρ̄(tta)

ρ̄(tvir)

)
=

9π2

16
× 8× 4 = 18π2. (1.45)

This result is valid for an Einstein–de Sitter universe and extensions to other cosmologies

has been computed (see e.g. [19]). For the ΛCDM model, the same quantity is

∆vir =
18π2 + 82x− 39x2

1 + x
, (1.46)

with x ≡ Ω(z)− 1 and

Ω(z) =
Ωm(1 + z)3

Ωm(1 + z)3 + ΩΛ
, (1.47)

where Ωm is the CDM plus baryons density and ΩΛ is the cosmological constant

density, both evaluated at present time. Consequently, the virial radius Rvir of a halo

is generally defined as the radius of a sphere with mean density equal to ∆vir times

matter background density of the universe.

Underdensities

Underdense spherical regions evolve differently from overdensities. The density contrast

inside these regions can be find in analogy to Eq.(1.37), but using Eq.(1.33), and it

reads

δE =
ρ

ρ̄
− 1 =

9(sinh θ − θ)2

2(cosh θ − 1)3
− 1. (1.48)

The expansion velocity of an underdense region is given by computing dRE/dt. The

peculiar velocity with respect to the Hubble flow is vpec(RE, t) = v(RE, t) −HRE(t)

and it is given by [109]

vpec(RE, t) = HRE

[
3

2

sinh θ(sinh θ − θ)
cosh θ − 1

− 1

]
. (1.49)

Spherical concentric shells inside this patch satisfy the same relation with R < RE

and thus have different velocities. If the velocity decreases increasing the size of the

shell and therefore moving from the center towards the edge of the patch, then shells

that were close to the center will catch up with the shells further outside, until they

eventually pass them. This event is called shell crossing. For a top-hat spherical region

this happen at θshc ' 3.53, when the Eulerian density inside the patch is δE = −0.8

and the Lagrangian density extrapolated using linear theory is [109]

δv ≡ δL(θshc) = −2.7 . (1.50)

Analogously to the quantity δsc for halos, δv is defined to be the critical density in

Lagrangian space for the formation of a void in the Eulerian space.
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Lagrangian-Eulerian mapping

In this section we have implicitly assumed that the total mass and comoving volume

of the Eulerian and the Lagrangian spaces are the same, therefore they also share the

same background density. Moreover, the mass M of the considered spherical patch is

conserved. Then, M = ρ̄VL(1 + δL) ' ρ̄VL in Lagrangian space, with VL = (4π/3)R3
L

and being δL � 1. In the Eulerian space the size RE and the density contrast δE satisfy,

1 + δE = M/ρ̄VE = (RL/RE)3 . (1.51)

The spherical collapse model gives a relation between the Lagrangian size RL, the

density δL and the time z and size RE in the Eulerian frame. In fact, we can rewrite

Eq.(1.32) as
RE(z)

RL
=

1 + z

(5/3)δL

1− cos θ

2
, (1.52)

where δL is extrapolated to present time and 1− cos θ has to be replaced with cosh θ− 1

if the patch is underdense. Using Eq.(1.51), this expression can be used to find the

relation δL(δE) as an expansions in δE. If RE and z are given, it describes a curve in

the plane (δL, RL). To a good approximation, this spherical collapse relation is [77]

δL(RL|RE, z)

1 + z
=

3

20
(12π)2/3 − 1.35

(1 + δE)2/3
− 1.12431

(1 + δE)1/2
+

0.78785

(1 + δE)0.58661
, (1.53)

where 1 + δE depends on RL via Eq.(1.51). A simpler approximation to this relation

is [7, 102]
δL(RL|RE, z)

1 + z
= δsc − δsc(1 + δE)−1/δsc . (1.54)

Given RE and z, Eqs. (1.53) and (1.54) represent a curve in the plane (RL, δL) called

barrier, B(RL|RE, z). Notice that when RE → 0, then 1 + δE →∞, so Eqs.(1.53) and

(1.54) become δL(RL|RE = 0, z) → δsc(1 + z), independent of RL. Therefore, when

assuming that halos do have a zero Eulerian size we can consider their barrier to be

constant and equal to δsc, which means that they form from regions in the Lagrangian

space with δL = δsc (as already stated above). When RE > 0, then δL(RL|RE, z)

decreases monotonically as RL decreases and the Lagrangian density (barrier) depends

on the Lagrangian size. Motivations for going beyond the constant barrier are discussed

in [106].

Finally, the expression that relates the density and the size in the Lagrangian and

Eulerian space can be found using Eqs.(1.51) and (1.54) and it reads

1 + δE(z) =

[
1− (Dz/D0)δL

δsc

]−δsc
=

(
RL

RE(z)

)3

, (1.55)

where we generalized it to a ΛCDM cosmology with linear growth factor Dz given by

Eq.(1.27).

This last relation holds for over and under densities, showing that δsc is a relevant

quantity for obtaining the Lagrangian-Eulerian mapping, in both cases. As stated

before, in order to have a collapsed object it has to be δL = δsc. Then Eq.(1.55) shows

that at z = 0 the Eulerian density diverge, δE →∞, and RE = 0: a halo has formed.
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On the other hand, the Lagrangian threshold density for forming a void has found to

be δv = −2.7. Therefore, when δL = δv, Eq.(1.55) shows that the Eulerian density of a

void is δE ∼ −0.8 and RE ∼ 1.7RL.

The Lagrangian-Eulerian mapping can be apply not only to study the evolution of

the mean density of a spherical patch ending up in a halo or a void, it can also be used

to study the evolution of its profile. Indeed, the enclosed profile at some scale RE(z) is

nothing but the mean density inside this radius. Therefore, Eq.(1.55) can be use to

map the Lagrangian profile of proto-halo(void) to the evolved halo(void) profile.

1.2 Excursion set theory

Dark matter halos are virialized objects. Assuming the spherical collapse model, they

are expected to form from patches in the Lagrangian field with density δL = δsc. The

mass of this patches is fully determined by their Lagrangian size. Suppose that, as the

universe evolves, the number of these regions is conserved, as well as their mass, while

their size changes. Then, the number density of Lagrangian patches of a give size RL

(mass M) with density δL = δsc is equal to the number density of evolved halos with

mass M . The abundance of evolved objects is fully determined by the statistics of the

linear Lagrangian field. This easy remark gave rise to different models to compute the

abundance of halos, together with their spacial distribution. In this section we will

present these models, starting from the first attempt by Press and Schechter in 1974 [99],

before discussing in the next section the framework of excursion set peaks [90], which

incorporate the peak model [6] in the excursion set theory [11]. In this section we will

drop the subscript L of the Lagrangian quantities since here most of the computations

are in the Lagrangian space; we will specify it otherwise.

1.2.1 Press-Schechter approach

In 1974 Press and Schechter [99] proposed a method to compute the number density

n(M)dM of halos with mass between M and M + dM , once the cosmology is assumed.

The spherical collapse suggest that their seed in the Lagrangian space are region with

δ = δsc. The way to describe regions in the universe is by smoothing the density field

with a window function. In this way, there is a deterministic relation between the size

R of the window function and the mass M = ρ̄VR inside the region. For simplicity,

we have in mind a gaussian window function, so VR = (2π)3/2R3. Therefore, for a

given cosmology, the mass M , the size R, and the variance of the smoothed density

field S ≡ sR0 defined in Eq.(1.15) are equivalent variables. When R→∞, the field is

smoothed over all the space and the variance is zero, S = 0. For most power spectra

of interest the variance increases as the Lagrangian size decreases and S →∞ when

R→ 0.

The initial density filed is Gaussian, then the probability distribution for the density

contrast is

p(δ, S) =
1√
2πS

e−δ
2/(2S) . (1.56)

If the density smoothed at R exceed the threshold, there will be a scale R′ > R in

which δ(R′) = δsc. Then, the probability for δ(R) to be above the threshold at R gives
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the fractional volume of space occupied by virialized objects larger then R and it is

F (M) ≡ p(δ > δsc, S) =

∫ ∞

δsc

dδ p(δ, S) =
1

2

[
1− erf

(
ν√
2

)]
, (1.57)

where ν ≡ δsc/
√
S is the peak height. The fraction of volume in objects with mass

between M and M + dM is obtain differentiating F (M), thus the number density

n(M)dM of objects with the same mass is

nPS(M)dM =
ρ̄

M

dF (M)

dM
dM ≡ ρ̄

M
fPS(ν)dν , (1.58)

where the last equality defines the function fPS(ν), which is given by

fPS(ν)dν =

√
1

2π
exp

(
−ν

2

2

)
dν . (1.59)

The fraction fPS written in terms of the peak height ν is a universal function since its

form is independent of cosmology, redshift, and power spectrum. All this information

are hidden in the variable ν.

This model represents a big step towards a description of halo abundance. However,

as remarked already by Press and Schechter, these expressions cannot be fully correct.

Since the variance S(R) diverges when R→ 0, all the mass of the universe should be in

collapsed objects. The quantity F (R = 0) gives the fraction of mass in collapse objects

and it is expected to be F (R = 0) = 1, while Eq.(1.57) shows that F (R = 0) = 1/2.

Press and Schechter argued that the missing mass should come from underdensities

that will collapse onto overdense regions, and corrected this simply adding by hand an

overall factor of two in Eqs.(1.57) and (1.59). Actually, the reason for the lack of mass

is that the above procedure does not consider the case in which the density smoothed

at a scale R can be below the collapse threshold, but be above the threshold at some

scale R′ > R. This configuration corresponds to an object with mass M ′ > M , that is

not taken into account in F (M) since at scale M it is below threshold. This is the so

called cloud-in-cloud problem.

1.2.2 The first crossing requirement

The problem of missing mass in the Press and Schechter method is related to not

considering regions below threshold on a particular scale, but above threshold on a

larger scale. In order to solve it, let us do a step back.

The obvious way to compute the number of regions undergoing collapse is counting

the number of positions ~x of the Lagrangian space where the density smoothed at some

scale exceeds the threshold value for the spherical collapse. However, we can notice

the following. In each position ~x of the Lagrangian space there is a curve, δ(R), which

describes the overdensity δ in a window of Lagrangian size R centered on that position.

Then, a better procedure to compute the number density of collapsing regions is sitting

at a position ~x and studying the different realizations of the density field there, as a

function of the smoothing scale, or equivalently of the mass or of the variance. The

curve δ(S) represents a trajectory in the plane (S, δ). Since δ(R)→ 0 as R→∞, all

these trajectories start from the origin (S, δ) = (0, 0) and they can reach positive or

negative values for δ as S increases.
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A trajectory describes a halo of mass M ′ if it crosses the barrier B = δsc at the

correspondent scale S′. In principle it can cross the barrier more than once, arising

a possible issue in the determination of the halo mass. Actually, this case describes

small substructures collapsing together to form a bigger object, therefore it is the larger

crossing scale the one determining the size of the collapsed halo. Thus, both for solving

the cloud-in-cloud problem of Press and Schechter and for determining the correct halo

size, it seems necessary to compute the larger scale at which a trajectory crosses the

barrier, which is called the first crossing problem.

The halo abundance

Bond et al. [11] reformulated the problem for computing the halo abundance by

introducing the first crossing requirement. This formulation is called excursion set

theory. They considered a sharp k-space filter to smooth the density field: in this case

the trajectory δ(S) is a random walk where each step is uncorrelated and there exists

an analytic solution for the first crossing problem.

Consider a smoothing scale S1 for which δ1 ≡ δ(S1) < δsc. The density δ2 = δ1 +∆δ

at S2 = S1 + ∆S, after an increment ∆S in the filtering scale, may depend on both

the value of ∆S and the value of the density at other scales. For a sharp-k window,

increasing the scale corresponds to adding a set of independent Fourier modes to the

smoothed density, which did not determine the density at other scales. Thus, the

probability ψ for a change ∆δ in the density associated to an increment ∆S of the scale

is a Gaussian distribution with zero mean and variance equal to ∆S, independent on

the starting point δ1,

ψ(∆δ,∆S) =
1√

2π∆S
e−(∆δ)2/(2∆S) . (1.60)

The probability for a transition from δ1 to δ2 is given by p(δ2, S2)dδ2 = ψ(∆δ,∆S)d∆δ.

The relation between the probability distribution of δ at scale S and the distribution

at the following step S + ∆S is

p(δ, S + ∆S) =

∫
d(∆δ)ψ(∆δ,∆S)p(δ −∆δ, S) . (1.61)

Assuming a small ∆δ, this expression can be Taylor expanded and integrated. Keeping

the terms up to (∆δ)2 and using the fact that ψ has mean zero and variance ∆S yields

the relation
∂p

∂S
=

1

2

∂2p

∂δ2
, (1.62)

with boundary conditions: 1) p(δ, S) finite as δ → −∞ and 2) p(δsc, S) = 0, which

means that a trajectory is removed from the sample when it crosses the barrier. It is

useful to consider an arbitrary starting point δ(S0) = δ0 for the random walk [62], so

that the initial condition will be p(δ0, S0) = δD(δ0), where δD is the Dirac delta.

Consider the new variable γ = δsc−δ, so that the second boundary condition satisfy

p(γ = 0, S) = 0. The Fourier transform of the probability distribution is

p̃(ω, S) =

∫
dγ p(γ, S) e−iωγ , (1.63)
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where ω is the conjugate variable. Then Eq.(1.62) becomes

∂p̃

∂S
= −ω

2

2
p̃ , (1.64)

with solution of the type p̃(ω, S) = c(ω) exp(ω2S/2). The boundary condition at γ = 0

guarantees that c(ω) is an odd function, then

p(γ, S) =

∫ ∞

0
dω c(ω) sin(ωγ) e−ω

2S/2 . (1.65)

Using the initial condition we obtain c(ω) = 2/π sin(ωγ0) e−ω
2S0/2, where γ0 = δsc − δ0.

By inserting the expression for c(ω) in Eq.(1.65) and doing the integral over ω, the

final solution reads

p(δ, S|δ0, S0) =
1√

2π∆S

[
exp

(
−(∆δ)2

2∆S

)
− exp

(
− [2(δsc − δ0)−∆δ]2

2∆S

)]
, (1.66)

where ∆S = S − S0 and ∆δ = δ − δ0. The first exponential describes the trajectories

above threshold at scale S, while the second exponential accounts for the trajectories

that have been removed because they crossed the threshold at scale S′ < S, but they

also crossed back below the threshold by S. In fact, having a sharp-k filter, there is

equal probability for a trajectory that crossed the barrier to stay above or go back

below it.

The probability distribution p(δ, S|δ0, S0) is defined only for δ < δsc, then the

fraction of trajectory that have already crossed the barrier before S, given that they

start from (δ0, S0), is

F (S|δ0, S0) = 1−
∫ ∞

δsc

p(δ, S|δ0, S0) dδ = 1− erf

(
δsc − δ0√

2∆S

)
. (1.67)

If δ0 = 0 and S0 = 0 we recover the Press-Schechter result in Eq.(1.57) with the

additional factor of two that they were forced to introduce by hand. In this procedure,

the missing probability of Press and Schechter comes from the second exponential in

Eq.(1.66), i.e. counting the trajectories that up-cross and down-cross the barrier before

the considered scale S. The differential probability is obtain differentiating F (S|δ0, S0),

fEST(S|δ0, S0) ≡ dF

dS
dS =

δsc − δ0√
2π(∆S)3/2

exp

[
(δsc − δ0)2

2∆S

]
. (1.68)

The function fEST(S|δ0, S0) is called conditional first-crossing distribution, since it

assumes that the trajectory passes through the point (δ0, S0), and it is the fraction of

trajectories describing halos of mass M that are embedded in regions with smoothed

density δ0 on scale S0. When δ0 = 0 and S0 = 0, the distribution becomes fEST(S),

which is the unconditional counterpart and it gives the fraction of trajectories that

give rise to halos with mass between M and M + dM , in all space. The latter is equal

to the Press-Schechter fraction in Eq.(1.59) (with the additional factor of two). The

abundance of halos nEST(M) in the same mass range is given by Eq.(1.58).

This prediction can capture the main features of the halo mass function measured

in simulations, but it fails in describing the details: it predicts too many low-mass halos
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and too few high-mass halos. Given the simplicity of the excursion set model, this is not

surprising, but the level of agreement indicates that the excursion set model is a useful

tool to understand the main features of halo abundance, formation and clustering,

which are set by the statistics of the initial conditions. We will see below how the model

can be improved to make better predictions. However, nowadays the most reliable and

used theoretical mass functions are fitting formulas calibrated to N-body simulations.

One of the most used ones is the Sheth-Tormen mass functions [107], which is inspired

by the excursion set model.

The halo clustering

The clustering of dark matter halos differs from the overall clustering of matter, since

it involves a special subset of points in the space. The excursion set theory provides

a framework with which to understand the spatial distribution of halos, which was

computed by Mo and White [77].

The conditional first-crossing distribution fEST(S|δ0, S0)|dS/dM |dM in Eq.(1.68)

gives the fraction of mass in halos with mass M that are embedded in a larger region

with density δ0 and volume V0 (corresponding to the smoothing scale S0). Thus, the

averaged number of M halos in a volume V0 is

NEST(M |δ0, S0)dM =
M0

M
fEST(S|δ0, S0)|dS/dM |dM (1.69)

=
M0

ρ̄
nEST(M |δ0, S0)dM ,

where nEST(M |δ0, S0) is the conditional mass function defined as in Eq.(1.58) and the

substitutions F (M) → F (M |δ0, S0) and fEST(S) → fEST(S|δ0, S0). The overdensity

of these halos (inside regions with density δ0 and volume V0) compared to the mean

number of halos of mass M in any position is given by

δhL ≡
NEST(M |δ0, S0)

nEST(M)V0
− 1 =

fEST(S|δ0, S0)

fEST(S)
(1 + δ0)− 1 , (1.70)

where nEST(M) is the mass function in Eq.(1.58). This last expression becomes simple

when the mass M0 in the larger region is much bigger than the halo mass M . In this

limit S0 → 0 and nEST(M |δ0, S0 = 0) can be expanded in a Taylor series around δ0 = 0.

In this way δhL will be a sum of terms with different powers in δ0

δhL =
∑

k>0

bLk
k!
δk0 , (1.71)

where the coefficients bLk are called Lagrangian halo biases. The first coefficient bL1 ≡ bL
is linearly proportional to the matter density and it is called linear halo bias. It reads

bL(ν) =
ν2 − 1

δsc
, (1.72)

and it depends on the peak height ν, or equivalently on the halo mass, only. Another

way to compute bL is by differentiating the unconditional mass function with respect

to δsc [89]

bL(ν) = −∂ ln νfEST(ν)

∂δsc
. (1.73)
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1.2.3 The upcrossing requirement

The first-crossing distribution can be found analytically only when a sharp k-space filter

is used, since it is the only case where trajectories in the (S, δ) plane have uncorrelated

steps. However, the sharp-k filter is not physically motivated: the window function in

Lagrangian space is expected to be a top-hat, a Gaussian or a combination of the two.

For a generic filter the first-crossing distribution can be computed only using numerical

methods, since it requires an infinite number of constraints (one for each smoothing

scale) and each step is correlated with the others.

The halo abundance

Musso and Sheth [79] showed how to relax this requirement and handle the calculation

of the halo abundance in the excursion set framework with a top-hat or Gaussian filter.

They assumed that the trajectories do not double-cross the threshold and they scatter

around a deterministic walk with completely correlated steps. In this case the steps

are called strong correlated.

The requirements for forming a halo at scale S are δ(S) > δsc and δ(S −∆S) < δsc,

for ∆S → 0, the latter called upcrossing requirement. It is motivated by the fact that,

for power spectra used in cosmology, we expect the trajectories to be kind of smoothed

and not to cross the barrier many times. Therefore, asking to cross the barrier from

below should be a good approximation to the first-cross passage.

In this case, it turns out to be straightforward to generalize the treatment to the

case in which the barrier is not a constant, but depends on scale S, B = B(S). The

upcrossing requirement becomes δ(S − ∆S) < B(S − ∆S). Since ∆S is small, we

can Taylor expand δ and B in a Taylor series. We use primes to denote derivatives

with respect to S, then δ(S −∆S) = δ(S) −∆S δ′(S) and B(S) −∆S B′(S). Thus,

the upcrossing constraint translates into a constraint on the first derivative of δ and

B. The two requirements become B(S) < δ(S) < B(S) + ∆S (δ′(S) − B′(S)) and

δ′(S) > B′(S). The fraction of walks satisfying these expressions is

fup(S)∆S =

∫ ∞

0
dδ′
∫ B(S)+∆S (δ′−B′)

B(S)
p(δ, δ′, S) , (1.74)

where p(δ, δ′, S) is the joint probability of δ and its derivative δ′ ≡ dδ/dS. Taking the

limit ∆S → dS implies

fup(S) =

∫ ∞

0
dδ′ p(B, δ′, S) (δ′ −B′) = p(B,S)

∫ ∞

0
dδ′ p(δ′|B,S) (δ′ −B′) , (1.75)

For a Gaussian density field the probability distribution p(B,S) is a Gaussian and

the conditional probability p(δ′|B,S) is also a Gaussian but with non-zero mean and

shifted variance. If we define

γ2 ≡ 〈δδ′〉2
〈δ2〉〈δ′2〉 , (1.76)

the mean of p(δ′|B,S) is 〈δ′|B,S〉 = γ B
√
〈δ′2〉/〈δ2〉 and its variance is 〈δ′2〉(1− γ2).

Note that 〈δδ′〉 = 1/2 and thus the mean is 〈δ′|B,S〉 = B/2S. For simplicity we define

the normalized variables

x ≡ δ′ −B′√
〈δ′2〉

, β(S) ≡ B(S)√
S
, β∗(S) ≡ β(S)

∂ lnβ(S)

∂ ln
√
S
. (1.77)
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Then the integral in Eq.(1.75) reads

S fup(S) =
e−β(S)2/2

2γ
√

2π

∫ ∞

0
dxx

e−(x−γβ∗(S))2/2(1−γ2)

√
2π(1− γ2)

. (1.78)

We can use the relation νf(ν) = Sf(S)|d lnS/d ln ν| = 2Sf(S) and solve the integral

in the above equation that yields

νfup(ν) =
e−β(S)2/2

√
2π

β∗(S)

[
1 + erf(Γβ∗(S)/

√
2)

2
+
e−Γ2β∗(S)2/2

√
2πΓβ∗(S)

]
, (1.79)

with Γ2 = γ2/(1 − γ2). For a constant barrier, B(S) = δsc and β(S) = β∗(S) =

δsc/
√
S ≡ ν. In this case the above equation becomes

νfup(ν) =
ν e−ν

2/2

√
2π

[
1 + erf(Γν/

√
2)

2
+
e−Γ2ν2/2

√
2πΓν

]
. (1.80)

Musso and Sheth showed that the upcrossing model provides a good description

of the exact solution for the first-crossing distribution, in which the constraint on the

walk height is satisfied on all scales. In particular they tested it with different power

spectra and top-hat or Gaussian filters. Therefore, Eq.(1.80) effectively solves the same

excursion set problem for correlated steps that Bond et al. [11] solved for uncorrelated

steps.

The halo clustering

In analogy with the case of first-crossing distribution with uncorrelated steps, we can

define the fraction fup(S|δ0, S0) with the additional constraint for the walks to pass

through δ0 on some large scale S0, before crossing δsc on scale S > S0. This will allow

to compute the halo bias for the upcrossing model.

In particular, we can use Eq.(1.73) to compute the large scale linear bias factor,

bL10 =
ν2 − 1

δsc
+

1

δsc

e−Γ2ν2/2/
√

2πΓν

erfc(−Γν/
√

2)/2 + e−Γ2ν2/2/
√

2πΓν
, (1.81)

where the subscript 10 indicates that this is only part of the linear halo bias within the

upcrossing model. The missing part bL01 show some k dependence and we will discuss it

in part IV.

1.3 Joining excursion set and peaks theory

Another commonly used model for identifying halos in the Lagrangian field is the peaks

model by Bardeen et al. [6]. This model differs from excursion set mainly for two

reasons. First, while the excursion set aims in a statistical description of the mass

fraction in bound objects, and assumes that this can be done by consideration of all

points in space, peaks theory aims to describe the point process involving the halo

formation, since here bound objects are thought to form only in special points of the

space, the ones where the density field present a peak, i.e. a local maximum. Second,
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even if in both models the variable peak height, ν = δsc/
√
S, is the fundamental one,

they treat it in a different way. The excursion set considers the denominator S as a

stochastic variable, and the analysis is performed changing the smoothing scale but

keeping the value of δsc fixed. Instead, the peak model treats the numerator δsc as

a variable and keeps the variance S fixed. Once the smoothing scale is chosen, the

analysis involve the localization of local maxima in the smoothed density field.

Adding the requirement that halos form where there are local maxima of the

Lagrangian density field to the upcrossing scheme could improve the prediction for

the halo abundance and the halo clustering. Paranjape and Sheth [90] showed how to

build an excursion set model of peaks, where all these constraints are implemented. We

briefly recap here the main results of peaks theory, before discussing the excursion set

of peaks.

1.3.1 Peaks Theory

The requirement for a position to be on a peak translates into constraints on the first

and second derivatives of the density with respect to the spacial position ~x, i.e. the

three spatial derivatives of δ(~x) must be zero, and the matrix of second derivatives

∂2δ/∂xi∂xj must be negative definite (having three negative eigenvalues). Bardeen et

al. [6] showed that in a Gaussian smoothed density field (smoothed at fixed scale R

corresponding to the variance S) the number density of peaks of scaled height ν̃ = δ/
√
S

is

npk(ν̃) =

∫
dx̃ npk(x̃, ν̃) =

e−ν̃
2/2

√
2π

G0(γ̃, γ̃ν̃)

(2πR2∗)3/2
, (1.82)

where x̃ = −∇2
xδ(S, ~x)/

√
〈[∇2

xδ(S, ~x)]2〉 is the Laplacian of the field normalized by its

rms value equal to σ2
2 for a Gaussian filter, γ̃ = σ2

1/σ0σ2 and R∗ =
√

3σ1/σ2, with the

definition of σj as in Eq.(1.16), and

Gj(γ, y) =

∫ ∞

0
dxxjF (x)

e−(x−y)2/2(1−γ2)

√
2π(1− γ2

(1.83)

with

F (x) =
x3 − 3x

2

{
erf

(
x

√
5

2

)
+ erf

(
x

√
5

8

)}
+

+

√
2

5π

[(
31x2

4
+

8

5

)
e−5x2/8 +

(
x2

2
− 8

5

)
e−5x2/2

]
. (1.84)

The variable x̃ represents the curvature around the peak position, therefore F (x)

quantifies how different the set of curvatures is around a peak position compared to a

randomly placed one. Note also that ∂Gn(γ, y)/∂y = (Gn+1 − y Gn)/(1− γ2).

In order to map from peak number densities to halo mass fractions, one must

associate a mass to each peak. Eq.(1.82) is defined to a fixed smoothing scale R, so

changes in ν̃ are due to changes in δ. In excursion set theory one would really allow R

to vary instead. The excursion set theory of peaks shows how to deal with this problem.
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1.3.2 Excursion set theory of peaks

The halo abundance

For simplicity, we consider here a constant barrier B(S) = δsc. Within the upcrossing

model, Musso and Sheth [79] and Paranjape and Sheth [90] noticed that among the

peaks present on scale S, we want those which have a smaller height on the next larger

smoothing scale (smaller variance). Therefore they would demand that the scaled peak

height ν̃ lie in the interval δsc/
√
S < ν̃ < ∆S x/2γS, where x and γ have been defined

in Eq.(1.77) (with constant barrier B = δsc) and Eq.(1.76), respectively. The excursion

set of peaks should then depend on three variable: ν̃ ∼ δ, x̃ ∼ ∇2δ, and x ∼ δ′ = dδ/dS.

However, for a Gaussian filter the Laplacian of the smoothed density filed is equal to

its derivative with respect to S and therefore x = x̃; moreover γ = γ̃. Therefore, for a

Gaussian filter, the relevant variables are only two because constraint on the value of

the derivative with respect to smoothing scale becomes a constraint on the curvature

of the field.

The same logic that leaded to Eq.(1.78) will lead here to the number density of

peaks that satisfy the upcrossing requirement, i.e. the number density of halos of mass

M in excursion set of peaks,

nESP(ν) =
1

γν

∫ ∞

0
dxxnpk(x, ν) , (1.85)

giving the fraction

fESP(ν) =
e−ν

2/2

√
2π

V

V∗

G1(γ, γν)

γν
, (1.86)

where G1(γ, γν) is defined in Eq.(1.83) and V = M/ρ̄ is the Lagrangian volume

associated with the tophat smoothing filter.

It is straightforward to compute the same quantities for a moving barrier, by

substituting δsc with a generic barrier B(S). Then

nESP(ν) =
1

γν

∫ ∞

0
dxxnpk(x+ 2γ

√
SB′, ν) , (1.87)

with x given by Eq.(1.77).

We can notice that there is only a conceptual difference between fESP and fup, i.e.

the latter averages over random positions in the field, whereas the former averages over

special ones. In other words, fESP addresses both the cloud-in-cloud problem for peaks

(the fundamental failing of the peaks approach), and the question of how the excursion

set predictions are modified if one averaged over special positions in the initial field

(the fundamental failing of the excursion set approach).

The halo clustering

The large scale linear bias factor associated to the mass function fESP with a constant

barrier is

bL10 =
ν2

δsc

[
1− Γ2

(
G2/G1

γν

)]
. (1.88)
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We will discuss deeply the halo bias in excursion set of peaks in part IV, where we will

show that also in excursion set of peaks the linear bias is k dependent; the term shown

above its the k independent part.

Comparisons between the excursion set of peaks predictions and measurements

from N-body simulations have been investigated by Paranjape et al. [88], who found

good agreement between the model and the measurements of halo mass function and

linear halo bias.
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Chapter 2

Voids

Voids are underdense regions of the Universe and in a cosmological context they are

treated as discrete and relevant objects rather than just absence of matter. The first

identification and observation of voids goes back to 1978 thanks to two independent

groups: Gregory and Thompson [48] and Joeveer, Einasto and Tago [58]. They stated

that there are regions in the Local Universe of the size ∼ 20 Mpc/h with borders defined

by filamentary structures that contain no galaxies. These observations came with the

skepticism of the scientific community since there were not theoretical insight on how

voids and filaments could form in a homogeneous Universe. The skepticism disappeared

thanks to development in N-body simulations and big galaxy survey [30,128], leading

to the idea that the distribution of galaxies is not random. Galaxies are biased tracers

of the underlying matter density field, which is thought to form a network, the so-called

cosmic web, where knots are very dense regions, the halos, connected by filaments and

walls. Between them, the voids represents the most underdense regions of the Universe.

2.1 Void properties

Voids are thought to form from negative density perturbations in the ICs. There,

Gaussian fluctuations do not necessarily have spherical symmetry, however the spherical

collapse model presented in Sec. 1.1.3 is useful to describe with a good approximation

the evolution of voids. Indeed, any primordial asphericity in a negative perturbation is

expected to be mitigated by its evolution [56].

In the framework of the spherical collapse model, an isolated underdense patch

expand mimicking the behavior of an open universe. In this process, shells closer to

the center expand faster than the ones near the edge and the moment in which the

inner shells pass across outer shells is called shell-crossing. Because of this, the mass

flows from the center towards the outer part of the underdense patch, bringing to the

evacuation of matter and to the formation of overdensities at the edge of the region.

Since the motion of matter from the interior of the void decreases with the distance

from the center, an underdensity evolves into a reverse top-hat profile while building

walls and filaments at the edge. Sheth and van de Weygaert [109] studied this evolution

in the case of two different initial density profiles for the underdense patch: a reverse

top-hat and a profile given by peaks theory (see Eq. 7.10 in [6]). Their results are

presented in figure 2.1, which shows that both profiles expand, evacuate mass and

25
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Figure 3. Spherical model for the evolution of voids. Left: a pure (uncompensated) tophat void evolving up to the epoch of shell-

crossing. Initial (linearly extrapolated) density deficit was ∆lin,0 = −10.0, initial (comoving) radius R̃i,0 = 5.0h−1Mpc. Timesteps:
a = 0.05, 0.1, 0.2 and 0.3. Right: a void with an angular averaged SCDM profile (BBKS, eqn. 7.10). Initial density deficit and characteristic
radius are same as for the tophat void (left). The tendency of this void to evolve into a tophat configuration by the time of shell crossing
is clear. Shell-crossing, and the formation of an obvious ridge, happens only if the initial profile is sufficiently steep.

The most basic and universal properties of evolving
spherical voids are:

• Expansion: Voids expand, in contrast to overdense re-
gions, which collapse.

• Evacuation: As they expand, the density within them
decreases continuously. (To first order, the density decrease
is a consequence of the redistribution of mass over the ex-
panding volume. Density decrease from mass lost to the sur-
rounding overdensities is a second order, nonlinear effect oc-
curing only near the edges.)

• Spherical shape: Outward expansion makes voids evolve
towards a spherical geometry.

• Tophat density profile: The effective “repulsion” of the
matter interior to the void decreases with distance from the
center, so the matter distribution evolves into a (reverse)
“tophat”.

• “Super-Hubble” velocity field: Consistent with its (ul-
timate) homogeneous interior density distribution, the (pe-
culiar) velocity field in voids has a constant “Hubble-like”
interior velocity divergence. Thus, voids evolve into genuine
“Super-Hubble Bubbles”.

• Suppressed structure growth: Density inhomogeneities
in the interior are suppressed and, as the object begins to
resemble an underdense universe, structure formation within
it gets frozen-in.

• Boundary ridge: As matter from the interior accumu-
lates near the boundary, a ridge develops around the void.

• Shell-crossing: The transition from a quasi-linear to-
wards a mature non-linear stage which occurs as inner shells
pass across outer shells.

Figure 3 illustrates these features. Both panels show the
time evolution of the density deficit profile. Consider the

panel on the left, which illustrates the development of an ini-
tial (uncompensated) tophat depression (a “tophat” void).
The initial (linear) density deficit of the tophat was set
to ∆lin,0 = −10, and its (comoving) initial radius was

R̃i,0 = 5h−1Mpc. The evolving density profile bears out
the charactertistic tendency of voids to expand, with mass
streaming out from the interior, and hence for the density
to continuously decrease in value (and approach emptiness,
δ = −1.0). Initially underdense regions are just expand-
ing faster than the background and will never collapse (in
an Ω ≤ 1 Universe). Notice that this model provides the
most straightforward illustration of the formation of a ridge.
Despite the absence of any such feature initially, the void
clearly builds up a dense and compact bounding “wall”.

For comparison with the tophat void configuration on
the left, the panel on the right of Figure 3 depicts the evolu-
tion of a void whose initial configuration is more representa-
tive of cosmological circumstances. Here, the initial profile
is the radial-averaged density profile for a trough in a Gaus-
sian random field of Cold Dark Matter density fluctuations.
The analytical expression for this profile was worked out by
BBKS (1986) (eq. 7.10), and the one example we show here
concerns the radial profile for a density dip with average
steepness, i.e. x ≡ −⟨∇2f⟩/σ2 = −1. The same qualita-
tive aspects of void evolution can be recognized as in the
case of a pure tophat void: the void expands, empties (to a
near-empty configuration ∆ = −1 at the centre), and also
develops a ridge at its boundary. Notice that the void pro-
file evolves into a configuration which increasingly resembles
that of a “tophat” void. We will make use of this generic
evolution in what follows.

Looking from the inside out, one sees the interior shells

c⃝ 0000 RAS, MNRAS 000, 000–000

Figure 2.1: Figures taken from [109]. Spherical collapse model for the evolution of voids. Left:

a pure top-hat void evolving up to the epoch of shell-crossing. Right: a void with an angular

averaged profile (from [6], Eq. 7.10). Timesteps: a = 0.05, 0.1, 0.2 and 0.3. The tendency of this

void to evolve into a top-hat configuration by the time of shell-crossing is clear. Shell-crossing,

and the formation of an obvious ridge, happens only if the initial profile is sufficiently steep.

present a growing overdensity at the edge. However, as they noticed, the process of

shell-crossing and the formation of a wall happen only if the profile is sufficiently steep.

Otherwise, the voids expands and evacuate matter without building any overdensities.

This is exactly what was observed in galaxy survey (although this case involves biased

tracers of the matter density field, the qualitative features are expected to be the same).

Figure 2.2 shows the measurements of void profiles performed by Paz et al. [93] using

part of the SDSS survey data released 7 [2]. They found two types of voids: one with a

wall at the edge, that they called S-type, and one without, called R-type.

Even if a description of isolated voids capture most of their properties, in the

Universe there are no isolated voids nor smoothly unstructured ones. Voids are

surrounded by other voids, filaments and halos and they do present internal structure.

The standard cosmological structure formation scenario involve a hierarchical growth,

where objects form from the interactions and merging of smaller structures that

had formed earlier. For example, galaxies form clusters that merge giving rise to

superclusters. The same happens for voids, which goes under the name of void

hierarchy. It involves the bottom-up scenarios, in which voids emerge from the fusions

of their internal substructures, and the interactions with the surroundings. This means

that voids collide producing and enhancing the filaments and walls between them, as

they evacuate matter. Then, they can eventually merge by gradually disappearance of

the overdense structures between them. In this way small-scale voids embedded within

a large-scale void gradually fade away.

Whereas the only relevant process in the hierarchic evolution of clusters is the

merging, for voids there exists a second one: the disappearance of small voids when

embedded in a larger overdensity. Indeed, a small underdense region surrounded by

overdensities in the initial field could shrink because of the gravitational attraction

between the dense regions and disappears. Thus, two effects affect the number of small

voids within a generic density field and they are both relate to the embedding of a
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10 Paz et al.

Figure 4. Void–centric radial galaxy density profiles ∆(r) (lower panels) and void–centric radial galaxy velocity profiles (upper panels) for S-type (left) and
R-type (right) voids in the S1 sample. Different void radii ranges are indicated with downward triangles (6–8 h−1 Mpc), circles (8–9 h−1 Mpc) and upward
triangles (10–14 h−1 Mpc). Error bars indicate the region enclosing all curves within 68.3% uncertainty in parameter space.

ent ranges in void sizes. We indicate with downward triangles the
void radii in the range 6–8 h−1 Mpc, with circles voids with radii
in the range 8–9 h−1 Mpc; and with triangles voids with radii in
the range 10–14 h−1 Mpc. The error bars in Fig. 4 represent the
68.3% uncertainties resulting from the MCMC likelihood map-
ping. As it can be seen in the figure the modelled profiles of S
and R-type voids are satisfactorily recovered and describe the typ-
ical behaviour of the two types of voids. Indeed, the observed den-
sity profiles are consistent with the modelled profiles within un-
certainties (not shown for the sake of simplicity). Regarding the
velocity profiles (upper panels of Fig. 4), it can be seen that the
S-type voids show two different dynamical regimes. While inner
regions are in expansion, the large–scale void walls are collapsing.
This is in agreement with the void–in–cloud scenario introduced
by Sheth & van de Weygaert (2004) and the direct measurements
in our numerical simulations presented in Paper I. On the other
hand, the fitted velocity profiles of R-type voids never exhibit in-
fall velocities as can be seen in the bottom-right panel if this figure.
This behaviour fits well with the void-in-void scheme, which indi-
cates that voids embedded in low density large–scale regions are
likely to be expanding. These results provide the first observational
evidence of the two processes involved in void evolution. We also
find that the behaviour of these profiles are different as the void size
increases. Where voids surrounded by overdense large–scale shells
are under contraction, voids laking this outer overdensity are usu-
ally expanding. In this scenario, voids embedded in overdense en-

vironments are dominated by gravitational collapse rather than by
expansion. Consequently, it is likely that many of the small voids
with a surrounding overdense shell have sank inward by the present
epoch. Larger voids, on the other hand, are probably expanding in
concordance with the formation of the large structures that shape
them.

We applied this procedure to the R and S-type subsamples in
SDSS and mock catalogues described in Table 1. In the Table 2
we show the resulting model parameter fits, along with their uncer-
tainties, derived from each subsample. The radii ranges have been
chosen taken into account the distribution of void radii, so that the
sample is in each case divided into three subsamples with nearly
the same number of voids each. As can be appreciated in this table,
the parameter values support the scenario of a dichotomy in void
evolution.

7 SUMMARY AND CONCLUSIONS

We have performed a statistical study of the void phenomenon fo-
cussing on the dynamics of the surrounding regions of voids. We
used samples of voids identified following the procedure described
in Padilla, Ceccarelli & Lambas (2005). We constructed catalogues
of voids in the SDSS-DR7, as well as in mock catalogues and in the
parent simulation box to test the effects of observational biases.

We analyze the dynamics of voids with and without a sur-

Figure 2.2: Figures taken from [93]. Radial galaxy density profiles for S-type (left) and R-type

(right) voids in the S1 sample of SDSS data released 7. Different void radii ranges are indicated

with downward triangles (6− 8 h−1Mpc), circles (8− 9 h−1Mpc) and upward triangles (10− 14

h−1Mpc). Error bars indicate the region enclosing all curves within 68.3% uncertainty in

parameter space.

density depression within the larger scale environment. A good description of void

evolution, as well as void abundance and clustering, should take into account both of

them.

The first is called void-in-void problem and it describes a small void surrounded

by a larger underdense region which is a void itself. In order to not overestimate

the number of small voids and thus the volume fraction in voids, we must count only

the largest void and not the smaller ones inside it. This effect is analogous to the

cloud-in-cloud problem for halos.

The second effect involves small voids surrounded by overdensities. The presence of

the latter will dominate the evolution, shrinking the small voids until they disappear.

This effect is called void-in-cloud problem. The analogous phenomenon for halos would

be the cloud-in-void problem, which does not represent any problem at all since an

underdense environment is irrelevant for halo formation. Indeed, virialized halo are not

likely to be torn apart as the void expands around them.

Halos are thought to form from dense regions in the initial density field, while voids

comes from underdense patches. Since the fluctuations in the ICs are Gaussian, there

exist a symmetry between positive and negative perturbations which allows to describe

protohalos and protovoids with the same tools. In the framework of excursion set, or

peaks theory, halos form from dense patches in the ICs that satisfy some requirements,

e.g. being above a threshold or being a local maximum of the density field. Voids

should satisfy analogous requirements. The spherical collapse model set the threshold

for the shell-crossing to occur at δv = −2.7. If we define a void as an underdense region

that has undergone shell-crossing, then only regions with δ < δv will end up being a

void. The upcrossing constraints becomes a down-crossing constraint, i.e. dδ/dS < 0

and the peak requirement translates into a trough requirement with the protovoid being

on a local minimum.

However, as noticed by Sheth and van de Weygaert, the void-in-cloud problem
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breaks the symmetry between protohalos and protovoids in the initial Lagrangian

field, since the cloud-in-void phenomenon is not relevant. As a consequence, the void

formation cannot be describe in the framework of the excursion set model as a one

barrier problem, like for halos; it requires a two barrier problem with the two barrier

having the values δv (related to the formation of a void) and δsc (related to the collapse

of a halo). If a random walk first crosses the collapsing barrier δsc and then it crosses

δv at smaller scale, then it represents a small void contained in a dense region that has

to collapse and thus it will disappear. This is a so-called void-in-cloud, which should

not be counted as a void. Therefore, in the excursion set formalism, the problem of

estimating the mass fraction in voids of size S reduces to the calculation of the fraction

of trajectories that first cross δv at scale S and did not cross δsc at any S′ < S. Sheth

and van de Weygaert computed this first crossing distribution, which reads

νf(ν) '
√

ν

2π
exp

(
−ν

2

)
exp

(
−|δv|
δsc

D2

4ν
− 2
D4

ν2

)
, (2.1)

where we have defined ν = δ2
v/S. This expression is not exact; it is accurate for values

of δsc/|δv| ≥ 1/4. The fraction f(ν) present a cut-off on small masses, describing the

fact that small voids in dense environments will disappear. The relation to the void

abundance is then given by Eq.(1.58).

The two barrier formulation is important for computing the abundance of small

voids, while it is not necessary for big ones, since they are not affected by the void-in-

cloud problem. Anyway, this model is very easy and cannot describe with high accuracy

the void abundance in simulations. It is nevertheless straightforward to incorporate

the upcrossing requirement and the peak constraints in the one barrier void model,

which should give better predictions. However, when comparing results from N-body

simulations and theoretical predictions, issues do not arise only from the theoretical

side, but are also related to the numerical one. It is still an open problem the definition

of voids in simulations (and consequently in galaxy survey as well). We will discuss

this in the next paragraph.

2.2 Void finder comparison

The definition of voids from the theoretical point of view is quite simple: voids are

underdense regions that have undergone shell-crossing. This translates into a constraint

on the value for the enclosed density of the related protovoid in the Lagrangian field,

which must be equal to δv. Instead, the definition of voids in N-body simulations and

galaxy survey is not so straightforward for many reason. First of all, in simulations

one must deal with a sparse sapling of the matter density field and in galaxy survey

only biased tracers of the underlying matter can be used. This issue comes from the

fact that theory defines voids in the continuous matter field, while observations allow

to identify voids in the galaxy or in the halo field, which are biased discrete tracers.

Second, it is not obvious how to implement the definition of shell-crossing. Moreover,

the voids in the matter or galaxy distributions seem to have very arbitrary shapes, most

of the time very far from the spherical one. The question arising is then the following:

does it make sense to identify voids imposing a spherical or ellipsoidal shape?
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Figure 1. A slice of thickness 5 h−1 Mpc through the centre of the region extracted from the Millennium simulation. The image shows
the dark matter distribution in the central 40 h−1 Mpc region. Void galaxies (within any void, not just the largest one) are superimposed
on the dark matter distribution as blue circles. The top left and top centre panels show only the dark matter distribution and dark
matter plus all galaxies in the slice, respectively. The other panels show the locations of the largest void (with dark matter particles inside
the void marked green), its centre (red circle), and all void galaxies found by Brunino (top right), Colberg (second row, left column),
Fairall (second row, centre), Foster (second row, right column), Gottlöber (third row, left column), Hahn/Porciani (third row, centre),
Hoyle/Vogeley (third row, right column), Müller (bottom, left column), Neyrinck (bottom, centre), Pearce (bottom, right column).

8 J. M. Colberg et al.

Author NV FFV δDM Ng δg Ng,20 δg,20 (xmax, ymax, zmax) r
[Mpc/h] [Mpc/h]

Brunino P 3 0.37 -0.78 754 -0.71 7 -0.93 (38.6, 46.8, 199.5) 16.0
Colberg1 DM 21 0.92 -0.74 2258 -0.65 35 -0.85 (35.3, 41.2, 193.9) 29.9
Fairall P 18 0.59 -0.73 1376 -0.67 25 -0.83 (33.0, 40.0. 200.0) 20.0
Foster/Nelson P 3 0.41 -0.82 114 -0.96 0 -1.00 (36.3, 36.6, 192.4) 18.0
Gottlöber2 P 9 0.35 -0.77 733 -0.70 0 -1.00 (32.1, 44.0, 192.0) 16.4
Hahn/Porciani1,3 DM 14 0.29 -0.73 248 -0.92 0 -1.00 (30.5, 33.6, 191.8) 17.2
Hoyle/Vogeley1,2 P 4 0.84 -0.68 2166 -0.56 40 -0.79 (31.9, 47.1, 193.2) 24.6
Müller2 P 24 0.58 -0.76 1469 -0.65 0 -1.00 (30.7, 42.7, 189.1) 25.6
Neyrinck1,3,4 DM 29 0.32 -0.68 834 -0.63 14 -0.83 (30.3, 33.5, 194.9) 11.3
Pearce DM 5 0.15 -0.90 51 -0.95 0 -1.00 (35.9, 33.8, 193.5) 11.9
Platen/Weygaert1 DM 167 1.0 -0.91 18 -1.00 0 -1.00 (37.5, 36.2, 194.3) 14.3
Plionis/Basilakos DM 15 0.13 -0.92 0 -1.00 0 -1.00 (37.1, 33.8, 192.7) 10.0
Shandarin/Feldman DM 19 0.23 -0.88 0 -1.00 0 -1.00 (31.5, 41.1, 192.7) 17.1

Table 2. An overview of some of the main results of this study: for each void finder, we give the total number of voids, NV , in the
volume considered here, the volume filling fraction, FFV , the average dark matter overdensity, δDM, of the voids, the total number of
galaxies, Ng , found in voids, the average galaxy overdensity δg, the number of galaxies brighter than mB = −20, Ng,20, found in voids,
the average galaxy overdensity using only galaxies brighter than mB = −20, δg20, and positions of the centres of the largest void and
their radii. We also classify the void finders into those using the dark matter (smoothed or not – DM) and those using points (galaxies
or haloes – P). Notes: 1 the voids are non–spherical, so the quoted radius is an approximation, assuming a spherical void. 2 using the
B < −20 galaxy sample. 3 the quoted centre of the void is actually the position of lowest density. 4 9308 voids found; of them 2362, 525,
164, 64, 29, 13, and 5 exceed 1 through 7σ probability thresholds, respectively. We use the 5σ results for comparisons.

Figure 2. Same as and continued from Figure 1. Platen/Weygaert (left column), Plionis/Basilakos (centre), and Shandarin/Feldman
(right column). Note that both Plionis/Basilakos and Shandarin/Feldman find no void galaxies.

4 RESULTS – COMPARISON

4.1 Basic numbers

In Table 2 we provide an overview of the results obtained
with the different void finders. In particular, for each void
finder, we list the total number of voids, NV , the volume
filling fraction3, FFV , the average dark matter overdensity,
δDM, of the voids, the total number of galaxies, Ng , found in
voids, the corresponding average galaxy overdensity, δg, the
number of galaxies brighter than mB = −20, Ng,20, found
in voids, the corresponding average galaxy overdensity using
only those galaxies, δg20, and positions of the centres of the
largest void and their radii.

3 The volume filling fraction is the fraction of the volume that is
contained in voids, FFV =

∑
Vi/Vtotal, where the sum is over

all voids in the sample, and Vtotal is the total volume; so, for
example, FFV = 0.5 means that voids fill half the volume.

When comparing these numbers it is important to keep
the differences in the void finders in mind. For example, some
void finders construct strictly spherical voids, whereas others
build larger ones out of spherical proto–voids. In addition,
there are differences in the spatial resolutions. The numbers
of voids found in the volume thus can be expected to be
different, and they should merely be treated as illustrative
quantities.

If the different results strictly reflected the density field
in the simulation, that is if all the void samples were centred
on the most underdense regions and then extended out to
higher density regions, there would be a simple relationship
between the volume filling fraction FFV and the average
dark matter overdensity δDM. To a certain degree such a cor-
relation does exist. For example, the Pearce voids are centred
on the particles with the lowest local densities and are cut
off at an overdensity of δ = −0.9, whereas Colberg voids are
constructed around proto–voids with δ = −0.8. This results

Figure 2.3: Figure from [27]. A slice of thickness 5 h−1Mpc in the central 40 h−1Mpc region

of the Millennium simulation. The top left and top central panels show only the dark matter

distribution and dark matter plus all galaxies (blue points) in the slice, respectively. The other

panels show the locations of the largest void (with dark matter particles inside the void marked

green), its center (red circle), and all void galaxies found by Brunino (top right), Colberg (second

row, left column), Fairall (second row, center), Foster (second row, right column), Gottlober

(third row, left column), Hahn/Porciani (third row, center), Hoyle/Vogeley (third row, right

column), Muller (bottom, left column), Neyrinck (bottom, center), Pearce (bottom, right

column). Platen/Weygaert (left column), Plionis/Basilakos (center), and Shandarin/Feldman

(right column). Note that both Plionis/Basilakos and Shandarin/Feldman find no void galaxies.
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There exist many different void finders that extend the theoretical definition of

voids in different ways. Lavaux and Wandelt [64] classified them in three different

categories depending on the criterion adopted for the identification of voids. The first

class is based on a density criterion and defines voids as regions empty of galaxies or

with local density well below a threshold [39, 45, 53, 92]. The second class identifies

voids as geometrical structures in the dark matter distribution traced by galaxies, like

e.g. spherical cells, polyedra, etc [28,84,97,98,101,116]. The third class identifies voids

dynamically by checking gravitationally unstable points in the distribution of dark

matter [44,49, 64]. Here galaxies are considered as test particles of the cosmic velocity

field and not as tracers of the underlying mass distribution.

The Aspen–Amsterdam Void Finder Comparison Project [27] presented a systematic

comparison study of thirteen different void finders constructed using dark matter

particles, halos, and semi–analytical model galaxies [34]. The comparison was made

running the different void finders on top of the same subvolume of the Millennium

simulation [113]. For having a better description of the finder, we suggest the reader to

look at the original paper [27]. Here we just list the names associated to them and the

references where they were first discussed: Brunino [18], Colberg [28], Fairall, Foster [45],

Gottlober [47], Hahn/Porciani [49], Hoyle/Vogeley [53], Muller [78], Neyrinck [84],

Pearce, Platen/Weygaert [97], Plionis/Basilakos [98], and Shandarin/Feldman [101].

These void finders differ in type and in the parameters that they use, in addition to

imposing or not a shape to the voids. The results are shown in Figure 2.3. Given

the different assumptions of what a void actually is, it is not surprising to see large

differences between some of the void finders. The details of the shapes and sizes found

by each method are in same cases significantly different, the same happens for the

number of voids, the size of the largest voids and their basic appearance. All of this is

further enhanced by the existence of ad-hoc parameters in most of the existing void

finders, which changes the exact definition of voids. However, there are also some

encouraging agreements. For instance, the locations of the largest voids found by most

of the groups agree quite well with each other.

In Chapter 4 we will describe the void finder used in the following part of the

thesis. It is a watershed algorithm called VIDE [116], which is based on the void finder

ZOBOV [84], that here is called Neyrinck from the creator. From figure 2.3 we can see

that this void finder do not assume any arbitrary shape for the voids and it is one the

few that identify the void as the region we would define looking at the snapshot by

eyes.



Chapter 3

Massive neutrinos

3.1 Particle Physics

Neutrinos are one of the most enigmatic particles of the Standard Model (SM) of

Particle Physics. Their existence was postulated in 1930 by Pauli to ensure energy

conservation in beta decay processes. Few years later, in 1956, they were detected for

the first time by Cowan and Reines [33].

In the framework of the SM, neutrinos are chargeless and massless particles that

can interact only weakly. They are leptons and come with three flavors. However, there

are extended model where neutrinos are massive and can interact via gravity. In 1957

Pontecorvo realized that if neutrinos were massive there could exist processes in which

the neutrino flavor is not conserved: the so called neutrino oscillations. These effect

take place on macroscopic distances for small neutrino masses and they can be detected

if we are able to measure the flux of neutrinos from distant sources, identify their flavor

and compare the results with the theoretical predictions for the initial neutrino fluxes.

This procedure have been extensively performed in the past decades, using different

neutrino beams and detection techniques and it have led to compelling evidences for

the existing of neutrino oscillations from solar, atmospheric, reactor and accelerator

neutrinos experiments (see e.g. the review [42]). This is a very important result, since

the existence of neutrino oscillations implies that neutrinos do have mass and that the

three known neutrino states with definite flavor νe, νµ, ντ are linear combinations of

states ν1, ν2, ν3 with definite mass m1, m2, m3. The current neutrino phenomenology

shows that two neutrino masses are relatively close, while the third one is lighter or

heavier. Usually the two close masses are labeled as m1 < m2 and m3 indicates the

remain neutrino state.

Oscillation experiments can measure the differences of squared neutrino masses,

but they are not sensitive to their absolute scale. In particular, the solar neutrino

experiments are sensitive to ∆m2
21 = m2

2 −m2
1, while the atmospheric one can measure

|∆m2
31| = m2

3 −m2
1. Their best fit values are [85]:

∆m2
21

[
10−5eV2

]
= 7.54+0.26

−0.22 |∆m2
31

[
10−3eV2

]
= 2.3± 0.6 (3.1)

The assumption for the sign of ∆m2
21 > 0, but the impossibility to determine the one

of ∆m2
31 lead to two possible schemes for the mass hierarchy: the normal (NH) and

the inverted (IH) hierarchies, which are shown in figure 3.1. These two schemes differ

31
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Fig. 1. The two neutrino schemes allowed if ∆m2
atm ≫ ∆m2

sun: normal hierarchy
(NH) and inverted hierarchy (IH).

Nowadays there exist compelling evidences for flavour neutrino oscillations
from a variety of experimental data on solar, atmospheric, reactor and accel-
erator neutrinos. These are very important results, because the existence of
flavour change implies that neutrinos mix and have non-zero masses, which
in turn requires particle physics beyond the SM. There are many excellent
reviews on neutrino oscillations and their implications, to which we refer the
reader for more details (see e.g. the recent ones [13,14]).

We know that the number of light neutrinos sensitive to weak interactions
(flavour or active neutrinos) equals three from the analysis of the invisible Z-
boson width at LEP, Nν = 2.994 ± 0.012 [12], and the three flavour neutrinos
(νe, νµ, ντ ) are linear combinations of states with definite mass νi, where i is
the number of massive neutrinos.

In a three-neutrino scenario flavour and mass eigenstates are related by the
mixing matrix U , parametrized as [12,14]

⎛
⎜⎜⎜⎜⎜⎝

c12c13 s12c13 s13e
−iδ

−s12c23 − c12s23s13e
iδ c12c23 − s12s23s13e

iδ s23c13

s12s23 − c12c23s13e
iδ −c12s23 − s12c23s13e

iδ c23c13

⎞
⎟⎟⎟⎟⎟⎠

. (1)

Here cij = cos θij and sij = sin θij for ij = 12, 23 or 13, and δ is a CP-violating
phase. Together with the three masses, in total there are seven flavour param-
eters in the neutrino sector. This would be all if neutrinos were Dirac particles,
like the charged leptons, and the total lepton number is conserved. Instead, if
neutrinos are Majorana particles (i.e. a neutrino is its own antiparticle), the
matrix U is multiplied by a diagonal matrix of phases that can be taken as
diag(1, eiφ2/2, ei(φ3+2δ)/2). These two phases do not show up in neutrino oscil-
lations, but appear in lepton-number-violating processes such as neutrinoless
double beta decay, as discussed later.

6

Figure 3.1: Figures taken from [67]. The two neutrino schemes allowed: normal hierarchy (NH)

and inverted hierarchy (IH).

for the sign of ∆m2
31, which is positive (negative) for the NH (IH) scenarios.

Figure 3.2 shows the relation between the single neutrino masses and their sum,

which can be found numerically. When the mass of the lighter neutrino, which is m1

for NH and m3 for IH, is small then the mass states follow a hierarchical scenario, while

the three neutrino masses are degenerate if the mass of the lightest is big enough. In

this thesis we will consider values for the sum of the neutrino masses that allow to

assume the degenerate case. It is also interesting to notice that the two schemes allow

for different lower bounds to the sum of the three neutrino masses,

∑
mν & 0.056(0.095) eV (3.2)

in the normal (inverted) hierarchy.

Oscillation experiments can put only lower bounds to the sum of the neutrino

masses. Nowadays, the more stringent upper bounds comes from cosmology, which

is directly sensitive to the absolute scale of the neutrino masses. The cosmological

observables used to put upper bounds are the anisotropies in the cosmic microwave

background (CMB), the spatial clustering of galaxies, and the clustering properties of

neutral hydrogen absorbers in the Ly-α forest. Combining CMB and lensing with BAO

probes, the Planck collaboration [96] set the upper bound to be

∑
mν < 0.23 eV at 95 % C.L , (3.3)

whereas analysis involving the Ly-α show a more stringent bound,
∑
mν < 0.12 eV at

95 % C.L [86].

3.2 Background

The Standard Model of Cosmology predict the presence of relic neutrinos, generated

in the early Universe by the frequent weak interactions. These neutrinos remain

in thermal equilibrium with baryons and photons until weak interactions become

inefficient, due to the progressive expansion of the Universe. The decoupling from the

other plasma happens when the temperature of the Universe drops to T ∼ 1 MeV. At
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Fig. 2. Expected values of neutrino masses according to the values in Eq. (2). Left:
individual neutrino masses as a function of the total mass for the best-fit values of
the ∆m2. Right: ranges of total neutrino mass as a function of the lightest state
within the 3σ regions (thick lines) and for a future determination at the 5% level
(thin lines).

Oscillation experiments can measure the differences of squared neutrino masses
∆m2

21 = m2
2 −m2

1 and ∆m2
31 = m2

3 −m2
1, the relevant ones for solar and atmo-

spheric neutrinos, respectively. As a reference, we take the following 3σ ranges
of mixing parameters from an update of ref. [13],

∆m2
21 = (7.9+1.0

−0.8) × 10−5 eV2 |∆m2
31| = (2.2+1.1

−0.8) × 10−3 eV2

s2
12 = 0.30+0.10

−0.06 s2
23 = 0.50+0.18

−0.16 s2
13 ≤ 0.043 (2)

Unfortunately oscillation experiments are insensitive to the absolute scale of
neutrino masses, since the knowledge of ∆m2

21 > 0 and |∆m2
31| leads to the two

possible schemes shown in Fig. 1, but leaves one neutrino mass unconstrained
(see e.g. the discussion in the reviews [14,15,16,17,18]). These two schemes
are known as normal (NH) and inverted (IH) hierarchies, characterized by
the sign of ∆m2

31, positive and negative, respectively. For small values of the
lightest neutrino mass m0, i.e. m1 (m3) for NH (IH), the mass states follow
a hierarchical scenario, while for masses much larger than the differences all
neutrinos share in practice the same mass and then we say that they are
degenerate. In general, the relation between the individual masses and the
total neutrino mass can be found numerically, as shown in Fig. 2.

It is also possible that the number of massive neutrino states is larger than
the number of flavor neutrinos. In such a case, in order to not violate the
LEP results the extra neutrino states must be sterile, i.e. singlets of the SM
gauge group and thus insensitive to weak interactions. At present, the results
of the Liquid Scintillator Neutrino Detector (LSND) [19], an experiment that

7

Figure 3.2: Figures taken from [67]. Expected values of neutrino masses according to the values

in Eq. (3.1). Left panel: individual neutrino masses as a function of the total mass. Right

panel: ranges of total neutrino mass as a function of the lightest state within the 3σ regions

(thick lines) and for a future determination at the 5% level (thin lines).

this stage neutrinos are ultra-relativistic because their mass cannot be larger than few

eV. Moreover, being fermions, their momentum distribution follows the Fermi-Dirac

distribution,

f0
ν (q) =

1

1 + exp(q/aTν)
, (3.4)

where q = p/a is the comoving momentum and Tν is the neutrino temperature, that

falls as a−1 after the decoupling. This means that, after the decoupling, the number

of neutrinos remains constant in a comoving volume. Just after that, the cosmic

temperature drops below the electron mass and the annihilation of electrons and

positron is favored. This process transfer entropy to photos and do not to neutrinos

if we assume that they are already completely decoupled. Therefore, the neutrino

temperature remain unchanged, while the photons get heat and become hotter then

neutrinos. The ratio between their temperatures is Tγ/Tν = (11/4)1/3 and the Fermi-

Dirac distribution of neutrinos is smaller than the photon distribution by a factor of

7/8.

As long as neutrinos are relativistic, they contribute with photons to the total

radiation energy density of the Universe. The energy density is the first moment of the

distribution function. Therefore it can be written as

ρr =

[
1 +

7

8

(
4

11

)4/3

Neff

]
ργ , (3.5)

where ργ is the energy density of photons, measured by CMB experiments, and

Neff = 3.046 is the effective number of relativistic degrees of freedom for neutrino,

that account for the fact that neutrinos are slightly coupled when electron-positron

pairs annihilate transferring their entropy to photons [73, 115]. Experimentally, the

value of Neff is constrained by the Big Bang Nucleosynthesis (BBN) and the CMB

anisotropies [67].

Neutrinos become non-relativistic when their mean thermal energy drops below
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their mass mν , at a redshift znr given by

1 + znr(mν) ' 1890
( mν

1eV

)
. (3.6)

At this stage, neutrinos contribute to the amount matter in the Universe with an energy

density

Ων =
ρν
ρcrit

=

∑
imi

94.1h2eV
, (3.7)

where ρcrit = 3H2/8πG is the critical density. The Planck collaboration [96] measured

the matter energy density as Ωm ' 0.3, which put an upper bound to the neutrino

mass mν . 5 eV (assuming 3 degenerate neutrino masses).

In the 1970-80s neutrinos have been considered as possible candidate for dark matter.

Giving their high thermal velocities, this type of dark matter is called hot (HDM). In

this scenario, big structures like superclusters are older, while smaller structures as

clusters and galaxies form via a subsequent fragmentation of the first ones. However,

observations show that this top-down scenario is wrong: big objects form via merging

of small ones. For this reason neutrinos cannot constitute the whole amount of dark

matter, but we know that they do exist and they do have mass, therefore they are at

least a small fraction of the dark matter in the Universe.

There are many debate about the ”coldness” of the remain part of dark matter. In

this thesis, we assume the main part of the dark matter to be in the form of cold dark

matter (CDM) particles, i.e. particles which were non-relativistic at the epoch when

the universe became matter-dominated. We do not consider any possible warm dark

matter particles. Therefore here Ωm = Ωb = Ωc + Ων , where the subscript b, c, ν stay

for baryons, cold dark matter and neutrinos, respectively. Within this framework one

can use the available cosmological data to find how large the neutrino contribution can

be.

3.3 Linear theory

The impact of massive neutrinos on the Large Scale Structure are well know at the

linear pertubation level. Here we present the main results, assuming that neutrinos are

already in the non-relativistic phase.

In the previous section we have seen that the background phase-space distribution

of neutrinos f0
ν (q) is time-independent (see Eq. (3.4)). Linear order perturbations in

the metric introduce some time and space corrections, at linear order. Therefore, at

the first order the phase-space distribution is

fν(q, x, ~n, t) = f0
ν (q) [1 + Ψ(q, x, ~n, t)] , (3.8)

where Ψ(q, x, ~n, t) is the linear perturbation to the distribution function, ~n = ~q/q and

f0
ν (q) has the form of Eq. (3.4). The evolution of the linearized phase-space distribution

function is governed by the linearized collision-less Boltzmann equation. The neutrino

perturbation can be computed by solving the Bolzmann equation since density contrast,

pressure, velocity dispersion and anisotropic stress are moments of the distribution

function.
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Because of the absence of microscopic interaction, there is no reason for the

anisotropic stress of neutrinos to be zero at linear order. Therefore neutrinos cannot

be described as a perfect fluid. Since they are collision-less and have a large thermal

velocity, they are not a fluid either. However, it has been shown in [110] that the

fluid approximation holds for light neutrinos and long after the redshift znr of the

non-relativistic transition. Usually the Bolzmann equation is expanded in an infinite

hierarchy of terms. Applying the fluid approximation means that the hierarchy can be

truncated and only the first two terms are the relevant ones.

As long as neutrinos are relativistic, they travel at the speed of light. When they

become non-relativistic, their mean thermal velocity is

vth '
3Tν
mν
' 150(1 + z)

(
1eV

mν

)
km s−1 , (3.9)

which make them free-streaming out from even high density perturbation of matter. In

the fluid approximation framework, this can be described in analogy with sound waves

propagating at finite sound speed on scales smaller than the sound horizon. Indeed,

the neutrino thermal velocity introduce a typical scales, the free-streaming length

λFS(z,mν) = a(z)
2π

kFS
= 7.7(1 + z)

H0

H(z)

(
1eV

mν

)
h−1Mpc (3.10)

traveled by the neutrino perturbation between two different times. Here kFS is the

associated free-streaming wavenumber, H is the Hubble parameter and a the scale factor.

For neutrinos becoming non-relativistic during matter domination, the free-streaming

wavenumber reach a minimum at the transition given by

knr = kFS(znr) ' 0.018Ω1/2
m

( mν

1eV

)
hMpc−1 . (3.11)

The physical effect of free-streaming is the following: neutrino density perturbations

are damped and washed out on scales smaller than λFS, while large scale perturbations

behave as CDM since on that scales the neutrino velocity can be considered as vanishing.

In particular, modes with k < kFS evolve as CDM perturbations. This leaves some

clear feature on the total matter power spectrum.

The matter density perturbations δm in Fourier space can be written as weighted

sum of the CDM, baryons and neutrinos density fluctuations

δm = (1− fν)δc + fνδν , (3.12)

where we have used δb = δc and

fν ≡ Ων/Ωm , (3.13)

being the fraction of matter in neutrinos. Then, the matter power spectrum Pmm(k) =

〈δm(k)δm(k)〉 is given by

Pmm = (1− fν)2Pcc + fν(1− fν)Pcν + f2
νPνν , (3.14)

where Pcc and Pνν are the cold dark matter (+baryons) and neutrino power spectra,

respectively. Pcν is the cold dark matter-neutrino cross-power spectrum. As we said,
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Figure 3.3: Ratio between the cold dark matter and the matter power spectra for different

values of the sum of neutrino masses.

neutrino perturbations are washed out on scales k > knr. This scale is typically larger

than the scale at which nonlinear effects are relevant at low redshifts. Therefore, at

the end of matter domination δν = δc = δb for k < knr, while δν � δc = δb for k � knr.

The matter power spectrum is, then,

Pmm(k) =

{
Pcc(k) if k < knr

(1− fν)2Pcc(k) if k � knr

(3.15)

from which we see that the Pmm(k) ≤ Pcc(k), at all scales. This behavior is shown in

figure 3.3, where we plot the ratios between the matter and the cold dark matter power

spectra for different values of the sum of the neutrino masses. This ratio have been

computed running the code CAMB [68], that solves the Boltzmann equations for the

evolution of matter perturbations at the linear level. On large scales the ratio is 1 and

going towards smaller scales it increases reaching the asymptotic value (1− fν)−2 on

very small scales. However, neutrinos modify also the evolution of CDM and baryons

them-self, via back-reaction. This translates into an additional suppression of the total

matter power spectrum on small scales.

The neutrino back-reaction acts in two different ways. First, the presence of a

background neutrino field modifies the expansion rate of the Universe, which translate

into a damping of CDM and baryon perturbations on small scales. Second, the

density, pressure and velocity neutrino perturbations change the evolution of the metric

perturbations and the neutrino shear induces a non-zero difference between the two

gravitational potentials, which is however not relevant during matter domination. The

main effect on the growth of matter perturbations comes from the first, i.e. the presence

of the neutrino background.

In the absence of neutrinos and during matter domination, the density contrast of

CDM and baryons grow like the scale factor δc ∝ a as in Eq.(1.26). The same holds

with massive neutrinos for scales much larger that the free-streaming length. Indeed,
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neutrinos contribute both to the Poisson equation with δν = δc and to the background

evolution, so the density contrast of matter, and in particular the CDM one, grows like

the growth factor. On small scales, k � knr, the behavior is different. The presence of

background neutrinos contribute to the expansion rate but the neutrino perturbations

are damped and do not contribute to the clustering of matter. Then, the contribution

of neutrino perturbations to the Poisson equation can be neglected. In this case, the

CDM perturbations satisfy the equation

δ̈c + 2H(z)δ̇c −
3

2
H2(z)(1− fν)δc = 0 , (3.16)

which is different from Eq.(1.24) and has a growing solution [12]

δc ∝ a1− 3
5
fν , (3.17)

assuming that fν � 1. The above solution show that the evolution of CDM (and

baryons) perturbations are reduced. Clearly, this is due to the fact that one of the

component in the Universe contributes to the homogeneous expansion rate but not to

the gravitational clustering. On intermediate scales, the CDM perturbations smoothly

interpolate between the two asymptotic regimes resulting in scale dependent linear

growth factor.

Let us see how this translate into the evolution of the matter power spectrum. We

consider two different cosmology that share the same values of Ωm and Ωb, but differ

for Ωc according to the amount of neutrinos: Ωc = Ωm − Ωb − Ων . Let the first one

have massive neutrinos (fν > 0) and be label as νΛCDM, the second one be without

neutrinos and thus called ΛCDM. On large scales, k < knr, the CDM and neutrino

perturbations are indistinguishable and they are equal to the CDM perturbations in a

cosmology without neutrinos. Therefore, the ratio of the linear matter power spectra in

the two cosmologies is equal to 1. It is interesting to notice that in these two cosmologies

the matter-radiation equality does not take place at the same time. The value of the

scale factor at equality is aeq = Ωr/(Ωc + Ωb). Since neutrinos are still relativistic at

equality, they have to be considered as radiation. Then the ratio between the scale

factors in the two cosmology is

aνΛCDM
eq /aΛCDM

eq = (1− fν)−1 , (3.18)

which means that the equality is delayed by the presence of massive neutrinos. The

delayed equality and the back-reaction mechanism in Eq. (3.17) damp the linear matter

power spectrum in massive neutrino cosmologies on small scales. On scales k � knr

and for small values for fν , the ratio between the matter power spectrum in the two

cosmology can be approximated to [54]

PνΛCDM(k)

PΛCDM(k)
' 1− 8fν . (3.19)

On intermediate scales, there is a smooth transition between the two asymptotic regimes.

The ratio is shown in figure 3.4, where the two different asymptotic values can be seen.

The linear regime, on large scales, is probed by different cosmological observables

such as CMB anisotropies and CMB gravitational lensing, commonly used to put

constrains on the neutrino masses [96].
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Figure 3.4: Impact of neutrino masses on the linear matter power spectrum. Left panel: matter

power spectrum for different values of the sum of neutrino masses. Right panel: ratio of the

linear matter power spectrum in a massive neutrino cosmology (νΛCDM) with respect to the

massless case (ΛCDM).

3.4 Nonlinear theory

Massive neutrinos also impact on the evolution of structures in the fully non-linear

regime in many different ways. The cosmological observables involved are: the matter

power spectrum at small scales [25–30], the halo-matter bias [31–34], the clustering

within dark matter halos [35–41], the evolution of cosmic voids [42], the halo mass

function [31, 32, 38, 43–45], the redshift-space distortions [43], the Ly-α forest statistical

properties of the transmitted flux [28, 42, 46], the Sunyaev-Zeldovich effects in galaxy

cluster surveys [47], the galaxy clustering [48].

Nowadays, we have a good understanding of the evolution of the cosmological

structures at the linear perturbation level. We also understand the impact of massive

neutrinos on them. Instead we lack a description of the fully non-linear regime, which

will become important to interpret the data from the next generation of surveys. Here,

we briefly review the two methods used to predict the evolution of structures in the

nonlinear regime, which account for the presence of massive neutrino. They are a

fitting-function method called HALOFIT, and the machinery of N-body simulations.

3.4.1 HALOFIT

Sometimes is sufficient and useful to rely on a fitting formula to describe what is

complicated from the theoretical point of view. Here we discuss the fitting formula

HALOFIT [112], which allows to compute the nonlinear matter power spectrum given

the corresponding linear one.

The main idea of HALOFIT comes from [52], where the authors develop a method

for mapping the linear theory on large scales into nonlinear predictions on small scales,

assuming the stable clustering hypothesis. This hypothesis states that a nonlinear
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collapsed object decouples from the global expansion of the Universe to form an isolated

system in virial equilibrium. In particular, the authors propose the so called ‘scaling

ansatz’: the nonlinear volume averaged two point correlation function of matter

ξ̄(x) ≡ 3

x3

∫ 1

0
y2ξ(y)dy , (3.20)

can be described as a simple function of the linear two point function, provided a

transformation of scales due to nonlinear evolution. This transformation is performed

in the spirit of the spherical collapse model. Supposed that the enclosed mass of

a spherical overdensity in the initial density field is m0(< xi) and it evolves into a

mass m(< xf) of different size. If there is no shell-crossing, the mass is conserved

and ρi(< xi)x
3
i = ρ(< xf)x

3
f , where the densities are averaged over the volume. Let

notice that the enclose correlation 1 + ξ̄ measures by how much the density is enhanced

compared to the mean. We can use this mapping to connect the linear (L) and the

nonlinear (NL) overdensities and scales. If the linear correlation function is ξ̄L � 1,

then

x3
L = x3

NL

[
1 + ξ̄NL(x, z)

]
, (3.21)

where xNL represents the nonlinear Eulerian scale and xL is the linear Lagrangian one.

Once the rescaling is done, the mapping between the two point functions is given,

ξ̄NL(xNL, z) = f
[
ξ̄L(L, z)

]
. (3.22)

The function f is universal and it can be estimated analytically in two regimes: 1) in

the linear regime, when ξ̄L � 1 and f = 1; 2) in the case ξ̄L � 1 where the stable

clustering case apply, i.e. the linear enclosed correlation scales as the square of the

scale factor, ξ̄L ∝ a2, while the nonlinear one goes as ξ̄NL ∝ a3. Then, in this second

case the function is f(y) ∝ y3/2. On intermediate regimes, the solution for the function

has to be found empirically, fitting the results from N-body simulations.

An additional important contribution was given by [94], where the mapping between

linear and nonlinear regimes is extended to the power spectrum. The key idea is

recognizing that ξ̄ can be replaced by the adimensional power spectrum ∆2 at some

effective wavenumber. Then, the Fourier counterpart of Eqs. (3.21) and (3.22) is given

by

∆2
NL(kNL) = f

[
∆2

L(kL)
]
, (3.23)

kNL =
[
∆2

NL(kL)
]1/3

kL . (3.24)

Finally the authors in [112] formulated the HALOFIT prescription in ΛCDM

cosmologies, rewriting the ideas presented below in the spirit of the halo model (see

Chapter 5 for a review). This framework is based on the idea that all the matter is in

virialized structures, the halos. Therefore, the matter power spectrum is written as the

sum of two terms,

∆2
NL(k) = ∆2

Q(k) + ∆2
H(k) , (3.25)

where ∆2
Q is the so called quasi-linear term that describes the power generated by the

large-scale displacement of halos, and ∆2
H is the halo term representing the cluster of
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matter inside each halo. These two contributions are then the 2- and 1-halo term in

the standard framework of the halo model, respectively. They have the form,

∆2
Q(k) = ∆2

L(k)

[
(1 + ∆2

L(k))βn

1 + αn∆2
L(k)

]
exp(−f(y)) , (3.26)

∆2
H(k) =

∆2 ′
H (k)

1 + µny−1 + νny−2
, (3.27)

where y ≡ k/kσ with kσ being the inverse of the scale where the variance of the density

field is equal to 1, f(y) = y/4 + y2/8 and

∆2 ′
H (k) =

any
3f1(Ωm)

1 + bnyf2(Ωm) + [cnf3(Ωm)y]3−γn
. (3.28)

The form of quasi-linear and the halo terms are quite complicated and they depend

on many parameters, that are functions of the matter density Ωm (f1, f2, f3), or of the

spectral index n (an, bn, cn, γn, αn, βn, µn, νn). All these functions are fit to N-body

simulations and the details about them can be found in the Appendix C of [112].

There have been improvements to the first version of HALOFIT by [118]. This

revised formula is expected to be an accurate prediction of the nonlinear matter power

spectrum in a wide range of wavenumber (k ≤ 30hMpc−1) at redshifts z ≤ 10, with

5% precision for k < 1hMpc−1 at z ≤ 10, and 10% for k < 10hMpc−1 at z ≤ 3.

A further extension has been done by [10] that, adding few parameters to the

original HALOFIT, enables it to account for neutrinos effects on the nonlinear total

matter power spectrum.

3.4.2 N-body simulation

N-body simulations are a very good tool to study the evolution of structures in the

fully nonlinear regime. Nowadays there are two main ways to implement neutrinos in

them: the so called grid-method [15] and particle-method [121].

The grid method describes the neutrino density on a grid, without introducing

any neutrino particle, while the CDM component is implemented using a particle

description, as in usual ΛCDM simulations. The neutrino density is evolved in time

using linear theory and its gravitational force contributes only as a long-range force.

This type of simulations have the advantage of being a fast implementation of the

matter evolution in massive neutrino cosmologies which do not suffer from the presence

of shot noise on small scales. However, they are not able to properly describe the

nonlinearities of the neutrino component. Therefore, they can be used only in regimes

where the nonlinear effects of neutrinos are negligible.

In the particle-method both CDM and neutrinos are simulated as collision-less

particles with individual velocities. We make use of this type of simulations in this

thesis, since they are able to capture the nonlinear regime of massive neutrinos once the

short-range gravitational forces acting on neutrinos are taken into account. Ref. [123]

showed that this feature is required to correctly account for the clustering of neutrinos

within dark matter halos and to reproduce the neutrino halos down to small scales. We

will present the setup and the main features of our simulations, along with the list of

their specific parameters, in Chapter 4.



Chapter 4

Tools

In this chapter we will present some numerical tools broadly used in the next part

of this thesis. In particular, we will describe the setup and properties of the N-body

simulations run to compare our theoretical models to the fully nonlinear regimes

achieved numerically (in Part II and Part IV), or to perform some statistical analysis

directly from the output of the simulations (in Part III). Secondly, we will introduce the

void finder used to identify voids in the simulations. This is the underlying tool used

in Part III, to perform a numerical study of void properties and isolate the neutrino

impact on them, and in Part IV, to test our theoretical predictions for the shape and

evolution of void profiles and bias.

4.1 N-body simulations

Our N-body simulations are performed using the TreePM-SPH (Tree Particle Mesh-

Smoothed Particle Hydrodynamics) code GADGET-3, which is an improvement of

the publicly available GADGET-2 [113], as modified in [121] to account for massive

neutrinos. Here, CDM and neutrinos are treated as two separate set of collision-less

particles. In the PM the mass of each particle is interpolated on a fixed grid to compute

the density. The Poisson equation is solved on the grid using a Fast Fourier transform

and the gravitational forces are then interpolated back on the particles. Differently

from the grid-method, the short-range tree is included to compute the gravitational

forces acting on neutrinos on small scales; ref. [123] showed that this feature is required

to correctly account for the clustering of neutrinos within dark matter halos and to

reproduce the neutrino halos down to small scales. A part from the mass, the only

difference between CDM and neutrinos concerns how they are initialized at the starting

redshift of the simulation. Indeed, neutrinos receive an extra thermal velocity obtained

by randomly sampling the neutrino Fermi-Dirac momentum distribution, whose mean

is shown in Eq.(3.9).

The initial conditions (ICs) have been generated at z = 99 by displacing the particle

positions according to the Zel’dovich approximation [131], for both CDM and neutrino

particles. They share the same set of random numbers in each box, to reproduce the

assumption of adiabatic primordial ICs. The transfer functions are obtained through

CAMB [68]. There are not baryons in our simulations, however their effects (for

instance the BAO wiggles) on the CDM field are included using a transfer function Tcb

41
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that is a weighted average of the transfer functions of the CDM and the baryons:

Tcb(k) =
ΩcTc(k) + ΩbTb(k)

Ωc + Ωb
. (4.1)

Other baryonic effects are expected to be mostly insensitive to the neutrino mass, and

therefore not relevant when we will compare the effect of massive neutrinos on large

scale structure measurements to the same quantities measured in a standard ΛCDM

model. Moreover, any additional effect produced by the interplay of neutrinos with

baryon physics should be of higher order. This is supported by [10], which shows that

the neutrino induced suppression in the total matter power spectrum is very much the

same in simulations with and without baryons.

The values of the cosmological parameters, for all simulations with the exception of

few of them that we discuss below, are the ones found by the Planck collaboration [96]:

Ωm = 0.3175, Ωb = 0.049, ΩΛ = 0.6825, h = 0.6711, ns = 0.9624, As = 2.13 × 10−9.

We have run simulations for four different cosmological models: a model with massless

neutrinos and three models with massive neutrinos (three degenerate species) with

masses
∑
mν = 0.15 eV,

∑
mν = 0.3 eV and

∑
mν = 0.6 eV. In our simulations

the value of Ωm and Ωb is fixed, whereas the values of Ωc and Ων depend on the

neutrino masses (see Eq. (3.7)) such as Ωc = Ωm − Ωb − Ων . In order to investigate

the
∑
mν − σ8 degeneracy, we have also run simulations with massless neutrinos, but

a value of σ8 equal to the one of the
∑
mν = 0.6 eV model. The σ8 value has been

computed from the total matter or from the CDM power spectrum. In all simulations

the softening length ε of both CDM and neutrino particles is set to 1/40 of the mean

linear inter-particle distance.

In simulations with the sum of the neutrino masses lower than current tightest

bounds
∑
mν < 0.12 eV [86] the effects of massive neutrinos may not be seen properly

or they would be largely contaminated by cosmic variance. We chose values for the

neutrino masses that do not respect this bound because we want to enhance the effects

of massive neutrinos in the mildly-nonlinear and nonlinear regimes in order to isolate

and study them, more than giving a precise estimation of their real magnitude. Note

further that some groups are claiming that concordance cosmology between Planck

CMB data and cluster abundance or weak lensing could be achieved by allowing a

non-zero neutrino mass of 0.3 eV (±0.1 eV) (see however the discussion in the latest

Planck cosmological parameter paper [96]).

The name of the simulations arises from their size (L for 1000 h−1Mpc, M for

500 h−1Mpc and S for 200 h−1Mpc), from the number of CDM particles (f for 2563

and m for 5123) and from the value of neutrino masses (0 for 0.0 eV, 15 for 0.15 eV

and so on). For instance, the simulation Lf30 has box-size equal to 1000 Mpc/h, 2563

CDM particles and
∑
mν = 0.3 eV. Simulation with massless neutrinos but different

σ8 are labeled as s8 and s8CDM, depending if the σ8 value has been computed from

the total matter or from the CDM power spectrum, respectively. Depending on the

need, we have run one or more realizations for each simulation type. A summary of

our simulation suite is shown in table 4.1, where the group on top is used in Part II,

while the one on bottom concerns Part III and IV.

For each simulation we have computed the CDM power spectrum, the neutrino

power spectrum, the CDM-neutrino cross-power spectrum and the total matter power
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Name Box Size
∑
mν Ncdm Nν ε σ8 realizations

(Mpc/h) (eV) (kpc/h) (z=0)

Lm0 1000 0.00 5123 0 50 0.834 1

Lm15 1000 0.15 5123 5123 50 0.801 1

Lm30 1000 0.30 5123 5123 50 0.764 1

Lm60 1000 0.60 5123 5123 50 0.693 1

Sm0 200 0.00 5123 0 10 0.834 1

Sm15 200 0.15 5123 5123 10 0.801 1

Sm30 200 0.30 5123 5123 10 0.764 1

Sm60 200 0.60 5123 5123 10 0.693 1

Lf0 1000 0.00 2563 0 100 0.834 10

Lf0s8 1000 0.00 2563 0 100 0.693 10

Lf0s8CDM 1000 0.00 2563 0 100 0.717 10

Lf15 1000 0.15 2563 2563 100 0.801 10

Lf30 1000 0.30 2563 2563 100 0.764 10

Lf60 1000 0.60 2563 2563 100 0.693 10

Mm0 500 0.00 5123 0 25 0.834 1

Mm15 500 0.15 5123 5123 25 0.801 1

Mm30 500 0.30 5123 5123 25 0.764 1

Mm60 500 0.60 5123 5123 25 0.693 1

Table 4.1: Specifications of our N-body simulation suite. The first letter of the simulation name

indicates whether the box-size is (L) , medium (M) or small (S). The second letter refers to

the number of CDM particles: many (m) or few (f). The values of the following cosmological

parameters are the same for all the simulations (with the exception of the simulation L0s8 in

which As = 1.473× 10−9 and L0s8CDM where As = 1.576× 10−9): Ωm = 0.3175, Ωb = 0.049,

ΩΛ = 0.6825, h = 0.6711, As = 2.13× 10−9, ns = 0.9624.

spectrum. The amplitude of the neutrino and the total matter power spectrum has

been corrected to account for the shot-noise associated to the neutrino density field.

4.2 Void finder

We identify voids using the publicly available Void Identification and Examination

(VIDE) toolkit [116], which uses a modified version of ZOBOV [84] to perform a Voronoi

tessellation of the particles and then a watershed transform to group the Voronoi cells

into a hierarchical tree of subvoids and voids [97]. A pictorial explanation of the process

is shown in Figure 4.1.

The first step is called called Voronoi Tessellation Field Estimator (VTFE) and it

performs a density estimation at each dark matter particle. It divides the space into

cells such that each cell contains only one particle i and it has volume V (i) defined as

the region of space closer to particle i than to any other particle. The density associated

to particle i is 1/V (i). This step gives also a natural set of neighbors for each particle i

(the set of particles whose cells adjoin the cell i), which will be used in the next step.

Panel (a) of figure 4.1 shows a set of particles from the Millennium simulation [113],
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ZOBOV: a parameter-free void finder 2103

Figure 1. (a) Galaxies (Croton et al. 2005, down to B = −10) from a 40 × 40 × 5 (h−1 Mpc)3 slice of the AAVFCP region. The outer boundary is 45 h−1 Mpc

square. The slice is of the same size as the dark matter illustration in Fig. 6, but is at an edge of the central 40 h−1 Mpc cube, not at the centre. It was chosen

because the voids in this figure are less well defined, and thus richer in structure. (b) The 2D Voronoi tessellation of galaxies in this slice, with each particle’s

Voronoi cell shaded according to its area. The galaxies outside the inner (40 h−1 Mpc) boundary are shown because they contribute to the tessellation. (c) Zones

of galaxies. The cores (density minima) of each zone are shown with crosses; the different colours merely demarcate different zones. (d) The growth of void 1,

the deepest void in the sample. With analogy to a water tank, the water level (density) is increased and zones the water runs into are added to the void. Colours

from dark to light indicate the stage at which the zone is added to the void. The darkest colour is the original zone, the next darkest is the first zone or set of

zones added, etc. The only zone that is never included is that with the highest density link to another zone, in the lower right-hand corner. A measure of the

probability that each zone-adding event leads to a void that did not arise from Poisson noise is shown in Fig. 4.

2.4 Statistical significance of voids

The probability that a void v is real is judged according to its density

contrast, i.e. the ratio r(v) of ρ l(v), the minimum-density particle on

a ridge beyond which is a deeper void, to v’s minimum density, ρmin.

This is not the only conceivable way to judge the significance of a

void. But it is simple, and the probabilities it returns roughly align

with what visual inspection would suggest.

The density contrast r is converted to a probability by compar-

ing to a Poisson particle distribution. Several statistical properties

of Voronoi diagrams applied to Poisson-sampled uniform density

distributions are well understood. For example, the distribution of

Voronoi cell volumes is well approximated by a gamma distri-

bution (Kiang 1966), and the average number of Voronoi neigh-

bours (48π2/35 + 2 ≈ 15.54) is even known analytically (Okabe

et al. 2000). Unfortunately, the distribution of contrasts of density

C⃝ 2008 The Author. Journal compilation C⃝ 2008 RAS, MNRAS 386, 2101–2109

Figure 4.1: Figure from [84]. (a) Galaxies by Croton et al. [34] from a 40× 40× 5 (h−1Mpc)3

slice. (b) The 2D Voronoi tessellation of galaxies in this slice, with each Voronoi cell shaded

according to its area. The galaxies outside the inner (40 h−1 Mpc) boundary are shown because

they contribute to the tessellation. (c) Zones of galaxies. The cores (density minima) of each

zone are shown with crosses; the different colors merely demarcate different zones. (d) The

growth of void 1, the deepest void in the sample. With analogy to a water tank, the water level

(density) is increased and zones the water runs into are added to the void. Colors from dark to

light indicate the stage at which the zone is added to the void. The darkest color is the original

zone, the next darkest is the first zone or set of zones added, etc.
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and panel (b) illustrates the corresponding Voronoi tessellation, where different colors

describe different cells.

The second step involve the joining of Voronoi cells into zones around each local

minimum, and it is called zoning. A local minimum is a particle with density lower than

all its neighbor cells. The void finder sends all the particles to their minimum density

neighbor until it arrives to the local minimum. Thus, a zone is the set of particles

that flow towards the same minimum. Panel (c) of figure 4.1 shows the result of this

process, where different colors correspond to different zones. Each of them could be

considered a voids, but, because of discreteness noise, many zones are spurious. Thus,

it is necessary to join some zones together to form the final voids.

The last step joins zones together using a watershed algorithm, as follows. For

each zone z, the water level is set to the minimum density of z. Then, it is gradually

raised so that the water can flow to neighbor zones, joining them to the zone z. The

process stop when the water flows into a zone with a lower minimum. The final void

related to z is defined to be the one just before this happens. If starting from the zone

with the deepest minimum of the simulations, the algorithm will join all the zones and

will identify all the space as a huge voids. Panel (d) of figure 4.1 shows the stages of

growth that the deepest void in the set of particles undergoes. The process starts from

the darker region, which is the deepest one. Successively lighter colors shade zones are

added as the water level is increased. Since this is the deepest void, its final extent

covers the whole simulation, except for the zone lighter zone in the lower right-hand

corner of the figure, which has the highest density particle separating it from from the

void. In order to avoid this percolation, we must take into account some criterion that

stop the merging of zones. A possible one is related to measuring the probability that

each void is real, based on how likely the void density contrast occurs in a Poisson

realization. Then, a significance level at which to trust that a subvoid is real and

independent void can be set. The probability that a void v is real is connected to the

ratio r(v) between the minimum particle density at the border with a deeper void and

its minimum density. Neyrinck [84] estimated that this ratio is r = 2.19 at the 2σ level

and r = 7 at 5σ. The void finder then excises subvoids above the significance level from

parent voids, together with all zones which join the parent void in the same accretion

event or in subsequent ones.

A final catalog of voids is then built using the criteria that the voids must be larger

than the mean particle separation in the simulation. In the analysis performed in Part

III we will only consider voids larger than 4.0 Mpc/h in the CDM field (low resolution

simulations) and voids larger than 10 Mpc/h in the galaxy distribution (high resolution

simulations). While voids naturally form a nested hierarchy, we only consider top-level

(i.e., parent) voids.

When identifying voids in the matter density field, we run VIDE on top of the cold

dark matter particles only, even if we are considering cosmologies with massive neutrinos.

In principle we should select voids in the total matter field, including also neutrinos.

However, VIDE cannot discriminate between two different particle populations having

two different masses. Therefore we must select voids in one of the two density fields and

the CDM is the one mainly responsible for the evolution of the cosmic structures. It

would be interesting to understand the differences arising in defining voids in the CDM

or in the total matter field and which of the two is the fundamental field to identify
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voids. When selecting voids in the galaxy distribution we instead run VIDE on top of

the whole mock galaxy catalog.

The output of VIDE is a catalog which contains much information about the

identified voids. In this thesis we use only the following: position of the center, particle

members, effective radius (Reff) and ellipticity. The effective radius Reff is defined as

the radius of a sphere containing the same volume as the watershed region that delimits

the void, and the center is the volume-weighted center of all the Voronoi cells in each

void.



Part II

Halo Model with Massive
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Based on:

E. Massara, F. Villaescusa-Navarro and M.Viel, The halo model in a massive neutrino

cosmology, JCAP 12 (Dec., 2014) 53, [arXiv:1410.6813].

Abstract

We provide a quantitative analysis of the halo model in the context of massive neutrino

cosmologies. We discuss all the ingredients necessary to model the non-linear matter

and cold dark matter power spectra and compare with the results of N-body simulations

that incorporate massive neutrinos. Our neutrino halo model is able to capture the

non-linear behavior of matter clustering with a ∼ 20% accuracy up to very non-linear

scales of k = 10 h/Mpc (which would be affected by baryon physics). The largest

discrepancies arise in the range k = 0.5−1 h/Mpc where the 1-halo and 2-halo terms are

comparable and are present also in a massless neutrino cosmology. However, at scales

k < 0.2 h/Mpc our neutrino halo model agrees with the results of N-body simulations

at the level of 8% for total neutrino masses of < 0.3 eV. We also model the neutrino

non-linear density field as a sum of a linear and clustered component and predict the

neutrino power spectrum and the cold dark matter-neutrino cross-power spectrum up

to k = 1 h/Mpc with ∼ 30% accuracy. For masses below 0.15 eV the neutrino halo

model captures the neutrino induced suppression, casted in terms of matter power

ratios between massive and massless scenarios, with a 2% agreement with the results

of N-body/neutrino simulations. Finally, we provide a simple application of the halo

model: the computation of the clustering of galaxies, in massless and massive neutrinos

cosmologies, using a simple Halo Occupation Distribution scheme and our halo model

extension.
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Introduction

The best way to study the impact of massive neutrinos on the mildly and fully non-

linear regime is via N-body simulations. However these simulations are computationally

expensive and thus, the parameter space can not be fully sampled. The aim of this Part

of the thesis is to extend the halo model [31], which is a complementary approach to

some Perturbation Theories (PT), in order to be able to compute the matter and cold

dark matter power spectrum in massive neutrinos cosmologies. Notice that previous

works have already tried to extend the halo model to incorporate the effects of massive

neutrinos [1], although their results are in great tension with those from the N-body.

Having an analytic model allows to get physical insight on massive neutrino

cosmologies at nonlinear scales. We use the model to understand the typical spoon-

shape seen in N-body simulations when computing the ratio between power spectra

in massless and massive neutrinos cosmologies. Moreover, we apply it to the study of

galaxy clustering.

It is important to note that on small scales baryonic processes are very important

[40,41,120] and can (at least partially) mimic the neutrino induced effects [81]. Here

we do not account for these important processes since we want the isolate the effects of

massive neutrinos w.r.t. the same simulation set-up without massive neutrinos. We

thus caution the reader that on small scales the matter power spectrum has to be

modeled more carefully by incorporating baryonic physical processes, e.g. galactic

feedback, especially in view of future missions like Euclid.

This paper is organized as follows. In Chapter 5 we review the standard halo

model, which is capable of predicting, with high accuracy, the matter power spectrum

in cosmologies with massless neutrinos. Our extension of the halo model to incorporate

cosmologies with massive neutrinos is presented in Chapter 6, where we compare the

results of our extended halo model against N-body simulations. In section 6.3 we use

the halo model to explain the small scale features present in the matter power spectrum

of cosmologies with massive neutrinos. In Chapter 7 we present the galaxy clustering

predicted by halo model, once a Halo Occupation Distribution (HOD) framework has

been considered, and we compare it with measurements.
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Chapter 5

Halo Model in pure ΛCDM

cosmology

In this chapter we briefly review the halo model [31], as it was built for cosmologies

without massive neutrinos.

Simulations showed that the initial smooth dark matter field evolves in a network of

filaments and knots, which are highly nonlinear. The halo model provides a description

of the statistical properties of this evolved dark matter field, assuming that all the

matter is bound up in isolated knots, called halos. Let us call ~xi the centers of these

halos. Then, the matter density at position ~x is given by summing up the contribution

from each halo

ρ(~x) =
∑

i

ρ(~x− ~xi|Mi) (5.1)

=
∑

i

∫
dM δ(M −Mi)

∫
d3x′ δ3(~x′ − ~xi) M u(~x− ~x′|M) , (5.2)

where ρ(~x − ~xi|Mi) is the density around the i−th halo and we have assumed that

it depends only on the mass Mi contained in the halo, whereas u(~x − ~xi|Mi) ≡
ρ(~x− ~xi|Mi)/Mi is the normalized profile.

Let us consider the matter density contrast, which is defined as δ(~x) = ρ(~x)/ρ̄− 1,

where ρ̄ is the comoving background matter density, and the power spectrum, which

is the Fourier transform of the two-point correlation function 〈δ(~x1)δ(~x2)〉, with the

average taken over the ensemble. The fully nonlinear matter power spectrum predicted

by the halo model is given by the sum of two terms

P (k) = P1h(k) + P2h(k) . (5.3)

The 1-halo term, P1h(k), counts for the correlations between particles that belong to

the same halo and dominates on small scales, whereas the 2-halo term, P2h(k), describes

the correlation between particles in different halos and becomes important on large

scales. Since the comoving number density of halos of mass M , per mass unit, at

redshift z is defined as
〈∑

i

δ(M −Mi) δ
3(~x′ − ~xi)

〉
≡ n(M, z) , (5.4)

53



54 CHAPTER 5. HALO MODEL IN PURE ΛCDM COSMOLOGY

and we assume a spherically symmetric profile u(~x − ~xi|Mi) = u(ri|Mi), the 1- and

2-halo terms are

P1h(k, z) =

∫ ∞

0
dM n(M, z)

(
M

ρ̄

)2

|u(k|M)|2 (5.5)

P2h(k, z) =

∫ ∞

0
dM ′ n(M ′, z)

M ′

ρ̄
u(k|M ′) (5.6)

×
∫ ∞

0
dM ′′ n(M ′′, z)

M ′′

ρ̄
u(k|M ′′)Phh(k|M ′,M ′′, z),

where Phh(k|M ′,M ′′, z) is the power spectrum of halos of mass M ′ and M ′′ and u(k|M)

is the Fourier transform of the normalized profile

u(k|M) =

∫ Rvir

0
dr 4πr2 sin(kr)

kr
u(r|M) . (5.7)

The cut-off Rvir is the virial radius, which is the comoving radius of the spherical region

containing the halo mass M = 4πR3
vir ∆virρ̄/3 with average comoving density ∆virρ̄,

where the virial overdensity ∆vir is determined by the cosmology [19] via Eq.(1.46).

For completeness we rewrite it here,

∆vir =
18π2 + 82x− 39x2

1 + x
(5.8)

x ≡ Ω(z)− 1 (5.9)

Ω(z) =
Ωc(1 + z)3

Ωc(1 + z)3 + ΩΛ
(5.10)

and Ωc being the cold dark matter plus baryons energy density today. The average

density profile of cold dark matter halos has been extensively studied and it appears to

be universal over a wide ranges of masses. Up to now, the fitting formula that better

reproduces the density around halos in simulations is the Navarro-Frank-White (NFW)

profile [83]

u(r|M) =
F/4π

r(r + rs)2
. (5.11)

The parameter r3
s = 3M/(4πc3∆virρ̄) defines a characteristic radius which is a function

of the halo mass M ; F = 1/[ln(1 + c) − c/(1 + c)], where c = Rvir/rs is the concen-

tration parameter. Simulations show that, for fixed halo mass and redshift, there is a

distribution of concentrations which is well described by a log-normal distribution [59]

with variance that does not depend on the halo mass and a mean value [20]

c(M, z) = 9

(
M

M?(z)

)−0.13

, (5.12)

where M?(z) is the characteristic nonlinear mass scale defined such that the peak height

(defined in Chapter 1 and explicitly rewritten below) is ν = 1. Note also that the NFW

profile goes like r−3 at large radii, therefore the mass within it diverges. In order to

have a finite halo mass M , the profile has to be truncated at the virial radius Rvir.
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Halos form from regions in the initial density field which were sufficiently dense to

collapse. We need first to estimate the number density n(M) of objects of mass M .

Here we briefly recap the relevant quantities already introduced in Chapter 1. The

peak height ν is defined as

ν =
δ2
sc

σ2(M, z)
, (5.13)

where δsc ∼ 1.686 is the critical density for having the spherical collapse today and

σ2(M, z) is the variance of the linear density field

σ2(M, z) =

∫ ∞

0

dk

2π2
k2W 2(kR)PL(k, z) , (5.14)

when smoothed with a top-hat filter at scale R. Here, W (x) = (3/x3)[sin(x)−x cos(x)]

is the Fourier Transform of the filter and PL(k, z) is the linear power spectrum at

redshift z. The relation between the smoothing scale and the mass is dictated by the

choice of the filter function; for a top-hat filter it is given by

M =
4

3
πρ̄R3 , (5.15)

which shows that in this case M is actually the mass of the region in the Lagrangian

space with radius R that collapses in a halo with same mass and radius Rvir in the

evolved field.

Since there is a deterministic relation between M , R, σ(M, z) and ν, the number

density n(M, z) can be expressed in terms of the peak height ν as

n(M, z) dM =
ρ̄

M
f(ν) dν , (5.16)

where the mass function f(ν) is a universal function of ν, i.e. independent of redshift

and the shape of the initial power spectrum. For what follows we will use the Sheth-

Tormen (ST) mass function f(ν) [107], which provides a good fit to the number density

of halos in simulations and it reads

νf(ν) = A(p)
[
1 + (qν)−p

] ( qν
2π

)1/2
exp(−qν/2), (5.17)

where p ' 0.3, A(p) = [1 + 2−pΓ(1/2− p)/√π]
−1 ' 0.322 and q ∼ 0.707.

On large scales, where the 2-halo term dominates, the halo-halo power spectrum

Phh(k|M ′,M ′′, z) in (5.6) can be expressed in terms of the linear halo bias b(M, z) with

respect to the matter density field:

Phh(k|M ′,M ′′, z) = b(M ′, z)b(M ′′, z)PL(k, z) . (5.18)

The linear bias has to be derived from the mass function, as in Eq.(1.73). Since we use

the ST mass function, the linear bias b(ν) is

b(ν) = 1 +
qν − 1

δsc
+

2p/δsc

1 + (qν)p
. (5.19)

Therefore, using (5.16) and (5.18) we can rewrite (5.5) and (5.6) as
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Figure 5.1: Matter power spectrum in a ΛCDM cosmology. The left and right panels display

results at redshifts z = 0 and z = 1, respectively. Black lines show the matter power spectrum

as computed from the halo model: the dashed line is the 1-halo term, the dot-dashed one is the

2-halo term and the solid one is the sum of the two terms. Red lines show the linear predictions

whereas blue and green lines are the results from N-boby simulations with box size L = 200

Mpc/h and L = 1000 Mpc/h, respectively. The bottom panels show the relative difference

between the power spectra from the halo model and from N-body simulations.

P1h(k, z) =

∫ ∞

0
dνf(ν)

M

ρ̄
|u(k|ν)|2 , (5.20)

P2h(k, z) =

[∫ ∞

0
dνf(ν)b(ν)u(k|ν)

]2

PL(k, z) . (5.21)

The ST mass function and the halo bias are normalized so that
∫∞

0 dνf(ν)b(ν) = 1,

and from (5.11) is easy to show that u(k → 0,M) = ρ(k → 0,M)/M = 1. Therefore,

here the 2-halo term tends to the linear power spectrum as k goes to zero, P2h(k →
0)→ PL(k), whereas they differ at high k where the halo profile contributes and it is

k-dependent.

Now we have all the ingredients to compute the non-linear power spectrum of

matter at any redshift. We consider a massless neutrinos, flat ΛCDM cosmology, with

the same cosmological parameters as the N-body simulations L0 and S0 (see table 4.1).

We use the CAMB code [68] to calculate the linear matter power spectrum PL(k).

Next, we compute the power spectrum using the halo model (HM) and we compare it

with the results of the N-body simulations (S) through

y(k) =
∆2
S(k)−∆2

HM (k)

∆2
S(k)

, (5.22)

where ∆(k) = k3P (k)/(2π2) is the dimensionless matter power spectrum. The results

are presented in figure 5.1. The top panels show the halo model power spectrum for

the pure ΛCDM cosmology, at redshift z = 0 (left) and z = 1 (right). The bottom

panels show explicitly the comparison between the halo model and N-body simulations

through the quantity y. At large scales, k < 0.2h/Mpc, the halo model reproduces

well the prediction of simulations, whereas at intermediate scale, k ∼ 0.2− 2h/Mpc,

there is a disagreement below the 20% level at z = 0, and around the 20− 30% level at
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z = 1. This region is characterized by the transition between the 1-halo and 2-halo

terms’ dominance and here the halo model seems not to be very accurate. On smaller

scales, up to k ∼ 10h/Mpc, the agreement is again better than 10%.
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Chapter 6

Halo model with massive

neutrinos

In this chapter we discuss how to extend the standard halo model to account for the

effects of massive neutrinos. Here the quantities without subscript are related to the

total matter field, whereas ”c” denotes the cold field, which is the mass weighted average

between the cold dark matter and the baryon fields and ”ν” indicates the neutrino

component only.

We consider three different massive neutrino cosmologies, characterized by the same

amount of total matter but different neutrino masses (we have considered 3 degenerate

families), which correspond to the three massive neutrino cosmologies presented in

table 4.1.

In order to describe the neutrino density field it is important to account for the

fact that massive neutrinos have large, although non-relativistic, thermal velocities at

low redshift. These large thermal velocities, which set a free-streaming scale, prevent

the clustering of neutrinos within dark matter halos. However, neutrinos from the

low-velocity tail of the momentum distribution can cluster within the potential wells of

CDM halos [17,71,100,111,123,125]. Thus, it is useful to describe the neutrino density

field as the sum of two terms

δν = Fhδ
h
ν + (1− Fh)δLν , (6.1)

a linear one, δLν , and a non-linear one, δhν , which is a fraction Fh of the total neutrino

density field. Whereas the former will simply obey linear theory, the latter account

for the fully non-linear clustering of massive neutrinos within c-halos (CDM halos),

forming neutrino halos (ν-halos). This approach takes into account also non-linearities

unlike the approach of [5] (see their equation 64), in which only the linear neutrino

clustering is considered. The two descriptions agree up to k ∼ 0.2h/Mpc and there is

a 50% extra clustering at k ∼ 0.5 in our case due to the nonlinear behavior. We also

assume that the mass of the ν-halos is only a function of the mass of the host c-halos,

Mν = Mν(Mc), and that the centers of the ν- and c-halos are the same. The density

contrast of the total matter density field can then be written as

δ =
ρ̄c

ρ̄
δc +

ρ̄ν
ρ̄

[
Fhδ

h
ν + (1− Fh)δLν

]
, (6.2)
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where ρ = ρ̄c + ρ̄ν is the mean background matter density. The matter power spectrum

is given by

P (k) =

(
ρ̄c

ρ̄

)2

Pc(k) + 2
ρ̄cρ̄ν
ρ̄2

Pcν(k) +

(
ρ̄ν
ρ̄

)2

Pν(k) , (6.3)

where Pc(k), Pν(k) and Pcν(k) are the cold, neutrino and cross power spectra, respec-

tively.

Before presenting in detail the calculation of all these terms, we discuss the recipe

to compute the mass function and the linear halo bias in a massive neutrino cosmology,

which is not obvious a priori. From now on, we will not write explicitly the redshift’s

dependence since it can be understood from the description of the massless neutrinos

ΛCDM case presented in Chapter 5.

6.1 Matter vs. cold dark matter prescription

Since the ν-halos are located around c-halos and, as we will clarify later, their mass can

be assumed to be a function of the corresponding c-halos mass, there are two important

consequences: their mass function is equal to the one of the cold field, dMνn(Mν) =

dMcn(Mc), and the linear ν-halo bias is equal to the c-halo one b(Mν) = b(Mc). In

order to make the halo model machine working, we must express n(Mc) and b(Mc)

in terms of the number of regions in the Lagrangian field that are dense enough to

collapse, i.e. we have to recast it in terms of the peak height. There are two different

ways in which we can do that.

It would be natural, following the procedure adopted for the ΛCDM case, to rewrite

the number density of c-halos in terms of total matter quantities,

n(Mc) dMc =
ρ̄

M
f(ν)dν , (6.4)

and the peak height as ν = δ2
sc/σ

2(M), with

M = Mν +Mc =
4

3
πρ̄R3 , (6.5)

σ2(M) =

∫ ∞

0

dk

2π2
k2W 2(kR)PL(k), (6.6)

and PL(k) being the linear total matter power spectrum. It would be natural to write

the halo-halo power spectrum in terms of the halo bias b(Mc) with respect to the total

matter density field. This approach is the so called matter prescription [23,32,124].

Even if used in the literature (e.g. in [1]), this prescription has been shown to be

not fully correct by Castorina et al. [23] (see also [55]), since the resulting mass function

f(ν) is not universal and the resulting linear halo bias b(Mc) is scale dependent even

on large scales. The authors argued that this is due to the wrong choice of the density

field used for computing the peak height and the halo bias, i.e. the total matter is not

the fundamental density field involved in the clustering process. They showed that the

more physical field is the cold one and this choice goes under the name of cold dark

matter prescription. In this setup, the number density of c-halos is

n(Mc)dMc =
ρ̄c

Mc
f(νc)dνc, (6.7)
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where νc = δ2
sc/σ

2
c with

Mc =
4

3
πρ̄cR

3 , (6.8)

σ2
c ≡ σ2(Mc) =

∫ ∞

0

dk

2π2
k2W 2(kR)PLc (k) , (6.9)

and PLc (k) is the linear cold power spectrum. Moreover, this prescription allows to

express the halo-halo power spectrum in terms of the linear cold PLc (k)

Phh(k|M ′c,M ′′c ) = b(M ′c)b(M
′′
c )PLc (k) . (6.10)

Castorina et al. [23] showed that the resulting mass function is universal and the linear

halo bias b(Mc) is scale independent on large scales, as wanted. Therefore, we will

use the cold dark matter prescription to build the halo model for a massive neutrino

cosmology. The fact that this is the correct prescription tells us that neutrinos modify

only the background in which the c-field clusters, without performing any back-reaction

through its density perturbations.

Since the fraction Fh of neutrinos clustered in c-halos is very small, we expect that

the total matter power spectrum will be well reproduced considering all the neutrinos,

both linear and clustered, as driven by linear theory. Anyway, the neutrino and cross

power spectra from N-body simulations are not well reproduced by the correspondent

linear one, on small scales. Therefore, we will describe how to model not only the

clustering of the cold field but also the clustering of neutrinos within the halo model

formalism.

6.2 The power spectrum

6.2.1 Cold dark matter Power Spectrum

In analogy with what we have presented in Chapter 5 and using the Eqs.(6.7) and

(6.10) of the cold dark matter prescription, we compute here the power spectrum of

the cold field Pc(k) = P 1h
c (k) + P 2h

c (k), with

P 1h
c (k) =

∫ ∞

0
dνc f(νc)

Mc

ρ̄c
|uc(k|Mc)|2 , (6.11)

P 2h
c (k) =

[∫ ∞

0
dνc f(νc)bc(νc)uc(k|Mc)

]2

PLc (k) , (6.12)

where uc(k|Mc) is the NFW profile of a c-halo of mass Mc. Even if we are considering

a massive neutrino cosmology, its concentration is well described by the standard

formula (5.12) for the ΛCDM case, as our N-body simulations showed. The quantities

f(νc) and bc(νc) are the ST mass function and bias, which can also be used in a massive

neutrino cosmology [55, 124] and guarantee that the 2-halo term is well normalized:

P 2h
c (k → 0)→ PLc . Figure 6.1 shows the cold dark matter power spectrum, as predicted

by the halo model, for three different cosmologies with massive neutrinos,
∑
mν = 0.15

eV on top,
∑
mν = 0.3 eV in the middle and

∑
mν = 0.6 eV on bottom, and for two

different redshifts, z = 0 on the left and z = 1 on the right. The relative difference

between our results and N-body simulations is shown in the bottom part of each plot,



62 CHAPTER 6. HALO MODEL WITH MASSIVE NEUTRINOS

0.01

0.1

1

10

100

D
2

c
Hk

L

1-halo term

2-halo term

Total HM

Linear

L=200 Mpc�h
L=1000 Mpc�h

z=0
0.15 eV

0.01

0.1

1

10

100

D
2

c
Hk

L

z=1
0.15 eV

0.05 0.10 0.50 1.00 5.00 10.00

-0.1
0.0
0.1
0.2
0.3

k @h�MpcD

y

0.05 0.10 0.50 1.00 5.00 10.00

-0.1
0.0
0.1
0.2
0.3

k @h�MpcD

y

0.01

0.1

1

10

100

D
2

c
Hk

L

z=0
0.3 eV

0.01

0.1

1

10

100
D

2
c
Hk

L
z=1

0.3 eV

0.05 0.10 0.50 1.00 5.00 10.00

-0.1
0.0
0.1
0.2
0.3

k @h�MpcD

y

0.05 0.10 0.50 1.00 5.00 10.00

-0.1
0.0
0.1
0.2
0.3

k @h�MpcD

y

0.01

0.1

1

10

100

D
2

c
Hk

L

z=0
0.6 eV

0.01

0.1

1

10

100

D
2

c
Hk

L

z=1
0.6 eV

0.05 0.10 0.50 1.00 5.00 10.00

-0.1
0.0
0.1
0.2
0.3

k @h�MpcD

y

0.05 0.10 0.50 1.00 5.00 10.00

-0.1
0.0
0.1
0.2
0.3

k @h�MpcD

y

Figure 6.1: Cold dark matter power spectrum for
∑
mν = 0.15 eV (top),

∑
mν = 0.3 eV

(middle) and
∑
mν = 0.6 eV (bottom) massive neutrino cosmologies. The left and right panels

show the results at z = 0 and z = 1, respectively. Black curves display the predictions by the

halo model: the dashed line is the 1-halo term, the dot-dashed one is the 2-halo term and the

solid one is the sum of the two terms. Red curves show the linear predictions and blue and green

curves are the results from N-boby simulations with box size L = 200 Mpc/h and L = 1000

Mpc/h, respectively. The bottom part of each plot shows the residuals between results from

halo model and N-body simulations.
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where the solid curves are obtained using the cold dark matter prescription and the

thin dashed ones (shown only for z = 0) come from the matter prescription. The results

are in agreement and reinforce the claim of Castorina et al., since the cold dark matter

prescription agrees better with simulations. Using this right procedure we obtain a

very good agreement on large scales, whereas a disagreement around 15− 20% level

characterizes the intermediate scales k ∼ 0.2− 2h/Mpc at z = 0, and it increases until

30% at z = 1. On smaller scales, up to k ∼ 10h/Mpc, the disagreement is below 10%

for all models.

6.2.2 Cross Power Spectrum

Here we compute the second term of Eq.(6.3), i.e. the cross power spectrum Pcν(k).

Following the description adopted in Eq.(6.1), the cross power is given by

Pcν(k) = FhP
h
cν(k) + (1− Fh)PLcν(k), (6.13)

where PLcν(k) =
√
Pc(k)PLν (k) describes the correlation between the cold field and the

linear component of the neutrino density field, once we assume that the two fields

are completely correlated. This assumption is well motivated on large scales and

is a good approximation at intermediate ones, where this term is supposed to be

relevant [5, 123, 124]. The cross power spectrum between the cold and the clustered

neutrino fields can be written in the language of halo model as P hcν(k) = P 1h
cν (k)+P 2h

cν (k),

with

P 1h
cν (k) =

∫ ∞

Mcut

dMc n(Mc)
Mc

ρ̄c

Mν

Fhρ̄ν
uc(k|Mc)uν(k|Mc) (6.14)

P 2h
cν (k) =

∫ ∞

0
dM ′c n(M ′c)

M ′c
ρ̄c

uc(k|M ′c) (6.15)

×
∫ ∞

Mcut

dM ′′c n(M ′′c )
Mν

Fhρ̄ν
uν(k|M ′′c )Phh(k|M ′c,M ′′c ),

where uν(k|Mc) is the Fourier transform of the normalized density profiles, ρhν(r)/Mν ,

of the ν-halo with mass Mν = Mν(Mc). Villaescusa-Navarro et al. [123] measured the

density contrast profile of neutrinos around c-halos in simulations, for
∑
mν = 0.3, 0.6

eV cosmologies. They found that it can be well reproduced by the fitting formula

δsim
ν (r) ≡ ρν(r)− ρ̄ν

ρ̄ν
=

ρc(Mc)

1 + [r/rc(Mc)]
α(Mc)

, (6.16)

where ρc, rc and α are functions of the corresponding c-halo mass Mc and they present

different shapes depending on the chosen massive neutrino cosmology (see their figure

10). This profile was obtained considering all the neutrinos, both the linearly clustered

ones (that we call linear), and the fully non-linearly clustered ones (that we call

clustered). Because of our setup, we define the clustered neutrino profile as

ρhν(r) ≡ δsim
ν (r) ρ̄ν = ρν(r)− ρ̄ν , (6.17)

which means that we consider as clustered the neutrinos measured around a halo, once

the neutrino background, ρ̄ν , has been subtracted. This is not the accurate procedure,



64 CHAPTER 6. HALO MODEL WITH MASSIVE NEUTRINOS

0.05 0.10 0.50 1.00 5.0010.00
108

1010

1012

1014

1016

1018

r @Mpc�hD

Ρ
HrL

@M
�

h
2

�M
p
c3

D

M=1014 M
�

�h
M=1015 M

�
�h

M=1016 M
�

�h
cdm

neutrinos

0.3 eV

0.01 0.05 0.10 0.50 1.00 5.0010.00
108

1010

1012

1014

1016

1018

r @Mpc�hD

Ρ
HrL

@M
�

h
2

�M
p
c3

D

0.6 eV

Figure 6.2: Density profile. The left and right panels show the
∑
mν = 0.3, 0.6 eV cases,

respectively. Dashed lines depict the NFW profiles of cold dark matter halos with different

masses; the solid lines are the correspondent neutrino profiles.
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Figure 6.3: Cold dark matter-neutrino cross power spectrum in
∑
mν = 0.3 eV (left panel)

and
∑
mν = 0.6 eV (right panel) massive neutrino cosmologies at redshifts z = 0. Black

curves show the cross-power spectrum predicted by the halo model, red lines indicate the linear

predictions and blue and green lines are the results from N-boby simulations with box size

L = 200 Mpc/h and L = 1000 Mpc/h, respectively. The bottom part of each plots shows the

relative difference between the cross-power spectra from the halo model and from simulations.
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but a quite good estimation and the resulting profiles are shown in figure 6.2 together

with the NFW profile of the cold dark matter halos. From these plots we can notice

that the neutrino profiles have lower amplitude than corresponding cold dark matter

ones. In analogy with Eq.(5.7), we define the Fourier transfer of the profile as

ρhν(k|Mc) =

∫ Rvir

0
dr 4πr2 sin(kr)

kr
ρhν(r) , (6.18)

where we assume that the virial radius of the c- and ν-halos are equal. The corresponding

mass is Mν(Mc) = ρhν(k → 0|Mc), which is a monotonic growing function in Mc. The

cut-off mass Mcut in Eqs.(6.14) and (6.15) is a particular c-halo mass, for which the

corresponding Mν satisfies

Mν(Mcut) = 0.1× 4πρ̄ν
3

R3
vir(Mcut). (6.19)

This means that we do not consider as clustered neutrinos the ones forming an halo

with mass smaller than the 10% of the mass of background neutrinos enclosed in the

same volume. Therefore, the fraction of clustered neutrinos is given by:

Fh =
1

ρ̄ν

∫ ∞

Mcut

dMc n(Mc)Mν(Mc) . (6.20)

It would be natural to define Mcut as the c-halo mass for which the corresponding Mν

is vanishing. This does not happen for the neutrinos profile defined in Eq.(6.17) and

the definition in Eq.(6.19) gives a convergent value for Fh, i.e. the mass in neutrinos

contained in smaller halos is negligible. This fraction turns out to be very small:

Fh = 9.5 × 10−4, 2.6 × 10−3 for
∑
mν = 0.3, 0.6 eV, respectively. However, even if

small, this neutrino component is very important for having a good prediction for the

cross and neutrinos power spectra at small scales, as we shall see below.

We use the Eqs.(6.7) and (6.10) of the cold dark matter prescription to rewrite

P 1h
cν (k) and P 2h

cν (k) in terms of the peak height

P 1h
cν (k) =

∫ ∞

Mcut

dνc f(νc)
Mν

Fhρ̄ν
uc(k|Mc)uν(k|Mc) (6.21)

P 2h
cν (k) =

∫ ∞

0
dν ′c f(ν ′c) b(ν

′
c)uc(k|M ′c) (6.22)

×
∫ ∞

Mcut

dν ′′c f(ν ′′c c) b(ν
′′
c )
Mν

M ′′c

ρ̄c

Fhρ̄ν
uν(k|M ′′c )PLc (k) ,

where the mass function and bias are the usual Sheth-Tormen ones. Substituting

the last expressions in Eq.(6.13) we compute the cross power spectrum for the two

different massive neutrino cosmologies. The results at redshift z = 0 are shown in

figure 6.3. Neither the linear cross power spectrum (red lines) nor the cross power

spectrum between the clustered cold field and the unclustered component of neutrinos

(dot-dashed black lines) can reproduce simulations at intermediate (k ∼ 0.2h/Mpc)

and up to small scales, for the two neutrino masses. Instead, our extension of the halo

model (solid black line), which accounts for the clustered component of neutrinos, can

describe the main behavior of N-body simulations at scales smaller than k ∼ 5h/Mpc.

We can notice that the main contribution to the power spectrum comes from the
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Figure 6.4: Neutrino power spectrum in
∑
mν = 0.3 eV (left panel) and

∑
mν = 0.6 eV

(right panel) massive neutrino cosmologies at redshift z = 0. Black curves show the neutrino

power spectrum predicted by the halo model, red curves indicate the linear predictions and

blue and green curves are the results from N-boby simulations with box size L = 200 Mpc/h

and L = 1000 Mpc/h, respectively. The bottom part of each plots shows the relative difference

between the power spectra from the halo model and from simulations.

unclustered component of the neutrino field via PLcν(k) (dot-dashed line) at large scales

and from the 1-halo term P 1h
cν (k) of the clustered neutrino component at small scales.

The 2-halo term P 2h
cν (k) is not shown because it is small and not relevant at any scales.

To conclude, our model predicts the cross power spectrum from simulation with 30%

accuracy until k ∼ 1h/Mpc in the
∑
mν = 0.3 eV case (left panel). In the

∑
mν = 0.6

eV case (right panel), the accuracy is at the 40% level on scales k < 5h/Mpc.

6.2.3 Neutrino Power Spectrum

Using the definition of the neutrino density field in Eq.(6.1), we write the neutrino

power spectrum as

Pν(k) = F 2
hP

h
ν (k) + 2Fh(1− Fh)P hLν (k) + (1− Fh)2PLν (k) , (6.23)

where the auto-power spectrum of the linear component is just the linear power PLν (k)

and the cross term can be expressed as P hLν (k) =
√
P hν (k)PLν (k), once we assumed that

the clustered and smoothed fields are completely correlated. As for the other fields,

the power spectrum of the non-linearly clustered component can be split in two terms,

P hν (k) = P 1h
ν (k) + P 2h

ν (k), with

P 1h
ν (k) =

∫ ∞

Mcut

dMc n(Mc)

(
Mν

Fhρ̄ν

)2

|uν(k|Mc)|2 (6.24)

P 2h
ν (k) =

∫ ∞

Mcut

dM ′c n(M ′c)
Mν

Fhρ̄ν
uν(k|M ′c) (6.25)

×
∫ ∞

Mcut

dM ′′c n(M ′′c )
Mν

Fhρ̄ν
uν(k|M ′′c )Phh(k|M ′c,M ′′c ) ,
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where all the quantities have already been defined in Sec. 6.2.2. Once again we apply

the cold dark matter prescription yielding

P 1h
ν (k) =

∫ ∞

Mcut

dνc f(νc)

(
Mν

Fhρ̄ν

)2 ρ̄c

Mc
|uν(k|Mc)|2 (6.26)

P 2h
ν (k) =

[∫ ∞

Mcut

dνc f(νc) b(νc)
Mν

Mc

ρ̄c

Fhρ̄ν
uν(k|Mc)

]2

PLc (k) . (6.27)

Next, we compute the neutrino power spectrum Pν(k) at redshift z = 0 for two massive

neutrino cosmologies with
∑
mν = 0.3 and 0.6 eV. The encouraging results are shown

in figure 6.4: the disagreement with simulations is below 20% until k ∼ 0.7 h/Mpc for

the
∑
mν = 0.3 eV case (left panel), whereas it is under 30% until k ∼ 1.5 h/Mpc for

the
∑
mν = 0.6 eV case (right panel).

6.2.4 Matter Power Spectrum

In the previous subsections 6.2.1, 6.2.2, 6.2.3 we have presented all the terms needed to

compute the total matter power spectrum in a massive neutrino cosmology. However,

looking at Eq. (6.3) one can notice that the cross and the neutrino power spectra are

multiplied by ρ̄cρ̄ν/ρ̄
2 and (ρ̄ν/ρ̄)

2, respectively. These two terms are much smaller

than 1 for light neutrinos, as the ones considered here. Therefore, we expect that

the improvements given by computing these terms with halo model will be highly

suppressed once we compute the total matter power spectrum, which should be well

reproduced using just the linear cross and neutrino power spectra. And this is the case:

we computed the total matter power spectrum using both the fully non-linear and the

linear cross and neutrino power spectra, finding that their difference is well below the

1% level for all the cosmologies studied in this paper.

Then, we present here the resulting total matter power spectra in massive neutrinos

cosmologies, computed using the linear neutrino and cross power spectra and the fully

non-linear cold dark matter one, at redshifts z = 0 and z = 1. Figure 6.5 shows the∑
mν = 0.15, 0.3, 0.6 eV cosmologies in the top, middle and bottom panels, respectively.

Once again, the halo model (solid black curves) reproduces well the simulations on

small and on large scales; on intermediate scales a disagreement < 20% is present at

z = 0 and < 30% at z = 1. We also show the comparison between simulations and the

halo model computed with the matter prescription, which is represented by the thin

dashed curves. We can again confirm that this is not the ideal prescription since it

reproduces worse the results from the N-body/neutrino simulations.

6.3 The ratio ∆2
ν(k)/∆2

ΛCDM(k)

6.3.1 Halo model and N-body simulations

It is interesting to plot the ratio ∆2
ν(k)/∆2

ΛCDM(k), where the subscripts ν and ΛCDM

indicate a massive and massless neutrinos cosmology, respectively. Figure 6.6 shows

this quantity for the
∑
mν = 0.15 eV (top),

∑
mν = 0.3 eV (middle) and

∑
mν = 0.6

eV (bottom) cosmological models at redshifts z = 0 (left panels) and z = 1 (right

panels); we emphasize that here the unit scale varies for different cosmologies. The
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Figure 6.5: Matter power spectrum in
∑
mν = 0.15 eV (top),

∑
mν = 0.3 eV (middle) and∑

mν = 0.6 eV (bottom) massive neutrino cosmologies. The left and right panels show the

results at redshifts z = 0 and z = 1, respectively. Black curves display the matter power

spectrum as predicted by the halo model, red curves show the linear predictions and blue

and green curves are the results from N-boby simulations with box size L = 200 Mpc/h and

L = 1000 Mpc/h, respectively. The bottom part of each plots shows the relative difference

between the power spectrum from the halo model and from simulations.
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ratio obtained from N-body simulations presents a well known spoon-shape around

k ∼ 1h/Mpc [4,10,16,121,127], which is not captured by linear theory. Interestingly,

halo model reproduces this feature and can help us to understand its physical meaning.

First of all, we must remember that in the range 0.1 < k (h/ Mpc)< 1 there is the

transition between the 1- and the 2-halo terms where they are comparable, whereas on

smaller scales, k > 1h/Mpc, the 1-halo term dominates. Then, in order to study in

more detail the spoon-shape trend, we can focus on the 1-halo term only. Moreover,

on these scales the contribution of the neutrino and the cross power spectra to the

total matter one is negligible. Therefore, in this analysis we consider just the cold dark

matter power contributing to the 1-halo term of the total matter power spectrum in

Eq.(6.3). The 1-halo term accounts for the correlations between particles that belong

to the same halo, therefore, only halos with size larger than the scale associated with

the given k can contribute. This means that on intermediate scales only relatively large

halos give power to the 1-halo term, whereas for k > 1h/Mpc both small and large

halos can in principle contribute. However, the number of small halos is much larger

than the number of big ones; thus, on small scales the power comes primarily from

small halos.

The left panel of figure 6.7 shows the 1-halo term (see Eq.6.11) once the integral is

computed for different mass-intervals,

P 1h
i (k) =

∫ νc(M i
c+∆Mc)

νc(M i
c)

dνc f(νc)
Mc

ρ̄c
|uc(k|Mc)|2 , (6.28)

for the
∑
mν = 0.0, 0.3, 0.6 eV cosmologies that we are considering in this paper,

at redshift z = 0. As we expect, small halo-masses give power at large k. What is

more interesting is that the ratios [P 1h
i (k)]ν/[P

1h
i (k)]ΛCDM between 1-halo terms of

massive and massless neutrino cosmologies computed in the same mass-bin i are almost

independent of k. Then, they can be well approximated by the ratios between the

limits of P 1h
i (k) on large scales,

P 1h
i (k → 0) =

∫ νc(M i
c+∆Mc)

νc(M i
c)

dνc f(νc)
Mc

ρ̄c
, (6.29)

which are independent of the halo profile. This tells us that the main features of the

spoon-shape are given by the mass function through the quantity n(Mc)M
2
c . In the

four cosmologies considered in this work, this quantity is known to be quite similar for

small halo-masses (around 1012M�) and very different for big ones (> 1014M�).

We can now understand what creates the spoon-shape in ∆2
ν(k)/∆2

ΛCDM(k): the

drop at intermediate scales, 0.1 < k < 1h/Mpc, is due to the fact that the fraction

of big halos is very different in the two cosmologies, whereas the rising comes from

the fact that the fraction of small halos is very similar in the two cosmologies. In

support of this, the right panel of figure 6.7 shows that the spoon-shape is present also

when the ratio is taken between two identical ΛCDM cosmologies, but with different

σ8 ≡ σ(R = 8 Mpc/h). Indeed, this suggests that the spoon-shape is due to different

relations between the peak height and the halo mass, which is what is needed to build

the mass function.
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Figure 6.6: Ratio ∆2
ν(k)/∆2

ΛCDM(k) for
∑
mν = 0.15 eV (top),

∑
mν = 0.3 eV (middle) and∑

mν = 0.6 eV (bottom). The left and right panels show results at redshifts z = 0 and z = 1,

respectively. Black lines show the ratio computed from halo model, red lines show the linear

predictions, blue and green lines are the results from N-boby simulations with box size L = 200

Mpc/h and L = 1000 Mpc/h, respectively.
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Figure 6.7: Left panel: 1-halo term computed by integrating in different bins of mass.

The different colors indicate different mass-bin, the solid, dashed and dot-dashed lines show

the results for the
∑
mν = 0.0, 0.3, 0.6 eV cosmologies, respectively. Right panel: Ratio

∆2
ΛCDM1(k)/∆2

ΛCDM2(k) for two ΛCDM massless neutrinos cosmologies that differ only for the

value of σ8. The red line shows the linear prediction, the black one shows the results predicted

by halo model, as described in section 6.2.4.

Now that we understand the reason for this particular shape in the ratio of the

matter power spectra, we want to stress the following point. Figure 6.5 points out that

halo model can reproduce the non-linear power spectrum from N-body simulations

with 20% accuracy at z = 0 and 30% accuracy at z = 1. However, it works much

better in predicting the ratio ∆2
ν(k)/∆2

ΛCDM(k), as figure 6.6 demonstrates. In this

case the disagreement between halo model and simulations is below 2%, 5%, 10% for∑
mν = 0.15, 0.3, 0.6 eV massive neutrinos cosmologies, respectively, at both redshifts

and for the whole set of scales considered here (k < 10h/Mpc).

6.3.2 Halo model and HALOFIT

Here we compare the predictions from our extension of the halo model against

HALOFIT [112], the fitting formula described in Chapter 4. The discrepancy between

the new version of HALOFIT [118] and N-body simulations is claimed to be below

10% for k < 10h/Mpc. This made HALOFIT a useful and popular tool to compute

the non-linear power spectrum, without running any simulation. Therefore we think

that it is important to show a comparison also between our model for massive neutrino

cosmologies and the extension of HALOFIT presented by Bird et al. [10].

We compute the quantity ∆2
ν(k)/∆2

ΛCDM(k) with HALOFIT, for all the cosmologies

considered in this paper. The comparison with halo model is shown in Figure 6.8,

where we plot the ratio between ∆2
ν(k)/∆2

ΛCDM(k) computed with halo model (see

section 6.3.1) and HALOFIT. The disagreement is below 2% for
∑
mν = 0.15 eV, 4%

for
∑
mν = 0.3 eV and 10% for

∑
mν = 0.6 eV.



72 CHAPTER 6. HALO MODEL WITH MASSIVE NEUTRINOS

0.1 0.2 0.5 1.0 2.0 5.0 10.0
0.9

0.92

0.94

0.96

0.98

1.

1.02

k@h�MpcD

HR
at

io
L H

M
�HR

at
io

L H
A

L
O

F
IT

0.15 eV

0.3 eV

0.6 eV

z=0

z=1

Figure 6.8: Ratio between ∆2
ν(k)/∆2

ΛCDM(k) computed with halo model and HALOFIT.

Different colors indicate different massive neutrino cosmologies:
∑
mν = 0.15 eV in blue,∑

mν = 0.3 eV in red,
∑
mν = 0.6 eV in green. Solid and dashed lines show results at z = 0

and at z = 1, respectively.



Chapter 7

Galaxy clustering

As an application of our halo model extension we study the clustering of galaxies

in massless and massive neutrinos cosmologies. In Villaescusa et al. [124] authors

populated with galaxies the dark matter halos of N-body simulations using a simple

Halo Occupation Distribution (HOD) model. For a given cosmological model, the

authors calibrated the values of the HOD parameters to reproduce the clustering

properties of the galaxies in the main sample of the Sloan Digital Sky Survey (SDSS)

II Data Release 7 [129]. Our purpose here is to use those HOD parameters and see

whether our extension of the halo model is able to reproduce the clustering properties

of the SDSS galaxies.

In this section we present the HOD model used in [124], we describe the formalism

needed to compute the galaxy clustering using the halo model ingredients and we show

the results for models with massless and massive neutrinos.

An HOD model requires two ingredients: 1) the probability distribution p(N |M)

of having N galaxies inside a c-halo of mass M (in this section we drop the subscript

”c” for indicating the cold dark matter field, since all the quantities related to halos

corresponds to CDM ones) and 2) the way galaxy positions and velocities are related

with those of the underlying matter within halos. The HOD model adopted in [124],

which has three free parameters, Mmin, α and M1, works as follows. The first HOD

ingredient is modeled assuming that halos with masses below Mmin do not host any

galaxy, whereas halos with masses above Mmin host one central galaxy (c) and a number

of satellites (s) following a Poissonian distribution with a mean equal to (M/M1)α.

Mathematically this can be written as

〈Nc|M〉 =

{
1 if M ≥Mmin

0 if M < Mmin

〈Ns|M〉 =

{
(M/M1)α if M ≥Mmin

0 if M < Mmin .
(7.1)

The second ingredient of the HOD states that the central galaxy resides in the center

of the halo whereas satellites follow the distribution of the underlying cold dark matter

within the halo. The value of the HOD parameters, for the cosmological models

with
∑
mν = 0.0, 0.3 and 0.6 eV, obtained by [124] for galaxies with magnitudes

Mr − 5 log10 h = −21.0, are shown in table 7.1.

Given the above HOD model, and the values of the HOD parameters in table 7.1,

we can compute the clustering of galaxies with magnitudes Mr − 5 log10 h = −21.0

using the halo model. We begin depicting the required formalism. The 1-halo term of
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∑
mν M1 α Mmin

(eV) (M�/h) (M�/h)

0.0 1.15× 1014 1.27 5.33× 1012

0.3 1.02× 1014 1.32 4.91× 1012

0.6 8.90× 1013 1.36 4.47× 1012

Table 7.1: Values of the HOD parameters, for two different cosmologies and for galaxies with

magnitudes Mr − 5 log10 h = −21.0 (from [124]).

the halo model describes the correlation between particles belonging to the same halo.

Therefore, it must be proportional to the average number of galaxy pairs 〈N(N −1)|M〉
in a halo of mass M , where N = Nc +Ns indicates the total number of galaxies. This

quantity can be written in terms of central and satellite galaxies as

〈N(N − 1)|M〉F (r) = 2〈NcNs|M〉Fcs(r) + 〈Ns(Ns − 1)|M〉Fss(r) , (7.2)

where F (r) is the cumulative radial distribution of galaxy pairs and Fcs(r) and Fss(r) are

restricted to central-satellite and satellite-satellite pairs, respectively. Since the above

HOD model assumes that the central galaxy is located in the halo center and that the

distribution of satellites follow the underlying CDM, Fcs(r) is given by the normalized

NFW profile and Fss(r) is a convolution of two normalized NFW profiles. The term

〈Ns(Ns − 1)|M〉 can be simplified taking into account that satellites follow a Poisson

distribution, i.e. 〈Ns(Ns − 1)|M〉 = 〈Ns|M〉2, while 〈NcNs|M〉 = 〈Nc|M〉〈Ns|M〉
because the occupation number of central and satellites are independent. Given the

partition in centrals and satellites, the galaxy power spectrum can be written as

Pgg(k) = Pcc(k) + 2Pcs(k) + Pss(k) (7.3)

= [2Pcs(k) + Pss(k)]1h + [Pcc(k) + 2Pcs(k) + Pss(k)]2h

= P 1h
gg (k) + P 2h

gg (k) ,

where the last two equations have been written as sums of the correspondent 1- and

2-halo terms. Notice that a halo can have at most one central galaxy and therefore

Pcc(k) = P 2h
cc (k). In analogy to Eqs.(5.5) and (5.6) and using the decomposition in

Eq.(7.2), where the central-satellite term is multiplied by the NFW profile and the

satellite-satellite is multiplied by the same term squared, the 1- and 2-halo terms of the

galaxy power spectrum become

P 1h
gg (k) =

∫ ∞

0
dM n(M)

[
2
〈NcNs|M〉

n̄2
g

u(k|M) +
〈Ns(Ns − 1)|M〉

n̄2
g

u2(k|M)

]
(7.4)

=

∫ ∞

0
dM n(M)

[
2
〈Nc|M〉〈Ns|M〉

n̄2
g

u(k|M) +
〈Ns|M〉2

n̄2
g

u2(k|M)

]

P 2h
gg (k) =

{∫ ∞

0
dMn(M)b(M)

[〈Nc|M〉
n̄g

+
〈Ns|M〉
n̄g

u(k|M)

]}2

PL(k) , (7.5)

where the convolution of NFW profiles in configuration-space has become multiplications

in Fourier-space. Using the cold dark matter prescription (Eqs.(6.7)-(6.10)), we write



75

5

10

50

100

500

w
p

0.0 eV

0.3 eV

0.6 eV

0.5 1.0 5.0 10.0 50.0

-0.4

-0.2

0.0

0.2

rp @Mpc�hD

y

Figure 7.1: Projected correlation function. Black dots are the wp measurements for galaxies
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of the covariance matrix. Green, red and blue lines show the predictions from halo model for∑
mν = 0.0, 0.3, 0.6 eV cosmologies. The bottom panel shows the relative difference between

them and the measurements.

these terms as a function of the peak height ν:

P 1h
gg (k) =

∫ ∞

0
dν f(ν)

ρ̄

M

[
2
〈Nc|M〉〈Ns|M〉

n̄2
g

u(k|M) +
〈Ns|M〉2

n̄2
g

u2(k|M)

]
(7.6)

P 2h
gg (k) =

{∫ ∞

0
dν f(ν) b(ν)

ρ̄

M

[〈Nc|M〉
n̄g

+
〈Ns|M〉
n̄g

u(k|M)

]}2

PL(k) . (7.7)

We compute the galaxy power spectrum for the massless ΛCDM and the
∑
mν = 0.3, 0.6

eV massive neutrino cosmologies, using Eqs.(7.6) and (7.7). We calculate the mean

occupation numbers 〈Nc|M〉 and 〈Ns|M〉 as described in Eq.(7.1), using the HOD

parameters M1, α, Mmin from Villaescusa-Navarro et al. [124] (see table 7.1).

Having calculated the galaxies power spectrum using the above formalism, we then

compute the galaxies correlation function

ξgg(r) =

∫ ∞

0
dk k2 sin(kr)

kr
Pgg(k) . (7.8)

However, this quantity cannot be measured directly from galaxy surveys because of

the unknown peculiar motion of the galaxies along the line-of-sight. What can be

computed from observations is the redshift-space correlation function ξ(rp, rπ), which

is a function of the redshift-space separations parallel (rπ) and perpendicular (rp) to

the line-of-sight. In order to compare the model with observations we must consider

the projected correlation function, wp(rp), which is defined as

wp(rp) ≡ 2

∫ rmax

0
drπ ξ(rp, rπ) , (7.9)
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and it is related to the galaxy correlation function in configuration-space through [35]

wp(rp) =

∫ ∞

rp

dr
2r√
r2 − r2

p

ξgg(r) . (7.10)

Figure 7.1 shows the projected correlation function predicted by our model, together

with the one measured by Zehavi et al. [130]. As we see from the relative difference

between model and observations in the bottom panel, both cosmologies reproduce very

well the measurements for rp > 1 Mpc/h. This result confirms that the calibration of

the HOD parameters can be carried out, for massive neutrino cosmologies, using the

above formalism together with our extension of the halo model. Since direct calibration

of the HOD parameters with N-body simulations is difficult, CPU time consuming and

its subject to resolution and cosmic variance, the above formalism is fast and precise,

allowing us to explore a wider parameter space.

We conclude this section noticing that the effect of massive neutrinos on many

cosmological observables, such as galaxy clustering, can be mimicked by varying the

value σ8 from a massless neutrino cosmology. This is the well known Ων−σ8 degeneracy

(see for instance [43, 74]). Our formalism is capable of reproducing such degeneracy at

the same time it provides us with a physical insight.



Part III

Voids in massive neutrino

cosmologies
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Based on:

E. Massara, F. Villaescusa-Navarro, M. Viel, and P.M. Sutter, Voids in massive neutrino

cosmologies, JCAP 11 (2015) 018, [arXiv:1506.03088].

Abstract

Cosmic voids are a promising environment to characterize neutrino-induced effects on

the large-scale distribution of matter in the universe. We perform a comprehensive

numerical study of the statistical properties of voids, identified both in the matter and

galaxy distributions, in massive and massless neutrino cosmologies. The matter density

field is obtained by running several independent N -body simulations with cold dark

matter and neutrino particles, while the galaxy catalogs are modeled by populating the

dark matter halos in simulations via a halo occupation distribution (HOD) model to

reproduce the clustering properties observed by the Sloan Digital Sky Survey (SDSS)

II Data Release 7. We focus on the impact of massive neutrinos on the following void

statistical properties: number density, ellipticities, two-point statistics, density and

velocity profiles. Considering the matter density field, we find that voids in massive

neutrino cosmologies are less evolved than those in the corresponding massless neutrinos

case: there is a larger number of small voids and a smaller number of large ones, their

profiles are less evacuated, and they present a lower wall at the edge. Moreover, the

degeneracy between σ8 and Ων is broken when looking at void properties. In terms

of the galaxy density field, we find that differences among cosmologies are difficult to

detect because of the small number of galaxy voids in the simulations. Differences are

instead present when looking at the matter density and velocity profiles around these

voids.
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Introduction

Besides the anisotropies in the cosmic microwave background, the vast majority of the

constraints on the values of cosmological parameters arise from the observations of only

one element of the cosmic web: the dark matter halos (or the galaxies residing within

them). Much attention has been put in understanding the spatial distribution and

statistics of galaxies and dark matter halos. This is because it is believed that those

objects are biased tracers of the underlying matter distribution. Thus, by measuring

their spatial correlations on large scales it is possible to constrain the values of the

cosmological parameters. Additional information on the value of the cosmological

parameters can be obtained by measuring the abundance of dark matter halos as a

function of their mass, i.e. via the halo mass function (see for example [14]).

Recently, it has been pointed out that cosmic voids can also be used to constrain

the values of cosmological parameters [21,22,57,65,66,95,114,117,122,126,132]. As a

different element of the cosmic web, the information embedded into the properties of

voids will complement the one obtained from the dark matter halos. That additional

information can then be used to break degeneracies and to further constrain the

parameters of the cosmological model. Among the different observables that can be

used to retrieve cosmological information with voids there are: the distribution of void

ellipticities [66], the Alcock-Paczynski test [21, 65, 117], the integrated Sachs-Wolfe

effect [57] and the weak lensing effect [60].

Cold dark matter and baryons are not the only massive particles present in the

universe that could play a role in the formation of structure, and in particular in

the evolution of voids: there are also neutrinos. The existence of a neutrino cosmic

background is one of the predictions of the Big Bang theory and it is timely to investigate

the impact of massive neutrinos on the large scale structure.

There are reasons to expect that massive neutrinos affect more strongly the proper-

ties of cosmic voids than the properties of dark matter halos. Given their large thermal

velocities, neutrino clustering within dark matter halos and galaxies will be limited to

the neutrinos populating the low-momentum tail of the Fermi-Dirac distribution [124].

In other words, the relative contribution of relic neutrinos to the total mass of dark

matter halos is much smaller than the cosmic ratio Ων/Ωcdm. A consequence of this

fact is that most of the properties of the dark matter halos, such as their mass function

or their spatial bias, can be described in terms of the CDM density field, rather than

the total matter density field [9, 23, 32, 55, 69, 70, 124]. On the other hand, the large

thermal velocities of the neutrinos will prevent their evacuation from cosmic voids. This

should manifest as an extra mass within voids that will affect their overall evolution. It

is thus expected that voids in a massive neutrino universe would be smaller and denser.

81



82

This fact was firstly noted by [126], who studied the properties of voids in massive

neutrino cosmologies using the Lyα forest.

In this part of the thesis we investigate for the first time the impact of massive

neutrinos on cosmic voids, as identified in the spatial distribution of galaxies and in

the underlying matter density field. We study the properties of voids in the spatial

distribution of matter by running large box N -body simulations in cosmologies with

massless and massive neutrinos, described in Chapter 4 and listed the bottom part

of Table 4.1. The spatial distribution of galaxies is modeled using a halo occupation

distribution (HOD) model and requiring that the resulting mock galaxy catalogues

reproduce, for a given galaxy population, the observed number density and two-

point correlation function of a particular survey. We use the publicly-available code

VIDE [116] to identify the voids in both the matter and galaxy distribution. The void

catalogs obtained with this void finder - a watershed void finder presented in Chapter

4 - depend on the resolution of the N-body simulation considered. However, in this

work we are interested in the relative differences between cosmologies with and without

massive neutrinos, rather than absolute results. Therefore, we compare catalogs and

void properties obtained from simulations at the same resolution.

This part is organized as follows. A comparison between the different properties of

voids detected in the matter density field in the different cosmological models is shown

in Chapter 8, while in Chapter 9 we present the properties of voids identified in the

galaxy distribution.



Chapter 8

Voids in the matter distribution

In this chapter we present the analysis for voids identified in the matter density field,

which is modeled via our low resolution N -body simulations. As explained in the

above section, voids are selected in the matter density field by running VIDE on top

of all CDM particles, for every realization of each cosmological model. Our goal is to

investigate the impact of massive neutrinos on the formation and evolution of cosmic

voids. Thus, here we study some of the main properties of voids and examine how these

depend on the cosmological model. The void properties analyzed are: number densities,

ellipticities, two-point correlation functions, density profiles, and velocity profiles.

8.1 Number density

We compute the number density of voids at z = 0 and z = 1 as a function of their

effective radius Reff , and show the results in Fig. 8.1. Different colors indicate different

cosmologies while error bars represent the scatter around the mean value obtained

from the 10 independent realizations divided by
√

10. The bottom panel of each plot

displays the ratio between the number density of voids in massive to massless neutrinos

cosmologies. We find that in cosmologies with massive neutrinos the abundance of small

voids is larger than in massless neutrinos cosmologies, whereas the number density of

big voids is highly suppressed in massive neutrino cosmologies. These trends take place

both at z = 0 and z = 1, while relative differences are smaller at z = 1.

These results are in perfect agreement with our expectations: neutrinos have

large thermal velocities, which gives rise to two main effects. On one hand it avoids

their clustering within dark matter halos, and on the other hand it makes them

less sensitive to void dynamics. Therefore, as a first approximation, the neutrinos

density contrast can be approximated as δν = 0 and the matter density as δm =

δcdmρcdm/ρm + δνρν/ρm ' δcdmρcdm/ρm, where the subscripts ’cdm’ and ’m’ stand for

CDM and matter, respectively. This brings an extra mass inside the voids that will

slow down their overall evolution. It is thus expected that voids in a massive neutrino

universe would be smaller and denser, and therefore appear less-evolved. Moreover, the

higher the neutrino mass the higher the ratio ρν/ρm and the additional mass inside

the voids. Therefore the relative differences with respect to ΛCDM increases with the

neutrino mass. We also expect differences to become smaller at higher redshift. At

higher redshifts voids will be denser overall, and the additional mass given by neutrinos
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Figure 8.1: Number density of voids as function of their effective radius. The top panels

show the results for different cosmologies: red line is the ΛCDM cosmology, purple, blue and

green lines correspond to
∑
mν = 0.15 eV,

∑
mν = 0.3 eV and

∑
mν = 0.6 eV cosmologies,

respectively. The bottom panels show the ratio between the void number density in massive

and massless neutrino cosmologies. Left and right plots display results at redshift z = 0 and

z = 1, respectively.

will play a less important role and the void number density will be more similar among

different cosmologies.

We conclude that the number density of voids, identified in the matter density field,

is very sensitive to the neutrino masses.

8.2 Ellipicity

We now investigate the distribution of voids ellipticities in cosmologies with massive

and massless neutrinos. For each cosmological model we compute the fraction of voids

with a given ellipticity and show the results in Fig. 8.2 at redshifts z = 0 (left) and

z = 1 (right). The error bars represent the scatter around the mean value obtained from

the 10 independent realizations normalized by
√

10. The bottom panels show the ratio

between the models with massive neutrinos to the model with massless neutrinos. We

find differences of the order of a few percent between ΛCDM and 0.15 eV cosmologies

for void with ellipticities ε < 0.4, where statistical error bars are relatively small. The

differences increase as the sum of neutrino masses increases and it reaches 20% for the

0.6 eV cosmology for both redshifts z = 0 and z = 1. We find that relative differences

among models slightly decrease at z = 1.

With our interpretation that voids in massive neutrino cosmologies appear younger

than those in massless neutrino cosmologies, it is straightforward to understand the

results. Voids in cosmologies with massive neutrinos will be in a earlier evolutionary

stage and therefore we would expect to find more voids with low ellipticities than in a

ΛCDM cosmology. For the same reason, there is a deficit of voids with large ellipticites

in massive neutrino cosmologies.
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Figure 8.2: Number of voids with a given ellipticity, normalized by the total number of voids.

The top panels show results from different cosmologies: red line is the ΛCDM cosmology, purple,

blue and green lines correspond to
∑
mν = 0.15 eV,

∑
mν = 0.3 eV and

∑
mν = 0.6 eV

cosmologies. The bottom panels show the ratio between the same quantity in a massive and a

massless neutrino cosmologies. Left and right plots display results at redshift z = 0 and z = 1,

respectively.

8.3 Correlation function

The structure of the void correlation function has been well studied (for example,

in [51]), which identified the void-exclusion scale and the effects of galaxy bias. Here we

investigate the clustering properties of voids in the different cosmological models. For

each cosmology, we split our void catalogues in different groups depending on their size

Reff and compute the correlation function of the void centers belonging to the same

group. The correlation function is measured using the Landy-Szalay estimator [63]. The

random catalogue contains a number of points 20 times larger than the void catalogue.

Figure 8.3 shows the results at redshift z = 0 (on the left) and z = 1 (on the

right), with error bars given by the scatter around the mean value obtained from the 10

independent realizations divided by
√

10. For clarity we show the correlation functions

for only two cosmologies: the solid lines refer to ΛCDM and the dashed ones refer

to
∑
mν = 0.6 eV cosmology. Different colors indicate different ranges in Reff . The

results show that, for both cosmologies, the two-point correlation function goes to zero

on large scales. It increases as R decreases and it reaches a maximum, whose height

and position depend on the size of the voids considered. Finally, going towards smaller

distances, the correlation function decreases until it reaches the lowest boundary -1.

The behavior of the correlation function on small scales is due to exclusion effects:

top-level voids are extended objects that cannot overlap. In fact, if we imagine them as

spheres of radius Reff , the probability of finding two void centers at a distance smaller

than the sum of their effective radii (exclusion scale) is zero, which corresponds to a

value of the correlation function equal to -1. We would naively expect to have a sharp

transition from the positive correlation to the exclusion regime. However, this is not
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Figure 8.3: Two-point correlation function of voids with an effective radius in a given range.

Solid lines show the results for the ΛCDM cosmology whereas the dashed lines indicate the

results for the
∑
mν = 0.6 eV cosmology; different colors are related to different bins in the

void radii as reported in the legend. Left and right plots display results at redshift z = 0 and

z = 1, respectively.

the case for several reasons. First of all, the presence of different void sizes in each of

the considered groups. Secondly, the void finder used in this paper does not return

spherical voids, but under-dense regions with a complicated shape, and therefore it can

happen that the distance between two void centers is smaller than the sum of their

two effective radii. It can be seen that the exclusion scale increases with the effective

radius of the voids considered.

The presence of a positive peak in the two-point correlation function arises from

two different processes: the rise of the non-linear clustering of voids going to smaller

scales and the exclusion effect. We can also understand why the clustering of voids

in massive neutrino cosmologies is lower with respect to the massless neutrino case

if we take into account that voids in the former are younger than those in the latter.

Indeed, if we compare the clustering of voids at z = 0 and at z = 1, we find that the

clustering decreases with redshift. Thus, since voids in the massive neutrino cosmologies

are effectively younger, they are expected to exhibit a lower amplitude in the 2pt-

correlation function, as our results show. At higher redshifts the properties of voids in

cosmologies with massive and massless neutrinos get closer, and therefore it is natural

that differences in their clustering properties decrease.

8.4 Density profile

Here we investigate the impact of massive neutrinos on the shape of the void density

profiles. We compute the cold dark matter, massive neutrino, and total matter density

profile in voids of different sizes.

The profiles have been computed in the following way. For each simulation box, we

select the voids whose effective radius lie within a certain interval. For each void, we
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Figure 8.4: Average cold dark matter (solid lines) and neutrino (dotted lines) density profiles

around voids with different sizes: Reff=10-11 Mpc/h (top), Reff=16-18 Mpc/h (center), Reff=20-

25 Mpc/h (bottom). Left and right panels show results at redshifts z = 0 and z = 1, respectively.

Red, purple, blue and green lines show the 0.0, 0.15, 0.3 and 0.6 eV cosmologies, respectively.

The dashed black lines indicate the mean value of the void radii in the selected range and two

times the same quantity.
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compute the density field inside shells around the center, then we stack all the shells

of the different voids to obtain the average density profile at a given distance from

the void center. We repeat the procedure for all the ten realizations with the same

cosmology, then we average over the realizations. The error that we present is the

scatter between the different realizations normalized by
√

10. We repeat this procedure

for different intervals in the void radius and for all the cosmologies considered in this

paper.

Figure 8.4 shows the average cold dark matter (solid lines) and neutrino (dotted

lines) density profiles around void centers with radius Reff=10-11 Mpc/h (top), Reff=16-

18 Mpc/h (center), and Reff=20-25 Mpc/h (bottom). Left and right plots show results at

redshift z = 0 and z = 1, respectively, and different colors indicate different cosmologies.

Let us focus first on the cold dark matter density profile. We can immediately notice

that small voids present a compensated wall at the edge, whereas the large ones have

a negative density profile, as already shown in [50]. Moreover, fixing the cosmology,

voids present a typical behavior: large voids are emptier; i.e., they present deeper

underdensities in the core than small ones. However, we have checked that this behavior

can change depending on the resolution of the considered simulations.

For voids with a given radius, we find that the height of the wall becomes higher

when decreasing the neutrino mass. On the other hand, the inner part of the density

profile is emptier in the massless neutrino case and it becomes denser as the neutrino

mass increases. Voids evolve in time building a higher wall and becoming progressively

emptier and emptier. Again we can understand the difference between the cosmologies:

the impact of the neutrino mass can be described as slowing down the evolution of the

void profiles and giving a less evolved universe in these regions.

The neutrino profile is found to follow the corresponding cold dark matter one.

Around very small voids, the neutrino profile presents an overdensity at the void wall,

whereas it presents troughs around very large voids. Any departure from the mean

background density (both overdensities and troughs) is greater for larger neutrino

masses. This corresponds to the neutrinos with lower thermal velocities, which are

more susceptible to the presence of the cold dark matter gravitational field.

In Fig. 8.5 we show the total matter density profile, which is the most relevant

quantity since most of the observables depend on the total matter distribution, e.g.

weak lensing and the ISW effect. We present the results for the same void sizes as

above and at z = 0 (left) and z = 1 (right). The bottom panel of each plots shows

the ratio between the density profiles of the three massive neutrino cosmologies with

respect to ΛCDM. The main features observed in the cold dark matter profiles are

overall preserved, but enhanced here. In the void core, the differences between ΛCDM

and the 0.15 eV cosmology are at the level of 1-3 %, depending on the void radius, and

they reach 10% for the 0.6 eV case. Near the wall and for the very small voids, the

difference is at the 5 % level for 0.15 eV and at the 20% level for 0.6 eV cosmologies.

All the differences are more pronounced at z = 1.

8.4.1 Void-by-void comparison

Above we have compared the density profiles of voids with the same fixed size. It is

also interesting, mainly for model building purposes, to study the differences among
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Figure 8.5: Average total matter density profiles around voids with different sizes: Reff=10-11

Mpc/h (top), Reff=16-18 Mpc/h (center), and Reff=20-25 Mpc/h (bottom). Left and right

panels show results at redshifts z = 0 and z = 1, respectively. Red, purple, blue and green lines

show the 0.0, 0.15, 0.3 and 0.6 eV cosmologies, respectively. At the bottom of each panel we

display the ratio between the results from the massive neutrino cosmologies and the ΛCDM

one. The vertical dashed black lines indicate the mean value of the void radii in the selected

range and two times the same quantity.

different cosmologies by performing a void-by-void comparison. The procedure we

use to perform a void-by-void comparison is as follows. We first select all voids of a

given size in the ΛCDM cosmology. Then, for each of the selected void, we find the
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Figure 8.6: Comparison void-by-void between the ΛCDM and the
∑
mν = 0.6 eV cosmologies.

We have selected all voids in the ΛCDM cosmology with radii Reff=16-18 Mpc/h (left column)

and Reff=20-25 Mpc/h (right column) and we plot their density profiles in red. The upper

panels show the CDM and neutrino density profiles whereas middle panels display the results

for the total matter density profiles. For the 0.6 eV cosmology we have chosen the voids using

two different procedures: we select all voids in above radii range (green lines) and we choose the

voids by matching their positions to these of the ΛCDM cosmology (blue lines). The vertical

dashed black lines indicate the mean value of the void radii in the selected range and two

times the same quantity. The lower panels show the void-by-void comparison between the

radii of the ΛCDM and the 0.6 eV voids. Each pixel in those panels displays the number of

void pairs as a function of the void radius R0.0eV in the ΛCDM (x-axis) and the radius of the

corresponding void R0.6eV in the 0.6 eV cosmology (y-axis). The solid black lines represent the

curve R0.6eV = R0.0eV.
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corresponding one in a massive neutrino cosmology by searching the void whose center

lie closest to the center of the ΛCDM void. Finally, we use these voids to compute the

mean density profile in the massive neutrino cosmology. We have explicitly checked

that this simple procedure works well when dealing with large voids, whereas for small

voids the comparison is not always satisfactory. Therefore, we limit our analysis to

big voids. In figure 8.6 we compare the density profiles for CDM, neutrinos and total

matter for voids in ΛCDM and
∑
mν = 0.6 eV cosmologies. For the latter cosmology

we use both procedures, i.e. voids with radii within a given range (green lines) and

voids selected by matching them with those of the ΛCDM cosmology (blue line).

The comparison between the density profiles of voids in the ΛCDM cosmology and

the corresponding voids in the massive neutrino cosmology confirms that the presence

of massive neutrinos makes the voids matter evacuation slower and therefore they are

less empty in the center and they present a lower wall at the edge. The comparison

between void profiles in the same cosmology (
∑
mν = 0.6 eV) but found using the two

different ways (blue and green lines) is enlightening. Indeed, voids selected using the

ΛCDM catalogue appear to be smaller than the one selected looking at the void size,

since their slope is closer to the center. This is even more clear when plotting the void

radii in the void-by-void selection for ΛCDM and
∑
mν = 0.6 eV cosmology (lower

row in figure 8.6). The black line indicates the equality between the radii in the two

cosmologies and most of the points are below that line, which means that majority

of voids in massive neutrino cosmology are smaller that the ones in the massless case.

This is even stronger evidence of what we expected: the presence of massive neutrinos

slow down the evolution (expansion) of voids.

8.5 Velocity profile

We now present the radial velocity profiles of the cold dark matter, neutrino, and

total matter fields. The first two have been computed directly from simulations in the

following way. We select voids with radii in a given range and then we compute the

radial velocity profiles of particles inside a shell of radius r around each void center,

using

v(r) =
1

N

N∑

i=1

~v(ri) ·
~ri
|~ri|

, (8.1)

where N is the number of particles in the shell and ~ri are the coordinates of the particles

with respect to the void center. Next, we stack all the shells from the different voids for

computing the average velocity at a given distance from the void center. Finally, we

average over the ten realizations with the same cosmology. The error associated with

the profiles is the scatter between the ten realizations divided by
√

10. The velocity of

the total matter field is instead computed as the density weighted average between the

velocity profiles of the cold dark matter and neutrino particles, via

vm(r) =
vcdm(r)ρcdm(r) + vν(r)ρν(r)

ρcdm(r) + ρν(r)
, (8.2)

where the subscripts m, cdm and ν stand for matter, cold dark matter and neutrinos,

respectively. The associated errors are computed via error propagation. Other velocity
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estimators have been used in literature, e.g. the Voronoi weighting estimator [50].

However, we have checked that the relative differences between cosmologies (massive

vs massless) are also reproduced by this estimator.

The results for the cold dark matter (solid lines) and the neutrino (dotted lines)

fields are shown in figure 8.7. As for the density profile, we consider three ranges for

the void radius and we plot on the left/right the results at redshifts z = 0/z = 1.

The cold dark matter particles have a positive radial velocity inside the effective

radius (first vertical dashed lines from the left), meaning that the inner part of the

voids is expanding and becoming more and more empty. The behavior outside the

effective radius changes depending on the void size. Around very small voids (top

panel), the cold dark matter velocity becomes negative, meaning that the particles are

moving towards the void. Therefore, there is an ongoing construction of the wall around

the edge of the void. The void will eventually shrink and later collapse because it is

surrounded by an overdense region (this is the so-called void-in-cloud effect). Around

bigger voids, the radial velocity is always positive; it presents a peak near half of

the void radius and it decreases on large distances from the center. Therefore, the

outer region of the void expands slower than the inner part, producing nevertheless a

concentration of mass around the edge of the void. Looking at different cosmologies, the

average radial velocity is higher in ΛCDM and it decreases as the sum of the neutrino

masses increases. Going from redshift z = 0 to z = 1, the velocities increase for all void

radius and cosmologies and differences between models become more pronounced.

As expected, we find that the neutrino radial velocity field follows the cold dark

matter one. The velocity is positive inside the void radius and remains positive also

outside, apart from the case of very small voids, where it becomes negative. However,

the neutrino velocity appears to be smaller than cold dark matter one, which is only

due to cancellation effects. Neutrinos have large thermal velocities that make them

free-stream in every direction, therefore the average velocity is expected to be close to

zero. To better understand this effect, Fig. 8.9 shows the average measured positive

and negative neutrino radial velocity profile, which correspond to the profiles for the

outgoing and incoming neutrinos, and their theoretical prediction. The predicted

mean thermal velocities of incoming and outgoing neutrinos are equal due to spherical

symmetry and it is computed as vin = vout ' 160/2 (3eV/Σmν) km/s [67]. The two

measured velocities are similar for small voids and small neutrino masses, but they

differ otherwise. It is the gravitational interaction with the void and the surrounding

matter which gives rise to this and to a positive (or negative) average neutrino velocity.

At higher redshift (z = 1), the neutrinos are faster and they feel less the dynamics of

the underlying cold dark matter structure. Indeed, the average neutrino radial velocity

profile is lower at z = 1 than at z = 0.

The results for the total matter radial velocity field are presented in Fig. 8.8. The

main features described for the cold dark matter radial velocity also apply here; however,

the differences between different cosmologies are more pronounced. In the bottom panel

of each plot we show the ratio between the results for the massive neutrino cosmologies

to the ΛCDM case. At redshift z = 0 and in the inner part of the voids there are

differences at the order of 5-10-15% for 0.15-0.3-0.6 eV cosmologies, respectively. Larger

differences can be seen in the outer parts of the voids, in the ranges Reff=10-11 Mpc/h

(top) and Reff=16-18 Mpc/h (center). At redshift z = 1 the differences are slightly
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Figure 8.7: Cold dark matter (solid lines) and neutrinos (points) velocity profile measured

from simulations around voids with different sizes: Reff=10-11 Mpc/h (top), Reff=16-18 Mpc/h

(center), and Reff=20-25 Mpc/h (bottom). Left and right panels are computed at redshift z = 0

and z = 1, respectively. Red lines indicate the ΛCDM cosmology, and purple, blue and green

lines show the 0.15, 0.3 and 0.6 eV cosmologies. The dashed black lines indicate the mean value

of the void radii in the selected range and two times the same quantity.
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Figure 8.8: Total matter velocity profile measured from simulations around voids with different

sizes: Reff=10-11 Mpc/h (top), 16-18 Mpc/h (center) and 20-25 Mpc/h (bottom). Left and

right panels display results at redshift z=0 and z=1, respectively. Red lines indicate the ΛCDM

cosmology, purple, blue and green lines show the 0.15, 0.3 and 0.6 eV cosmologies. At the

bottom of each panel there are the residuals between the massive neutrino cosmologies and the

ΛCDM one. The dashed black lines indicate the mean value of the void radii in the selected

range and two times the same quantity.
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Figure 8.9: Radial velocity profile of outgoing (solid lines) and incoming (dashed lines) neutrinos

around voids with different sizes: Reff=10-11 Mpc/h (top-left), 16-18 Mpc/h (top-left), and

20-25 Mpc/h (bottom). The solid horizontal lines show the theoretical mean radial velocity;

purple, blue and green indicate the 0.15, 0.3 and 0.6 eV cosmologies. At the bottom of each

panel there are the ratios between the velocity of outgoing and the incoming neutrino for each

cosmology. The dashed black lines indicate the mean value of the void radii in the selected

range and two times the same quantity.
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Figure 8.10: Number density of voids as function of their effective radius. The top panel shows

the results for different cosmologies: red and green lines are the ΛCDM cosmology with σ8 equal

to the one in the
∑
mν = 0.6 eV case computed from the total matter and the CDM power

spectra, respectively. The blue line correspond to the
∑
mν = 0.6 eV cosmology. The bottom

panels show the ratio between the void number density in massless and massive neutrino cases

considered.

more pronounced.

8.6 Ων-σ8 degeneracy

We also investigate the well known degeneracy between Ων and σ8 [23, 43, 74]. For

instance, the effects of massive neutrinos in many observables such as cluster number

counts, can be mimicked by a cosmology with massless neutrinos but with a lower value

of σ8, which is the r.m.s. value of the linear fluctuation in the mass distributions at

8Mpc/h. We want to understand if this is the case for voids too.

We use the simulations in ΛCDM with σ8 taken from the
∑
mν = 0.6 eV cosmology

(L0s8 and L0s8CDM) to identify voids in the matter density field. If the degeneracy is

present also in voids, these simulations should give catalogs very similar to the one of

the 0.6 eV case. Moreover, we consider the two different σ8 values because it has been

shown that for halos the degeneracy arises when using the CDM field, since it is the

fundamental one in driving the evolution of overdense structures [23]. We must check

if this is the case for underdense structures as well.

In order to test all of this, we first compare the number density of voids and we

plot the results in figure 8.10. The ΛCDM cosmology with σ8 computed from the total

matter field (red line) matches quite well the predictions from the 0.6 eV case up to

void radii equal to ∼17 Mpc/h. Above that, the departure is significant, giving a lack

of big voids, and it reaches a disagreement at the level of 70-80% for voids with size

∼30 Mpc/h. Things are different for the ΛCDM cosmology with σ8 computed from
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Figure 8.11: Left panel: matter density profile. Right panel: radial velocity profile. In both

cases colored lines show the profiles for the
∑
mν = 0.6 eV cosmology, whereas black lines

indicate ΛCDM cosmology with the same σ8 of the massive neutrino case, when it is computed

using the total matter density field. The bottom panels show the ratios between the results

from the two cosmologies.

the CDM field (green line). In this case there are fewer small voids and this translates

into a worse match with the massive neutrino cosmology, which reach the 5% for very

small voids. On the other hand, the number density of big voids increases, mitigating

the discrepancies at large Reff , which is here at the level of ∼30%.

We also perform the same analysis using the density and velocity profiles, focusing

on the comparison between the
∑
mν = 0.6 eV cosmology and the massless case with

same σ8 computed from the total matter linear power spectrum. Figure 8.11 shows

the density and velocity profiles of the matter field around voids selected in ranges of

Reff . The colored lines show the results for the massive neutrino case and black lines

indicate the massless one. The mismatch in the density profile is around 2-4% in the

inner part of voids and it increases in the outer part, whereas for the velocity profiles it

reaches the 10% in the void core.

For all considered observables, the results in
∑
mν = 0.6 eV cosmology cannot

be reproduced in a ΛCDM cosmology with the same σ8. This means that the Ων-σ8

degeneracy is broken. Our understanding is that voids, unlike halos, do not present

this degeneracy because they are sensitive to different regions of the linear power

spectrum. To be more precise, big voids should be influenced by scales in the P (k)

much larger than the ones important for halos. On these large scales, the amplitude

in the
∑
mν = 0.6 eV case is higher than in the two considered massless neutrino

cosmologies, and for instance more power corresponds to a higher number density of

voids.

The study of statistical properties of voids tells that voids appear to be less evolved

in massive neutrino cosmologies, and that this feature cannot be completely explained

by the difference in σ8, thus it is a signal due to the presence of massive neutrinos.

This signal could be used to constraints the sum of neutrino masses.
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Chapter 9

Voids in the galaxy distribution

It has to be noticed that matter is not (unfortunately) directly observable and usually

we rely on large scale structure tracers like galaxies. The distortion in the shape of

galaxies caused by the weak gravitational effect can be used to constrain cosmology.

The weak lensing signal will depend on the total matter density distribution and it

would be interesting to answer the following two questions: 1) what is the matter

density profile of the voids identified in the galaxy field? 2) what is the extent to which

massive neutrinos impact the reconstructed profile? Recently some work have been

done to address the first questions (see for example [26,61,76]); here we focus on the

second one. Therefore, in this section we present the analysis for voids identified in the

galaxy distribution, which is obtained by post-processing N -body simulations. First,

we explain how we populate halos with galaxies in order to generate a mock galaxy

catalogue. Then we show the main results regarding the study of galaxy voids. Since

the volume of our high-resolution simulations is relatively small and the number density

of galaxy-voids is low, we cannot perform the analysis as for the voids in the cold dark

matter field, studying all the void properties in different cosmologies. Therefore, we

present only the number density of galaxy voids and the study of matter inside the

identified galaxy voids. In particular, we show the matter density and velocity profiles

around these objects.

9.1 Halo Occupation Distribution

In order to construct a mock galaxy catalog, we need to populate with galaxies the

dark matter halos in N -body simulations. A commonly used tool is the so-called

Halo Occupation Distribution (HOD) model. In this framework, the distribution of

galaxies with respect to dark matter halos is described by a few parameters that can

be calibrated in order to reproduce some particular features of the observed galaxy

population. Here we calibrate the HOD parameters to reproduce the number density

and the two-point clustering statistics of galaxies in the main sample of the Sloan

Digital Sky Survey (SDSS) II Data Release 7 [129].

The HOD model requires two ingredients: 1) the probability distribution p(N |M)

of having N galaxies inside a halo of mass M and 2) the way in which galaxies positions

and velocities are related to the underlying matter particles. In our HOD model the first

ingredient is described by three parameters: Mmin, α and M1. We assume that halos
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∑
mν M1 α Mmin

(eV) (M�/h) (M�/h)

0.0 1.22× 1014 1.38 4.92× 1012

0.15 1.17× 1014 1.38 4.79× 1012

0.3 1.18× 1014 1.48 4.50× 1012

0.6 9.86× 1013 1.46 4.16× 1012

Table 9.1: Values of the HOD parameters, for four different cosmologies and for galaxies with

magnitudes Mr − 5 log10 h = −21.0.

with masses below Mmin do not host any galaxies, whereas halos with masses above

Mmin host one central galaxy and a number of satellite galaxies following a Poissonian

distribution with a mean equal to (M/M1)α. We use the following equations:

〈Nc|M〉 =

{
1 if M ≥Mmin

0 if M < Mmin

〈Ns|M〉 =

{
(M/M1)α if M ≥Mmin

0 if M < Mmin .
(9.1)

Our second HOD ingredient states that the central galaxy sits in the center of the

corresponding halo and that the distribution and velocity of the satellites follow exactly

the ones of the underlying cold dark matter particles inside the halo. This means that

the galaxy bias and the velocity bias with respect to the cold dark matter field are both

equal to 1. The values of the HOD parameters obtained for galaxies with magnitudes

Mr − 5 log10 h = −21.0 in the four different cosmologies are shown in table 9.1.

We focus our study at redshift z = 0, where there are good measurements of the

clustering of different galaxy populations. Now that we have created a mock galaxy

catalog for each cosmology, we can run the void-finder VIDE on top of the galaxy field

and identify the galaxy voids.

9.2 Number density

For each cosmology we compute the number of galaxy voids as a function of their size

Reff and we show the results in Fig. 9.1. On the upper panel we plot the cumulative

number of galaxy voids normalized by the total number and the associated errors, which

are computed using error propagation and assuming a Poisson distribution in Reff for

the galaxy voids. Different colors indicate different cosmologies. On the bottom panel

we display the ratio between the results for the massive neutrino cosmologies and the

ones for the ΛCDM model. We can notice some differences among the cosmologies only

for voids with Reff > 30 Mpc/h, where anyway the errors are very large. Moreover, it

is interesting to notice that the size of the voids identified in the galaxy field are larger

than the ones found in the cold dark matter field. This is just a consequence of the

number density of the tracers used to identify voids: a smaller value for the number

density of tracers brings to larger voids.
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Figure 9.1: Cumulative fraction of galaxy voids at z = 0. The top panel shows results from

different cosmologies: red line is the ΛCDM cosmology, and purple, blue and green lines

correspond to 0.15, 0.3 and 0.6 eV cosmologies. The bottom panel shows the ratio between the

same quantity in a massive and a massless neutrino cosmologies.

9.3 Density profile

Here we compute the total (cold dark matter + neutrinos) matter density profile in

the identified galaxy voids, once they are divided into four groups, depending on their

effective radius: Reff=20-25, 25-30, 30-35, 40-45 Mpc/h. Figure 9.2 shows the profiles

(top panel of each plot) only for 0.0 eV and 0.6 eV cosmologies, while the residuals

between massive and massless cases (bottom panel of each plot) for all the massive

neutrino cosmologies are displayed. As in the previous section, the vertical dashed lines

indicate the effective radius and two times the same quantity.

We immediately notice that the matter profile here, in galaxy voids, is very different

from the one around voids identified in the cold dark matter field (see figure 8.5). First

of all, galaxy voids are less empty. Secondly, there is a compensated wall even around

very large voids. These differences are due to the fact that galaxy voids incorporate

within them many small cold dark matter voids, together with small halos and filaments.

Their edge presents an overdensity in the galaxy field, which can sit only in very big

overdensities in the cold dark matter field. In other words, this should be due to the

galaxy bias b [75]. If we assume that voids are patches where the enclosed number

density contrast of the tracers is equal to a certain threshold δt = −0.8, and that the

tracers are galaxies with a density field δg = b δm biased with respect to the matter

field, then the corresponding enclosed matter density will be δm = δt/b. If the galaxy

bias is b ∼ 2, the enclosed matter density will be 2 times denser then the galaxy one.

Focusing on the comparison among cosmologies, we can notice the same trend as in

the cold dark matter voids: the matter profiles of ΛCDM are emptier and they present

a higher wall. However, here the small galaxy void statistics makes this trend less clear.

Moreover, the differences among ΛCDM and massive neutrinos cosmologies are more

noisy, but not less pronounced. In small voids there are smaller differences, whereas in

large voids the differences are of the order of 10-20% in the inner part of voids and for
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Figure 9.2: Density profile of the total matter field (cdm + neutrinos) around galaxy voids with

different sizes: Reff = 20−25 Mpc/h (top-left), Reff = 25−30 Mpc/h (top-right), Reff = 30−35

Mpc/h (bottom-left), and Reff = 40− 45 Mpc/h (bottom-right). In each plot, the main panel

shows the result for the 0.0 eV (red) and the 0.6 eV (green) cosmologies. The bottom panels

display the ratios between the results from the massive neutrino cosmologies (0.6 eV but also

0.15 eV in purple and 0.3 eV in blue) to the ΛCDM one. The vertical dashed black lines indicate

the mean value of the void radii in the selected range and two times the same quantity.
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Figure 9.3: Radial velocity profile of the total matter field (cdm + neutrinos) around galaxy

voids with different sizes: Reff = 20− 25 Mpc/h (top-left), Reff = 25− 30 Mpc/h (top-right),

Reff = 30− 35 Mpc/h (bottom-left), and Reff = 40− 45 Mpc/h (bottom-right). In each plot,

the main panel shows the results for the 0.0 eV (red) and the 0.6 eV (green) cosmologies. The

bottom panels display the ratios between the results from the massive neutrino cosmologies (0.6

eV but also 0.15 eV in purple and 0.3 eV in blue) to the ΛCDM one. The vertical dashed black

lines indicate the mean value of the void radii in the selected range and two times the same

quantity, whereas the colored numbers indicate the number of stack voids in each simulation.

all the massive neutrino cosmologies; the discrepancies are less pronounced near the

compensated wall.

9.4 Velocity profile

We present here the analysis for the velocity profile of matter around galaxy voids. We

select the galaxy voids in the same size ranges as for the density profile. We compute
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the radial velocity of matter as a density weighted average between the velocity profiles

of cold dark matter and neutrino fields, as shown in Eq.(8.2). The associated errors

are computed via error propagation, using the dispersion around the mean values of

density and velocity profiles of cold dark matter and neutrinos obtained from the stack

of the selected voids in the simulation.

The results are shown in Fig. 9.3. Again we plot the profiles for ΛCDM and 0.6

eV cosmologies only, but we present the residuals with respect to ΛCDM for all the

massive neutrino cosmologies considered in this paper. The main feature to notice is

the particular shape of the profiles. They are positive in the inner part of the galaxy

voids, they reach zero around the effective radius and they are negative outside. Even

the profiles around very big voids share the same shape, contrary to what happens in

cold dark matter voids (see figure 8.8). It seems that in these regions the cold dark

matter is building a wall near the effective radius, with the additional effect of shrinking

the underdensity.

If we compare the cosmologies we notice that inside galaxy voids the velocity is

higher in ΛCDM, whereas in outer regions the trend is not unique for all the void sizes.

However, for most of the cases, the massive neutrino cosmologies have slower motion

towards the center of the galaxy voids.
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Void profiles
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Introduction

The abundance and spatial distribution of structures of the cosmic web depend on the

nature of the initial conditions, the expansion history of the universe, and the nature of

gravity. For what regards halos, predictive models of this dependence have three parts.

The first is a description of the gravitational physics of halo formation; the second

incorporates this into a statistical treatment aimed at predicting halo abundances;

and the third extends this treatment to also describe the spatial distribution of these

objects.

The statistical model for the abundances typically identifies those proto-halo patches

in the initial conditions which are destined to become halos. The symmetry between

over and under-densities of an initially Gaussian random field means that one can use

essentially the same procedure to predict the abundance of large voids as is typically used

for predicting halo abundances. This procedure also predicts the spatial distribution of

the initial patches which are destined to become voids and halos. Proto-halos and proto-

voids are predicted to be biased with respect to the full dark matter fluctuation field, and,

except for a sign change (proto-halos are more abundant in initially over-dense regions,

proto-voids in initially underdense regions), these predictions are qualitatively the same.

However, subsequent nonlinear gravitational evolution removes this symmetry.

Since the abundances are predicted from the initial Lagrangian field, whereas the

spatial distribution of the fully formed halos and voids is measured in the final evolved

Eulerian field, the description of the spatial distribution is done in two steps: the first

describes how the spatial distribution of the initial patches is biased with respect to

the initial fluctuation field (Lagrangian bias), and the second describes how this bias is

modified when the evolved halo distribution is compared to the evolved matter field

(Eulerian bias).

The excursion set approach or the peaks theory are usually used to predict the

abundance and spatial distribution of nonlinear objects from the initial Lagrangian

fluctuation field. In Chapter 10 we show that they also predict the initial density

profiles around proto-halo and proto-void patches: indeed, there is a sense in which the

halo mass function can be thought of as the generating function of the distribution of

profiles at fixed mass. In Chapter 11 we study the evolution of void profiles and linear

bias.
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Chapter 10

Density profiles in Lagrangian

space

This chapter presents the study of density profiles around Lagrangian regions, identified

as places where halos or voids will form.

10.1 Over-densities

In literature, the abundance and clustering models have been mainly studied for

overdense regions. In this section we consider a sequence of ever more sophisticated

models and present how they can be used to compute also density profiles around

Lagrangian patches, focusing on overdensities since they are the more familiar case. It

will be interesting to notice similarities and differences arising when the same models

are applied to underdensities, in Section 10.2. We also discuss the linear halo bias in

Lagrangian space, whose form depend on the model for halo formation. The linear

bias is usually thought to be the term of proportionality between the halo density

field and the matter field and to depend on halo mass only, but in general it is scale

dependent. Thus, it is convenient to think at the bias in a different way. We call bias

term each scale independent factor of proportionality between the halo density field

and the matter density field, eventually multiplied by a scale dependent term. Every

constraint used in the definition of a protohalo generates a linear halo bias term.

10.1.1 Overdense patches in the initial conditions

The quantity of interest is the averaged enclosed density profile around proto-halos of

size Rp, e.g., in the simplest plausible model for halo formation, around positions which

are denser than δsc when smoothed on scale Rp (the subscript ‘sc’ denotes the critical

quantity for the ‘spherical collapse’ to happen, as in Chapter 1). Let δj denotes the

overdensity when smoothed on scale Rj . This profile is nothing but the cross-correlation

between the overdensity δq on scale Rq (the proto-halo) and δp on the scale Rp 6= Rq
(the smoothed matter field), when it is known that δp ≥ δsc, and it is given by

〈δq|δp ≥ δsc〉 =

∫ ∞

δsc

dδp p(δp)
〈δq|δp〉

p(δp ≥ δsc)
. (10.1)
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Since

〈δq|δp〉 ≡
spq0
spp0

δp , (10.2)

where sRR
′

j is defined in Eq. (1.16), we have that

〈δq|δp ≥ δsc〉 = bL(ν)
spq0
spp0

, (10.3)

with

ν ≡ δsc/
√
spp0 (10.4)

and

bL(ν) ≡ ν

δsc

e−ν
2/2/
√

2π

erfc(ν/
√

2)/2
. (10.5)

Evidently, the cross-correlation between the positions identified as being sufficiently

overdense on scale Rp and the field smoothed on scale Rq is linearly proportional to

the cross-correlation of the field itself when smoothed on the two scales Rp and Rq.

Frusciante and Sheth [46] show that this is a generic feature of local Lagrangian bias

models such as this one. The constant of proportionality defines the linear bias factor,

which is a complicated function of the threshold but is otherwise just a number which

is independent of the scale Rq.

The considered model of protohalos of size Rp identifies them with initial patches

having δp ≥ δsc. Since bL is always positive for regions above some threshold δsc ≥ 0,

tending to
√

2/π/spp0 as ν → 0 and to ν2/δsc as ν →∞, the analysis above shows that

one then expects there to be a lower limit to bL of protohalo patches. We argue in the

next section that although this is too simplistic a model to be realistic, this behaviour –

a lower limit to bL – is generic.

There are two ways in which this overdense patch model is particularly simple. First,

bL does not change sign. And second, although the bias factor is a complicated function

of ν, for a given ν it is just a constant, independent of scale Rq and/or wavevector k. To

see this, Fourier transform both sides of Eq. (10.3), and note that the Fourier transform

of the left hand side must be proportional to W (kRq), since it involved smoothing of δq
on scale Rq. If we write it as Ppm(k)W (kRq), where the subscript pm indicates that

this is the power spectrum associated with the cross correlation between the subset of

positions p that are above threshold on scale Rp and the overdensity which surrounds

them on scale Rq, then

Ppm(k)W (kRq) = bL(ν)PL(k)W (kRp)W (kRq). (10.6)

Here, all scale dependence comes from the smoothing filters: the bias factor bL is just a

k-independent number.

Finally, note that the expressions above indicate that this profile always has the

same sign as spq0 ; if spq0 crosses zero on some scale R0, then the average profile does as

well.

10.1.2 The excursion set approach: Correlated steps and the upcross-
ing approximation

The next more realistic model of protohalos – the excursion set approach of [11]

(see also Section 1.2.2) – adds the requirement that, in addition to δ(Rp) ≥ δsc, a
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protohalo patch must have δ(Rq) ≤ δsc for all Rq > Rp. A treatment which accounts

more carefully for correlations between scales is tractable (and still rather accurate!)

if one modifies the requirements that δ(Rq) ≤ δsc for all Rq > Rp to the simpler

constraint Cp that δ(Rp + ∆R) ≤ δsc in addition to δ(Rp) ≥ δsc, which is the so called

upcrossing approximation by [79] (see also Section 1.2.3). In this case, it turns out to

be straightforward to generalize the treatment to the case in which the critical δsc is not

a constant, but depends on scale Rp. Indeed, halo formation is known to be affected

by the surrounding shear field [13,106]. A crude but effective model for this replaces

the δ ≥ δsc requirement with δ ≥ δsc (1 +
√
q2/q2

c ) where q2 is the traceless shear.

Since 〈q2〉 ∝ spp0 , the effect of the shear is reasonably well approximated by requiring

δ ≥ δsc (1 +
√
spp0 /qc) [80, 108], with qc ≈

√
6δsc [37, 104]. If we define β ≡ δsc/qc

then this means that νp = ν (1 + β/ν), and is the physical motivation for considering

models with non-zero β. If this critical density is δp = δsc + β
√
spp0 , then the predicted

cross-correlation between protohalo positions (i.e. those for which Cp is satisfied) and

the density which surrounds them on scale Rq becomes

〈δq|Cp〉 = b10(ν) spq0 + b01(ν) 2
dspq0

d ln spp0
, (10.7)

where

δp b10(ν) + δp b01(ν) =
δ2
p

spp0
≡ ν2

p (10.8)

and

δscb01(ν) = ∂ lnG1/∂ ln y|y=γν (10.9)

with G1 given by Eq. (1.83) with F = 1. (Note that it is δp in the first expression, but

b10 and b01 are functions of ν rather than νp, so it is δsc in the second. When β = 0

this difference does not matter, of course.) The linear bias term b10(ν) comes from the

constraint to be above the threshold δsc, while b01(ν) is associated to the upcrossing

requirement. When β = 0, the bias term b10(ν) is given by Eq. (1.81), that we rewrite

here:

δscb10 = ν2 − 1 +
e−Γ2ν2/2/

√
2πΓν

erfc(−Γν/
√

2)/2 + e−Γ2ν2/2/
√

2πΓν
, (10.10)

where

Γ2 ≡
γ2
p

1− γ2
p

, γ2
p ≡

1

4spp0 〈δ′pδ′p〉
and δ′p ≡

dδp
dspp0

. (10.11)

It is useful to rewrite Eq. (10.7) so that b01 does not appear explicitly:

〈δq|Cp〉 = δp 2
dspq0
dspp0

+ b10(ν) spq0

(
1− 2

d ln spq0
d ln spp0

)
. (10.12)

We argue shortly that the second term is the usual linear bias term which dominates

on large scales, whereas the first should be thought of as a shot-noise like term which

is negligible when Rq � Rp.

In addition, Eq. (10.7) for the cross-correlation, enclosed density profile can be

written in a more suggestive form, if we scale its height by its value at Rp. This makes

〈δq|Cp〉
δp

=
spq0
spp0

[
1− δp b01(ν)

ν2
p

(
1− 2

d ln spq0
d ln spp0

)]
. (10.13)
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The term outside the square brackets on the right hand side has the same shape as the

density run around random positions of height δp (e.g. compare equation 10.3); the

term in square brackets is the correction which comes from the additional excursion set

constraint Cp.
In Eq. (10.12) and Eq. (10.13), the quantity 1− 2 d ln spq0 /d ln spp0 plays a key role.

Since it tends to unity when Rq � Rp, both expressions indicates that 〈δq|Cp〉 →
b10(ν) spq0 in this limit. We can see explicitly this limit considering some specific power

spectra and window functions.

For Gaussian filtering of power-law P (k),

spq0
spp0

=

(
2

R2
q/R

2
p + 1

)(3+n)/2

(10.14)

and

1− 2
d ln spq0
d ln spp0

=
(Rq/Rp)

2 − 1

(Rq/Rp)2 + 1
. (10.15)

This means that Eq. (10.12) becomes

〈δq|Cp〉
δp

=

(
2

R2
q/R

2
p + 1

) 5+n
2

+
b10(ν)

δp/s
pq
0

(
1− (Rp/Rq)

2

1 + (Rp/Rq)2

)
. (10.16)

This shows that when Rq � Rp then the ‘1-halo’ term, the first term on the right hand

side, falls as (Rq/Rp)
−5−n; the second term only falls as (Rq/Rp)

−3−n, so it dominates

on large scales.

For a top-hat, these quantities depend on P (k); for P (k) ∝ k−2,

spq0
spp0

=

{
5−(Rp/Rq)2

4(Rq/Rp) if Rq/Rp ≥ 1
5−(Rq/Rp)2

4 if Rq/Rp < 1
, (10.17)

making

1− 2
d ln spq0
d ln spp0

=





(Rq/Rp)2−1
(Rq/Rp)2−1/5

if Rq/Rp ≥ 1
(Rq/Rp)2−1

1−(Rq/Rp)2/5
if Rq/Rp < 1

, (10.18)

and so

spq0
spp0

(
1− 2

d ln spq0
d ln spp0

)
=





1−(Rp/Rq)2

(4/5)(Rq/Rp) if Rq/Rp ≥ 1
(Rq/Rp)2−1

4/5 if Rq/Rp < 1
. (10.19)

This has some intuitive appeal, since a little algebra shows that

〈δq|Cp〉 = δp

(
Rp
Rq

)3

+
5

4
sqq0 b10

(
1−

R2
p

R2
q

)
if Rq/Rp ≥ 1; (10.20)

if we think of the left hand side as a cross-correlation function, then the first term

on the right hand side is the one-halo term – the contribution from the fact that the

enclosed overdensity within Rp is δp – so it matters little on large scales where Rq � Rp.

The factor of 5/4 is the Rq � Rp limit of spq0 /s
qq
0 , so the second term, which represents

the two-halo contribution, gives the scale-dependence of the linear bias factor, and goes

to zero when Rq → Rp.
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Figure 10.1: Mean enclosed density profiles around protohalos identified by the excursion set

approach, shown in scaled units. The predicted profile depends on the scaled overdensity

ν2 = δ2
p/s

pp
0 of the object, for which we show three values, and the correlation structure of the

field, parametrized by Γ, which is determined by the shape of the power spectrum and the form

of the smoothing window. We show results for Gaussian and top-hat smoothing of P (k) ∝ kn,

where n was chosen so that the windows have Γ2 = 1/5. Since the large scale bias b10 depends

on Γ and ν only, it is the same for both filters. However, since n is different for the two filters,

the profiles look rather different when shown as a function of Rq/Rp; expressing the scales in

terms of spp0 /sqq0 removes much of this dependence and illustrates that b10 is indeed the same

for the two filters. It also shows that protohalo patches with smaller ν are predicted to have

steeper profiles.
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Indeed, the presence of the term proportional to b01 indicates that the bias factor

becomes k-dependent [79]. E.g., for a Gaussian smoothing filter Eq. (10.7) becomes

〈δq|Cp〉 = b10(ν) spq0 + b01(ν)
spp0
spp1

spq1 , (10.21)

so that the linear bias in Fourier space is

bL(ν) =
Ppm(k)

PL(k)W (kRp)
= b10(ν) + b01(ν)

spp0
spp1

k2. (10.22)

This shows explicitly that bL → b10 as k → 0. For top-hat smoothing, the k-dependence

is more complicated, because dspq0 /d lnRp = −3 j2(kRp), so the k dependence comes

from −(kRp)j2(kRp)/j1(kRp) ≈ (kRp)
2/5+(kRp)

4/175. Therefore it also has bL → b10

as k → 0, with the leading order correction proportional to k2. In general, the Fourier

transform of Eq. (10.7) is

〈δq|Cp〉 =

[
b10(ν)W (kRp) + b01(ν) 2

dW (kRp)

d ln spp0

]
PL(k)W (kRq) , (10.23)

so the linear bias is

bL(ν) =
Ppm(k)

PL(k)W (kRp)
= b10(ν) + b01(ν) 2

d lnW (kRp)

d ln spp0
. (10.24)

As a result, the limiting values of b10 remain interesting. Since b10 is never smaller than

about −1/2δsc, this model also has a lower limit to bL. However, it is more interesting

than the one in the previous section, both because bL can change sign and because

it is k-dependent. Since it too predicts objects with b10 < 0, their density profiles

must pass through zero even if the correlation function of all matter does not. In this

case, however, the potential for zero-crossing is more obvious, since bL is k-dependent.

Indeed, Figure 4 and related discussion in [79] shows that, because of this k-dependence,

one need not be as careful about the probability distribution of δq on scales Rq > Rp
as when the smoothing filter was sharp in k-space: the naive approach in which it is

approximated by a Gaussian is rather accurate.

Figure 10.1 compares the predicted profiles around excursion set patches, defined

using Gaussian and top-hat smoothing filters, for a range of choices of ν. Since δsc

is fixed, different values of ν correspond to different Rp. As a result, when shown

as a function of Rq, the dependence on ν appears large. Much of this dependence is

removed if we express all scales in units of Rp and all overdensities in units of δp, as in

Eq. (10.13). As Eq. (10.13) shows, this rescaled profile is primarily a function of one

parameter: δpb10 although there is a small additional dependence on the shape of P (k)

and the smoothing filter. This is why we actually plot 〈δq|Cp〉/δp.
To identify generic results which do not depend on the form of the smoothing filter,

we show results for Gaussian and top-hat windows applied to P (k) ∝ kn, where n was

chosen so that the Gaussian and top-hat windows have Γ2 = 1/5. Since, for a given

ν, the large scale bias b10 depends only on Γ, it is the same for both filters. However,

since n is different for the two filters (n = −2.6 and −2 for the Gaussian and top-hat

respectively), the profiles look rather different when shown as a function of Rq/Rp.

We have instead expressed the scales in terms of spp0 /s
qq
0 = (Rq/Rp)

n+3 (recall that
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because γ is the same for the two filters, n is different); clearly, this removes much of

the dependence on the filter. Now it is easy to see that b10 is indeed the same for the

two filters. When scaled in this way, the Figure also clearly illustrates that protohalo

patches with smaller ν are predicted to have steeper profiles. This same trend is true of

evolved halos: [82] show that less massive halos, which evolved from protohalo patches

having smaller ν, are more concentrated. That this trend is built-in to the initial

conditions is a point first made in [103]. We show in the next section that nonlinear

evolution does not erase this trend.

Strictly speaking, discussions of evolved halos almost always involve the profile at

Rq rather than the profile within Rq, although, as we show below, it is the profile within

Rq which determines the evolution. This corresponds to replacing W (kRq)→ j0(kRq)

in the integral which defines spq0 , but does not change the predicted trend with ν. For

top-hat smoothing of P (k) ∝ k−2 the result is analytic, and adds strong support for

interpreting the two terms on the right hand side of Eq. (10.12) as the one- and two-halo

contributions to the signal. In this case the overdensity in the shell of radius Rq is

〈δq|Cp〉
δp

=
5

2

(
1−

R2
q

R2
p

)
+
δp b10

ν2
p

5

4

(
5R2

q

3R2
p

− 1

)
(10.25)

if Rq is smaller than Rp, whereas it is

〈δq|Cp〉 = b10 ξ(Rq) (10.26)

when Rq is larger than Rp. Evidently, for this case, there is no scale dependence

to bias, except for the sharp cutoff due to exclusion on scales smaller than Rp. I.e.,

the second term in Eq. (10.20) is the simplest possible two-halo term: it is just

(3/R3
q)
∫ Rq
Rp

dr r2 b10 ξ(r), upon noting that ξ(Rq) = 5sqq0 /6.

10.1.3 Zero-crossing at small ν

If there is a zero crossing of the enclosed density profile, then it happens on that R0

where
ν2
p

δp b01(ν)
= 1− 2

d ln spq0
d ln spp0

. (10.27)

For Gaussian smoothing of power-law P (k), the zero-crossing scale R0 satisfies

δp b10(ν)

ν2
p

= 1− δp b01(ν)

ν2
p

=
2

1− (R0/Rp)2
, (10.28)

showing that R0 ≥ Rp requires b10 ≤ 0. Notice that b10 = 0 has R0 � Rp, but that

as b10 becomes more negative R0 approaches Rp. Top-hat smoothing is similar. For

P (k) ∝ k−2,
δp b10

ν2
p

= 1− δp b01

ν2
p

=
4/5

1− (R0/Rp)2
. (10.29)

This zero-crossing scale R0 is potentially interesting, at least in the spherical collapse

approximation to the full dynamics where the mapping between Lagrangian and evolved

Eulerian space is

1 + δE = [1− δL/δsc]
−δsc = (RL/RE)3 . (10.30)
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This expression indicates that the zero-crossing scale is not changed by nonlinear

gravitational evolution (in the spherical approximation). For δsc > 0, mass that is

initially within R0 flows towards the center, and mass that is beyond R0 moves even

further from it. Hence, halos which formed from protohalo patches having b10 < 0

may be a crude way to model the statistics of isolated clusters. The analysis above

indicates that this corresponds to only counting objects with sufficiently small ν. A

more sophisticated model would allow that fraction of larger ν values for which the

profile falls sufficiently steeply, but this is beyond the scope of the present study.

10.1.4 Excursion set peaks

The excursion set peaks model is more elaborate still: in addition to δ(Rp) ≥ δsc

and δ(Rp + ∆R) ≤ δsc, Cp includes the further requirement that δ(Rp) be a local

maximum [13,79,90] (see also Section 1.3). In this case the linear bias bL has the same

structure as the previous section – meaning that Eq. (10.8) still applies – only the

dependence of b10 on ν is different. This dependence is still given by Eq. (10.9), but

now the peaks constraint means that F (x) in Gn of Eq. (1.83) is given by Eq. (1.84):

δc b10 ≡ −
∂ ln νfESP(ν)

∂ ln ν
= ν2 + νβ − Γ2ν2

(
G2/G1

γpν
− 1

)
(10.31)

At large ν � 1, G1 → γν G0 and G2/G0 − (G1/G0)2 is what β−1 in approximation

(6.20) of [6] represents. Their (6.18) shows that their β → (1− γ2
p)−1 when γpν � 1 so

that

bL →
ν2 + νβ

δc
when ν � 1. (10.32)

There is a technical detail associated with the fact that, although for Gaussian

filters the quantity γp in Gn is the same as that which appears in Eq. (10.11) for the

excursion set approach, for top-hat filters the integrals which define γp in Gn diverge.

We follow [91] in dealing with this by using

γp = spp1 /
√
spp0 s

pp
2 (10.33)

in Gn, but with a top-hat filter for Rp and a Gaussian filter of scale Rp/
√

5 in the

integral which defines spp1 , two top-hats for spp0 and two Gaussians (each of scale Rp/
√

5)

for spp2 . (This scaling by a factor of
√

5 arises because exp(−x2/2) = 1 − x2/2 + . . .

whereas (3/x)j1(x) = 1−x2/10+ . . ..) This means that, for the enclosed density profiles

around peaks in a top-hat smoothed field, the term which multiplies δp b01/ν
2 is simply

that for a top-hat filter (because we use two top-hats for all s0 integrals), whereas the

value of b01(ν) depends on the mixture of the two filters through its dependence on

γp. This simplicity is useful since it is the top-hat smoothed field which may be most

closely related to models of the evolution.

In addition, note that our excursion set peaks model for the profile has the same

structure as equation (7.10) of [6], but with some important differences. Their expression

returns the profile of the overdensity smoothed on scale Rp at a distance Rq from

the peak center, rather than the enclosed density within Rq which matters for the

dynamics. Therefore, their expression has W (kRq)→W (kRp) j0(kRq) in the integral
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Figure 10.2: Mean enclosed density profiles (solid) around excursion set peaks in a Gaussian

smoothed field having P (k) ∝ k−7/3 for a range of choices of peak height ν. Dot-dashed curves

show the peak profile of [6] which ignores the upcrossing constraint, and short dashed curves

come from requiring this, but dropping the peaks constraint (i.e. they show profiles for the

same model as the previous figure). In all cases, lower peaks have steeper profiles, with the

trend being most pronounced for ESP. The values ν = 1.23 and 0.61 have b10 = 0 for the ESP

and no-peak approaches, respectively.

which defines spq0 . In addition, because their peaks analysis did not include the excursion

set constraint, their expression boils down to setting δscb01 = ∂ lnG0/∂ ln y|y=γν ; in our

expression it is G1 which appears.

As a result, it is still true that bL → b10 as k → 0 and, for ΛCDM, δsc b10 > −1

(see Figure 2 in [90]), meaning that b10 cannot be arbitrarily negative. And again,

the k-dependence of the bias means that the enclosed density around excursion set

peaks with b10 < 0 must cross zero. Figure 10.2 compares the predicted enclosed

overdensity profiles around excursion set patches (short-dashed) and excursion set

peaks (solid), defined using Gaussian smoothing filters, for a range of choices of ν. We

have chosen P (k) ∝ k−7/3 since this gives γp = 1/2 for Gaussian smoothing, and this

value is close to γp for ΛCDM P (k). This value of γp is also interesting because mixed

top-hat/Gaussian smoothing of P (k) ∝ k−2 (for which spq0 is given by Eq. (10.17), and

the zero-crossing scale by Eq. (10.29)) has γp ≈ 0.48, so b10(ν) is almost the same as

for the pure Gaussian case. Although we do not show it here, we have checked that the

excursion set peaks prediction for this case is indeed very similar to that for the pure

Gaussian case, when each is plotted as a function of its respective spp0 /s
qq
0 (as we did

for Figure 10.1). Note that the trend for smaller ν to have steeper profiles is even more

pronounced for excursion set peaks.

To illustrate the importance of the excursion set constraint for peaks, the long

dashed curves show equation (7.10) of [6], but with our spq0 /s
pp
0 in place of their ψ

(and the corresponding change for spq1 ), since this includes the effects of the k2-bias,
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Figure 3. Large scale bias with respect to −δL for excursion set

troughs; the bias with respect to +δL has the opposite sign. The

bias is shown as a function of depth ν for a range of choices of

the correlation parameter γp. Solid curves show predictions asso-

ciated with triaxial troughs; the dashed curve shows the spherical

evolution prediction for the value of γp which is close to that for

ΛCDM.

fore, what we really require is a prediction for the bias of
halos and voids with respect to the late time gravitationally
evolved field in which they were identified: δE

b = bE δE. In
the spherical evolution model the two are related by equa-
tion (4). Therefore, inserting bL

10 of equation (17) in equa-
tion (4) yields our excursion set troughs expression for the
bias factor bE of voids. It is the same as equation (25) of
Sheth & van de Weygaert (2004), upon noting that their ex-
pression has a typo: the absolute value sign around δv in their
expression should not be there.

Equation (4) indicates that objects for which bL = −1
will have bE = 0: they should be unclustered. This is im-
possible for initially overdense patches, since equation (13)
indicates that bL ≥ 0. In addition, we noted that protohalo
peak patches and various fitting formulae for the bias of pro-
tohalos in simulations all have bL greater than about −1/2δc,
so none of them can have bE = 0 either. However, because
the bias of protovoids can be arbitrarily negative, voids for
which

|δv| = ν νp − γ2
pν2

1 − γ2
p

„

G2/G1

γpν
− 1

«

(43)

can indeed have bL ≈ −1 and hence bE ≈ 0. E.g., for
|δv| = 2.71 and γp = 1/2 the critical value of ν which satis-
fies equation (43) is ν−1 = (2.25, 1.85) for β = (0, 0.66). This
shows explicitly that nonlinear evolution removes the sym-
metry between initial over- and under-densities: although a
special subset of voids can have bE = 0, clusters cannot.

The critical value ν−1 singles out protovoids of a par-
ticular initial size R−1. Since these had δv (1 + 0.7/ν−1) the
question arises as to what Eulerian size they should be as-
signed. One might expect them to be at least

RE = R−1 (1 − δv/δc)
δc/3 = 1.7R−1 (44)

in size, since using δv (1 + 0.7/ν−1) instead would make the
predicted RE ≈ 1.9R−1 (for ν−1 ≈ 2). The analysis above
indicates that these ν−1 voids will have bE = 0.

Mixed-Tophat/Gaussian smoothing of flat ΛCDM with
(Ωm, h, σ8) = (0.3, 0.7, 0.9) has γp ≈ 0.5 on scales of order
RL ≈ 4h−1Mpc. The excursion set troughs model with β =
0.66 indicates that voids in such a model with ν−1 = 1.87
and RE ≈ 1.8 × 3.8h−1 ≈ 7h−1Mpc will be unclustered.

4.3 Void profiles and walls in the excursion set
troughs model

For sufficiently deep troughs (those with sufficiently large ν,
for which b10 < 0) the enclosed density profile never crosses
zero. However, the enclosed overdensity of less significant
troughs can change sign. For such objects there is a zero
crossing scale. The mass within this scale is moving outwards
on average, whereas the mass outside this scale is moving
inwards, so we might expect a wall to build up on this scale.

If the outside is sufficiently dense, then this will
cause the entire region to shrink eventually: this is
the crushing associated with the void-in-cloud process of
Sheth & van de Weygaert (2004). This crushing is mani-
fested as follows. For each RL/Rp, inserting the left hand
side of equation (16) into the right hand side of equation (1)
maps the initial density to the evolved one. Then, using
this evolved value in equation (2) maps each RL/Rp to an
RE/Rp. The net result is a complicated relation between
1 + δE and RE/Rp: this relation is the evolved density pro-
file. If the same RE can have multiple values of δE, then this
signals that initially concentric shells have crossed – so a wall
has been formed.

Figure 4 illustrates: the two panels show the evolution
of the density profile around excursion set troughs of height
δp = δv(1 + 0.7/ν) for ν ≡ |δv|/

p

spp
0 = 0.33 (top) and

ν = 0.8 (bottom). The correlation parameter γp is that for
mixed TopHat/Gaussian smoothing of P (k) ∝ k−2, for rea-
sons noted previously. The dashed curve shows the initial
Lagrangian profile (i.e. evolved using linear theory to the
present time); solid curves show the nonlinearly evolved pro-
files when the linear theory growth factor is Dt = 1/4, 1/2
and 1× that of the present time. The two values of ν were
chosen to illustrate the shell-crossing signature of a wall (top
panel) and the smallest ν for which shell crossing does not
occur (bottom). The associated values of b10 are 0.08/|δv|
and −0.24/|δv|. While there is no surprise that shell cross-
ing occurs when b10 ≥ 0 (for then the enclosed density pro-
file crosses zero), note that it can occur even when b10 is
(slightly) negative, as interior shells catch up with the ones
which surround them – this is the same effect which leads to
shell crossing of an initially tophat, uncompensated profile.

We can use the spherical evolution model to provide a
rough estimate of approximately what values of ν shell cross-
ing occurs: since it predicts a wall on the scale RE = 1.7RL,
it is interesting to find that ν for which R0 = 1.7Rp. Since
1.72 ≈ 3, equation (26) indicates that this happens when
ν2 = −2.7b10. For Gaussian smoothing of P (k) ∝ k−7/3,
for which γp = 1/2, this means ν ≈ 0.66, so we might ex-
pect the squeezing of voids to matter for smaller values of ν.
For mixed TopHat/Gaussian smoothing of P (k) ∝ k−2, for
which γp ≈ 1/2, it is voids smaller than ν = 0.92 which are
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Figure 10.3: Large scale bias with respect to −δL for excursion set troughs; the bias with

respect to +δL has the opposite sign. The bias is shown as a function of depth ν for a range of

choices of the correlation parameter γp. Solid curves show predictions associated with triaxial

troughs; the dashed curve shows the spherical evolution prediction for the value of γp which is

close to that for ΛCDM.

but ignores the change to the bias factors because of the excursion set constraint.

Our excursion set peaks (solid curves) have slightly steeper profiles. As a result, the

threshold value of ν below which profiles cross zero is larger for ESP.

10.2 Under-densities

If the initial conditions were Gaussian, then the over/under dense symmetry of the

initial fluctuation field means that regions above some threshold δc ≥ 0 are as abundant

as regions below δv = −δc. The spatial distribution of these regions is also similar.

Therefore, the corresponding threshold, upcrossing excursion set, and excursion set

peaks models for protovoids are got by simply replacing δc → δv, and δL → −δL in all

the previous expressions. E.g., regions below some threshold δv < 0 will have Eq. (10.5)

for bL but with δc → δv and ν ≡ |δv|/
√
spp0 . In this case, the predicted bL is always

negative for regions below some δv < 0. I.e., underdense patches are positively biased

with respect to −δL so they are anti-biased with respect to the overdensity fluctuation

field.

As for the protohalo patches which evolve into massive halos, a better estimate

of the abundance of the largest voids can be got by taking the excursion set peaks

formalism for estimating cluster abundances, and simply replacing δc with |δv|. This

yields equation (13) in [109] (which is our Eq. (1.86) for the excursion set peak mass

function). As they discuss, the void-in-cloud problem means this is not the full story

for smaller voids, but on the scales relevant to this paper (which we quantify shortly),
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this additional complication is irrelevant [87]. Therefore, the excursion set troughs

predictions for profiles around protovoids are the same as those for excursion set peaks,

provided one sets δp = δv. Therefore, the density profiles around protovoids with

|δv| b10 < 0 will pass through zero.

We remarked earlier that halo formation is known to be affected by the surrounding

shear field. Similarly, for voids, one might reasonably expect the shear to make

δ ≤ δv (1 +
√
q2/q2

c ). This would make the critical threshold scale approximately as

δv − (σ0/
√

6)(|δv|/δc). Inserting the values of δv and δc from before yields −2.7− 0.7σ0,

which are not far off the measurements of protovoid patches in [3]. Thus, the predicted

mass fraction in voids of size RE is given by Eq. (1.86) with δv = −2.7 in place of δc
and β = 0.7, and the associated large scale linear bias factors are given by Eq. (10.8)

and Eq. (10.9) with these same replacements,

δv b10(ν) = −∂ ln νfESV(ν)

∂ ln ν
= ν (ν + β)− δv b01(ν) , (10.34)

δv b01(ν) =
γ2
pν

2

1− γ2
p

(
G2/G1

γpν
− 1

)
. (10.35)

Figure 10.3 shows how |δv| b10 depends on ν for a variety of choices of γp; mixed-top-hat

smoothing for ΛCDM models has γp ≈ 1/2. Note that bL never exceeds +1 for excursion

set troughs for the same reason that it is never less than −1 for excursion set peaks.

However, bL → ν2/δv � −1 for large protovoid patches, because δv < 0. I.e., large

voids are very anti-biased with respect to the overdensity fluctuation field, +δL. Finally,

it is worth remarking that, although b10 can change sign, |δp| b01 ≥ 0 for all ν.
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Chapter 11

Density profiles in Eulerian space

While the enclose density profile of protohalos and protovoids can be measured in

simulations, it is only the halos and voids themselves, rather than the patches in

the initial conditions from which they formed, which are observable in the Universe.

Therefore, what we really require is a prediction for the density profile of halos and

voids in the late time gravitationally evolved space in which they are identified. Being

a cross correlation, the density profile is sensitive to the Eulerian bias of the tracer with

respect to the evolved density field. In this chapter we will discuss how to evolve the

averaged enclosed density profile of biased tracers from the Lagrangian to the Eulerian

space and the relation between the corresponding linear biases.

11.1 The spherical model evolution

We describe the prediction of the spherical model in Section 1.1.3 when used to evolve

the Lagrangian profiles discussed in Chapter 11. We report here the main formula of

the spherical evolution model

1 + δE(z) =

[
1− (Dz/D0)δL

δsc

]−δsc
=

(
RL

RE(z)

)3

, (11.1)

which will be extensively used in this section. From the following analysis, two main

differences between halos and voids appear. They are related to the linear bias and the

possibility for a profile to experience shell-crossing.

11.1.1 The Eulerian bias

Consider the point process defined by the centers of masses of the protohalo or protovoid

patches, and let δL
b denote the overdensity fluctuation field when this point process is

smoothed on a large scale. Similarly, let δE
b denote the (smoothed) overdensity field

of the corresponding halos or voids. Then the Lagrangian and Eulerian bias factors

are defined by δL
b = bL δL and δE

b = bE δE. Suppose that VE and δE are the Eulerian

volume and density corresponding to the Lagrangian quantities V0 and δ0, describing a

large scale cell. Then, the number of halos or voids of mass M in an Eulerian region of

size VE is

δbE =
N (M |δ0, S0)

n(M)VE
− 1 , (11.2)
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where n(M) is the mass function of objects with mass between M and M + dM , and

N (M |δ0, S0) is the averaged number of objects in a volume V0. Using the spherical

model prediction and in the limit of small overdensity δ0 � 1, the volumes in the

two spaces are related by V0/VE = 1 + δE. Now, in the spherical evolution model the

halo/void overdensity is

1 + δE
b = (1 + δE) [1 + bL δL(δE)] . (11.3)

Hence, because δL ≈ δE to leading order [29,77],

bE = 1 + bL . (11.4)

Although different models may make different predictions for bL, Eq. (11.4) which

relates the Lagrangian and Eulerian linear bias factors is generic (e.g. [24]). In the next

Section we derive the same expression using the Zel’dovich approximation.

Because of the bE − bL relation in Eq. (11.4), there is a substantial difference

between halos and voids in the evolved field. Eq. (11.4) indicates that the class of

objects which have bL = −1 should have bE = 0 and should be unclustered on large

scales. This is impossible for initially overdense patches, since the discussion in Chapter

10 indicates that bL > −1. In addition, we noted that protohalo peak patches and

various fitting formulas for the bias of protohalos in simulations all have bL greater

than about −1/2δc, so none of them can have bE = 0 either. However, because the bias

of protovoids can be arbitrarily negative, voids for which

|δv| = ν νp −
γ2
pν

2

1− γ2
p

(
G2/G1

γpν
− 1

)
(11.5)

can indeed have bL ≈ −1 and hence bE ≈ 0. E.g., for |δv| = 2.7 and γp = 1/2 the critical

value of ν which satisfies Eq. (11.5) is ν−1 = (2.25, 1.85) for β = (0, 0.66). This shows

explicitly that nonlinear evolution removes the symmetry between initial over- and

under-densities: although a special subset of voids can have bE = 0, clusters cannot.

The critical value ν−1 singles out protovoids of a particular initial size R−1. Since

these had δv (1 + 0.7/ν−1) the question arises as to what Eulerian size they should be

assigned. One might expect them to be at least

RE = R−1 (1− δv/δc)δc/3 = 1.7R−1 (11.6)

in size, since using δv (1 + 0.7/ν−1) instead would make the predicted RE ≈ 1.9R−1 (for

ν−1 ≈ 2). The analysis above indicates that these ν−1 voids will have bE = 0. Mixed-

Tophat/Gaussian smoothing of flat ΛCDM with (Ωm, h, σ8) = (0.3, 0.7, 0.9) has γp ≈ 0.5

on scales of order RL ≈ 4h−1Mpc. The excursion set troughs model with β = 0.66

indicates that voids in such a model with ν−1 = 1.87 and RE ≈ 1.8×3.8h−1 ≈ 7h−1Mpc

will be unclustered.

11.1.2 The Eulerian profile

Halos and voids with sufficiently large ν, for which bL10 > 0 and bL10 < 0 respectively,

present an enclosed density profile that never crosses zero. However, the enclosed

overdensity of smaller troughs or peaks can change sign. For such objects there is a zero
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Figure 11.1: Evolution of the density profile around an excursion set trough of height δp. The

correlation parameter γp is that for mixed TopHat/Gaussian smoothing of P (k) ∝ k−2. Dashed

curve shows the Lagrangian profile (i.e. the initial one, evolved using linear theory to the

present time); solid curves show the nonlinearly evolved profiles (solid) when the linear theory

growth factor is Dt times that of the present time. The two values of ν ≡ δv/
√
spp0 were chosen

to illustrate the shell-crossing signature of a wall (top panel) and the smallest ν for which shell

crossing does not occur (bottom). The associated values of b10 are −0.08δv and 0.24δv.

crossing scale and a substantial difference in their evolution depending if they are over- or

under-dense regions. The spherical model mapping in Eq. (11.1) shows these differences.

If the Lagrangian enclose density is positive, δL > 0, then (1−DzδL/δsc)
−δsc > 1 and

it grows in time, so also the Eulerian density is positive, δE > 0, and growing, while

the Eulerian size RE shrinks. On the other hand, if δL < 0 then δE < 0 and it becomes

deeper as time passes, while the Eulerian size increases. Therefore, in a halo the

mass within the zero crossing scale moves inwards on average (since the overdensity is

positive there), while the mass outside this scale moves outwards (because the density

is negative). In a voids, it is exactly the opposite: the mass inside the zero-crossing

scale moves outwards, while the mass outside moves inwards on average. So, only

in voids the inner and the outer shells near the zero crossing scale cross each other,

giving rise to the shell crossing phenomenon. This crushing is manifested as follows.

For each RL/Rp, inserting the left hand side of Eq. (10.7) into Eq. (11.1) maps the

initial density to the evolved one and each RL/Rp to an RE/Rp. The net result is a

complicated relation between 1 + δE and RE/Rp: this relation is the evolved density

profile. If the same RE can have multiple values of δE, then this signals that initially

concentric shells have crossed – so a wall has been formed. This is another way in

which the gravitational evolution breaks the symmetry between over-and under-dense

regions presents in the initial Lagrangian space.

If in a void the overdensity outside the zero crossing scale is sufficiently dense, then

this will cause the entire region to shrink eventually: this is the crushing associated

with the void-in-cloud process of [109]. Again the evolution shows a difference between

peaks and trough: provoids can disappear because embedded in a larger protohalo,
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while protohalos evolve in halos even if they are inside a void.

Figure 11.1 illustrates: the two panels show the evolution of the density profile

around excursion set troughs of height δp = δv(1+0.7/ν) for ν ≡ |δv|/
√
spp0 = 0.33 (top)

and ν = 0.8 (bottom). The correlation parameter γp is that for mixed TopHat/Gaussian

smoothing of P (k) ∝ k−2, for reasons noted previously. The dashed curve shows the

initial Lagrangian profile (i.e. evolved using linear theory to the present time); solid

curves show the nonlinearly evolved profiles when the linear theory growth factor is

Dt = 1/4, 1/2 and 1× that of the present time. The two values of ν were chosen to

illustrate the shell-crossing signature of a wall (top panel) and the smallest ν for which

shell crossing does not occur (bottom). The associated values of b10 are 0.08/|δv| and

−0.24/|δv|. While there is no surprise that shell crossing occurs when b10 ≥ 0 (for

then the enclosed density profile crosses zero), note that it can occur even when b10 is

(slightly) negative, as interior shells catch up with the ones which surround them – this

is the same effect which leads to shell crossing of an initially tophat, uncompensated

profile.

We can use the spherical evolution model to provide a rough estimate of approx-

imately what values of ν shell crossing occurs: since it predicts a wall on the scale

RE = 1.7RL, it is interesting to find that ν for which R0 = 1.7Rp. Since 1.72 ≈ 3,

Eq. (10.28) indicates that this happens when ν2 = −2.7b10. For Gaussian smoothing

of P (k) ∝ k−7/3, for which γp = 1/2, this means ν ≈ 0.66, so we might expect the

squeezing of voids to matter for smaller values of ν. For mixed TopHat/Gaussian

smoothing of P (k) ∝ k−2, for which γp ≈ 1/2, it is voids smaller than ν = 0.92 which

are affected. Hence, voids which formed from protovoid patches with ν ≥ 1 should be

immune to the void-in-cloud squeezing process. In particular, this shows that the voids

which are predicted to have bE = 0 are also predicted to be immune to the squeezing

process. However, these did not have a zero crossing in the first place.

In practice the wall which one’s eye notices more readily is the one given by the

overdensity at Rq rather than that enclosed within Rq. To appreciate the difference

between the two, consider an initial profile which is −2.7 within Rp, and steps sharply

up to 2.7/4 between Rp and 1.7Rp before stepping sharply down to zero for all larger

scales. The initial enclosed density would be a much smoother function of scale, which

would never become positive. The predicted evolved profile would show a thin high

wall surrounding a void, whereas the corresponding enclosed density profile would have

height 0.2× the background density on scales smaller than 1.7Rp, and it would step

sharply up to the background density on scale 1.7Rp. For the mixed TopHat/Gaussian

excursion set peaks model, the shape of this profile is given by Eq. (10.13), upon simply

replacing W (kRq)→ j0(kRq) in the integral which defines spq0 .

11.1.3 Comparison with N-body simulations

We want to test the spherical model in predicting the evolution of the Lagrangian void

profiles from excursion set of peaks, at different redshifts. In principle, given the void

mass, the linear bias terms and the Lagrangian profile are fully determined as well

as the Eulerian one. However, we do not expect this model to accurately reproduce

the measurements of void profiles in simulations, since the void finders cannot identify

voids in the same way as they are defined by the theory.
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Figure 11.2: Evolution of mean enclosed void density profiles. The solid lines show the average

density profiles measured in simulations, while the dashed lines describe the prediction from

the spherical model. Different colors indicate different redshifts. The predictions are calculated

assuming a Lagrangian profile computed evolving back the measured profile at z = 2 via Eq.

(11.1).
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Another interesting comparison is the one that aims to test the structure of the

model, rather than the specific quantitative prediction. In this sense, we want to test

the structure of the Lagrangian profile - with a large scale bias factor b10 and a bias

term b01 that multiply a k-dependent term - and the spherical model prediction for the

time evolution of the Eulerian profile. Therefore, we measure the Lagrangian profiles

at high redshift, z = 2, in the simulations and evolve them using Eq. (11.1).

The simulations analyzed are the ones in the bottom part of Table 4.1, run in

ΛCDM cosmology. Voids are identified using the void finder VIDE) [116] (see Chapter

4) at redshift zero. In order to have the time evolution of their profile, their particle

members are traced back in redshift, where the void centers are identified with the

center of mass of the particle members. The profiles are then computed measuring the

density around the void centers with the inclusion of the particles that do not belong

to the selected voids.

Figure 11.2 shows the comparison between the spherical evolution model and the

measurements from simulations. The evolution of the inner part of voids are well

reproduced by the model, which seems to be more accurate for smaller voids rather

then large ones. However, it fails in describing the edge and the outer part. For this

reason in the next section we investigate another approach, the so called Zel’dovich

approximation, which is expected to be accurate on large scale.

11.2 Power spectra in Zel’dovich approximation

In this section we present the matter power spectrum computed in the Zel’dovich

approximation [131], following the works of Taylor and Hamilton [119] and Bharadwaj [8].

We extend this methodology to compute the tracer-matter cross-power spectrum, which

is the Fourier transform of the density profile around biased tracers.

11.2.1 The matter power spectrum

The Lagrangian theory express the density of a fluid in terms of displacement vector

filed, in the following way. The mapping between the Eulerian space coordinate ~x(t) of

a mass element and its Lagrangian (or initial) coordinate ~q is

~x(t) = ~q + ~ξ(~q, t) , (11.7)

where the displacement field ~ξ(~q, t) is the integral of the velocity field along the particle

path. Then the density contrast in Eulerian space is

δ(~x) =

∫
d3q δD

[
~x− ~q − ~ξ (~q)

]
− 1 , (11.8)

where δD is the Dirac delta. Following the conventions in Chapter 1, the Fourier

transform of the density is

δ(~k) =

∫
d3x δ(~x) ei

~k·~x , (11.9)

and using Eq. (11.8) it reads

δ(~k) =

∫
d3q ei

~k·~q(ei
~k·~ξ − 1) , (11.10)
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which relates the Eulerian density field to the Lagrangian displacement vector field.

The power spectrum defined in Eq. (1.5) is easily computed to be

P (~k) =

∫
d3q ei

~k·~q(〈ei~k·~ψ〉 − 1) , (11.11)

where the angular brackets denotes an ensemble average and the quantity ~ψ (~q) =
~ξ (~q1)− ~ξ (~q2) is the differential displacement of points separated by distance ~q = ~q1−~q2.

Notice that the power spectrum depends on the difference between displacement fields

only, and is not sensitive to the sum of them. This fact is important since it will

simplify our calculations.

In order to compute the matter power spectrum we need to specify the ex-

pression and evolution of the displacement filed. Here, we assume the Zel’dovich

approximation [131], so the displacement field evolves accordingly to linear theory,
~ξ (~q, t) = (Dt/D0)~ξL(~q), where ~ξL is the linear displacement and Dt/D0 is the linear

growth factor normalized to 1 at present time. Thus, this approach becomes particularly

interesting since the coordinate system in Lagrangian space is nonlinear, moving with

the particles themselves, but the displacement field in Zel’dovich approximation evolves

accordingly to linear theory.

The continuity equation gives the relation between the velocity field and the linear

density field

~ξ (~q, t) = i
Dt

D0

∫
d3k

(2π)3

~k

k2
δL(~k) e−i

~k·~q . (11.12)

where δL is the initial density field extrapolated to present time using linear theory.

If the initial density fluctuations are Gaussian, Eq. (11.12) implies that the linear

displacement field is Gaussian, as well as ~ξ (~q, t) at all time t. Thus, the ensemble average

in Eq. (11.11) involves a probability distribution function for ~ψ which is Gaussian,

yielding

〈ei~k·~ψ〉 = exp (−kikj〈ψiψj〉/2) (11.13)

= exp
(
−kikj

[
ψij(~0)− ψij(~q)

])
,

where i, j = x, y, z indicate the three spacial coordinates and the last equation has been

obtained by defining the displacement correlation function ψij(~q) = 〈ξi(~q1)− ξj(~q2)〉
at separation ~q and the same quantity ψij(~0) at zero separation, ~q = 0. Inserting this

result into Eq. (11.11) leads to

P (~k) =

∫
d3q ei

~k·~q(e−kikj[ψij(
~0)−ψij(~q)] − 1) , (11.14)

where the unit term on the right hand side yields to a delta function at ~k = 0. We can

ignore it assuming that ~k 6= 0.

As a consequence of the Zel’dovich approximation in Eq. (11.12), the nonlinear

displacement correlation function evolves in times as the linear one, i.e. ψij(t) =

(Dt/D0)2ψLij and, using the definition of the power spectrum in Eq. (1.5), it reads

ψij(~q) =

(
Dt

D0

)2 ∫ d3k

(2π)3

kikj
k4

PL(k) e−i
~k·~q , (11.15)
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where PL is the linear power spectrum extrapolated to present time. The displacement

correlation at zero separation is simply

ψij(~0) =

(
Dt

D0

)2 δij
3

∫
d3k

(2π)3
k−2PL(k) . (11.16)

Therefore Eq. (11.14), together with Eqs. (11.15) and (11.16), provide a nonlinear

mapping between the initial and the evolved power spectra.

The integral in Eq. (11.15) can be simplified remembering that

ki e
−i~k·~q = i

∂

∂qi
e−i

~k·~q . (11.17)

Then, taking the derivatives outside leads to an integral over the exponential which

can be easily computed, leading to

ψij(~q) =

(
Dt

D0

)2 ∫ ∞

0

dk

2π2k2
PL(k)

∂

∂qi

∂

∂qj
j0(kq) , (11.18)

where jn is the spherical Bessel function. The first partial derivative ∂j0(kq)/∂qj =

kj′0(kq) qj/q, where the prime indicates the derivatives with respect to the argument

kq. Then, the second derivatives gives

∂

∂qi

∂

∂qj
j0(kq) = k2

[
q̂iq̂j j

′′
0 (kq) + (δij − q̂iq̂j)

j′0(kq)

kq

]
. (11.19)

Thus, the displacement correlation function ψij(~q) can be written in term of components

parallel and perpendicular to the separation ~q:

ψij(~q) = ψ‖(q) q̂iq̂j + ψ⊥(q) (δij − q̂iq̂j) , (11.20)

with the components being

ψ‖(q) =

(
Dt

D0

)2 ∫ dk

2π2
PL(k)

[
j0(kq)− 2

j1(kq)

kq

]
(11.21)

ψ⊥(q) =

(
Dt

D0

)2 ∫ dk

2π2
PL(k)

[
j1(kq)

kq

]
, (11.22)

and that are related by the relation ψ‖(q) = d [qψ⊥] /dq. It is convenient to rearrange

the combination of displacement correlation functions with separations ~q and ~0 in Eq.

(11.14) as the part proportional to δij , and therefore ∼ k2, and the part proportional

to qiqj , which goes like ∼ k2µ2, with µ = ~k · ~q/(kq). The former and the latter are

ψ+(q) ≡ ψ⊥(~0)− ψ⊥(q) (11.23)

ψ−(q) ≡ ψ⊥(q)− ψ‖(q) (11.24)

respectively. The nonlinear power spectrum in Eq. (11.14) is then isotropic and it reads

P (k) =

∫
d3q eikqµ−k

2(ψ++µ2ψ−) . (11.25)
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The same result can be found following the calculation of Bharadwaj [8] for the

determination of the nonlinear matter correlation function in Zel’dovich approximation.

A system of particles with motion governed by Eq. (11.7) can be described by their

distribution function f(x, ξ, t). Because the Liouville’s theorem can be applied to

the mapping between Eulerian and Lagrangian (initial) coordinates, the distribution

satisfies the relation

f(~x, ~ξ(t), t) = f(~x− ~ξ(t), ~ξ(ti), ti) , (11.26)

where ti indicates the initial time and ~ξ(t) = (Dt/D0) ~ξL. The two point distribution

function is defined to be ρ(~x, ~ξ1, ~ξ2, t) = 〈f(~x1, ~ξ1, t)f(~x2, ~ξ2, t)〉, where ~x = ~x1 − ~x2 is

the Eulerian separation. The two point correlation function is given by integrating the

two point distribution over the displacements:

1 + ξ(~x, t) =

∫
d3ξ1d

3ξ2 ρ(~x, ~ξ1, ~ξ2, t) , (11.27)

which is the quantity we aim to compute. Using Eq. (11.26), the two point distribution

becomes

ρ(~x, ~ξ1, ~ξ2, t) = ρ
[
~x− [~ξ1(t)− ~ξ2(t)], ~ξ1(ti), ~ξ2(ti), ti

]
, (11.28)

and it can be written in terms of an integral over a Dirac delta,

ρ(~x, ~ξ1, ~ξ2, t) =

∫
d3q δD

{
~q −

[
~x− (~ξ1(t)− ~ξ2(t))

]}
ρ
[
~q, ~ξ1(ti), ~ξ2(ti), ti

]
. (11.29)

Using the integral representation for the Dirac delta δD(~x) =
∫

exp(−i~k · ~x)d3k/(2π)3,

and its symmetric property δD(~x) = δD(−~x), the two point correlation function reads

1 + ξ(x, t) =

∫
d3k

(2π)3
e−i

~k·~x
∫
d3q ei

~k·~q
∫
d3ξ1d

3ξ2 e
i~k·(~ξ1−~ξ2)Dt/Diρ

[
~q, ~ξ1, ~ξ2, ti

]
,

(11.30)

where we wrote ~ξ(ti) as ~ξ, for simplicity. The two point distribution is Gaussian in the

displacements. Transforming them to differential and center of mass coordinates

(~ξ1, ~ξ2)→ (~ψ ≡ ~ξ1 − ~ξ2, ~χ ≡ ~ξ1 + ~ξ2) (11.31)

the integral over the center of mass displacement gives 1, while the integral over the

differential coordinates yields exp [−kikj〈ψi(t)ψj(t)〉/2]. Thus the resulting correlation

function is

1 + ξ(x, t) =

∫
d3k

(2π)3
e−i

~k·~x
∫
d3q ei

~k·~qe−kikj[ψij(
~0)−ψij(~q)] , (11.32)

where we used the definition of the displacement correlation function ψij introduced

above. We can notice that d3k/(2π)3 e−i~k·~x is acting as a Fourier transform of the

expression on its the right, which is the power spectrum already found in Eq. (11.14)

following the calculation of Taylor and Hamilton [119]. This second approach by

Bharadwaj [8] will be very useful to compute the cross-power spectrum of biased tracers

and matter.
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Initial power-law spectrum

The power spectrum in Zel’dovich approximation can be computed analytically for an

initial power-law spectrum, PL ∝ kn, with index n = −2. In this case, ψ+ = ψ− =

(Dt/D0)2Aq, once the initial power spectrum has been conveniently normalized by the

constant A. Thus, the power spectrum in Eq. (11.25) becomes

P (k) =
32πA(Dt/D0)2

k2 [1 + 4A2(Dt/D0)4k2]2

[
1 +

3πA(Dt/D0)2k

4 [1 + 4A2(Dt/D0)4k2]2

]
. (11.33)

In the linear regime, i.e. expanding the power spectrum for k → 0, it is

P (k) '
(
Dt

D0

)2 32πA

k2
(11.34)

while in the fully nonlinear regime P (k) ∝ (Dt/D0)−6/k6.

11.2.2 Tracer-matter cross-power spectrum

We described the profile around voids or peaks as the cross-correlation between these

objects and the surrounding matter field. Thus, the Fourier transform of the profile is

the cross-power spectrum of biased tracers and matter, which is the quantity we aim

to compute in this section, in the particular case of the Zel’dovich approximation.

Here we use the Lognormal model, which provide a good insight on the Eulerian

evolution of the cross-power spectrum. Let assume 1 + δb = exp(b δL), where the

subscript ‘b’ denotes the biased tracers and ‘L’ the Lagrangian space. The bias factor

b is a free parameter that enhances large values of δL. We ask for the mean value of

1 + δb to be normalized to 1. Then, assuming the linear density δL to be Gaussian, the

actual Lognormal transformation is

1 + δb = e bδL−b
2〈δ2L〉/2 , (11.35)

where 〈δ2
L〉 is the variance of the Lagrangian density field. From here on we drop the

subscript ‘L’ since the density field written will always be Lagrangian, unless specified.

We compute the tracer-matter cross-power spectrum as it has been done for the

matter-matter case, with the only difference that now one of the two positions is not a

random point of the density field, but it is a special position corresponding to a biased

tracer described using the Lognormal model. Therefore, the two point distribution

in Eq. (11.30) must be substitute with the probability distribution function of two

displacements where one is on a biased tracer:

p
(
~ξ1, ~ξ2; ~q, ti

)
→
∫
δ1 p

(
δ1, ~ξ1, ~ξ2; ~q, ti

)
e bδ1−b

2〈δ21〉/2 , (11.36)

where the displacements, the density field and the bias factor are at initial time, ti.

Therefore, the tracer-matter cross-power spectrum is

Pbm(k, t) =

∫
d3q ei

~k·~q
∫
d3ξ1d

3ξ2 e
i~k·(~ξ1−~ξ2)Dt/Di

∫
dδ1p

(
δ1, ~ξ1, ~ξ2; ~q, ti

)
e bδ1−b

2〈δ21〉/2

(11.37)
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We adopt the change of variables in (11.31) and write the probability distribution as

p
(
δ1, ~ψ, ~χ

)
= p

(
~ψ, ~χ

)
p
(
δ1|~ψ, ~χ

)
, so the cross-power spectrum reads

Pbm(k, t) =

∫
d3q ei

~k·~q
∫
d3ψd3χ ei

~k·~ψDt/Dip
(
~ψ, ~χ

)∫
dδ1p

(
δ1|~ψ, ~χ

)
e bδ1−b

2〈δ21〉/2

(11.38)

The differential and center of mass displacements can be decomposed into the compo-

nents parallel and perpendicular to the Lagrangian separation ~q. This decomposition is

particularly useful since the matter field correlates with parallel displacements only.

Thus, the conditional distribution is a Gaussian with non-zero mean, that depend only

on the two parallel components χ‖ and ψ‖. The integral over the density field yields

∫
dδ1p

(
δ1|~ψ, ~χ

)
e bδ1−b

2〈δ21〉/2 = exp

[
b

(
ψ‖
〈ψ‖δ1〉
〈ψ2
‖〉

+ χ‖
〈χ‖δ1〉
〈χ2
‖〉

)
− b2

2

(
〈ψ‖δ1〉2
〈ψ2
‖〉

+
〈χ‖δ1〉2
〈χ2
‖〉

)]
.

(11.39)

The probability distribution function of the displacements is Gaussian and depends

in principle on two parallel and four perpendicular quantities. However, the result in

Eq. (11.39) depends on parallel components only and thus the product of this results

and p
(
~ψ, ~χ

)
is a function of the two perpendicular components, χ⊥ =

√
χ2
⊥x + χ2

⊥y

and ψ⊥ =
√
ψ2
⊥x + ψ2

⊥y, and two parallel components, χ‖ and ψ‖. It is a Gaussian

with zero mean in the perpendicular components and with mean shifted by a term of

the type b〈ψ‖δ1〉 in the parallel ones. The only other quantity in Eq. (11.38) depending

on displacements is the exponential ei
~k·~ψDt/Di . Therefore the integrals in the center of

mass coordinates give 1 and the integral in the differential coordinates yields

Pbm(k, t) =

∫
d3q ei

~k·~q exp

{
−1

2

D2
t

D2
i

[
k2
‖〈ψ2
‖〉+ k2

⊥〈ψ2
⊥〉+ 2i b

Di

Dt
k‖〈ψ‖δ1〉

]}
. (11.40)

The two point correlation function of the initial parallel and perpendicular components

are

〈ψ2
‖〉 =

(
Di

D0

)2 ∫ dk

2π2
PL(k)

2

3

[
1− 3j0(kq) + 6

j1(kq)

kq

]
(11.41)

〈ψ2
⊥〉 =

(
Di

D0

)2 ∫ dk

2π2
PL(k)

2

3

[
1− 3

j1(kq)

kq

]
, (11.42)

and the displacement-density cross correlation is

〈ψ‖δ1〉 =

(
Di

D0

)2 ∫ dk

2π2
PL(k)k j1(kq) , (11.43)

where the linear power spectrum is extrapolated to present time. Then, given the

relations k‖ = kµ and k⊥ = k
√

1− µ2, with µ = k̂ · q̂, the cross power spectrum

becomes

Pbm(k, t) =

∫
d3q exp

[
ikµ

(
q − D0

Dt
bL 〈ψ‖δ1〉

)
− k2

(
ψ+ + µ2ψ−

)]
, (11.44)

where we have used the definitions in Eq. (11.24) and the relation between the initial

bias at generic time ti and the Lagrangian bias at present time bL = b(ti)Di/D0. Thus,
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the tracer-matter cross-power spectrum in Zel’dovich approximation is described by a

similar integral to the one for the matter-matter power spectrum in Eq. (11.25), with

an additional term containing the bias of the tracers with respect to the matter field

and the correlation between the differential displacement along the separation ~q and

the linear density field.

Initial power-law spectrum

We consider again the special case of initial power-law spectrum with index n = −2. In

this case Eq. (11.44) becomes

Pbm(k, t) =

∫
d3q exp

[
ikq(1 + µ2)A

(
Dt

D0

)2

− 4ikµA

(
Dt

D0

)2 D0

Dt
bL 〈ψ‖δ1〉

]
.

(11.45)

If the power spectrum is evaluated at some early time t such that Dt << D0, the

exponential can be expanded and truncated at the first order in Dt/D0 and the integral

yields

Pbm(k, t) '
(
Dt

D0

)2(bL +Dt/D0

Dt/D0

)
32πA

k2
(11.46)

which differs from the linear matter power spectrum in Eq. (11.34) for the presence of

the bias factor. From this specific case we can argue that the linear Eulerian bias of a

tracer bE(t) - defined with respect to the matter power spectrum at time t - is related

to the Lagrangian bias via

bE(t) =
bL +Dt/D0

Dt/D0
. (11.47)

This relation reduces to bE = 1 + bL when evaluated at present time, and thus is the

generalization to arbitrary time t of Eq. (11.4). We will use and test this import result

below.

However, the Lagrangian excursion set model for peaks and troughs presents a

more complicated structure for the linear bias. In this context, the discussion above

reproduce the case bL01 = 0. Since we have already argued that bL → bL10 on large scales,

then Eq. (11.4), when combined with Eq. (10.8), implies that

bE10 = bL10 + 1 and bE01 = bL01 − 1 . (11.48)

At generic time t, Eq. (11.47) suggests that the relations between the bias factors are

bE10 =
bL10 +Dt/D0

Dt/D0
and bE01 =

bL01 −Dt/D0

Dt/D0
(11.49)

on large scales, in agreement with [36] (see their equations 66 and 71). In what follows,

we use this general expression (i.e., not just its large scale limit) to estimate the shape

of the evolved profile.

11.2.3 Cross-power spectrum at different times

The formalism used above can be apply to compute the cross-power spectrum of a

biased tracer at time t1 and the matter field at time t2, with t1 6= t2. In this case, the
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correlations in Eqs. (11.41), (11.42) and (11.43) become

〈ψ2
‖〉 =

∫
dk

2π2
PL(k)

2

3

[
D2

1 +D2
2

D2
0

1

2
+
D1D2

D2
0

(
−3j0(kq) + 6

j1(kq)

kq

)]
(11.50)

〈ψ2
⊥〉 =

∫
dk

2π2
PL(k)

2

3

[
D2

1 +D2
2

D2
0

1

2
− D1D2

D2
0

3
j1(kq)

kq

]
(11.51)

〈ψ‖δ1〉 =
D1D2

D2
0

∫
dk

2π2
PL(k)k j1(kq) . (11.52)

In analogy with Eq. (11.40), the cross-power spectrum is given by

〈δb
1δ2〉 =

∫
d3q ei

~k·~q exp

{
−1

2

[
k2µ2〈ψ2

‖〉+ k2(1− µ2)〈ψ2
⊥〉+ 2i b kµ〈ψ‖δ1〉

]}
,

(11.53)

where b here indicates the bias at time t1. Grouping together the terms according to

their dependence on µ, this equation becomes

〈δb
1δ2〉 = exp

[
−(D1 −D2)2

D2
0

k2

6
σ2
−1

] ∫
d3q ei

~k·~q (11.54)

× exp

[
−D1D2

D2
0

k2(ψ+ + µ2ψ−)− ikµD2

D0
bL〈ψ‖δ1〉

]
,

where in this case ψ+ and ψ− are defined as in Eq. (11.24), but are evaluated at present

time to highlight the combination of the growth factors. The exponential outside

the integral has the form of a propagator, depends on the linear matter displacement

dispersion σ2
−1 =

∫
dk/(2π2)P (k) and is equal to 1 when t1 = t2.

Initial power-law spectrum

Unfortunately, it is not possible to compute the Zel’dovich cross-power spectrum at

different times for a initial power-law spectrum with index n = −2, since in that case

the linear matter displacement dispersion is divergent.

11.2.4 Comparison with N-body simulations

The Zel’dovich approximation predicts the relation in Eq. (11.49) between the La-

grangian and Eulerian bias terms of peaks and troughs. We test these relations in

N-body simulations, measuring the ratio

Dz

D0

〈δv(z)δm(z)〉
〈[δL

m(z)]2〉 (11.55)

between the void-matter cross-power spectrum at redshift z and the linear matter

power spectrum evolved to the same time. For a Gaussian smoothing window, Eqs.

(10.22) and (11.49) lead to a prediction for the ratio,

Dz

D0

〈δv(z)δm(z)〉
〈[δL

m(z)]2〉 =

(
bL10 +

Dz

D0

)
W (kRp) +

(
bL01 −

Dz

D0

)
spp0
spp1

k2W (kRp) , (11.56)

where W (kRp) → 1 − k2R2
p/2 as k → 0. The top panels in figure 11.3 show the

measurements at different redshifts and for two void sizes. The growth factor in the
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Figure 11.3: Ratio between the void-matter cross-power spectrum and the linear matter power

spectrum. The voids considered have size in the ranges: 14-16 Mpc/h, 16-18 Mpc/h and

20-25 Mpc/h. Different colors indicate different redshifts, while solid and dashed lines stay for

quantity predicted and measured, respectively. Top panel: measurements from simulations.

Central panel: predictions using the spherical model and measurements at z = 99 and z = 0.

Bottom panel: prediction using an additional term equal to the linear matter power spectrum.
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Figure 11.4: Ratio between the void-matter cross-power spectrum - at different times - and the

linear matter power spectrum, as measured in simulations.

initial conditions - at redshift z = 99 - is very small and thus the ratio is expected to

be bL10 on large scales. On the other hand, at z = 0 the growth factor is equal to 1 and

the ratio becomes bL10 + 1. The measurements show that the difference between the

ratio at ICs and at present time is ' 1, as expected.

As done above in real space, we want to predict the measured profile in Fourier

space - described by the ratio in Eq. (11.55) - at late time redshifts, assuming as

Lagrangian profile the one measured in the ICs, at z = 99. First, we assume the

spherical model in Eq. (11.1) to understand how well it works in Fourier space, where

the large scale can be better understood. The results are displayed in the central panels

of Figure 11.3, where the solid colored lines are the predictions, while the dashed black

lines are the measurements in the ICs and at z = 0. Clearly the spherical model cannot

reproduce the large scale limit and account for the linear bias evolution. However, it

well reproduce the ratio at small scales where it raises before reaching zero.

The Lagrangian profile is expected to be of the form [bL10+bL01s
pp
0 /s

pp
1 k2]W (kRp)PL(k)

and the spherical model predict its evolution to be given by the growth factor on large

scales. In order to have the right evolution on these scales, we do the following assump-

tion: the real evolution is given by adding the linear matter power spectrum, which

evolves with the second power of the growth factor. In this way we recover the right
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evolution for the Eulerian bias bE10. The results are plotted in the bottom panel of

Figure 11.3, which show that the ansatz can capture the large scale behavior, but makes

completely wrong predictions on small scales. We will discuss some more sophisticated

model in the following Section.

The cross-power spectrum at different times seems to be a good way to test the

structure of the void profiles. The ratio in Eq. (11.55) is constant on large scales, and

the first corrections appearing on smaller scale are all of the order k2. These corrections

come from the Lagrangian bias term proportional to bL01, its evolution (given by the

velocity bias), and the window function. Measurements involving different times seem

promising since they could in principle disentangle the k2-contribution of different

terms, and giving insights on the evolution. Figure 11.4 shows: on top the ratio

Di

D0

〈δv(z)δm(i)〉
〈[δm(i)]2〉 , (11.57)

which gives the correlation between the evolved void and the initial matter field, and

on bottom the ratio
D2
i

D0Dz

〈δv(i)δm(z)〉
〈[δm(i)]2〉 , (11.58)

which correlates the protovoids in the ICs and the evolved matter field.

From the Zel’dovich approximation, the first ratio is expected to be

Di

D0

〈δv(z)δm(i)〉
〈[δm(i)]2〉 =

[(
bL10 +

Dz

D0

)
+

(
bL01 −

Dz

D0

)
spp0
spp1

k2

]
W (kRp)G(k) (11.59)

where G(k) is the peak/trough propagator arising when correlating fields at different

redshifts, as resulting in Eq. (11.54). Since we are considering troughs - the same

would hold for peaks - and not just some generic biased tracers as we assumed in the

Lognormal model, the peak/trough propagator between z = i and z is

G(k) = exp

[
−(Dz −Di)

2

D2
0

k2

6

(
spp−1 −

(spp0 )2

spp1

)]
, (11.60)

which gives as well a k2-contribution. The top panel of Figure 11.4 shows that the void

profile evolution is the expected one on large scales. The evolution on intermediate/small

scales is different compared to the top panel of Figure 11.3.

The Zel’dovich prediction for the second ratio is

D2
i

D0Dz

〈δv(i)δm(z)〉
〈[δm(i)]2〉 =

[
bL10 + bL01

spp0
spp1

k2

]
W (kRp)Gm(k) , (11.61)

where the matter propagator is by definition

〈δm(z)δm(i)〉
〈[δm(i)]2〉

Di

Dz
≡ Gm(k) (11.62)

and thus Gm(k) = exp[−(D2
z − D2

i )/D
2
0 k

2σ2
−1/6] and σ2

−1 =
∫
dk P (k)/(2π2). As

predicted, the bottom panel of Figure 11.4 shows no evolution on large scales, meaning

that the evolution seen in the previous plots is really due to the linear Eulerian void

bias.
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11.3 Models for the void profile

Inspired by the measurements in N-body simulations and the rough predictions done

in the previous Section, we present here three different models to describe the mean

void profiles. Our approach is similar to the one used to compute the halo-matter

cross-correlation, where the small scale behavior can be described by the NFW [83]

profile and the large scale one can be modeled with the linear matter correlation

function multiplied by the linear bias. Here, we describe the small scale profile using

the spherical evolution, that seems to work well in predicting the evolution of the inner

part of void profiles (see Figure 11.2), and a linear theory prediction to model the

large scale behavior, having in mind the predictions of the Zel’dovich approximations.

Indeed, we want the model to behave as in Eq. (11.56) on large scales.

The three models in Fourier space are

a) 〈δv(z)δm(z)〉 = FT[s.c.] +

(
Dz

D0

)2

bv(k)W (kRp)PL(k)e−k
2(Rp/7)2 (11.63)

b) 〈δv(z)δm(z)〉 = FT[s.c.] +

(
Dz

D0

)2

bv(k)W (kRp)PL(k)G(k) (11.64)

c) 〈δv(z)δm(z)〉 = FT[s.c.] {1−G(k)}+ (11.65)

+

(
Dz

D0

)[
bL(k) +

Dz

D0
bv(k)

]
W (kRp)PL(k)G(k) ,

where FT[s.c.] is the Fourier transform of the Eulerian density δE at RE predicted by

the spherical evolution model in Eq. (11.1). In that equation the density is computed

within a shell of radius RE, δE(< RE), rather then at RE. The two quantities are

related by

δE(RE) =
RE

3

d

dRE
δE(< RE) + δE(< RE) . (11.66)

The peak/trough propagator G(k) is given by Eq. (11.60), bv(k) is the velocity bias

bv(k) = 1− spp0
spp1

k2 , (11.67)

and bL is the Lagrangian bias in Eq. (10.24), that reduces to Eq. (10.22) for a Gaussian

smoothing window.

In models a) and b) the large scale Lagrangian bias is given by the spherical

collapse term, while its evolution to the Eulerian space is described by the velocity

bias. In model c) the spherical collapse model describes only the small scale profile,

since G(k)→ 1 as k → 0. The large scale behavior is completely given by the linear

term. Figure 11.5 shows the comparison between the predictions from the three models

- once the Lagrangian profile has been assumed to be the one measured in the ICs -

and the measurements from N-body simulations, at different redshifts. All the models

can reproduce the large scale behavior, while the small scales are better described by

model a). However, further analysis needs to be done in order to understand how to

model the transition between the spherical model term and the linear one.
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Figure 11.5: Ratio between the void-matter cross-power spectrum and the linear matter power

spectrum, as measured in simulations. The void considered have size in the ranges: 14-16

Mpc/h, 16-18 Mpc/h and 20-25 Mpc/h. Different colors indicate different redshifts, while solid

and dashed lines show quantity predicted and measured, respectively.
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Chapter 12

Conclusions

In this thesis we studied the impact of massive neutrinos on the large scale structure.

In particular, we developed a model to compute the nonlinear matter power spectrum

in massive neutrinos cosmologies and we performed a comprehensive study of statistical

void properties in order to understand how the presence of massive neutrinos changes

them. In principle, voids are good environments where to study neutrinos and these

understandings are the first step to use observables related to voids to constrain the

neutrino masses. The other main topic of this thesis are voids. A part from studying

their statistical properties in massive neutrino cosmologies, we presented a framework to

model the void density profile starting from theoretical assumptions on void formation.

In particular we considered different Lagrangian models for describing the void/halo

abundance and spatial distribution, such as the excursion set peak, the upcrossing

model, the peak model and the excursion set of peaks. All these models can be used to

predict the Lagrangian density profiles around peaks or troughs. Then, we study the

evolution of these profiles to the Eulerian space. This work was motivated by recent

measurements on void density profiles in survey and N-body simulations. Moreover,

since void are underdense regions where screening mechanisms are expected not to

work, void profiles are in principle very interesting observables for the study of modified

theories of gravity. We recap here the main results of the different parts of the thesis.

The fist part was devoted to introducing all the concepts and results available in

the literature useful to understand the following parts where the original work have

been presented.

The purpose of Part II has been to extend the halo model to account for the

effects of massive neutrinos. We have run a set of 8 large box-size N-body simulations

containing massive neutrinos as additional particles. Our simulation suite comprises

four different cosmological models with different neutrino masses:
∑
mν = 0.0, 0.15,

0.30 and 0.60 eV. For each model we have run two different simulations with two

different box-sizes, in order to extract the power spectra over a wide range of wave

numbers.

We have reviewed the standard framework of the halo model and used it to compute

the fully nonlinear matter power spectrum for the considered massless ΛCDM cosmology.

The comparison with the matter power spectrum from the N-body simulations showed
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a very good agreement on large and small scales, whereas a disagreement at the 20%

(at z = 0) and 30% (at z = 1) level is present on intermediate scales, k ∼ 0.2− 2h/Mpc.

These scales represent the transition between the 1-halo and 2-halo terms, where the

halo model is not very accurate.

We then focused on cosmologies with massive neutrinos, where the total matter

power spectrum can be expressed as the mass-weighted sum of three different power spec-

tra: CDM auto-power spectrum, neutrinos auto-power spectrum and CDM-neutrinos

cross-power spectrum. Thus, in our extension of the halo model we need to model

separately the density field of both CDM and massive neutrinos.

The CDM density field is modeled in the same spirit the halo model describes the

distribution of matter in a massless neutrino cosmology: all CDM is bound within

c-halos (CDM halos). A key ingredient is to account for the fact that the clustering

properties of the c-halos depend only on the CDM field [23,55] (this is called the cold

dark matter prescription), thus, both the mass function and the halo bias are computed

using the linear CDM power spectrum.

The neutrino density field can not be modeled as the CDM field, i.e. assuming

that all particles are within halos, since the neutrinos large thermal velocities prevent

their clustering within c-halos. Thus, we have modeled the neutrino density field as the

sum of a linear and a clustered component, differently from what present in literature

(see [1]). We emphasize that in order to have a good description of both the cross and

the neutrinos auto-power spectrum we need to account for the tiny, fully nonlinear,

clustering of neutrinos within c-halos.

While the clustered neutrino component is important to determine the cross and

the neutrino power spectra at small scales, it is negligible in the computation of the

total matter power spectrum. Therefore, in order to compute the total matter power

spectrum in massive neutrino cosmologies an excellent assumption is that neutrinos

follow linear theory and that the cross power spectrum is the linear one. We find that

our model is capable of reproducing the total matter power spectrum from simulations

on large and small scales within a 10%, whereas at intermediate scales, the most

challenging for the halo model, it can reproduce the results of the N-body simulations

within a ∼ 20− 30%.

We have computed the ratio between the matter power spectrum of a massive

and massless neutrinos cosmology, ∆2
ν(k)/∆2

ΛCDM(k). Linear theory fails to explain

the spoon-shape trend present in that ratio around k ∼ 1 h/Mpc, whereas our model

succeeds in doing it. In fact, the disagreement between our predictions for the ratio

∆2
ν(k)/∆2

ΛCDM(k) and simulations is below 2%, 5%, 10% for
∑
mν = 0.15, 0.3, 0.6 eV

cosmologies, at both z = 0 and z = 1 and over the whole range of scales investigated.

Finally, we have investigated the clustering of galaxies, in massless and massive

neutrinos cosmologies, using a simple HOD model and our halo model extension. We

computed the projected correlation function of galaxies with magnitudesMr−5 log10 h =

−21.0 taking the HOD parameters calibrated by Villaescusa-Navarro et al. [124]. We

find an excellent agreement between the galaxy clustering predicted by our model and

the SDSS observations against with the values of the HOD parameters were calibrated.

This result points out that our extension of the halo model can be used to calibrate

the HOD parameters in cosmologies with massive neutrinos. Whereas the calibration

of the HOD parameters directly from N-body simulations is computationally very
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demanding and is subjected to problems like resolution and cosmic variance, the halo

model provides a fast, and very accurate framework to carry out this task.

Overall, the neutrino halo model presented here is a simple tool to quantitatively

address nonlinearities induced by neutrinos, which has also the big advantage of offering

physical insights on the relative interplay between neutrino and cold dark matter around

virialized structures.

In Part III we analyzed the relative differences in the void properties due to the

presence of massive neutrinos. We have run two sets of N -body simulations, one with

low resolution and another with higher resolution. Each set of simulations have been

computed in four different cosmologies, i.e. with neutrino masses equal to 0.0 eV, 0.15

eV, 0.3 eV and 0.6 eV. We have used the low resolution simulations to identify voids in

the CDM particle distribution and the high resolution ones for studying voids in the

galaxy field.

In Chapter 8 we have considered voids in the CDM field. We have studied the

number density of voids at redshift z = 0 and z = 1. In both cases, the number density

of small voids is higher in massive neutrino cosmologies, whereas the number density

of big voids is lower. The difference between ΛCDM and cosmologies with massive

neutrinos increases with the neutrino mass, but it decreases with the redshift. This can

be understood in terms of the total mass contained in the void. Indeed, neutrinos have

high thermal velocity which prevents them to feel the void dynamics and to create a

deep underdensity around the void center. This translates into an extra mass within

the void that will evolve slowly. Therefore voids in the massive neutrino universe are

smaller. However, the additional mass has a smaller effect at high redshift, where voids

are denser, thus resulting in smaller differences at z = 1.

Secondly we studied the distribution of void ellipticities and computed the correla-

tion function of voids having radius within specific ranges. Both observables indicates

that voids in massive neutrinos universes are younger than in their massless neutrino

cosmology corresponding model.

Another interesting property of voids is their density profile. We computed the

CDM, the neutrino, and the total matter density profiles for different void sizes and in

the four different cosmologies. We found that small voids present a compensated wall

at the edge, whereas large voids have a non-positive profile. Again, we can understand

the differences between massive and massless cosmologies once we consider that voids

are effectively less evolved in the presence of massive neutrinos. Indeed, voids evolve by

evacuating particles, becoming progressively emptier and building the wall. For each

void size in both CDM and matter density field, ΛCDM cosmology presents higher walls

and emptier cores, in agreement with this explanation. Instead, the neutrino profile is

flatter, given the neutrinos’ high thermal velocities. They also tend to follow the CDM

one: around small voids there is a positive overdensity of neutrinos in correspondence

with the wall, whereas the neutrino profile presents usually an underdensity in the

core of big voids. All departures from the mean background get more pronounced as

the neutrino mass increases. Focusing on the total matter profile, which is the most

important one since most of the observables depend on the total matter distribution,

we obtained the following results. In the void core, the differences between ΛCDM and

the 0.15 eV cosmology are at the level of 1-3%, depending on the void radius, and they
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reach the 10% for the 0.6 eV case. Near the wall and for the very small voids, the

difference is at the 5% level for 0.15 eV and at the 20% level for 0.6 eV cosmologies.

The differences increase at redshift z = 1.

The last investigated property of voids identified in the CDM field is the radial

velocity profile of CDM, neutrino, and total matter around voids. The CDM and total

matter profiles have the following behavior: the radial velocity is positive inside the void

radius around which it reaches the maximum, then it decreases and it becomes negative

for very small voids. It remains positive, but at a small value, for large ones. This

means that particles inside voids move towards the edge, evacuating and expanding

the voids, whereas the outer particles have different behaviors depending on the void

size. In small voids they move towards the center participating in the building up of

the wall and eventually making the void collapse (the void-in-cloud effect). Instead, in

big voids they go far away, but at somewhat smaller velocity than the ones in the inner

parts, giving rise to a concentration of mass around the edge of the void. The neutrino

radial velocity follows the same behavior, but it has a smaller magnitude, and this is

due only to a cancellation effect. Indeed, neutrinos have high thermal velocities that

make them free-stream in every direction and the average velocity is close to zero.

In Chapter 9 we have analyzed the high resolution N-body simulations. We have

populated these simulations with galaxies, following the HOD prescriptions, and we

have identified voids in the galaxy distribution. We have shown the cumulative fraction

of voids at redshfit z = 0. There are some differences among the cosmologies only for

voids with Reff > 30 Mpc/h, where the errors are very large due to the small volume

probed by our high resolution simulations. Moreover, the voids are bigger than the

ones selected in the CDM field, since the number of tracers here is low given the small

box-size. Current surveys can span a larger volume: for example the Sloan Digital

Sky Survey1 III (SDSS-III) with the Data Release 9 (DR9) CMASS sample can cover

an effective volume of nearly 1.5 (Gpc/h)3, which is about 20 times bigger than our

box-size.

Finally we studied the total matter density and velocity profiles around the galaxy

voids, since future surveys like Euclid2 and DESI3 are expected to significantly increase

the number of observed galaxies. Furthermore, the weak lensing signal will allow

to measure the total matter density field. The matter density profiles present some

differences with respect to the ones in the CDM voids: they are less underdense and

they present the wall even around very big voids. We argued that this is probably due

to the galaxy bias with respect to the matter density field. Instead, for what regards

comparison among cosmologies, we found the same behavior as in the CDM voids. The

velocity profiles show a peculiar shape shared by all the void sizes analyzed, despite of

what happens for the CDM voids. The profiles are positive in the inner part of the

galaxy voids, they reach zero around the effective radius and they are negative outside.

In the inner regions the velocity is higher in ΛCDM, whereas in the outer part of the

voids the trend is not unique.

Part IV has been devoted to the study of halo and void profiles. These objects are

1http://www.sdss.org
2www.euclid-ec.org
3desi.lbl.gov
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thought to form in special positions of the initial density field, whose characteristics

depend on the halo/void formation model considered. However, all models predict the

abundance and spacial distribution of halos and voids in the Lagrangian space. We

have shown that they also describe the enclosed density profile around biased tracers.

Since we can only measure quantity in the evolved Eulerian field, there is the need to

evolve the proto-void and proto-halo profiles.

In Chapter 10 we have worked in the Lagrangian space. We have presented different

halo/void formation models, such as excursion set, upcrossing model, and excursion

set of peaks. We have shown how they can be used to describe the density profile

of proto-halos and proto-voids in the Lagrangian field. Indeed, the enclosed density

profile around biased tracers is the cross-correlation between the center of tracers and

the matter field. Being a cross-correlation, it depends on the bias of the tracers with

respect to the underlying density field. Then, we have discussed the shape of profiles

and the one of the linear bias. Small voids, as small halos, present a profile that changes

sign, while big objects do not. The associated large scale bias presents a lower bound

for the halos, bL > −1, while it can be arbitrary negative for voids.

In Chapter 11 we have studied the evolution of void Lagrangian profiles. First, we

have applied the spherical evolution model and studied the predictions for the Eulerian

profiles and linear bias. Two main differences arise between halos and voids. The

first is related to the linear bias. Voids can have arbitrary negative bias and therefore,

there exists a class of voids with bL = −1 for which we have ab Eulerian bias bE = 0.

These voids should be unclustered on large scales. The same cannot happen for halos,

since their Lagrangian bias is bL > −1 and thus bE > 0. The second difference is

related to the density profile. The motion of shell around voids and halos is such

that only in voids the gravitational evolution leads to shell-crossing. Finally, we have

compared the spherical model predictions with void density profile measurements in

N-body simulations. The evolution predicted by the model is in good agreement with

measurements of the inner part of voids, but it fails in reproducing the outer part.

We have also studied a second model for the evolution, the so called Zel’dovich

approximation. This model gives a good prediction for the evolution on large scales

and allows to clearly model the linear bias evolution. Measurements of the void-matter

cross-power spectrum have confirmed the predictions on large scales. In this setting,

we have also computed and measured the void-matter cross-power spectrum when the

voids and the matter field are evaluated at two different times. This analysis can give

further insight on the structure and evolution of the void profile and bias.

Finally, we have proposed three similar models for the void density profiles in the

evolved field, which are based on the spherical evolution model and the predictions of

the Zel’dovich approximation. Further studies are needed to understand which of these

models better reproduce the whole void profile, both on large and small scales.
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