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Abstract

In this thesis we study entanglement in one-dimensional critical quantum many-body
systems and in particular we will focus on disconnected regions. Given a system in a pure
state, to quantify the amount of entanglement between a multicomponent subsystem
and the rest of the full system we can use as an entanglement measure the renowned
entanglement entropy. However, if we are interested in the entanglement shared among
the disconnected regions, the entanglement entropy fails to be a good quanti�er. The
reason is that the state of the subsystem is in general mixed once the rest is traced out,
and the entanglement entropy is a good measure of entanglement only for pure states.
A good measure of entanglement in mixed states is the logarithmic negativity, which is
the quantitative version of Peres' criterion of separability. The main advantage of the
negativity with respect to other entanglement measures is the simplicity of its de�nition
in terms of the density matrix describing the quantum state. Since the de�nition does
not require any variational calculus, it is much more easily computable than any other
entanglement measure, and therefore we can obtain some results also in complicated
settings such as many-body systems.

We will be mostly interested in the con�guration where the full system is divided into
two parts, A and B. If we do not have access to the degrees of freedom in B, we can
describe subsystem A through its reduced density matrix, where the degrees of freedom
in B have been traced out. The residual subsystem in A will in general be left in a mixed
state. Subsystem A is then divided again into two parts, A1 and A2, and we will be
interested in the entanglement shared by these two components. Knowing the full density
matrix, the logarithmic negativity can be easily computed from the eigenvalues of its
partial transpose with respect to the degrees of freedom living in one of the two subsystems
A1 or A2. However, the full density matrix of a many-body state is in general unaccessible,
even numerically, since the size of the matrix grows exponentially with the size of the
system. If we concentrate on critical systems whose low-energy physics can be described
by a quantum �eld theory, we can resort to its powerful tools to compute the entanglement
properties. In particular the main tool is the replica trick. The entanglement entropy is
obtained from the moments of the reduced density matrix, while the negativity can be
computed from the moments of the partial transpose. However, even the computation
of the integer-order moments is not an easy task, and exact analytical results are known
only for the simplest quantum �eld theories. Hence, throughout the thesis we will usually
consider conformal �eld theories, which have an enhanced set of symmetries and therefore
allow for some exact computations.

In the Introduction, we will try to frame this work by brie�y reviewing some of the
main topics in the literature of quantum many-body systems and quantum �eld theories
where entanglement plays a crucial role. We will also describe what are the main features
that are requested to a `good' measure of entanglement, and we will review some of the
main measures that have been considered so far in the context of quantum information.
We will de�ne the entanglement negativity and stress its main advantages, as well as its
drawbacks. After reviewing some basic facts of conformal �eld theories, we will give some
technical details on the computation of entanglement entropy and logarithmic negativity
in general quantum �eld theories, which will be needed in the rest of the thesis.

In Chap. 2 we will start the study of the entanglement of several disjoint disconnected
regions by considering the entanglement that the union of these regions share with the
rest of the system. We will compute the integer-order Rényi entropies of the subsystem
from which the entanglement entropy can be obtained through the replica limit. Unfor-



tunately, the exact analytic continuation to real order is still out of reach and therefore
the entanglement entropy cannot be computed exactly. However numerical extrapolations
allow to obtain some accurate estimates.

In the remaining chapters we will focus on the entanglement shared between two non
complementary disjoint regions, through the computations of the entanglement negativity
in di�erent settings. In Chap. 3, we will consider a global quantum quench starting from a
conformal boundary state and evolving through a conformal evolution. A general formula
for the mutual information and the logarithmic negativity for two adjacent and disjoint
intervals is given in the spacetime limit.

In Chap. 4 we focus on the XY chain and we recover a formula for the partial transpose
as a sum of four fermionic auxiliary Gaussian density matrices, by generalizing some pre-
vious results for the reduced density matrix of spin systems and for the partial transpose
of pure fermionc Gaussian states. Even if the computation of the negativity is still out
of reach, we can obtain formulas for the integer-order moments of the partial transpose
in terms of the correlation matrices relative to the two components and to the region in
between them.

In Chap. 5 we will study the entanglement negativity for a free Dirac fermion �eld.
Starting from the lattice results, we will obtain a path integral representation of the partial
transpose which can be easily generalized to the continuum. With this representation
of the partial transpose, we can construct all its integer-order moments and compute
them for the simple conformal �eld theory of the free fermion. Again, the computation
of the negativity could not be accomplished due to technical di�culties in the analytic
continuation to real order. The same computation has been extended also to the modular
invariant Dirac fermion and the Ising model, and the obtained formulas coincide with
the ones already present in the literature. This analysis draws an interesting connection
between some terms appearing in the formulas for the moments of the partial transpose
(as well as of the Rényi entropies) found for the lattice models and the ones found for the
corresponding theories describing their scaling limit.

Whenever possible, all the analytical results will be checked against numerical calcu-
lations performed on simple free chain models. In Chaps. 2 and 3 we will consider bosonic
Gaussian states, speci�cally the harmonic chain in its ground state and out of equilibrium,
while in Chaps. 4 and 5 we will consider fermionic systems, speci�cally the XX and Ising
spin chains, and the tight-binding model.

Finally, we will draw some conclusions and discuss some open problems.



vii

Contents

Abstract v

1 Introduction 1

1.1 Local quantum operations, entanglement measures and logarithmic nega-
tivity: a quantum information perspective . . . . . . . . . . . . . . . . . . 6

1.2 Experimental measures of entanglement . . . . . . . . . . . . . . . . . . . 13
1.3 Conformal Field Theory: basics . . . . . . . . . . . . . . . . . . . . . . . . 19
1.4 Entanglement and Conformal Field Theories . . . . . . . . . . . . . . . . 26
1.5 Organization of the thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

2 Rényi entropies for multiple disjoint intervals 39

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
2.2 Some cuto� independent quantities . . . . . . . . . . . . . . . . . . . . . . 40
2.3 Free compacti�ed boson . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
2.4 Recovering the two intervals case . . . . . . . . . . . . . . . . . . . . . . . 51
2.5 The harmonic chain . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
2.6 The analytic continuation through a numerical extrapolation . . . . . . . 62
2.7 The Ising model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
2.8 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
Appendices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
2.A On the x dependence of RN,n . . . . . . . . . . . . . . . . . . . . . . . . . 78
2.B Lauricella functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
2.C Symmetries of FN,n as symplectic transformations . . . . . . . . . . . . . 82
2.D Some technical issues on the numerical analysis . . . . . . . . . . . . . . . 87
2.E More details on the numerical extrapolation . . . . . . . . . . . . . . . . . 92

3 Entanglement Negativity after a global quantum quench 101

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
3.2 Entanglement entropies and mutual information . . . . . . . . . . . . . . 102
3.3 Entanglement negativity . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
3.4 Quasi-particle interpretation and horizon e�ect . . . . . . . . . . . . . . . 110
3.5 Numerical evaluation of the negativity and mutual information for the har-

monic chain . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112
3.6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123



viii Contents

4 Partial transpose of two disjoint blocks in XY spin chain 127

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127
4.2 The model and the quantities of interest . . . . . . . . . . . . . . . . . . . 128
4.3 Rényi entropies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129
4.4 Traces of integer powers of the partial transpose of the spin reduced density

matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133
4.5 Numerical results for the ground state of the critical Ising and XX model 136
4.6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139

5 Partial transpose of two disjoint intervals for a one dimensional free

fermion 141

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141
5.2 Partial transpose of the reduced density matrix for the free fermion . . . . 141
5.3 Traces of the partial transpose for the free fermion . . . . . . . . . . . . . 146
5.4 Ising model and modular invariant Dirac fermion . . . . . . . . . . . . . . 154
5.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160
Appendices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162
5.A A check for n = 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162
5.B On the Riemann surface R̃n . . . . . . . . . . . . . . . . . . . . . . . . . . 162
5.C Details on the computation for the self-dual boson . . . . . . . . . . . . . 166
5.D The free fermion from the modular invariant Dirac fermion . . . . . . . . 168
5.E Numerical checks from the Ising model and the XX chain . . . . . . . . . 169

Conclusions 177

Acknowledgements 181

Bibliography 183



1

Chapter 1

Introduction

Since the foundation of quantum mechanics, entanglement has been acknowledged as the
striking di�erence between the classical and the quantum world. Already in the early
works by Einstein, Podolski and Rosen [1] in 1935, it was understood that entanglement
may allow for tasks that are completely impossible in the classical realm [2]. The local
action on a subsystem of a quantum system may a�ect drastically the state of all its other
parts, even if spatially very far apart. The peculiar fact is that this change may happen
instantaneously, which is intrinsically very di�erent from the e�ect of usual classical cor-
relations, when a local perturbation of the system may propagate and a�ect all the rest
of it. This propagation is in fact still the result of local interactions in the system and it
is strictly limited by some maximum velocity [3]. During those years, the instantaneous
change of the quantum state of the system after a measurement was quite disturbing
and was considered a great objection to giving to quantum mechanics the stature of a
complete, sensible physical theory. Hidden variable theories where formulated to resolve
the apparent paradox put forward by Einstein, Podolski and Rosen. In these theories
some parameters are added to quantum mechanics and an experimenter who could know
their value could also exactly predict the results of single experiments. The probabilis-
tic nature of usual quantum mechanics is then relegated to a mere ignorance of these
variables, and its predictions must be interpreted in a statistical sense. In 1964, Bell
showed [4] that a hidden variable description is incompatible with the results of quantum
mechanics: indeed, to reproduce exactly all of its predictions, one should indeed allow
for classical information to propagate instantaneously. Ultimately, entanglement forbids
a simple hidden variable interpretation without nonlocalities.

Even if entanglement was at the center of the debate on quantum mechanics since its
foundation, it was only in the 1990s that it started to be considered as a resource within
the context of quantum information. Entanglement can be exploited to perform tasks
that are impossible or extremely ine�cient in a pure classical setting, such as quantum
teleportation [5] or quantum error correction [6]. Thus, the need of tools to understand
how entanglement can be characterized, manipulated and quanti�ed, was evident. In
principle, we would like to be able to prepare the system in a state with a certain amount
of entanglement, then perform some operations on it and exploit its nonlocal properties
to perform some speci�c tasks. The rate of success is strictly related to the amount of
entanglement we can store in our system. In the last decades, the technological advance
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made it possible to prepare, manipulate and measure individual quantum systems, with-
out loss of coherence. This means we can �nally have access to the quantum world in
its full potentiality. It is of the utmost importance to have a way to quantify the en-
tanglement present in a given system, namely to de�ne a measure of entanglement. The
problem of understanding if two subsystems are entangled is fairly well de�ned, however
the quanti�cation of entanglement through a unique measure is actually highly nontrivial.
Since entanglement is seen as a resource, the guiding principle is mainly operational: an
entanglement measure should tell us how much of this resource is present in the state,
and the resource is de�ned as the property that is initially present in the state, and can-
not be increased performing a set of allowed operations. These are usually taken to be
the local quantum manipulations performed by some experimenters which can act only
on speci�c subsystems, and classical communications between the parties (for the exact
de�nition, see Sec. 1.1.1). In Sec. 1.1.2 we will brie�y discuss some of the main important
problems and di�culties that one encounters while trying to �nd a consistent de�nition
of an entanglement measure. Let us here mention that the problem can be essentially
solved for bipartite pure states, and in this case the unique measure of entanglement is
the Von Neumann entropy of the reduced density matrix of indi�erently one of the two
subsystems, the renowned entanglement entropy [7].

The entanglement entropy has the really nice property that it is de�ned independently
of any observable of the system, and therefore it can be rightfully expected to capture the
quantum correlations in a very universal way. Its simple de�nition, al least with respect
to other proposed, more operational entanglement measures (a few examples can be found
in Sec. 1.1), makes it amenable to be computed also in complicated situations, such as
extended quantum systems. In the last �fteen years indeed, a large e�ort was produced
to study entanglement properties of many-body systems through the computation of the
entanglement entropy in di�erent settings. For obvious reasons, it is not possible here
to mention them all, we will just give an incomplete and arbitrary list in the following.
However, many interesting and useful reviews can be found, discussing some important
general aspects as well as speci�c models. Let us mention here the one by Amico, Fazio,
Osterloch and Vedral [8], which is mainly focused on spin chains and condensed matter
models of interacting fermions and bosons; the one by Eisert, Cramer and Plenio [9], which
deals with the important topic of area laws emerging as a fundamental entanglement
property of many-body systems; and �nally the series of reviews edited by Calabrese,
Cardy and Doyon [10] (and references therein), which cover many di�erent topics where
entanglement entropy has been widely studied. This great amount of work was well
justi�ed by the success of entanglement entropy in probing the universal features of many-
body systems around their critical points. For example, as we shall see in Sec. 1.4, the
entanglement entropy of a block of continuous spin in a quantum spin chain at criticality
has a very `clean' dependence on the central charge of the underlying conformal �eld
theory (for the de�nitions, see Sec. 1.3). This observation provides in many situations the
best way to numerically evaluate the central charge of a speci�c system, thus establishing
its universality class.

One of the most important results in the study of entanglement in many body-systems
is the appearance of the so called area law [11�15]. Consider a general d-dimensional spin
system in its ground state, and a block A of contiguous spins. For theories with local
interactions, the quantum correlations are expected to be concentrated among spins close
to the boundary separating A and its complement. Thus, the amount of entanglement,
measured for example by the entanglement entropy, should naturally scale with the area
of such boundary, SA ∼ Area (∂A) /ad−1, where a is an ultraviolet scale, such as the
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lattice spacing. These ideas were actually �rst put forward and explored in the context of
black hole physics [16, 17], where it was suggested that this entanglement property could
be at the origin of the black hole entropy, given by the Bekenstein-Hawking formula [18,
19], which is in fact proportional to the area of the boundary surface of the black hole.
An important violation of the area law appears for example in critical one-dimensional
quantum systems, where it was found [20] that the entanglement entropy scales as the
logarithm of the block size. Another important case is the one of certain fermionic systems
in higher dimensions with a Fermi surface [21], where again logarithmic corrections are
present. Quite surprisingly, with a little e�ort one can also design speci�c spin chains with
local interactions, whose critical ground state entanglement follows a volume law [22],
since the system naturally organizes with an accumulation of singlet bonds across the half
chain. This means that, even if area laws are usually intended to follow from the locality
of the interaction, this statement must be taken with some care.

In two dimensions, a very interesting class of systems are the ones displaying topo-
logical phases. The area law in two dimensions reads SA ∼ αL/a − γ + . . . , where L is
a typical length of subregion A, the coe�cient α is non-universal, the ellipses stand for
terms that vanish for large L, and �nally γ is called the topological entropy [23, 24]. This
terminology comes from the fact that γ is shown to be a topological invariant, and it is
directly related to the total quantum dimension. In this picture, a topological ordered
state is supposed to have nonlocal entanglement, hence by computing the entanglement
entropy and isolating the constant term in the size of the subsystem, we have a tool to
detect topological order. Prototypical examples of this situation are the Kitaev model [25]
and the two-dimensional electron gases in large magnetic �elds in the fractional quantum
Hall regime [26].

A phenomenon with deep relations with the topological entropy arises also in one-
dimensional quantum models in the presence of boundaries, of some defects, or in general
of inhomogeneities. Close to the critical point, the entanglement entropy scales loga-
rithmically, but a non-universal additive constant is present [27], and it is related to the
boundary entropy g [28], a universal quantity depending only on the boundary conditions.
The boundary entropy has been studied for example in spin chains in the presence of a
boundary [29], and in the Kondo model [30, 31]. The connections between the impu-
rity entropy in one-dimensional systems and the topological entropy in two-dimensional
systems is understood in terms of the connection between a two-dimensional topological
insulator and a one-dimensional edge model [32, 33].

Entanglement has also proven to be of fundamental interest in the development of
numerical algorithms for simulating quantum systems, as for example the Matrix Prod-
uct States (MPS) [34, 35]. In turns out that the amount of entanglement of a quantum
state determine its possibility to be simulated classically. The number of parameters that
should be stored in a classical computer to exactly describe a quantum many-body system
grows exponentially with the size, and soon exceeds our technological possibilities. How-
ever, the states appearing in many-body quantum systems, and in particular their ground
states, are very peculiar and they are not typical states of the full Hilbert space. We can
think of these states living in a small corner of the Hilbert space, and by characterizing
such corner we can provide a much more e�cient description of the interesting states.
Ultimately, the number of relevant parameters to have an approximate but faithful de-
scription of a quantum state grows with the amount of entanglement present [36]. Usually,
these parameters are stored in tensors, whose dimensions should increase exponentially
with the entanglement present. Gapped one-dimensional systems in their ground states
have a �nite amount of entanglement and can therefore be faithfully simulated, and their
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properties are indeed computed at a very high precision. On the contrary, ground states
of critical one-dimensional systems have much more entanglement. One can still extract
some sensible information from the simulations, but more care is in order [37]. Unfortu-
nately, in more than one dimension, the area law forces the tensors to grow exponentially
with the size of the system, thus making impossible to reach large system sizes. This
explains the failure of Density Matrix Renormalization Group techniques [38, 39] (which
are based on MPS [34, 35]) in two dimensions. Other techniques have been studied how-
ever to circumvent these di�culties: Tree Tensor Networks (TTN) [40] and the Multiscale
Entanglement Renormalization Ansatz (MERA) [41, 42] are designed to deal with critical
one-dimensional systems, while Projected Entangled Pair States [43] are a generalization
of MPS to two and more dimensions.

The great success of entanglement entropy in the study of many-body physics and its
simple de�nition, make it amenable to compute it also in quantum �eld theory (QFT).
QFT can e�ectively describe many-body systems at criticality, and its powerful tools can
provide a deeper understanding of this regime. In this setting, the entanglement entropy
is usually computed through the replica trick [20, 27, 44], which relates the entanglement
entropy to the partition functions of the model on n-sheeted Riemann surfaces corre-
sponding to n replicated copies of the system glued together in a particular way [45] (we
will largely discuss the replica trick in Sec. 1.4). In QFT a large amount of work has
been done to study the entanglement properties of free �elds in one dimension [46�48],
also for disconnected regions [49], and in two dimensions [50]. Also the case of gen-
eral dimensionality in conformal �eld theory (CFT) have been recently considered and
many interesting theoretical results have been found [51�54], which match with previous
numerical works [55].

It is also worth mentioning the important developments that have followed some early
works on entanglement entropy related to c-theorems [56, 57]. Using Lorentz invariance
and the strong subadditivity property of the entanglement entropy, it was possible to �nd
a quantity that ful�lls the requirements of a good c-function [58] in 1 + 1 dimensions
(which however is not simply related to Zamolodchikov's c-function), thus showing a deep
connection between entanglement and the irreversibility of the Renormalization Group
�ow between critical points. Historically, the extension of c-theorems to higher dimensions
was found to be a very di�cult task, and few results were available. For example, only
recently in Ref. [59, 60] it was found the long sought proof of the analogous of the c-
theorem in four spacetime dimensions, the so called a-theorem. Entanglement opens a
new perspective on these problems, and in particular it allows to consider equally even
and odd dimensions, that historically presented quite di�erent challenges [61]. Some
conjectures were put forward for the case in generic dimension [62, 63], but much of the
work was dedicated to 2 + 1 dimensions, where entanglement entropy helped again in
proving the F -theorem [64�67]. One of the important issues that must be addressed in
order to obtain a full generalization of c-theorems to any dimensionality, is the role of
the regularization scheme used to deal with the ultraviolet divergences of the QFT. A
good candidate for a c-function must in fact be independent of any regulator. Important
steps in this direction were made in Refs. [68, 69], where a class of covariant geometric
regulators were introduced, which make all the terms in the entanglement entropy assume
a geometrical character, and in Ref. [70], were it is suggested that mutual information
could be the correct quantity to look at, thanks to its ultraviolet �niteness.

Entanglement properties of QFT can be also studied by means of the holographic
principle [71, 72], in the context of the AdS/CFT correspondence [73]. Interestingly
enough, the holographic principle originated from the Bekenstein-Hawking entropy of
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black holes [18, 19], which exhibits an area law, and thus suggests that the relevant
degrees of freedom of a d-dimensional system reside on a (d−1)-dimensional surface at its
boundary. Since the seminal papers by Ryu and Takayanagi [74�76], an incredible e�ort
has been produced to characterize the entanglement in the holographic context. Ryu and
Takayanagi conjectured that the entanglement entropy of a spatial subsystem in a QFT
with a holographic dual can be computed in the classical regime from the area of certain
minimal surfaces, anchored to the entangling surface in the boundary and extending inside
the bulk. Their very simple formula allowed for an extensive study of entanglement in
many situations, among which there are the interesting cases of disconnected regions [77�
80], out of equilibrium evolution [81�96], and in the context of the c-theorems discussed
above [62, 63]. The Ryu-Takayanagi formula, despite being very natural and simple,
remained a conjecture for many years and was proven only recently [97�99]. Corrections
beyond the leading order of classical gravity in the bulk have been studied [100, 101],
but are quite more involved than the zeroth-order formula. Finally, let us mention that
in this context it is still not clear how to compute the Rényi enrtopies, a generalization
of the entanglement entropy, even if several important steps have been made in that
direction [66, 102].

Giving in few pages a complete review of all the research areas where entanglement
has had an important role in the last ten years, is evidently an unfeasible task. Many
important topics have been reluctantly omitted, even if their importance and the interest
that they brought in the community should not be overlooked. Among the others, let
us mention the essential role of the so called entanglement spectrum [103] in the study
of universal features characteristics of many-body systems in their di�erent phases, and
the deep insight that the evolution of entanglement [104�106] has brought in the �eld of
out-of-equilibrium physics (this topic will be further discussed in Chap. 3). We hope we
could at least give a �avor of the many interconnections that the study of entanglement
has brought between seemingly distant �elds, such as quantum information, many-body
quantum physics and high energy physics. Entanglement plays a crucial role in all these
�elds in describing and characterizing the systems under investigations, and this eclectic
aspect is probably ultimately due to the universal and fundamental role of entanglement in
the quantum description. Probably, some of the most surprising aspects of this interplay
come from the recently developed connection between quantum information and quantum
gravity [107, 108]. A very evocative and intriguing point of contact between these two
�elds concerns the possibility of the bulk space time in the holographic description of
quantum states to be deeply related to the tensor network structure of MERA [109�116].

Its should be clear by now that entanglement is a key quantity to look at in many
areas of physics. Its quanti�cation and characterization is very fundamental in quantum
information, where entanglement is seen as a resource. In many-body systems, quantum
�eld theory, holography, the entanglement structure of the system gives very important
information on the underlying physics, and entanglement measures are the basic tools to
quantify the amount of the entanglement present. This role has been egregiously played
for pure states by the entanglement entropy. However, for mixed states, the situation
is much more complicated since the entanglement entropy fails in correctly quantifying
the quantum nonlocal correlations. Many other entanglement measures can be de�ned,
which perfectly work also for mixed states, however they are usually very di�cult to com-
pute, even for small systems, and they are practically useless for extended many-body
systems. An important exception is provided by the logarithmic negativity [117�119], a
full entanglement measure based on the observation that the entanglement in a bipartite
mixed state is related to the presence of negative eigenvalues in the partial transpose of
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the density matrix [120]. Its simple de�nition makes its computation much more acces-
sible, and therefore it is a good candidate to be a practical and useful tool to quantify
entanglement in complicated settings such as many-body systems [121�133]. Moreover,
a systematic path integral approach to construct the moments of the partial transpose
of the reduced density matrix has been developed and from this the negativity in 1+1
dimensional relativistic quantum �eld theories is obtained via a replica trick very similar
to the one for the entangelemnent entropy [134, 135]. This recent approach has been
successfully applied to the study of one-dimensional conformal �eld theories (CFT) in the
ground state [134�136], in thermal state [137, 138], and in non-equilibrium protocols [138�
140], as well as to topological systems [141�143].With the same techniques it is also pos-
sible to consider massive QFT [144], where the negativity displays a very high level of
universality. The CFT predictions have been tested for several models [135�137, 145,
146], especially against exact results [126, 135, 137] for free bosonic systems (such as the
harmonic chain). Indeed for free bosonic models, the partial transposition corresponds to
a time-reversal operation leading to a partially transposed reduced density matrix which
is Gaussian [147] and that can be straightforwardly diagonalised by correlation matrix
techniques [148�151]. Focusing on one-dimensional CFT in the ground state, the nega-
tivity is explicitly known only for the simple (but non trivial) geometry of two adjacent
intervals embedded in a larger system. For the very important case of the entanglement
between two disjoint intervals only the limit of close intervals is explicitly known. For
arbitrary distances between the intervals, the main di�culty is to �nd the analytic con-
tinuation of the even-integer moments of the partial transpose, although these moments
are analytically known in a few cases [135, 136]. However, the numerical interpolation
techniques introduced in Ref. [152] and which we are going to discuss in Sec. 2.6, can been
exploited to have an approximate prediction for the negativity. A deeper analysis of the
negativity is of course of great interest, and this thesis is devoted to the study of di�erent
aspects of this entanglement measure in various settings, both in lattice systems and in
QFT. We will concentrate on critical one-dimensional systems which can be described by
CFT.

In the remainder of this Introduction, in Sec. 1.1 we will give a brief review of the
requirements needed by a function of the state to be a good entanglement measure and
what are the problems that one encounters when trying to de�ne such measures. Sec. 1.2
slightly deviates from the main topic of this thesis and discuss how it is possible to actually
measure the amount of entanglement in an extended system in real experiments. This
task, that for many years was suspected to be impossible, is now approachable with the
modern technologies developed in cold-atom systems. In Sec. 1.3 we will review some
basic aspects of CFT, especially focusing on the results that we will be using in the rest
of the thesis. Finally, in Sec. 1.4 we will discuss how the negativity can be computed in
QFT, and especially in CFT, de�ne some of the quantities that will be recurrently used
throughout the thesis, and describe their main properties. Finally, in Sec. 1.5 we will give
the outline of the thesis, together with the references to the original works.

1.1 Local quantum operations, entanglement measures and loga-

rithmic negativity: a quantum information perspective

Since entanglement has proven to be a fundamental tool in many areas of physics to better
understand the properties of quantum systems, it is of course of the utmost importance
to develop a coherent description aimed at the quanti�cation of the entanglement present
in a quantum state. This is a highly non trivial problem, since even the characterization



1.1 Operations, entanglement measures and logarithmic negativity 7

of entanglement is not so immediate. This goal was historically �rst sought in the �eld
of quantum information, where entanglement is seen as a resource to perform tasks that
are impossible (or very ine�cient) by using only classical tools. One of the most famous
examples in that respect is quantum teleportation [5]. From this point of view, with
entanglement considered as a resource, its characterization is strongly operational and it
is related to the possible operations that can be performed on the system. The typical
setting is the one where to parties, usually denoted by Alice and Bob, share a quantum
system, but they are separated in space and can only act on the system locally (local in
a sense to be speci�ed later). If we restrict the operations that can be performed on the
system to, for example, the local operations performed by Alice and Bob, any state that
cannot be created with these operations becomes a resource, since it allows to overcome
the constraint imposed by the choice of admissible operations.

Taking this operational perspective, many measures of entanglement can be de�ned
depending on what speci�c task is considered, however there are some requirements that
all `good' measures of entanglement must satisfy [153, 154]. There are then other prop-
erties that may be desirable, but are not considered strictly necessary. In the literature
there are many proposed entanglement measures, and they all have pros and cons and
may be more or less useful depending on the speci�c task which is at hand. A complete,
precise picture is still lacking, a part for some speci�c cases, for example the pure-state
entanglement of a bipartite system, in some asymptotic sense [7].

In the following we will try to give a brief review of the possible characterization of
the local operations that can be performed by Alice and Bob, as well as a (forcibly)
incomplete discussion on some of the most important entanglement measures that have
been proposed. We will �nally focus our attention on the logarithmic negativity, whose
computation in di�erent settings in strongly correlated extended systems is the main topic
of this thesis. We will try to give a characterization of this quantity from the quantum
information perspective, in order to establish its usefulness as a quanti�er of the amount
of entanglement of a given system, as well as some of its limitations.

1.1.1 LOCC and PPT transformations

As already mentioned, the typical setting we consider is the one where two parties, Alice
and Bob, share a quantum system but they can act locally only on a speci�c subsystem,
that will be denoted respectively as A and B. They are also allowed to communicate clas-
sically, namely they can send classical information one to the other. For example, Alice
may report to Bob the outcome of a measurement she performed on her subsystem, and
Bob may then choose to act on his share of the system depending on such classical out-
come. The set of transformations combining local quantum operations (LO) and classical
communication (CC) is usually denoted LOCC, and it is very di�cult to precisely charac-
terize mathematically. Let us stress again that the de�nition of a set of operations allows
to de�ne entanglement as the resource that cannot be created by these transformations
only. LOCC operations are not completely local, since classical communication is allowed,
however it is evident that they do not exhaust all possible operations, as for example they
do not allow for the exchange of quantum information between the parties. In order to
perform general nonlocal quantum operations within the LOCC constraint the resource
of inherent quantum correlations is necessary. In this context, classical correlations can
be de�ned as the ones that can be created by LOCC, while quantum correlations are the
ones that are already present in the system, and cannot be generated by acting locally on
subsytems A and B.
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A mathematical simple characterization of LOCC is very hard and it is indeed still
lacking. It is easier to �rst consider the most general quantum operation on a system,
which can be divided into three basic steps: one or more ancillae particles are added to
the system, then some unitary operation and some measurements are performed to the
joint system, and �nally some particles are discarded, possibly according to the results
of the previous measurements. Mathematically, this situation can be described in the
formalism of completely positive superoperators [155]. The result of any operation on the
density matrix ρ of the system can be described by means of Kraus operators as follows,

ρ→ ρk =
1

pk

∑

j

Vk,j ρ V
†
k,j , pk = Tr

[∑

j

Vk,j ρ V
†
k,j

]
. (1.1)

Here the index j refers to the possibility that some of the outcomes of the measurements
that took place in the process might not be accessible, and the resulting state might be a
mixed state, even if the original one was pure (a process called decoherence). The index
k corresponds instead to the outcomes of the measurements when all the information is
retained. The process is stochastic, and the result ρk is obtained with probability pk.
When there is only one pk = 1, the process is a deterministic state-to-state operation,
and ρ→∑

j Vj ρ V
†
j . The normalization of probabilities implies that Kraus operators Vk,j

must satisfy
∑
k,j V

†
k,jVk,j = 1.

It would be natural to think that the local quantum operations in the LOCC setting
correspond to the so called separable operations, whose Kraus operators are in a product
decomposition according to subsystems A and B, Vk,j = Ak,j ⊗ Bk,j . Actually, every
LOCC operation (not only LO) can be cast in this form, but it can be proven [156]
that there exist some operations of this kind that cannot be completed with LOCC only,
and require for example to transmit a �nite amount of quantum information. Hence we
have LOCC ⊂ separable. There exists an even more general class of operations, which
is very important for the study of the logarithmic negativity, that is the positive partial
transpose preserving operations (PPT) [157, 158]. On a given local orthonormal basis
|eAi , eBj 〉, the density matrix can be written as ρ =

∑
ijkl ρij,kl |eAi , eBj 〉 〈eAk , eBl |, and its

partial transposition with respect to subsystem B is given by

ρTB =
∑

i j k l

ρij,kl |eAi , eBl 〉 〈eAk , eBj | . (1.2)

The density matrix ρ is a positive de�nite operator, however this is not assured for the
partial transposed operator. It has been proven that a necessary condition for a state
to be separable (and therefore contain no entanglement) is the positivity of its partial
transpose [120, 159, 160]. The converse is not true in general, meaning that there exist
states with positive partial transpose that are not separable. The PPT operations are the
completely positive maps Φ such that ΓB ◦Φ◦ΓB is also completely positive, ΓB being the
partial transposition with respect to B. It makes sense to study the classes of separable
and PPT operations since they are much easier to deal with mathematically than the
LOCC operations. Moreover, since it is possible to prove the strict inclusions LOCC ⊂
separable ⊂ PPT, by optimizing a given task in these classes one may �nd bounds on
what may be achieved by LOCC.

1.1.2 Entanglement measures

Once the set of allowed operations is speci�ed, and the concept of entanglement as a
resource is well de�ned, the next step is to provide some measures of entanglement which
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can quantify the amount of the resource in a given system. Let us �rst make some
important observations. Separable states [161] are the ones whose density matrix can be
written as

ρ =
∑

i

pi ρ
i
A ⊗ ρiB . (1.3)

Any separable state can be converted to any other separable state by LOCC only [162],
therefore they are all locally equivalent, their correlations are only classical and they do
not contain any entanglement. On the contrary, all non-separable states, namely those
that cannot be written as in (1.3), cannot be generated by LOCC only, and they may allow
for more general operations. We already mentioned that there were found states that are
not separable but have positive partial transpose. From these states it is not possible
to distill entanglement in the form of maximally entangled states, which is the golden
standard for quantum communication purposes. This type of undistillable entanglement
is called `bound' entanglement [160].

Another important observations is the following. For the same reason that LOCC can
only generate separable, non-entangled states, entanglement cannot increase under LOCC
manipulations [6]. Consider a state which can be reached starting from another state by
performing LOCC only. Then the resources in the �nal state cannot be more than the
ones in the initial state [7, 163, 164]. Moreover, since local unitaries are reversible, any two
states that are connected by a local unitary must have the same entanglement. Finally, let
us also notice that there exist maximally entangled states, namely states from which any
other state can be obtained through LOCC operations. In the case of two subsystems of
same �nite dimension d, the maximally entangled states are the ones unitarily equivalent
to

|ψ+
d 〉 =

|0, 0〉+ |1, 1〉+ · · ·+ |d− 1, d− 1〉√
d

. (1.4)

Maximally entangled states are the ones used to e�ciently perform many quantum com-
munication task and therefore they are considered the `coin' which can be spent for such
purposes.

These observations lead to the hope for the set of density matrices to be totally ordered
under the LOCC operations. If this was the case, we could say that the state ρ1 is more
entangled than the state ρ2 if there exists a transformation which implements ρ1 → ρ2.
Unfortunately, this turns out to be false, since it can be proven that in general there are
incomparable states [165], and therefore LOCC manipulations can only induce a partial
order in the set of the quantum states. The last observation makes it very di�cult to
build a classi�cation of entanglement based on LOCC. In the literature, such operational
approach was replaced by an alternative, axiomatic point of view [163]: we can de�ne
quantities which satisfy a set of minimal postulates, and use them to try to quantify the
entanglement of the states. However, the requirements needed may vary among di�erent
authors and many choices of entanglement measures may be more suitable and useful
in di�erent situations, depending on the particular need. The minimal property that
any map E(ρ) from density matrices to real numbers must satisfy in order to be an en-
tanglement measure is monotonicity under any deterministic LOCC transformation [153,
154],

E
(∑

j

Vj ρ V
†
j

)
6 E(ρ), (1.5)

where Vj is the Kraus operator introduced in Eq. (1.1). The known entanglement measures
usually satisfy the stronger requirement that E(ρ) does not increase on average under
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stochastic LOCC operations [162, 166],
∑

k

pkE(ρk) 6 E(ρ), (1.6)

where the ρk's and the pk's are the ones of Eq. (1.1). Notice that monotonicity is requested
on average, in the sense that a particular measurement outcome may correspond to an
increase of the entanglement. However this process cannot be used to systematically
increase the amount of resources of the system. This condition is often easier to prove,
but it is less fundamental than (1.5), in the sense that it describes the entanglement of
an ensemble {pk, ρk}, which is a less operational notion than the notion of a state [153,
154]. The monotonicity under LOCC operations implies that for any separable states,
E(ρ) takes a constant value, which is its minimal one [162]. Without loss of generality
we can set this value to zero. A function satisfying Eq. (1.6) and such that vanishes on
separable states is usually called an entanglement monotone [153, 162].

There are other postulates that one may ask to be satis�ed by an entanglement mea-
sure, depending on the particular needs. Such properties are however considered op-
tional, and can be added because they are often mathematically convenient. A com-
mon additional requirements is convexity, which is sometimes justi�ed with the no-
tion that entanglement cannot increase under the loss of information due to mixing,
E
(∑

i piρi
)
6
∑
i piE(ρi) [162]. This requirement must not be confused with the physi-

cal process of discarding information (for example tracing out a marker particle), which is
much more fundamental and it is included in (1.6) [153, 167]. Another useful prop-
erty that can be requested is additivity, namely E(ρ⊗n) = nE(ρ). Notice that for
any measure that is not additive, a regularized (or asymptotic) version can be de�ned,
E∞(ρ) = limn→∞

[
E(ρ⊗n)/n

]
.

An entanglement measure is often de�ned to also coincide with the entanglement
entropy when computed on pure states [153]. The entanglement entropy [7] is de�ned as
the Von Neumann entropy of the reduced density matrix over subsystem A

SA(ρ) = −TrA (ρA log ρA) , ρA = TrB ρ. (1.7)

Notice that SA is additive. Moreover, it satis�es two important inequalities [168, 169]

SAB 6 SA + SB , (subadditivity) (1.8a)

SABC + SB 6 SAB + SBC , (strong subadditivity) (1.8b)

where for example SAB is the entanglement entropy relative to the union of the two
subsystems A and B. The reason for this additional requirement is that it is believed to
contain all relevant information of entanglement of pure states. However, it is important
to stress that this statement is true only under certain hypothesis and in the asymptotic
regime, when (in�nitely) many copies of the system are taken into consideration. In this
limit we can de�ne two fundamental entanglement measures which have a very practical
operational meaning, and really capture our intuition of entanglement seen as a resource
for quantum information purposes (indeed they were de�ned and used before the axiomatic
approach was considered). If we take n identical copies of the system ρ⊗n, the rate
r = m/n of transformation to approximately m copies of the 2-qubit maximally entangled
state |ψ+

2 〉 〈ψ+
2 |, is given by the entanglement distillation, that can be de�ned concisely

as follows [153]

ED(ρ) = sup
{
r : lim

n→∞

[
inf
Φ

Tr
∣∣∣Φ
(
ρ⊗n

)
−
(
|ψ+

2 〉 〈ψ+
2 |
)⊗rn∣∣∣

]
= 0
}
, (1.9)
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where Φ is a general LOCC operation. Conversely, the asymptotic rate of obtaining
approximately n copies of the system starting from m copies of the maximally entangled
state |ψ+

2 〉 〈ψ+
2 | is called entanglement cost

EC(ρ) = inf
{
r : lim

n→∞

[
inf
Φ

Tr
∣∣∣ρ⊗n − Φ

((
|ψ+

2 〉 〈ψ+
2 |
)⊗rn)∣∣∣

]
= 0
}
. (1.10)

It has been proven that the entanglement cost and the entanglement distillation are
extremal measure in the asymptotic limit [170], since they bound any other regularized
measure, ED 6 E∞ 6 EC . Moreover, it turns out that entanglement transformations
of pure states become reversible in the asymptotic limit, and the rate of transformation
is given by the entanglement entropy, ED(|ψ〉 〈ψ|) = EC(|ψ〉 〈ψ|) = SA(|ψ〉 〈ψ|). In
practice, reversibility means that given a large number of copies of a pure state |ψ1〉 〈ψ1|,
it is possible to distill ≈ nSA(|ψ1〉 〈ψ1|) maximally entangled states, and then acting on
these singlets it is possible to create m ≈ nSA(|ψ1〉 〈ψ1|)/SA(|ψ2〉 〈ψ2|) copies of another
pure state |ψ2〉 〈ψ2| [7]. For these reasons, it turns out that any additive and `su�ciently
continuous' entanglement monotone, must be equal to SA(ρ) on pure states [162, 170�172].
This strongly suggests that the entanglement entropy is the appropriate measure for pure
states. The equivalence of all su�ciently regular measures on pure states is important
also from a practical point of view. Indeed, it is very di�cult to compute ED(ρ) and
EC(ρ), since they contain variational expressions. The entanglement entropy is on the
contrary much easier to compute.

The entanglement entropy can be seen as the Shannon entropy of the eigenvalues of
the reduced density matrix. Analogously, we can de�ne their Rényi entropies [173]

S
(α)
A =

1

1− α TrA ρ
α
A, (1.11)

with α a non-negative real number. The Rényi entropies are additive and the entanglement
entropy SA can be seen as a particular case when α → 1. For 0 6 α 6 1 the Rényi
entropies are shown to be entanglement monotones [162] on pure states. Unfortunately,
they do not reduce to the entanglement entropy on pure states, since they do not satisfy
some asymptotic continuity condition [162]. As we will extensively discuss in Sec. 1.4,
in QFT the integer-order Rényi entropies are very important, since there are techniques
that allow some analytical and numerical computations.

Many other measures of entanglement can be de�ned satisfying the postulate of mono-
tonicity under LOCC transformations, some of them also satisfy all or some of the other
properties discussed. It is not possible here to make a survey of not even the most impor-
tant ones, but a satisfactory list can be found in Refs. [153, 154]. Let us stress that with
this axiomatic approach we can de�ne quantities that can impose di�erent orderings on
the states. This is usually accepted as an evidence that no unique total ordering can be
imposed. Di�erent states may contain di�erent form of entanglement, and di�erent mea-
sures quantify the amount of entanglement which is useful for di�erent speci�c operational
tasks.

1.1.3 Logarithmic negativity

While the entanglement entropy is understood as the correct quantity to consider in
order to quantify entanglement in pure states, there is still no analogous quantity for
mixed states. The entanglement cost and the entanglement distillation are known to
be di�erent in general [174] and the process of generating a mixed state from a cer-
tain number of maximally entangled state is not reversible. If we distill the maximal
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possible amount of entanglement from the generated mixed state, we will obtain a num-
ber of maximally entangled states smaller than the one we started with. Much e�ort
has been devoted to the study of mixed-state entanglement and many measures have
been proposed. One of the most important is the entanglement of formation [6], which
is the minimal average entanglement over all possible pure state decompositions of ρ,
EF (ρ) = inf

{∑
i piSA(|ψi〉 〈ψi|) : ρ =

∑
i pi |ψi〉 〈ψi|

}
. It has been proven [175] that the

regularized version E∞F is equal to the entanglement cost EC , but unfortunately it is not
known if EF is additive. Despite EF being much easier to compute than the entanglement
cost and distillation, the computation is still unfeasible in complicated settings such as
many-body systems.

The (logarithmic) negativity [117�119] was introduced mainly to have a computable
measure of entanglement for mixed states. It turns out that it has many interesting prop-
erties and an operational interpretation. The negativity can be seen as the quantitative
version of Peres' criterion for separability [120, 159, 160], that we already mentioned in
the last section. For any separable state, the partial transpose ρTB according to subsys-
tem B, de�ned in Eq. (1.2), is a positive de�nite operator. The positivity of the partial
transpose however is not a su�cient condition for separability, except for some speci�c
cases. For �nite dimensional systems, it is a necessary and su�cient condition only for
the smallest non trivial ones, with dimensions 2⊗ 2 and 2⊗ 3 [176]. Peres' criterion was
also studied for oscillators (which are continuous variables, leaving in an in�nite dimen-
sional space) in a Gaussian state, where it was found that it also provides a su�cient
condition when A contains only one oscillator and B an arbitrary number [177]. In all
other cases, Peres' criterion is only a necessary condition. However, let us stress that the
main advantage of Peres' criterion resides in its extreme simplicity from the point of view
of explicit computations.

The negativity quanti�es the violation of positivity of the partial transpose,

N (ρ) =
‖ρTB‖1 − 1

2
. (1.12)

Here ||X||1 = Tr
√
X†X is the trace norm, and for Hermitian matrices can be computed

as the sum of the modulus of the eigenvalues. It is easy to see that N (ρ) corresponds to
the absolute value of the sum of the negative eigenvalues of ρTB . It can be shown [119,
167, 178, 179] that N (ρ) is an entanglement monotone under LOCC operations (both
deterministic and stochastic), it is convex, but it is not additive. The negativity provides
an upper bound to teleportation capacity [119], but unfortunately its does not have a
striking operational interpretation. In the rest of this thesis we will always consider
the logarithmic negativity and, a part from this section, we will often refer to it as the
entanglement negativity, or simply negativity. Logarithmic negativity [119] is de�ned as
follows1,

E(ρ) = log ‖ρTB‖1. (1.13)

It is additive by construction, and the monotonicity under deterministic LOCC operations
is guaranteed by the monotonicity of N (ρ). It can be also proven the stronger monotonic-
ity condition under stochastic LOCC. Actually, it was proven the monotonicity under the
more general class of PPT operations, of both the negativity and the logarithmic negativ-
ity [167]. An important drawback of the logarithmic negativity is that it fails to reduce
to the entanglement entropy on all pure states [119], since it lacks the required continuity
in the asymptotic regime.

1In the quantum information community the logarithm is often taken on base 2, while we will usually
consider the natural logarithm.
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Logarithmic negativity gives an interesting upper bound to distillable entanglement [119],
and it also has a direct operational interpretation as it is directly related to the exact en-
tanglement cost under PPT operations [180]. The exact entanglement cost has a slightly
di�erent de�nition from EC(ρ) de�ned in Eq. (1.10). It is indeed the rate r of preparing
exactly n copies of the system from m = rn copies of the maximally entangled state. On
the contrary, the entanglement cost requires that such rate is reached only asymptotically.
Mathematically, this corresponds to taking the asymptotic limit after the in�mum,

Eexact
C (ρ) = lim

n→∞
inf
{
rn : inf

Φ
Tr
∣∣∣ρ⊗n − Φ

((
|ψ+

2 〉 〈ψ+
2 |
)⊗rnn)∣∣∣ = 0

}
. (1.14)

It turns out that the logarithmic negativity coincide with Eexact
C (ρ) for states with positive

binegativity, |ρTB |TB > 0. It is believed that the vast majority of the states is of this kind.
In particular, all Gaussian bipartite states in systems with a �nite number of canonical
degrees of freedom are in this class [180]. An explicit example would be the ground state
of a �nite harmonic chain.

Finally, we also mention some recent results about a disentangling theorem involving
the entanglement negativity [181]. Computing the negativity allows to understand if a
tripartite pure state |ΨABC〉, divided in three subsystem A, B and C, can be factorized
in the product of two states |ΨAB1〉 ⊗ |ΨB2C〉, for some disjoint bipartition B = B1 ∪B2.
Based on that theorem, the authors of Ref. [181] also conjecture a monogamy inequality
for the negativity, which tells us that if a subsystem A is very entangled with B, it cannot
be simultaneously very entangled also with C.

1.2 Experimental measures of entanglement

Despite the characterization of entanglement has proven to be an important tool in many
areas of physics, from quantum computation to condensed matter physics and high energy
physics, it seems di�cult to devise a method to measure entanglement in real experiments
in extended systems. Some of the main reasons of this di�culty lie exactly in the same
features that make entanglement such an interesting property to look at: for example, it
has a highly non-local nature, and it is de�ned without any reference to the observables
of the systems. It is however clear that controlled ways to create entangled states and
tools to detect and measure such entanglement are of the utmost importance.

In the past years, many proposals have been made for possible ways to quantify the
amount of entanglement of a given many-body state, especially by estimating quantities
such as the Rényi entropies (and in particular the second Rényi entropy), but a real life
experiment which implemented them was still lacking. However, with modern techniques
of single atom and single site resolution of strongly interacting systems in extended optical
lattices [182, 183], this goal is in reach and experiments are being performed in these
days [184�186] which should soon provide a major step towards entanglement detection.

In this section, we will brie�y review some of the main proposed techniques to detect
and measure entanglement, and we will discuss how some of them are being implemented
nowadays in real experiments. Of course this discussion is far from being comprehensive,
but the goal is to give further motivations on the importance of the theoretical study of
entanglement properties of quantum many body systems.

1.2.1 Entanglement detection through Rényi entropies

Many of the most popular proposal of entanglement detection actually suggest the idea
that it is far more easy to devise experiments where it is possible to estimate the integer-
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order Rényi entropies of the reduced density matrix relative to a subregion A, Eq. (1.11),
rather than the more celebrated entanglement entropy. In particular, the most easily ac-
cessible is the second Rényi entropy, which is minus the logarithm of the purity. In QFT,
the n-th order Rényi entropy can be computed by means of the replica trick, where n copies
of the system are glued together along the entangling region. This corresponds to the inser-
tion of some twist operators, whose role is to implement the correct boundary conditions
among the di�erent copies. Experimentally, it is possible to have access to Rényi entropies
by preparing n identical copies of the system and letting them interact in a speci�c way
so that it is then possible to extract the expectation value of the shift operator V (n),
whose action is to cyclically permute the n copies V (n) |ψ1〉 . . . |ψn〉 = |ψn〉 |ψ1〉 . . . |ψn−1〉.
The shift operator can be de�ned on any subregion of the entire system, for example the
operator V (n)

A will permute the copies only in subregion A. This operator is extremely
important for estimating the traces of powers of any density matrix ρ, since they can
be computed as the expectation values of the shift operator on the replicated system,
Tr ρn = Tr

(
V (n)ρ⊗n

)
[187]. In the following we will discuss two possible ways to go down

this path experimentally: the �rst one, proposed by Cardy in Ref. [188] and also later
exploited by Abanin and Demler in Ref. [189], consists in implementing the shift operation
by performing a quantum quench on the n copies of the system. The second, proposed
by Alves and Jaksch in Ref. [190] for n = 2 and extended to general n by Daley et al. in
Ref. [191], requires the use of an optical lattice where the copies interfere by switching
on the tunneling among them in a controlled way. By observing the system after this
controlled interference, it is possible to have access to the value of the shift operator for
any desired subsystem. In order to perform such an experiment, it is required single atom
and single site resolution. This technology is available nowadays [182, 183, 192, 193] and
experiments to estimate the purity of a one dimensional chain of few neutral atoms in an
optical lattice are being designed at the time of writing [184�186]. The hope is that this
setup could be scaled and larger system sizes will be reached in the future.

Rényi entropies from a quantum quench

The experimental protocol suggested by Cardy in Ref. [188] requires n identical copies of
the desired system. In an optical lattice, these identical copies can be obtained preparing
n systems in a low-entropy initial state, such as a Mott insulator [194, 195], and then
performing the same manipulations of the optical lattices they live in. In this phase,
interactions between the di�erent copies are turned o� by a large potential depth among
them.

The quantum quench is performed as follows. At time t = 0, the n copies are discon-
nected along the entangling surface, separating the desired subregion Ai and its comple-
ment Bi. The action of the shift operator is now implemented by reattaching subsystem
Ai+1 to subsystem Bi in a cyclic manner. This operation acts on the Hamiltonian of the
problem as the unitary operation H ′ =

[
V

(n)
A

]−1
HV

(n)
A , and the new ground state can be

simply obtained from the ground state |Ψ〉 of H, as |Ψ′〉 =
[
V

(n)
A

]−1 |Ψ〉. If we think of
H → H ′ as a quantum quench, the �delity is given by the probability of �nding the initial
state |Ψ〉 in the ground state of the evolving Hamiltonian H ′, namely P0 = | 〈Ψ′|Ψ〉 |2.
Using the Schmidt decomposition of |Ψ〉, the �delity is easily seen to be identical to the
trace of the integer powers of ρA

P0 = 〈Ψ′|Ψ〉 = 〈Ψ|V (n)
A |Ψ〉 = Tr ρnA. (1.15)

The optimum would be now to measure the �delity P0 and directly obtain the Rényi
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entropies. Unfortunately P0 is not directly experimentally observable, however Cardy
suggests to measure the probability P (E) of �nding the system in a low-lying excited
state of energy E.

An important observation is that when A and B are spatially disjoint regions and H is
short-range, the di�erence between H and H ′ is restricted to local terms at the boundary
between A and B. In QFT, such local changes in the Hamiltonian are implemented by
the insertion of operators along the entangling region. In one dimension, these operators
are local and they are nothing else but twist �elds (which are discussed in Sec. 1.4), hence
schematically V (n)

A =
∏
k Tn(uk), with the correct combination of twists and anti-twists

placed at the points uk separating A and B. In systems close to a quantum critical point,
with a linear dispersion relation, the powerful methods of CFT can be used to compute
the twist �eld multi-point function P0 = 〈Ψ|∏k Tn(uk)|Ψ〉.

The Laplace transform of P (E) can also be written in terms of twist �elds, and there-
fore is universal (remember that P (E) describes the population of the states with energy
much less than the energy cuto�)

∫
dE P (E) e−Eτ = 〈Ψ|e−(H′−H)τ |Ψ〉 = 〈Ψ|

(∏

k

Tn(uk, τ)

)(∏

k

T †n (uk, τ)

)
|Ψ〉 .

(1.16)
With this observation, Cardy shows that for systems close to a quantum critical point
described by a CFT, P (E) turns out to be P0 times a factor which can be computed,
at least approximately, for a single twist in ungapped systems, for integrable gapped
system with the results of Ref. [45], and for multiple twists with the method described in
Ref. [196].

Cardy's proposal shows how in principle Rényi entropies are measurable, but it is not
likely to be put in practice. The quantity P (E) can be measured in principle if the system
is weakly coupled to other modes that can be analyzed, but its relation with the �delity P0

is not straightforward and can be computed only for speci�c systems (ungapped systems
described by CFT, integrable gapped systems) and for simple geometries.

Another way to determine P0 has been proposed by Abanin and Demler in Ref. [189].
In their setup, the n copies are placed in a way that the points separating A and B are
close together and are all coupled with a quantum switch. The switch can be in two
states, |↑〉 and |↓〉, which controls the connections between the subsystems. If the switch
is in state |↑〉, then subsystem Aj is connected to Bj , while if the switch is in state |↓〉,
Aj+1 is connected with Bj cyclically.

The authors propose also a way to design such a switch in the context of cold atoms.
If A consists of a half chain, then 2n half chains are placed in a star geometry, with all
half chains close to each others by an endpoint. Each branch of the star is a subsystem
A or B alternately. At the center of the star, there are n dipolar molecules which are
subject to a potential with 2n wells situated on the lines connecting the last sites of the
neighboring 2n branches. The dipolar molecules interact repulsively between each others,
so that their ground state will be doubly degenerate, with the wells alternately occupied
and unoccupied. Moreover, they are required to interact repulsively also with the atoms
in the chain, thus preventing tunneling among two half chains when the well in between
them is occupied.

If the two states of the switch are decoupled, then the full spectrum of the system is
divided into two independent sectors, with ground states |GS〉 = |↑〉 ⊗ |Ψ〉 and |GS′〉 =
|↓〉 ⊗ |Ψ′〉. It is possible to add dynamics with a term in the Hamiltonian that couples
the two states of the switch, Ht = T (|↑〉 〈↓|+ |↓〉 〈↑|). We want however to keep the



16 1 Introduction

tunneling parameter T much smaller than the gap ∆ between the two ground states and
the �rst excited states in each sector (in a critical system, ∆ is given by the �nite size
of the chain). In such a setup, we can consider only the two states |GS〉 and |GS′〉 and
the e�ective low-energy Hamiltonian is given by He� = T̃

(
|GS〉 〈GS′|+ |GS′〉 〈GS|

)
, with

T̃ = T 〈Ψ|Ψ′〉. Finally, the coe�cient T̃ can be measured experimentally by studying
the Rabi oscillations of the system: the switch is prepared in state |↑〉 and at a certain
time the tunneling T is switched on. The population of the two states will oscillate,
and the di�erence of the probability of �nding the state in |GS〉 and |GS′〉 at time t, is
PGS−PGS′ = cos(T̃ t/~). The renormalized tunneling enters in this expression as the Rabi
frequency, which can be extracted by a measurement of the occupation probabilities.

These ideas can be in principle exported to two dimensional systems too, but the
realization in real experiment becomes extremely more cumbersome. Moreover, the same
setup of the quantum switch proposed in Ref. [189] has been recently extended in Ref. [197]
to allow the measure of the evolution of entanglement in time. In this setup, all the copies
of the system are prepared in the same product state over all sites, while the quantum
switch in the initial state (1/

√
2)
(
|↑〉+ |↓〉

)
. The system is then left to evolve up to time

t. It is found that a measure of the operator σx(t) of the quantum switch,gives the n-th
Reényi entropy at time t.

Rényi entropies from HOM-interference of many body states

Another approach for measuring the Rényi entropies for neutral bosons in optical lattices is
discussed in Refs. [190, 191]. The goal is again to design an experimental apparatus able to
determine the value of the shift operator, namely to measure Tr

(
V

(n)
A ρ⊗nA

)
, from which the

Rényi entropies can be directly extracted. While the method described previously works
only when the initial state is the ground state of the initial Hamiltonian, this second
proposal is valid in principle for any state, even mixed. The idea is to prepare n identical
copies of the system, initially switching o� the interactions among di�erent copies. This
is achieved with a large lattice depth between any two copies. In a second step, the lattice
is made deep within each site of a single copy, thus freezing the evolution, and tunneling
among the di�erent copies is switched on in a controlled way. With a modulation of the
lattice it is in principle possible to implement a discrete Fourier transform among the
copies of each site. In the case n = 2, if the barrier between the copies is lowered such
that J12 is the tunneling rate, then the system is evolved up to a time t = π/(4J12), and
this amounts to the following operation on the bosonic annihilation operators of the two
wells relative to site j

aj,1 → (aj,1 + aj,2) /
√

2, aj,2 → (aj,2 − aj,1) /
√

2. (1.17)

This transformation is the quantummany body equivalent of the Hong-Ou-Mandel (HOM)
interference of two photons [198], and it is often re�erred to as a beam splitter.

Since the interaction between sites is turned o�, we can concentrate on a single site.
The shift operator on subsystem A can be built as a product over shift operators on
single sites V (n)

A =
∏
j∈A V

(n)
{j} . For n = 2, if we focus on a single site, we can as well

think of a double well potential. Let us for a moment consider the case with two atoms
living in such potential, and let us start for example from the state with one atom per well,
a†i,1a

†
i,2 |0〉. After the particular transformation (1.17), the probability of �nding one atom

per site vanishes, and the two atoms can only be found in one of the two wells, (a†i,1)2 |0〉
or (a†i,2)2 |0〉. What is important in this oversimpli�ed example, is that the parity of the
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number of bosons is �xed after the beam splitter operation. It turns out that analogous
conclusions are also valid for a generic many body state, with arbitrary number of bosons.
For n = 2, the eigenspaces of V (2)

{j} at site j, are the two spaces that are symmetric and
antisymmetric under exchange of the two sites, with eigenvalues ±1. It is easy to check
that Eq. (1.17) maps the symmetric eigenspace on the subspace with an even number
of bosons in copy 2, while it maps the antisymmetric subspace on the subspace with an
odd number of bosons in copy 2. So the measurement for a single realization consists in
counting modulo 2 the number of bosons in the second copy, and this will give the value
of V (2)

A = (−1)
∑
j∈A nj,2 . By repeating the measurement we can estimate the expectation

value of V (2)
A , which is the purity. Notice that, even if for simplicity we discussed mainly

the n = 2 case, the generalization to arbitrary n is quite straightforward, at least from a
theoretical point of view.

1.2.2 Experimental realizations

In the present days, experiments are being performed by Greiner group at Harvard Uni-
versity [184�186] to measure the purity of a neutral bosons in an optical lattice, according
to the scheme presented in Refs. [190, 191] and summarized in the previous section. One
of the most popular bosonic atom used in these kinds of experiments is 87Rb. Since it
is neutral and do not have long-range interactions, phonon modes are not excited in the
lattice. For detecting the parity of the number of bosons on single sites of the lattice, it is
necessary to have a resolution up to the atom level. Such precision can be achieved with
a high resolution quantum gas microscope [182, 183, 192, 193]. The optical lattice is cre-
ated with interfering laser beams, by projecting a hologram on the bosons with the same
microscope used to perform the imaging of the lattice. The hologram is essentially made
of a piece of glass, and the lattice geometry is etched by manipulating the thickness of the
glass. With this technique it is possible to engineer much more complicated lattices than
by simply making two laser beams interfere. Once the main lattice has been created, since
the microscope has a resolution up to a single site, using again the microscope in reverse
it is possible to address the shape of the lattice at the same resolution. The projection of
an arbitrary additional optical potential on top of the lattice is achieved with spatial light
modulators. The imaging is performed by shining the atoms with a laser, and collecting
the light they emit. If two atoms are on the same site, when they are hit by the light they
combine and form a molecule, which has a high kinetic energy and therefore escapes the
lattice. On the resulting image, the corresponding lattice site will result unoccupied. For
this reason, only the parity of the number of bosons can be detected by this apparatus.
However, this is su�cient to estimate the purity, as we discussed earlier.

The bosons in this setup essentially obey a Bose-Hubbard Hamiltonian

H = −J
∑

〈i,j〉

(
a†iaj + h.c.

)
+
U

2

∑

i

ni (ni − 1) . (1.18)

In the experiments, the interaction parameters are tuned by tuning the lattice depth and
it is possible to switch from the super�uid phase U � J to the Mott insulator phase
J � U .

To perform the experiment for the purity, it is necessary to create two identical copies
of the same one-dimensional system. With the experimental apparatus it is possible to
create a two-dimensional system deep in the Mott phase. In this state, each lattice site
is occupied by a single atom (with very high �delity) and the entropy is very low. For
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this reason the Mott insulator phase is optimal to generate identical copies of the same
system. Starting from the two-dimensional Mott insulator, and with the possibility of
manipulating the optical potential at the single atom level, it is possible to obtain one-
dimensional arrays of atom. The potential barriers between any one-dimensional array
and the rest of the lattice are raised, and then the underling optical lattice is removed.
At this point all the atoms out of the only barrier left will escape the apparatus. When
the lattice is reinserted and the additional potential switched o�, the only remaining
atoms will be disposed in the desired one-dimensional geometry. The same techniques
described to extrapolate the purity can be used to check if the one-dimensional systems
generated in this way are actually identical copies. Suppose we have two systems and
we must understand if they are in the same state, and we let them interfere through the
beam splitter. If the two states are identical, the value of the shift operator of the full
system V (2) must be one, and therefore the number of bosons in each copy after the beam
splitter is forced to be even. If instead the two states are di�erent, the outcome can be
either even or odd. This is the generalization to many sites of the simple example of
the double well discussed above. The expectation value of V (2) gives exactly the overlap
of the two states, 〈V (2)〉 = Tr(ρ1ρ2), which is equal to one only when ρ1 = ρ2. After
the two identical copies in the Mott state are prepared, by lowering the lattice depth the
hopping is adiabatically switched on, so that the system ends up in the ground state of
the Hamiltonian of Eq. (1.18) and entanglement is generated in the system. Then the
experimental procedure is exactly the one described previously. First, the dynamics within
each copy is frozen by raising a barrier between the sites. Notice that this procedure slows
down the time-scale of the system coherently, and no projection is performed at this stage.
Then, the beam splitter is turned on between the sites in di�erent copies and an image
of the system is taken. While the total number of boson in a single copy must be even
(the initial state is pure and the two copies are identical), if we look at the parity of the
number of bosons in any subsystems, we can have direct access to their purity.

The preliminary results for two and four sites presented in [184�186] show already clear
signal of entanglement in the second Rényi entropy, when U/J is low and the system is
in the super�uid phase. The signal is well above the experimental noise, which can be
estimated by the second Rényi of the full system, which should be zero in an ideal setting.
On the other side, when the system is in the Mott insulator phase, for large U/J , the
second Rényi entropy of a subsystem is of the same order of the one of the full system.
Since the experimental noise is essentially classical, the second Rényi of the full system is
roughly the sum of the ones of the two subsystems A and B. Once the classical noise is
taken into account as a global o�set, the experimental measure is in good agreement with
the theoretical prediction for the corresponding ground state. As already discussed, this
method can be applied not only for ground state entanglement, but for any state. For
example, in [184�186] some results are shown for the evolution of entanglement after a
global quench. After the copies are prepared in the deep Mott phase, with one atom per
site, the Hamiltonian is quenched abruptly to another value of U/J <∞ and the system
is left to evolve for a certain time. The measurement is then performed at di�erent times,
through freezing and application of the beam splitter.

Clearly, the perspectives opened by this experiment are very promising. By reducing
all the sources of noise, the system can be scaled up. The fundamental point is that,
a part for the noise and the complications in generating and evolving coherently two
identical copies of larger systems, the procedure will always require the same order of
measurements. This is an immense advantage with respect to a complete tomography
of the system (a measurement of all the density matrix elements), which clearly scales
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exponentially with the system size. In principle, it should also be possible to measure
experimentally higher order Rényi entropies [191]. With the tools at disposal and the
possibility of shaping the optical lattice at the level of a single site, entanglement can
be studied also in many dynamical situations, even with added disorder, such as a Many
Body Localized phase.

1.3 Conformal Field Theory: basics

In this section we are going to review some very basics facts of Conformal Field Theo-
ries (CFT) [199], in order to frame the context of the systems we are going to analyze
throughout the thesis � mainly critical, 1 + 1-dimensional extended systems, and provide
some of the fundamental tools that we are going to need to tackle them.

CFT are a vastly studied subject, both from a purely mathematical point of view and
for important applications in physics, as in string theories (where CFT naturally arise to
describe the ground states of strings) and in statistical physics, in the study of critical
phenomena, where the conformal symmetry may arise as an extended symmetry of scale
invariance and Lorentz symmetry. In this thesis we will take the latter point of view
and we will have in mind a quantum one-dimensional extended system, generally made
by discrete variables, at a critical point. Its description at equilibrium can be related,
through the transfer matrix formalism, to the one of a classical two-dimensional system.
Conformal symmetry is a property of continuous theories, hence we shall think of our
system in the limit of many degrees of freedom and of a correlation length much larger
than the lattice spacing ξ � a, where it can be described by a Quantum Field Theory
(QFT). In this limit the microscopic details are washed away and universality arises:
this means that many di�erent lattice systems, with di�erent features and properties,
may display the same behavior in some critical regime, and therefore may be described
by the same QFT. Despite this fundamental role played by QFT and their consequent
importance in the study of critical phenomena, it is important to remember that from the
continuum description of our many-body system we can only hope to recover its universal
properties, as for example the critical exponents, while we will never be able ti extract
information about quantities that depend on the microscopic details.

Classifying all the QFT is a crucial step towards the classi�cation of all the universal-
ity classes. In the literature, it was often followed this approach, of �rst studying some
well-de�ned QFT, and then look for models that can be described in some limit by these
theories. Of course classifying all the possible QFT is a formidable task to accomplish,
well beyond our actual possibilities. As we will shortly see, the Hilbert space and the
operator content of a conformally invariant theories in two dimensions are strongly con-
ditioned by the symmetry. The classi�cation of all CFT, even if still an extraordinary
task, seems much more easy to confront with. Many (actually in�nite) CFT are known
in two dimensions, among which there are the minimal models, the c = 1 compacti�ed
boson, Liouville theories, and many others. In the following we will try to give some
fundamental notions on CFT, without any presumption of completeness. A deep analysis
of the various aspects of CFT can be found for example in Refs. [200�202], which contain
also all the relevant references to the original literature.

1.3.1 Conformal invariance, primary �elds and the stress-energy tensor

Consider a general d-dimensional sapcetime endowed with a �at metric gµν(x) = ηµν with
signature (d − 1, 1) (we choose to take one temporal dimension). The metric tensor gµν
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transforms covariantly under a change of coordinates x→ x′. A conformal transformation
is by de�nition a coordinate transformation whose net e�ect is to locally rescale the metric
tensor g′µν(x′) = Λ(x)gµν(x). An in�nitesimal coordinate transformations xµ → xµ + εµ,
turns out to be conformal if it satis�es the following relation,

∂µεν + ∂νεµ =
2

d
(∂ · ε)ηµν . (1.19)

In d > 2 (the d = 1 case is trivial since all transformations are conformal and the d = 2
case will be largely discussed later), this constraint forces εµ(x) to be at most quadratic
in x. A part from the usual translations εµ = aµ, rotations εµ = ωµνx

ν and dilatations
εµ = λxµ, the constraint (1.19) allows also for the special conformal transformations
εµ = bµx2− 2xµb ·x. For each of these in�nitesimal transformations it is possible to write
the corresponding �nite version by exponentiation, the generators of the algebra and their
commutation relations. It is also easy to see that for a generic conformal transformation,
the number of free parameters is (d+ 1)(d+ 2)/2.

From now on, we will concentrate on two dimensional conformal �eld theories in
Euclidean signature gµν = δµν (which can be recovered form the Lorentzian signature
(1, 1) with the usual Wick rotation to imaginary time), since all the rest of the thesis will
be devoted to 1+1-dimensional systems. In two dimensions, the constraint (1.19) reduces
to the Cauchy-Riemann equation

∂1ε1 = ∂2ε2, ∂1ε2 = −∂2ε1. (1.20)

This means that any conformal transformation is an analytic transformation z → f(z),
z̄ → f̄(z̄), of the coordinates2 z = x1 + ix2, z̄ = x1 − ix2. If we consider all the analytic
functions on the plane satisfying (1.20) without further speci�cation, since they can all
be expanded in Laurent series, we can take the following generators,

`n = −zn+1∂z, ¯̀
n = −z̄n+1∂z̄, n in Z, (1.21)

which satisfy the following commutation relations
[
`m, `n

]
= (m− n)`m+n,

[
¯̀
m, ¯̀

n

]
= (m− n)¯̀

m+n. (1.22)

The `n's and the ¯̀
n's commute among each others, therefore the algebra is the direct

sum of a holomorphic and an antiholomorphic subalgebras. The coordinates z and z̄ are
often considered independent variables in C, and only at the end the physical condition
z̄ = z∗ is imposed. Notice that even if all the transformations satisfying Eq. (1.19) are
locally analytic, they may not be so globally, due to singularities either at z → 0 or at
z → ∞. The only true conformal transformations correspond to well de�ned, invertible,
globally analytic functions, whose generators are {`0, `±1}, and {¯̀0, ¯̀±1}. This means
that the in�nitesimal globally analytic transformations are the ones at most quadratic
in z, as discussed for the d > 2 case. Notice that `−1 and ¯̀−1 generate the transla-
tions, i(`0 − ¯̀

0) generates the rotations, `0 + ¯̀
0 the dilatations, and �nally `1 and ¯̀

1 the
special conformal transformations. The �nite versions of these transformations are the
only bijective biholomorphic automorphisms of the Riemann sphere, the so called Möbius
transformations

z → az + b

cz + d
, z̄ → āz̄ + b̄

c̄z̄ + d̄
, (1.23)

2The complex coordinate z and z̄ in Euclidean signature would correspond to the light-cone coordinates
x± t in Minkowski space.
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for a, b, c, d ∈ C and ad− bc = 1.
All locally analytic transformations satisfying Eq. (1.20) but which are not Möbius (1.23),

are still of great importance, since we can de�ne some �elds which behave covariantly un-
der these transformations. The existence of these �elds is taken as a postulate, and will
strongly constraint the resulting theory. A primary �eld Φ(z, z̄) is de�ned such that the el-
ement Φ(z, z̄)dzhdz̄h̄ is invariant, for some conformal weight (h, h̄). Under any conformal
transformation the primary �elds transform as follows,

Φ(z, z̄)→
(
∂zf

)h(
∂z̄ f̄

)h̄
Φ
(
f(z), f̄(z̄)

)
. (1.24)

One usually de�nes also quasi-primary operators, which transform as in (1.24) only for
global conformal transformations. The quasi-primaries can be de�ned in an analogous
way also in higher dimensional CFT.

The transformation properties (1.24) of the primaries put severe constraints on their
two- and three-point functions. Let us focus for the moment on the two-point function of
two primaries, G(2)(zi, z̄i) = 〈Φ1(z1, z̄1)Φ2(z2, z̄2)〉. First, translational invariance implies
that G(2) is a function of z12 = z1 − z2 and z̄12 = z̄1 − z̄2, while rotational and scale
invariance implies that G(2) ∼ 1/

(
zh1+h2

12 z̄h̄1+h̄2
12

)
. Finally, invariance under special con-

formal transformations �xes h1 = h2 ≡ h and h̄1 = h̄2 ≡ h̄. Putting all together, global
conformal invariance forces the form of the two-point function of primaries to be

G(2)(zi, z̄i) =
1

z2h
12 z̄

2h̄
12

. (1.25)

Notice that conformal invariance does not �x the proportionality constant in front of the
last expression. This is instead �xed by the �eld normalization, which is uninteresting
and we can choose it such that G(2) takes the form (1.25). Similar arguments lead to the
following expression for the three-point function G(3) = 〈Φ1Φ2Φ3〉,

G(3)(zi, z̄i) = C123
1

zh1+h2−h3
12 zh2+h3−h1

23 zh1+h3−h2
13

1

z̄h̄1+h̄2−h̄3
12 z̄h̄2+h̄3−h̄1

23 z̄h̄1+h̄3−h̄2
13

. (1.26)

In the case of the three-point function we cannot �x the proportionality constant, since
the �elds are already normalized such that (1.25) is valid. On the other hand, the four-
point function of primaries cannot be �xed by conformal invariance only. Indeed, with
four points we can construct invariant ratios under global conformal transformations, for
example x = z12z23/(z13z24), and the corresponding x̄. Therefore the dependence of the
four-point function on such invariant ratios cannot be �xed by general argument, and we
can write for example

G(4)(zi, z̄i) =

[(
z13z24

z12z14z23z34

)2h

× antihol

]
f(x, x̄). (1.27)

Conformally invariant theories are usually quantized by compactifying the `spatial'
Euclidean coordinate σ on a cylinder parametrized by the complex coordinate ζ = τ + iσ
and ζ̄ = τ − iσ. With the conformal map ζ → z = exp(τ + iσ) the cylinder is mapped
onto the complex plane parametrized by (z, z̄). Equal `time' surfaces on the cylinder are
mapped in the plane to circles centered in the origin, the origin z = 0 is therefore the
in�nite past, and the point at in�nity z = ∞ is the in�nite future. Hence, time and
space translations on the cylinder correspond respectively to dilatations and rotations
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on the plane. This means that the dilatation operator on the plane can be seen as the
Hamiltonian of the system, while the linear momentum will be given by the rotation
operator.

A fundamental role in CFT is played by the stress-energy tensor Tµν . In general QFT,
under an arbitrary change of coordinates xµ → xµ + εµ, the action changes as follows,

δS =
1

2

∫
ddxTµν (∂µεν + ∂νεµ) , (1.28)

where we assumed that Tµν is symmetric, which is always true for Lorentz invariant
theories. Using Eq. (1.19), we see that for a conformal transformation

δS =
1

d

∫
ddxTµµ∂ρε

ρ. (1.29)

It can be shown [203] in two dimensions that, under certain broad conditions, trans-
lational, rotational and scale invariance force the trace of the stress-energy tensor to
vanish, which in turn implies from (1.29) conformal invariance (see Ref. [204] for an
explicit counterexample). The component of the stress-energy tensor on the complex
plane parametrized by z = x1 + ix2 are given by Tzz = 1

4

(
T22 − 2iT12 − T11

)
, Tz̄z̄ =

1
4

(
T22 +2iT12−T11

)
and Tzz̄ = Tz̄z = 1

4

(
T11 +T22

)
. Using the traceless condition, Tzz̄ = 0,

and imposing the conservation law ∂µT
µν = 0, we can also show that ∂z̄Tzz = ∂zTz̄z̄ = 0.

Therefore one usually de�nes the holomorphic and antiholomorphic components of the
stress-energy tensor, respectively T (z) ≡ Tzz(z) and T (z̄) = Tz̄z̄(z̄). It is also possible to
write down the set of Ward identities related to translational, rotational and scale invari-
ance in a holomprphic form. For any product of n primary �elds, the conformal Ward
identities are given by

〈T (z)Φ1(w1, w̄1)Φ2(w2, w̄2) . . .Φn(wn, w̄n)〉 =
n∑

i=1

(
hi

(z − wi)2
+

1

z − wi
∂wi

)
〈Φ1(w1, w̄1)Φ2(w2, w̄2) . . .Φn(wn, w̄n)〉 . (1.30)

Another very important ingredient is the operator product expansion (OPE), namely
the representation of the product of two local operators as a (possibly in�nite) sum over
the local operators of the theory,

A(x)B(y) ∼
∑

i

ci(x− y)Oi(y), (1.31)

where the Oi's are a complete set of regular local operators, and the ci(x−y) are c-valued
functions. When two local �elds at position x and y respectively, approach one another
x→ y, singularities may in general appear, and they must be encoded in the coe�cients
ci(x− y). For two-dimensional CFT, we can choose a basis of �elds with �xed conformal
weight, and from dimensional analysis we can �x the form of the ci's

Φi(z, z̄)Φj(w, w̄) ∼
∑

k

Cijk

(z − w)hi+hj−hk(z̄ − w̄)h̄i+h̄j−h̄k
Φk(w, w̄). (1.32)

When the Φi's are normalized such that the two-point function is given by Eq. (1.25),
by using (1.32) in (1.26) for any two of the zi's getting close one to the other, it is easy
to see that the Cijk appearing in the OPE and the ones appearing in the three-point
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functions are the same. They are called the structure constants of the theory. Notice that
the OPE expression must be understood to be valid only within correlation functions.
That is why we did not write them as an exact equality. The conformal Ward identities
of Eq. (1.30) tell us the singular behavior of primary �elds approaching the stress-energy
tensor, therefore we can read o� the divergent part of their OPE,

T (z)Φ(w, w̄) ∼ h

(z − w)2
Φ(w, w̄) +

1

z − w∂wΦ(w, w̄) + regular terms, (1.33)

and analogously for T (z̄)Φ(w, w̄).

1.3.2 Central charge, Virasoro algebra and the structure of the Hilbert space

By performing two conformal transformations in succession, we see that the OPE of the
holomorphic component of the stress-energy tensor with itself must take the form

T (z)T (w) =
c/2

(z − w)4
+

2

(z − w)2
T (w) +

1

z − w∂wT (w), (1.34)

and analogously for the antiholomorphic component. The constant c is called the cen-
tral charge, it cannot be �xed by symmetry requirements only and it is indeed theory
dependent. The presence of the central charge term in Eq. (1.34) means that the energy-
momentum tensor does not transform as a primary operator, and indeed under a conformal
transformation

T (z)→
(
∂w

∂z

)2

T (w) +
c

12
{w, z}, (1.35)

where {w, z} is the Schwartzian derivative. The central charge is also known as the
conformal anomaly, since it is related to the breaking of conformal symmetry when a
macroscopic scale is introduced in the system, for example through boundary conditions.
The most typical situation is when the theory is de�ned on a cylinder with a compacti�ed
dimension of length L. The stress-energy tensor on the cylinder can be related to the one
on the plane through (1.35), and if we assume 〈Tplane〉 = 0, then the central charge will
be proportional to the total energy on the cylinder, 〈Tcyl〉 = −cπ2/(6L2).

We can de�ne a mode expansion of the stress-energy tensor, by expanding in Laurent
series

T (z) =
∑

n∈Z
z−n−2Ln, T (z̄) =

∑

n∈Z
z̄−n−2L̄n, (1.36)

which can be inverted by

Ln =

∮
dz

2πi
zn+1T (z), L̄n =

∮
dz̄

2πi
z̄n+1T (z̄). (1.37)

The algebra of their commutators turns out to be exactly the one of the classical algebra,
Eq. (1.21), a part for some terms proportional to the conformal anomaly,

[
Ln, Lm

]
= (n−m)Ln+m +

c

12
(n3 − n)δn+m,0, (1.38a)

[
L̄n, L̄m

]
= (n−m)L̄n+m +

c̄

12
(n3 − n)δn+m,0, (1.38b)

[
Ln, L̄m

]
= 0. (1.38c)
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These commutators describe two copies of an in�nite dimensional algebra, called the
Virasoro algebra. The modes Ln and L̄n generate the conformal transformations on the
Hilbert space, and in particular, as for the classical algebra, L0 + L̄0 generates dilatation
(and it is therefore proportional to the Hamiltonian) and i(L0 − L̄0) generates rotations
(and correspond to the linear momentum).

The modes of the stress-energy tensor play the role of ladder operators on the states
of the conformal theory. The Hilbert space, albeit very intricate, shows some peculiar
features common to all CFT. The vacuum |0〉 is de�ned by requesting that it is annihilated
by all modes with index n > −1,

Ln |0〉 = 0, L̄n |0〉 = 0, n > −1. (1.39)

This implies that the vacuum is invariant under any conformal transformation, and that
the vacuum expectation values of T (z) and T (z̄) vanish. When we act on the vacuum
with primary �elds |h, h̄〉 ≡ Φ(0, 0) |0〉 we get eigenstates of the dilatation operator, and
hence of the Hamiltonian. These states are called highest weight states,

L0 |h, h̄〉 = h |h, h̄〉 , L̄0 |h, h̄〉 = h̄ |h, h̄〉 . (1.40)

The eigenvalue of the dilatation operator ∆ = h + h̄ is called the conformal dimension,
while the eigenvalue of the momentum operator is the spin of the �eld, s = h− h̄. While,
in virtue of the Virasoro algebra, Ln |h, h̄〉 = 0 and L̄n |h, h̄〉 = 0 for n > 0, the modes of
the stress-energy tensor with n < 0 can be successively applied on a highest weight state
to build a whole family of descendant states above it

|n1, . . . , nk;h, h̄〉 = L−n1
L−n2

. . . L−nk |h, h̄〉 , nj > 1. (1.41)

Again using the Virasoro algebra (1.38) it is easy to see that they are still eigenstates
of the dilatation and rotation generators, L0 |{nj};h, h̄〉 = (h+N) |{nj};h, h̄〉, and their
conformal weight is increased with respect to the primary of an integer N =

∑
j nj . The

descendant states are all eigenstates of the Hamiltonian and are organized in levels, labeled
by the integer N . Every conformal family, generated by a highest weight state and its
descendants, is closed under the action of the generators of the conformal transformations,
and therefore correspond to a realization of the Virasoro algebra. The corresponding
subspace of the Hilbert space is usually called a Verma module. Primaries and descendants
are all the eigenstates of the Hamiltonian and form a basis for the full Hilbert space.

We have seen that primary operators Φ are in one-to-one correspondence with highest
weight states |h, h̄〉. In the same way, for any descendant state we can de�ne the corre-
sponding descendant �eld, as the one that creates the state when applied to the vacuum.
Take for instance the state L−n |h, h̄〉, its corresponding descendant �led is (L−nΦ)(z, z̄).
It can be seen that correlation functions involving descendant �elds can be obtained by
applying a speci�c set of di�erential operators to the correlation functions of their corre-
sponding primaries.

The structure of the Hilbert space described so far is typical of every CFT, but speci�c
theories can have di�erent features. For example, the minimal models are characterized
by having a �nite number of Verma modules, which makes the structure of the Hilbert
space particularly regular. On the contrary, in general the number of realizations of the
Virasoro algebra is in�nite. For example, the set of primaries of the free massless scalar
boson is in one-to-one correspondence with the real numbers. However, if we compactify
the target space of the boson on a circle of radius R, thus identifying φ ∼ φ + 2πR, the
set of primaries is still in�nite, but discrete.
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1.3.3 Partition function on the torus and modular invariance

Up to now we restricted ourselves to the basic case of CFT de�ned on the cylinder, which
we saw is mapped with a conformal transformation to the plane, or better to the Riemann
sphere, which is the simplest Riemann surface with genus zero. In principle any CFT can
be de�ned on any higher genus Riemann surface, and indeed these geometries naturally
arise in perturbative string theory, in the computation of multiloop scattering amplitudes.
Although this kind of computations seems quite unnatural in the context of critical sys-
tems, we will see in Sec. 1.4 that a similar situation appears also in the computation of
Rényi entropies of one-dimensional systems at criticality, which are obtained from the
partition function of the model on a class of very peculiar Riemann surfaces. The study
of CFT on these surfaces is therefore very important, and many results are available.
The best understood case is the simplest one beyond the trivial genus-0 Riemann sphere,
namely the genus-1 torus. We give here some basic elements about the form that the
partition function takes in general on the torus and of the important modular invariance.
Some more technical elements of modular invariance on higher genus Riemann surfaces
will be discussed in App. 2.C of Chap. 2.

The torus can be recovered from the cylinder, by imposing periodic boundary condi-
tions on the `time' direction as well as on the `spatial' direction. This is equivalent to
selecting two linearly independent complex numbers, say τ1 and τ2, and consider the com-
plex plane modulo τ1 and τ2. The two vectors de�ne a primitive cell on the plane, whose
opposite sides are therefore identi�ed. Conformal symmetry allows to �x τ2 = 1, and the
remaining parameter τ1 ≡ τ is called the modular parameter (or simply the period) of
the torus. Although all local properties of the operators on the torus are the same as the
same operators on the cylinder, global properties may change. For example, since with a
conformal transformation we can map the torus on an anulus (with identi�ed edges) in
the complex plane, only rotations and dilatation (generated by L0 and L̄0) survive on the
torus as global symmetries. Also boundary conditions may be a�ected: the periodicity
of the torus is re�ected by invariance with respect to translations of the period τ in the
action functional of the path integral formulation. The boundary conditions of the �elds
must respect this periodicity by leaving the action invariant. Notice that they are not
bound to be periodic, a real fermion �eld for example can have either periodic (P ) or
antiperiodic (A) boundary conditions along the `space' and `time' directions, thus giving
rise to four possible sectors, (A,A), (A,P ), (P,A) and (P, P ), called spin structures.

The partition function of the model on the torus can be computed by tracing the
operator obtained from consecutive application of the transfer matrix in the direction
of the modular parameter τ . Translations along the `time' and `space' directions are
generated respectively by the Hamiltonian and the linear momentum, which on the cylin-
der, are given respectively by H = (L0)cyl + (L̄0)cyl and P = i((L0)cyl − (L̄0)cyl), with
(L0)cyl = L0 − c/24, thus giving for the partition function

Z(τ) = Tr exp {−H Im τ − iP Re τ}
= Tr exp

{
2πi
[
τ
(
L0 − c/24

)
+ τ∗

(
L̄0 − c̄/24

)]}
.

(1.42)

One usually de�nes the parameters q = exp(2πiτ) and q̄ = exp(−2πiτ∗), and the torus
partition function is written as

Z(τ) = qc/24q̄c̄/24 Tr
(
qL0 q̄L̄0

)
. (1.43)

On higher genus Riemann surfaces, and in particular on the torus, we may request an
additional symmetry, modular invariance, to our theory. Let τ1 and τ2 be the periods of
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the lattice describing the torus. Modular invariance is the invariance of the Hamiltonian
under a di�erent choice of the periods to describe the same lattice,

(
τ ′1
τ ′2

)
=

(
a b
c d

)
·
(
τ1
τ2

)
, a, b, c, d ∈ Z, ad− bc = 1. (1.44)

We also want the transformation to be invertible, and the inverse must of course have
integer coe�cients. The resulting matrix belongs to the group SL(2,Z). For theories de-
�ned on higher genus Riemann surfaces the matrices implementing the reparametrization
of the lattice must also be symplectic. This property is automatically satis�ed by the
elements in SL(2,Z) for the case of the torus, while it be further investigated in App. 2.C
for generic genus. Under the modular transformation (1.44), the modular parameter τ
transforms as follows,

τ → aτ + b

cτ + d
. (1.45)

Since changing the sign of all parameters does not change the transformation of τ , the
modular group is actually SL(2,Z)/Z2. The usual choices for the two generators of the
modular group are τ → τ + 1, and τ → −1/τ .

The requirement of modular invariance strongly constraint the partition function of
the theory. In particular, the partition function of a conformal system with �xed boundary
conditions of the �elds along the two directions of the torus, may not be invariant under
modular transformations. Without the requirement of modular invariance, we could pick
a particular choice of the allowed boundary conditions and in doing so we could obtain a
perfectly well-de�ned theory on the torus. On the contrary, modular invariance forces us
to consider particular invariant combinations of the di�erent sectors originating from the
di�erent choices of the boundary conditions. Both modular invariant and non modular
invariant theories can have perfectly sense. For example, as we will discuss in Chaps. 4
and 5, the (A,A) spin structure of the free Dirac fermion is a c = 1 CFT describing the
continuum limit of the tight binding model, and it is not modular invariant. On the other
hand, considering the appropriate combination of all the spin structures, we can build a
modular invariant combination, which is another c = 1 CFT, which reproduces the scaling
limit of the XX spin chain. We will see that this di�erence have important consequences
on the entanglement properties of the two theories.

1.4 Entanglement and Conformal Field Theories

In this section we introduce the main quantities and de�nitions that will be used through-
out the thesis. In Sec. 1.4.1 we introduce the replica trick for the entanglement entropy
and its application in QFT. We will also review some of the few exact results available
in the context of CFT. In Sec. 1.4.2 we will extend the replica trick to the entanglement
negativity and �nally in Sec. 1.4.3 we will review the main characteristics of the Riemann
surfaces involved in the QFT computations of such quantities.

1.4.1 Entanglement entropy, Rényi entropies and twist �elds

Given a system in its ground state |Ψ〉, as already discussed in the Introduction, a very
useful measure of entanglement is the entanglement entropy. When the Hilbert space of
the full system can be factorized as H = HA ⊗HB , the A's reduced density matrix reads
ρA = TrB ρ, being ρ = |Ψ〉〈Ψ| the density matrix of the entire system in a pure state.
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The Von Neumann entropy associated to ρA is the entanglement entropy [8�10]

SA = −Tr(ρA log ρA) . (1.46)

Introducing SB in an analogous way, we have SB = SA because ρ describes a pure state.
In quantum �eld theory the entanglement entropy (1.46) is usually computed by em-

ploying the replica trick, which consists in two steps: �rst one computes Tr ρnA for any
integer n > 2 (when n = 1 the normalization condition Tr ρA = 1 is recovered) and then
analytically continues the resulting expression to any complex n. This allows to obtain
the entanglement entropy as SA = − limn→1 ∂n Tr ρnA. The Rényi entropies are de�ned as
follows

S
(n)
A =

1

1− n log Tr ρnA . (1.47)

Given the normalization condition, the replica trick tells us that

SA = lim
n→1

S
(n)
A . (1.48)

Let us stress that S(n)
A contain much more information than the limit (1.48), since one

can extract the full spectrum of ρA from them [205].
In this work we will mainly consider one dimensional critical systems when A and

B correspond to a spatial bipartition. The simplest and most important example is the
entanglement entropy of an interval A of length ` in an in�nite line, which is given by [20,
27, 206]

SA =
c

3
log

`

a
+ c′1 , (1.49)

where c is the central charge of the corresponding CFT, a is some UV cuto� and c′1 is a
non universal constant.

In full generality, let us consider a subsystem A = ∪Ni=1Ai made of N disjoint intervals.
Let us denote by Ai = [ui, vi] the endpoints of the i-th interval with i = 1, . . . , N . By
employing the method of [27, 206], Tr ρnA can be computed as a 2N point function of twist
�elds

Tr ρnA = 〈
N∏

i=1

Tn(ui)T̄n(vi)〉 . (1.50)

In CFT, the twist �elds transform as primaries (even if they are not primaries). In the
case of four and higher point correlation functions, the global conformal invariance does
not �x the precise dependence on ui and vi, because one can construct invariant ratios
involving these points. In particular, let us consider the conformal map such that u1 → 0,
uN → 1 and vN →∞, namely

wN (z) =
(u1 − z)(uN − vN )

(u1 − uN )(z − vN )
. (1.51)

The remaining ui's and vj 's are sent into the 2N − 3 four-point ratios x1 = wN (v1),
x2 = wN (u2), x3 = wN (v2), . . . , x2N−3 = wN (vN−1) which are invariant under SL(2,C)
transformations. The map (1.51) preserves the ordering: 0 < x1 < x2 < · · · < x2N−3 < 1.
We denote by x the vector whose elements are the four-point ratios x1, . . . , x2N−3. Global
conformal invariance allows to write the 2N point function (1.50) as [206]

Tr ρnA = cNn

∣∣∣∣∣

∏
i<j(uj − ui)(vj − vi)∏

i,j(vj − ui)

∣∣∣∣∣

2∆n

FN,n(x) , (1.52)
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where i, j = 1, . . . , N . The function FN,n(x) encodes the full operator content of the
model and therefore it must be computed through its dynamical details. Since Tr ρA = 1,
we have FN,1(x) = 1.

As widely argued in [27, 206], in the case of one interval A = [u, v] in an in�nite line,
Tr ρnA is completely �xed by global conformal invariance, since it can be written as the
two point function of twist �elds on the complex plane, i.e.

Tr ρnA = 〈Tn(u)T̄n(v)〉 =
cn

|u− v|2∆n
. (1.53)

The twist �eld Tn and T̄n behave like primary operators and they have the same scaling
dimension

∆n =
c

12

(
n− 1

n

)
. (1.54)

The constant cn is non universal and such that c1 = 1 because of the normalization
condition.

To be more concrete, and to easily extend these arguments to case of the negativity,
from now on let us focus on two intervals. The Rényi entropies of an arbitrary number of
intervals will be investigated in details in Chap. 2. For N = 2 intervals there is only one
four-point ratio 0 < x < 1

x =
(u1 − v1)(u2 − v2)

(u1 − u2)(v1 − v2)
. (1.55)

A crucial role in the derivation of analytic expressions for the function F2,n(x) is played
by the methods developed in [207�214] to study CFT on higher genus Riemann surfaces.
The results are expressed in terms of Riemann theta functions [215�217] and it is still
an open problem to compute their analytic continuation in n for the most general case,
in order to get the entanglement entropy SA. These CFT predictions are supported by
numerical studies performed through various methods [218�225]. When A is a single
interval, Tr ρnA and SA are sensible only to the central charge of the CFT, as clear from
Eq. (1.53). Instead, these computations showed that when the subsystem A consists of
N > 2 disjoint intervals on the in�nite line, the Rényi entropies encode all the data of the
CFT.

Eq. (1.52) specialised to the case N = 2 reads

Tr ρnA = c2n

(
(u2 − u1)(v2 − v1)

(v1 − u1)(v2 − u2)(v2 − u1)(u2 − v1)

)2∆n

Fn(x), (1.56)

where, to make contact with the existing literature and to lighten the notation we intro-
duced Fn(x) ≡ F2,n(x). The function Fn has been studied in several papers [46, 79, 196,
218�220, 223�229] (see [74, 75, 77�80, 97, 98, 100, 230, 231] for the holographic view-
point and [47, 49, 51, 53�55, 102] for higher dimensional conformal �eld theories). One
of the most important examples of exactly known Fn(x) is the free boson compacti�ed
on a circle of radius Rcircle. In this case, the function Fn(x) (parametrized in terms of
η = R2

circle/2) is [226]

Fn(x) =
Θ
(
0|ητ

)
Θ
(
0|τ/η

)

[Θ
(
0|τ
)
]2

, (1.57)

where τ is an (n− 1)× (n− 1) matrix with elements [226]

τi,j(x) = i
2

n

n−1∑

k=1

sin(πk/n)
2F1(k/n, 1− k/n; 1; 1− x)

2F1(k/n, 1− k/n; 1;x)
cos[2π(k/n)(i− j)]. (1.58)



1.4 Entanglement and Conformal Field Theories 29

The matrix τ(x) is called the period matrix and its geometrical interpretation in terms
of Riemann surfaces will be discussed in Sec. 1.4.3. We remark that, since x ∈ (0, 1), the
period matrix τ(x) is purely imaginary. Θ is the Riemann theta function [215�217]

Θ(z|M) ≡
∑

m∈Zn−1

e iπmt·M ·m+2πimt·z, (1.59)

which is a function of the (n−1) dimensional complex vector z and of the (n−1)×(n−1)
matrix M which must be symmetric and with positive imaginary part.

When the compacti�cation radius takes the value η = 1/2, the theory corresponds to
the scaling limit of the XX spin chain, which is the so called Dirac point. In this case,
using theta functions identities it is possible to rewrite Eq. (1.57) as follows

FDirac
n (x) =

1

2n−1 |Θ(0|τ)|2
∑

ε,δ

∣∣∣∣Θ
[
ε
δ

]
(0|τ)

∣∣∣∣
2

, (1.60)

where the period matrix τ is the same as in Eq. (1.58). In this case Θ is the Riemann
theta function with characteristic de�ned as [215�217]

Θ[e](z|M) ≡
∑

m∈Zn−1

e iπ(m+ε)t·M ·(m+ε)+2πi (m+ε)t·(z+δ), e ≡
(
ε
δ

)
, (1.61)

where z andM are analogous to the ones in (1.59), and ε, δ are vectors with entries 0 and
1/2. The sum in (ε, δ) in (1.60) is intended over all the 2n−1 vectors ε and δ with these
entries. The parity of (1.61) as function of z is given by the parity of the characteristic,
which is the parity of the integer number 4ε · δ

Θ[e](−z|Ω) = (−1)4ε·δ Θ[e](z|Ω) . (1.62)

There are 22(n−1) characteristics: 2n−2(2n−1 +1) are even and 2n−2(2n−1−1) are odd. In
our following analysis only the trivial vector z = 0 occurs and therefore all the Riemann
theta functions occurring in this thesis with odd characteristic vanish identically. We
will adopt the shortcut notation: Θ[e](M) ≡ Θ[e](0|M) and Θ(M) ≡ Θ(0|M) when the
characteristic is vanishing.

For the critical Ising model, the scaling function Fn(x) is also known [196]

F Ising
n (x) =

1

2n−1 |Θ(0|τ)|
∑

ε,δ

∣∣∣∣Θ
[
ε
δ

]
(0|τ)

∣∣∣∣, (1.63)

where again the period matrix τ is the same as in Eq. (1.58). More details will be given
in Sec. 2.7.1.

1.4.2 The replica trick for the negativity

In this section we introduce the computation of the entanglement negativity through the
replica trick. In the framework of the replica approach, �eld theoretical computations are
possible, with a generalization of the techniques described in Sec. 1.4.1

We again consider a bipartite Hilbert space, according to two regions A and B, and
we consider the reduced density matrix ρA, which is in general mixed. Let us further split
subsystem A in two subsystems A1 and A2, which can be either adjacent or separated.
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Notice that, when A = A1 ∪ A2 is composed of two disjoint regions A1 and A2, the
entanglement entropy quanti�es only the entanglement between A and the remainder of
the system B, but not the entanglement between A1 and A2. In this case it is customary
to introduce the mutual information

IA1,A2
≡ SA1

+ SA2
− SA1∪A2

, (1.64)

and, analogously, the Rényi mutual information

I
(n)
A1,A2

≡ 1

n− 1
ln

(
Tr ρnA

Tr ρnA1
Tr ρnA2

)
. (1.65)

However, let us stress again that these are not measures of the entanglement between A1

and A2, but quantify the amount of global correlations between the two subsystems, see
e.g. [15].

However, we are here interested in the entanglement between A1 and A2. In the
Introduction we discussed how the negativity provides a proper measure of entanglement
in a bipartite mixed state [117�120, 162, 179]. Let us recall here its de�nition. One
�rst introduces the partial transpose with respect to the A2's degrees of freedom. Let us
denote by |e(1)

i 〉 and |e
(2)
j 〉 two arbitrary bases in the Hilbert spaces corresponding to A1

and A2. The partial transpose of ρA with respect to A2 degrees of freedom is de�ned as

〈e(1)
i e

(2)
j |ρT2

A |e
(1)
k e

(2)
l 〉 = 〈e(1)

i e
(2)
l |ρA|e

(1)
k e

(2)
j 〉, (1.66)

and then the logarithmic negativity as

E ≡ ln ||ρT2

A || = ln Tr |ρT2

A | , (1.67)

where the trace norm ||ρT2

A || is the sum of the absolute values of the eigenvalues of ρT2

A .
Notice that the negativity is symmetric under exchange of A1 and A2, as any good measure
of the relative entanglement should be.

The QFT approach to the logarithmic negativity E is based on a replica trick [134,
135]. Let us consider the traces Tr(ρT2

A )n of integer powers of ρT2

A . For n even and odd,
denoted by ne and no respectively, we have

Tr(ρT2

A )ne =
∑

i

λnei =
∑

λi>0

|λi|ne +
∑

λi<0

|λi|ne , (1.68a)

Tr(ρT2

A )no =
∑

i

λnoi =
∑

λi>0

|λi|no −
∑

λi<0

|λi|no , (1.68b)

where λi are the eigenvalues of ρT2

A . Clearly, the functional dependence of Tr(ρT2

A )n on
|λi| depends on the parity of n. Setting ne = 1 in (1.68a), we formally obtain Tr |ρT2

A |,
whose logarithm gives the logarithmic negativity E . Instead, if we set no = 1 in (1.68b),
we just get the normalization Tr ρT2

A = 1. Thus, the analytic continuations from even and
odd values of n are di�erent and the trace norm that we are interested in is obtained
by performing the analytic continuation of the even sequence (1.68a) at ne → 1. By
introducing

E(n) ≡ ln
[

Tr
(
ρT2

A

)n]
, (1.69)

we have that E(1) = 0 identically and the logarithmic negativity E is given by the following
replica limit

E = lim
ne→1

E(ne) . (1.70)
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Figure 1.1: The path integral representation of Tr ρnA involves a Riemann surface RN,n, which is
shown in the left panel for N = 2 and n = 3. In the right panel we show a graphical representation
of the Riemann surface R̃N,n (again for N = 2 and n = 3), which enters in the computation
of Tr

(
ρT2
A )n. The main di�erence lies in te fact that the sheets are glued along the transpose

interval A2 in the reversed order.

For future convenience we also introduce the ratios

Rn ≡
Tr(ρT2

A )n

Tr ρnA
⇒ ln(Rn) = E(n) + (n− 1)S

(n)
A1∪A2

and E = lim
ne→1

ln(Rne) . (1.71)

Finally, let us notice that although this replica approach has been introduced in the
context of CFT [134, 135], it has been later applied and generalized to many other cir-
cumstances [136, 141�143, 145, 146, 232, 233].

1.4.3 Path integral representations

In this section we brie�y discuss the path integral formalism to compute Tr ρnA and
Tr
(
ρT2

A

)n
in QFT. We also review some of the key properties of the Riemann surfaces

involved, mainly focusing on the case of two intervals. For the case of the Rényi entropies
of any number of disjoint intervals, much more details will be given in Chap. 2

Let us again consider a subsystem A = ∪Ni=1[ui, vi] made of N disjoint intervals. The
path integral representation of ρA has been largely discussed in [20, 27, 206]. Tracing
over the spatial complement B leaves open cuts, one for each interval, along the line
characterized by a �xed value of the Euclidean time. Thus, the path integral giving ρA
involves �elds which live on this sheet with open cuts, whose con�gurations are �xed on
the upper and lower edges of the cuts.

To compute Tr ρnA, we take n copies of the path integral representing ρA and combine
them as follows. We impose that the value of a �eld on the upper part of the cut on a
sheet is equal to the value of the same �eld on the lower part of the corresponding cut on
the subsequent sheet. This condition is applied in a cyclic way. Then, we integrate over
the �eld con�gurations along the cuts. Correspondingly, the n sheets must be sewed in the
same way and this procedure de�nes the n-sheeted Riemann surface RN,n. The endpoints
ui and vi (i = 1, . . . , N) are branch points where the n sheets meet. The Riemann surface
RN,n is depicted in the left panel of Fig. 1.1 for N = 2 intervals and n = 3 copies. Another
representation of the same surface is shown in Fig. 1.2. Denoting by ZN,n the partition
function of the model on the Riemann surface RN,n, we can compute Tr ρnA as [27]

Tr ρnA =
ZN,n
Zn1

, (1.72)

where Z1 is the partition function of the model de�ned on a single copy and without
cuts. Notice that (1.72) implies Tr ρA = 1. From (1.72), one easily gets the Rényi
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Figure 1.2: Another representation of the Riemann surface R2,4 for N = 2 intervals and n = 4
sheets (see also the left panel of Fig. 1.1). A single sheet can be seen as a sphere with two
open cuts corresponding to the two intervals A1 and A2, or equivalently as a cylinder. The n
cylinders the are sewn together cyclically. From the �gure it is evident that the surface has genus
g = (n − 1)(N − 1) = 3. We also depicted the basis cycles {ar, br ; r = 1, 2, 3} discussed in the
text.

entropies (1.47). If the analytic continuation of (1.72) to Ren > 1 exists and it is unique,
the entanglement entropy is obtained as the replica limit (1.48).

The Riemann surface RN,n is de�ned by the following algebraic curve in C2 (param-
eterised by the complex variables z and y) [226]

yn =

N∏

i=1

(z − ui)
[ N∏

i=1

(z − vi)
]n−1

. (1.73)

It is an n sheeted cover of the complex plane and it has been studied in detail in [234].
By going around the ui's clockwise, one goes from the j-th to the (j + 1)-th sheet, while
going around the vi's clockwise, one moves to the (j − 1)-th one.

In order to �nd the genus of RN,n [208], let us consider a single sheet and triangulate
it through V vertices, E edges and F faces, such that 2N vertices are located at the
branch points ui and vi. The replication of the same triangulation on all sheets generates
a triangulation of the Riemann surface RN,n made by V ′ vertices, E′ edges and F ′ faces.
Notice that, since the branch points belong to all the n sheets, they are not replicated.
This observation tells us that V ′ = n(V −2N)+2N , while E′ = nE and F ′ = nF because
all the edges and the faces are replicated. Then, the genus g of RN,n is found by plugging
these expressions into the relation V ′ − E′ + F ′ = 2 − 2g and employing the fact that
V − E + F = 2, since each sheet has the topology of the sphere. The result is

g = (N − 1)(n− 1) . (1.74)

We remark that we are not considering the most general genus g Riemann surface, which
is characterized by 3g − 3 complex parameters, but only the class of Riemann surfaces
obtained through the described replication procedure. As already anticipated, from now
on we specialise to the case of two intervals, when Rn ≡ R2,n has genus g = n− 1. The
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Figure 1.3: Cycles of type b for Rn (left) and R̃n (right). The solid line represents the part of
the cycle belonging to the i-th sheet, while the dashed curve is the remaining part of the cycle,
which lies in the (i+ 1)-th sheet. As for the cycles of type a, which are the same for Rn and R̃n,
we refer to Fig. 8 of [235].

algebraic curve relative to Rn is

yn = (z − u1)(z − u2)
[
(z − v1)(z − v2)

]n−1
, (1.75)

and its genus is g = n− 1.
In the computation of the partition function on higher genus Riemann surfaces, one

has to properly choose a canonical homology basis (i.e. a set of 2g closed oriented curves
on the surface, the a and b cycles, which satisfy some speci�c intersection rules) and a
set of n− 1 holomorphic di�erentials. By integrating such di�erentials along the b cycles
one gets the period matrix of the Riemann surface. For a genus g Riemann surface, the
period matrix is a g × g complex symmetric matrix with positive de�nite imaginary part
[207�210, 212�214]. In Chap. 2 we will perform a detailed analysis about some possible
choices of the homology basis for RN,n and we will discuss in full details how to compute
the period matrix for a given basis. In particular, the matrix in Eq. (1.58) is the period
matrix of Rn corresponding to a speci�c homology basis {ar, br ; 1 6 r 6 n−1}, that will
be discussed in details in Sec. 2.4.2 3. Let us here brie�y summarise the choice of the b
cycles, since it is the main di�erence with the case of the negativity. In the left panel of
Fig. 1.3 we show the j-th b cycle, which belongs to the j-th sheet and to the (j + 1)-th
sheet. Instead, the construction of aj (which intersects bj only once) is more involved and
therefore we refer to Fig. 2.7.

The Riemann theta function with characteristic (1.61) occurs in the computation of
fermionic models on higher genus Riemann surfaces [207�210, 212�214]. The character-
istic e speci�es the set of boundary conditions along the a and b cycles of the canonical
homology basis and this provides the so called spin structures of the model. The vector ε
is determined by the boundary conditions along the a cycles (εk = 0 for antiperiodic b.c.
around ak and εk = 1/2 for periodic b.c.), while δ is provided by the boundary conditions
along the b cycles (δk = 0 for antiperiodic b.c. around bk and δk = 1/2 for periodic b.c.).

We now discuss a di�erent Riemann surface, which is involved in the computation of
the moments of ρT2

A . Consider the Riemann surface R̃n de�ned by the following algebraic
curve,

yn = (z − u1)(z − v2)
[
(z − v1)(z − u2)

]n−1
. (1.76)

It is the same equation of (1.75), but with the exchange u2 ↔ v2. From the point of view
of a single sheet, this operation corresponds to the exchange of the lower and upper part
of the cut along A2. When the sheets are sewed together cyclically, the result is the one

3In that Sec. 2.4.2, these cycles are denoted with a hat, âj and b̂j . Here we removed the hat to lighten
the notation.



34 1 Introduction

depicted in the right panel of Fig. 1.1 Therefore, while around u1 and v1 the surface R̃n
has the same properties as Rn, by encircling u2 clockwise we move from the j-th sheet to
the (j− 1)-th sheet, while by encircling v2 clockwise the (j+ 1)-th sheet is reached. Since
the exchange u2 ↔ v2 sends x → x/(x − 1), the period matrix τ̃(x) of R̃n for x ∈ (0, 1)
is given by [135]

τ̃(x) = τ
(
x/(x− 1)

)
= R+ i I, (1.77)

where the elements of τ have been de�ned in (1.58) and the real and imaginary parts of
τ̃(x) are R and I respectively. The surfaces Rn and R̃n are in general di�erent, only
for n = 2 they are the same torus, as can be immediately seen from (1.75) and (1.76).
In terms of period matrix, it can be seen [135] that sending x → x/(x − 1) is equivalent
to the transformation τ → τ + 1, which is a modular transformation of the torus R2

(see Eq. (1.45)). Therefore the moduli τ and τ̃ = τ + 1 describe the same torus. As for
the cycles of R̃n providing the canonical homology basis {ãr, b̃r ; 1 6 r 6 n − 1} which
gives the period matrix (1.77), we �nd that ãr is the same as ar (we remind that R̃n and
Rn di�er only for the way the sheets are joined along A2), while the generic cycle b̃r is
obtained by deforming the cycle br as shown in Fig. 1.3.

Let us now make an example to show how the Riemann surface R̃n can enter some
speci�c computation. In Refs. [134, 135], it has been shown that for the 1+1 dimensional
quantum �eld theory of the compacti�ed boson the partial transposition of the path inte-
gral representation of ρA corresponds to the exchange of the lower and upper edge of the
cut along A2. Therefore the traces Tr(ρT2

A )n can be computed as the partition function of
the theory on R̃n. We recall that R̃n di�ers from Rn only by the exchange u2 ↔ v2, and
this immediately translates in terms of correlation functions of twist �elds. As we already
reported in Sec. 1.4.1, Tr ρnA for the union of two disjoint intervals A = [u1, v1]∪ [u2, v2] is
given by the correlator 〈Tn(u1)T̄n(v1)Tn(u2)T̄n(v2)〉. Now let us take the partial transpose
with respect to the interval A2. The quantity Tr

(
ρT2

A

)n
can be computed from the corre-

lator above where the twist �elds Tn and T̄n at the endpoints of A2 are exchanged while
the remaining ones stay untouched, giving Tr(ρT2

A )n = 〈Tn(u1)T̄n(v1)T̄n(u2)Tn(v2)〉. The
con�gurations including adjacent intervals can be obtained as a limit of the previous one,
where the distances between the proper intervals vanish. After this limit, T 2

n or T̄ 2
n occur

at the joining point between a transposed interval and the adjacent one that has not been
transposed. For example, if we send u2 → v1, we �nd Tr(ρT2

A )n = 〈Tn(u1)T̄ 2
n (v1)Tn(v2)〉

Thus, the ratio (1.71) can be computed through the corresponding correlators of twist
�elds. To compute this kind of correlation functions in CFT, we need the scaling dimen-
sion of T 2

n and T̄ 2
n which depends on the parity of n as [134, 135]

∆(2)
n ≡

{
∆n odd n ,

2∆n/2 even n ,
(1.78)

where ∆n has been de�ned in (1.53). Since the moments of the partial transpose corre-
spond to a four-point function of twist �elds, they admit the universal scaling form

Tr
(
ρT2

A

)n
= c2n

(
(u2 − u1)(v2 − v1)

(v1 − u1)(v2 − u2)(v2 − u1)(u2 − v1)

)2∆n

Gn(x), (1.79)

with cn the same non-universal constant appearing in Eq. (1.56) and Gn(x) a new universal
scaling function. Exploiting the fact that the above moments correspond to the exchange
of two twist �elds, the expression for Tr

(
ρT2

A

)n
can be obtained from the one of Tr ρnA by
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simply exchanging u2 ↔ v2. This means that Gn(x) and Fn(x) are related as [134, 135]

Gn(x) = (1− x)4∆nFn
(

x

x− 1

)
. (1.80)

but some care is needed to take the analytic continuation of the function Fn(y) to negative
argument y. The result (1.57) is indeed valid only for 0 < x < 1. For generic x ∈ C, it is
found [135] that

F(x) =
Θ(T )

|Θ(τ)|2 , T =

(
i Iη R
R i I/η

)
. (1.81)

When 0 < x < 1, the period matrix τ(x) in (1.58) is purely imaginary. Then R = 0 and
the Riemann theta function in (1.81) factorizes, giving back the result (1.57). On the
contrary, since for 0 < x < 1 we have −∞ < x/(x − 1) < 0, then τ̃(x) develops a real
part and in (1.80) the full expression (1.81) must be used. More details on the real part
of τ̃(x) will be given in Chap. 5 and in particular in App. 5.B.1. The CFT prediction for
the ratio in Eq. (1.71) is

Rn(x) = (1− x)4∆n
Fn
(
x/(x− 1)

)

Fn(x)
, (1.82)

in which the universal constants cn as well as the dimensional part of the traces canceled
out leaving a universal scale invariant quantity.

The result of the compacti�ed boson (1.82) is automatically valid also for the (modular
invariant) Dirac theory and for the Ising model, which indeed can be bosonized. Therefore,
in order to obtain the moments of ρT2

A , we can simply replace x→ x/(x− 1) in Eq. (1.60)
and Eq. (1.63) respectively. However, the same result does not hold for other models,
such as the free Dirac fermion. Let us stress that what we call free Dirac fermion is not
the same Dirac fermion considered so far (and whose Rényi entropies are obtained from
Eq. (1.60)). The latter is the modular invariant theory of two Majorana fermions which
can be bosonized and corresponds to the compacti�ed boson at η = 1/2, and describes
the scaling limit of the XX model. On the other hand, the free Dirac fermion is still made
of two Majorana fermions, but with �xed antiperiodic boundary conditions along all
basis cycle. This theory describes the continuum limit of the tight binding model (whose
Hamiltonian is reported in Eq. (5.1)), and it is not a modular invariant theory. We refer
the reader to [228] for a detailed comparison between these two theories. Throughout the
thesis, were it is not obvious from the context we will refer to the two theories as modular
invariant Dirac fermion and free Dirac fermion. For the free Dirac fermion, the function
Fn(x) is well known and it is identically one, Fn(x) = 1 [46]. The simple replacement
x→ x/(x−1) would still give the same constant result, and this would turn out (after the
trivial continuation ne → 1) in a vanishing entanglement negativity. A detailed analysis
indeed shows that the traces Tr

(
ρT2

A )n are not computed as partition functions on R̃n,
but as a particular sum of di�erent partition functions with speci�c boundary conditions
along the basis cycles (and therefore with speci�c spin structures). This calculation will
be addressed in full details in Chap. 5.

1.5 Organization of the thesis

The thesis is organized as follows.
In Chap. 2 we begin the study of the entanglement properties of disjoint regions in 1+1

dimension by studying the Rényi entropies of N disjoint intervals in some simple CFT
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(the free compacti�ed boson and the Ising model). They are computed as the 2N point
function of twist �elds, by employing the partition function of the model on the Riemann
surfaces RN,n. The results are written in terms of Riemann theta functions. The predic-
tion for the free boson in the decompacti�cation regime is checked against exact results
for the harmonic chain. We also perform a numerical interpolation of the values of the
Rényi entropies computed analytically, and with that we extrapolate an estimate of the
entanglement entropy. The match between the result for the decompacti�ed boson and
the exact computations on the harmonic chain are very satisfactory. Finally, we check the
theoretical results found for the Ising model by means of MPS, where we also identify the
representation of the twist �elds. The computations agree with the CFT result once the
�nite size corrections have been taken into account. The chapter is mainly based on the
following work:

[235] A. Coser, L. Tagliacozzo, and E. Tonni, �On Rényi entropies of disjoint intervals in
conformal �eld theory�, J. Stat. Mech. P01008 (2014).

The material in Sec. 2.6 and App. 2.E, as well as some analogous analysis for the loga-
rithmic negativity, can be found in the following paper:

[236] C. De Nobili, A. Coser, and E. Tonni, �Entanglement entropy and negativity of dis-
joint intervals in CFT: Some numerical extrapolations�, J. Stat. Mech. P06021 (2015).

In Chap. 3 we start the exploration of the entanglement properties between disjoint
regions in mixed states by means of the entanglement negativity. In particular, in this
chapter we study the time evolution of the logarithmic negativity after a global quantum
quench. In a 1+1 dimensional conformal invariant �eld theory, we consider the negativity
between two intervals which can be either adjacent or disjoint. We show that the negativ-
ity follows the quasi-particle interpretation for the spreading of entanglement. We check
and generalise our �ndings with a systematic analysis of the negativity after a quantum
quench in the harmonic chain, highlighting two peculiar lattice e�ects: the late birth and
the sudden death of entanglement. The chapter is based on the following article:

[237] A. Coser, E. Tonni,and P. Calabrese, �Entanglement negativity after a global quan-
tum quench�, J. Stat. Mech. P12017 (2014).

In Chap. 4 we switch to the study of entanglement negativity in fermionic systems. In
this chapter we partly abandon the �eld theoretical models and we mainly focus on spin
systems. Indeed, we consider the partial transpose of the spin reduced density matrix of
two disjoint blocks in spin chains admitting a representation in terms of free fermions,
such as XY chains. We exploit the solution of the model in terms of Majorana fermions
and show that such partial transpose in the spin variables is a linear combination of four
Gaussian fermionic operators. This representation allows to explicitly construct and eval-
uate the integer moments of the partial transpose. We numerically study critical XX and
Ising chains and we show that the asymptotic results for large blocks agree with CFT
predictions if corrections to the scaling are properly taken into account. The material on
which this chapter is based is found in:

[238] A. Coser, E. Tonni,and P. Calabrese, �Partial transpose of two disjoint blocks in XY
spin chains�, J. Stat. Mech. P08005 (2015).
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In Chap. 5 we come back to the physics in the continuum. Using results from Chap. 4
for the free spinless fermion, we perform a direct calculation based on coherent state
path integral. In this way, we �nd an analytic form for the moments of the partial
transpose of the reduced density matrix of two intervals for the free massless Dirac fermion.
This moments are written in terms of Riemann theta functions. We also show that the
moments of arbitrary order are equal to the same quantities for the compacti�ed boson
at the self-dual point η = 1. These equalities imply the non trivial result that also the
negativity of the free fermion and the self-dual boson are equal. Finally, we use the same
techniques to recover the known formulas for the Rényi entropies and the moment of the
partial transpose of the modular invariant Dirac fermion and the Ising model. Using the
techniques introduced in Chap. 4, we give numerical evidence of all our conclusions. This
chapter is mainly based on the following work:

[239] A. Coser, E. Tonni, and P. Calabrese, �Towards entanglement negativity of two
disjoint intervals for a one dimensional free fermion�, arXiv:1508.00811.

The analysis of Sec. 5.4, as well as the related Apps. 5.E and 5.D, contain unpublished
material.



38 1 Introduction



39

Chapter 2

Rényi entropies for multiple disjoint intervals

2.1 Introduction

In this chapter we begin the study of entanglement of disjoint regions by considering a
subsystem A = ∪Ni=1Ai made of N disjoint intervals. Denoting by Ai = [ui, vi] the i-th
interval with i = 1, . . . , N , in Fig. 2.1 we depict a con�guration with N = 4 disjoint
intervals. The main goal is to exactly compute for some simple CFT (free compacti�ed
boson and Ising model) the Rényi entropies of the reduced density matrix ρA, when
the full system is in its ground state. Unfortunately, the functional dependence of the
result on the replica index n will turn out to be quite cumbersome, and we could not
perform the analytic continuation to n→ 1 to obtain the entanglement entropy SA. It is
worth stressing that in the case of several disjoint intervals, the Rényi entropies and the
entanglement entropy SA measure the entanglement of the union of the intervals with the
rest of the system B. They are not a measure of the entanglement among the intervals,
whose union is in a mixed state. In order to study the entanglement for mixed states, one
needs to consider other quantities, as for example the negativity, which will be addressed
in the next chapters in di�erent settings.

For two intervals the moments of the reduced density matrix Tr ρnA have been computed
for the free boson compacti�ed on a circle [226] and for the Ising model [196]. For three
or more intervals, few analytic results are available in the literature. For instance, the
Rényi entropies of N > 2 disjoint intervals for the free Dirac fermion in two dimensions
has been computed in [46, 47, 49]. As already mentioned at the end of Sec. 1.4.3, the free
Dirac fermion studied in these works is not the same we analyze in this chapter. It can be
seen as the continuum limit of a free spinless fermion on a lattice, and it is not a modular
invariant theory. On any Riemann surface, the partition function of the model will only
have the sector with fully antiperiodic boundary conditions. The Dirac fermion which
we are going to consider in Sec. 2.3.4 is instead a modular invariant theory obtained by
fermionization of the compact boson at η = 1/2. The partition function on a Riemann
surface is therefore a speci�c invariant combination of the partition functions with all the
possible boundary conditions along the nontrivial cycles (see Eq. (2.48) and the related
discussion).

The layout of the chapter is as follows. In Sec. 2.2 we introduce some UV �nite
quantities that will be considered in the following sections. In Sec. 2.3 we compute the
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A1B B B

u1 v1

B B

u2 u3 u4v2 v3 v4

A2 A3 A4

Figure 2.1: A typical con�guration of disjoint intervals in the in�nite line. We consider the
entanglement between A = ∪Ni=1Ai (in this �gure N = 4) and its complement B.

Rényi entropies for the free compacti�ed boson in the generic case of N intervals and n
sheets, which allows us to write the same quantity also for the Ising model. In 2.4 we
discuss how the known case of two intervals is recovered. In Sec. 2.5 we check the CFT
predictions for the Rényi entropies of the free boson in the decompacti�cation regime
against exact results obtained for the harmonic chain with periodic boundary conditions.
In Sec. 2.6 we perform some numerical extrapolations from the known data for the Rényi
entropies of the decompacti�ed boson, to estimate its entanglement entropy. The result is
again checked with the one of the harmonic chain. In Sec. 2.7 numerical results obtained
with MPS for the Ising model with periodic boundary conditions are employed to check the
corresponding CFT prediction through a �nite size scaling analysis. In the Appendices,
we collect further details and results.

2.2 Some cuto� independent quantities

By employing the method of [27, 206] and reviewed in Sec. 1.4, Tr ρnA can be computed
as a 2N point function of twist �elds. In CFT, the dependence on the positions in a
2N point function of primary operators with N > 2 is not uniquely determined by the
global conformal invariance. Indeed, we have that Tr ρnA can be written as in Eq. (1.52),
where we recall that FN,n(x) is a model dependent function of the 2N−3 invariant ratios
0 < x1 < · · · < x2N−3 < 1 (see Fig. 2.2 for N = 3).

The expression (1.52) is UV divergent. Such divergence is introduced dividing any
length occurring in the formula (uj−ui, vj−ui, etc.) by the UV cuto� ε. Since the ratios
x are left unchanged, the whole dependence on ε of (1.52) comes from the ratio of lengths
within the absolute value, which gives ε2N∆n . It is useful to introduce some quantities
which are independent of the UV cuto�. For N = 2, we can construct the combination
of Rényi entropies already introduced in Eq. (1.65)

I
(n)
A1,A2

≡ S(n)
A1

+ S
(n)
A2
− S(n)

A1∪A2
=

1

n− 1
log

(
Tr ρnA1∪A2

Tr ρnA1
Tr ρnA2

)
. (2.1)

The limit n→ 1 of this quantity gives the mutual information IA1,A2

IA1,A2
≡ SA1

+ SA2
− SA1∪A2

= lim
n→ 1

I
(n)
A1,A2

, (2.2)

which is independent of the UV cuto� as well. The subadditivity of the entanglement
entropy tells us that IA1,A2 > 0, while the strong subadditivity implies that it increases
when one of the intervals is enlarged.

For N > 2 we can �nd easily two ways to construct quantities such that the short
distance divergence cancels. Let us consider �rst the following ratio

RN,n ≡
N∏

p= 1

∏

σN,p

(
Tr ρnσN,p

)(−1)N−p

, (2.3)
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Figure 2.2: The domain 0 < x1 < x2 < x3 < 1 of the function F3,n(x). The lines within this
domain are the con�gurations de�ned in (2.79).

where we denoted by σN,p a generic choice of 1 6 p 6 N intervals among the N ones we
are dealing with. Since Tr ρnσN,p goes like ε2p∆n , one �nds that (2.3) is independent of ε

by employing that
∑N
p=1(−1)N−p

(
N
p

)
p = 0. In the simplest cases of N = 2 and N = 3,

the ratio (2.3) reads

R2,n =
Tr ρn{1,2}

Tr ρn{1} Tr ρn{2}
, R3,n =

Tr ρn{1,2,3}
(

Tr ρn{1} Tr ρn{2} Tr ρn{3}
)

Tr ρn{1,2} Tr ρn{1,3} Tr ρn{2,3}
, . . . (2.4)

Let us stress here that this ratio RN,n is quite di�erent from the ratio de�ned in (1.71)
and they must not be confused. In order to generalize (2.1) for N > 2, one introduces

I
(n)
A1,...,AN

≡ (−1)N

n− 1
logRN,n , (2.5)

and its limit n→ 1, as done in (2.2) for N = 2, i.e.

IA1,...,AN ≡ lim
n→1

I
(n)
A1,...,AN

. (2.6)

For the simplest cases of N = 3 and N = 4, one �nds respectively

IA1,A2,A3
= SA1

+ SA2
+ SA3

− SA1∪A2
− SA1∪A3

− SA2∪A3
+ SA1∪A2∪A3

, (2.7a)

IA1,A2,A3,A4
=

4∑

i=1

SAi −
4∑

i,j=1
i < j

SAi∪Aj +

4∑

i,j,k=1
i<j<k

SAi∪Aj∪Ak − SA1∪A2∪A3∪A4
. (2.7b)
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The quantity IA1,A2,A3 is called tripartite information [49] and it provides a way to es-
tablish whether the mutual information is extensive (IA1,A2,A3

= 0) or not. In a general
quantum �eld theory there is no de�nite sign for IA1,A2,A3

, but for theories with a holo-
graphic dual it has been shown that IA1,A2,A3

6 0 [80].
Another cuto� independent ratio is given by

R̃N,n ≡
Tr ρnA∏N
i=1 Tr ρnAi

. (2.8)

When N = 2 we have R2,n = R̃2,n but (2.3) and (2.8) are di�erent for N > 2. From
the de�nitions (2.3) and (2.8), we observe that, when one of the intervals collapses to
the empty set, i.e. Ak → ∅ for some k ∈ {1, . . . , N}, we have that RN,n → 1 and
R̃N,n → R̃N−1,n, where R̃N−1,n is de�ned through A \Ak.

For two dimensional conformal �eld theories at zero temperature we can write RN,n
and R̃N,n more explicitly. In particular, plugging (1.53) and (1.52) into (2.8), it is straight-
forward to observe that cn simpli�es and we are left with

R̃N,n(x) =

∣∣∣∣
∏

i<j

(ui − uj)(vi − vj)
(ui − vj)(uj − vi)

∣∣∣∣
2∆n

FN,n(x) ≡ |pN (x)|2∆n FN,n(x) , (2.9)

where the product within the absolute value, that we denote by pN , can be written in
terms of x. Thus, (2.9) tells us that FN,n(x) can be easily obtained from R̃N,n(x). When
N = 2 we have p2(x) = −1/(1− x), while for N = 3 we �nd

p3(x) ≡ − (x3 − x1)(1− x2)x2

(x2 − x1)(1− x1)(1− x3)x3
. (2.10)

For higher values of N , the expression of pN (x) is more complicated.
As for RN,n in (2.3), considering the choice of intervals given by σN,p, we have

Tr ρnσN,p = cpn
∣∣Pp(σN,p)

∣∣2∆n Fp,n(xσN,p) , (2.11)

where

Pp(σN,p) ≡
∏
i<j(uj − ui)(vj − vi)∏

i,j(vj − ui)

∣∣∣∣∣
i,j ∈σN,p

, (2.12)

and xσN,p denotes the 2p − 3 harmonic ratios that can be constructed through the 2p
endpoints of the intervals of A speci�ed by σN,p. Notice that (2.11) becomes (1.52) when
p = N and (1.53) for p = 1 because FN,1 = 1 by de�nition and P1(σN,1) = 1/(vj − uj),
being j the interval speci�ed by σN,1. Moreover, since (2.12) can be written in terms of
the 2N − 3 elements of x, we have that RN,n = RN,n(x) (see App. 2.A for more details).
Plugging (2.11) into (2.3), one �nds that for N > 2 all the factors Pp(σN,p) cancel (this
simpli�cation is explained in App. 2.A) and therefore we have

RN,n(x) =

N∏

p= 2

∏

σN,p

[
Fp,n(xσN,p)

](−1)N−p

. (2.13)

In order to cancel those parameters which occur only through multiplicative factors,
we �nd it useful to normalize the quantities we introduced by themselves computed for a
�xed con�guration. Thus, for (2.3) and (2.6) we have respectively

Rnorm

N,n ≡
RN,n

RN,n
∣∣
�xed con�guration

, IsubN ≡ IN − IN
∣∣
�xed con�guration

, (2.14)
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where we adopted the shorthand notation IN ≡ IA1,...,AN . In conformal �eld theories, for
the scale invariant quantities depending on the harmonic ratios x, the �xed con�guration
is characterized by �xed values x�xed. For instance, we have

Rnorm

N,n (x) =
RN,n(x)

RN,n(x�xed)
, Fnorm

N,n (x) =
FN,n(x)

FN,n(x�xed)
. (2.15)

In Sec. 2.5 this normalization is adopted to study the free boson on the in�nite line.

2.3 Free compacti�ed boson

In this section we consider the real free boson φ(z, z∗) on the Riemann surface RN,n and
compacti�ed on a circle of radius Rcircle. Its action reads

S[φ] ∝
∫

RN,n
∂zφ∂z∗φd

2z . (2.16)

The worldsheet is RN,n and the target space is R/(2πRcirlce Z). This model has c = 1 and
its partition function for a generic compact Riemann surface of genus g has been largely
discussed in the literature (see e.g. [207, 209, 210, 212�214]).

Instead of working with a single �eld φ on RN,n, one could equivalently consider n
independent copies of the model with a �eld φj on the j-th sheet [45, 46]. These n �elds
are coupled through their boundary conditions along the cuts Ai on the real axis in a
cyclic way (see Fig. 2.3)

φj(x, 0
+) = φj+1(x, 0−) , x ∈ A , j ∈ {1, . . . , n} , n+ 1 ≡ 1 . (2.17)

This approach has been adopted in [226] for the N = 2 case, employing the results of [208].
In principle one should properly generalize the construction of [226] to N > 2. For n = 2
this computation has been done in [207]. Here, instead, in order to address the case
n > 2, we compute (1.52) for the model (2.16) more directly, borrowing heavily from the
literature about the free compacti�ed boson on higher genus Riemann surfaces, whose
partition function has been constructed in terms of the period matrix of the underlying
Riemann surface.

2.3.1 The period matrix

As discussed in Sec. 1.4.3, the n-sheeted Riemann surfaceRN,n obtained by considering N
intervals Ai = [ui, vi] (i = 1, . . . , N) is de�ned by the following complex curve in C2 [234]

yn = u(z)v(z)n−1 , u(z) =
N∏

γ= 1

(z − x2γ−2) , v(z) =

N−1∏

γ= 1

(z − x2γ−1) . (2.18)

The complex coordinates y and z parameterize C2 and in u(z) we introduced x0 ≡ 0
and x2N−2 ≡ 1 for notational convenience. For n = 2, the curve (2.18) is hyperelliptic.
The genus of RN,n is (1.74) and it can be found also by applying the Riemann-Hurwitz
formula for the curve (2.18).

The period matrix of the curve (2.18) has been computed in [234] by considering the
following non normalized basis of holomorphic di�erentials

ωα,j =
zα−1 v(z)j−1

yj
dz , α = 1, . . . , N − 1 , j = 1, . . . , n− 1 , (2.19)
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Figure 2.3: The canonical homology basis {aα,j , bα,j} for N = 3 intervals of equal length and
n = 4 sheets. The sheets are ordered starting from the top. For each cut, the upper part (red) is
identi�ed with the lower part (blue) of the corresponding cut on the next sheet in a cyclic way,
according to (2.17).

where y = y(z) through (2.18). The set of one forms de�ned in (2.19) contains g elements.
In (2.19) we employed a double index notation: a greek index for the intervals and a latin
one for the sheets. We make this choice to facilitate the comparison with [226], slightly
changing the notation with respect to the previous section. These two indices can be
combined either as r = α + (N − 1)(j − 1) [234] or r = j + (n− 1)(α − 1) [228] in order
to have an index r = 1, . . . , g. Hereafter we assume the �rst choice. Notice that for the
cases of (N,n) = (2, n) and (N,n) = (N, 2) we do not need to introduce this distinction.

The period matrix of the Riemann surface is de�ned in terms of a canonical homology
basis, namely a set of 2g closed oriented curves {ar, br} which cannot be contracted to a
point and whose intersections satisfy certain simple relations. In particular, de�ning the
intersection number h ◦ h̃ between two oriented curves h and h̃ on the Riemann surface
as the number of intersection points, with the orientation taken into account (through
the tangent vectors at the intersection point and the right hand rule), for a canonical
homology basis we have ar ◦ as = br ◦ bs = 0 and ar ◦ bs = − br ◦ as = δrs. By employing
the double index notation mentioned above, we choose the canonical homology basis
{aα,j , bα,j} adopted in [234], which is depicted in Fig. 2.3 and in Fig. 2.4 for the special
case of N = 3 intervals and n = 4 sheets.

Once the canonical homology basis has been chosen, we introduce the g × g matrices

Aβ,αk,j =

∮

aα,j

ωβ,k , Bβ,αk,j =

∮

bα,j

ωβ,k , (2.20)
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Figure 2.4: The Riemann surfaceR3,4 with the canonical homology basis {aα,j , bα,j}, represented
also in Fig. 2.3.

where latin and greek indices run as in (2.19). Given the convention adopted above, Aβ,αk,j
provides the element Ars of the g × g matrix A by setting r = β + (N − 1)(k − 1) and
s = α+ (N − 1)(j − 1) (similarly for B), namely the row index is determined by the one
form and the column index by the cycle. This connection among indices is important
because the matrices A and B are not symmetric.

From the one forms (2.19) and the matrix A in (2.20), one constructs the normalized
basis of one forms νr =

∑g
s=1A−1

rs ωs, which provides the period matrix τ as follows
∮

ar

νs = δrs ,

∮

br

νs = τrs , r, s = 1, . . . , g . (2.21)

The period matrix τ is a g × g complex and symmetric matrix with positive de�nite
imaginary part, i.e. it belongs to the Siegel upper half space. Substituting the expression
of νs into the de�nition of τ in (2.21) and employing the de�nition of the matrix B in
(2.20), it is straightforward to observe that

τ = A−1 · B ≡ R+ i I , (2.22)

where R and I are respectively the real and the imaginary part of the period matrix.
In order to compute the period matrix (2.22), let us introduce the set of auxiliary

cycles {aauxα,j , bauxα,j}, which is represented in Figs. 2.28 and 2.29. It is clear that this set
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is not a canonical homology basis. Indeed, some cycles intersect more than one cycle.
Nevertheless, we can use them to decompose the cycles of the basis {aα,j , bα,j} as

aα,j =

α∑

γ= 1

aauxγ,j , bα,j =

n−1∑

l= j

bauxα,l . (2.23)

Integrating the one forms (2.19) along the auxiliary cycles as shown in (2.20) for the basis
{aα,j , bα,j}, one de�nes the matrices Aaux and Baux. The advantage of the auxiliary cycles
is that the integrals (Aaux)β,αk,j and (Baux)β,αk,j on the j-th sheet are obtained multiplying
the corresponding ones on the �rst sheet by a phase [208]

(Aaux)β,αk,j = ρk(j−1)
n (Aaux)β,αk,1 , (Baux)β,αk,j = ρk(j−1)

n (Baux)β,αk,1 , ρn ≡ e2πi/n . (2.24)

Because of the relation (2.23) among the cycles of the canonical homology basis and
the auxiliary ones, the matrices A and B in (2.20) are related to Aaux and Baux as

Aβ,αk,j =

α∑

γ= 1

(Aaux)β,γk,j = ρk(j−1)
n

α∑

γ= 1

(Aaux)β,γk,1 , (2.25a)

Bβ,αk,j =

n−1∑

l= j

(Baux)β,αk,l =

n−1∑

l= j

ρk(l−1)
n (Baux)β,αk,1 =

ρkjn − 1

ρkn(1− ρkn)
(Baux)β,αk,1 , (2.25b)

where the relations (2.24) have been used. Thus, from (2.25) we learn that we just need
(Aaux)β,αk,1 and (Baux)β,αk,1 to construct the matrices A and B.

By carefully considering the phases in the integrand along the cycles, we �nd

(Aaux)β,αk,1 =

∮

aauxα,1

ωβ,k = (−1)N−α(ρ−kn − 1) Iβ,k

∣∣x2α−1

x2α−2
, (2.26a)

(Baux)β,αk,1 =

∮

bauxα,1

ωβ,k = (−1)N−αρk/2n (ρ−kn − 1) Iβ,k

∣∣x2α

x2α−1
, (2.26b)

where we introduced the following integral

Iβ,k

∣∣b
a
≡
∫ 1

0

(b− a)
[
(b− a)t+ a

]β−1−k/n
dt

∏N
γ=2

∣∣(b− a)t− (x2γ−2 − a)
∣∣k/n∏N−1

γ=1

∣∣(b− a)t− (x2γ−1 − a)
∣∣1−k/n .

(2.27)
We numerically evaluate the integrals needed to get the g×g matricesA and B as explained
above and then construct the period matrix τ = A−1 · B, as in (2.22).

In App. 2.B we write the integrals occurring in (2.26) in terms of Lauricella functions,
which are generalizations of the hypergeometric functions [241]. As a check of our expres-
sions, we employed the formulas for the number of real components of the period matrix
found in [228].

Both the matrices in (2.25) share the following structure

Hβ,αk,j = h(k, j)(Hk)βα , (Hk)βα ≡ Hβ,αk,1 , (2.28)

where we denoted by H a g × g matrix whose indices run as explained in the beginning
of this subsection, h is a generic function and we also introduced the (N − 1) × (N − 1)
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matrices Hk labelled by k = 1, . . . , n− 1. Considering the block diagonal matrix made by
the Hk's, one �nds that (2.28) can be written as

H = Hd · (MH ⊗ IN−1) , Hd ≡ diag(. . . ,Hk , . . . ) , (MH)kj ≡ h(k, j) , (2.29)

where we denote by Ip the p× p identity matrix. For the determinant of (2.29), we �nd

det(H) =
(
det(MH)

)n−1
n−1∏

k= 1

det(Hk) . (2.30)

Thus, (2.25) can be expressed as in (2.29) with

(MA)kj ≡ ρk(j−1)
n , (Ak)βα ≡ Aβ,αk,1 = (ρ−kn − 1)

α∑

γ= 1

(−1)N−γIβ,k

∣∣x2γ−1

x2γ−2
, (2.31a)

(MB)kj ≡
ρkjn − 1

ρkn(1− ρ−kn )
, (Bk)βα ≡ Bβ,αk,1 = (−1)N−αρ−k/2n (1− ρ−kn ) Iβ,k

∣∣x2α

x2α−1
, (2.31b)

where (2.26) has been employed. The period matrix (2.22) becomes [234]

τ = (MA ⊗ IN−1)−1 · diag(A−1
1 · B1,A−1

2 · B2, . . . ,A−1
n−1 · Bn−1) · (MB ⊗ IN−1) . (2.32)

Notice that det(MA) = det(MB) and this implies

det(τ) = det
(
diag(A−1

1 · B1, . . . ,A−1
n−1 · Bn−1)

)
=

n−1∏

k=1

det(Bk)

det(Ak)
. (2.33)

Moreover, since det(MA) 6= 1, from the relation (2.30) we have det(A) 6= ∏n−1
k=1 det(Ak)

and det(B) 6= ∏n−1
k=1 det(Bk).

2.3.2 The partition function

In order to write the partition function of the free boson on RN,n, we need the Riemann
theta function introduced in (1.59) specialized to the z = 0 case, which is [215, 216]

Θ(0|Ω) =
∑

m∈Zp
exp(iπmt · Ω ·m) , (2.34)

where Ω is a p × p complex, symmetric matrix with positive imaginary part. We recall
that the Riemann theta function Θ(z|Ω) is de�ned as a periodic function of a complex
vector z ∈ Cp, but in our problem the special case z = 0 occurs.

As mentioned at the beginning of this section, we do not explicitly extend the con-
struction of [207, 208, 226] to the case N > 2 and n > 2. Given the form of the result for
N = 2 intervals and n > 2 sheets [219, 226], we assume its straightforward generalization
to N > 2. Let us recall that F2,n(x) can be obtained as the properly normalized partition
function of the model (2.16) on R2,n, once the four endpoints of the two intervals have
been mapped to 0, x, 1 and ∞ (0 < x < 1) [226]. Thus, for N > 2 we compute FN,n(x)
in (1.52) as the normalized partition function of (2.16) on RN,n, once (1.51) has been
applied.

By employing the results of [207, 209, 210, 212�214], for the free compacti�ed boson
we can write FN,n(x) = Fqu

N,n F cl

N,n(η), where this splitting comes from the separation of
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Figure 2.5: The function R3,3(x) for the free compacti�ed boson, obtained from (2.13) and (2.41),
computed for two con�gurations of intervals de�ned in Sec. 2.5 (see Fig. 2.2).

the �eld as the sum of a classical solution and the quantum �uctuation around it. The
classical part is made by the sum over all possible windings around the circular target
space and therefore it encodes its compacti�ed nature. This tells us that F cl

N,n contains
all the dependence on the compacti�cation radius through the parameter η ∝ R2

circle. We
refer the reader to the explicit constructions of [207, 208, 226] for the details.

Given the period matrix τ for RN,n computed in Sec. 2.3.1, the quantum and the
classical part in FN,n(x) = Fqu

N,n F cl

N,n(η) read [207, 209, 210, 214]

Fqu

N,n =
1

|Θ(0|τ)|2 , F cl

N,n(η) =
∑

p,p̃

exp[iπ(pt · τ · p− p̃t · τ · p̃)] , (2.35)

where

p =
m√
2η

+
n
√

2η

2
, p̃ =

m√
2η
− n
√

2η

2
, m,n ∈ Zg . (2.36)

Expanding the argument of the exponential in (2.35), one �nds that the classical part can
be written in terms of the Riemann theta function as

F cl

N,n(η) = Θ(0|Tη) , (2.37)

where Tη is the following 2g × 2g symmetric matrix

Tη =

(
i η I R
R i I/η

)
. (2.38)

Being I positive de�nite and η > 0, also the imaginary part of Tη is positive de�nite.
From (2.37) and (2.38), it is straightforward to observe that Fcl

N,n(η) = Fcl
N,n(1/η). Thus,
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Figure 2.6: The function Θ(0|iG/η) with N = 3, n = 3 and for the con�gurations I and II shown
in Fig. 2.2. For small η (the decompacti�cation regime) this term can be neglected (see (2.39)
and (2.41)).

since all the dependence of FN,n(x) on η is contained in Fcl
N,n, we �nd that FN,n(x) is

invariant under η ↔ 1/η.
By employing the Poisson summation formula (only for half of the sums), the classical

part (2.37) can be written as

F cl

N,n(η) = ηg/2
Θ(0|iηG)√

det(I)
= η−g/2

Θ(0|iG/η)√
det(I)

, (2.39)

where the 2g × 2g matrix G reads

G =

(
I +R · I−1 · R R · I−1

I−1 · R I−1

)
. (2.40)

This matrix is real, independent of η and symmetric, being R and I symmetric matrices.
Combining (2.35), (2.37) and (2.39), we �nd FN,n(x) for the free compacti�ed boson

FN,n(x) =
Θ(0|Tη)

|Θ(0|τ)|2 =
ηg/2 Θ(0|iηG)√
det(I) |Θ(0|τ)|2

=
η−g/2 Θ(0|iG/η)√
det(I) |Θ(0|τ)|2

. (2.41)

The term |Θ(0|τ)| in the denominator can be rewritten by applying the Thomae type
formula for the complex curves (2.18) [234, 242]

Θ(0|τ)8 =

∏n−1
k=1[det(Ak)]4

(2πi)4g

(
N−1∏

i,j= 0
i < j

(x2j − x2i)

N−2∏

r,s= 0
r < s

(x2s+1 − x2r+1)

)2(n−1)

, (2.42)
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where the (N − 1) × (N − 1) matrices Ak have been de�ned in (2.31). Plugging (2.41)
into (1.52), one �nds Tr ρnA for the free compacti�ed boson in terms of the compacti�cation
radius and of the endpoints of the intervals. Once FN,n(x) has been found, R̃N,n(x) and
RN,n(x) are obtained through (2.9) and (2.13) respectively.

In [196] the expansion where all the lengths of the intervals are small with respect to the
other characteristic lengths of the systems has been studied. This means that x2i+1−x2i

are small compared to the distances x2j+2 − x2j+1, where i, j = 0, . . . , N − 2 (we recall
that x0 = 0 and x2N−2 = 1). Analytic expressions have been found for N = 2 [196]
and one could extend this analysis to N > 2 by employing (2.41). We leave this analysis
for future work. We checked numerically that FN,n(0) = 1, which generalizes the known
result F2,n(0) = 1 [226].

In App. 2.C we discuss the invariance of (2.41) under a cyclic change in the ordering of
the sheets, an inversion and the exchange A↔ B, writing explicitly these transformations
in terms of symplectic matrices.

2.3.3 The decompacti�cation regime

When η → ∞ the target space of the free boson becomes the in�nite line. This regime
is important because it can be obtained as the continuum limit of the harmonic chain.
Notice that the results of this subsection can be obtained also for η → 0 because of the
η ↔ 1/η invariance.

Since Θ(0|iηG) → 1 when η → ∞ (or equivalently Θ(0|iG/η) → 1 when η → 0 as
shown in Fig. 2.6), we �nd that (2.41) becomes

Fη→∞N,n (x) =
ηg/2√

det(I) |Θ(0|τ)|2
≡ ηg/2 F̂N,n(x) . (2.43)

Writing |Θ(0|τ)| through (2.42), one can improve the numerical evaluation of (2.43).
Plugging (2.43) into (2.13), we �nd that in the decompacti�cation regime RN,n becomes

Rη→∞N,n (x) = η(−1)N (n−1)/2
N∏

p= 2

∏

σN,p

[
F̂p,n(xσN,p)

](−1)N−p

. (2.44)

In this case it is very useful to consider the normalization (2.15) through a �xed con�g-
uration of intervals characterized by x�xed because the dependence on η simpli�es in the
ratio. Indeed, from (2.44) we �nd

lim
η→∞

Rnorm

N,n (x) =
Rη→∞N,n (x)

Rη→∞N,n (x�xed)
=

N∏

p= 2

∏

σN,p

[
F̂p,n(xσN,p)

F̂p,n(x
σN,p
�xed )

](−1)N−p

, (2.45)

and similarly, from (2.43), we have

lim
η→∞

Fnorm

N,n (x) =
Fη→∞N,n (x)

Fη→∞N,n (x�xed)
=
F̂N,n(x)

F̂N,n(x�xed)
. (2.46)

In Sec. 2.5 we compare (2.45) and (2.46) to the corresponding results for the harmonic
chain with periodic boundary conditions.
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2.3.4 The Dirac model

It is well known that the partition function of the compacti�ed massless free boson de-
scribes various systems at criticality. For example, the modular invariant Dirac fermion
corresponds to the case η = 1/2. Given (2.41), we can write Tr ρnA for this model by apply-
ing the results of [209�211, 214]. We need the Riemann theta function with characteristic
et = (εt, δt) de�ned in Eq. (1.61), again specialized to z = 0, namely

Θ[e](0|Ω) =
∑

m∈Zp
exp

[
iπ(m+ ε)t · Ω · (m+ ε) + 2πi(m+ ε)t · δ

]
, (2.47)

where ε and δ are vectors whose entries are either 0 or 1/2. When ε = δ = 0, we
recover (2.34). We saw in Sec. 1.4 that the characteristics e are either even or odd,
according to the parity of 4ε · δ, and that there are 2p−1(2p + 1) even characteristics and
2p−1(2p − 1) odd ones.

Applying some identities for the Riemann theta functions, from (2.41) one �nds

FDirac

N,n (x) = FN,n(x)
∣∣
η=1/2

=

∑
e |Θ[e](0|τ)|2
2g |Θ(0|τ)|2 , (2.48)

where the period matrix τ has been computed in Sec. 2.3.1.
Notice that, being Θ[e](0|Ω) = 0 when e is odd (see Eq. (1.62)), in the sum over the

characteristics in (2.48) only the even ones occur. Since (2.48) has been obtained as the
special case η = 1/2 of (2.41), FDirac

N,n (0) = 1. The result for the free Dirac fermion [46]
corresponds to keep only e = 0 in the numerator of 2.48 instead of considering the sum
over all the sectors of the model [228].

2.4 Recovering the two intervals case

In this section we want to recover the known results for two intervals [196, 226]. We �rst
review the status of the two intervals case and then we show that the corresponding Rényi
entropies reduce to a particular case of the expressions discussed in Sec. 2.3, as expected.

2.4.1 Two disjoint intervals for generic complex x

For generic positions of the twist �elds in the complex plane, x ∈ C and the corresponding
expression of 〈TnT̄nTnT̄n〉 is given by the r.h.s. of (1.52) with F2,n = F2,n(x, x∗). For the
free compacti�ed boson, this function reads [135]

F2,n(x, x∗) =
Θ(0|Tη,2)∏n−1
k=1 |Fk/n(x)|

=
Θ(0|Tη,2)

|Θ(0|τ2)|2 , Fk/n(x) ≡ 2F1(k/n, 1− k/n; 1;x) ,

(2.49)
where Tη,2 is the 2(n− 1)× 2(n− 1) symmetric matrix given by

Tη,2 =

(
i η Im(τ2) Re(τ2)
Re(τ2) i Im(τ2)/η

)
, (2.50)

de�ned in terms of the following (n− 1)× (n− 1) complex and symmetric matrix

(τ2)ij =
2

n

n−1∑

k=1

sin(πk/n)

[
i
Fk/n(1− x)

Fk/n(x)

]
cos[2πk/n(i− j)] . (2.51)
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Figure 2.7: The canonical homology basis {âα,j , b̂α,j} for N = 3 and n = 4.

The matrix Tη,2 in (2.49) is de�ned as in (2.38) with τ2 instead of τ . In the second step
of (2.49) the Thomae formula (2.42) has been employed. Notice that, because of the sum
over k in (2.51), substituting cos[2πk/n(i − j)] with ρk(i−j)

n the matrix does not change.
The non vanishing of Re(τ2) is due to the fact that the term within the square brackets
in (2.51) is complex for x ∈ C.

As brie�y explained in Sec. 2.3.4, it is straightforward to write the corresponding result
for the Dirac model from (2.49). It reads

FDirac

2,n (x, x∗) =

∑
e |Θ[e](0|τ2)|2

2n−1 |Θ(0|τ2)|2 . (2.52)

Given the period matrix (2.51), one can also �nd F Ising

2,n (x, x∗) for the Ising model [136,
145]

F Ising

2,n (x, x∗) =

∑
e |Θ[e](0|τ2)|

2n−1 |Θ(0|τ2)| . (2.53)

In order to consider the Rényi entropies, we must restrict to x ∈ (0, 1). Within this
domain, Fk/n(x) is real and this leads to a purely imaginary τ2. Since Re(τ2) vanishes
identically for x ∈ (0, 1), the matrix Tη,2 in (2.50) becomes block diagonal and therefore
Θ(0|Tη,2) = Θ(0| iη Im(τ2)) Θ(0| i Im(τ2)/η) factorizes. Thus, the expressions given in
(2.49) and (2.53) reduce to F2,n(x) for the free compacti�ed boson [226] and for the Ising
model [196] respectively.
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Figure 2.8: The Riemann surface R3,4 with the canonical homology basis {âα,j , b̂α,j}.

2.4.2 Another canonical homology basis

To recover the period matrix (2.51) for x ∈ (0, 1) as the two intervals case of a period
matrix characterizing N > 2 intervals, we �nd it useful to introduce the canonical homol-
ogy basis {âα,j , b̂α,j} depicted in Figs. 2.7 and 2.8. This basis is considered very often in
the literature on higher genus Riemann surfaces (e.g. see Fig. 1 both in [209] and [210]).
Integrating the holomorphic di�erentials (2.19) along the cycles â and b̂, as done in (2.20)
for a and b, one gets the matrices Â and B̂. To evaluate these matrices, we repeat the
procedure described in Sec. 2.3.1. In particular, we �rst write {âα,j , b̂α,j} through the
auxiliary cycles depicted in Figs. 2.28 and 2.29, �nding that

âα,j =

α∑

γ=1

j∑

l=1

aauxγ,l , b̂α,j = bauxα,j . (2.54)

Comparing (2.23) with (2.54), we observe that for n = 2 the canonical homology basis
introduced here coincides with the one de�ned in Sec. 2.3.1. From (2.54), one can write
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the matrices Â and B̂ as follows

Âβ,αk,j =

α∑

γ=1

j∑

l=1

(Aaux)β,γk,l =

α∑

γ=1

j∑

l=1

ρk(l−1)
n (Aaux)β,γk,1 =

1− ρjkn
1− ρkn

α∑

γ=1

(Aaux)β,γk,1 , (2.55a)

B̂β,αk,j = (Baux)β,αk,j = ρk(j−1)
n (Baux)β,αk,1 , (2.55b)

where (2.24) has been used. Now the elements of Â and B̂ are expressed in terms of
the integrals in (2.26), which can be numerically evaluated. Once Â and B̂ have been
computed, the period matrix with respect to the basis {âα,j , b̂α,j} is τ̂ = Â−1 · B̂.

Since the matrices Â and B̂ have the structure (2.28), like A and B in Sec. 2.3.1, we
can write them as in (2.29) with

(MÂ)kj ≡
1− ρkjn
1− ρkn

, (Âk)βα ≡ Âβ,αk,1 = (ρ−kn − 1)

α∑

γ= 1

(−1)N−γIβ,k

∣∣x2γ−1

x2γ−2
(2.56a)

(MB̂)kj ≡ ρk(j−1)
n , (B̂k)βα ≡ B̂β,αk,1 = (−1)N−αρk/2n (ρ−kn − 1) Iβ,k

∣∣x2α

x2α−1
. (2.56b)

where 2.26 has been employed and Iβ,k

∣∣a
b
are the integrals (2.27). Notice that Âk = Ak,

while (B̂k)βα = (Baux)β,αk,1 = −ρkn(Bk)βα. Thus, the period matrix τ̂ reads

τ̂ = (MÂ ⊗ IN−1)−1 · diag(Â−1
1 · B̂1, Â−1

2 · B̂2, . . . , Â−1
n−1 · B̂n−1) · (MB̂ ⊗ IN−1) . (2.57)

Since (2.32) and (2.57) are the period matrices of the Riemann surface RN,n with
respect to di�erent canonical homology basis, they must be related through a symplectic
transformation. The relations (2.23) and (2.54) in the matrix form become respectively

{
a = A · aaux
b = B · baux ,

{
â = Â · aaux
b̂ = baux

. (2.58)

Introducing the p×p upper triangular matrix Iupp made by 1's (i.e. (Iupp )ab = 1 if a 6 b and
zero otherwise) and also its transposed I lowp ≡ (Iupp )t, which is a lower triangular matrix, we

can write that A = In−1⊗I lowN−1, B = Iupn−1⊗ IN−1 and Â = I lown−1⊗I lowN−1. We remark that
the matrices diag(A,B) and diag(Â, Ig) occurring in (2.58) are not symplectic matrices
because, as already noticed in Sec. 2.3.1, the auxiliary set of cycles is not a canonical
homology basis. From (2.58) it is straightforward to �nd the relation between the two
canonical homology basis, namely

{
â = Â ·A−1 · a
b̂ = B−1 · b , M ≡

(
Â ·A−1 0g

0g B−1

)
∈ Sp(2g,Z) , (2.59)

which can be constructed by using that (Iupp )−1
ab = δa,b − δa+1,b and the properties of the

tensor product, �nding Â ·A−1 = I lown−1 ⊗ IN−1 and B−1 = (Iupn−1)−1 ⊗ IN−1. Notice that
(2.59) belongs to the symplectic modular group, as expected from the fact that it encodes
the change between canonical homology basis.

2.4.3 The case N = 2

Specializing the expressions given in the previous subsection to the N = 2 case, the greek
indices assume only a single value; therefore they can be suppressed. The matrices (2.55a)
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and (2.55b) become respectively

Âkj ≡ Â1,1
k,j =

1− ρjkn
1− ρkn

[
(1− ρ−kn )I1,k

∣∣x
0

]
=

1− ρkjn
1− ρkn

[
2πi ρ−k/2n Fk/n(x)

]
, (2.60a)

B̂kj ≡ B̂1,1
k,j = ρk(j−1)

n

[
ρk/2n (1− ρ−kn )I1,k

∣∣1
x

]
= ρk(j−1)

n

[
2πiFk/n(1− x)

]
, (2.60b)

where x ∈ (0, 1), the indices j, k ∈ {1, . . . , n− 1} and the explicit results for (Aaux)k,1 and
(Baux)k,1, from (2.26a) and (2.26b) respectively, are written within the square brackets
(see (4.29) of [208] and also (2.108a) and (2.108b)). The matrices in (2.60) can be written
respectively as follow

Â = diag(. . . , 2πi ρ−k/2n Fk/n(x), . . . ) ·MÂ , (2.61a)

B̂ = diag(. . . , 2πiFk/n(1− x), . . . ) ·MB̂ , (2.61b)

where MÂ and MB̂ have been de�ned in (2.56). Computing M−1

Â , whose elements read

(M−1

Â )ik = (ρkn − 1)/(nρikn ), we can easily check that (2.51) becomes

τ2 = Â−1 · B̂ = M−1

Â · diag
(
. . . , ρk/2n

Fk/n(1− x)

Fk/n(x)
, . . .

)
·MB̂ . (2.62)

Thus, the matrix (2.51) for 0 < x < 1 found in [226], is the N = 2 case of the period
matrix τ̂ , written with respect to the canonical homology basis introduced in the section
Sec. 2.4.2

τ̂ |N=2 = τ2 . (2.63)

To conclude this section, let us consider the symplectic transformation (2.59), which
reduces to diag(I lown−1, (I

up

n−1)−1) for N = 2. Its inverse reads diag((I lown−1)−1, Iupn−1) and it
allows us to �nd the period matrix τ ′2 with respect to the canonical homology basis given
by the cycles a and b through (2.111), namely

τ ′2 = Iupn−1 · τ2 · I lown−1 . (2.64)

Introducing the symmetric matrix Aij ≡ 2/n
∑n−1
k=1 sin(πk/n) e2πi(j−i) (which has been

denoted by A in the App. C of [226]), after some algebra we �nd

A · Iupn−1 · τ2 · I lown−1 ·A = τ2 . (2.65)

Combining (2.64) and (2.65), we easily get that τ ′2 = A −1 · τ2 ·A −1. Then, by employing
(2.115) and the fact that det(Iupn−1) = 1, we get

Θ(0|τ ′2) = Θ(0|A −1 · τ2 ·A −1) = Θ(0|τ2) . (2.66)

In [226] the second equality in (2.66) has been given as a numerical observation. We have
shown that it is a consequence of the relation between the two canonical homology basis
considered here.

2.5 The harmonic chain

In this section we consider the Rényi entropies and the entanglement entropy for the
harmonic chain with periodic boundary conditions, which have been largely studied in
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Figure 2.9: A bipartition of the periodic chain where A is made by the union of three disjoint
blocks of lattice sites.

the literature [11, 12, 148�151, 243]. We compute new data for the case of disjoint blocks
in order to check the CFT formulas found in Sec. 2.3 for the decompacti�cation regime.

The Hamiltonian of the harmonic chain made by L lattice sites and with nearest
neighbor interaction reads

H =

L−1∑

n=0

(
1

2M
p2
n +

Mω2

2
q2
n +

K

2
(qn+1 − qn)2

)
, (2.67)

where periodic boundary conditions q0 = qL and p0 = pL are imposed and the variables
qn and pm satisfy the commutation relations [qn, qm] = [pn, pm] = 0 and [qn, pm] = iδn,m.
The Hamiltonian (2.67) contains three parameters ω, M , K but, through a canonical
rescaling of the variables, it can be written in a form where these parameters occur only
in a global factor and in the coupling 2K

Mω2 /(1 + 2K
Mω2 ) [147, 150]. The Hamiltonian (2.67)

is the lattice discretization of a free boson with mass ω2. When ω = 0 the theory is
conformal with central charge c = 1. Since the bosonic �eld is not compacti�ed, we must
compare the continuum limit of (2.67) for ω = 0 with the regime η → ∞ of the CFT
expressions computed in Sec. 2.3, which has been considered in Sec. 2.3.3.

To diagonalize (2.67), �rst one exploits the translational invariance of the system by
Fourier transforming qn and pn. Then the annihilation and creation operators ak and a†k
are introduced, whose algebra is [ak, ak′ ] = [a†k, a

†
k′ ] = 0 and [ak, a

†
k′ ] = iδk,k′ . The ground

state of the system |0〉 is annihilated by all the ak's and it is a pure Gaussian state. In
terms of the annihilation and creation operators, the Hamiltonian (2.67) is diagonal

H =

L−1∑

k=0

ωk

(
a†kak +

1

2

)
, (2.68)
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Figure 2.10: The quantities Rnorm
N=5,n=3 (top) and IsubN=5 (bottom) in (2.14) computed for the

harmonic chain with periodic boundary conditions by employing (2.71) and (2.72). The total
length of the chain is L = 5000. The con�guration of the intervals is (2.76) and the �xed one
chosen for the normalization is (2.77). The continuos curve in the top panel is the CFT prediction
(2.45) and it agrees with the lattice results for ωL � 1. We are not able to compute the CFT
prediction for the bottom panel.

where

ωk ≡
√
ω2 +

4K

M
sin
(πk
L

)2

> ω , k = 0, . . . , L− 1 . (2.69)

Notice that the lowest value of ωk is obtained for ω0 = ω.
The two point functions 〈0|qiqj |0〉 and 〈0|pipj |0〉 are the elements of the correlation
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matrices Qrs = 〈0|qrqs|0〉 and Prs = 〈0|prps|0〉 respectively. For the harmonic chain with
periodic boundary conditions that we are considering, they read

〈0|qiqj |0〉 =
1

2L

L−1∑

k=0

1

Mωk
cos

(
2πk(i− j)

L

)
, (2.70a)

〈0|pipj |0〉 =
1

2L

L−1∑

k=0

Mωk cos

(
2πk(i− j)

L

)
. (2.70b)

When i, j = 0, . . . , L − 1 run over the whole chain, then Q · P = IL/4, which is also
known as the generalized uncertainty relation. We remark that the limit ω → 0 is not
well de�ned because the k = 0 term in 〈0|qiqj |0〉 diverges; therefore we must keep ω > 0.
Thus, we set ωL � 1 in order to stay in the conformal regime. As explained above, we
can work in units M = K = 1 without loss of generality.

In [149�151] it has been discussed that, in order to compute the Renyi entropies and
the entanglement entropy of a proper subset A (made by ˜̀ sites) of the harmonic chain,
�rst we have to consider the matrices QA and PA, obtained by restricting the indices
of the correlation matrices Q and P to the sites belonging to A. Then we compute the
eigenvalues of the ˜̀× ˜̀matrix QA · PA. Since they are larger than (or equal to) 1/4, we
can denote them by {µ2

1, . . . , µ
2
`}. Finally, the Renyi entropies are obtained as follows

TrρnA =

˜̀∏

a= 1

[(
µa +

1

2

)n
−
(
µa −

1

2

)n ]−1

, (2.71)

and the entanglement entropy as

SA =

˜̀∑

a= 1

[(
µa +

1

2

)
log

(
µa +

1

2

)
−
(
µa −

1

2

)
log

(
µa −

1

2

)]
. (2.72)

This procedure holds also when A is the union of N disjoint intervals Ai (i = 1, . . . , N),
which is the situation we are interested in.

Let us denote by `i the number of sites included in Ai and by di the number of sites
in the separations between Ai and Ai+1modN , for i = 1, . . . , N (see Fig. 2.9 for N = 3).
Then, we have that ˜̀ =

∑N
i=1 `i and the following consistency condition about the total

length of the chain must be imposed

L =

N∑

i= 1

(`i + di) . (2.73)

In order to compare the CFT results found in the previous sections with the ones
obtained from the harmonic chain in the continuum limit, we have to generalize the CFT
formulas to the case of a �nite system of total length L with periodic boundary conditions.
This can be done by employing the conformal map from the cylinder to the plane, whose
net e�ect is to replace each length y (e.g. `, d, 2`+ d, etc.) with the corresponding chord
length (L/π) sin(πy/L). Thus, for x2j+1 with j = 0, . . . , N − 2 we have

x2j+1 =
sin
(
π
[∑j

i=1(`i + di) + `j+1

]
/L
)

sin(π`N/L)

sin
(
π
∑N−1
i=1 (`i + di)/L

)
sin
(
π
[
dj+1 +

∑N−1
i=j+2(`i + di) + `N

]
/L
) , (2.74)
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Figure 2.11: The ratio Rnorm
N,n in (2.14) for the periodic harmonic chain with ωL = 10−3 and the

con�guration of the intervals given by (2.76), normalized through (2.77). The continuos curves
are the CFT predictions (2.45). Top: N = 3 and n = 4 (in the inset we zoom on part of the
region 0.5 < x2 < 1). Bottom: N = 4 and n = 4.

while for the harmonic ratios x2j , where j = 1, . . . , N − 2, we must consider

x2j =
sin
(
π
∑j
i=1(`i + di)/L

)
sin(π`N/L)

sin
(
π
∑N−1
i=1 (`i + di)/L

)
sin
(
π
[∑N−1

i=j+2(`i + di) + `N
]
/L
) . (2.75)

Notice that dN , which can be obtained from (2.73), does not occur in these ratios. More-
over, (2.74) and (2.75) depend only on `i/L and di/L, with i = 1, . . . , N − 1.
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Figure 2.12: The quantity Fnorm
N,n computed for the periodic harmonic chain with ωL = 10−3 in

the con�guration of intervals (2.76), normalized through (2.77). The lattice data are obtained
by using (2.8), (2.9), (2.71) and (2.72). The continuos curves are given by (2.46). The maximum
value on the horizontal axis is 1/N . We show the cases of N = 3 (top) and N = 4 (bottom) with
n = 2, 3, 4.

We often consider the con�guration where all the intervals have the same length and
also the segments separating them have the same size, namely

`1 = · · · = `N ≡ ` , d1 = · · · = dN ≡ d . (2.76)

This con�guration is parameterized by `, once d has been found in terms of ` through
the condition (2.73). As mentioned in Sec. 2.2, in order to eliminate some parameters, it
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Figure 2.13: The quantity IsubN (see (2.14)) computed for the periodic harmonic chain with
ωL = 10−3. The con�guration of intervals is given by (2.76) and the �xed one by (2.77). We
show N = 3 (top) and N = 4 (bottom).

is useful to normalize the results through a �xed con�guration of intervals, as done e.g.
in [134�136]. We choose the following one

�xed con�guration: `1 = · · · = `N = d1 = · · · = dN−1 = int
(
L

2N

)
, (2.77)

where int(. . . ) denotes the integer part of the number within the brackets and dN is
obtained from (2.73).
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In Figs. 2.10, 2.11, 2.12 and 2.13 we choose the con�guration (2.76) normalized through
the �xed one in (2.77). A chain made by L = 5000 sites gives us a very good approximation
of the continuum case. We also made some checks with L = 10000 in order to be sure that
the results do not change signi�cantly. From Fig. 2.10 we learn that for ωL ∼ 10−3 we are
already in a regime which is suitable to check the CFT prediction of Sec. 2.3.3, therefore
we keep ωL = 10−3 for the other plots obtained from the harmonic chain. From the exact
results obtained on the lattice, it is evident that the value of η in the CFT expressions of
Sec. 2.3.3 that must be �xed to �nd a good match is a function of ωL only. Nevertheless,
as already noticed in Sec. 2.3.3, normalizing the interesting quantities through a �xed
con�guration as in (2.14), we can ignore this important issue because η simpli�es (see
2.45 and 2.46)). The Figs. 2.11 and 2.12 show that the agreement between the exact
results from the harmonic chain and the corresponding CFT predictions is very good.
Instead, for the plots in Fig. 2.13 we do not have a CFT prediction because, ultimately,
we are not able to compute ∂nF̂N,n(x) when n→ 1 for the function de�ned in (2.43).

When N > 2 we have many possibilities to choose the con�guration of the intervals.
In principle we should test all of them and not only (2.76), as above. For simplicity, we
consider two other kinds of con�gurations de�ned as follows

`1 d1 `2 d2 `3 d3 . . . `N dN
λ ` d λ2` d λ3` d . . . λN` d
γ ` d γ2` γ2d γ3` γ3d . . . γN` γNd

(2.78)

where λi and γi are integer numbers which can be collected as components of the vectors
λ and γ. Notice that the con�guration (2.76) is obtained either with λi = 1 or with
γi = 1, for i = 2, . . . , N . Once the ratios λi or γi have been chosen in (2.78), we
are left with ` and d as free parameters. As above, d can be found as a function of
` through the condition (2.73) and the maximum value for ` corresponds to d = 1.
The con�gurations in (2.78) depend only on the parameter `; therefore they provide
one dimensional curves in the con�gurations space, which is 2N − 3 dimensional and
parameterized by 0 < x1 < x2 < · · · < x2N−3 < 1. When N = 3, let us consider the
con�gurations (2.78) with the following choices

I γ1 = 1 γ2 = 1 γ3 = 1
II λ1 = 1 λ2 = 2 λ3 = 8
III γ1 = 1 γ2 = 3 γ3 = 6
IV λ1 = 1 λ2 = 11 λ3 = 11

(2.79)

where the �rst one is (2.76) specialized to the case of three intervals. Plugging these
con�gurations in (2.74) and (2.75) for N = 3, we can �nd the corresponding curves
within the domain 0 < x1 < x2 < x3 < 1, as shown in Fig. 2.2. These curves can be
equivalently parameterized either by `/L or by one of the harmonic ratios xi. In Fig. 2.14
we show Rnorm

3,n (n = 2, 3, 4), �nding a good agreement with the CFT prediction (2.45). In
Fig. 2.15 we plot Isub3 for the harmonic chain but, as for Fig. 2.13, we do not have a CFT
formula to compare with for the reason mentioned above.

2.6 The analytic continuation through a numerical extrapolation

It has already been argued several times that the analytic continuation (1.48) of the
formulas found in the previous sections is very di�cult, since they are written in terms
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Figure 2.14: The ratio Rnorm
N,n in (2.14) for the harmonic chain with ωL = 10−3. The con�gurations

II, III and IV, which are de�ned in (2.79), have been normalized through (2.77). The continuous
curve is the CFT prediction (2.45). We show N = 3 and n = 2, 3, 4 (top, middle, bottom).

of Riemann theta functions, which in turn are functions of matrices of dimension g =
(n− 1)(N − 1). However, we still can have predictions for the entanglement entropy and
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Figure 2.15: IsubN=3 in (2.14) for the periodic harmonic chain with ωL = 10−3. The con�gurations
are de�ned in (2.79) and the �xed one is given by (2.77).

the mutual information from the Rényi entropies, by resorting to numerical techniques
to perform this complicated analytic continuation. In this section we employ a numerical
extrapolation based on a rational interpolation of the known analytic data. This method
has been �rst suggested in this context in Ref. [152]. In our case, we focus on the de-
compacti�ed boson and we can compare the results with the numerics obtained from the
harmonic chain, �nding very good agreement. In [236] the same technique have been also
used to study the analytic continuation of moments of the partial transpose to obtain the
logarithmic negativity (see Eq. (1.70)) for the boson in the decompacti�cation regime.
In this case the analytic continuation is more troublesome and some extra care must be
taken when performing the extrapolation procedure.

In the remaining part of this section we focus on the case of three disjoint intervals and
perform some numerical extrapolations of the analytic results of the previous sections to
n = 1 through rational interpolations, comparing them with the corresponding numerical
data from the harmonic chain. The rational function used to interpolate the data is
characterized by two positive integer parameters p and q, which are the degrees of the
numerator and of the denominator respectively. As explained in App. 2.E.2, to perform
a rational interpolation characterized by the pair (p, q) we need at least p+ q + 1 known
data.

In Figs. 2.16 and 2.17 we consider Isub3 (see (2.14)) for the decompacti�ed boson.
The dots are the numerical data of the bottom panel of Fig. 2.13 and of Fig. 2.15 of
the periodic harmonic chain with L = 5000, and di�erent sets of data correspond to
di�erent con�gurations of the three intervals. We recall that the con�guration considered
in Fig. 2.16 is the one described in (2.76), while in Fig. 2.17 the data are labeled according
to the con�gurations of the three intervals given in (2.79). The parameter ` is varied
and the results are plotted as functions of the four-point ratio x2 ∈ (0, 1). Finally,
the �xed con�guration normalizing Isub3 in (2.14) is (2.77) with N = 3. The coloured
curves in Figs. 2.16 and 2.17 are the numerical extrapolations of the CFT formulas (2.43)
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Figure 2.16: Extrapolations of Isequb3 (see 2.14 with N = 3) as function of the four-point ratio
x2 for the non compact boson. The points are the data from the periodic harmonic chain with
L = 5000 and ωL = 10−5. The con�guration chosen here is made by equal intervals separated by
equal distances, while the �xed con�guration normalizing Isub3 is given in the text. The coloured
lines correspond to two di�erent extrapolations obtained through rational interpolations with
(p, q) indicated.

Figure 2.17: Extrapolations of Isub3 for the non compact boson. The harmonic chain is the same
one of Fig. 2.16 while the con�gurations of intervals are given by (2.79).
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and (2.45) through the rational interpolation method. For each set of data, we show two
di�erent well-behaved rational interpolations in order to check the stability of the result
(see App. 2.E for a detailed analysis of possible singular behaviors and what we mean
by well-behaved). Di�erent well-behaved rational interpolations are very similar and the
agreement with the numerical data from the harmonic chain is very good, supporting the
validity of the method.

An important technical di�culty that one encounters is the evaluation of the Riemann
theta functions for large genus period matrices, i.e. for high values of N and n. It is
worth remarking at this point that the Riemann theta functions occurring in the CFT
expression (2.43) for the non compact boson contain at most g× g matrices (g = 2(n− 1)
for N = 3) while for the compact boson their size is at most 2g × 2g (see 2.41). From
the computational viewpoint, this is an important di�erence because the higher is n that
can be addressed, the higher is the number of di�erent (p, q) that can be considered in
the rational interpolations. Thus, the maximum n that we can deal with is related to the
maximum size of the matrices in the Riemann theta functions occurring in the model.
Given the computational resources at our disposal, we were able to compute Riemann
theta functions containing matrices whose size is at most 12. This means that for the
boson in the decompacti�cation regime (see Eq. (2.43)), in the case of three intervals we
can have access to data with 2 6 n 6 6, and therefore we can use rational functions
with p+ q + 1 6 5. Nevertheless, from Figs. 2.16 and 2.17 we observe that, for this case,
rational interpolations with low values of (p, q) are enough to capture the result expected
from the lattice data.

In App. 2.E we give more details on the method used. In particular, in Sec. 2.E.1 we
test the method on some numerical data available in the literature, while in Sec. 2.E.2 we
explore some technical issues of the rational interpolation and we investigate its validity.

2.7 The Ising model

The Ising model in transverse �eld provides a simple scenario where we can compute the
Rényi entropies of several disjoint intervals and compare them with the corresponding
predictions obtained through the CFT methods. The Hamiltonian is given by

H =

L∑

s= 1

(
σxsσ

x
s+1 + hσzs

)
, (2.80)

where s label the L sites of a 1D lattice L and the σx,zs are the Pauli matrices acting
on the spin at site s and periodic boundary conditions are imposed. The model has two
phases, one polarized along x for λ < 1 and another one polarized along z for λ > 1,
which are separated by a second order phase transition at h = 1.

The Ising model in transverse �eld can be rewritten as a model of free fermions [244].
The map underlying this equivalence has been employed in [245] to compute the Rényi
entropies for one block and in [222] for two disjoint blocks, where the generalization to
N blocks is also discussed.

Our approach is based on the Matrix Product States (MPS), which is completely
general and therefore it can be applied for every one dimensional model. We choose the
MPS because they are the simplest tensor networks (see Sec. 2.7.2 for a proper de�nition).
The same calculation can be done through other variational ansatz metohds, like the TTN
or the MERA [220, 223, 246]).
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tα,β
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t̄α,β
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ρA

αα=

α α

α̃ α̃

A B

Figure 2.18: The contraction giving the MPS state |ψ〉 of a chain with L = 8 sites and periodic
boundary conditions (points labeled by the same greek index are considered as the same point).
The individual tensor tα,βi , which de�nes the MPS state, and its complex conjugate t̄α,βi are shown
in the box on the left. Considering the bipartition of the chain with A made by 4 contiguous
sites, we show the tensor network contraction occurring in the computation of the reduced density
matrix ρA.

2.7.1 Rényi entropies for the Ising CFT

The continuum limit of the quantum critical point h = 1 corresponds to a free massless
Majorana fermion, which is a CFT with c = 1/2.

Identifying φ with −φ in (2.16), the target space becomes S1/Z2 and the compacti�-
cation radius (orbifold radius) parameterizes the critical line of the Ashkin-Teller model,
which can be seen as two Ising models coupled through a four fermions interaction. When
the interaction vanishes, the partition function of the Ashkin-Teller model reduces to the
square of the partition function of the Ising model. This set of c = 1 conformal �eld
theories has been studied in [209�211, 214] in the case of a worldsheet given by a generic
Riemann surface and the relations found within this context allow us to write Tr ρnA for the
Ising model in terms of Riemann theta functions with characteristic (2.47). The peculiar
feature of the Ising model with respect to the other points of the Ashkin-Teller line is
that we just need the period matrix τ to �nd the partition function on the corresponding
Riemann surface.

In our case, the Riemann surface is given by (2.18) and its period matrix has been
computed in Sec. 2.3.1. As anticipated in Sec. 1.4, Tr ρnA for the Ising model is given by
(1.52) with c = 1/2 and

F Ising

N,n (x) =

∑
e |Θ[e](0|τ)|
2g |Θ(0|τ)| , (2.81)

where the period matrix τ has been discussed in Sec. 2.3.1. As already remarked in
Sec. 2.3.4, the sum over the characteristics in the numerator of (2.81) contains only the
even ones. We checked numerically that F Ising

N,n (0) = 1. Moreover, by employing the results
of Sec. 2.4 and of App. 2.C, one �nds that, specializing (2.81) to N = 2, the expression for
F Ising

2,n (x) found in [196] is recovered. In App. 2.C we also discuss the invariance of (2.81)
under a cyclic transformations or an inversion in the ordering of the sheets and under the
exchange A↔ B.
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Figure 2.19: The computation of Trρ2A for the bipartition of Fig. 2.18, where ` = d = 4. The
MPS transfer matrix E and its p-th power are shown in the box as yellow rectangles. The pattern
for the contractions of the indices is on the right.

2.7.2 Matrix product states: notation and examples

A pure state |Ψ〉 ∈ V⊗L de�ned on the lattice L can be expanded in the local basis of Vs
given by {|1s〉 , |2s〉 , · · · , |δs〉} as follows

|Ψ〉 =

δ∑

i1=1

δ∑

i2=1

· · ·
δ∑

iL=1

Ti1i2···iL |i1〉 |i2〉 · · · |iL〉 . (2.82)

This means that |Ψ〉 is encoded in a tensor T with δL complex components Ti1i2···iL ∈ C.
We refer to the index 1 6 is 6 δ, labelling a local basis for site s, as the physical index.

The tensor network approach (see e.g. the review [247]) is a powerful way to rewrite
the exponentially large tensor T in (2.82) as a combination of smaller tensors. In order to
simplify the notation, drawings are employed to represent the various quantities occurring
in the computation. Tensors are represented by geometric shapes (circles or rectangles)
having as many legs as the number of indices of the tensor. The complex conjugate of a
tensor is denoted through the same geometric object delimited by a double line. A line
shared by two tensors represents the contraction over the pair of indices joined by it.

The MPS are tensor networks that naturally arise in the context of the Density Matrix
Renormalization Group [34, 38, 248]. They are build through a set of tensors tα,βi (one
for each lattice site) with three indices (see the box in Fig. 2.18): i is the physical index
mentioned above, while α and β are auxiliary indices. The tensors are contracted following
the pattern shown in Fig. 2.18, where the translational invariance of the state is imposed
by employing the same elementary tensor for each site. The state in Fig. 2.18 has L = 8
and it is given by

|Ψ〉 =

δ∑

i1,...,i8=1

χ∑

α1,...,α8=1

tα1α2
i1

tα2α3
i2

· · · tα8α1
i8

|i1〉 |i2〉 · · · |i8〉 , (2.83)
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Figure 2.20: The two point correlation function C(r)O1,O2 of the local operators O1 and O2.
The corresponding generalized transfer matrices E(O1) and E(O2), depicted in the box, must be
contracted with the proper powers of E.

where χ is the rank of the auxiliary indices, which is called bond dimension in this context.
Since we are using the same tensor for each site, the state is completely determined by the
components of the tensor tαβi , which are δχ2 free parameters. In the MPS approach, the
expectation value of local observables can be computed by performing O(δχ3) operations.
The components tαβi of the tensor are obtained numerically by minimizing 〈Ψ|H|Ψ〉 for
the Hamiltonian (2.80).

The bond dimension χ controls the accuracy of the results. Increasing χ, one can
describe an arbitrary state of the Hilbert space [249]. In practice, a �nite bond dimension
which is independent of L allows to describe accurately ground states of gapped local
Hamiltonians [14]. For gapless Hamiltonians described by a CFT, the bond dimension
has to increase polynomially with the system size [250], namely χ = L1/κ, where κ
is an universal exponent [36] which depends only on the central charge c as follows:
κ = 6/[c(

√
12/c+ 1)] [37, 251]. Since the Ising model has c = 1/2, we have κ ' 2.

In principle, the MPS representation of the ground state allows us to compute several
observables. In practice, di�erent computations require a di�erent computational e�ort.
For instance, considering the bipartition shown in Fig. 2.18, where L = 8 and ` = 4,
the reduced density matrix ρA in a MPS representation has at most rank χ2 [247, 252],
independently on the size of the block. This implies that it can be computed exactly by
performing at most O(δ3χ6) operations.

The case of N disjoint blocks is more challenging. Indeed, the corresponding reduced
density matrices in the MPS representation can have rank up to χ2N , which means that
these computations are exponentially hard in N . Some of these computations can be
done by projecting the reduced density matrices on their minimal rank [220, 223]. Here
we describe an alternative approach, which is based on the direct computation of the
Rényi entropies.

2.7.3 Rényi entropies from MPS: the correlation functions of twist �elds

In the computation of TrρnA, which gives the Rényi entropies through (1.47), we need

the powers of the MPS transfer matrix E(α,α̃),(β,β̃) ≡∑i t
α,β
i t̄ α̃,β̃i . Being a mixed tensor

involving both t and t̄, we represent E as the yellow rectangle in the box of Fig. 2.19, where
the double line on one side keeps track of the position of t̄. Then, we can straightforwardly
construct the p-th power Ep, which is the key ingredient to obtain TrρnA for a bipartition
of the chain. Indeed, when A is made by a block of length `, it is computed in terms of
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Figure 2.21: The computation of Trρ2A of Fig. 2.19 as the two point correlation function (see
Fig. 2.20) of twist �elds in the MPS formalism, i.e. through (2.86). They are operators acting
on the auxiliary degrees of freedom and this allows us to de�ne the generalized transfer matrices
E2(T ) and E2(T̄ ), which must be contracted with the proper powers of E2.

E` and Ed, where d = L− `. In Fig. 2.19 we represent the computation of Trρ2
A for the

bipartition of Fig. 2.18.
Simple manipulations allow us to write the above expression for TrρnA as the two

point function of twist �elds. In order to see this, let us �rst consider the two point
correlation function CO1,O2

(r) ≡ 〈ψ|O1(x)O2(x+r)|ψ〉 of local operators O1 and O2. For
this computation we introduce the generalized transfer matrix for a generic local operator
O as

E(O)(α,α′),(β,β′) ≡
∑

i,j

tα,βi t̄ α̃,β̃j Oi,j , (2.84)

whose graphical representation is shown in the box of Fig. 2.20. Given (2.84), the two
point correlation function becomes the following trace of the product of transfer matrices

CO1,O2
(r) = Tr

(
E(O1)Er−2E(O2)EL−r

)
, (2.85)

which is depicted in Fig. 2.20, where di�erent colors correspond to di�erent operators.
In a similar way, we can write TrρnA for the bipartition of Fig. 2.18 as the two point

correlation function of twist �elds. This is done by introducing other generalized transfer
matrices, namely the tensor product En = E ⊗ · · · ⊗ E of n transfer matrices and the
transfer matrices En(T ) and En(T̄ ) associated to the twist �elds (see the box in Fig. 2.21
for n = 2 and in Fig. 2.22 for n = 3). Given these matrices, TrρnA reads

TrρnA = Tr
(
En(T )E`−2

n En(T̄ )EL−`n

)
. (2.86)

Notice that (2.86) has the structure of the two point function given in 2.85, but it is not
exactly the same. Indeed, since the twist �elds are operators acting on the virtual bonds
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Figure 2.22: The computation of Trρ3A of Fig. 2.19 as the two point correlation function (see
Fig. 2.20) of twist �elds (2.86). In this case the twist �elds act on the tensor product of three
pairs of virtual indices. The generalized transfer matrices E3(T ) and E3(T̄ ) are contracted with
the proper powers of E3 = E ⊗ E ⊗ E.

rather than on the physical bonds, they are not local operators on the original spin chain.
In Figs. 2.21 and 2.22 we show (2.86) for n = 2 and n = 3 respectively.

It is straightforward to generalize this construction to the case of N disjoint blocks
(see Fig. 2.9 for the notation). In this case A = ∪Ni=1Ai and the generalization of (2.86)
to N > 2 reads

TrρnA = Tr
(
En(T )E`1−2

n En(T̄ )Ed1n · · ·En(T )E`N−2
n En(T̄ )EdNn

)
, (2.87)

where the dots replace the sequence of terms En(T )E
`j−2
n En(T̄ )E

dj
n , ordered according to

the increasing value of interval index j = 2, . . . , N−1. In Fig. 2.23, the MPS computation
(2.87) for N = 3 and n = 2 is depicted. It is important to remark that in (2.87) the
computational cost is O(Nδχ4n+1), i.e. exponential in n and linear in N . Thus, for the
simplest cases of n = 2 and n = 3 the cost is χ9 and χ13 respectively. Because of this,
in the remaining part of this section we present numerical results obtained through the
exact formula (2.87) with n = 2 only, for con�gurations made by either N = 3 or N = 4
disjoint blocks.

The method that we just discussed is very general and, in principle, it can be applied
for many lattice models. Nevertheless, the feasibility of the computation strongly depends
on the value of the bond dimension χ, which depends on the central charge c as mentioned
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Figure 2.23: The computation of TrρnA through (2.87) in the case of N = 3 and n = 2 as the six
point function of twist �elds.

above. Thus, having c = 1/2, the Ising model is the easiest model that we can deal with.
A model with c = 1 would lead to a very high computational cost already for the Rényi
entropy with n = 2 and this would be a very challenging computation, given the numerical
resources at our disposal.

As for the approximate calculations of the Rényi entropies, a very di�erent scenario
arises. In particular, Monte Carlo techniques [218, 253�255] look very promising because
they allow to obtain an approximate result for TrρnA by sampling over the physical indices.
Each con�guration can be computed with nχ3 operations, but the number of con�gura-
tions which are necessary to extract a reliable estimation of the Rényi entropies in terms
of χ and n is still not understood.

2.7.4 Numerical results for n = 2

Let us discuss the numerical results obtained through the method discussed in Sec. 2.7.3
about Tr ρ2

A for the Ising model with periodic boundary conditions. The length L of the
chains varies within the range 30 6 L 6 500. The MPS matrices have been computed by
employing the variational algorithm described in [256] (see also the ones in [257, 258]).
Moreover, from Fig. 2 of [37] one observes that, in order to �nd accurate results for the
Ising model in the range of total lengths given above, we need 8 6 χ 6 16.

As for the con�gurations of the N disjoint blocks of sites, denoting by `i the number
of sites for the block Ai and by di the number of sites separating Ai and Ai+1modN with
i = 1, . . . , N as in Sec. 2.5 (see Fig. 2.9 for the case N = 3), we �nd it convenient to
choose the following ones

`1 d1 `2 d2 `3 d3 . . . `N dN
` d ` d ` d . . . ` dN d = α` ,

(2.88)

where dN = L− [N +α(N − 1)]` is �xed by the consistency condition (2.73) on the total
length of the chain. Thus, each con�guration is characterized by the coe�cient α and the
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Figure 2.24: The domain 0 < x1 < x2 < x3 < 1 for N = 3, as in Fig. 2.2. The thick lines
represents the con�gurations (2.88) for some choices of α. The dashed thin curves are the
con�gurations shown in Fig. 2.2, with the same colors.

free parameter is `. In the comparison with the CFT expressions discussed in Sec. 2.2
and Sec. 2.7.1, we have taken the �niteness of the system into account through (2.74)
and (2.75), as already done in Sec. 2.5 for the harmonic chain. Like for (2.78) with the
vectors λ and γ �xed, also for the con�gurations (2.88) with α �xed the harmonic ratios
xi depend only on `/L, providing one dimensional curves within the 2N − 3 dimensional
con�guration space 0 < x1 < x2 < · · · < x2N−3. Nevertheless, notice that in this case the
harmonic ratios have a strictly positive lower bound, which can be computed by taking
the limit ` → 0 in the expressions of xi obtained by specializing (2.74) and (2.75) to
(2.88). For instance, when N = 3 we have x1 = [sin(π`/L)/ sin(2π(1 + α)`/L)]2, whose
smallest value reads 1/[2(1 + α)]2. Always for N = 3, in Fig. 2.24 we show the curves
corresponding to the con�gurations (2.88) for the numerical values of α considered in the
remaining �gures. Each curve can be equivalently parameterized by one the harmonic
ratios and in this section we choose x1 as the independent variable.

Given the con�gurations (2.88), for any �xed α di�erent values of ` and L having the
same `/L provide the same x, i.e. the same point in the con�gurations space. Aligning
the numerical data corresponding to the same x, one observes that, as ` increases, they
approach the CFT prediction. Nevertheless, the discrepancy is quite large because the
chains at our disposal are not long enough. Thus, unlike the case of the harmonic chain
discussed in Sec. 2.5, for the Ising model the plots of the data do not immediately con�rm
the CFT expressions.

During the last few years many papers have studied the corrections to the leading
scaling behavior of the Rényi entropies [136, 220, 222, 223, 259�264]. When A is a single
block made by ` contiguous lattice sites within a periodic chain of length L, the �rst
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Figure 2.25: The results for F3,2 computed trough MPS ground states in terms of x1. The
con�gurations are (2.88) with (from the top left panel, in clockwise direction) α = 0.25, α = 0.5,
α = 1 and α = 2. For a �xed x, the length ` of the blocks increases along the black arrow. The
extrapolated points are obtained as explained in Sec. 2.7.4.

deviation of Tr ρnA from the corresponding value obtained through the CFT expression is
proportional to `−2∆/n, for some ∆ < 2. From the �eld theoretical point of view, this
unusual scaling can be understood by assuming that the criticality is locally broken at the
branch points and this allows the occurrence of relevant operators with scaling dimension
∆ < 2 at those points [261]. For the Ising model the relevant operator must be also parity
even and this means that the �rst correction is proportional to `−2/n. Instead, when A is
made by two disjoint blocks, it has been numerically observed that the leading correction
for the Ising model is proportional to `−1/n [220, 222], which agrees with `−2∆/n with
∆ = 1/2. This could be the contribution of the Majorana fermion introduced by the
Jordan-Wigner string between the two blocks [222].

In the following we consider the case of A made by three and four disjoint blocks,
focusing on F3,2 and R3,2 for N = 3 and on F4,2 for N = 4. We studied the con�gurations
(2.88) with α = p and α = 1/p, where for the integer p we took 1 6 p 6 8. Here we show
the plots only for α ∈ {0.25, 0.5, 1, 2} because the ones for the remaining values of α are
very similar. The results for N = 3 are reported in Figs. 2.25 and 2.26, while the ones for
N = 4 are given in Fig. 2.27. Di�erent colored shapes denote numerical data which have
been obtained from ground states with di�erent bound dimensions. Moreover, for �xed
values of x and χ, the black arrow indicates the direction along which ` increases. For
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Figure 2.26: The results for R3,2 computed trough MPS ground states in terms of x1. The
con�gurations are (2.88) with (from the top left panel, in clockwise direction) α = 0.25, α = 0.5,
α = 1 and α = 2. For a �xed x, the length ` of the blocks increases along the black arrow. The
extrapolated points are obtained as explained in Sec. 2.7.4.

a given χ, the maximum value Lmax of the total size of the chain has been determined
according to Fig. 2 of [37]. In particular, for χ = 8, χ = 12 and χ = 16 we used respectively
Lmax = 100, Lmax = 320 and Lmax = 500.

Notice that larger values of χ and ` better approximate the points obtained through
the CFT formulas, as expected. Nevertheless, since the discrepancy between our best
numerical value and the one predicted by the CFT is quite large, a �nite size scaling
analysis is necessary, as discussed above. For almost every value of x that we are consid-
ering, taking the e�ects of the �rst correction into account is enough to �nd reasonable
agreement with the CFT predictions. According to the analysis discussed in App. 2.D.1,
we �nd that the �rst correction is proportional to `−∆num , where ∆num = 0.45(5) for both
F3,2 and F4,2, and ∆num = 0.51(4) for R3,2. We remark that these exponents have been
found just from the numerical data, without assuming the CFT formulas. The result is
compatible with ∆ = 1/2 found for two disjoint blocks [220, 222]. Thus, this result seems
to be independent of the number of intervals.

Once the exponents have been determined, we can compare the numerical results with
the CFT predictions. This means that, for N = 3 and N = 4, we consider

F lat

N,2(x) = F ext

N,2(x) +
fN (x)

`∆num
, R lat

3,2(x) = R ext

3,2(x) +
r(x)

`∆num
, (2.89)
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Figure 2.27: The results for F4,2 computed trough MPS ground states in terms of x1. The
con�gurations are (2.88) with (from the top left panel, in clockwise direction) α = 0.25, α = 0.5,
α = 1 and α = 2. For a �xed x, the length ` of the blocks increases along the black arrow. The
extrapolated points are obtained as explained in Sec. 2.7.4.

where ∆num are the exponents given above. For any �xed x, we have two parameters
to �t: the coe�cient of `−∆num and the extrapolated value. The latter one must be
compared with the corresponding value obtained through the CFT formula. Since we
have to �nd only two parameters through this �tting procedure, we can carry out this
analysis for all the x's at our disposal, also when few numerical points occur. Because
of the uncertainty on ∆num, for any �xed x we perform the extrapolation for both the
maximum and the minimum value of ∆num. This provides the error bars indicated in
Figs. 2.25, 2.26 and 2.27, where the yellow circles denote the mean values.

In App. 2.D.2 we consider more than one correction, keeping the same exponents
employed for case N = 2 [136, 222, 223]. Unfortunately, this analysis can be performed
only for those few values of x at �xed α which have many numerical points (see Figs. 2.33
and 2.34). We typically �nd that the second correction improves the agreement with the
corresponding CFT prediction, as expected, while the third one does not, telling us that,
probably, given our numerical data, we cannot catch the third correction.

In App. 2.D.3 we brie�y consider the e�ects due to the �niteness of the bond dimension
in our MPS computations. They occur because �nite χ leads to a �nite correlation length
ξχ and, whenever it is smaller than the relevant length scales a deviation from the expected
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power law behavior of the correction is observed [36, 37, 250, 265].

2.8 Conclusions

In this chapter we have computed the Rényi entropies of N disjoint intervals for the simple
conformal �eld theories given by the free compacti�ed boson and the Ising model.

For the free boson compacti�ed on a circle of radius Rcircle, we �nd that Tr ρnA for
A = ∪Ni=1Ai with N > 2 is given by (1.52) with c = 1 and

FN,n(x) =
Θ(0|Tη)

|Θ(0|τ)|2 , Tη =

(
i η I R
R i I/η

)
, (2.90)

where η ∝ R2, the function Θ is the Riemann theta function (2.34) and τ = R + i I
is the period matrix of the Riemann surface RN,n de�ned by (2.18), which has genus
g = (N − 1)(n − 1) (see e.g. Fig. 2.4, where N = 3 and n = 4). As for the Ising model,
we �nd that Tr ρnA is (1.52) with c = 1/2 and

F Ising

N,n (x) =

∑
e |Θ[e](0|τ)|
2g |Θ(0|τ)| , (2.91)

being e the characteristics of the Riemann theta function, de�ned through (2.47). The
period matrix of RN,n [234] has been computed in two di�erent canonical homology
basis and, given the relation between them, one can employ either (2.32) or (2.57) in the
expressions (2.90) and (2.91). The peculiar feature of the free compacti�ed boson and of
the Ising model is that, in order to write the Rényi entropies, we just need the period
matrix of RN,n.

We have checked (2.90) in the decompacti�cation regime against exact results for the
harmonic chain with periodic boundary conditions, �nding excellent agreement. As for
the Ising model, we have performed an accurate �nite size scaling analysis using MPS.
In particular we have identi�ed the twist �elds within this formalism, showing that the
Rényi entropies can be computed as correlation functions of twist �elds also in this case.
Whenever a reliable �nite size scaling analysis can be performed, the numerical results
con�rm (2.91). The results of [196, 226] for two disjoint intervals are recovered as special
cases of (2.90) and (2.91).

We have not been able to analytically continue (2.90) and (2.91), in order to �nd the
entanglement entropy. This is still an open problem in the simplest case of two intervals
for the free boson at �nite η and for the Ising model. For the boson on the in�nite line, we
have shown numerical predictions for the tripartite information and for the corresponding
quantities in the case of N > 3.
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Appendices

2.A On the x dependence of RN,n

In this appendix we give some details about the ratio RN,n de�ned in (2.3) in the case of
two dimensional conformal �eld theories, when A = ∪Ni=1Ai.

In the simplest case of N = 2 there is only one four-point ratio x ∈ (0, 1) de�ned
through (1.51). The two quantities (2.8) and (2.3) coincide and one easily �nds that

R2,n(x) = R̃2,n(x) =
F2,n(x)

(1− x)2∆n
. (2.92)

When N > 2, �rst we remark that the non universal constant cn cancels in the ratio
(2.3) and this is found by employing the same combinatorial identity occurring for the
cuto� independence of RN,n, discussed in the section 2.2. Moreover in (2.3) all the factors
Pp(σN,p) cancel, namely

N∏

p= 1

∏

σN,p

[
Pp(σN,p)

](−1)N−p

= 1 . (2.93)

This result can be obtained by writing the l.h.s. as the product of two factors

N∏

p= 1

∏

σN,p

∏

i∈σN,p

1

(vi − ui)(−1)N−p
,

N∏

p= 1

∏

σN,p

∏

i,j∈σN,p
i < j

[
(uj − ui)(vj − vi)
(vj − ui)(vi − uj)

](−1)N−p

.

(2.94)
Then, collecting the di�erent factors, they become respectively

N∏

p=1

N∏

i= 1

1

(vi − ui)ξp(−1)N−p
,

N∏

p= 1

N∏

i,j=1
i < j

[
(uj − ui)(vj − vi)
(vj − ui)(vi − uj)

]ζp(−1)N−p

, (2.95)

where we denoted by ξp =
(
N−1
p−1

)
the number of choices σN,p containing the i-th interval

and by ζp =
(
N−2
p−2

)
the number of σN,p's containing both the i-th and j-th interval. By

employing the combinatorial identities
∑N
p=1(−1)N−pξp = 0 and

∑N
p=2(−1)N−pζp = 0

respectively, it is straightforward to conclude that the products in (2.94) are separately
equal to 1. Thus, we have that RN,n(x) is given by (2.13).

As for the dependence on x of (2.13), let us consider the choice σN,p = {i1, . . . , ip} of
p intervals with 1 < p 6 N , corresponding to the subregion Ai1 ∪ · · · ∪Aip included in A.
Then one introduces the map

wσN,p(z) =
(ui1 − z)(uip − vip)

(ui1 − uip)(z − vip)
, (2.96)

which is constructed to send ui1 → 0, uip → 1 and vip → ∞. When p = N , the map
(2.96) becomes (1.51). The function Fp,n(xσN,p) depends on the 2p− 3 four-point ratios
obtained as the images of the remaining endpoints through the map (2.96), namely

Fp,n(xσN,p) = Fp,n(wσN,p(vi1), . . . , wσN,p(vip−1
)) . (2.97)
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Since the ratios wσN,s(uir ) and wσN,s(vir ) can be expressed in terms of the four-point
ratios in x by applying (1.51), we have that RN,n = RN,n(x). The �nal expression can
be checked by considering the limits xj → xj±1, whose result can be understood by using
that the �rst operator occurring in the OPE of a twist �eld Tn with T̄n is the identity.

We �nd it useful to write explicitly RN,n(x) in the simplest cases. For N = 3

R3,n(x) =
F3,n(x1, x2, x3)

F2,n(x1(x3−x2)
x2(x3−x1) )F2,n(x1)F2,n(x3−x2

1−x2
)
. (2.98)

From this expression (we recall that F2,n(0) = F2,n(1) = 1), we can check that R3,n → 1
when x3 → x2 (i.e. A2 → ∅), which is obtained by using F3,n(x1, x2, x3)→ F2,n(x1), that
we checked numerically. In a similar way, we �nd that R3,n → 1 for x1 → 0 (A1 → ∅).
Notice that we cannot take A3 → ∅ in (2.98) because the map (1.51) with N = 3 is not
well de�ned in this limit. We can also consider e.g. x2 → x1 , i.e. B1 → ∅. In this
case we veri�ed that F3,n(x1, x2, x3) → F2,n(x3), as expected, and this implies that the
corresponding limit for R3,n is not 1 identically. Also when B2 → ∅ we �nd that R3,n

does not tend to 1. Indeed, F3,n(x1, x2, x3)→ F2,n(x1/x2).
When N = 4 the elements of x are x1, . . . , x5 and R4,n(x) reads

R4,n(x) =
F4,n(x)

∏
i<j F2,n(x{i,j})

F3,n(x{1,2,3})F3,n(x{1,2,4})F3,n(x{1,3,4})F3,n(x{2,3,4})
, (2.99)

where the terms in the denominators are given by

F3,n(x{1,2,3}) = F3,n

(
x1(x5 − x4)

x4(x5 − x1)
,
x2(x5 − x4)

x4(x5 − x2)
,
x3(x5 − x4)

x4(x5 − x3)

)
, (2.100a)

F3,n(x{1,2,4}) = F3,n(x1, x2, x3) , (2.100b)

F3,n(x{1,3,4}) = F3,n(x1, x4, x5) , (2.100c)

F3,n(x{2,3,4}) = F3,n

(
x3 − x2

1− x2
,
x4 − x2

1− x2
,
x5 − x2

1− x2

)
. (2.100d)

As for the product in the numerator of (2.99), the arguments of the F2,n's are not multi-
component vector and they read

x{1,2} =
x1(x3 − x2)

x2(x3 − x1)
, x{1,3} =

x1(x5 − x4)

x4(x5 − x1)
, x{1,4} = x1 ,

x{2,3} =
(x3 − x2)(x5 − x4)

(x4 − x2)(x5 − x3)
, x{2,4} =

x3 − x2

1− x2
, x{3,4} =

x5 − x4

1− x4
.

(2.101)

The expression (2.99) allows us to check explicitly that R4,n → 1 when we send either
x1 → 0 (A1 → ∅) or x3 → x2 (A2 → ∅) or x5 → x4 (A3 → ∅). In a similar way, we
observed numerically that F4,n(x) → F3,n(x3, x4, x5) for x2 → x1 (B1 → ∅) and that
F4,n(x) → F3,n(x1, x2, x5) for x4 → x3 (B2 → ∅). Taking the limit x5 → 1 (B3 → ∅),
we are joining the last two intervals and we �nd F4,n(x)→ F3,n(x1/x4, x2/x4, x3/x4), as
expected.

For higherN , more terms occur to deal with, but it is always possible to write explicitly
RN,n(x) in terms of its 2N − 3 independent variables. The checks given above for the
simplest cases of N = 3 and N = 4 can be generalized, �nding that RN,n → 1 when
x2k−1 → x2k−2 (Ak → ∅), for some �xed k ∈ {1, . . . , N − 1} (we recall that x0 =
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Figure 2.28: The auxiliary cycles {aauxα,j , b
aux
α,j} for N = 3 and n = 4.

0). The limit AN → ∅ (i.e. uN → vN ) cannot be considered on FN,n(x) because the
map (1.51) is not well de�ned. We have to compute it before applying (1.51). As for
the limit of joining intervals, for x2l → x2l−1 (Bl → ∅) with l ∈ {1, . . . , N − 2} one
�nds FN,n(x) → FN−1,n(x \ {x2l−1, x2l}), while for x2N−3 → 1 (BN−1 → ∅) we have
FN,n(x)→ FN−1,n(x1/x2N−4, x2/x2N−4, . . . , x2N−5/x2N−4).

2.B Lauricella functions

In this appendix we show that the integrals (2.26a) and (2.26b), occurring in Sec. 2.3.1
and Sec. 2.4.2 for the computation of the period matrices, can be written in terms of
the fourth Lauricella function F (m)

D [241], which is a generalization of the hypergeometric
function 2F1 involving several variables.

The integral representation of F (m)
D for Re(c) > Re(a) > 0 reads

∫ 1

0

ta−1(1− t)c−a−1

∏m
j=1(1− yjt)bj

dt =
Γ(a) Γ(c− a)

Γ(c)
F

(m)
D (a, b1, . . . , bm; c ; y1, . . . , ym) . (2.102)

For m = 1 the function F (m)
D reduces to the hypergeometric function 2F1(a, b1; c; y1) and

form = 2 it becomes the Appell function F1(a; b1, b2; c; y1, y2). In our problemm = 2N−3
and therefore m > 3 for N > 2.
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Figure 2.29: The Riemann surface R3,4 with the set of auxiliary cycles {aauxα,j , b
aux
α,j} depicted also

in Fig. 2.28.

In terms of the Lauricella function, the integral in (2.26a) for α = 1 reads

Iβ,k

∣∣x1

0
=

Γ(β − k/n) Γ(k/n)

Γ(β)
xβ−1

1

N−1∏

γ=2

x
−k/n
2γ−2

N−1∏

λ=2

x
k/n−1
2λ−1

× F (2N−3)
D

(
β − k

n
,
k

n
, 1− k

n
, . . . ,

k

n
;β ;

x1

x2
,
x1

x3
, . . . ,

x1

x2N−2

)
,

(2.103)

where we recall that x2N−2 = 1 and 1 6 β 6 N − 1. Also the remaining integrals in
(2.26a), which have α > 1, can be written through F (m)

D

Iβ,k

∣∣x2α−1

x2α−2
=

π

sin(πk/n)
x
β−1−k/n
2α−2

N∏

γ=2
γ 6=α

|x2γ−2 − x2α−2|−k/n
N−1∏

λ=1
λ6=α

|x2λ−1 − x2α−2|k/n−1

× F (2N−3)
D

(
1− k

n
,
k

n
+ 1− β, 1− k

n
, . . . ,

k

n
; 1; y(α)

)
,

(2.104)

where Γ(1 − k/n) Γ(k/n) = π csc(πk/n) has been used and we introduced the 2N − 3
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dimensional vector y(α), whose elements read

y
(α)
ζ ≡ x2α−1 − x2α−2

xζ − x2α−2
, ζ ∈ {0, 1, . . . , 2N − 2} \ {2α− 2, 2α− 1} . (2.105)

As for the integrals in (2.26b) for α > 1, in terms of Lauricella functions they become

Iβ,k

∣∣x2α

x2α−1
=

π

sin(πk/n)
x
β−1−k/n
2α−1

N∏

γ=1
γ 6=α

|x2γ−2 − x2α−2|−k/n
N−1∏

γ=1
γ 6=α

|x2γ−1 − x2α−2|k/n−1

× F (2N−3)
D

(
k

n
,
k

n
+ 1− β, 1− k

n
, . . . ,

k

n
; 1; w(α)

)
,

(2.106)

where we de�ned the 2N − 3 dimensional vector w(α), whose elements are

w
(α)
ζ ≡ x2α − x2α−1

xζ − x2α−1
, ζ ∈ {0, 1, . . . , 2N − 2} \ {2α− 1, 2α} . (2.107)

We remark that both in (2.104) and (2.106) the dots denote the alternating occurrence
of k/n and 1 − k/n, like in (2.103). For even n, the case k/n = 1/2 occurs and these
expressions slightly simplify. In order to realize that (2.103) is (2.104) with α = 1, it is
more convenient to go back to the original integral representation and set α = 1 there.

For N = 2 intervals we have only one four-point ratio x1 = x ∈ (0, 1). Moreover,
α = β = 1 and therefore we have to consider only (2.103) and (2.106), which reduce
respectively to

I1,k

∣∣x
0

=
π

sin(πk/n)
Fk/n(x) , (2.108a)

I1,k

∣∣1
x

=
π

sin(πk/n)
x−k/n 2F1

(
k

n
,
k

n
; 1;

x− 1

x

)
=

π

sin(πk/n)
Fk/n(1− x) , (2.108b)

being Fk/n the hypergeometric function de�ned in (2.49). In the last step of (2.108b) we
have employed the Kummer's relation 2F1(a, b; c; y) = (1− y)−a 2F1(a, c− b; c; y/(y− 1)).

2.C Symmetries of FN,n as symplectic transformations

In this appendix we discuss some symmetries of FN,n through the symplectic modular
transformations. In App. 2.C.1 we de�ne the group Sp(2g,Z) and its action on the
Riemann theta functions, introducing the subset of transformations we are interested in.
In App. 2.C.2 we show that FN,n is invariant under such class of modular transformations,
for both the compacti�ed boson and the Ising model, and in App. 2.C.3 we construct the
symplectic matrices implementing the cyclic transformation in the sequence of the sheets,
the inversion of their order and the exchange A↔ B.

2.C.1 The symplectic modular group

Let us consider the group Sp(2g,Z) of the integer symplectic matrices, which is also known
as symplectic modular group. The generic element M ∈ Sp(2g,Z) is a 2g × 2g matrix
which satis�es

M =

(
D C
B A

)
, M t · J ·M = J , J =

(
0g Ig
−Ig 0g

)
, (2.109)
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where the g×g matrices A, B, C and D are made of integers, 0g is the g×g matrix whose
elements are all equal to zero and Ig is the identity matrix. The condition in (2.109)
on M corresponds to require that Dt · B and Ct · A are symmetric matrices and also
Dt ·A−Bt · C = Ig.

Under a symplectic transformation, the canonical basis of cycles and the normalized
basis of the holomorphic one forms transform respectively as follows

(
a′

b′

)
= M ·

(
a
b

)
, ν′ t = ν t · (C · τ +D)−1 . (2.110)

From the �rst transformation rule, it is straightforward to observe that a canonical ho-
mology basis is sent into another canonical homology basis. Moreover, combining the
transformation rules in (2.110), one �nds that the period matrix τ ′ computed through ν′

and the cycles b′ is related to τ in (2.21) as follows

τ ′ = (A · τ +B) · (C · τ +D)−1 . (2.111)

The transformation rule for the absolute value of the Riemann theta function with char-
acteristic de�ned in (2.47) reads [209�211, 215, 216]

∣∣Θ[e′](0|τ ′)
∣∣ =

√
|det(C · τ +D)|

∣∣Θ[e](0|τ)
∣∣ , (2.112)

where the characteristic e′ is given by
(
ε′

δ′

)
=

(
D −C
−B A

)
·
(
ε
δ

)
+

1

2

(
(C ·Dt)d
(A ·Bt)d

)
, (2.113)

where (. . . )d is the vector made by the diagonal of the matrix within the brackets.
Let us consider the subset of Sp(2g,Z) given by the following matrices

(
D 0g
0g (D−1)t

)
,

(
0g C

−(C−1)t 0g

)
. (2.114)

Under the transformations of the �rst kind, the cycles a′ (b′) are obtained through a
(b) cycles only; while applying the transformations of the second kind, the cycles a′

(b′) are combinations of the cycles b (a). Moreover, for the transformations (2.114) the
relation (2.113) between the characteristics becomes homogenous. In particular, the zero
characteristic is mapped into itself and therefore (2.112) becomes

∣∣Θ(0|τ ′)
∣∣ =

√
|det(C · τ +D)|

∣∣Θ(0|τ)
∣∣ . (2.115)

In the remaining part of this appendix, we will restrict to the transformations (2.114).

2.C.2 Invariance of FN,n
Let us discuss the invariance of FN,n(x) under (2.114) for the free compacti�ed boson.
Considering the two expressions in (2.41) which are not explicitly invariant under η ↔ 1/η,
one �nds that

√
det(I) |Θ(0|τ)|2 and Θ(0|iηG) (or Θ(0|iG/η) equivalently) are separately

invariant. The invariance of
√
det(I) |Θ(0|τ)|2 is easily obtained combining (2.115) and

the following relation [211]

(I ′)−1 = (C · τ∗ +D) · I−1 · (C · τ +D)t , (2.116)
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which can be veri�ed starting from (2.111). This allows us to claim that the expression
Fη→∞N,n (x) in (2.43), which characterizes the decompacti�cation regime, is invariant under
symplectic transformations. As for the invariance Θ(0|iηG), �rst we �nd it convenient to
write G in (2.40) as

G =

(
τ · I−1 · τ∗ τ · I−1 − i Ig
I−1 · τ∗ + i Ig I−1

)
. (2.117)

The terms ±i Ig in the o� diagonal blocks can be dropped because they cancel each others
in the exponent of the general term of the series de�ning Θ(0|iηG). Then, we can employ
the fact that Θ(0|iηG) does not change under simultaneous inversion of the sign for both
the o� diagonal matrices in G. Considering the exponent of the general term of the series,
after some algebra one �nds that

(
mt nt

)
·
(
τ ′ · (I ′)−1 · τ∗′ − τ ′ · (I ′)−1

−(I ′)−1 · τ∗′ (I ′)−1

)
·
(
m
n

)

=
(
m′ t n′ t

)
·
(
τ · I−1 · τ∗ − τ · I−1

−I−1 · τ∗ I−1

)
·
(
m′

n′

)
,

(2.118)

where (I ′)−1 is de�ned in (2.116), τ ′ in (2.111) and we also introduced
(
m′

n′

)
= M−1 ·

(
m
n

)
, M−1 =

(
At −Ct

−Bt Dt

)
. (2.119)

The vectorsm′ and n′ are made of integers and they are related tom and n through the
inverseM−1 of symplectic transformation (2.109), which is also a symplectic matrix. Since
also (m′ t,n′ t) cover the whole Z2g, we have that Θ(0|iηG) is invariant under Sp(2g,Z)
for any η.

For the Ising model, we have that F Ising

N,n (x) in (2.81) is invariant under (2.114). Indeed,
from (2.112) and (2.115) it is straightforward to conclude that

∣∣∣∣
Θ[e′](0|τ ′)

Θ(0|τ ′)

∣∣∣∣ =

∣∣∣∣
Θ[e](0|τ)

Θ(0|τ)

∣∣∣∣ . (2.120)

Moreover, each term of the sum over the characteristics in (2.81) is sent into a di�erent
one (except for et = (0t,0t)) so that the whole sum is invariant because the net e�ect of
(2.114) is to reshu�e its terms.

2.C.3 Some explicit modular transformations

Cyclic transformation.

As a concrete example of a symmetry written in terms of a symplectic matrix, we consider
�rst the cyclic change in the ordering of the sheets. Indeed, the choice of the �rst sheet is
arbitrary and therefore the period matrix cannot depend on it. This symmetry has been
already studied in [228]. It is useful to start from the e�ect of this transformation on the
auxiliary cycles of Figs. 2.28 and 2.29: aauxα,j → aauxα,j+1 and bauxα,j → bauxα,j+1. Notice that we
introduced the cycles aauxα,n ≡ aauxα,0 and bauxα,n ≡ bauxα,0, which are not shown in Figs. 2.28 and
2.29, but, given their indices, it is clear how to place them. In particular, considering this
enlarged set of auxiliary cycles, we have that

∑n
j=1 a

aux

α,j =
∑n
j=1 b

aux

α,j = 0, which allow to
write aauxα,n and bauxα,n in terms of the other ones. From these relations and (2.23), we �nd
that the canonical homology basis introduced in Sec. 2.3.1 changes as follows

aα,j → aα,j+1 j 6= n− 1 , aα,n−1 → −
n−1∑

k=1

aα,k , bα,j → bα,j+1 − bα,1 . (2.121)
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As for the canonical homology basis de�ned in Sec. 2.4.2, from (2.54) we have

âα,j → âα,j+1 − âα,1 , b̂α,j → b̂α,j+1 j 6= n− 1 , bα,n−1 → −
n−1∑

k=1

b̂α,k . (2.122)

Since these transformations do not a�ect the greek index, their rewriting in a matrix form
involves IN−1. In particular, (2.121) and (2.122) become respectively

Mcyc =

(
Dcyc 0n−1

0n−1 Acyc

)
⊗ IN−1 , M̂cyc =

(
D̂cyc 0n−1

0n−1 Âcyc

)
⊗ IN−1 , (2.123)

where
{

(Acyc)jk = δk−j,1 − δk,1
(Dcyc)jk = δk−j,1 − δj,n−1

,

{
(Âcyc)jk = δk−j,1 − δj,n−1 = (Dcyc)jk
(D̂cyc)jk = δk−j,1 − δk,1 = (Acyc)jk

. (2.124)

Since Acyc = (D−1
cyc)

t, we have thatMcyc and M̂cyc belong to subset of Sp(2g,Z) de�ned by
the �rst expression in (2.114). Notice that (D−1

cyc)
t is the matrix given in Eq. (3.28) of [228].

Moreover, we checked that Mn
cyc = M̂n

cyc = I2g and also that Mcyc = M−1 · M̂cyc ·M ,
beingM the matrix de�ned in (2.59), which relates the two canonical homology basis. As
for the period matrix, by applying (2.111) for the transformations (2.123), we numerically
checked that τ ′cyc(x) = τ(x) and τ̂ ′cyc(x) = τ̂(x), as expected.

Inversion.

Another symmetry that we can consider is obtained by taking the sheets in the inverse
order. As above, we start from the action of this transformation on the auxiliary cycles,
which is aauxα,j → −aauxα,n−j+1 and bauxα,j → bauxα,n−j (we assume the enlarged set of auxiliary
cycles introduced in App. 2.C.3), where the opposite sign has been introduced to preserve
the correct intersection number. Then, plugging it into (2.23), one �nds that it acts on
the canonical homology basis as follows

aα,1 →
n−1∑

k=1

aα,k , aα,j → −aα,n−j+1 j 6= 1 , bα,j → bα,1 − bα,n−j+1 , (2.125)

while, from (2.54), we get that the action on the canonical homology basis introduced
in Sec. 2.4.2 is simply âα,j → âα,n−j and b̂α,j → b̂α,n−j . The corresponding symplectic
matrices Minv and M̂inv have the structure of (2.123) with

(Ainv)jk = (Dt
inv)jk = δk,1 − δj+k−1,n , (Âinv)jk = (D̂inv)jk = δj,n−k . (2.126)

They are related as Minv = M−1 · M̂inv ·M , with M is given by (2.59), as expected. A
transformation very close to the one we are considering has been already studied in [228].
In particular, their Eq. (3.29) is At

inv up to a global minus sign and a cyclic transformation.
Since the inversion is involutive, we have M2

inv = M̂2
inv = I2g. As for the period matrix,

from (2.111) we numerically �nd τ ′inv(x) = − τ∗(x) and similarly, for the canonical basis of
Sec. 2.4.2, we have τ̂ ′inv(x) = − τ̂∗(x). Since the imaginary part of the period matrix is left
invariant, the inversion leaves the period matrix invariant only for N = 2 or n = 2 [228].
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Exchange A↔ B.

The transformations considered in Appendices 2.C.3 and 2.C.3 do not change the positions
of the branch points. This means that xcyc = xinv = x. Instead, exchanging A = ∪Ni=1A1

with its complement B, we move the intervals and this leads to a change of the four-point
ratios x.

A way to implement the transformation A↔ B is given by
{
Ai → Bi
Bi → Ai+1 mod N

,

{
ui → vi
vi → ui+1 mod N

, (2.127)

where i = 1, . . . , N . Applying this transformation twice, A → A and B → B, but their
components do not go back to themselves when N > 2. Indeed, we have Ai → Ai+2modN

and Bi → Bi+2modN . Moreover, if we give to the intervals Ai and Bi an orientation, the
transformation (2.127) does not change it. Indeed, twist �elds Tn are sent into T̄n and
viceversa. Under (2.127), the components of the vector x change as follows

xζ → 1− x1

xζ+1
, ζ = 1, . . . , 2N − 3 , (2.128)

i.e. x→ xex,1, where (xex,1)ζ ≡ 1− x1/xζ+1 (we recall that x2N−2 ≡ 1).
In order to describe the e�ect of (2.127) on the auxiliary cycles of Figs. 2.28 and 2.29, we
�nd it useful to introduce, besides the aauxα,n and b

aux

α,n already de�ned in App. 2.C.3, also the

auxiliary cycles aauxN,j and b
aux

N,j , so that
∑N
α=1 a

aux

N,j =
∑N
α=1 b

aux

N,j = 0, where j = 1, . . . , n.
Considering this enlarged set of auxiliary cycles {aauxα,j , bauxα,j} where α = 1, . . . , N and
j = 1, . . . , n, we �nd that (2.127) leads to aauxα,j → bauxα,j and bauxα,j → −aauxα+1,j+1. By
employing these relations in (2.23) and (2.54), we �nd respectively
{

aα,j →
∑α
γ=1(bγ,j − bγ,j+1)

bα,j →
∑j
k=1(aα+1,k − aα,k)

,

{
âα,j →

∑α
γ=1

∑j
k=1 b̂γ,k

b̂α,j → − âα+1,j+1 + âα+1,j + âα,j+1 − âα,j
,

(2.129)
which can be written in matrix form respectively as

Mex,1 =

(
0g −(Iupn−1)−1 ⊗ I lowN−1

I lown−1 ⊗ (IupN−1)−1 0g

)
, (2.130)

and

M̂ex,1 =

(
0g I lown−1 ⊗ I lowN−1

−(Iupn−1)−1 ⊗ (IupN−1)−1 0g

)
. (2.131)

Applying (2.111) for this transformation, we �nd τ ′ex,1(x) = − τ∗(xex,1) and, for the
canonical basis discussed in Sec. 2.4.2, τ̂ ′ex,1(x) = − τ̂∗(xex,1). Given the transformation
of the period matrix under the inversion discussed in App. 2.C.3, applying �rst (2.127)
and then the inversion, we get τ ′ex,1(x) = τ(xex,1) and similarly for the other basis.

Another way to implement A↔ B is the following
{
Ai → BN−i mod N

Bi → AN−i mod N
,

{
ui → uN−i+1

vi → vN−i mod N
, (2.132)

which is an involution for each component Ai and Bi. This map inverts the orientation
of all the intervals and it sends a twist �eld Tn into another �eld of the same kind, and
similarly for T̄n. The change induced on x reads

xζ → 1− x2N−2−ζ ≡ (xex,2)ζ , ζ = 1, . . . , 2N − 3 . (2.133)
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When N = 2, both (2.128) and (2.133) give x→ 1−x. The transformation (2.132) acts on
the enlarged set of auxiliary cycles described above as aauxα,j → bauxN−α,j and b

aux

α,j → aauxN−α,j+1.
Through (2.23) and (2.54), this allows us to �nd respectively

{
aα,j →

∑N−1
γ=N−α(bγ,j−1 − bγ,j)

bα,j →
∑n−1
k=j (aN−α,k − aN−α−1,k)

, (2.134)

and {
âα,j →

∑N−1
γ=N−α

∑j
k=1 b̂γ,k

b̂α,j → âN−α,j+1 − âN−α,j − âN−α−1,j+1 + âN−α−1,j

, (2.135)

whose expressions in matrix form read

Mex,2 =

(
0g −(I lown−1)−1 ⊗ Ǐ lowN−1

Iupn−1 ⊗ (ǏupN−1)−1 0g

)
, (2.136)

and

M̂ex,2 =

(
0g I lown−1 ⊗ Ǐ lowN−1

−(Iupn−1)−1 ⊗ (Ǐ lowN−1)−1 0g

)
, (2.137)

where (ǏN−1)αβ ≡ 1 if α > N − β and (ǏN−1)αβ ≡ 0 otherwise. As for the change of
the period matrix under (2.133), applying the transformation rule (2.111) for (2.136) and
(2.137), we �nd τ ′ex,2(x) = τ(xex,2) and τ̂ ′ex,2(x) = τ̂(xex,2) respectively.

We remark that, under the transformations considered in this subsection, the ratio
within the absolute value in (1.52) is left invariant. Indeed, the cyclic transformation and
the inversion do not involve the endpoints of the intervals at all. As for A↔ B, in the two
cases shown above, either the sets {ui, i = 1, . . . , N} and {vi, i = 1, . . . , N} are exchanged
or they are mapped into themselves.

2.D Some technical issues on the numerical analysis

In this appendix we discuss some technical issues employed to extract the results of
Sec. 2.7.4, performing also some additional analysis. In Appendices 2.D.1 and 2.D.2
we explain how the �nite size scaling analysis has been performed by using either one
correction or higher order ones, respectively. In App. 2.D.3 we brie�y discuss some e�ects
due to the �niteness of the bond dimension.

2.D.1 The exponent in the �rst correction

Given the large discrepancy between our numerical data for the Ising model and the
corresponding CFT predictions, the �nite size scaling analysis becomes crucial either to
con�rm or to discard them. As discussed in Sec. 2.7.4, we numerically study Tr ρ2

A when
A is made by three or four disjoint intervals by considering F3,2, R3,2 and F4,2.

The �rst step in the �nite size scaling analysis is the determination of the exponents
of the corrections. To this aim, we start by taking only one correction into account. Since
we usually have only few numerical points for a �xed value of x, let us focus on those x's
with several of them coming from di�erent values of χ. For these x's, which correspond
to di�erent α's, we �t the numerical data for F3,2, R3,2 and F4,2 by using the function
a0 +b0/`

∆num , which has three parameters to determine. Changing the ranges of variation
for `, we can check the stability of the results and also �nd an estimate of the error for



88 2 Rényi entropies for multiple disjoint intervals

0 0.05 0.1 0.15 0.2 0.25

1.55

1.6

1.65

1.7

1.75

1.8

1.85

1.9

1/l

F
3

,2

4 6 8 10 12

0.4

0.42

0.44

0.46

l
min

∆
n

u
m

F3,2

∆
n
u
m

1/�

�min

CFT

0 0.05 0.1 0.15 0.2 0.25
0.81

0.82

0.83

0.84

0.85

0.86

0.87

1/l

R
3

,2

4 6 8 10 12

0.49

0.5

0.51

0.52

l
min

∆
n

u
m

R3,2

�min

∆
n
u
m

1/�

CFT

Figure 2.30: Leading corrections to the scaling of F3,2 (left) and R3,2 (right) for the special
case of α = 0.5 and x1 = 0.146 (see top right of Figs. 2.25 and 2.26), computed as explained in
App. 2.D.1. In the inset we show the mean value of ∆num and the error bars, obtained by �tting
the data with the highest values of `, starting from `min. Each �t provides a curve in the plot.
The extrapolated values are show as cyan diamonds.

the �tting process (see Fig. 2.30 for a typical example). The results for ∆num are shown
in Fig. 2.31: starting from the top left in clockwise direction, we �nd ∆num = 0.45(5),
∆num = 0.51(4) and ∆num = 0.45(5) for F3,2, R3,2 and F4,2 respectively. In this analysis
the CFT formulas have not been used. Notice that it is non trivial that ∆num does not
depend on x. Our results are consistent with ∆num = 1/2 found for N = 2 [220, 222] and
they show that it holds also for N > 2.

The values of ∆num just given have been used in (2.89) to �nd the extrapolated points
in Figs. 2.25, 2.26 and 2.27. Thus, for each x, now there are two parameters to �t. Notice
that we have not employed the CFT formula yet.

In Fig. 2.32 we plot the di�erence between the numerical data and the CFT prediction
in log-log scale, in order to visualize the leading correction. All the data lie on parallel
lines whose slope is close to the one expected from the two intervals case.

2.D.2 A �nite size scaling analysis with higher order corrections

Instead of considering only one correction as discussed in Sec. 2.7.4 and App. 2.D.1, one
can try to perform a �nite size scaling analysis which includes more corrections [136, 220,
222, 223, 261, 262]. In particular, we choose the following function

a0 +
b1
`1/2

+
b2
`

+
b3
`3/2

. (2.138)

The exponents are the ones giving agreement with the CFT predictions for N = 2 [136].
Since in this case we have four parameters to �t, we can carry out this analysis only for
few x's at �xed α. We have considered the same con�gurations of Sec. 2.7.4, namely α = p
and α = 1/p with 1 6 p 6 8 �nding the same qualitative behavior. Here we give only one
representative example in Fig 2.33 for F3,2 and in Fig 2.34 for R3,2. The error bars have
been determined by choosing di�erent minimum values for ` in the �tting procedure, as
done for ∆num in App. 2.D.1.
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Figure 2.31: The value of the exponent ∆num obtained from the numerical values of F3,2, R3,2

and F4,2 (clockwise direction, starting from the top left). The values of x1 correspond to the
ones where several numerical points are available (see Figs. 2.25, 2.26 and 2.27 respectively). The
error bars are obtained by changing the number of numerical points in the �t (see Fig. 2.30).

It is instructive to analyze the contribution of the various corrections. Taking only the
�rst correction into account (cyan circles in Figs. 2.33 and 2.34), the extrapolated points
are very close to the curves predicted by the CFT. Nevertheless, they do not coincide with
it, staying systematically below for FN,2 or above for RN,2. Adding the second correction,
i.e. b1 6= 0 and b2 6= 0 in (2.138), the extrapolations (green circles in Figs. 2.33 and 2.34)
usually improve, as expected, getting closer to the CFT prediction and, in some case,
coinciding with it. As for the third correction, we notice that it does not improve the
extrapolation in almost all the cases that we studied. This probably tells us that the
range of ` available allows us to see at most two corrections to the scaling. As for the sign
of the coe�cients b1, b2 and b3 in (2.138), we �nd (−,+,+) for F3,2 and (+,−,+) for
R3,2. Notice that the sign of b1 can be easily inferred from the position of the numerical
points with respect to the CFT curve. For instance, since for R3,2 they are all above the
theoretical curve, we have that b1 > 0 in this case.

2.D.3 On the �niteness of the bond dimension

Tensor networks, which include the MPS as a subclass, are variational approximations
whose accuracy strongly depends on the bond dimension χ. In principle, one would like
to have access to the regime of χ → ∞ but, being the computational cost an increasing
function of χ, the results are always obtained for �nite χ.
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Figure 2.32: Di�erence between the numerical data and the CFT prediction for F3,2 (left)
and R3,2 (right). The black solid line corresponds to ∆ = 1/2 for the exponent of the leading
correction, which is the value expected from CFT arguments. In the upper panels the results
are shown in logarithmic scales in order to appreciate the fact that, joining the data having the
same x, we �nd almost straight lines having nearly the same slope.

The MPS are �nitely correlated state, which means that they naturally describe sys-
tems where either the correlations do not decay or they decay exponentially at large
distance [265]. The two cases are distinguished by the ratio e2/e1 6 1 between the two
largest eigenvalues e1 and e2 of the MPS transfer matrix E. In particular, if e2 < e1,
the �nite correlation length of the MPS is ξMPS ≡ 1/ log(e1/e2), while, when e2 = e1, the
correlation function (2.85) is constant as a function of r (long range order).

The �nite size of a critical system naturally induces a �nite correlation length ξL ∝ L.
Thus, the MPS representation can still be used to perform accurate �nite size scaling
analysis [250] and one would expect that a good MPS approximation has ξMPS = ξL.
However, it has been found that, when χ is too small, the best approximation of a critical
system through a MPS with �nite χ has a �nite correlation length ξMPS = ξχ ∝ χκ [36].
In order to get ξMPS = ξL, one needs to increase χ. Since ξL enters in the scaling of
the two point correlation functions for critical systems, a useful criterion is obtained by
considering [37, 256]

χ∗ = min
{
χ
∣∣ ξχ > L/2

}
. (2.139)

However, notice that this result has been found by considering the two point functions
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Figure 2.33: Finite size scaling analysis with higher order corrections for F3,2 for the con�gura-
tions characterized by α = 0.5 (top) and α = 1 (bottom). The method is explained in App. 2.D.2.
Three corrections can be taken into account only for those x's having several numerical points, as
shown in the zoom. The third correction never improves the agreement with the CFT prediction.

of local operators, while in our problem both non local operators (whose support is of
order ξχ) and 2N > 4 point functions are involved. In our numerical analysis we have
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Figure 2.34: Finite size scaling analysis with higher order corrections for R3,2 for the con�gura-
tions characterized by α = 0.5 (left) and α = 1 (right). The method is explained in App. 2.D.2.
Three corrections can be taken into account only for those x's having several numerical points, as
shown in the zoom. The third correction never improves the agreement with the CFT prediction.

adopted the criterion (2.139) and, indeed, we �nd that sometimes it fails. For instance, this
happens in Fig. 2.35 whenever a deviation from the straight lines occurs. We have taken
this failure into account by discarding from the numerical analysis the points deviating
from the straight lines. Being (2.139) too optimistic for our computations, the criterion

χ∗ = min
{
χ
∣∣ ξχ > L

}
(2.140)

should be enough to avoid deviations from the expected power law decay and should be
implemented in future studies.

2.E More details on the numerical extrapolation

2.E.1 Checks with some existing data

In this appendix, we employ the numerical extrapolation based on rational interpolating
functions to analytically continue the analytical results available for the Rényi entropies,
and we check the result with available numerical data on the lattice. We will focus on the
compacti�ed boson and on the Ising model. The former describes the scaling limit of the
XXZ chain for some values of the parameters, while the latter describes the scaling limit
of the critical Ising spin chain.

We begin our analysis comparing the results of the XXZ chain and the compacti�ed
boson for N = 2 intervals. The Hamiltonian of the periodic XXZ spin 1/2 chain in a
magnetic �eld h reads [266]

HXXZ ≡
L∑

j=1

(
Sxj S

x
j+1 + Syj S

y
j+1 + ∆Szj S

z
j+1

)
− h

L∑

j=1

Szj , (2.141)

where Saj = σaj /2, being σ
a
j the standard Pauli matrices acting on the spin at the j-th site.

The chain has L sites and ∆ is the anisotropy. The mutual information for this lattice
model has been computed in [219] by direct diagonalization for L 6 30. When h = 0 and
−1 < ∆ 6 1 the model in the continuum is described by the c = 1 compact boson with



2.E More details on the numerical extrapolation 93

−4 −3.5 −3 −2.5 −2 −1.5 −1

−2.2

−2

−1.8

−1.6

−1.4

−1.2

−1

log(1/l)

lo
g
(F

3
,2

−
F

n
u

m

3
,2

)

x
1
(1) =x

1
(2) =0.106

log(1/�)

lo
g
(F

C
F
T

3
,2

−
F

la
t

3
,2

)

α = 1

α = 2

0 0.1 0.2 0.3 0.4

−0.56

−0.54

−0.52

−0.5

−0.48

−0.46

−0.44

∆

x
1

 

 

α  =0.25

α = 0.5

α = 1

α = 2

−3.5 −3 −2.5 −2 −1.5 −1

−4

−3.8

−3.6

−3.4

−3.2

−3

−2.8

log(1/l)

lo
g
(R

n
u
m

3
,2

−
R

3
,2

)

x
1
(1) =x

1
(2) =0.106

log(1/�)

lo
g
(R

la
t

3
,2
−

R
C

F
T

3
,2

)

α = 0.25

α = 0.5

α = 1

α = 2

0 0.1 0.2 0.3 0.4

−0.56

−0.54

−0.52

−0.5

−0.48

−0.46

−0.44

∆

x
1

 

 

α  =0.25

α = 0.5

α = 1

α = 2

−4 −3 −2 −1

−2.2

−2

−1.8

−1.6

−1.4

−1.2

−1

log(1/l)

lo
g

(F
3
,2

−
F

n
u
m

3
,2

)

x
1
(0.25)=0.345

x
1
(0.5) =0.382

x
1
(1) = 0.228

x
1
(2) =0.037 

log(1/�)

lo
g
(F

C
F
T

3
,2

−
F

la
t

3
,2

)

α = 0.25

α = 0.5

α = 1

α = 2

0 0.1 0.2 0.3 0.4

−0.56

−0.54

−0.52

−0.5

−0.48

−0.46

−0.44

∆

x
1

 

 

α  =0.25

α = 0.5

α = 1

α = 2

−4 −3 −2 −1

−4.2

−4

−3.8

−3.6

−3.4

−3.2

−3

−2.8

log(1/l)

lo
g
(R

n
u

m

3
,2

−
R

3
,2

)

x
1
(0.25)=0.345

x
1
(0.5) =0.382

x
1
(1) = 0.228 

log(1/�)

lo
g
(R

la
t

3
,2
−

R
C

F
T

3
,2

)

α = 0.25

α = 0.5

α = 1

α = 2

0 0.1 0.2 0.3 0.4

−0.56

−0.54

−0.52

−0.5

−0.48

−0.46

−0.44

∆

x
1

 

 

α  =0.25

α = 0.5

α = 1

α = 2

Figure 2.35: E�ects of the �nite bond dimension leading to deviations from the power law decays
are shown for F3,2 (left) and R3,2 (right). In the top panels x1 = 0.106. For �xed `, the deviation
from the straight line is more evident for points with larger d (α = 2). In the bottom panels we
have: x1 = 0.345 (α = 0.25), x1 = 0.382 (α = 0.5), x1 = 0.228 (α = 1) and x1 = 0.037 (α = 2).
For small values of α, regimes of large ` can be considered, where deviations may also occur. The
points deviating from the straight line have been discarded from the numerical analysis.

η = 1− (1/π) arccos ∆, while for h 6= 0 an explicit formula providing η does not exist and
therefore it must be found numerically.

The mutual information of the compacti�ed boson is not known, but we can compute
analytically the Rényi mutal information as follows

I
(n)
A1,A2

= − (n+ 1)c

6n
log(1− x) + Ĩn(x) , Ĩn(x) ≡ 1

n− 1
log[F2,n(x)] , (2.142)

where we introduced Ĩn, and

F2,n(x) =
Θ(ητ2) Θ(τ2/η)

Θ(τ2)2
, (2.143)

for any positive integer n > 2, with τ2 de�ned in Eq. (2.51). Since the mutual information
IA1,A2

is the limit n→ 1 of (2.142), it is given by

IA1,A2
= − c

3
log(1− x) + Ĩ1(x) , Ĩ1(x) ≡ ∂nF2,n(x)

∣∣
n=1

. (2.144)
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Figure 2.36: Mutual information for the XXZ model. The data points are extracted from [219]
and the coloured curves are obtained from the rational interpolations of the analytic expres-
sions (2.142) and (2.143) for the compact boson with the values of (p, q) indicated in the left
panel. The dashed grey lines correspond to the decompacti�cation regime, where the analytic
continuation is known [226]. Left: Ĩ1, de�ned in (2.144), as function of x for various values of η.
Right: the mutual information IA1,A2 as function of η for two �xed values of x.

The corresponding analytic continuation to n = 1 is estimated by performing a numerical
extrapolation of the known data through a rational function. We have already discussed in
the text that we can have access only to a �nite number of Rényis, due to the complications
in numerically evaluating the Riemann theta functions for large matrices. Given the
computational resources at our disposal, for the compacti�ed boson we can obtain data
for 2 6 n 6 11 and therefore we could use rational functions with p+ q + 1 6 10.

In Fig. 2.36 we compared our numerical extrapolations of the analytic expressions
of [226] with the numerical data for the XXZ spin chain computed in [219] by exact
diagonalization, �nding a very good agreement. In the left panel Ĩ1 is shown as function
of the four-point ratio x for di�erent values of the parameter η, while in the right panel
the mutual information IA1,A2 is shown as function of η for the two �xed con�gurations
of intervals given by `1 = `2 = d1 = d2 = L/4 (x = 0.5) and 2`1 = 2`2 = d1 = d2 = L/3
(x = 0.25), being L the total length of the periodic system. All the rational interpolations
in the �gure exhibit a good agreement with the numerical data, despite the low values of
p and q. Increasing these parameters, a better approximation is expected but the result
is already stable for these values and we provided two rational interpolations for each
curve as a check. Some rational interpolations may display some spurious bahaviour in
some regimes of x. As discussed in detail in Sec. 2.E.2, this possibility increases with
q. These results have been discarded and we showed only rational interpolations which
are well-behaved in the whole domain x ∈ (0, 1). Notice that rational interpolations that
are well-behaved for some values of η and x could display some bad behaviour for other
values. Thus, the values of (p, q) must be chosen case by case. In Fig. 2.36 the dashed
grey lines are obtained from the analytic continuationfound in [226], which corresponds
to the decompacti�cation regime and therefore it reproduces the numerical data from the
XXZ chain and from the rational interpolations only for small η, as expected.

Another important case where the Rényi entropies of two disjoint intervals have been
found analytically is the Ising model [196]. The Hamiltonian of the one dimensional spin
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Figure 2.37: Extrapolations for −Ĩ1, de�ned in (2.144), as function of x for the Ising model. The
data points are extracted from [220] while the coloured curves are obtained through the rational
interpolations with (p, q) indicated.

chain de�ning the Ising model in a transverse �eld is Eq. (2.80), where periodic boundary
conditions are imposed. This model has a quantum critical point at h = 1 and in the
continuum it is a free Majorana fermion with central charge c = 1/2. The Rényi entropies
for two disjoint intervals on the Ising spin chain have been studied in [220] through a
TTN algorithm [246] and in [222] through the exact solution of the model in terms of free
Majorana fermions. The former method allowed to �nd also the mutual information.

As for the Rényi entropies for two disjoint intervals in the corresponding CFT, by
employing known results about bosonization on higher genus Riemann surfaces for c = 1
models [207, 208, 210�214], the expression of F2,n(x), Eq. (2.53), was found in [196].
It is a sum of Riemann theta functions evaluated for the period matrix τ2 in (2.51).
Finally, the mutual information for the Ising model is (2.144). Similarly to the case of
the compact boson, also for the Ising model we are not able to compute Ĩ1(x) analytically
and therefore we perform a numerical extrapolation through the rational interpolation
method described in Sec. 2.E.2.

In Fig. 2.37 we show −Ĩ1(x) as function of x ∈ (0, 1), which can be found by con-
sidering two disjoint intervals of equal length, and compare the numerical data obtained
in [220] with the curve found through the numerical extrapolation performed with a ra-
tional interpolating function. Even if the Riemann theta functions in (2.53) depend on a
matrix of size g × g, unfortunately we cannot consider high values for n. Indeed, besides
the problem of computing the Riemann theta function numerically for large period matri-
ces, the additional obstacle occurring for the Ising model is that the number of elements
in the sum (2.53) grows exponentially with n. Given our computational power, we have
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Figure 2.38: Extrapolations of IA1,A2,A3 , de�ned in (2.7a), for the Ising model. Two con�gura-
tions of intervals have been considered, namely (2.145) with α = 0.25 (left) and α = 2 (right).

The dots correspond to I
(n)
A1,A2,A3

in (2.5) with n ∈ {2, 3, 4} while the lines are the extrapola-
tions obtained through the rational interpolation method with the values of (p, q) indicated. The
dot-dashed line is the extrapolation to n = 2 performed as a check of the method, while the
remaining lines correspond to IA1,A2,A3 .

computed the Rényi entropies up to n = 7 and in Fig. 2.37 we show the rational inter-
polations found by choosing three di�erent pairs (p, q) which are well-behaved among the
available ones. Since the curves coincide, the �nal result is quite stable and, moreover,
the agreement with the numerical data found in [220] through the TTN is very good.

We conclude this appendix showing some results for IA1,A2,A3
for the Ising model, de-

�ned in Eq. (2.7a), obtained by numerically interpolating the analytic results for I(n)
A1,a2,A3

,
Eq. (2.5). The results can be found in Fig. 2.38, where we have considered the following
con�gurations of three intervals speci�ed by a parameter α (see Fig. 2.9 for the notation)

(d) `i = `, d1 = d2 = α`, d3 = L− (3 + 2α)` . (2.145)

In particular, the results in Fig. 2.38 correspond to α = 0.25 (left panel) and α = 2 (right
panel), where the dots denote the values of I(n)

A1,A2,A3
for n ∈ {2, 3, 4}. Unfortunately,

with the computational resources at our disposal, we could not compute Rényi entropies
for higher values of n. Given the few n's available, only few rational interpolations can
be employed to approximate the analytic continuation to n = 1 and they are depicted in
Fig. 2.38 through solid and dashed lines (in general we never use (p, q) = (0, 1) because
it is often not well-behaved).

It is interesting to observe that the three di�erent rational interpolations provide
the same extrapolation to n = 1 for a large range of x2 (they di�er when x2 is close
to 1). Since, to our knowledge, numerical results about IA1,A2,A3

for the Ising model
are not available in the literature, the curves in Fig. 2.38 are predictions that would be
interesting to test through other methods. We remark that we are not guaranteed that
this extrapolation method provides the correct analytic continuation. Nevertheless, the
fact that extrapolations with di�erent values of (p, q) give very close outputs is a strong
indication that the result should be trusted, assuming that no singularities occurs for real
n between 1 and the maximum value of n employed in the extrapolations. Another check
of the reliability of the numerical method is the following: we have performed rational
interpolations considering only n ∈ {3, 4} to extrapolate the value at n = 2, which is
known analytically. Since only two points are available, only the rational interpolation
with (p, q) = (1, 0) can be done, which is given by the dot-dashed curve in Fig. 2.38.
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Despite the roughness of the extrapolation due to the few input points, the agreement
with the expected values computed with the analytic expression (black dots) is very good.

2.E.2 Some technical details

In this appendix we discuss the numerical method that we have employed in sec. 2.6,
which is based on rational interpolations, and the issues that may be encountered while
addressing the replica limit for the entanglement entropy. Its use in this context has been
�rst suggested in [152].

The rational interpolation method consists in constructing a rational function on the
real axis which interpolates a �nite set of given points labeled by a discrete variable.
The extrapolation is simply obtained by evaluating the rational function obtained in the
desired value of the variable.

For the quantities we are interested in, the discrete variable is an integer number n.
As a working example, let us consider the case of two disjoint intervals, where the variable
x ∈ (0, 1) characterizes the con�guration of intervals. For any integer n > 2 we have a real
function of x and typically we have access only to n 6 nmax for computational di�culties.
The rational function interpolating the given data reads

W
(n)
(p,q)(x) ≡ P (x;n)

Q(x;n)
≡ a0(x) + a1(x)n+ a2(x)n2 + · · ·+ ap(x)np

b0(x) + b1(x)n+ b2(x)n2 + · · ·+ bq(x)nq
, (2.146)

being p ≡ deg(P ) and q ≡ deg(Q) the degrees of the numerator and of the denominator
respectively as polynomials in n. The extrapolations are performed pointwise in the
domain x ∈ (0, 1). Thus, for any given x ∈ (0, 1), in (2.146) we have p+ q+ 2 coe�cients
to determine. Nevertheless, since we can divide both numerator and denominator by
the same number, we can �x b0(x) = 1, and the number of independent parameters to
�nd is p + q + 1. Once the coe�cients in (2.146) have been found, the extrapolation is
easily done by considering n real and setting it to the needed value. It is important to
stress that, having access only to a limited number m of data points, we can only perform
rational interpolations whose degrees (p, q) are such that p + q + 1 6 m. This method
is implemented in Wolfram Mathematica through the Function Approximations package
and the command RationalInterpolation.

In Fig. 2.39 we consider an explicit example where we extrapolate the Ĩ1(x) in (2.144)
of the compact boson (c = 1) for a particular value of the compacti�cation radius corre-
sponding to η = 0.295 (see also Fig 2.36). For n > 2 the analytic expressions are (2.142)
and (2.143) and we take into account 2 6 n 6 6 only (in Fig. 2.36 we employ also n = 7).
Given these data, we can perform rational interpolations with p+q+1 6 5. The blue curve
in Fig. 2.39 is the extrapolation to n = 1 of the rational interpolation with (p, q) = (2, 2).
We �nd it instructive to describe the details for a speci�c value of x. Let us consider, for
instance, a con�guration corresponding to x = x̃ ≡ 0.2101 (see the dashed rectangle in
Fig. 2.39). First one has to compute the rational interpolation with (p, q) = (2, 2), then
the limit n→ 1 must be taken. For these two steps, we �nd respectively

Wn
(2,2)(x̃) =

0.358− 0.480n+ 3.689n2

1 + 1.347n+ 7.870n2
, lim

n→1
Wn

(2,2)(x̃) = 0.349 . (2.147)

In the inset of Fig. 2.39 we show how adding more data improves the �nal extrapolation
and how it becomes stable. Focusing again on x = x̃, we can start by taking only
n ∈ {2, 3}, which allow to perform a rational interpolation with (p, q) = (1, 0) (a line).
Since rational interpolations having p = 0 often provide wrong predictions, we prefer
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Figure 2.39: The quantity Ĩn in (2.142) and the corresponding n → 1 limit (2.144) for the
compact boson (c = 1) with η = 0.295. The blue line is the extrapolation n = 1 of the rational
interpolation with (p, q) = (2, 2) obtained through the analytic expressions given by (2.143)
and 2.51 with 2 6 n 6 6, whose values for Ĩn are shown by points for some values of the four
point ratio x. In the inset, considering the con�guration having x = 0.2101 (highlighted by the
dashed rectangle in the main plot), we show Ĩn as function of n for rational interpolations having
di�erent (p, q). The extrapolations having q > 0 capture the expected value better than the ones
having q = 0.

to avoid them, if possible. The extrapolation to n = 1 corresponding to (p, q) = (1, 0)
cannot be trusted and therefore we consider four input data n ∈ {2, 3, 4, 5} which allow to
consider a rational interpolation with, for instance, (p, q) = (3, 0) and also (p, q) = (1, 1).
These two di�erent rational interpolations do not provide the same extrapolation to n = 1
and therefore we must take into account more input data. Considering 2 6 n 6 6 we can
choose also (p, q) = (2, 2) �nding that the corresponding rational interpolation basically
coincides with the one with (p, q) = (1, 1) (their di�erence is of order 10−3). Thus, the
extrapolation to n = 1 obtained with (p, q) = (2, 2) is quite stable. Repeating this analysis
for the whole range of x ∈ (0, 1), one can �nd the blue curve in Fig. 2.39. As a further
check, in Fig. 2.36 we have used (p, q) = (3, 2) using more input data, �nding that the
�nal extrapolation is basically the same. Plots like the one shown in the inset of Fig. 2.39
are very useful to understand the stability of the extrapolation to n = 1. Increasing the
values of p and q in the rational interpolations leads to more precise extrapolations, as
expected. Rational interpolations with q > 0 provide extrapolations which are closer to
the expected value with respect to the ones with q = 0. When q is strictly positive, q
poles occur in the complex plane parameterized by n ∈ C. Nevertheless, if these poles
are far enough from the real interval (1, nmax) containing all the n's employed as input
data for the interpolation, the extrapolations to n = 1 are reliable. Increasing q, we have
higher probability that one of the poles is close to the region of interpolation, spoiling
the extrapolation. Plotting Wn

(p,q)(x) as function of n is useful to realize whether this
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Figure 2.40: Three disjoint intervals: The quantity I
(n)
A1,A2,A3

in (2.5) for the compact boson,
computed through (2.98) and (2.41) for n > 2. Our limited computational power in evaluating
Riemann theta functions for large matrices prevented us to consider n = 4 in the whole range
of con�gurations and this limits also the possible rational interpolations that can be employed.
The blu line is the extrapolation found by using only n ∈ {2, 3}, which should not be considered
as a prediction because more n's are needed to �nd stable extrapolations. The orange line is
a check of the method for n = 2: the fact that the expected points are not precisely recovered
is due to low number of n's (n ∈ {3, 4}) available. In the inset, considering the con�guration

having x2 = 0.224, we show I
(n)
A1,A2,A3

as function of n for rational interpolations having di�erent
(p, q). The rational interpolation with (p, q) = (0, 2) (red line) shows a bad behaviour and the
extrapolation to n = 1 cannot be trusted; indeed, the red curve in the main plot is di�erent from
the other extrapolations.

situation occurs (see the inset of Fig. 2.40 for an explicit example).
The issue of evaluating Riemann theta functions which involve large matrices becomes

important when we want to compute IA1,A2,A3
(see 2.7a and (2.5)) for a compact boson.

Indeed, F3,n(x) in (2.98) is given by (2.41) for N = 3 and therefore the matrix occurring
in the Riemann theta function is 2g × 2g with g = 2(n − 1). Given our computational
power, we computed I(n)

A1,A2,A3
for n ∈ {2, 3} for all the needed con�gurations of intervals,

while for n = 4 we got results only for small intervals. In Fig. 2.40 we show our data
and some numerical extrapolations. In the whole range of x2 we performed only the
rational interpolation with (p, q) = (1, 0) (blue line) because only two input data are
available, while for x2 ∈ (0, 0.22), where also n = 4 is available, we could employ higher
values of p and q. When we have more extrapolations, unfortunately they do not overlap,
indicating that we cannot trust these curves to give a prediction, even if they are quite
close. Another indication that n = 4 is not enough to get a precise extrapolation comes
from the fact that, given the data with n ∈ {3, 4} and extrapolating to n = 2 (orange
curve in Fig. 2.40) we did not recover exactly the expected values (purple circles) found
with the analytic expressions. In the inset we focus on a con�guration of three intervals
corresponding to x2 = 0.224 and show the dependence of I(n)

A1,A2,A3
on n for various
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(p, q). While the extrapolations to n = 1 associated to (1, 0) (for this one only n ∈ {2, 3}
have been used), (1, 1) and (2, 0) are very close, the one corresponding to (p, q) = (0, 2)
provides a completely di�erent extrapolation to n = 1. Considering the two poles of the
interpolating function in the regime of x2 where also n = 4 is available, we �nd that they
are real and at least one of them is inside the domain n ∈ (1, 4). Thus, the function
cannot be considered a good approximation of the true analytic continuation and the
extrapolation cannot be trusted. This behaviour does not occur for the case considered in
the inset of Fig. 2.39. Thus, it is useful to plot the n dependence of the functions obtained
through the rational interpolation method in order to check the occurrence of singularities
that could lead to wrong extrapolations.

In order to test the method, in some cases we have performed two further checks.
Firstly we have employed as input for the extrapolations the numerical Rényi entropies
obtained from the harmonic chain with the largest value of L at our disposal, rather than
the analytic ones. The former naturally contains some systematic �nite size errors, but
the results agree with the ones obtained from the corresponding analytic expressions. Sec-
ondly, we added some randomness to the analytic expressions for the Rényi entropies to
mimic some statistical errors which may arise when they are computed through approx-
imated techniques such as Monte Carlo. The extrapolations obtained are in agreement
with the expected ones up to the same amount of randomness.

It is very important to make a �nal remark on the validity of the method when some
true singularities are present in the replica space n ∈ C. When singularities in n occur (see
e.g. [221, 267, 268]), the numerical method adopted here is not expected to be stable and
to reproduce the correct analytical continuation. However, a more detailed analysis of the
behaviour of the method in these cases would be interesting and should be addressed in
the future. As for the one dimensional systems that have been considered, given the good
agreement with the lattice results, a posteriori we expect that there are no singularities
in the ranges of n that have been explored.
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Chapter 3

Entanglement Negativity after a global

quantum quench

3.1 Introduction

The non-equilibrium dynamics of isolated quantum systems is one of the most active
research areas of the last years. In a global quantum quench, a system is initially prepared
in the ground state |ψ0〉 of a translationally invariant Hamiltonian H0. The quantum
quench consists in a sudden (instantaneous) change of the Hamiltonian H0 → H at a
given time that we set as t = 0. For example, the initial and �nal Hamiltonians may di�er
for an experimentally tunable parameter. The system is then left to evolve according to
the unitary evolution induced by the new translationally invariant Hamiltonian H. Thus,
the unitary evolution of |ψ0〉 is

|ψ(t)〉 = e−iHt |ψ0〉 . (3.1)

The density matrix associated to this pure state is ρ(t) = |ψ(t)〉〈ψ(t)|. Key questions in
quench dynamics are whether the system reaches for long time a stationary state, how to
characterise it from �rst principles, and how this steady state is approached in time (see
e.g. Refs. [269, 270] for reviews).

Nowadays a number of advanced analytical and numerical techniques have been de-
veloped to study the quench dynamics for a variety of di�erent situations and realistic
models [271�277]. However, many insights on these non-equilibrium dynamics came from
the study of oversimpli�ed theories such as 1+1 dimensional CFT. Indeed, phenomena
like the light-cone spreading of correlations [106, 271], the linear increase of entanglement
entropy [104] and the structure of revivals in �nite systems [278] have been �rst discov-
ered in CFT, later generalised to more realistic models and even veri�ed in experiments
(see [279] for the experimental measure of the light-cone spreading of correlations). In
1+1-dimensional CFT, the calculations become manageable when |ψ0〉 is a boundary con-
formal state as we will explain in what follows. In this approach, analytical results have
been obtained for the entanglement entropy of a single and more intervals [104], for cor-
relation functions of primary operators [106, 271], and a few other quantities [280�285].
We will not be interested here in the time evolution of the entanglement after a local
quench, a subject which has been considered instead in Refs. [96, 105, 188, 286�290] for
the entanglement entropies and in [140] for the moments of the partial transpose.
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Figure 3.1: Con�gurations of two intervals in the in�nite line that we consider: adjacent intervals
(top) and disjoint intervals (bottom).

The main goal of this chapter is to shed some light on the time evolution of the entan-
glement between two di�erent regions in an extended system following a quantum quench.
In a one-dimensional setting, the two regions are two intervals, either adjacent or disjoint,
as shown in Fig. 3.1. The entanglement of a bipartite system can be quanti�ed by the
entanglement entropy (1.46) or alternatively by the Rényi entanglement entropies (1.47).
In this case one can introduce the mutual information (1.64) and, analogously, the Rényi
mutual information (1.65). However, let us stress again that these are not measures of the
entanglement between A1 and A2, but quantify the amount of global correlations between
the two subsystems, see e.g. [15]. A proper measure of entanglement in a bipartite mixed
state is the negativity EA1,A2

, which has been de�ned in the Introduction, see Eq. (1.67)
and for which a general quantum �eld theory approach is available [134, 135, 137]. In the
following we will use the logarithmic negativity to quantify the entanglement evolution
after the quench and we will compare the results with the ones for the mutual informa-
tion. We consider this problem in the framework of CFT, closely following the approach
introduced in Refs. [104, 106] for the time evolution of entanglement entropy and corre-
lations. In order to understand the generality and the limits of this approach, we parallel
the analytic CFT calculations with some exact numerical computations for the harmonic
chain. The non-equilibrium evolution of the negativity in CFT, but for di�erent quench
protocols, has also been considered in Refs. [138, 139].

The chapter is organised as follows. In Sec. 3.2 we review the path integral approach
to the quantum quench problem [104, 106, 271] and the known results from the time
evolution of the entanglement entropy and mutual information in a CFT. In Sec. 3.3 we
apply this formalism to the calculation of the negativity of two disjoint intervals after
a quench to a CFT. In Sec. 3.4 we report the quasi-particle picture for the spreading
of correlation and entanglement and we argue that it is valid also for the negativity. In
Sec. 3.5 we report numerical calculation for the entanglement entropy, mutual information,
and entanglement negativity for a quench of the frequency (mass) in the harmonic chain.
We show that the results are in qualitative agreement with the CFT predictions and the
di�erences are understood in terms of the e�ect of slow quasi-particles. Finally in Sec. 3.6
we draw our conclusions and we discuss some open problems.

3.2 Entanglement entropies and mutual information

In this section we brie�y review the imaginary time formalism for the description of
quenches in CFTs developed in Refs. [104, 106, 271]. In particular in Ref. [104], the
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entanglement entropies of an arbitrary number of disjoint intervals have been already
derived. It is however useful to recall how this has been done, in order to set up the
calculation and notations for the negativity.

3.2.1 The path integral approach to quenches

The expectation value of a product of equal-time local operators in the time dependent
state (3.1) can be written as [271]

〈O(t, {ri})〉 = Z−1〈ψ0|eiHt−τ0HO({ri})e−iHt−τ0H |ψ0〉 , (3.2)

where two damping factors e−τ0H have been added in such a way as the path integral
representation of this expectation value is convergent. The normalisation factor is Z =
〈ψ0|e−2τ0H |ψ0〉. Following Ref. [271], Eq. (3.2) may be represented by a path integral in
imaginary time τ

1

Z

∫
[dφ(r, τ)]O({ri}, 0) e

−
∫ τ2
τ1

Ldτ 〈ψ0|φ(r, τ2)〉〈φ(r, τ1)|ψ0〉 , (3.3)

where L is the (euclidean) Lagrangian corresponding to the dynamics of H. In order
to match the expectation value (3.3) with the starting formula (3.2) we need to identify
τ1 = −τ0− it and τ2 = τ0− it. To further simplify the calculation and following Ref. [271],
we consider the equivalent strip geometry between τ = 0 and τ = 2τ0, with O inserted at
τ = τ0 + it. The main idea of Refs. [104, 271] is to make the calculation considering τ real
and only at the end of the computation to analytically continue it to the actual complex
value τ = τ0 + it.

Eq. (3.3) has the form of the equilibrium expectation value in a strip of width 2τ0 with
particular boundary conditions. The above expression is valid for an arbitrary �eld theory,
but it is practically computable in the case we are interested in, i.e. a conformal invariant
Hamiltonian. As detailed in Ref. [271] for a CFT, in the limit when t and the separations
|ri − rj | are much larger than the microscopic length and time scales, we can replace the
boundary condition |ψ0〉 with a boundary conformal state |ψ∗0〉 to which |ψ0〉 �ow under
the RG �ow. Within this approach τ0 is identi�ed with the correlation length (inverse
mass) of the initial state and the predictions made with this approach are expected to
be valid only in the regime t, |ri − rj | � τ0. The generalisation of this approach to some
other initial conditions (both in one and higher dimensions) can be found in Refs. [280,
284, 285, 291�295].

Before reporting the explicit results and technicalities for the entanglement entropies,
it is worth spending few words on the regime of applicability of the above approach that
often in the literature has been taken much beyond its scope, especially when comparing
with results in lattice models. First of all, in a CFT all the quasi-particle excitations
move with the same speed which here has been �xed to unity. This is not the case
for a critical model even if its low-energy physics is described by a CFT. Indeed, while
for small momenta k the dispersion relation εk has a CFT form εk ∼ v|k|, for larger
values of the momentum k it becomes a non-trivial function. When performing a global
quench, we always inject a large amount of energy into the system (unless we perform
an in�nitesimal quench) which populates also high-energy modes having a non-conformal
scaling. Also the identi�cation of τ0 should be handled with a lot of care. Indeed, for
small initial correlation length ξ0 we have τ0 ∼ ξ0, but this relation should be seen only
as an e�ective scaling for small ξ0 in the continuum theory. However, in a given lattice
model we need to have ξ0 � a in order to be in the �eld theory scaling. Thus there
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is a competition between two di�erent e�ects, which makes τ0 a non-univocally de�ned
quantity. However, this is not our main interest in the following and, when comparing
with the numerical results coming from the harmonic chain, we will simply limit ourself to
use τ0 as a phenomenological �tting parameter which can depend also on the considered
observable (as already noticed a few times in the literature [280, 292, 296, 297]).

3.2.2 The entanglement entropy

Let us consider a subsystemA = ∪Ni=1Ai composed byN disjoint intervalsAi = [u2i−1, u2i]

on the in�nite line. We are interested in the time-dependent Rényi entropies S(n)
A (t) as

de�ned in Eq. (1.47) and in the entanglement entropy obtained as a replica limit. Given
that Tr ρnA is equivalent to a 2N -point function of twist �elds [27, 45, 206], we have that
the desired imaginary-time expectation value is

Tr ρnA = 〈
N∏

i=1

Tn(w2i−1)T̄n(w2i) 〉strip , wi = ui + iτ , (3.4)

where we denoted by w = u + iτ the complex coordinate on the strip (u ∈ R and 0 <
τ < 2τ0). The twist �elds Tn and T̄n behave under conformal transformation as primary
operators whose scaling dimensions are given in Eq. (1.54).

The expectation values on the strip of width 2τ0 can be obtained by employing the
conformal map z = eπw/(2τ0), which maps the strip to the upper half plane (UHP) pa-
rameterised by complex coordinate z. Eq. (3.4) can be then written as

Tr ρnA =

[(
π

2τ0

)2N N∏

i=1

∣∣z2i−1z2i

∣∣
]∆n

〈
N∏

i=1

Tn(z2i−1)T̄n(z2i) 〉UHP , (3.5)

where 〈. . . 〉UHP are correlators on the UHP and zj ≡ eπwj/(2τ0).
The 2N -point function of twist �elds on the upper half plane occurring in (3.5) can

be written as

〈
N∏

i=1

Tn(z2i−1)T̄n(z2i) 〉UHP =

cNn∏2N
a=1 |za − z̄a|∆n

(∏N
j<k η2k,2j η2k−1,2j−1∏

j,k η2j−1,2k

)∆n

FN,n({ηj,k}) ,
(3.6)

where ηi,j are the
(

2N
2

)
cross ratios that can be constructed from the 2N endpoints zj

(and their images z̄j) of the N intervals in the UHP as follows

ηi,j ≡
(zi − zj)(z̄i − z̄j)
(zi − z̄j)(z̄i − zj)

. (3.7)

The function FN,n({ηj,k}) in (3.6) depends on the full operator content of the model and
its computation is a very di�cult task, even for simple models (see Refs. [47, 79, 196,
218�220, 223�227, 229, 235, 243, 298, 299] for some speci�c cases in the bulk case, the
references in [74, 75, 77, 78, 97, 98, 100, 228, 230, 300�302] for the holographic approach
to the same problem, and [49, 51�53, 55, 303] for some higher dimensional �eld theoretical
computations).
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There is, however, some degree of arbitrariness in the way we wrote Eq. (3.6) since the
product over the cross-ratios could be absorbed fully or partially in the function FN,n.
However, writing it in the above form has the advantage to display the limiting behaviour
for ηi,j → 0 and ηi,j → 1. Indeed, by employing the OPE (in the sense of Ref. [196])

Tn(z)T̄n(w) =
cn

|z − w|2∆n
I + . . . , w → z , (3.8)

it is easy to show that, in both limits ηi,j → 0 and ηi,j → 1, the leading power-law
behaviour is fully encoded in the prefactor and the function FN,n is just a constant. As
we will see below, for the real time behaviour of the entanglement entropy only these two
limits of the various four-point ratios matter [104, 271] and consequently we do not have
to worry about the precise value of the function FN,n.

Plugging (3.6) into (3.5), we �nd

Tr ρnA = cNn

[(
π

2τ0

)2N 2N∏

a=1

∣∣∣∣
za

za − z̄a

∣∣∣∣
∏N
j<k η2k,2j η2k−1,2j−1∏

j,k η2j−1,2k

]∆n

FN,n({ηj,k}) . (3.9)

What still remains to be done is to write the r.h.s. of (3.9) in terms of the coordinates
on the strip. The a-th term of the product in (3.9) is simply

|za|
|za − z̄a|

=
1

|2 sin[πτ/(2τ0)]| , (3.10)

independently of ua. For the cross ratios (3.7) we have that

ηi,j =
2 sinh2

(π(ui−uj)
4τ0

)

cosh
(π(ui−uj)

2τ0

)
− cos

(
πτ
τ0

) . (3.11)

This concludes the calculation on the strip of width 2τ0. At this point, to obtain the
real time evolution after a quench, we should analytically continue the parameter τ to the
complex value

τ = τ0 + i t , (3.12)

with t� τ0, as explained above. In this regime, the a-th term (3.10) gives |za|/|za− z̄a| =
e−

π
2τ0

t + . . . . As for the cross ratio (3.11), when t� τ0 and |ui − uj | � τ0, it becomes

ηi,j =
eπ|ui−uj |/(2τ0)

eπ|ui−uj |/(2τ0) + eπt/τ0
, (3.13)

where ηi,j ∈ [0, 1]. In the limit τ0 → 0, for the ratio (3.13) we have ηi,j → 0 for t >
|ui − uj |/2 and ηi,j → 1 for |ui − uj |/2 > t. However, we should keep the leading
behaviour for ηi,j → 0 and so we �nd useful to write it as

ln(ηi,j)→
π

τ0
q(t, |ui − uj |) , for t, |ui − uj | � τ0 , (3.14)

where

q(t, `) ≡ `

2
−max(t, `/2) =

{
0 t < `/2 ,
`/2− t t > `/2 .

(3.15)
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The time evolution of the Rényi entanglement entropies is then obtained by plugging
the above analytic continuations to real time in Eq. (3.9), leading to [104]

S
(n)
A =

cπ(n+ 1)

12τ0n

[
Nt+

N∑

j,k=1

q(t, |u2j−1 − u2k|)

−
∑

1<j<k<N

q(t, |u2j − u2k|) + q(t, |u2j−1 − u2k−1|)
]
.

(3.16)

In the above equation a piece-wise constant (in time) term coming from the function
FN,n and for the various non-universal prefactors has been intentionally dropped because
it has no physical meaning. Indeed the above formula describes only the leading term
in the so-called space-time scaling limit [304�307] which corresponds to the limit t→∞,
|ui−uk| → ∞ with all the ratios �xed. The term we dropped is just one of the corrections
to this leading behaviour and it has no meaning to consider it without taking into account
all other corrections at the same order, such the dependence on the details of the initial
state (which in this approach have been over-simplistically absorbed in the parameter τ0).

Let us now specialise Eq. (3.16) to the case of one interval of length u2 − u1 = ` and
n = 1 obtaining the famous formula [104]

SA =
πc

6τ0

[
t+ q(t, `)

]
=





πc

6τ0
t t < `/2 ,

πc

12τ0
` t > `/2 ,

(3.17)

i.e. the entanglement entropy grows linearly for t < `/2 and then saturates to an extensive
value in the subsystem length `. Notice that the large time value of the entanglement
entropy is the same as the thermodynamic entropy of a CFT at large �nite tempera-
ture T = 4τ0. This fact indeed holds for all local observable leading to the remarkable
phenomenon of CFT thermalisation [271] (see also [84, 86, 92, 308] for the holographic
version of this phenomenon in arbitrary dimension). However, this is a speci�city of the
uncorrelated initial state we are considering and it has been shown that even an irrelevant
boundary perturbation destroys it leading, for large time, to a generalised Gibbs ensemble
where all the CFT constants of motion enter [292]. The discussion of this issue is however
far beyond the goals of this paper.

In the case of two intervals A1 and A2 (the geometry depicted in Fig. 3.1 with u2−u1

and u4− u3 the lengths of the two intervals and u3− u2 their distance) the entanglement
entropy is straightforwardly written down from Eq. (3.16). Specialising to the Rényi
mutual information in Eq. (1.65), we have

I
(n)
A1,A2

=
πc(n+ 1)

12τ0n

[
q(t, u3 − u1) + q(t, u4 − u2)− q(t, u4 − u1)− q(t, u3 − u2)

]
. (3.18)

Notice that, once the explicit expressions for the q's from (3.15) have been inserted in
(3.18), the linear combination within the square brackets is such that only the terms
involving the max's remain. For large t, we have that I(n)

A1:A2
vanishes for all n.

Taking the limit u3 → u2 in (3.18), we get I(n) for two adjacent intervals

I
(n)
A1,A2

=
πc(n+ 1)

12τ0n

[
t+ q(t, u2 − u1) + q(t, u4 − u2)− q(t, u4 − u1)

]
. (3.19)
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It is worth mentioning that the time evolution of the entanglement entropy and mu-
tual information has been also considered in the framework of holographic approach to
CFT [81�91, 93, 94].

3.3 Entanglement negativity

In this section we present the original part of the CFT calculation of this chapter concern-
ing the temporal evolution of the negativity between two intervals after a global quench
to a conformal Hamiltonian. We consider A = A1 ∪ A2, where the intervals A1 and A2

can be either adjacent or disjoint, as in Fig. 3.1. An important special case is when A is
the entire system (i.e. B → ∅).

As reviewed in Sec. 1.4.3, the quantity Tr
(
ρT2

A

)n
can be computed from a speci�c

correlator of twist �elds. We can apply the method of Ref. [104] to the proper correlators
on the strip, which involve both Tn (T̄n) and T 2

n (T̄ 2
n ). This means that we have to slightly

generalize the setup described in the previous section by taking into account correlators
on the strip of �elds which can have di�erent dimensions. Instead of presenting general
formulas, we �nd more instructive to limit ourselves to discuss few cases of two intervals
in which we are interested.

3.3.1 Bipartite systems

Although trivial, it is useful to �rst discuss the case in which A = A1 ∪ A2 is the entire
system and we consider the partial transpose with respect to A2. Since the time dependent
state |ψ(t)〉 is pure at any time, ρA corresponds to a pure state, and we can use the
standard results [119, 162] that for a pure state the logarithmic negativity is the Rényi
entropy with n = 1/2, i.e.

E(t) = S
(1/2)
A2

(t) , (3.20)

independently of the Hamiltonian governing the time evolution.
When the evolution is conformal, we can re-obtain this trivial result by using the path

integral approach discussed in the previous section. We need to evaluate 〈 T 2
n (w1)T̄ 2

n (w2)〉strip
and then to analytically continue to real time. The strip two-point function is related to
the one in the UHP which has the standard form

〈T 2
n (z1)T̄ 2

n (z2)〉UHP =
c
(2)
n

|(z1 − z̄1)(z2 − z̄2) η1,2|∆
(2)
n

F(η1,2) , (3.21)

where the constants c(2)
n are related to cn in a known way [135], but their value is not

important for what follows. Transforming the UHP to the strip, we �nd

Tr(ρT2

A )n = 〈 T 2
n (w1)T̄ 2

n (w2) 〉strip = c(2)
n

(
π

2τ0

)2∆(2)
n

∣∣∣∣∣

(
2∏

a=1

za
za − z̄a

)
1

η1,2

∣∣∣∣∣

∆(2)
n

F(η1,2) ,

(3.22)
where za = eπ(ua+iτ)/(2τ0).

The time evolution of the powers of the partial transpose comes from the analytic
continuation in Eq. (3.12). As usual, in the space-time scaling limit (t� τ0 and u2−u1 �
τ0), we should retain only the leading behaviour of the above expression and all the various
constants and the function F can be dropped, obtaining

E(n) = −π∆
(2)
n

τ0

[
t+ q(t, u2 − u1)

]
, ⇒ E =

πc

4τ0

[
t+ q(t, u2 − u1)

]
, (3.23)
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which coincides with the Rényi entropy for n = 1/2, as it should from (3.20).
We need to comment at this point on the asymptotic large time value of the negativity.

Indeed, it is obvious that the negativity of one interval with respect to the rest of the
system does not thermalise, being very di�erent from the �nite temperature negativity
calculated in [137] (see also [121�124]). This is not a surprise since, by construction, this
negativity is not a local quantity because it requires the partial transposition with respect
to the in�nitely large part A2.

3.3.2 Two adjacent intervals

The conformal evolution of the entanglement negativity between two adjacent intervals
after a global quench can be studied by considering the three point function 〈TnT̄ 2

n Tn〉 on
the strip which can be obtained by the mapping from the UHP of the three-point function

〈Tn(z1)T̄ 2
n (z2)Tn(z3)〉UHP =

cn∏3
a=1 |za − z̄a|∆(a)


η

∆(2)
n −2∆n

1,3

η∆
(2)
n

1,2 η∆
(2)
n

2,3




1/2

F({ηj,k}) , (3.24)

where ∆(1) = ∆(3) = ∆n and ∆(2) = ∆
(2)
n (given by (1.54) and (1.78) respectively), the

harmonic ratios ηj,k are de�ned in Eq. (3.7) and again the function F depends on the full
operator content of the theory and it is very di�cult to calculate (see Refs. [135, 235] for
some explicit examples). However, as it should be already clear at this point, we do not
need this function in the space-time scaling limit, but we only need to ensure that the
powers in the rest of the expression have been chosen in such a way that F is constant
in the limits ηj,k → 0 or ηj,k → 1. This can be easily checked by employing the following
OPE

Tn(z)T̄ 2
n (w) =

CTnT̄ 2
n T̄n

|z − w|∆(2)
n

T̄n(z) + . . . , w → z . (3.25)

Taking separately the limits z2 → z1 and z2 → z3 in (3.24), and using (3.25) it should be
clear that F is constant in both the interesting limits. Then, the three-point function on
the strip can be straightforwardly written by a conformal mapping, obtaining

〈Tn(u1)T̄ 2
n (u2)Tn(u3)〉strip = cn

(
π

2τ0

)∆ 3∏

a=1

∣∣∣∣
za

za − z̄a

∣∣∣∣
∆(a)


η

∆(2)
n −2∆n

1,3

η∆
(2)
n

1,2 η∆
(2)
n

2,3




1/2

F({ηj,k}) ,

(3.26)
where ∆ = 2∆n + ∆

(2)
n and za = eπ(ua+iτ)/(2τ0). The time evolution of Tr(ρT2

A )n for two
adjacent intervals is then obtained by the analytic continuation of the above to τ = τ0 + it.

The CFT prediction for the temporal dependence of E(n) in the space-time scaling
regime (t � τ0 and |uj − ui| � τ0) is then found, as usual, by dropping the various
multiplicative constants and the function F , obtaining

E(n) = − π

2τ0

[(
2∆n + ∆(2)

n

)
t

+ ∆(2)
n

(
q(t, u2 − u1) + q(t, u3 − u2)

)
− (∆(2)

n − 2∆n) q(t, u3 − u1)
]
.

(3.27)

Notice that, since ∆
(2)
2 = 0, for n = 2 the terms containing u2 do not contribute and

therefore the curve E(2)(t) displays a change in its slope only at t = (`1 + `2)/2. This is



3.3 Entanglement negativity 109

a consequence of the trivial fact that T̄ 2
2 = I in (3.26). Finally, taking the replica limit of

(3.27), we �nd the evolution of the logarithmic negativity for adjacent intervals

E =
πc

8τ0

[
t− q(t, u3 − u1) + q(t, u2 − u1) + q(t, u3 − u2)

]
. (3.28)

Considering the ratio (1.71) for two adjacent intervals, since A = A1∪A2 is the interval
[u1, u3] in the spatial slice of the strip, Tr ρnA corresponds to [u1, u3] and (1.71), in terms
of the CFT quantities, reads

Rn ≡
〈Tn(u1)T̄ 2

n (u2)Tn(u3)〉strip
〈Tn(u1)T̄n(u3)〉strip

. (3.29)

Notice that since T 2
2 = T̄ 2

2 = I, we have that R2 = 1 identically. The time dependence of
Rn in the space-time scaling regime is readily obtained by combining the expressions for
the numerator and the denominator in (3.29), �nding

ln(Rn) =
π∆

(2)
n

2τ0

[
− t+ q(t, u3 − u1)− q(t, u2 − u1)− q(t, u3 − u2)

]
, (3.30)

where, once the expressions for the q's from (3.15) have been plugged in, only the terms
with the max's remain within the square brackets. This expression shows why the quan-
tities Rn are very useful when comparing these predictions with numerical calculations,
indeed when comparing with Eq. (3.27) for E(n) one immediately notices that all the
dependence on ∆n is not there.

3.3.3 Two disjoint intervals

The time evolution of logarithmic negativity between two disjoint intervals after a global
quench can be computed from the analytic continuation of the four-point function 〈TnT̄nT̄nTn〉
on the strip (notice the order of the operators along the line which is crucial). The strip
four-point function is derived from the conformal map from the same function on the
UHP, which can be written as

〈Tn(z1)T̄n(z2)T̄n(z3)Tn(z4)〉UHP =

c2n∏4
a=1 |za − z̄a|∆n

1

η∆n
1,2 η

∆n
3,4

(
η1,4 η2,3

η1,3 η2,4

)∆(2)
n /2−∆n

F({ηj,k}) .
(3.31)

Again for the time evolution we do not need the knowledge of the function F , but only
to ensure that for ηj,k → 0 and ηj,k → 1 the form used above gives that F is constant.
This can be easily checked by requiring that when the two intervals are far apart (i.e.
|z3 − z2| → ∞), the four-point function factorizes into the product of two two-point
functions and that for z3 → z2 the following OPE holds

T̄n(z)T̄n(w) =
C T̄

2

T̄ T̄
|z − w|2∆n−∆

(2)
n

T̄ 2
n (z) + . . . , w → z . (3.32)

Mapping this four point-function on the strip, we get

Tr(ρT2

A )n = c2n

(
π

2τ0

)∆ 4∏

a=1

∣∣∣∣
za

za − z̄a

∣∣∣∣
∆n 1

η∆n
1,2 η

∆n
3,4

(
η1,4 η2,3

η1,3 η2,4

)∆(2)
n /2−∆n

F({ηj,k}) ,

(3.33)
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being ∆ = 4∆n and za = eπ(ua+iτ)/(2τ0).
The time evolution of E(n) in the space-time scaling regime (t� τ0 and |uj−ui| � τ0)

is found by employing the analytic continuation (3.12). The result reads

E(n) = − π
τ0

[
2∆n t+ ∆n

(
q(t, u2 − u1) + q(t, u3 − u4)

)

−
(
∆(2)
n /2−∆n

)(
q(t, u4 − u1) + q(t, u3 − u2)− q(t, u3 − u1)− q(t, u4 − u2)

)]
,

(3.34)

whose replica limit is

E =
πc

8τ0

[
q(t, u3 − u1) + q(t, u4 − u2)− q(t, u4 − u1)− q(t, u3 − u2)

]
. (3.35)

The resulting expression for the negativity is identical to Eq. (3.18) for the Rényi mutual
information apart from the prefactor. Notice that in E(n), for small t, the expression (3.34)
displays a linear regime in the initial part of the evolution, whose slope is −2π∆n/τ0. Be-
ing ∆n=1 = 0, this linear regime does not occur for the logarithmic negativity (1.70). We
�nd it useful to compare (3.34) with the corresponding quantity (3.27) for adjacent inter-
vals and observe that for n = 2 all the dependences on t and uj remain when the intervals
are disjoint, while for adjacent intervals the n = 2 is characterised by the cancellation of
some variables.

The ratio Rn in Eq. (1.71) for two disjoint intervals on the strip has the easy form

Rn =
〈Tn(u1)T̄n(u2)T̄n(u3)Tn(u4)〉strip
〈Tn(u1)T̄n(u2)Tn(u3)T̄n(u4)〉strip

'
(
η1,4 η2,3

η1,3 η2,4

)∆(2)
n /2

, (3.36)

where we dropped the two functions F in numerator and denominator since they do not
contribute in the the space-time scaling limit after analytic continuation in time. From
this expression, we get R2 = 1 identically because T2 = T̄2. Also the time evolution of
this ratio in the space-time scaling regime is particularly easy:

lnRn =
π∆

(2)
n

2τ0

[
q(t, u4 − u1) + q(t, u3 − u2)− q(t, u3 − u1)− q(t, u4 − u2)

]
. (3.37)

Plugging the explicit expressions of the q's (see (3.15)) in this expression, we �nd that
only the terms involving the max's remain. Remarkably, also for disjoint intervals, these
ratios Rn do not depend on ∆n.

3.4 Quasi-particle interpretation and horizon e�ect

The time evolution of entanglement and total correlations after a quantum quench can
be understood in terms of the quasi-particle interpretation for the propagation of entan-
glement, �rst suggested in [104]. According to this argument, since the initial state |ψ0〉
has a very high energy relative to the ground state of the Hamiltonian which governs the
time evolution, it acts as a source of quasi-particle excitations. Particles emitted from
points further apart than the correlation length in the initial state are incoherent, but
pairs of particles emitted from a given point and subsequently moving to the left or right
are highly entangled and correlated. Let us suppose that a pair of quasi-particles with
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Figure 3.2: Graphical representation for the quasi-particle spreading of entanglement (for the case
with all quasi-particles having the same velocity v = 1 as in a CFT). The quasi-particles emitted
from every point at t = 0 and reaching one A1 (red) and the other A2 (blue) are responsible
of the entanglement between them. The entanglement at a given time t is proportional to the
section of the green shaded area, which is the intersection of the light cones starting from all the
points of A1 and A2 (in the �gure these lengths are the braces). The time-dependence of the
entanglement obtained in this way are depicted as purple curves on the right for a single interval
in the in�nite line (top) and two disjoint intervals (bottom): they are proportional to the CFT
calculations in Eqs. (3.17) and (3.35) respectively. The regions from where the corresponding
quasi-particles have been emitted at t = 0 are obtained by projecting the intersections at time
t = 0 (vertical dashed lines).

opposite momenta (p,−p) is produced with a probability ρ(p) (which depends on both
the Hamiltonian governing the evolution and on the initial state). After their produc-
tion, these quasi-particles move ballistically with velocity vp = −v−p. A quasi-particle of
momentum p produced at x is therefore at x + vpt at time t. In general there is also a
maximum allowed speed of propagation vmax (which is connected with the existence of a
Lieb-Robinson bound in a lattice model [3]).

Now let us consider two regions of the system A1 and A2 (which can be either �nite,
in�nite, semi-in�nite, etc). According to the argument in [104], the �eld at some point
x1 ∈ A1 will be entangled with that at a point x2 ∈ A2 if a pair of entangled particles
emitted from a point x arrive simultaneously at x1 and x2. The entanglement and the
total correlation between A1 and A2 are proportional to the length of the interval in x
for which this can be satis�ed and it can be written as [104]

entanglement ≈
∫

x1∈A1

dx1

∫

x2∈A2

dx2

∫ ∞

−∞
dx

∫
dp ρ(p)f(p) δ(x1−x−vpt) δ(x2−x+vpt) ,

(3.38)
where f(p) is the contribution of the pair of quasi-particles to the given entanglement or
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correlation measure.
When all the quasi-particles move with the same speed |vp| = v (as in the case of a

CFT discussed in the previous sections where we �xed v = 1), the δ functions do not
depend on the momentum anymore and therefore the integral over p gives just an overall
normalisation (depending on the quantity we are considering), while the integral over
the space coordinate can be easily done for arbitrary A1 and A2. In particular, in the
cases of one and two intervals, one straightforwardly recovers all the CFT expressions for
the entanglement entropy, mutual information and negativity such as Eqs. (3.16), (3.17),
(3.18) and (3.35). A graphical interpretation of this quasi-particle picture is reported in
Fig. 3.2.

Furthermore, the above argument allows us also to understand what happens in the
case of a non-linear dispersion relation leading to a mode dependent velocity, which will be
fundamental for the interpretation and the understanding of the numerical data reported
in the next section. Indeed, assuming that a maximum speed vmax exists, we have that the
�rst linear increase of the entanglement is always present, but when vmaxt equals the half
of some typical length of the con�guration given by A1 and A2, the quasi-particles with
velocity smaller than vmax start in�uencing the entanglement because we cannot ignore
anymore the integral over p in Eq. (3.38). These slow quasi-particles lead to non-linear
e�ects discussed e.g. for the entanglement entropy in Refs. [104, 304]. In particular we
have that for very long times, the quasi-particles with approximately zero velocity govern
the approach to the asymptotic value of the entanglement which usually is power-law as
can be easily seen expanding Eq. (3.38) close to the points where vp = 0.

It is important to stress at this point that, while it was already established [104, 222,
309] that the mutual information is correctly described by this quasi-particle picture, it
is far from obvious that the same reasoning carries over to a complicated measure of the
entanglement such as the negativity. The previous section represents a proof of this fact
in the context of CFT, while the following one will con�rm it also for the harmonic chain.

3.5 Numerical evaluation of the negativity and mutual informa-

tion for the harmonic chain

In this section we report the numerical evaluation of the time evolution of entanglement
negativity and mutual information in the harmonic chain after a global quantum quench
of the frequency parameter. The quench dynamics of the Hamiltonian (2.67) has been
studied already in several papers both on the lattice and in the continuum [106, 310�
317]. We consider the harmonic chain because it is the only lattice model in which the
partial transpose and the negativity can be obtained by means of correlation matrix
techniques [147, 150].

In Sec. 2.5 we already reported the Hamiltonian and the main features of the model.
In particular, from the dispersion relation (2.69), we observed that the Hamiltonian has
a zero-mode for k = 0 and ω = 0. This usually prevents a straightforward analysis of
the critical behaviour, but for the global quench this will not be a problem, as we will
see soon. From the dispersion relation, we straightforwardly have the velocity of each
momentum mode as

vk ≡
∂ωk
∂pk

=
(K/m) sin(pk)√

ω2 + (4K/m) sin2(pk/2)
, pk ≡

2πk

L
, (3.39)

and the maximum one
vmax ≡ maxk(vk) , (3.40)
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which determines the spreading of entanglement and correlations. Notice that for ω = 0,
vmax = 1 for K = m = 1.

In the quench protocol in which we are interested in, the system is prepared in the
ground state |ψ0〉 of the Hamiltonian

H(ω0) =

L−1∑

k=0

ω0,k

(
a†0,ka0,k +

1

2

)
, (3.41)

whose dispersion relation ω0,k is Eq. (2.69) with ω = ω0. At t = 0 the frequency parameter
is suddenly quenched from ω0 to a di�erent value ω and the system unitarily evolves
through the new Hamiltonian (2.67), namely

|ψ(t)〉 = e−iH(ω)t |ψ0〉 , t > 0 . (3.42)

In order to study the entanglement for the harmonic chain, we need to know the following
two-point correlators

Qr,s(t) ≡ 〈ψ0|qr(t)qs(t)|ψ0〉 ,

Pr,s(t) ≡ 〈ψ0|pr(t)ps(t)|ψ0〉 ,

Mr,s(t) ≡ 〈ψ0|qr(t)ps(t)|ψ0〉 ,

(3.43)

where qr(t) and pr(t) are the time evolved operators in the Heisenberg picture

qr(t) = eiHtqr(0)e−iHt , pr(t) = eiHtpr(0)e−iHt . (3.44)

These correlators can be written as (see also [316] for a slightly di�erent approach)

Qr,s(t) =
1

2L

L−1∑

k=0

Qk(t) cos
[
(r − s)2πk

L

]
, (3.45)

Pr,s(t) =
1

2L

L−1∑

k=0

Pk(t) cos
[
(r − s)2πk

L

]
, (3.46)

Mr,s(t) =
i
2
δr,s −

1

2L

L−1∑

k=0

Mk(t) cos
[
(r − s)2πk

L

]
, (3.47)

where we collected the dependence on ω, ω0 and t into

Qk(t) ≡ 1

mωk

(
ωk
ω0,k

cos2(ωkt) +
ω0,k

ωk
sin2(ωkt)

)
, (3.48)

Pk(t) ≡ mωk

(
ωk
ω0,k

sin2(ωkt) +
ω0,k

ωk
cos2(ωkt)

)
, (3.49)

Mk(t) ≡
(

ωk
ω0,k

− ω0,k

ωk

)
sin(ωkt) cos(ωkt) . (3.50)

We notice that, for t > 0 and ω = 0 the contribution from the mode k = 0 is �nite, indeed

Q0(t) =
1

m

(
1

ω0
+ ω0t

2

)
, P0(t) = mω0 , M0(t) = −ω0t . (3.51)
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The other modes are clearly always �nite, and so we can consider the global quench to
a massless Hamiltonian (while, as well known, we cannot set ω = 0 for the equilibrium
properties).

From the correlation functions, the entanglement entropy and negativity are con-
structed by standard methods. Indeed, given a subsystem A of the lattice made by ˜̀ sites
which could be either all in one interval or splitted in many disjoint intervals, the reduced
density matrix for A can be studied by constructing the ˜̀× ˜̀matrices QA, PA and MA,
which are the restrictions to the subsystem A of the matrices Q, P and M respectively [11,
12, 147, 148, 150, 151]. Given QA, PA and MA, the covariance matrix γA associated to
the subsystem A and the symplectic matrix JA of the corresponding size are

γA(t) ≡ Re
(

QA(t) MA(t)
MA(t)t PA(t)

)
, JA ≡

(
0˜̀ I˜̀

−I˜̀ 0˜̀

)
, (3.52)

where I˜̀ is the ˜̀× ˜̀ identity matrix and 0˜̀ is the ˜̀× ˜̀matrix with vanishing elements.
We remark that the matrix M(t) has a non trivial real part for t > 0. At this point we
compute the spectrum of iJA · γA(t) which can be written as {±λa(t); a = 1, . . . ˜̀} with
λa(t) > 0. The time dependent Rényi entropies as function of the eigenvalues λa(t) are
�nally written in a similar way to their ground state counterpart, Eq. (2.71)

Tr ρA(t)n =

˜̀∏

a= 1

[(
λa(t) +

1

2

)n
−
(
λa(t)− 1

2

)n ]−1

. (3.53)

Also the entanglement entropy is computed as in the static case, Eq. (2.72)

SA(t) =

˜̀∑

a= 1

[(
λa(t) +

1

2

)
ln

(
λa(t) +

1

2

)
−
(
λa(t)− 1

2

)
ln

(
λa(t)− 1

2

)]
. (3.54)

In order to compute the negativity, we denote by A = A1 ∪ A2 a subregion of the
harmonic chain and we consider the partial transpose with respect to A2. In the covariance
matrix γA, the net e�ect of the partial transposition is the inversion of the signs of the
momenta corresponding to the sites belonging to A2 [147]. Thus, introducing the ˜̀× ˜̀

diagonal matrix RA2
which has −1 in correspondence of the sites of A2 and +1 otherwise,

we can construct

γT2

A (t) ≡
(
I˜̀ 0˜̀

0˜̀ RA2

)
· γA(t) ·

(
I˜̀ 0˜̀

0˜̀ RA2

)
, (3.55)

and compute the spectrum of iJA · γT2

A (t), which again can be written as {±χa(t); a =

1, . . . ˜̀} with χa(t) > 0. Then, the trace of the n-th power of ρT2

A is

Tr(ρT2

A )n =

˜̀∏

a= 1

[(
χa(t) +

1

2

)n
−
(
χa(t)− 1

2

)n ]−1

, (3.56)

while the trace norm reads

||ρT2

A || =
˜̀∏

a= 1

[ ∣∣∣∣χa(t) +
1

2

∣∣∣∣−
∣∣∣∣χa(t)− 1

2

∣∣∣∣

]−1

=

˜̀∏

a= 1

max
[
1,

1

2χa(t)

]
, (3.57)

which gives the logarithmic negativity E = ln(||ρT2

A ||).
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Figure 3.3: Left: Temporal evolution of the entanglement entropy for one interval of ` sites in a
periodic harmonic chain with L sites. At t = 0 the mass is quenched from ω0 = 1 to ω = 0. The
dashed curve is the CFT prediction (3.17) with c = 1 and the best �tted value for τ0. Right:
Temporal evolution of the Rényi entropies and of the logarithmic negativity EA, which coincides
with S

(1/2)
A in this case, for a periodic chain with L = 5000 and ` = 400. In the inset, we report

the best �tted values of τ0 for the values of n displayed in the main plot.

In what follows we will compute entanglement entropies and negativity from the above
formulas by calculating the spectrum of the appropriate covariance matrix. Since the
parameters K and m can be absorbed in a rede�nition of the canonical variables, we
�x them to K = m = 1 and we just consider a quench in the frequency (or mass)
parameter from ω0 to ω. The data obtained by numerically diagonalising the covariance
matrix for several bi- and tripartitions of the harmonic chain are reported in the following
subsections.

3.5.1 The entanglement entropy of one interval

It is instructive to start our analysis from the study of the quench dynamics of the entan-
glement entropy of a single interval, although this has been recently studied in Ref. [316].
Indeed, this preliminary analysis allows us to understand the regime of applicability of
the CFT and the optimal quench parameters in order to observe a CFT scaling.

In Fig. 3.3, we report the time evolution of the entanglement entropy for a quench
from ω0 = 1 to ω = 0. We consider �nite chains of length up to L = 5000 and several
values of `� L with `/L kept �xed. It is evident from the �gure that the behaviour of von
Neumann and Rényi entropy is in good qualitative agreement with the CFT prediction
(3.17) with a linear growth for t < `/2 followed by saturation for t > `/2 (we recall
that for ω = 0 the maximum mode velocity is vmax = 1, cf. Eq. (3.40)). However, few
comments on these results are needed. First, for t > `/2 the entanglement entropies do not
saturate but they show a slow growth toward an asymptotic value. This is a well known
phenomenon [104, 304] and it is due to the entanglement generated by slow quasi-particles
moving with velocity vk < vmax = 1 as in Eq. (3.39). A second comment concerns the
�tted value of τ0: this is shown in the inset of Fig. 3.3 as function of the order of the Rényi
entropy n. There is a minor dependence on n, as already anticipated and noticed in the
literature [316], but overall τ0 is very close to the initial correlation length ξ0 ∼ ω−1

0 = 1.
Finally we must comment on the chosen value of ω0 = 1. In preliminary calculations
we considered several values of ω0 which however we do not report here, but ω0 = 1 is
the one for which the conformal scaling describes the data more accurately. This can be
easily understood from the fact that (i) we should be in the regime t, ` � ω−1

0 requiring
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Figure 3.4: Adjacent intervals with several equal lengths `1 = `2 and for various total size L of
the periodic harmonic chain. All panels show the data for ω0 = 1 and a critical evolution, ω = 0.
Panels (a) and (c) display the mutual information I while (b) and (d) the logarithmic negativity
E . Top and middle panels show di�erent time scales and the revivals due to the �niteness of the
system are evident in the middle panels, where a larger range of t is considered. The dashed CFT
curves in (a) and (b) are given by (3.19) and (3.28) respectively. In the last two panels we show
the time evolution of the Rényi mutual information I(n) (e) and of the replicated negativity E(n)
(f) for various values of n.

that the initial frequency should not be too small, (ii) we should be in a regime in which
the continuum description is appropriate, requiring the initial correlation length not to
be too small (i.e. ω0 not too large), in order to avoid a magni�cation of lattice e�ects.
The value ω0 ∼ 1 appears to be the best compromise between these two e�ects.

The Rényi entropy with n = 1/2 corresponds to the logarithmic negativity, but, as
expected, does not display any peculiar behaviour compared with the other values of n.
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Figure 3.5: Adjacent intervals with di�erent lengths `1 = 2`2 for di�erent intervals lengths and
total size L of the periodic harmonic chain. Critical evolution of the mutual information I (panel
(a), (c)) and of the logarithmic negativity E (panels (b), (d)). The revivals are reported in
panels (c) and (d). Notice that outside the light cone E always decays while I reaches a plateau
(apart from some �nite size e�ects responsible of a very slow increase) (panels (c) and (d)).
Compared to Fig. 3.4 for the case of intervals with equal length, we observe a plateau starting
at t ' min(`1, `2)/2 with temporal width |`2 − `1|/2. The panel (e) and (f) report the ratios Rn
for several values of n.

3.5.2 Two adjacent intervals

We start the study of the entanglement between two di�erent intervals from the case of
adjacent ones. In the various �gures that will follow we report both the mutual information
and the negativity in order to simplify the discussion of similarity and di�erences. As
already stressed above, the principal new results of this chapter concern the evaluation of
the negativity, since the time dependence of the mutual information in CFT was already
established in [104] and these results were checked in a few numerical works for the Ising
chain [222] and the Bose-Hubbard model [309], but, to the best of our knowledge, not for
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the harmonic chain.

The numerical results for two adjacent intervals for a quench from ω0 = 1 to ω = 0
are shown in Figs. 3.4 and 3.5. The main di�erences between the two sets of plots is
that in the �rst one the two intervals have equal lengths, while in the second one the
length of one interval is half of the other. Let us discuss these two sets of plots critically.
In the top panels of Fig. 3.4, we report the time evolution of the mutual information
(a) and logarithmic negativity (b) on time scales of the order of `. They have a very
similar behaviour characterised by an initial linear growth, followed by an almost linear
dropping up to time t = `1 when a slow power-law relaxation to the asymptotic vanishing
value starts. These results are in agreement with the expectation from CFT and their
behaviour is simply understood in terms of the quasi-particle picture as already explained
in Sec. 3.4. Also the di�erences between the linear CFT behaviour and the non-linear one
of the actual data is easily understood in terms of the slow quasi-particles in analogy to
the entanglement entropy of a single interval in the previous subsection. No particular
di�erence is observed in this regime between negativity and mutual information. In the
two middle panels of Fig. 3.4, we again report the time evolution of the mutual information
(c) and logarithmic negativity (d), but on time scales of the order of the system's size
L. The main feature in this case is the presence of quantum revivals at time equal to
t ' (L− [`1 +`2])/2. A �rst important di�erence between the mutual information and the
negativity appears on these time-scales, indeed while the former reaches a plateau in a
large time-window, the latter decreases monotonically until the revival. Finally, in the last
two panels we also report the Rényi mutual information (e) and the replicated negativity
E(n). Their behaviour is again in qualitative agreement with the CFT predictions and the
di�erences are easily understood in terms of slow quasi-particles. However, we mention
that E(n) with n > 1 does not follow the same behaviour as the mutual information or
negativity and indeed it is a monotonically decreasing function of time, changing the slope
in the time intervals identi�ed above (i.e. at t = `1/2 and at t = `1). This is not a surprise
since E(n) is not a measure of entanglement and neither a quanti�er of the correlations.
However, as already stressed, the piece-wise quasi-linear behaviour is compatible with the
CFT prediction apart from the e�ect of the slow modes.

In Fig. 3.5, we report the case of two adjacent intervals of di�erent lengths `1 = 2`2.
The main di�erence compared to the case of equal lengths is the appearance of a plateau
after the �rst linear increase for both the mutual information and the negativity. This
is in perfect agreement with the CFT results which indeed predict (see Eqs. (3.19) and
(3.28)) a linear increase up to t = min(`1, `2)/2, followed by a plateau for min(`1, `2)/2 <
t < max(`1, `2)/2, a linear decrease for max(`1, `2)/2 < t < (`1 + `2)/2, and �nally
zero constantly. It is evident that the di�erences between CFT and actual data for the
harmonic chain are due to slow quasi-particles which give corrections for t > min(`1, `2)/2.
In the panel (c) and (d) of Fig. 3.5 we show the evolution of mutual information and
negativity for a larger time window and, as before, the revivals are apparent at time
t = (L − `1 − `2)/2. Finally in the last two panels (e) and (f) we report the behaviour
of the universal ratio Rn as a function of time. Again there are no particular di�erences
with the CFT prediction except for those ones due to slow quasi-particles. From the last
panel (f), one notices that R2 = 1 identically. In the quantum �eld theory approach, this
exceptional behaviour for n = 2 is easily understood from the fact that T 2

2 = T̄ 2
2 = I

(cf. Sec. 3.3.3) and it is true also on the lattice. Notice that ln(Rn) has a behaviour
which closely resembles the one of the mutual information and the negativity, showing
that, in this particular case, they are somehow measuring the amount of correlations or
entanglement. This is an important di�erence compared to the quantity E(n) in Fig. 3.4.
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Figure 3.6: Disjoint intervals with equal lengths `1 = `2 separated by d sites, for various intervals
lengths, separations d, and total size L of the periodic harmonic chain. Time evolution of the
mutual information I ((a), (c) and (e)) and of the logarithmic negativity E ((b), (d), and (f)).
The revivals at large t are evident in the bottom panels.

3.5.3 Two disjoint intervals

In this subsection we move to the case of two disjoint intervals. In Fig. 3.6 we report
the numerically calculated mutual information and negativity for two disjoint intervals
of equal length and for two di�erent sets of distances between them. It is clear from the
�gure that the main di�erence compared to the case of adjacent interval is that there is
an initial region for t < d/2 in which there is no entanglement and no correlations (we
recall that the initial correlation length is ω−1

0 = 1, so that the initial entanglement is
very small). Then at time equal to d/2 the entanglement starts growing linearly, reaches
a maximum and then decreases almost linearly. Again, this behaviour is compatible with
the quasi-particle interpretation and also the power law relaxation for large times can be
understood in terms of slow modes. Even in the case of disjoint intervals, we have studied
the revivals. The results, which are very similar to the ones shown in the case of adjacent
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Figure 3.7: Mutual information (a) and the logarithmic negativity (b) of disjoint intervals with
equal lengths `1 = `2 = 200, separated by distances d in a periodic chain with L = 5000. (c)
Comparison between I and E . (d) Zoom of the initial growth: a late birth e�ect for E is observed,
which decreases as the continuum limit is approached. The vertical dashed line in (c) and (d)
indicates the time t = d/2 where the growth should start in the continuum theory.

intervals, are reported in Fig. 3.6, panels (e) and (f).

Conversely, a very interesting phenomenon can be observed by looking at very short
times after the entanglement starts growing. This is illustrated in Fig. 3.7, where in
the top panels we show the mutual information and the negativity as function of time for
di�erent distances between the two intervals. As before, the behaviour is very reminiscent
of the CFT prediction. In the panel (c) of the same �gure, we show in the same plot the
negativity and the mutual information for �xed d/` and looking closely to the time when
the entanglement starts growing it is already clear that something is happening. For
this reason in the panel (d) we zoom close to the point t = d/2 and we highlight a
very peculiar phenomenon: while the mutual information starts moving from zero slightly
before t = d/2 the negativity starts slightly after t = d/2. The behaviour of the mutual
information is simply the exponential tails of the correlations outside the light-cone, but
the behaviour of the negativity is new. From the �gure, it is evident that increasing the
total system size L (at �xed ratios d/L and `/L) this phenomenon disappears in such a
way to recover the CFT result and the quasi-particle interpretation of the evolution in the
continuum limit. As a consequence, this remarkable phenomenon is a lattice e�ect and
so cannot have an explanation in terms of quasi-particles, but it would be interesting to
understand its precise origin. In a suggestive way, and in analogy with the famous sudden
death of entanglement [318] (which will be discussed below), we term this phenomenon
as the late birth of entanglement.

In Fig. 3.8 we consider again the mutual information (a) and the negativity (b) for
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Figure 3.8: Mutual information (a) and the logarithmic negativity (b) of disjoint intervals with
di�erent lengths `1 = 2`2 = 200, separated by various distances d sites in a periodic chain with
L = 5000. Comparison between I and E in (c) and zoom on the initial growth in (d), to highlight
the late birth of E . With respect to the corresponding plots in Fig. 3.7, here a plateau occurs
whose temporal width is |`2 − `1|/2. The vertical dashed line in (c) and (d) indicates the time
t = d/2 where the growth should begin, according to the quasi-particles picture.

various distances between two intervals of di�erent lengths `1 = 2`2. The behaviour is
in perfect agreement with the CFT prediction with a linear growth starting at d/2 up
to d/2 + min(`1, `2)/2, followed by a plateau lasting |`1 − `2|/2, then a linear decrease
up to t = (d + `1 + `2)/2 and �nally a power-law approach to zero. In the panel (c) we
report on the same plot the negativity and the mutual information, observing again the
�ngerprints of the late birth, which are straightforwardly con�rmed by zooming for times
close to d/2, as done in panel (d).

3.5.4 Massive evolution

In this section we brie�y discuss what happens when the time evolution is governed by a
massive Hamiltonian. This is elucidated with an example in Fig. 3.9 where we report and
compare critical (ω = 0) and noncritical (ω = 0.1) evolution of the logarithmic negativity
always starting from ω0 = 1. The data are reported against vmaxt (vmax is given by
Eq. (3.40)). Also in this case, the data are perfectly compatible with the quasi-particle
picture, but we notice an interesting e�ect. The slope of the negativity changes as a
function of time as a consequence of the entanglement carried by slower quasi-particles
which in the case of the non-critical evolution have a larger weight because of the non-
monotonicity of vk in Eq. (3.39). However, also this phenomenon does not come as a
surprise and indeed it was already observed for the entanglement entropy of a single
interval following a quench in the Ising/XY chain [288, 304].
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Figure 3.9: Logarithmic negativity E of disjoint intervals after global quenches with di�erent
evolution Hamiltonians. Here L = 5000, `1 = `2 = 200 and ω0 = 1, while for t > 0 we have
ω = 0 or ω = 0.1. The velocity vmax is given by Eq. (3.40).

3.5.5 Sudden death of entanglement

A �nal important feature of the logarithmic negativity E is the so called sudden death
of entanglement. The phenomenon has been �rst introduced for other entanglement
measures [318], but it has been observed also for the negativity. For example, in the
case of the harmonic chain at thermal equilibrium at some �nite T , it consists into the
exact vanishing of E for temperatures larger than a critical value as discussed also in
[121�124, 137], where it was emphasised its lattice nature and its absence in the quantum
�eld theory description of the continuum limit. In the case of quench, we have already
seen that the entanglement and the mutual information of two intervals are vanishing for
large enough time in the CFT, but this is an independent phenomenon compared to the
sudden death.

In order to show the true sudden death of E after a global quench, we report in
Fig. 3.10 the negativity and we compare it to the mutual information for several initial
frequencies ω0 = 10, ω0 = 30 and ω0 = 100 and for several con�gurations of the intervals.
It is evident that in all cases, while the mutual information stays �nite at any time,
the negativity E drops suddenly to zero after some time. Thus, the sudden death is a
peculiarity of the entanglement and it is not re�ected by the correlations (quanti�ed by
the mutual information) which are always a smooth function of the time. Let us now
discuss how this phenomenon depends on the various parameters. First, we notice that
increasing the system size and keeping the ratios between the various lengths �xed, the
sudden death time increases and, when the system and the subsystems are large enough,
the sudden death does not occur anymore. This agrees with the expectation that the
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Figure 3.10: Mutual information (left panels) and logarithmic negativity (right panels) for disjoint
intervals with di�erent lengths (`1 = 2`2). Here ω = 0 and di�erent ω0 are chosen: ω0 = 10,
ω0 = 30 and ω0 = 100 (top, middle and bottom panels respectively). The sudden death of the
logarithmic negativity happens for later time as L increases and as ω0 decreases.

sudden death is a lattice e�ect. Second we observe that the sudden death depends also
on the initial frequency ω0: increasing ω0, the sudden death time decreases. Finally, it is
worth noticing that, when the revival takes place, the entanglement appears again, but
this is not at all surprising.

3.6 Conclusions

We studied the evolution of the entanglement negativity following a quantum quench.
We considered the case of a conformal evolution starting from a boundary state. First,
for the sake of completeness, we reviewed the results for the entanglement entropy and
the mutual information of an arbitrary number of (adjacent or disjoint) intervals within
the path integral approach of Refs. [104, 106, 271]. Then we moved to the calculation of
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the negativity between two adjacent and disjoint intervals which are respectively given by
Eqs. (3.28) and (3.35). The applicability and generality of these results have been checked
against exact numerical calculations for the same quantities in the harmonic chain. We
also highlight two peculiar lattice e�ects: the late birth of entanglement and its sudden
death. The former one consists in the fact that the negativity starts growing slightly after
the time predicted by the quasi-particle picture, a delay which vanishes in the continuum
limit. The latter one, instead, is well known and concerns the exact vanishing of the
negativity after some given large time (but before revivals take place). We investigated
how these e�ects depend on the quench parameters.

One of the main results of this study is that the quasi-particle picture [104] for the
time dependence of the entanglement after a global quantum quench applies also to the
negativity between two intervals: this is a remarkable and non-trivial property. The
last conclusion should be interpreted in the sense that the quasi-particle picture for the
negativity holds as far as it holds for the entanglement entropy, as both are consequences
of the assumptions on the relevant singularities of the three- or four-point function of twist
�elds on the strip. It has recently argued in Ref. [319] that the actual presence of some
of these singularities, which are denoted as �light-cone singularities�, are not guaranteed
by the OPEs on the UHP only. If these singularities are milder or not present in the
twist �eld correlation functions, then the quasi-particle interpretation fails in some time
regimes. The author of [319] �nd that such light-cone singularities are always present for
rational CFT (such as the minimal models) and for the c = 1 CFT of the compacti�ed
boson. On the contrary, they claim that the singularities are milder, or even not present
at all, when the theory is not current dominated, that is roughly when the asymptotic
number of conserved currents (parametrized by an e�ective central charge ccurrent) is
smaller than the total number of states (parametrized by c, the central charge). Strictly
speaking, they consider a setup which is di�erent from the one studied here. Indeed,
they use a thermo�eld double entangled state (in a slightly simpli�ed geometry), whose
quench evolution has been studied in [91]. They perform a computation in the second
Rényi entropy of two disjoint intervals as function of c and ccurrent and they �nd that
the quasi-particle result is valid in all time regimes only for c = ccurrent. When this
is not true, the result in some regimes is not universal, and the quasi-particle result
provides a lower bound for the entanglement. Higher order Rényis are unfortunately
unaccessible. They suspect (but give no proof) that the evolution from a boundary state
cannot have more singularities than those in the thermal double, thus supporting their
conclusions also for this case. Holographic CFT has c � 1, while they have few chiral
states, ccurrent ∼ 1. With explicit holographic computations, the authors show that the
quasi-particle picture for the entanglement entropy and the second Rényi entropy does not
hold in the thermo�eld double setup and, in the language of [319], entanglement scrambles
maximally (an e�ect that was already observed in [85, 87, 96, 320]). In this extreme
setup, the result is not the one predicted by the quasi-particle picture, but nevertheless
it is again universal. With the semiclassical conformal block analysis for large-c CFT
introduced in [321] and �rst used in this context in [98], they also show that indeed in
this case light-cone singularities are totally absent. At this point it would be nice to
exactly compute (analytically or numerically) the evolution of entanglement and Rényi
entropies in a CFT with ccurrent < c <∞, to have a direct check, both in the thermo�eld
double setup and in the case of a boundary conformal initial state. Unfortunately, most
of the well known CFT are among the ones where the quasi-particle picture holds, so no
computations are available up to now. The authors provide two candidate theories to be
the simplest ones, and it would be very interesting to further explore this issue in the
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future.
As for the harmonic chain, it would be very interesting to obtain analytical forms for

the evolution of the various entanglement measures (entropy, mutual information, and
negativity) in analogy to what done in Refs. [222, 304, 322�324] for the Ising model (but
only for entropy and mutual information). However, we should stress that there are still no
analytic results for the entanglement entropy of bosonic models even in the ground state,
in contrast with the many results available for free fermion thanks to Toeplitz matrix
techniques [262, 263, 325�327]. Obtaining such analytic predictions is a prerequisite in
order to tackle the quench problem.
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Chapter 4

Partial transpose of two disjoint blocks in XY

spin chain

4.1 Introduction

In the Introduction we described a systematic path integral approach to construct the
partial transpose of the reduced density matrix, from which the negativity in 1+1 di-
mensional relativistic quantum �eld theories is obtained via a replica trick [134]. This
approach has been successfully applied to the study of one-dimensional CFT in di�er-
ent settings, and has been tested against exact results for free bosonic systems, such as
the harmonic chain. As we mentioned in the Introduction and saw explicitly in Sec. 3.5
in an out-of-equilibrium situation, for bosonic Gaussian states the spectrum of the par-
tial transpose can be obtained from correlation matrix techniques [148�151]. Speci�cally,
the partial transposition corresponds to a time-reversal operation leading to a partially
transposed reduced density matrix which is again Gaussian [147], whose spectrum can
be therefore calculated from the one of its correlation matrix. The latter is obtained by
simply implementing the time-reversal operation on the correlation matrix of the reduced
density matrix (see Eq. (3.55)).

In the case of free fermionic systems (such as the tight-binding model and XY spin
chains) the calculation of the negativity is instead much more involved. Indeed the par-
tial transpose of the reduced density matrix is not a Gaussian operator and standard
techniques based on the correlation matrix cannot be applied. In view of the importance
that exact calculations for free fermionic systems played in the understanding of the en-
tanglement entropy [245, 262, 325, 326, 328�330], it is highly desirable to have an exact
representation of the negativity also for free fermionic systems. A major step in this
direction has been achieved by Eisler and Zimboras [331] who showed that the partial
transpose is a linear combination of two Gaussian operators. Unfortunately, it is still not
possible to extract the spectrum of the partial transpose and hence the negativity, but at
least one can have access to integer powers of the partial transpose which are the main
ingredient for the replica approach to negativity. Let us stress that these considerations
apply only when the Wick theorem holds and this excludes interacting models (e.g. the
XXZ model).

In Ref. [331] only truly fermionic systems have been considered and not spin chains
that can be mapped to a fermionic system by means of a (non-local) Jordan-Wigner
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transformation. Indeed, in the very interesting case of two disjoint blocks in a spin chain
the density matrix of spins and fermions are not equal [220, 222, 243] and this consequently
a�ects also the partial transposition, as already pointed out in [331]. In this chapter we
give an exact representation of the partial transpose of the reduced density matrix for two
disjoint blocks in the XY spin chain and from this we calculate the traces of its integer
powers. These turn out to converge to the CFT predictions in the limit of large intervals.

The chapter is organised as follows. In Sec. 4.2 we describe the model and the de�nition
of the quantities we will study. In Sec. 4.3 we review the results of Ref. [222] for the
moments of the spin reduced density matrix of two disjoint blocks. In Sec. 4.4 we move to
the core of this manuscript deriving an explicit representation of the partial transpose of
the spin reduced density matrix as a sum of four Gaussian fermionic matrices. This allows
to obtain explicit representations for the moments of the partial transpose. In Sec. 4.5 we
use the above results to numerically calculate these moments up to n = 5 for the critical
Ising model and XX chain and carefully compare them with CFT predictions by taking
into account corrections to the scaling. Finally in Sec. 4.6 we draw our conclusions.

4.2 The model and the quantities of interest

In this chapter we consider the XY spin chains with Hamiltonian

HXY = −1

2

L∑

j=1

(
1 + γ

2
σxj σ

x
j+1 +

1− γ
2

σyj σ
y
j+1 + hσzj

)
, (4.1)

where σαj are the Pauli matrices at the j-th site and we assume periodic boundary condi-
tions σαL+1 = σα1 . For γ = 1 Eq. (4.1) reduces to the Hamiltonian of the Ising model in a
transverse �eld while for γ = 0 to the one of the XX spin chain. The Hamiltonian (4.1)
is a paradigmatic model for quantum phase transitions [332]. In fact, it depends on two
parameters: the transverse magnetic �eld h and the anisotropy parameter γ. The system
is critical for h = 1 and any γ with a transition that belongs to the Ising universality
class. It is also critical for γ = 0 and |h| < 1 with a continuum limit given by a free
compacti�ed boson.

The Jordan-Wigner transformation

cj =
( ∏

m<j

σzm

)σxj − iσzj
2

, c†j =
( ∏

m<j

σzm

)σxj + iσzj
2

, (4.2)

maps the spin variables into anti-commuting fermionic ones {ci, c†j} = δij . In terms of
these fermionic variables the Hamiltonian (4.1) becomes

HXY =

L∑

i=1

(
1

2

[
γc†i c

†
i+1 + γci+1ci + c†i ci+1 + c†i+1ci

]
− hc†i ci

)
, (4.3)

where we neglected boundary and additive terms. This Hamiltonian is quadratic in the
fermionic operators and hence can be straightforwardly diagonalised in momentum space
by means of a Bogoliubov transformation.

For the study of the reduced density matrices it is very useful to introduce the Majo-
rana fermions [245, 328]

axj = cj + c†j , ayj = i(cj − c†j), (4.4)
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Figure 4.1: We consider the entanglement between two disjoint spin blocks A1 and A2 embedded
in a spin chain of arbitrary length. The reminder of the system is denoted by B which is also
composed of two disconnected pieces B1 and B2.

which satisfy the anti-commutation relations {aαi , aβj } = 2δijδαβ . The single site Majorana
operators can be also written as

axj = Σxj , ayj = −Σyj , i axj a
y
j = Σzj . (4.5)

The operators Σαj on the single site satisfy the algebra of the Pauli matrices, but at
di�erent sites they anticommute and so they are not proper spin operators and should
not be confused with the σαj in (4.1). For each site, we also need to de�ne the following
unitary operator

U (k)
α = eiα2 Σkj = cos (α/2) I + i sin (α/2) Σkj , (4.6)

whose action on the Majorana operators (4.5) can be obtained from the following relation

U
(k)
−α Σbj U

(k)
α =

[
δk,b + (1− δk,b cosα)

]
Σbj + (sinα)εkb` Σ`j , (4.7)

where εkb` is the totally antisymmetric tensor such that εxyz = 1.
The main goal of this chapter is to determine the entanglement between two disjoint

intervals in the XY spin chain. We consider the geometry depicted in Fig. 4.1: a spin
chain is divided in two parts A and B and each of them is composed of disconnected
pieces. We denote by A1 and A2 the two blocks in A = A1 ∪ A2, B1 is the block in B
separating them, while B2 is the remainder.

In the case of two disjoint blocks in the XY spin chain, the Rényi entropies for integer
n (or equivalently the moments of the reduced density matrix ρA) have been explicitly
constructed in Ref. [222]. However it is still not possible to �nd the analytic continuation
to arbitrary complex values of n and consequently the entanglement entropy. This is very
similar to the CFT counterpart where also one can calculate only integer moments of the
reduced density matrices.

However, we are here interested in the entanglement between A1 and A2. A measure of
this entanglement is provided by the logarithmic negativity de�ned and largely discussed
in the Introduction.

4.3 Rényi entropies

In this section we review the results of Ref. [222], where the Rényi entropies of two disjoint
blocks A = A1 ∪ A2 for the XY spin chains have been computed. These results are the
main ingredients to construct the integer powers of the partial transpose which will be
derived in the following section. We will denote the number of spins in A1 and A2 with
`1 and `2 respectively and the remainder of the system B contains a region separating A1

and A2 denoted as B1, as pictorially depicted in Fig. 4.1.
In a general spin 1/2 chain the reduced density matrix ρA = TrB |Ψ〉〈Ψ| of A = A1∪A2

can be computed by summing all the operators in A as follows [245, 328]

ρA =
1

2`1+`2

∑

νj

〈 ∏

j∈A
σ
νj
j

〉 ∏

j∈A
σ
νj
j , (4.8)
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where j is the index labelling the lattice sites and νj ∈ {0, 1, 2, 3}, with σ0 = 1 the
identity matrix and σ1 = σx, σ2 = σy and σ3 = σz the Pauli matrices. The multipoints
correlators in (4.8) are very di�cult to compute, unless there is a representation of the
state in terms of free fermions.

For the single interval case, the Jordan-Wigner string
∏
m<j σ

z
m in Eq. (4.2) maps the

�rst ` spins into the �rst ` fermions [245, 328] so the spin and fermionic density matrix
are the same. This operator is Gaussian and it can be written as [245, 328]

ρA = ρ 1
A ≡

1

2`1+`2

∑
w12O1O2, w12 = 〈O†2O†1〉 , (4.9)

where Ok (with k ∈ {1, 2}) is a generic product of Majorana operators in Ak, namely
Ok =

∏
j∈Ak(axj )µ

x
[j](ayj )

µy
[j] with µα[j] ∈ {0, 1}. The sum in (4.9) is performed over all

possible combinations of µα[j].
In general, calculating a free fermionic density matrix is very easy. Indeed by Wick

theorem they assume a Gaussian form:

ρW =
exp

(
1
4a

t ·W · a
)

Tr
[

exp
(

1
4a

t ·W · a
)] , (4.10)

with W a complex antisymmetric matrix and the vector A contains all the axj 's and the
ayj 's. This density matrix is univocally identi�ed by the correlation matrix

Γ = Tr
(
a ρW a

t
)
− I, (4.11)

which satis�es Γ = tanh(W/2).
Unfortunately, the same reasoning does not apply to two disjoint blocks because the

fermions in the interval B1 separating the two blocks contribute to the spin reduced
density matrix of A1 ∪A2 [220, 222, 243]. It is now convenient to introduce the string of
Majorana fermions along a generic subsystem C

PC ≡
∏

j∈C
(iaxj a

y
j ). (4.12)

In particular, the string PB1
of Majorana operators appears in a crucial way1. Similarly,

we also introduce the strings of Majorana operators along A1 and A2, namely PA1
and

PA2
. These operators satis�es P−1

C = PC , for any C = A1, A2, B1.
Moving back to the computation of the spin reduced density matrix (4.8) in terms of

fermions, we �rst notice that, since the XY Hamiltonian commutes with
∏
j σ

z
j (where j

runs over the whole chain), only the expectation values of operators containing an even
number of fermions are non vanishing. Thus, the numbers of fermions are either even or
odd in both A1 and A2. This leads us to decompose the spin reduced density matrix ρA
of A = A1 ∪A2 as [222]

ρA = ρeven + PB1
ρodd, (4.13)

with

ρeven ≡
1

2`1+`2

∑

even

w12O1O2, ρodd ≡
〈PB1〉
2`1+`2

∑

odd

wB1
12 O1O2, (4.14)

1To compare with Ref. [222], set (S1)there = (PA1
)here and (S)there = (PB1

)here.
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where wB1
12 ≡ 〈O†2PB1O

†
1〉 / 〈PB1〉, and the notation

∑
even (

∑
odd) means that the sum is

restricted to operators O1 and O2 containing an even (odd) number of fermions. It is also
convenient to rewrite (4.13) as

ρA =
1 + PB1

2
ρ+ +

1− PB1

2
ρ−, ρ± ≡ ρeven ± ρodd, (4.15)

where 1 is the identity matrix and (1 ± PB1
)/2 are orthogonal projectors. Moreover,

the matrices ρ± are unitary equivalent (indeed PA2ρ±PA2 = ρ∓) and commute with PB1

because they do not contain Majorana fermions in B1. As a consequence, we have that

ρnA =
1 + PB1

2
ρn+ +

1− PB1

2
ρn−. (4.16)

Taking the trace of (4.16) and employing that PA2ρ±PA2 = ρ∓, one �nds

Tr ρnA = Tr ρn±. (4.17)

The matrices ρ± are fermionic but they are not Gaussian, i.e. they are not proportional
to the exponential of a quadratic form, as we will discuss below.

At this point we are ready to consider the ground state of the XY chain with density
matrix ρW = |Ψ〉〈Ψ|, whose correlation matrix Γ is given by Eq. (4.11). The fermionic
reduced density matrix of A = A1∪A2 is the one of Eq. (4.9) where we recall that w12 = 0
when the numbers of fermionic operators in O1 and O2 have di�erent parity. In order to
take into account the e�ect of the string PB1

de�ned in Eq. (4.12), it is useful to introduce
the auxiliary density matrix

ρB1

A ≡
TrB

(
PB1 |Ψ〉〈Ψ|

)

〈PB1
〉 =

1

2`1+`2

∑
wB1

12 O1O2, (4.18)

in which the normalisation Tr ρB1

A = 1 holds. By using that

PA2
aαj PA2

=

{ −aαj j ∈ A2,
aαj j /∈ A2,

(4.19)

one �nds

PA2ρ
1
APA2 =

1

2`1+`2

∑
(−1)µ2w12O1O2

=
1

2`1+`2

∑

even

w12O1O2 −
1

2`1+`2

∑

odd

w12O1O2,
(4.20)

where µ2 =
∑
j∈A2

(µx[j] +µy[j]) is the total number of Majorana operators occurring in O2.
Then, from Eqs. (4.9) and (4.20) it is straightforward to get that the density matrices
(4.14) become

ρeven =
ρ 1
A + PA2

ρ 1
APA2

2
, ρodd = 〈PB1

〉 ρ
B1

A − PA2
ρB1

A PA2

2
. (4.21)

Plugging (4.21) into (4.13), one �nds that the spin reduced density matrix is a linear
combination of four fermionic Gaussian operators. Since these operators do not commute,
they cannot be diagonalised simultaneously and therefore we cannot �nd the eigenvalues of
the spin reduced density matrix that would give the entanglement entropy. Nevertheless,
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Tr ρnA for integer n can be computed through Eq. (4.17) by providing the product rules
between the four Gaussian operators occurring in (4.21) in terms of the corresponding
correlation matrices, that are denoted by

Γ1 ≡ Γ[ρ 1
A], Γ2 ≡ Γ[PA2

ρ 1
APA2

], Γ3 ≡ Γ[ρB1

A ], Γ4 ≡ Γ[PA2
ρB1

A PA2
], (4.22)

where Γ[ρ] is the correlation matrix of a Gaussian density matrix ρ as in Eq. (4.11).
Obviously, Γ1 is the fermionic correlation matrix, i.e. the one of the free fermions without
the Jordan-Wigner string (studied in detail in Ref. [333]).

Following Ref. [222], we can introduce the restricted correlation matrix to two fermionic
sets/blocks C and D (ΓCD)rs which is the correlation matrix in Eq. (4.11) associated to
|Ψ〉〈Ψ| with the restriction r ∈ C and s ∈ D. In [222] it has been shown that the matrices
Γ2, Γ3 and Γ4 can be written as

Γ1 = ΓAA, Γ3 = Γ1 − ΓAB1
Γ−1
B1B1

ΓB1A, (4.23)

and

Γ2 = M2Γ1M2, Γ4 = M2Γ3M2, M2 ≡
(

1`1 0
0 −1`2

)
. (4.24)

These formulas provide an explicit representation of the matrices Γi in terms of the fermion
correlation in the �nite subsystem A1 ∪B1 ∪A2.

By introducing the following notation

{. . . ,Γ, . . . ,Γ′, . . . } ≡ Tr(. . . ρW . . . ρW ′ . . . ), (4.25)

and {. . . ,Γn, . . . } ≡ Tr(. . . ρnW . . . ) as special case, from (4.21) we have that Tr ρn± can be
written as a linear combination of traces involving the matrices Γk with k ∈ {1, 2, 3, 4}.
This �nally provides TrρnA, which we write as follows

TrρnA ≡
Tn

2n−1
. (4.26)

From (4.17) and (4.21), it is straightforward to realise that Tn is a combination of 4n terms
of the form (4.25) with coe�cients given by integer powers of δB1

≡ 〈PB1
〉2 = det[ΓB1B1

].
However, many of these 4n terms turn out to be equal when using cyclicality of the trace
and other simple algebraic manipulations.

In the following we write Tn explicitly for 2 6 n 6 5, where we have computed also
T5, in addition to the other ones already reported in Ref. [222]:
• n = 2:

T2 = {Γ2
1}+ {Γ1,Γ2}+ δB1

(
{Γ2

3} − {Γ3,Γ4}
)

; (4.27)

• n = 3:

T3 = {Γ3
1}+ 3 {Γ2

1,Γ2}+ 3δB1

(
{Γ1,Γ

2
3}+ {Γ2,Γ

2
3} − 2 {Γ1,Γ4,Γ3}

)
; (4.28)

• n = 4:

T4 = {Γ4
1}+ {Γ1,Γ2,Γ1,Γ2}+ 4 {Γ3

1,Γ2}+ 2 {Γ2
1,Γ

2
2}

+ 2δB1

(
{Γ1,Γ3,Γ1,Γ3}+ {Γ1,Γ4,Γ1,Γ4}+ 2 {Γ2

1,Γ
2
3}

+ 2 {Γ2
1,Γ

2
4}+ 2 {Γ1,Γ3,Γ2,Γ3}+ 4 {Γ1,Γ2,Γ

2
3}

− 2
[

2 {Γ2
1,Γ3,Γ4}+ {Γ1,Γ3,Γ1,Γ4}+ {Γ1,Γ2,Γ3,Γ4}

+ {Γ1,Γ3,Γ2,Γ4}+ {Γ1,Γ2,Γ4,Γ3}
])

+ δ2
B1

(
{Γ4

3}+ 2 {Γ2
3,Γ

2
4}+ {Γ3,Γ4,Γ3,Γ4} − 4 {Γ3

3,Γ4}
)

;

(4.29)
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• n = 5

T5 = {Γ5
1}+ 5

(
{Γ4

1,Γ2}+ {Γ3
1,Γ

2
2}+ {Γ2

1,Γ2,Γ1,Γ2}
)

+ 5δB1

(
{Γ3

1,Γ
2
3}+ {Γ3

1,Γ
2
4}+ 2 {Γ1,Γ

2
2,Γ

2
3}

+ 2 {Γ2
1,Γ2,Γ

2
3}+ {Γ1,Γ2,Γ1,Γ

2
3}+ {Γ1,Γ2,Γ1,Γ

2
4}

+ {Γ2
1,Γ3,Γ1,Γ3}+ {Γ2

1,Γ3,Γ2,Γ3}+ 2 {Γ1,Γ3,Γ1,Γ3,Γ2}
+ {Γ1,Γ3,Γ

2
2,Γ3}+ {Γ2

1,Γ4,Γ1,Γ4}+ 2 {Γ1,Γ2,Γ3,Γ2,Γ3}
− 2
[
{Γ2

1,Γ2,Γ4,Γ3}+ {Γ2
1,Γ2,Γ3,Γ4}+ {Γ2

1,Γ3,Γ1,Γ4}
+ {Γ2

1,Γ3,Γ2,Γ4}+ {Γ3
1,Γ3,Γ4}+ {Γ1,Γ2,Γ1,Γ3,Γ4}

+ {Γ1,Γ2,Γ4,Γ1,Γ3}+ {Γ2,Γ1,Γ4,Γ1,Γ3}
])

+ 5δ2
B1

(
{Γ1,Γ

4
3}+ {Γ2,Γ

4
3}+ 2 {Γ1,Γ

2
3,Γ

2
4}+ {Γ1,Γ3,Γ

2
4,Γ3}

+ 2 {Γ1,Γ3,Γ4,Γ3,Γ4}+ {Γ1,Γ4,Γ
2
3,Γ4}

− 2
[
{Γ1,Γ

3
3,Γ4}+ {Γ1,Γ

2
3,Γ4,Γ3}+ {Γ2,Γ4,Γ

3
3}+ {Γ2,Γ

2
3,Γ4,Γ3}

])
.

(4.30)

We notice that the algebraic sum of the integer coe�cients occurring in any term
multiplying a power δpB1

with p > 0 is zero. Moreover, considering only the terms which
are not multiplied by a power δB1

in Tn, the sum of their coe�cients is 2n−1.

4.4 Traces of integer powers of the partial transpose of the spin

reduced density matrix

In this section we move to the main objective of this paper which is to give a representation
of the integer powers of the partial transpose of the spin reduced density matrix of two
disjoint blocks with respect to A2. Eisler and Zimboras in Ref. [331] showed how to obtain
the partial transpose of a fermionic Gaussian density matrix, a procedure which can be
applied to the spin reduced density matrix in Eq. (4.15) using the linearity of the partial
transpose as we are going to show. We mention that in Ref. [331] the moments of the
partial transpose for two adjacent intervals were studied in details using the property that
fermionic and spin reduced density matrices are equal for this special case.

Given a Gaussian density matrix ρW written in terms of Majorana fermions in A =
A1 ∪ A2, the partial transposition with respect to A2 leaves invariant the modes in A1

and acts only on the ones in A2. Furthermore, the partial transposition with respect to
A2 of ρA in (4.13) leaves the operator PB1

unchanged, therefore we have

ρT2

A = ρT2
even + PB1

ρT2

odd =
1 + PB1

2
ρT2

+ +
1− PB1

2
ρT2
− , (4.31)

where
ρT2
± = ρT2

even ± ρT2

odd, (4.32)

as clear from Eq. (4.15) because of the linearity of the partial transpose.
Let us consider the operator O2 and introduce µy2 =

∑
j∈A2

µy[j] the number of a
y
r 's in

O2. The transpose of O2 is given by

OT2 = (−1)τ(µ2)(−1)µ
y
2 O2, (4.33)
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where

τ(µ2) =

{
0 (µ2 mod 4) ∈ {0, 1},
1 (µ2 mod 4) ∈ {2, 3}. (4.34)

The factor (−1)τ(µ2) in (4.33) originates from a rearrangement of the ax,y's operators
after the transposition, while the factor (−1)µ

y
2 comes from the fact that (ayr)T = −ayr

and (axr )T = axr for the Majorana operators occurring in O2. This extra factor can be
removed by a unitary transformation. Another transposition can be naturally de�ned,
namely

OT̂2 = U
(x)
−π O

T
2 U

(x)
π = (−1)τ(µ2)O2, (4.35)

where the unitary U (x)
π is now a product of terms like (4.6) over all the sites and it changes

the sign of the ayr 's leaving the axr 's untouched. This is the de�nition introduced in [331]
and we will adopt this convention throughout this manuscript. Thus, let us drop the hat
in (4.35) and denote it simply by OT2 .

Then, applying Eq. (4.35) to (4.14), we �nd

ρT2
even =

1

2`1+`2

∑

even

(−1)µ2/2 w12O1O2, (4.36a)

ρT2

odd =
〈PB1

〉
2`1+`2

∑

odd

(−1)(µ2−1)/2 wB1
12 O1O2, (4.36b)

which gives the desired fermionic representation of the partial transpose of the spin re-
duced density matrix.

At this point the moments of ρT2

A can be obtained following the same reasoning as for
the moments of ρA. Indeed, since ρ

T2
± are unitarily equivalent (PA2

ρT2
± PA2

= ρT2
∓ because

PA2ρ
T2
evenPA2 = ρT2

even and PA2ρ
T2

oddPA2 = −ρT2

odd) and PB1 commutes with them, starting
from (4.31) and repeating the same observations that lead to (4.17), one gets

Tr
(
ρT2

A

)n
= Tr

(
ρT2
±
)n
. (4.37)

Similarly to the case of the Rényi entropies considered in Sec. 4.3 (see Eq. (4.17)), the
matrices ρT2

± are fermionic but not Gaussian. In the following we write them as sums of
four Gaussian matrices, as done in (4.13) and (4.21) for ρA. In particular, by introducing

ρ̃ 1
A ≡

1

2`1+`2

∑
iµ2w12O1O2, ρ̃B1

A ≡
1

2`1+`2

∑
iµ2 wB1

12 O1O2, (4.38)

one has that the matrices in (4.36) become

ρT2
even =

ρ̃ 1
A + PA2

ρ̃ 1
APA2

2
, ρT2

odd = 〈PB1
〉 ρ̃

B1

A − PA2 ρ̃
B1

A PA2

2i
, (4.39)

telling us that ρT2
± in (4.32) are linear combinations of four Gaussian fermionic matrices

occurring in the r.h.s.'s of (4.39). Notice that ρT2
even and ρT2

odd are Hermitian but the
matrices de�ning them are not since

(
ρ̃ 1
A

)†
= PA2

ρ̃ 1
APA2

,
(
ρ̃B1

A

)†
= PA2

ρ̃B1

A PA2
. (4.40)

In order to compute the correlation matrices associated to the four matrices in Eq. (4.39),
it is convenient to introduce

M̃2 ≡
(

1`1 0
0 i1`2

)
. (4.41)
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Then, the correlation matrices associated to ρ̃ 1
A, PA2

ρ̃ 1
APA2

, ρ̃B1

A and PA2
ρ̃B1

A PA2
are given

by
Γ̃k ≡ M̃2ΓkM̃2, k ∈ {1, 2, 3, 4}. (4.42)

In analogy to Eq. (4.26), we write the moments of ρT2

A as

Tr
(
ρT2

A

)n
=

T̃n
2n−1

. (4.43)

From Eqs. (4.32), (4.37) and (4.39), we have that T̃n is a linear combination of 4n terms.
The net e�ect is that T̃n can be written by taking Tn and replacing Γi with Γ̃i and δB1

with −δB1
. The latter rule comes from the imaginary unit in the denominator of ρT2

odd in
Eq. (4.39).

In the following we write explicitly T̃n for 2 6 n 6 5:
• n = 2

T̃2 = {Γ̃2
1}+ {Γ̃1, Γ̃2}+ δB1

(
{Γ̃3, Γ̃4} − {Γ̃2

3}
)

; (4.44)

• n = 3

T̃3 = {Γ̃3
1}+ 3 {Γ̃2

1, Γ̃2}+ 3δB1

(
2 {Γ̃1, Γ̃4, Γ̃3} − {Γ̃1, Γ̃

2
3} − {Γ̃2, Γ̃

2
3}
)

; (4.45)

• n = 4

T̃4 = {Γ̃4
1}+ {Γ̃1, Γ̃2, Γ̃1, Γ̃2}+ 4 {Γ̃3

1, Γ̃2}+ 2 {Γ̃2
1, Γ̃

2
2}

+ 2δB1

(
2 {Γ̃3, Γ̃1, Γ̃4, Γ̃1}+ 2 {Γ̃1, Γ̃2, Γ̃3, Γ̃4}+ 2 {Γ̃1, Γ̃3, Γ̃2, Γ̃4}

+ 2 {Γ̃1, Γ̃2, Γ̃4, Γ̃3}+ 4 {Γ̃3, Γ̃4, Γ̃
2
1} − 2 {Γ̃1, Γ̃3, Γ̃2, Γ̃3} − 4 {Γ̃1, Γ̃2, Γ̃

2
3}

− {Γ̃1, Γ̃3, Γ̃1, Γ̃3} − {Γ̃1, Γ̃4, Γ̃1, Γ̃4} − 2 {Γ̃2
1, Γ̃

2
3} − 2 {Γ̃2

1, Γ̃
2
4}
)

+ δ2
B1

(
{Γ̃4

3}+ 2 {Γ̃2
3, Γ̃

2
4}+ {Γ̃3, Γ̃4, Γ̃3, Γ̃4} − 4 {Γ̃3

3, Γ̃4}
)

;

(4.46)

• n = 5

T̃5 = {Γ̃5
1}+ 5

(
{Γ̃4

1, Γ̃2}+ {Γ̃3
1, Γ̃

2
2}+ {Γ̃2

1, Γ̃2, Γ̃1, Γ̃2}
)

+ 5δB1

(
2 {Γ̃2

1, Γ̃2, Γ̃4, Γ̃3}+ 2 {Γ̃2
1, Γ̃2, Γ̃3, Γ̃4}+ 2 {Γ̃2

1, Γ̃3, Γ̃1, Γ̃4}

+ 2 {Γ̃2
1, Γ̃3, Γ̃2, Γ̃4}+ 2 {Γ̃3

1, Γ̃3, Γ̃4}+ 2 {Γ̃1, Γ̃2, Γ̃1, Γ̃3, Γ̃4}
+ 2 {Γ̃1, Γ̃2, Γ̃4, Γ̃1, Γ̃3}+ 2 {Γ̃1, Γ̃4, Γ̃1, Γ̃3, Γ̃2}
− {Γ̃3

1, Γ̃
2
3} − {Γ̃3

1, Γ̃
2
4} − 2 {Γ̃1, Γ̃

2
2, Γ̃

2
3} − 2 {Γ̃2

1, Γ̃2, Γ̃
2
3}

− {Γ̃1, Γ̃2, Γ̃1, Γ̃
2
3} − {Γ̃1, Γ̃2, Γ̃1, Γ̃

2
4} − {Γ̃2

1, Γ̃3, Γ̃1, Γ̃3}
− {Γ̃2

1, Γ̃3, Γ̃2, Γ̃3} − 2 {Γ̃1, Γ̃3, Γ̃1, Γ̃3, Γ̃2} − {Γ̃1, Γ̃3, Γ̃
2
2, Γ̃3}

− {Γ̃2
1, Γ̃4, Γ̃1, Γ̃4} − 2 {Γ̃1, Γ̃2, Γ̃3, Γ̃2, Γ̃3}

)

+ 5δ2
B1

(
{Γ̃1, Γ̃

4
3}+ {Γ̃2, Γ̃

4
3}+ {Γ̃1, Γ̃3, Γ̃

2
4, Γ̃3}+ {Γ̃1, Γ̃4, Γ̃

2
3, Γ̃4}

+ 2 {Γ̃1, Γ̃3, Γ̃4, Γ̃3, Γ̃4}+ 2 {Γ̃1, Γ̃
2
3, Γ̃

2
4} − 2 {Γ̃1, Γ̃

3
3, Γ̃4}

− 2 {Γ̃1, Γ̃
2
3, Γ̃4, Γ̃3} − 2 {Γ̃2, Γ̃4, Γ̃

3
3} − 2 {Γ̃2, Γ̃

2
3, Γ̃4, Γ̃3}

)
.

(4.47)

As for Tn, also in T̃n the algebraic sum of the integer coe�cients occurring in any term
multiplying a power δpB1

with p > 0 vanishes.
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4.5 Numerical results for the ground state of the critical Ising

and XX model

The results of the previous section for the moments of the partial transpose of the reduced
density matrix of two disjoint blocks are valid for arbitrary con�gurations of the XY spin
chain: equilibrium, non-equilibrium, �nite and in�nite systems, critical and non-critical
values of the parameters γ and h. In this section we evaluate numerically these moments
for the con�gurations that so far attracted most of the theoretical interest, namely the
critical points of the XY Hamiltonian, whose scaling properties are described by conformal
�eld theories. A great advantage of the present approach compared to purely numerical
methods such as exact diagonalization or tensor networks techniques is that it allows to
deal directly with in�nite chains without any approximations, reducing the systematic
errors in the estimates of asymptotic results. Indeed, all the numerical results presented
in the following are obtained for in�nite chains.

We will consider two particular points of the XY Hamiltonian, namely the critical
Ising model for γ = h = 1 and the zero �eld XX spin chain (corresponding to fermions at
half-�lling) obtained for γ = h = 0. The scaling limit of the former is the Ising CFT with
central charge c = 1/2, while the scaling limit of the latter is a compacti�ed boson at the
Dirac point with c = 1.

The CFT predictions for the moments of both reduced density matrix and its partial
transpose have been derived in a series of manuscripts [134, 136, 196, 226]. For both
models we consider the case of two disjoint blocks of equal length ` embedded in an
in�nite chain and placed at distance r. We numerically evaluate the moments of ρA and
ρT2

A using the trace formulas of the previous sections for n = 2, 3, 4, 5 and we compute the
ratio Rn de�ned in Eq. (1.71), whose (unknown) analytic continuation for ne → 1 would
give the negativity. Notice that from Eqs. (4.26) and (4.43) we have that Rn = T̃n/Tn.
In the scaling limit (i.e. `, r → ∞ with ratio �xed) the ratio Rn converges to the CFT
prediction, Eq. (1.82) (where the function Fn(x) is (1.63) for Ising and (1.60) for XX)
written in terms of the four-point ratio x, which is

x =

(
`

`+ r

)2

, (4.48)

when specialised to the case of two intervals of equal length ` at distance r.

4.5.1 The critical Ising chain

The negativity and the moments of ρT2

A for the critical Ising chain in a transverse �eld
have been already numerically considered in Ref. [136] by using a TTN algorithm and
in Ref. [145] by Monte Carlo simulations of the two-dimensional classical problem in the
same universality class. However, the �niteness of the chain length did not allow to obtain
very precise extrapolations to the scaling theory for all values of n and of the four-point
ratio x. We found, as generally proved [134], that R2 is identically equal to 1. In Fig. 4.2
we report the obtained values of Rn for n = 3, 4, 5 as function of x for di�erent values of `.
It is evident that increasing ` the data approach the CFT predictions (the solid curves).
We can also perform an accurate scaling analysis to show that indeed the data converge
to the CFT results when the corrections to the scaling are properly taken into account.

It has been argued on the basis of the general CFT arguments [261], and shown
explicitly in few examples [260, 262, 263, 327, 334�336] both analytically and numerically,
that Tr ρnA displays `unusual' corrections to the scaling which, at the leading order, are
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Figure 4.2: The ratio Rn between the integer moments of ρA and ρT2
A for two disjoint blocks

of length ` at distance r embedded in an in�nite critical Ising chain. We report the results for
n = 3, 4, 5 as function of the four-point ratio x for various values of ` (and correspondingly of r).
For large `, the data approach the CFT predictions (solid lines). The extrapolations to ` → ∞
�done using the scaling form (4.49)� are shown as crosses and they perfectly agree with the CFT
curves for n = 3 and 4, while for n = 5 the �ts are unstable and the extrapolations are not shown.
The last panel shows explicitly the extrapolating functions for two values of x and n = 3, 4.

governed by the unusual exponent δn = 2h/n where h is the smallest scaling dimension of
a relevant operator which is inserted locally at the branch point [261]. For the Ising model
it has been found that, in the case of two intervals, h = 1/2 [220, 222]. From the general
CFT arguments in Ref. [261], we expect the same corrections to be present for Tr(ρT2

A )n

because they are only due to the conical singularities. Unfortunately, the corrections to
the scaling in Fig. 4.2 cannot be captured by a single term, because subleading corrections
become more and more important when n increases, as already pointed out in Ref. [136].
Indeed, corrections of the form `−m/n for any integer m are know to be present [222, 223,
262]. Thus the most general �nite-` ansatz is of the form

Rn = RCFT
n (x) +

r
(1)
n (x)

`1/n
+
r

(2)
n (x)

`2/n
+
r

(3)
n (x)

`3/n
+ · · · . (4.49)

The variables rn(x) are used as �tting parameters in the extrapolation procedure. The
number of terms that we should keep in order to have a stable �t depends both on n and
on x. For each case we keep a number of terms such that the extrapolated value at `→∞
is stable. The results of this extrapolation procedure for n = 3 and n = 4 are explicitly
reported in Fig. 4.2. In the case of n = 4 the extrapolated points corresponding to the last
two values of x are not shown in the �gure because we cannot perform a stable �t with the
available data. Indeed, we should keep a large number of terms in order to have a precise
enough extrapolation and this would require larger intervals size. The agreement of the
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Figure 4.3: The ratio Rn between the integer moments of ρA and ρT2
A for two disjoint blocks of

length ` at distance r embedded in an in�nite XX chain at zero �eld. We report the results for
n = 3, 4, 5 as function of the four-point ratio x for various values of ` (and correspondingly of r).
For large `, the data approach the CFT predictions (solid lines). The extrapolations to ` → ∞
�done using the scaling form (4.50)� are shown as crosses which perfectly agree with the CFT
curves for n = 3 and 4, while for n = 5 the �ts are unstable. The last panel shows explicitly the
extrapolating functions for two values of x and n = 3, 4.

stable extrapolations with the CFT predictions is really excellent, at an unprecedented
precision compared with fully numerical computations [136, 145]. Conversely, we �nd
that for n = 5 the extrapolations are still unstable for any value of x.

4.5.2 The XX chain

We now move to the study of the powers of ρT2

A for the XX model in zero �eld. There
are no previous numerical studies of this paradigmatic model. We again consider the
ratios Rn for n = 2, 3, 4, 5 and we again �nd that R2 is identically equal to 1, as it should
be. In Fig. 4.3 we report the obtained values of Rn for n = 3, 4, 5 as function of x for
di�erent values of `. It is evident that increasing ` the data approach the CFT predictions
(the solid curves). We should however mention a very remarkable property. It has been
observed that Tr ρnA shows oscillating corrections to the scaling [222, 260, 262], which
for zero magnetic �eld, are of the form (−1)`. These oscillations however cancel in the
ratio Rn and the corrections to the scaling are monotonous, a property which makes the
extrapolation to in�nite ` slightly simpler.

Also in this case we can perform an accurate scaling analysis to show how the data
converge to the CFT results when the corrections to the scaling are properly taken into
account. For the XX model, the leading correction to the scaling is governed by an
exponent δn = 2/n, which means that they are less severe than in the case of the Ising
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model as it is also qualitatively clear from the �gure. We then use the general �nite-`
ansatz

Rn = RCFT
n (x) +

r
(1)
n (x)

`2/n
+
r

(2)
n (x)

`4/n
+
r

(3)
n (x)

`6/n
+ · · · , (4.50)

and, as in the case of the Ising model, we keep a number of �tting parameters which
make stable the extrapolation at ` → ∞. The results of this procedure for n = 3 and
4 are explicitly reported in Fig. 4.3. The agreement of the extrapolations with the CFT
predictions is excellent. Also for the XX chain we �nd that for n = 5 the �ts are unstable.

4.6 Conclusions

We have shown that the partial transpose of the reduced density matrix of two dis-
joint spin blocks in the XY spin chain can be written as a linear combination of four
Gaussian fermionic operators, fully speci�ed by their correlation matrices (denoted as
Γ̃i, i = 1, 2, 3, 4 in the text) which have been explicitly calculated in terms of the cor-
relation matrix of the subsystem formed by the two blocks joined with the �nite part
between them. This construction allows to calculate the moments of the partial transpose
in generic con�gurations of the spin chain. In this chapter we focused on the ground state
of Ising and XY chain, but the approach is more general and can be used for arbitrary
excited states, thermal density matrices, non-equilibrium situations etc.

The obtained representations of the moments of the partial transpose allow us to study
in an exact manner in�nite chains and very large subsystems, drastically reducing the
systematic errors in the approach to the scaling limit. We found that for the ground state
of the critical models the moments of the partial transpose agree (with high accuracy)
with the recent CFT predictions after the corrections to the scaling are properly taken
into account.

The main open problem left for two disjoint blocks of a spin chain is whether it is
somehow possible to obtain the negativity from the correlation matrix (the problem is
also present for the fermionic degrees of freedom [331]). A similar problem is also open for
the entanglement entropy since integer moments are obtained in a similar fashion [222],
but one has no access to the spectrum of the reduced density matrix and hence to the
entanglement entropy. From the practical point of view, we discussed in Chap. 2 that
if one knows a relative large number of integer moments, rational interpolations provide
accurate estimates of the analytic continuations [152], and hence of the entanglement
entropy. In Ref. [236] the same analysis is performed also for the negativity. However, a
deeper understanding of these analytic continuations would be highly desirable.
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Chapter 5

Partial transpose of two disjoint intervals for a

one dimensional free fermion

5.1 Introduction

The goal of this chapter is to investigate the negativity for the one-dimensional CFT of
a free fermionic model. The main result is a close analytical form for the moments of the
partial transpose of two disjoint intervals for the massless free Dirac fermion reported in
Eq. (5.37). The explicit form of the moments is exactly the same as for the compacti�ed
boson at the self-dual point obtained in Ref. [135].

The chapter is organised as follows. In Sec. 5.2 we build the partial transpose of the
fermionic density matrix using coherent state path integral. In Sec. 5.3 we provide the
analytical form for the moments of the partial transpose of two disjoint intervals and
we analyse it. The method used to compute Eq. (5.37) is tested in Sec. 5.4, where we
recover the known results for the modular invariant Dirac fermion and the Ising model.
Finally in Sec. 5.5 we draw our conclusions and discuss some open problems. In a series
of appendices we report a number of technical details.

5.2 Partial transpose of the reduced density matrix for the free

fermion

In this section we provide a path integral formula for the partial transpose of the density
matrix for a free fermionic �eld theory, after a brief review of the result of Eisler and
Zimboras [331] for the partial transpose of the reduced density matrix of two disjoint
blocks on the lattice.

5.2.1 Review of the lattice results

We start from the the tight binding model with Hamiltonian

H =
1

2

L∑

i=1

[
c†i ci+1 + c†i+1ci

]
, (5.1)
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where periodic boundary conditions are assumed. We only consider the model at half
�lling kF = π/2. Since (5.1) is quadratic in the fermionic operators, it can be diagonalized
in momentum space. The scaling limit of this model is the massless free Dirac fermion
which is a CFT with c = 1. The local Hilbert space Hj of a single site is two dimensional
and we can choose a basis made by the two vectors corresponding to whether the fermion
occurs (|1〉) or not (|0〉). In this basis the operators cj and c†j act as the creation and

annihilation operators, cj |0〉 = c†j |1〉 = 0, while c†j |0〉 = |1〉 and cj |1〉 = |0〉. The tight-
binding model can be mapped by a Jordan-Wigner transformation into the XX spin chain
(discussed in Chap. 4)

HXX =

L∑

j=1

[
σxj σ

x
j+1 + σyj σ

y
j+1

]
. (5.2)

Although these models are mapped one into the other, since the Jordan-Wigner trans-
formation between them is not local, the entanglement (both entropy and negativity) of
two disjoint blocks are not equal, as pointed out already in the literature [220, 243] and
in Chap. 4.

We always consider the entire system to be in the ground state |Ψ〉 with density matrix
ρ = |Ψ〉 〈Ψ|. As in Chap. 4, we introduce the following Majorana fermions [245, 328]

axj = cj + c†j , ayj = i(cj − c†j), (5.3)

which satisfy the anticommutation relations {aαr , aβs } = 2δαβδrs.
We brie�y review the results of Eisler and Zimboras [331] for the partial transpose

of such fermionic Gaussian problem. With the same notations of Chap. 4, we can write
the reduced density matrix as in Eq. (4.9)1. Since we are now interested directly in the
fermionic variables, and not in the spins, there is no string in B1 connecting the two
blocks (cf. Eq. (4.12)). Given the reduced density matrix (4.9), it is still convenient to
distinguish the terms having an even or odd number of fermionic operators in A2 (we
recall that the parity of operator in A2 is the same of the operators in A1) by introducing

ρeven =
1

2`1+`2

∑

even

w12O1O2, ρodd =
1

2`1+`2

∑

odd

w12O1O2. (5.4)

Thus ρA = ρeven + ρodd. The partial transposition with respect to A2 in (4.35) acts
di�erently on the two operators in (5.4). In particular [331]

ρT2
even =

1

2`1+`2

∑

even

(−1)µ2/2w12O1O2, ρT2

odd =
1

2`1+`2

∑

odd

(−1)(µ2−1)/2w12O1O2.

(5.5)
The de�nition of ρ̃A (which is Gaussian, but it is not a density matrix, being not hermitian)
is the same as in Sec. 4.4

ρ̃A =
1

2`1+`2

∑
iµ2w12O1O2. (5.6)

We also naturally introduce ρ̃even and ρ̃odd, as done in (5.4) for ρA. The partial transpose
of ρA becomes

ρT2

A = ρ̃even − i ρ̃odd. (5.7)

1In this chapter we remove the superscript 1, since ρA = ρ 1
A.
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The matrices ρ̃even and ρ̃odd in (5.7) can be written through the string PA2 of the Majorana
operator along A2. Using Eq. (4.19), one �nds

ρ̃even =
1

2

(
ρ̃A + PA2 ρ̃APA2

)
, ρ̃odd =

1

2

(
ρ̃A − PA2 ρ̃APA2

)
. (5.8)

Thus, plugging (5.8) into (5.7), the �nal expression for ρT2

A is obtained [331]

ρT2

A =
1− i

2
ρ̃A +

1 + i

2
PA2 ρ̃APA2 =

1√
2

(
e−iπ4 ρ̃A + eiπ4 PA2 ρ̃APA2

)
. (5.9)

The only di�erence with the formulas of Chap. 4 is the absence of the string of Majo-
rana operators (4.12) in B1. Thus Eq. (5.9) can be obtained from Eq. (4.39) by discarding
the string of Majorana operators, i.e. by replacing PB1

with 1. Performing this replace-
ment, many simpli�cations occur in the formulas found in Sec. 4.3 and Sec. 4.4. Making
the replacement PB1 → 1 in Eqs. (4.13) and (4.14), the reduced density matrix of the
two disjoint blocks becomes ρA = ρeven + ρodd, with ρeven and ρodd given in Eq. (5.4)2.
Moreover, ρB1

A de�ned in Eq. (4.18) is replaced as ρB1

A → ρ 1
A and therefore we conclude

that ρA = ρ+ = ρ 1
A. In the same way, we can recover the result (5.9) for the partial

transpose. Once again, Tr(ρT2

A )n in the fermionic variables is obtained by replacing PB1

with 1 in the formulas reported in Sec. 4.4. Performing this replacement in Eq. (4.31) we
get ρT2

A = ρT2
even + ρT2

odd = ρT2
+ and in Eq. (4.38) it gives ρ̃B1

A → ρ̃ 1
A. These observations

together with Eq. (4.39) lead to Eq. (5.9)
The computation of Tr(ρT2

A )n through (5.9) provides an expression containing 2n terms
given by all the combinations of ρ̃0 ≡ ρ̃A and ρ̃1 ≡ PA2

ρ̃APA2
, which can be written as

Tr
(
ρT2

A

)n
=

∑

p1,p2,...pn=0,1

eiπ4
∑n
i pi e−iπ4 (n−

∑n
i pi)

2n/2
Tr

[ n∏

k=1

ρ̃pk

]
. (5.10)

This formula can be further simpli�ed noticing that the various terms in the sum are
invariant under the exchange pi → 1 − pi. Using this and reorganising the terms in the
sum, we can write

Tr(ρT2

A )n =
1

2n−1

∑

p

2n/2 cos

[
π

4

(
2

n−1∑

i=1

pi − n
)]

Tr

[
ρ̃0

n−1∏

k=1

ρ̃pk

]
, (5.11)

where the vector p has n− 1 components equal to 0 or 1 and therefore the sum contains
2n−1 terms.

5.2.2 Fermionic coherent states for a single site

In this subsection, we brie�y review the features of the fermionic coherent states [337]
which are needed to build the path integral of ρA and ρ̃A. Here we focus on a single site
(indeed, the site index will be dropped in this subsection) and in the next subsection the
natural extension to many sites will be considered.

The coherent states for fermions are de�ned through the Grassmann anticommuting
variables. If θ1 and θ2 are real Grassmann variables, we have that θ2

i = 0 for i ∈ {1, 2}
and θ1θ2 = −θ2θ1. Since θ2 = 0, a function f(θ) of the real Grassman variable can be

2To compare our notation with the one used in [331], set (ρ+)there = (ρeven)here and (ρ−)there =
(ρodd)here.
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written as f(θ) = f0 + f1θ. Given two real Grassmann variables one can build a complex
Grassmann variable ζ as follows

ζ =
1√
2

(
θ1 + i θ2

)
, ζ∗ =

1√
2

(
θ1 − i θ2

)
. (5.12)

The integration over a complex Grassmann variable acts as a derivation; indeed
∫

dζ∗dζ = 0,

∫
dζ∗dζ ζ = 0,

∫
dζ∗dζ ζ∗ = 0,

∫
dζ∗dζ ζ ζ∗ = 1. (5.13)

The coherent states are de�ned as follows

|ζ〉 = |0〉 − ζ |1〉 , 〈ζ| = 〈0|+ ζ∗ 〈1| . (5.14)

Since ζ commutes with |0〉 and anticommutes with c, c† and |1〉, it is straightforward to
check that c |ζ〉 = ζ |ζ〉 and 〈ζ| c† = 〈ζ| ζ∗. Notice that the coherent states do not provide
an orthonormal basis. A completeness relation and a formula for the trace of an operator
O read respectively

I =

∫
dζ∗dζ e−ζ

∗ζ |ζ〉 〈ζ| , TrO =

∫
dζ∗dζ e−ζ

∗ζ 〈−ζ|O |ζ〉 . (5.15)

Given the above rules, the matrix elements of the identity and of the operators in (4.5)
on the coherent states (5.14) can be computed, �nding that

〈ζ|η〉 = 1 + ζ∗η = 〈η∗| − ζ∗〉 , (5.16a)

〈ζ|ax|η〉 = ζ∗ + η = 〈η∗|ax|ζ∗〉 , (5.16b)

〈ζ|ay|η〉 = −i(ζ∗ − η) = −〈η∗|ay|ζ∗〉 , (5.16c)

〈ζ|iaxay|η〉 = 1− ζ∗η = 〈η∗|iaxay| − ζ∗〉 , (5.16d)

where the second rewriting will be useful in the following subsection. Since i axay |ζ〉 =
|−ζ〉, we can bring (5.16b) and (5.16c) in the same form of (5.16a) and (5.16d):

〈ζ|ax|η〉 = 〈η∗|iay| − ζ∗〉 = −i 〈η∗|U (z)
−π/2 a

x U
(z)
π/2 | − ζ∗〉 , (5.17a)

〈ζ|ay|η〉 = 〈η∗|iax| − ζ∗〉 = i 〈η∗|U (z)
−π/2 a

y U
(z)
π/2 | − ζ∗〉 . (5.17b)

Notice that the insertion of U (z)
π/2 and its hermitian conjugate in (5.16a) and (5.16d) has

no e�ect.

5.2.3 Partial transpose of the reduced density matrix

The coherent state |ζ(x)〉 for a lattice is the tensor product of single site coherent states,
with x runnig along the whole system or the corresponding subsystem. In the following we
consider a lattice system but the �nal formulas can be extended to a continuous spatial
dimension in a straightforward way by interpreting the discrete sums as integrals and
integrations over a discrete set of variables as path integrals.

The density matrix of the whole system in the ground state is ρ = |Ψ〉 〈Ψ| and its
matrix element between two generic coherent states reads

ρ(ζ(x), η(x)) = e−ζ
∗η 〈ζ(x)|Ψ〉 〈Ψ|η(x)〉 , (5.18)
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where ζ∗η =
∑
x ζ
∗(x) η(x), with x labelling the whole system and e−ζ

∗η is the normal-
ization factor (see (5.16a)). To obtain the reduced density matrix in A, one �rst separates
the degrees of freedom in A and the ones in B and then traces over the latter ones. De-
noting by |ζA(xA)〉 and |ζB(xB)〉 the coherent states on A and B respectively, we have
that |ζ(x)〉 = |ζA(xA)〉⊗ |ζB(xB)〉. Adopting the notation |ζ(x)〉 = |ζA(xA), ζB(xB)〉, the
matrix element of ρA is given by

ρA(ζA(xA), ηA(xA)) = e−ζ
∗
AηA

∫
Dχ∗B DχB e

−χ∗B χB 〈ζA, −χB |Ψ〉 〈Ψ|ηA, χB〉 , (5.19)

where Dχ∗B DχB =
∏
xB

dχ∗B(xB) dχB(xB) and the minus sign comes from the trace over
B, according to (5.15). In the continuum limit, the braket 〈Ψ|ηA, χB〉 is the fermionic
path integral on the upper half plane where the boundary conditions ηA(xA) and χB(xB)
are imposed in A and B respectively, just above the real axis. Analogously, 〈ζA, −χB |Ψ〉
is the path integral on the lower half plane. The trace over B is performed by setting the
�elds along B equal (but with opposite sign) and summing over all the con�gurations.
The resulting path integral is over the whole plane with two open slits along A1 and A2,
where the boundary conditions ηA and ζA are imposed respectively along the lower and
the upper edge of A (left panel of Fig. 5.1).

Let us consider the partial transpose ρT2

A with respect to A2. Remembering that the
partial transposition acts only on operators in A2, from (4.9) we can write its matrix
elements as follows

〈ζ(x)|ρT2

A |η(x)〉 =
1

2`1+`2

∑
w12 〈ζ1(x1)|O1|η1(x1)〉 〈ζ2(x2)|OT2 |η2(x2)〉 , (5.20)

where xj ∈ Aj , with j ∈ {1, 2}.
Focussing on the term corresponding to A2 in (5.20), from (4.35), (5.16a)�(5.17b) one

�nds

〈ζ2(x2)|OT2 |η2(x2)〉 = (−1)τ(µ2) iµ
y
2−µx2 〈η∗2(x2)|U (z)

−π/2O2 U
(z)
π/2 | − ζ∗2 (x2)〉 , (5.21)

where the unitary map U (z)
−π/2 acts on all sites. When the number µ2 of Majorana operators

in A2 is even, from (4.34) we have that (−1)τ(µ2) = iµ2 and therefore

〈ζ2(x2)|(OT2 )even|η2(x2)〉 = (−1)µ
y
2 〈η∗2(x2)|U (z)

−π/2 (O2)even U
(z)
π/2 | − ζ∗2 (x2)〉

= 〈η∗2(x2)|U (y)
−π U

(z)
−π/2 (O2)even U

(z)
π/2 U

(y)
π | − ζ∗2 (x2)〉 ,

(5.22)

where in (5.22) the factor (−1)µ
y
2 has been removed through a second unitary transforma-

tion which sends axj → −axj leaving the ayj 's unchanged (we recall that U (z)
−π/2 exchanges

the axj 's with the ayj 's). The expression (5.22) suggests us to introduce the following
unitary operator acting on A2

V2 ≡ U (y)
−π U

(z)
−π/2 =

∏

j∈A2

exp

(
− i

π

2

axj − ayj√
2

)
=
∏

j∈A2

exp
[
− i

π

2

(
eiπ4 c†j + e−iπ4 cj

)]
,

(5.23)
whose net e�ect is to send axj → −ayj and ayj → −axj , for j ∈ A2.

In a similar way, we can treat the case of odd µ2, for which (−1)τ(µ2) = iµ2−1 (see
(4.34)). Again, from (4.35), (5.16)-(5.17a) one gets

〈ζ2(x2)|
(
OT2
)
odd
|η2(x2)〉 = −i (−1)µ

y
2 〈η∗2(x2)|U (z)

−π/2 (O2)odd U
(z)
π/2 | − ζ∗2 (x2)〉

= −i 〈η∗2(x2)|V2 (O2)odd V
†
2 | − ζ∗2 (x2)〉 .

(5.24)
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Figure 5.1: Path integral representation of ρA and ρ̃A in the coherent state basis.

Introducing the operator Õ2 through its matrix elements as follows

〈ζ2(x2)|Õ2|η2(x2)〉 = 〈η∗2(x2)|V2O2 V
†
2 | − ζ∗2 (x2)〉 , (5.25)

the expression (5.20) can be written as follows

〈ζ(x)|ρT2

A |η(x)〉 =
1

2`1+`2

(∑

even

w12 〈ζ1(x1)|O1|η1(x1)〉 〈ζ2(x2)|Õ2|η2(x2)〉

− i
∑

odd

w12 〈ζ1(x1)|O1|η1(x1)〉 〈ζ2(x2)|Õ2|η2(x2)〉
)
,

(5.26)

where in the �rst (second) sum the terms have an even (odd) number of fermionic operators
in A2. In (5.26) the structure ρT2

A = ρ̃even − i ρ̃odd (see (5.7)) can be recognised and this
observation leads us to identify the matrix element of ρ̃A on the coherent states

〈ζ(x)|ρ̃A|η(x)〉 = 〈ζ1(x1), η∗2(x2)|V2 ρA V
†
2 |η1(x1), −ζ∗2 (x2)〉 , (5.27)

and analogously

〈ζ(x)|PA2 ρ̃APA2 |η(x)〉 = 〈ζ1(x1), −η∗2(x2)|V2 ρA V
†
2 |η1(x1), ζ∗2 (x2)〉 , (5.28)

where from (5.16d) we can read that the action of PA2
is to change the sign of ζ2. A

graphical representation of this path integral representation for ρ̃A is given in the right
panel of Fig. 5.1. Hence, the �nal expression for the the partial transpose in the coherent
state basis can be written exactly like the lattice counterpart i.e.

ρT2

A (ζ, η) =
1√
2

[
e−iπ4 ρ̃A(ζ1, ζ2; η1, η2) + eiπ4 ρ̃A(ζ1,−ζ2; η1,−η2)

]
, (5.29)

where the notation is such that ηi, ζi ∈ Ai. This explicit form of the partial transpose in
the coherent state basis is the �nal and main result of this section.

In App. 5.A we employ the formalism of this section to check the identity Tr(ρT2

A )2 =
Tr ρ2

A (which holds for any quantum system [134, 135]) for the free fermion.

5.3 Traces of the partial transpose for the free fermion

In this section we consider the moments Tr(ρT2

A )n for the free fermion. Using the path
integral approach of the previous section, in Sec. 5.3.1 we derive the analytic formula for
Tr(ρT2

A )n given by (5.37) which is the main result of this manuscript. All the needed CFT
results can be found in Sec. 1.4. In Sec. 5.3.2 we show that the moments for the free
fermion are equal to the ones for the compact boson at the self-dual radius. Finally, in
Sec. 5.3.3 we give some numerical checks of our results.
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5.3.1 Moments of the partial transpose for the free fermionic �eld theory

The path integral for ρT2

A is given by (5.29) which is a sum of two di�erent operators.
The moments are then given by the sum of 2n terms that come from the expansion of
the binomial. Actually, since there is a double degeneration of these terms, the sum is
only on 2n−1 terms. Introducing, in analogy with the lattice computation, the notation
ρ̃0(ζ, η) = ρ̃A(ζ, η) and ρ̃1(ζ, η) = ρ̃A(ζ1,−ζ2; η1,−η2), the 2n−1 terms in the sum for the
moment of order n can be written as

∫ n∏

k=1

Dχ∗kDχk ρ̃0(−χn, χ1)

n−1∏

k=1

ρ̃pk(χk, χk+1), (5.30)

with pi = 0, 1. Each of these 2n−1 terms is a partition function of a free fermion on a
Riemann surface of genus n− 1 in which antiperiodic or periodic boundary condition are
imposed along the basis cycles.

It is not di�cult to realize that this surface is exactly R̃n, whose main properties have
been described in Sec. 1.4.3 (see the right panel of Fig. 1.1). Let us recall here that the
period matrix τ̃(x) of R̃n for x ∈ (0, 1) is given by [135]

τ̃(x) = τ
(
x/(x− 1)

)
= R+ i I, R =

1

2
Q, (5.31)

where the elements of τ have been de�ned in (1.58). Here we observe that the real part
R of the period matrix has a simple form. In (5.31) we de�ned the matrix Q, which is
a very simple symmetric integer matrix: it has 2 along the principal diagonal, −1 along
the secondary diagonals and 0 for the remaining elements. In App. 5.B.1 we report the
detailed derivation of this result. The cycles of R̃n providing the canonical homology basis
{ãr, b̃r ; 1 6 r 6 n− 1} which gives the period matrix (5.31), have also been discussed in
Sec. 1.4.3 and depicted in Fig. 1.3. We recall here that ãr is the same as ar on Rn, while
the generic cycle b̃r is obtained by deforming the cycle br.

An important ingredient at this point is the operator PA2
. For an arbitrary interval

C we can write
PC = (−1)

∫
C
dx ψ̄(x)ψ(x) ≡ (−1)FC . (5.32)

where FC is the fermionic number operator in the interval C which was already introduced
long ago [200]. This operator is located along the interval C and it changes the fermionic
boundary conditions (from antiperiodic to periodic or viceversa) on a cycle whenever it
crosses the curve C. In (5.29) for ρT2

A , we have that PA2 occurs both before and after ρ̃A.
This corresponds to the insertion of the operators (−1)FA2 above and below the cut along
A2.

Each term (5.30) is a partition function on R̃n with some speci�c boundary conditions
along the a and b cycles and it can be expressed in terms of Riemann theta functions.
Explicitly, we have

Tr

[
ρ̃0

n−1∏

k=1

ρ̃pk

]
= c2n

(
1− x
`1`2

)2∆n
∣∣∣∣
Θ[e](τ̃(x))

Θ(τ̃(x))

∣∣∣∣
2

, e =

(
0
δ

)
, (5.33)

where 0 is the vector made by n − 1 zeros. While cn is not universal, its value for the
tight-binding model at half-�lling is known exactly and it is given by [325]

cn = 2−
1
6 (n− 1

n ) exp

{
in

∫ ∞

−∞
dz log

(
Γ
(

1
2 + iz

)

Γ
(

1
2 − iz

)
)[

tanh (πz)− tanh (πnz)
]}
. (5.34)
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In the formula (5.33) we have still to �x the vector δ in terms of p, which is done as
follows. Eq. (5.30) is evaluated on the n-sheeted Riemann surface R̃n where the i-th
sheet is associated to the ρ̃pi . On the sheets associated to ρ̃1, two operators (−1)FA2 must
be placed above and below A2. Then, the spin structure e can be read o� by counting
how many times the cycles of the basis cross the curves A2. Since the cycles ãi do not
intersect A2 at all, we have that ε = 0, i.e. the boundary conditions for the fermion
along all the cycles ãr are antiperiodic. Instead, for b̃r this analysis is non trivial because
it intersects A2 on the r-th sheet and on the (r + 1)-th sheet, as one can see from the
right panel of Fig. 1.3. If b̃r crosses these curves an even number of times, then δr = 0,
otherwise δr = 1/2. It is not di�cult to conclude that

2δi = (pi + pi+1) mod 2, (5.35)

whose inverse reads

pi =

( n−1∑

j=i

2δj

)
mod 2 =

1− (−1)2
∑n−1
j=i δj

2
. (5.36)

The simplest example of (5.33) is the term Trρ̃n0 (namely p = 0). This spin structure has
antiperiodic boundary conditions along all the cycles, i.e. ε = δ = 0.

Thus, Tr
(
ρT2

A

)n
can be written as a sum over all the allowed spin structures:

Tr
(
ρT2

A

)n
= c2n

(
1− x
`1`2

)2∆n 1

2n−1

∑

δ

rn(δ)

∣∣∣∣
Θ[e](τ̃)

Θ(τ̃)

∣∣∣∣
2

, e =

(
0
δ

)
. (5.37)

The coe�cient rn(δ) is

rn(δ) = 2n/2 cos

[
π

4

(
1 +

n−1∑

i=1

(−1)2
∑n−1
j=i δj

)]
. (5.38)

It can be seen that rn(δ) ∈ {−2n/2, 0, 2n/2} for even n and rn(δ) ∈ {−2(n−1)/2, 2(n−1)/2}
for odd n.

The analytic expression given by (5.37) and (5.38) is the main result of this chapter.
When the size of the intervals is very small with respect to their distance (`1, `2 � d. i.e.
x � 1), it is possible to expand (5.37) in powers of x, as shown in App. 5.B.2 where we
�nd the �rst non trivial term of this expansion.

There is also a very interesting by-product of our analysis which is given by (5.33)
providing a very deep technical insight. Indeed Eq. (5.33) shows also that each of the
2n−1 terms in the sum over p in (5.11) has a well de�ned continuum limit which is the
partition function of the free fermion on R̃n with a particular assignment of fermionic
boundary conditions, i.e. always antiperiodic along all the a cycles, while the b.c. along
the b cycles are speci�ed by δ (we recall, antiperiodic for δi = 0 and periodic otherwise).

Dihedral symmetry

The Riemann surfaces Rn and R̃n enjoy a dihedral symmetry Zn×Z2, as already noticed
in [228] and discussed also in Chap. 2. The symmetry Zn comes from the invariance
under cyclic permutation of the n sheets and the symmetry Z2 corresponds to take the
sheets in the reversed order and to re�ect all of them with respect to the real axis. The
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former symmetry comes from the fact that Rn and R̃n are obtained through the replica
construction and the latter one occurs because the endpoints of the intervals are on the
real axis. Indeed, the complex equations (1.75) and (1.76), which de�ne the Riemann
surfaces Rn and R̃n, are invariant under complex conjugation.

In [228] and in App. 2.C.3 of Chap. 2 the symplectic matrices which implement the
dihedral symmetry of Rn have been written explicitly and in App. 5.B.3 this analysis has
been extended to R̃n as well (the symmetry Z2 is di�erent in the two cases). These trans-
formations act on the period matrix and reshu�e the characteristics, but the functions
and Ω̃n[e] in (5.49) remain invariant. Moreover, both the transformations associated to
the dihedral symmetry leave the coe�cient rn(δ) in (5.38) invariant. Thus, the terms in
the sum (5.37) whose characteristics are related by one of these modular transformations
are equal and the sum can be written in a simpler form by choosing a representative term
for each equivalence class, whose coe�cient is given by (5.38) multiplied by the number
of terms of the equivalence class.

Exploiting these symmetries, one can write the explicit expressions given in Eq. (5.51)
for 2 6 n 6 5. Beside the goal of having more compact analytic expressions, the dihedral
symmetry is very helpful also from the numerical point of view because it allows to reduce
the exponentially large (in n) number of terms in (5.37).

Looking at Eq. (5.10) on the lattice, the Zn symmetry corresponds to the cyclic per-
mutation of the n factors within each trace. Instead, the Z2 symmetry comes from the
fact that ρ̃0 and ρ̃1 are not separately hermitian but the hermitian conjugation exchange
them, so that ρT2

A is hermitian. However, as already noticed, such exchange leaves any
term of the sum unchanged. As for the continuous case, exploiting these symmetries one
can simplify the formulas, and for 2 6 n 6 5 one obtains the expressions (5.47).

5.3.2 Self-dual boson

In this subsection we show that the expression (5.37) for Tr
(
ρT2

A

)n
of the free Dirac

fermion is equal to the one for the compacti�ed boson at its self-dual radius.
The analytic formula for Tr

(
ρT2

A

)n
of the compacti�ed boson for a generic value of

the compacti�cation radius has been derived in [135] by studying the partition function
of the model on the Riemann surface R̃n and it has been reviewed in Sec. (1.4.3), see
Eq. (1.81). At the self-dual radius η = 1, it becomes

Tr
(
ρT2

A

)n
= c2n

(
1− x
`1`2

)2∆n Θ(T )

|Θ(τ̃)|2 , T =

(
i I R
R i I

)
, (5.39)

where the matrices occurring in this expression have been recalled in (5.31). The Riemann
theta function Θ(T ) in the numerator can be written as follows

Θ

(
i I R
R i I

)
=
∑

ε

∣∣∣∣Θ
[
ε
0

]
(2τ̃)

∣∣∣∣
2

=
∑

ε

e2πi ε·Q·ε Θ

[
ε
0

]
(2τ̃)2, (5.40)

where in the �rst step we have used (3.6b) of [214] and in the second one −2τ̃∗ = 2τ̃−2Q.
Then, by specialising the addition formula reported in [215] (pag. 4) to our case, we �nd

Θ

(
i I R
R i I

)
=

1

2n−1

∑

ε,δ

(−1)4ε·δ e2πi ε·Q·εΘ

[
0
δ

]
(τ̃)2 =

1

2n−1

∑

δ

mn(δ) Θ

[
0
δ

]
(τ̃)2,

(5.41)
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where
mn(δ) =

∑

ε

(−1)4ε·δ e2πi ε·Q·ε =
∑

ε

e4iπ(ε·Q2 ·ε+ε·δ). (5.42)

In App. 5.C we show thatmn(δ) can be written as the partition function of a classical Ising
spin system, where ε play the role of the spin variables and the δ are the local magnetic
�elds. In the same appendix we also employ standard transfer matrix techniques to prove
that mn(δ) = rn(δ) (see (5.38) and (5.42)).

5.3.3 Numerical checks

In order to evaluate numerically the moments of the partial transpose, we employ the
techniques �rst developed in [222] for Tr ρnA and used in Chap. 4 to compute Tr(ρT2

A )n for
spin systems. Indeed, being the tight-binding Hamiltonian (5.1) quadratic in the fermionic
operators, the ground state reduced density matrix ρA is Gaussian. Moreover, ρ̃A in (5.9)
is Gaussian as well and, since the string operator PC can be written as the exponential
of a quadratic operator, the density matrix PA2

ρ̃APA2
is also Gaussian. Nevertheless,

the sum of these two matrices in (5.9) is not Gaussian (this is indeed the main di�culty
compared to bosonic models in which the partial transpose is itself Gaussian [126, 147,
150, 151]). By exploiting the fact that for Gaussian states all the information of the
system is encoded in the correlation matrices, the computations can be performed in a
polynomial time in terms of the total size of the subsystem. In particular, in our case
the correlation matrices of ρ̃A and PA2

ρ̃APA2
can be obtained from the one of ρA, as

described in [331] and discussed in Chap. 4.
As already noticed in Sec. 5.2.1, the only di�erence with the formulas of Chap. 4 is

the absence of the string of Majorana operators (4.12) in B1. Thus, the formulas for the
moment of the partial transpose in terms of correlation matrices can be computed both
from Eq. (5.9) as well as from the formulas derived in Chap. 4, by discarding the string of
Majorana operators, i.e. by replacing PB1

with 1, in the same manner as what was done
at the end of Sec. 5.2.1 for the reduced density matrix and its partial transpose.

At the level of the correlation matrices Γi discussed in Chap. 4, since ρB1

A → ρ 1
A, it is

obvious that Γ3 → Γ1 and Γ4 → Γ2. We conclude that the fermionic Tr ρnA is found by
making in Eq. (4.26) the following replacements

δB1
→ 1, Γ3 → Γ1, Γ4 → Γ2. (5.43)

Performing these substitutions in the explicit examples given in Sec. 4.3 for 2 6 n 6 5, it
is straightforward to �nd

Tr ρnA = {Γn1}. (5.44)

which is just the obvious result that the fermionic density matrix is the Gaussian operator
with correlation matrix given by Γ1. We numerically calculated Tr ρnA using Eq. (5.44)
(as was already done in Ref. [333]), obtaining that on the critical lines in the scaling limit
it converges to

Tr ρnA →
c2n[

`1`2(1− x)
]2∆n

, (5.45)

that corresponds to Fn(x) = 1 identically in the general CFT formula (1.56). Indeed this
result was already proven in the continuum free fermion theory [46].

We can proceed in the same way for the partial transpose. Given that ρ̃B1

A → ρ̃ 1
A, it

follows that we should perform the replacements Γ̃3 → Γ̃1 and Γ̃4 → Γ̃2 in order to get
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Figure 5.2: The ratio Rn between the integer moments of ρA and ρT2
A for two disjoint intervals

of length ` at distance r for the tight-binding model at half-�lling. We report the results for
n = 3, 4, 5 as function of the four-point ratio x for various values of ` (and correspondingly of r).
For large `, the data approach the CFT predictions (solid lines). The extrapolations to ` → ∞
�done using the scaling form (4.50)� are shown as crosses and they perfectly agree with the CFT
curves for n = 3, 4, 5. The last panel shows explicitly the extrapolating functions for one value
of x and n = 3, 4, 5.

the moments of the partial transpose in terms of the correlation matrices. Summarising,
the fermionic Tr(ρT2

A )n are given by the formulas in Sec. 4.4 performing the replacements

δB1
→ 1, Γ̃3 → Γ̃1, Γ̃4 → Γ̃2. (5.46)

Performing the replacements in the formulas for 2 6 n 6 5 given in Eqs. (4.44), (4.45),
(4.46) and (4.47), and exploiting the symmetries described at the end of Sec. 5.3.1, we
�nd

T̃2 = 2 {Γ̃1, Γ̃2}, (5.47a)

T̃3 = −2 {Γ̃3
1}+ 6 {Γ̃2

1, Γ̃2}, (5.47b)

T̃4 = −4 {Γ̃4
1}+ 4 {Γ̃1, Γ̃2, Γ̃1, Γ̃2}+ 8 {Γ̃2

1, Γ̃
2
2}, (5.47c)

T̃5 = −4 {Γ̃5
1} − 20 {Γ̃4

1, Γ̃2}+ 20 {Γ̃3
1, Γ̃

2
2}+ 20 {Γ̃2

1, Γ̃2, Γ̃1, Γ̃2}, (5.47d)

where T̃n is de�ned in Eq. (4.43). Notice that the �nal expressions are very compact
compared to the much more cumbersome spin counterparts.

The lattice computations have been performed in an in�nite chain, as in Chap. 4.
Again, the disjoint blocks A1 and A2 have been taken with the same size `1 = `2 ≡ `, while
the size of the block B1 separating them is d. Thus, the four point ratio x becomes (4.48).
and con�gurations with the same value of `/d correspond to the same x. The numerical
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results for the ratios Rn = Tr(ρT2

A )n/(Tr ρnA) are reported in Fig. 5.2 as function of the
four-point ratio x for di�erent ` and for n = 3, 4, 5 (we checked that R2 = 1 identically,
as it should). The CFT formulas for Rn are computed through Eqs. (5.37) and (5.45).
The explicit formulas for 2 ≤ n ≤ 5 are given at the end of this section in Eq. (5.51). It
is evident from Fig. 5.2 that the lattice numerical results approach the CFT predictions
depicted as solid lines for all n.

In order to deal with the �nite size e�ects, we perform an accurate scaling analysis,
as in the spin case of Sec. 4.5. We recall that from general CFT arguments it has been
shown that these quantities display some unusual corrections to the scaling in ` described
by a power law term with exponent δn = 2h/n, being h the smallest scaling dimension
of a relevant operator inserted at the branch points [260�263, 327, 334�336]. For the
Dirac fermion h = 1 and terms of the form `−2m/n are present, for any positive integer
m. Because of the slow convergence of these terms (which becomes slower and slower for
increasing n), typically it is necessary to include in the scaling function many of them.
The �nite ` ansatz is then given by Eq. (4.50). As for the spin case, �tting the data with
(5.50), the more terms we include, the more precise the �t could be. Nevertheless, since
we have access to limited values of `, by using too many terms over�tting problems may
be encountered, which lead to very unstable results. The number of terms to be included
in (5.50) has been chosen in order to get stable �ts. The results of this extrapolation
procedure for n = 3, 4, 5 are explicitly reported in Fig. 5.2 (red crosses). The agreement
of the extrapolations with the CFT predictions is excellent also for n = 5 as a di�erence
compared to the spin counterpart (see Figs. 4.2 and 4.3).

We can perform some other checks. Indeed, we have given a set of more stringent rela-
tions (5.33) between each term in the sum for Tr(ρT2

A )n appearing both in CFT and on the
lattice. We can provide explicit numerical evidence of this term-by-term correspondence
for n = 2, 3, 4. Referring to Eq. (5.11), let us introduce the following lattice quantities

J̃ latn = Tr ρ̃n0 , Ω̃lat
n [p]2 =

1

Tr ρ̃n0
Tr

[
ρ̃0

n−1∏

k=1

ρ̃pk

]
. (5.48)

We also introduce their CFT continuum limit:

J̃n ≡ c2n
(

1− x
`1`2

)2∆n

, Ω̃n[e] ≡
∣∣∣∣
Θ[e](τ̃(x))

Θ(τ̃(x))

∣∣∣∣. (5.49)

These CFT values are again approached by taking con�gurations with increasing `, keep-
ing the ratio `/d �xed. As discussed at the end of Sec. 5.3.1, many terms in the sum
(5.11) are equal because of the properties of the trace (in the continuum, this degeneracy
is due to the dihedral symmetry of the Riemann surface).

In order to compare the lattice data with their continuum counterpart, we again need
to perform a scaling analysis, exactly as was done for the ratio Rn. The most general
�nite-` ansatz for Ω̃n takes the following form

Ω̃lat
n [p]2 = Ω̃2

n[e] +
ω

(1)
n (x)

`2/n
+
ω

(2)
n (x)

`4/n
+
ω

(3)
n (x)

`6/n
+ . . . , (5.50)

where p and e are related through (5.35) and (5.36). As for the prefactor, the ratio J̃ latn /J̃n
has been considered in order to eliminate the trivial dependence on ` which survives in
the continuum limit. For this ratio a scaling function similar to (5.50) can be studied.
Again, to have an accurate description of the data we keep a number of �tting parameters
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Figure 5.3: The terms occurring in Tr(ρT2
A )n for the free fermion (see (5.37)), according to the

correspondence (5.33). Here we show n = 2 (top panels) and n = 3 (bottom panels). For each
group of identical terms, only one representative has been plotted. In the left panels, the term
with p = 0 has been divided by its CFT counterpart (δ = 0), in order to simplify the residual
dependence on `1 and `2. The extrapolated points (red crosses) are obtained through a �t of
the data according to the scaling function (5.50) and they agree with the CFT predictions (solid
lines).

in (5.50) which make stable the extrapolation at `→∞. We �nd that every term Ω̃n[e]
follows the scaling (5.50) and the extrapolated value agrees with the corresponding CFT
result. Our numerical results are shown in Fig. 5.3 for n = 2 (top panels) and n = 3
(bottom panels), while Fig. 5.4 is about the n = 4 case. The solid lines are the CFT
predictions, which are given by (5.33).

We conclude this section by giving explicit formulas for the ratio Rn in the continuum
limit in terms of the quantities de�ned in Eq. (5.49).

2R2

(1− x)4∆2
= 2 Ω̃2

n

[
0

1/2

]
, (5.51a)

4R3

(1− x)4∆3
= −2 + 6 Ω̃2

n

[
0 0
0 1/2

]
, (5.51b)

8R4

(1− x)4∆4
= −4 + 8 Ω̃2

n

[
0 0 0
0 1/2 0

]
+ 4 Ω̃2

n

[
0 0 0

1/2 1/2 1/2

]
, (5.51c)

16R5

(1− x)4∆5
= −4 + 20 Ω̃2

n

[
0 0 0 0
0 0 1/2 0

]
+ 20 Ω̃2

n

[
0 0 0 0
0 1/2 1/2 1/2

]
− 20 Ω̃2

n

[
0 0 0 0
0 0 0 1/2

]
.

(5.51d)
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Figure 5.4: The terms occurring in Tr(ρT2
A )4 for the free fermion (see (5.37)), according to the

correspondence (5.33). For each of the three groups of identical terms, only one representative
has been plotted. In the top panel, the term with p = 0 has been divided by its CFT counterpart
(δ = 0), in order to simplify the residual dependence on `1 and `2. The extrapolated points (red
crosses) are obtained through a �t of the data according to the scaling function (5.50) and they
agree with the CFT predictions (solid lines).

5.4 Ising model and modular invariant Dirac fermion

In this section we apply the technique developed for the free fermion in Sec. 5.3 to the
Ising model and to the modular invariant Dirac fermion. The CFT formulas for Tr ρnA
and Tr(ρT2

A )n for these models are known [135, 145, 196] and they are written as modular
invariant expressions given by a sum over all the possible spin structures. For Tr ρnA the
explicit form of Fn(x) for the two models is (see Eqs. (1.63) and (1.60)),

F Ising
n (x) =

1

2n−1

∑

e

∣∣∣∣
Θ[e](τ(x))

Θ(τ(x))

∣∣∣∣, (5.52a)

FDirac
n (x) =

1

2n−1

∑

e

∣∣∣∣
Θ[e](τ(x))

Θ(τ(x))

∣∣∣∣
2

. (5.52b)

while for Tr(ρT2

A )n we simply need to replace x→ x/(x− 1) (see Eq. (1.80))

F Ising
n

(
x/(x− 1)

)
=

1

2n−1

∑

e

∣∣∣∣
Θ[e](τ̃(x))

Θ(τ̃(x))

∣∣∣∣, (5.53a)

FDirac
n

(
x/(x− 1)

)
=

1

2n−1

∑

e

∣∣∣∣
Θ[e](τ̃(x))

Θ(τ̃(x))

∣∣∣∣
2

. (5.53b)

Although the scaling functions for the two models are already known, both for the mo-
ments of the reduced density matrix and its partial transpose, it is instructive to rederive
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them with the method of Sec. 5.3. Moreover, going through this procedure we can iden-
tify the quantities on the lattice whose continuum limit is characterised by a speci�c spin
structure.

5.4.1 Hamiltonians on the lattice

The Ising model and the modular invariant Dirac model are the scaling limit of the Ising
spin chain and the XX spin chain respectively, which are both particular cases of the XY
spin chain, discussed in Chap. 4. The Hamiltonian (4.1) depends on two parameters: the
transverse magnetic �eld h and the anisotropy parameter γ [332]. In this manuscript we
focus on two special cases: the critical XX spin chain (γ = h = 0) and the critical Ising
model (γ = h = 1)

HXX = −1

4

L∑

j=1

(
σxj σ

x
j+1 + σyj σ

y
j+1

)
, HIsing = −1

2

L∑

j=1

(
σxj σ

x
j+1 + σzj

)
. (5.54)

It is possible to diagonalize both operators in (5.54) via the Jordan-Wigner transforma-
tion (4.2) which maps the spin variables into anti-commuting fermionic variables (i.e.
{ci, c†j} = δij). The Hamiltonians in (5.54) can be written as

HXX =
1

2

L∑

i=1

(
c†i ci+1 + c†i+1ci

)
, (5.55a)

HIsing =

L∑

i=1

(
1

2

[
c†i c
†
i+1 + ci+1ci + c†i ci+1 + c†i+1ci

]
− c†i ci

)
, (5.55b)

where boundary and additive terms have been discarded. Then, the Hamiltonians in (5.55)
can be easily diagonalised in momentum space by means of a Bogoliubov transformation.

5.4.2 Moments of the reduced density matrix and its partial transpose on

the lattice

The moments Tr ρnA of two disjoint blocks for the XY model (4.3) have been studied
in [222] and Tr

(
ρT2

A

)n
in Chap. 4. In order to describe the reduced density matrix ρA of

two disjoint blocks separated by the block B1 for the model (4.3), beside the string PA2

largely discussed in Sec. 5.2, we also need to consider the string of Majorana operators PB1

along B1 (see (4.12)). It is also important to introduce the auxiliary density matrix (4.18).
In Sec. 4.3 we showed that Tr ρnA = Tr(ρeven + ρodd)n, where ρeven and ρodd have

been de�ned in (4.21). Thus, ρeven + ρodd can be written as a linear combination of the
following four fermionic Gaussian operators3

ρ1 ≡ ρ 1
A ρ2 ≡ PA2

ρ 1
APA2

ρ3 ≡ 〈PB1
〉 ρB1

A ρ4 ≡ −〈PB1
〉PA2

ρB1

A PA2
(5.56)

We recall that for the free fermion ρA = ρ 1
A and this result can be obtained by taking (4.13)

and setting PB1 = 1.
Thus, TrρnA is an algebraic sum of 4n terms and each of them is speci�ed by a string q

made by n elements qi ∈ {1, 2, 3, 4}. The terms with an odd number of 4's in q will occur

3In this section we reintroduce the superscript 1 to distinguish between the spin density matrix ρA
and the fermionic density matrix ρ 1

A.
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in Tr ρnA with a minus sign. Moreover, by using the cyclic property of the trace and the
fact that P 2

A2
= 1, it is straightforward to observe that a term characterised by q is equal

to the one relative to q′ obtained by exchanging 1↔ 2 and 3↔ 4. A term characterised
by a q with an odd number of 3's and 4's will have opposite sign with respect to the
one characterised by q′. Hence, the terms with an odd total number of ρ3's and ρ4's will
cancel out, while the other ones simplify and a factor 2 can be collected. Thus, we have
that

TrρnA =
1

2n−1

∑

q

Tr

[ n∏

k=1

ρqk

]
, (5.57)

where the sum must be intended over all q with an even total number of 3's and 4's and
modulo the exchange 1↔ 2 and 3↔ 4. It is not di�cult to realize that the sum contains
22(n−1) terms. The terms in (5.57) with an odd number of ρ4's occurs with a minus sign.
Explicit expressions of (5.57) for 2 6 n 6 5 have been written in Eqs. (4.27)�(4.30) in
terms of the correlators.

The analysis just sketched for Tr ρnA can be performed also for Tr
(
ρT2

A

)n
. In this case,

considering Eqs. (4.32), (4.37) and (4.39), it is convenient to de�ne the following four
Gaussian operators

ρ̃1 ≡ ρ̃ 1
A ρ̃2 ≡ PA2

ρ̃ 1
APA2

ρ̃3 ≡ − i 〈PB1
〉 ρ̃B1

A ρ̃4 ≡ i 〈PB1
〉PA2

ρ̃B1

A PA2
(5.58)

where ρ̃ 1
A and ρ̃B1

A have been de�ned in (4.38). We recall that all these fermionic op-
erators are Gaussian. Since Tr

(
ρT2

A

)n
= Tr(ρT2

even + ρT2

odd)n, where ρT2
even and ρT2

odd are
de�ned in (4.36), and can be written as linear combinations of the operators in (5.58)
(see Eq. (4.39)), then one �nds that Tr(ρT2

A )n is a linear combination of 4n terms and
each one of them is again speci�ed by a string q̃ made by n elements qi ∈ {1, 2, 3, 4}. An
important di�erence between (5.56) and (5.58) is the occurrence of the imaginary unit
in the latter set of de�nitions. In this case the analysis is very similar to the previous
one performed for Tr ρnA. In particular, a term characterised by some q̃ is equal to the
one speci�ed by the q̃′ obtained by exchanging 1 ↔ 2 and 3 ↔ 4 in q̃. As in the case
of the Rényi entropies, the terms with an odd total number of ρ̃3's and ρ̃4's cancel out.
The latter simpli�cation guarantees that all the non vanishing coe�cients in Tr

(
ρT2

A

)n
are real. Thus, we have that

Tr
(
ρT2

A

)n
=

1

2n−1

∑

q̃

Tr

[ n∏

k=1

ρ̃q̃k

]
, (5.59)

where again the sum contains 22(n−1) terms and must be intended over all q̃ with an
even total number of 3's and 4's and modulo the exchange 1 ↔ 2 and 3 ↔ 4. Explicit
expressions for Tr(ρT2

A )n with 2 6 n 6 5 can be found in Eqs. (4.44)�(4.47). They are
written through the correlators but the identi�cation of the various terms with the ones
in (5.59) is straightforward.

5.4.3 Moments of the reduced density matrix and its partial transpose in the

continuum

In this section we want to identify the quantity on the lattice occurring in (5.57) and (5.59)
whose continuum limit is a single term in (5.52) and (5.53) respectively with given char-
acteristic e.
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In Sec. 5.2.3 we already identi�ed the coherent state path integral representation of
ρ1(ζ, η) ≡ ρ1A(ζ, η) and ρ̃1(ζ, η) ≡ ρ̃1A(ζ, η) (see Eqs. (5.19), (5.27) and Fig. 5.1) and the
e�ect of the operator PA2

in ρ2(ζ, η) and ρ̃2(ζ, η) (see Eq. (5.28)). The latter changes
the sign of the fermion above and below the cut along A2, and in the continuum must
be identi�ed with the operator (−1)FA2 , de�ned in Eq. (5.32). When n sheets are sewn
together as in (5.30) (see also Fig. 1.1), the e�ect of this operator is to change the fermionic
boundary conditions along any homology cycle that crosses the curves along which it is
inserted.

To extend the analysis to the modular invariant Dirac fermion and the Ising model
we also need a path integral representation of ρ3(ζ, η) and ρ̃3(ζ, η). As can be seen from
the de�nition of ρB1

A and ρ̃B1

A in the lattice, Eqs. (4.18) and (4.38), the main di�erence
is the presence of the string operator PB1 . In the continuum this corresponds to the
insertion of the operator (−1)FB1 between the two intervals, along B1. In the path
integral representation of ρ3(ζ, η) the �eld above and below B1 will appear with the
opposite relative sign with respect to B2 (compare the expression with the path integral
representation of ρ1(ζ, η) in Eq. (5.19))

ρ3(ζA, ηA) = e−ζ
∗
AηA

∫
Dχ∗B DχB e

−χ∗B χB 〈ζA; χB1 , −χB2 |Ψ〉 〈Ψ|ηA; χB1 , χB2〉 . (5.60)

The path integral representation of ρ̃3(ζ, η) is then obtained from (5.60) by essentially
exchanging the values of the �elds above and below the cut in A2 with a relative minus
sign, according to Eq. (5.27). There is also a factor −i coming from the de�nition (5.58).
When joining n sheets, the fermionic boundary conditions along all the cycles which cross
B1 on a sheet of the type (5.60), will be changed from antiperiodic to periodic. Finally,
the path integral representation of ρ4(ζ, η) and ρ̃4(ζ, η) contains the operator (−1)F both
around the interval A2 and along B1. Therefore, its path integral representation of ρ4(ζ, η)
is given by

ρ4(ζA,ηA) = −ρ3(ζA1 ,−ζA2 ; ηA1 ,−ηA2) = −e−ζ∗AηA×∫
Dχ∗B DχB e

−χ∗B χB 〈ζA1 ,−ζA2 ; χB1 , −χB2 |Ψ〉 〈Ψ|ηA1 ,−ηA2 ; χB1 , χB2〉 ,
(5.61)

and analogously ρ̃4(ζA, ηA) = −ρ̃3(ζA1
,−ζA2

; ηA1
,−ηA2

). Summarizing, we can write the
coherent state path integral representation of ρ+(ζ, η) and ρT2

+ (ζ, η) as a sum of four terms

ρ+(ζ, η) =
1

2

[
ρ1(ζ, η) + ρ2(ζ, η) + ρ3(ζ, η) + ρ4(ζ, η)

]
, (5.62a)

ρT2
+ (ζ, η) =

1

2

[
ρ̃1(ζ, η) + ρ̃2(ζ, η) + ρ̃3(ζ, η) + ρ̃4(ζ, η)

]
. (5.62b)

When computing Tr ρnA = Tr ρn+ and Tr
(
ρT2

A

)n
= Tr(ρT2

+

)n
, as in the lattice case we get

sums over 4n terms speci�ed by the same strings q and q′ of n integers qi ∈ {1, 2, 3, 4}
discussed in Sec. 5.4.2. Each of these terms has a form similar to the one of Eq. (5.30)
for the free fermion,

Tr

[ n∏

k=1

ρqk

]
=

∫ n∏

k=1

Dχ∗kDχk ρq1(−χ1, χ2)

n∏

k=2

ρqk(χk−1, χk), (5.63a)

Tr

[ n∏

k=1

ρ̃q̃k

]
=

∫ n∏

k=1

Dχ∗kDχk ρ̃q̃1(−χ1, χ2)

n∏

k=2

ρ̃q̃k(χk−1, χk), (5.63b)
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and can therefore be computed from the partition function of the model on Rn or R̃n
respectively, with the correct boundary conditions along the a and b cycles, and it can be
again expressed in terms of Riemann theta functions.

Moments of the reduced density matrix

Let us �rst focus on Tr ρnA. In this case we know that any term (5.63a) can be computed
from the partition function on Rn (left panel of Fig. 5.1). For the modular invariant Dirac
fermion we �nd

Tr

[ n∏

k=1

ρqk

]
=

c2n

[`1`2(1− x)]
2∆n

∣∣∣∣
Θ[e](τ(x))

Θ(τ(x))

∣∣∣∣
2

, e =

(
ε
δ

)
, (5.64)

where we recall that c = 1 in ∆n, and with the expression (5.34) for cn. Similarly, for
Ising we have

Tr

[ n∏

k=1

ρqk

]
=

(cIsingn )2

[`1`2(1− x)]
2∆n

∣∣∣∣
Θ[e](τ(x))

Θ(τ(x))

∣∣∣∣, e =

(
ε
δ

)
, (5.65)

where c = 1/2 in ∆n and the expression for cIsn is the one found in [329], i.e.

cIsingn = 2−
1
12 (n− 1

n )√cn, (5.66)

being cn given by (5.34).
We now need to discuss the relation between the string q and the fermionic boundary

conditions described by the characteristic e. As for the sum (5.57), two terms charac-
terised by q and q′ are equal if they are related by the exchange 1 ↔ 2 and 3 ↔ 4. Due
to the relative minus sign in front of ρ3 and ρ4, terms with an odd total number of ρ3's
and ρ4's cancel out in the sum for Tr ρnA, while terms with an even total number of ρ3's
and ρ4's survive and are pairwise equal. The �nal sum has therefore the same structure
of (5.57). This implies that in the 2(n−1) surviving terms the operator (−1)F is placed
along non trivial closed curves. These cycles may be either around A2 (whenever ρ2 or
ρ4 are present) or along B1 on two di�erent sheets (whenever a couple of ρ3's or ρ4's
are present). It is easy to convince oneself that the 2(n−1) terms correspond to all the
inequivalent insertions on the di�erent sheets of the operator (−1)F around the cut in
A2 or along B1. Since the insertions of (−1)F dictate the fermionic boundary conditions
along the basis cycles, there is a bijective relation between the q's and the set of all char-
acteristics e, which are indeed 22(n−1). The explicit expression of this relation depends
on the basis cycles that are chosen on Rn. For each term, the string q tells us where
the operator (−1)F must be inserted on Rn and, once the homology basis is chosen, the
characteristic e can be read o� by counting how many times the basis cycles cross the
curves where (−1)F is inserted. Notice that, unlike the case of the moments of the partial
transpose of the free Dirac fermion, since here the operator (−1)F can be placed also
along B1, the boundary conditions along the a cycles may be changed too, from antiperi-
odic to periodic. Explicitly, εk = 0 (which means antiperiodic b.c.) if ak crosses B1 an
even number of times in the presence of (−1)F , and εk = 1/2 (periodic b.c.) otherwise.
Analogously, δk = 0 (antiperiodic b.c.) if bk crosses an even number of times any edge of
A2 in the presence of (−1)F , and δk = 1/2 (periodic b.c.) otherwise.

This bijection between q and e shows how each term (5.64) or (5.65) is the scaling limit
of the term relative to the same q in the sum (5.57) for Tr ρnA in the lattice. Recalling that
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any Riemann theta function with odd characteristic vanishes identically, an important by-
product of this analysis is that the scaling limit of the terms in (5.57) associated to odd
characteristics according to the correspondence (5.64), (5.65), is zero identically. These
terms turn out to be the ones with an odd number of ρ4's, and hence the ones which
appear in (5.57) with a global minus sign. We stress that this fact is independent of the
choice of the homology cycles on Rn. Indeed, any two basis are related by a modular
transformation which leaves invariant the parity of the characteristics.

Moments of the partial transpose

The analysis for Tr
(
ρT2

A

)n
is very similar ot the one of Tr ρnA, but we have to remember

that in this case the main ingredient is ρ̃1(ζ, η) ≡ ρ̃1A(ζ, η), thus we have to deal with the
surface R̃n (right panel of Fig. 5.1) with period matrix τ̃(x). For the modular invariant
Dirac fermion we �nd

Tr

[ n∏

k=1

ρ̃q̃k

]
= c2n

(
1− x
`1`2

)2∆n
∣∣∣∣
Θ[e](τ̃(x))

Θ(τ̃(x))

∣∣∣∣
2

, e =

(
ε
δ

)
, (5.67)

where we recall that c = 1 in ∆n, and with the expression (5.34) for cn. Similarly, for
Ising we have

Tr

[ n∏

k=1

ρ̃q̃k

]
= (cIsn )2

(
1− x
`1`2

)2∆n
∣∣∣∣
Θ[e](τ̃(x))

Θ(τ̃(x))

∣∣∣∣, e =

(
ε
δ

)
, (5.68)

where c = 1/2 in ∆n and the expression for cIsn is the one of Eq. (5.66).
As for Tr ρnA, there is a bijective relation between q̃ and e, which translates in a

bijective relation among the terms in the sum (5.59) and the set of all characteristics.
The situation is the same as before: for each term, the string q̃ contains the information
on where the operator (−1)F must be inserted on R̃n, and the characteristic e is read o�
by counting how many times the basis cycles cross it. An important di�erence with the
case of Tr ρnA is that now the cycle b̃r crosses B1 (see Fig. 1.3), and therefore the boundary
conditions along the b cycles, which are given by δ, are modi�ed by the presence of (−1)F

along B1, and not only around the cut in A2. Since we are dealing with two di�erent
Riemann surfaces with two di�erent homology basis, the relation between e and the two
strings q and q̃ are in principle di�erent. Also in the case of Tr

(
ρT2

A

)n
it turns out that the

terms which appear in the sum (5.59) with a global minus sign correspond through (5.67)
or (5.68) to terms with odd characteristic, and therefore they vanish in the scaling limit.
Notice that the presence of the minus sign depends now on both how many ρ3's and how
many ρ4's are present, due to the imaginary unit in (5.58).

Dihedral symmetry

At the end of Sec. 5.3.1 we argued that the dihedral symmetry Zn×Z2 of R̃n provides some
degeneracies among the terms in the sums for the moment of the partial transpose for
the free fermion. The symmetry Zn comes from the invariance under cyclic permutation
of the n sheets and the symmetry Z2 corresponds to taking the sheets in reverse order
and re�ecting all of them with respect to the real axis. The same applies here for the
modular invariant Dirac fermion and the Ising model. Beside the vanishing terms with
odd characteristics in the sums (5.52), further degeneracies can be found among the non
vanishing ones by exploiting the dihedral symmetry Zn × Z2 on Rn. Analogously, in
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the sums (5.53) many degeneracies are found exploiting the dihedral symmetry on R̃n.
We recall that this symmetry has been investigated in App. 2.C.3 of Chap. 2 in terms
of modular transformations acting on Rn, and the extension to R̃n can be found in
App. 5.B.3.

As for the expression (5.57) on the lattice, the Zn symmetry is the cyclic permutation
of the n factors within each trace The Z2 symmetry instead comes from the reality of
each trace and the fact that every factor ρqk within the trace is hermitian. Indeed, these
observations imply that each term is equal to the one where all factors are taken in
the reverse order. The dihedral symmetry has also a counterpart on the lattice terms
of (5.59). Again Zn comes from the cyclic permutation of the factors within each trace,
while the Z2 symmetry is related to the reality of each term, but with some extra care.
As already pointed out for the free Dirac fermion in Sec. 5.3.1, the four terms in (5.58) are
not separately hermitian. The hermitian conjugation exchanges ρ̃1 ↔ ρ̃2 and ρ̃3 ↔ ρ̃4, so
that ρT2

A is hermitian. However, as already noticed above Eq. (5.59), such exchange leaves
any term of the sum unchanged.

In App. 5.E some details are given about the numerical analysis for the XX model and the
Ising model. Some plots are shown for the various terms occurring in Tr ρnA and Tr

(
ρT2

A

)n
for n = 2 (Figs. 5.5 for the modular invariant Dirac theory, and 5.7 for Ising) and n = 3
(Figs. 5.6 for the modular invariant Dirac theory, and 5.8 for Ising). The lattice data
are computed for the XX and the Ising chains (5.54), with the same techniques used in
Chap. 4 and in Sec. 5.3.3 for the free fermion. After taking into account the �nite size
corrections, the extrapolations of the lattice data match very nicely with the corresponding
CFT predictions.

As a further check, in App. 5.D we recover the expressions of Tr ρnA and Tr(ρT2

A )n for
the free fermion from the corresponding ones for the modular invariant Dirac fermion,
in a fashion which resembles what was done in Sec. 5.3.3 to recover the lattice expres-
sions (5.47) for the tight-binding model from the formulas found in Sec. 4.4 for the XX
and Ising spin chains.

5.5 Conclusions

In this chapter we studied the moments of the partial transpose of the reduced density
matrix Tr(ρT2

A )n for two disjoint intervals in the conformal �eld theory of the massless
Dirac fermion. Our main result is a closed analytic form for these moments of arbitrary
order, i.e. Eq. (5.37). The analytic computation of the logarithmic negativity E through
the replica limit of (5.37) for even ne → 1 is beyond our knowledge.

It turned out that these moments are identical, for arbitrary order, to those of the
compacti�ed boson at the self-dual point. This equality comes from the explicit computa-
tion and we miss a proper understanding of this fact. It was already noticed that for the
moments of the reduced density matrix of two disjoint intervals Tr ρnA, the result for the
free fermion [46, 333] and the one for the compacti�ed boson at the self-dual radius [226]
are equal and very easy (they are both given by (1.56) with Fn(x) = 1). This is not the
case for three or more disjoint intervals, as noticed in [228] and observed also in Chap. 2.
This unexpected equivalence has been investigated in [228], where also other results have
been found, based on the fact that τ(x) is purely imaginary when x ∈ (0, 1). For the
partial transpose, the period matrix τ̃(x) of R̃n in (5.31) has a non vanishing real part.
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Nevertheless, here we have shown that Tr
(
ρT2

A

)n
for the free fermion is equal to the one

for the self-dual boson, a property that does not follow from the analysis of [228]. The
equality of all the moments obviously implies also the equality of the negativities. Since
the negativity is directly measurable by means of tensor network algorithms (as e.g. done
in [125, 136] for the Ising model), it would be very interesting to check numerically the
identity between the negativity of the tight-binding model and the isotropic Heisenberg
antiferromagnet (whose continuum limit is the self-dual boson). This is a highly non
trivial prediction.

We point out that an interesting technical byproduct of this paper is a one-to-one cor-
respondence between each of the 2n−1 terms appearing in the lattice formulation of the
moments Tr(ρT2

A )n and the partition function of the free fermion on R̃n with a particular
assignment of fermionic boundary conditions. This correspondence has been explicitly
checked against lattice numerical computations, as well as the overall sum. The conse-
quence of this correspondence for the moments of both the reduce density matrix and its
partial transpose in spin models with a free fermionic representation has been explored
in Sec. 5.4, and the numerical analysis is reported in App.5.E.
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Appendices

5.A A check for n = 2

In this appendix, by employing the formalism described in Sec. 5.2.2 and Sec. 5.2.3, we
check the standard relation between the reduced density matrix of two disjoint intervals
and its partial transpose

Tr
(
ρT2

A

)2
= Tr

(
ρ2
A

)
. (5.69)

From (5.9), it is immediate to observe that Tr
(
ρT2

A

)2
= Tr (ρ̃APA2

ρ̃APA2
). Then, by using

(5.15), we can write

Tr (ρ̃APA2
ρ̃APA2

) =

=

∫
Dζ∗Dζ Dη∗Dη e−ζ

∗ζe−η
∗η 〈−ζ1, −ζ2|ρ̃A|η1, η2〉 〈η1, η2|PA2

ρ̃APA2
|ζ1, ζ2〉

=

∫
Dζ∗Dζ Dη∗Dη e−ζ

∗ζe−η
∗η 〈−ζ1, −ζ2|ρ̃A|η1, η2〉 〈η1, −η2|ρ̃A|ζ1, −ζ2〉

=

∫
Dζ∗Dζ Dη∗Dη e−ζ

∗ζe−η
∗η 〈−ζ1, η∗2 |ρA|η1, ζ

∗
2 〉 〈η1, −ζ∗2 |ρA|ζ1, η∗2〉

=

∫
Dζ∗Dζ Dη∗Dη e−ζ

∗
1 ζ1+ζ∗2 ζ2e−η

∗
1η1+η∗2η2 〈−ζ1, η2|ρA|η1, ζ2〉 〈η1, −ζ2|ρA|ζ1, η2〉 ,

(5.70)

where in the last step the change of variables ζ2 → ζ∗2 , η2 → η∗2 has been employed. Then,
by noticing that the relations in (5.15) can be slightly modi�ed as follows

− I =

∫
dζ∗dζ eζ

∗ζ |ζ〉 〈−ζ| , − Tr Ô =

∫
dζ∗dζ eζ

∗ζ 〈ζ| Ô |ζ〉 , (5.71)

we can conclude that (5.70) is exactly Tr
(
ρ2
A

)
.

5.B On the Riemann surface R̃n

In this appendix we derive with all the details some further results about the Riemann
surface R̃n and its period matrix τ̃(x) in 5.31, that have already been introduced and
discussed in Sec. 1.4.3.

While the period matrix τ(x) of Rn is purely imaginary (see (1.58)), the period matrix
τ̃(x) for R̃n has a non vanishing real part. In Sec. 5.B.1 we show that Re[τ̃(x)] has a
very simple form. In Sec. 5.B.2 we consider the moments Tr

(
ρT2

A

)n
in the regime of small

intervals x → 0 and in Sec. 5.B.3 we provide a detailed discussion of the Z2 part of the
dihedral symmetry for R̃n.

5.B.1 The real and imaginary part of the period matrix τ̃(x)

In this subsection we want to write explicitly the real and the imaginary part of the period
matrix τ̃(x) given by (5.31). The real part Re[τ̃(x)] turns out to be a simple tridiagonal
matrix with half-integer entries.

Let us introduce the following ratios of hypergeometric functions, which enter in the
expressions for the period matrices τ(x) and τ̃(x) (see (1.58) and (5.31))

τr(x) ≡ i
2F1(r, 1− r; 1; 1− x)

2F1(r, 1− r; 1;x)
, τ̃r(x) ≡ τr

( x

x− 1

)
≡ α̃r(x) + iβ̃r(x), (5.72)
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where 0 < r < 1 and x ∈ (0, 1). Moreover, we also de�ne

Ar(x) ≡ Γ(1− 2r)

Γ(1− r)2

2F1(r, r; 2r; 1− x)

2F1(r, r; 1;x)
, (5.73a)

Br(x) ≡ Γ(2r − 1)

Γ(r)2
(1− x)1−2r 2F1(1− r, 1− r; 2(1− r); 1− x)

2F1(r, r; 1;x)
. (5.73b)

By employing the expressions given in (87) of [135], one �nds that

α̃r(x) = sin(πr)
[
Ar(x) + Br(x)

]
, β̃r(x) = cos(πr)

[
Ar(x)− Br(x)

]
. (5.74)

At this point we need the following identity (see e.g. Eq. (1) at pag. 108 of Ref. [338])

2F1(a, b; c;z) =
Γ(c) Γ(c− a− b)
Γ(c− a) Γ(c− b) 2F1(a, b; a+ b− c+ 1; 1− z)

+
Γ(c) Γ(a+ b− c)

Γ(a) Γ(b)
(1− z)c−a−b 2F1(c− a, c− b; c− a− b+ 1; 1− z),

(5.75)

which holds for |arg(1 − z)| < π. By specialising (5.75) to the case of (a, b, c) = (r, r, 1)
and z = x ∈ (0, 1), from (5.73) one �nds that

Ar(x) + Br(x) = 1. (5.76)

From this expression it is clear that the x dependence disappears from the real part of
τ̃r(x) and hence from the period matrix. Indeed, using (5.74) and (5.76) in (1.58) one
gets (see also 5.31)

τ̃(x)i,j =
2

n

n−1∑

k=1

sin(πk/n) τ̃k/n(x) cos[2π(k/n)(i− j)] =
1

2

[
Q
]
i,j

+ i
[
I(x)

]
i,j
, (5.77)

where the sum giving the real part can be explicitly performed, �nding that the matrix
Q has integer elements which read

[Q]i,j ≡ 2δi,j − δ|i−j|,1, (5.78)

namely Q is a symmetric tridiagonal matrix, with 2 on the main diagonal and −1 on the
�rst diagonals. On the other hand, the imaginary part can be written as follows,

[
I(x)

]
i,j

=
2

n

n−1∑

k=1

sin(πk/n) β̃k/n(x) cos[2π(k/n)(i− j)], (5.79)

with

β̃r(x) ≡ f̃r(1− x)− f̃1−r(1− x)

(1− x)r 2F1(r, r; 1;x)
cos(πr), f̃r(x) ≡ Γ(1− 2r)

Γ(1− r)2
xr 2F1(r, r; 2r;x). (5.80)

This expression for I(x) can be further simpli�ed. Plugging (5.76) into the second
expression of (5.74), we have

β̃r(x) = cos(πr)
[
2Ar(x)− 1

]
. (5.81)
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For 0 < x < 1 we can rewrite Ar(x) as follows [338]

Ar(x) =
1

2 cos(πr)

[
e−iπr + eiπr x−r 2F1(r, r; 1; 1/x)

2F1(r, r; 1;x)

]
. (5.82)

Since Ar(x) is real for 0 < x < 1, the vanishing of its imaginary part gives

1

xr

[
tan(πr)Re

(
2F1(r, r; 1; 1/x)

2F1(r, r; 1;x)

)
+ Im

(
2F1(r, r; 1; 1/x)

2F1(r, r; 1;x)

)]
= tan(πr). (5.83)

On the other hand, by writing Ar(x) as its real part and plugging the resulting expression
in (5.81), one �nds

β̃r(x) =
1

xr

[
cos(πr)Re

(
2F1(r, r; 1; 1/x)

2F1(r, r; 1;x)

)
− sin(πr) Im

(
2F1(r, r; 1; 1/x)

2F1(r, r; 1;x)

)]
. (5.84)

Finally, using (5.83) we can write

β̃r(x) = cos(πr)− x−r

sin(πr)
Im
(

2F1(r, r; 1; 1/x)

2F1(r, r; 1;x)

)
. (5.85)

The matrix I(x) can be easily written by plugging (5.85) into (5.79) and noticing that
the sum over the cosine vanishes. The result reads

[
I(x)

]
i,j

= − 2

n

n−1∑

k=1

x−k/n Im
(

2F1(k/n, k/n; 1; 1/x)

2F1(k/n, k/n; 1;x)

)
cos[2π(k/n)(i− j)]. (5.86)

The result (5.78) is employed in Sec. 5.3.2 and in App. 5.B.3.

5.B.2 Short intervals regime

In this appendix we study the Tr
(
ρT2

A

)n
for the free fermion (5.37) in the limit of short

intervals, i.e. when x→ 0.
In the expression (5.37), only Riemann theta functions with ε = 0 occur, which are

given by

Θ

[
0
δ

](
τ̃(x)

)
= 1 +

∑

m 6=0

eiπ(m· Q·m+2δ·m) e−πm· I·m, (5.87)

where Q is independent of x. Expanding β̃k/n(x) in (5.80) for x→ 0, one �nds

β̃q(x) = − sin(πq)

π

[
log(x) + 2γE + ψ(q) + ψ(1− q)

]
+O(x). (5.88)

Plugging this expansion into (5.79) and (5.87), one gets that the leading term is xm· Q·m.
The exponent m · Q ·m for m ∈ Zn−1 has been already analyzed in [196], �nding that
its minimum is 1, which is obtained for the following vectors

m± ≡
(

j2︷ ︸︸ ︷
0 , . . . , 0︸ ︷︷ ︸

j1

,±1 , . . . ,±1 , 0 , . . . , 0
)
, m± 6= 0, 0 6 j1 < j2 6 n− 1, (5.89)
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namely m± · Q ·m± = 1. Then, by applying again the results of [196] (notice that the
vectors m+ and m− give the same contribution) to (5.87), we �nd

Θ

[
0
δ

](
τ̃(x)

)
= 1− x

2n2

∑

m+

(−1)2δ·m+

sin2(π(j2 − j1)/n)
+ . . . , (5.90)

where the dots denote o(x) terms. Thus, for the generic term occurring in the sum (5.37)
we have

Ω̃n[e] = 1− x

2n2

∑

m+

1 + (−1)2δ·m+

sin2(π(j2 − j1)/n)
+ . . . , e =

(
0
δ

)
. (5.91)

Plugging this result into (5.37), we get the �rst term of the x→ 0 expansion of Tr
(
ρT2

A

)n
,

which is

Tr
(
ρT2

A

)n
= J̃n

[
1− x

2n−1 n2

∑

δ

rn(δ)
∑

m+

1 + (−1)2δ·m+

sin2(π(j2 − j1)/n)
+ . . .

]
. (5.92)

5.B.3 The Z2 part of the dihedral symmetry of R̃n
In this subsection we brie�y discuss the most peculiar aspect of the dihedral symmetry
for the Riemann surface R̃n occurring in the computation of Tr

(
ρT2

A

)n
(see Secs. 5.3.1

and 5.3.1).
The Riemann surface Rn has a dihedral symmetry Zn×Z2 due to the invariance under

cyclic permutation of the sheets (Zn) and the complex conjugation (Z2). For a genus
g Riemann surface, the modular transformations are given by the symplectic matrices
Sp(2g,Z) [207�210, 212�214]. The dihedral symmetry can be identi�ed with a subgroup
of the modular transformations acting on Rn which has been discussed in [228] and in
Chap. 2. In particular, these peculiar modular transformations map the a cycles among
themselves and the b cycles among themselves, leaving the period matrix τ(x) unchanged.

Also the surface R̃n has a dihedral symmetry Zn×Z2 but, while the cyclic permutation
(Zn) is exactly the same one discussed above for Rn, the complex conjugation is slightly
di�erent because it mixes a and b cycles. Let us remind that the complex conjugation
corresponds to reverse the order of the sheets and to re�ect all of them with respect to
the real axis. Considering the canonical homology basis {ãr, b̃r; 1 6 r 6 n−1} introduced
in Sec. 1.4.3 (see the right panel of Fig. 1.3) and used in Sec. 5.3.1, this transformation
acts as follows

(
ã′

b̃
′

)
= Minv ·

(
ã

b̃

)
, Minv =

(↔
I n−1 0

−
↔
Q

↔
I n−1

)
∈ Sp

(
2(n− 1),Z

)
, (5.93)

where we introduced the notation of the double-headed arrow above a matrix to indicate
that the columns have to be taken in the reversed order (Ik is the k × k identity matrix
and Q is given by (5.78)). Under the symplectic transformation de�ned in (5.93), the
period matrix τ̃ (1.58) changes as follows

τ̃ ′ =
↔
I · τ̃ ·

↔
I −

↔
Q ·
↔
I = τ̃ −Q = −R+ i I = − τ̃∗, (5.94)

while for the characteristics of the Riemann theta functions we have
(
ε′

δ′

)
=

(↔
I 0
↔
Q

↔
I

)
·
(
ε
δ

)
. (5.95)
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Notice that the powers of Minv read

M2k−1
inv =

( ↔
I 0

−(2k − 1)
↔
Q

↔
I

)
, M2k

inv =

(
I 0

−2kQ I

)
, (5.96)

(in particular, notice that M2
inv 6= I) so that, by applying (5.94) k times one �nds

τ̃ (k) = τ̃ − kQ. (5.97)

As for the change of the Riemann theta function under the modular transformation in
(5.93), because of the particular form of Q, it is easy to show that for k even it is left
invariant (a part for an overall sign), while for k odd it becomes its complex conjugate,
up to an overall sign. Since in our formulas the modulus of the Riemann theta function
always occurs, the terms occurring in our sums over the characteristics are invariant under
this transformation. Thus, Minv can be the modular transformation representing the Z2

of the dihedral symmetry, even if M2
inv 6= I.

5.C Details on the computation for the self-dual boson

In this appendix we show the equality mn(δ) = rn(δ) between the coe�cient mn(δ)
in (5.42), coming from the self-dual boson approach, and the coe�cient rn(δ) in (5.38)
occurring in the expression obtained through the free fermion analysis.

Considering mn(δ) in (5.42), the expression in the exponent can be written as follows

ε · Q
2
· ε+ ε · δ = −

n−2∑

i=1

εi εi+1 +

n−1∑

i=1

ε2
i +

n−1∑

i=1

εiδi. (5.98)

Then, de�ning the spin variables σi = 4εi−1 = ±1 and the local magnetic �elds hi = 4δi,
we �nd that mn(δ) is equal to the partition function Zn of n− 1 Ising spins in a binary
magnetic �eld hi = 0, 2 (a part for the �rst and last site), which reads

Zn = e
iπ
4 (

∑
i hi+n)

∑

σ

exp

[
i
π

4

(
−
n−2∑

i=1

σiσi+1 +

n−1∑

i=1

σihi + σ1 + σn−1

)]
. (5.99)

Given this Ising model representation, we can compute mn(δ) through standard transfer
matrix techniques. Following [339], let us introduce the conditioned partition function
with the last spin set to µ, namely

Zn(µ) = e
iπ
4 (

∑
i hi+n)×

×
∑

σ

exp

[
iπ

4

(
−
n−3∑

i=1

σi σi+1 − µσn−2 +

n−2∑

i=1

σihi + µhn−1 + σ1 + µ

)]
.

(5.100)

Then, by adding one spin ε to the partition function, it becomes

Zn+1(ε) = e
iπ
4 (

∑
i hi+n)

∑

µ=±1

∑

σ

exp

[
iπ

4

(
−
n−3∑

i=1

σiσi+1 − µσn−2 − µ ε

+

n−2∑

i=1

σi hi + µhn−1 + ε hn + σ1 + ε

)]
.

(5.101)
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After some algebra, one realizes that

Zn+1(+) = (−1)2δn [Zn(+)− Zn(−)] , Zn+1(−) = Zn(+) + Zn(−). (5.102)

and these relations give the transfer matrix

T̂ (δ) =
1√
2

(
(−1)2δ −(−1)2δ

1 1

)
, δ ∈

{
0, 1/2

}
. (5.103)

We also need the conditioned partition functions for a single spin, which read

Z2(+) = − e iπ
2 h1 , Z2(−) = 1. (5.104)

Then, the partition function for n− 1 spins in (5.99) is given by Zn = Zn(+) + Zn(−),

Zn = 2
n
2−1

(
1 1

) 2∏

k=n−1

T̂ (δk)

(
−(−1)2δ1

1

)
= 2

n−1
2

(
1 1

) 1∏

k=n−1

T̂ (δk)

(
0
1

)
.

(5.105)
In order to compute the matrix product in (5.105), it is convenient to perform a change
of basis which diagonalises T̂ (0), namely

T (δ) = U† T̂ (δ)U, U =
1

2

(
1 + i −(1 + i)
1− i 1− i

)
. (5.106)

From (5.103) and (5.106) we can explicitly write the transfer matrix in the new basis

T (0) =
1√
2

(
1 + i 0

0 1− i

)
, T (1/2) =

1√
2

(
0 1− i

1 + i 0

)
, (5.107)

and therefore the partition function (5.105) can be rewritten as follows

Zn = 2
n
2−1

(
1 1

)
T (0)

1∏

k=n−1

T (δk)

(
1
1

)
. (5.108)

Now, it is convenient to move all T (0)'s in the product of (5.108) to the left of all the
T (1/2)'s. To do this, one observes that T (0)T (1/2) = T (1/2)T (0)−1 and T (1/2)T (0) =
T (0)−1T (1/2). By employing the latter rule, one �nds

Zn = 2
n
2−1

(
1 1

)
T (0)1+

∑
i(1−2δi)(−1)

∑n−1
j=i

2δj

T (1/2)
∑
i 2δi

(
1
1

)
. (5.109)

The factor 1 − 2δi within the sum in the exponent of T (0) selects only the sites where

δi = 0, while the other factor (−1)
∑n−1
j=i 2δj counts all the T (1/2)'s on the left of site i.

The exponent of T (0) can be rewritten as

s(δ) = 1 +

n−1∑

i=1

(1− 2δi)(−1)
∑n−1
j=i 2δj = 1 +

1− (−1)
∑
i 2δi

2
+

n−1∑

i=1

(−1)
∑n−1
j=i 2δj . (5.110)

Since T (0) is diagonal, its powers can be easily performed. Moreover, since T (1/2)2 = I2,
every integer power of T (1/2) is simply I2 if the exponent is even, and T (1/2) otherwise.
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Thus, we have

T (0)s(δ) =


e

iπ
4 s(δ) 0

0 e−
iπ
4 s(δ)


 , (5.111a)

T (1/2)2
∑
i δi =


 [1 + (−1)

∑
i 2δi ]/2 e−

iπ
4 [1− (−1)

∑
i 2δi ]/2

e
iπ
4 [1− (−1)

∑
i 2δi ]/2 [1 + (−1)

∑
i 2δi ]/2


 . (5.111b)

Finally, (5.109) tells us that we just need to multiply this two matrices and to sum the
four elements of the resulting matrix. After some of algebra, we get

mn(δ) = 2n/2
[

1 + (−1)
∑
i 2δi

2
cos
(π

4
s(δ)

)
+

1− (−1)
∑
i 2δi

2
cos
(π

4
(s(δ)− 1)

)]
.

(5.112)
By inspection of the two cases of

∑
i 2δi even or odd, it is clear that (5.112) equals (5.38).

5.D The free fermion from the modular invariant Dirac fermion

The main di�erence between the free spinless fermion on the lattice, Eq. (5.1), and the
XX model, Eq. (5.54), is the occurrence of the string of Majorana operators PB1

along
the sites of B1, which separates the two blocks A1 and A2. Thus, by eliminating this
operator from the results of the XX model leads to the corresponding ones for the free
fermion. This procedure has been described in Sec. 5.3.3. Something analogous can be
done on the corresponding expressions for the free fermion and the modular invariant
Dirac fermion in the continuum. In this appendix we brie�y illustrate this procedure for
Tr ρnA and Tr(ρT2

A )n.

5.D.1 Rényi entropies

Let us consider the expression of Fn(x) given in (5.52b) for the modular invariant Dirac
fermion [196], focusing our attention only on the sum over the characteristics. In the
lattice expressions (5.57) some terms are negative and their continuum limit corresponds
to terms in (5.64) with odd characteristics and therefore vanishing. Motivated by this
lattice comparison, let us write the sum over characteristics as follows

∑

ε,δ

(−1)4ε·δ Θ

[
ε
δ

]
(τ)2 (5.113)

Replacing the string PB1
with the identity operator 1 in each term of the lattice expres-

sions for the XX model (see Eqs. (5.57) and (5.56)) corresponds in the continuum to
removing the operator (−1)FB1 which changes the boundary conditions from antiperiodic
to periodic along the cycles that intersects B1. According to the discussion in Sec. 5.4,
the vector ε is determined by the a cycles and the vector δ by the b cycles. Since on Rn
all the a cycles intersects B1, removing all the operators (−1)FB1 means that we are �xing
the fermionic boundary conditions along all the a cycles to be antiperiodic. Instead, since
the b cycles do not intersect B1 (see left panel of Fig. 1.3), the boundary conditions along
them are not modi�ed. This means that removing (−1)FB1 corresponds to setting ε = 0
in each Riemann theta function occurring in (5.113), which becomes

∑

ε,δ

(−1)4ε·δ Θ

[
0
δ

]
(τ)2 = 2n−1

∑

δ

δδ,0 Θ

[
0
δ

]
(τ)2 = 2n−1 Θ

[
0
0

]
(τ)2 (5.114)
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Plugging this result into (5.52), we recover for the free fermion the result Fn(x) = 1 found
in [46]. Let us stress a peculiar and important point of this procedure. After the operator
(−1)FB1 is removed and ε is set to 0, the terms in the sum (5.113) corresponding to
odd characteristics turn out to have an even characteristic (and therefore they are non
vanishing). For this reason, the choice of the minus sign in front of these terms is crucial
in order to obtain the correct result.

5.D.2 Traces of the partial transpose

Similar considerations can be done for Tr
(
ρT2

A

)n
. The sum over the characteristics occur-

ring in the CFT formula for the modular invariant Dirac fermion (5.53b) reads

∑

ε,δ

(−1)4ε·δ Θ

[
ε
δ

]
(τ̃)2 (5.115)

where, as in (5.113), we have exploited the knowledge of the lattice result to choose the
correct minus sign in front of the terms with odd characteristics.

Since the cycles ãr on R̃n intersect B1 (see right panel of Fig. 1.3), removing all the
operators (−1)FB1 leads to ε = 0 in each Riemann theta function occurring in (5.115),
similarly to Sec. (5.D.1). Moreover, di�erently from Sec. 5.D.1, the removal of (−1)FB1

a�ects also the boundary conditions along the b cycles of R̃n. In particular, δ → δ′ ≡
(δ −P ε) mod 2, where P has 1's on the main diagonal, −1's on the lower diagonal and
zeros elsewhere. This procedure brings (5.113) into the following form

∑

ε,δ

(−1)4ε·δΘ

[
0
δ′

]
(τ̃)2 =

∑

ε,δ′

(−1)4ε·(δ′+Pε) Θ

[
0
δ′

]
(τ̃)2 =

∑

δ′

tn(δ′) Θ

[
0
δ′

]
(τ̃)2 ,

(5.116)
where in the �rst step we have changed the summation variable and in the second one we
have introduced

tn(δ) =
∑

ε

(−1)4(ε·δ+ε·P·ε) . (5.117)

At this point, it is not di�cult to observe that ε · P · ε = ε · Q/2 · ε, which leads to the
conclusion that tn(δ) is equal to mn(δ) given in (5.42), and therefore is equal to the rn(δ)
in the formula for the moments of the partial transpose of the free fermion, Eqs. (5.37)
and (5.38). Let us stress again that the choice of the minus sign in front of the terms with
odd characteristics in (5.115) is crucial to obtain the correct result.

5.E Numerical checks from the Ising model and the XX chain

In this appendix we give some numerical evidence of (5.64) and (5.65) for the terms in
Tr ρnA and of (5.67) and (5.68) for the terms in Tr(ρT2

A )n.
The lattice computations are performed on the XX and on the Ising spin chain. For

both models, because of the presence of the Jordan-Wigner string, in both ρA and ρT2

A

four terms occur that cannot be simultaneously diagonalized (see (4.13) and (4.31) respec-
tively). The four correlation matrices corresponding to this four terms can be computed
from the ones relative to subsystems A and B1 [222, 331] as explained in Secs. 4.3 and 4.4.
The expressions on the lattice for Tr ρnA and Tr

(
ρT2

A

)n
have been written in Eqs. (4.27)�

(4.30) and (4.44)�(4.47) for 2 6 n 6 5 as sums of various terms involving these matrices.
Here we consider these terms separately and study their scaling limit. We compute the
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correlation matrices of an in�nite system, and the subsystem A is taken to be two blocks
of equal size `. The continuum limit is approached by increasing ` and the data are
plotted as function of the four-point ratio x (4.48). Because of the dihedral symmetry
discussed in the �nal part of Sec. 5.4.3, many terms are equal and here we show only one
representative for each equivalence class. Despite this symmetry, the number of terms
increases very fast with n, and for this reason we present the results only for n = 2 and
n = 3.

In analogy with the de�nitions (5.49), we �nd it convenient to introduce a notation
for the following functions

Jn ≡
c2n[

`1`2(1− x)
]2∆n

, Ωn[e] ≡
∣∣∣∣
Θ[e](τ(x))

Θ(τ(x))

∣∣∣∣, (5.118)

which enter in the single terms of the sum over the spin structures in Tr ρnA. The prefactors
Jn di�er in the Ising and in the modular invariant Dirac model for the central charge in
∆n and for the explicit value of the cn. In the plots, we show the lattice analog of these
quantities. In analogy to what was done in Eq. 5.48, for the terms in Tr ρnA we plot

J latn = Tr ρn1 , Ωlat
n [q]2 =

1

Tr ρn1
Tr

[ n∏

k=1

ρqk

]
, (5.119)

for the XX model, and

J latn = Tr ρn1 , Ωlat
n [q] =

1

Tr ρn1
Tr

[ n∏

k=1

ρqk

]
, (5.120)

for the Ising model. Analogous quantities can be de�ned for the terms appearing in the
formula of Tr

(
ρT2

A

)n
. The numerical results for the XX model are showed in Figs. 5.5 and

5.6 for n = 2 and n = 3 respectively; while in Figs. 5.7 and 5.8 the same quantities are
plotted for the Ising model for n = 2 and n = 3 respectively. The points computed on
the lattice clearly tend to the CFT formulas as the subsystem size increases.

A �nite size scaling analysis has been performed in order to extrapolate the continuum
behaviour. For the moments of the reduced density matrix of the XX chain, the scaling
function is very similar to the one of the free fermion (5.50),

Ωlat
n [q̃]2 = Ω2

n[e] +
ω

(1)
n (x)

`2/n
+
ω

(2)
n (x)

`4/n
+
ω

(3)
n (x)

`6/n
+ . . . , (5.121)

where q and e are related as explained in Sec. 5.4. A similar expression can be de�ned
for J latn /Jn (as was done in Sec. 5.3.3 we plot this ratio in order to eliminate the residual
dependence on ` in the continuum) and for the analogous terms in the formula of the
moments of the partial transpose. Once this scaling is taken into account, the extrapolated
points for in�nite size of the subsystem (red crosses) match with the CFT curve very nicely.

As for the Ising model, also the Majorana fermion operator with conformal weight
h = 1/2 must be take into account [222]. This leads us to modify the scaling function as
follows

Ωlat
n [q̃] = Ωn[e] +

ω
(1)
n (x)

`1/n
+
ω

(2)
n (x)

`2/n
+
ω

(3)
n (x)

`3/n
+ . . . , (5.122)

and analogously for J latn /Jn and the terms in the moments of the partial transpose. From
the analysis of the terms (5.120) for the Ising model, we �nd a very peculiar and un-
expected feature. It turns out that in the sum (5.57) the only terms which follow this
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scaling are those whose continuum limit corresponds to odd characteristics, and therefore
vanishes. Instead, all the terms whose continuum limit corresponds to even characteristics
follow a milder scaling with the same exponents occurring for the free fermion and the XX
model (see (5.50) and (5.121)). This feature is present for both the terms in Tr ρnA and
Tr
(
ρT2

A

)n
. Indeed, by simple inspection of Figs. 5.7 and 5.8, it is possible to notice that

the �nite size e�ects for the terms corresponding to odd characteristics are much more
severe than those of the terms corresponding to even characteristic. In practice, it means
that if we simply ignore the terms which are going to vanish in the continuum limit, we
can extract the CFT result with much more precision. Indeed, with respect to the whole
sums (5.57) and (5.59), the sum with only the terms corresponding to even characteristics
according to (5.65) and (5.68), will present milder �nite size e�ects.
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Figure 5.5: The terms occurring in Tr ρ2A (left panels) and Tr
(
ρT2
A

)2
(right panels) for the XX

model, according to the correspondence (5.64). For each group of identical terms, only one
representative has been plotted. The extrapolated points (red crosses) are obtained through a
�t of the data according to the scaling function (5.121) and they agree very well with the CFT
predictions (solid lines).
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Figure 5.6: The terms in Tr ρ3A (left) and Tr
(
ρT2
A

)3
(right) for the XX model (see Fig. 5.5).
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Figure 5.7: The terms occurring in Tr ρ2A (left panels) and Tr
(
ρT2
A

)2
(right panels) for the Ising

model, according to the correspondence (5.65). For each group of identical terms, only one
representative has been plotted. The extrapolated points (red crosses) are obtained through a
�t of the data according to the appropriate scaling function. The expression (5.122) is used for
the terms corresponding to odd characteristic, while we take the milder exponents of the scaling
function (5.121) for the terms corresponding to even characteristic. They agree very well with
the CFT predictions (solid lines).
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Figure 5.8: The terms in Tr ρ3A (left) and Tr
(
ρT2
A

)3
(right) for the Ising model (see Fig. 5.7).
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Conclusions

Entanglement negativity has drawn a lot of attention in the last years as a very useful
tool to quantify entanglement between separated regions or in general mixed states of
quantum many-body systems. The entanglement entropy computed for disjoint regions,
as is done in Chap. 2, only measures the amount of entanglement between the union
of the intervals with the rest of the system. If one needs the entanglement shared by
the disjoint regions, which are in general left in a mixed state after the rest is traced
out, the entanglement entropy is no longer useful, and other measures must be used.
The simplicity of the de�nition of the negativity makes it a `computable measure of
entanglement' [119], and we saw that it can be computed in QFT, at least in principle,
using the replica trick [134, 135]. Exact analytical computations in QFT are available
only in few simple cases, especially for one-dimensional free massless �elds in CFT. The
computational di�culty of the moments of the partial transpose is comparable with the
one of the Rényi entropies for subsystems made of disjoint regions, and it is expressed in
terms of Riemann theta functions. The negativity can also be studied in many situations
numerically.

As for the entanglement entropy, an easy case from the computational viewpoint is
given by the bosonic Gaussian states, whose prototypical example is the ground states
of the harmonic chain. This is due to the fact that the spectrum of the reduced density
matrix and of its partial transpose can be obtained by correlation matrix techniques [147�
151]. This is valid also in more general situations than the ground state, as for example
in thermal states or in out-of-equilibrium con�gurations. In Chap. 3, we used these tech-
niques in the case of a global quench to study the evolution of the logarithmic negativity
among two intervals in the harmonic chain, and we compared the results with the CFT
predictions, computed from multi-point function of twist �elds on the strip. In partic-
ular, we discuss the quasi-particle interpretation for the spreading of entanglement and
correlations. However, there are still many open problems in the context of evolution of
entanglement. The range of validity of the quasi-particle picture is surely something that
should be addressed in order to settle the questions raised in Ref. [319]. Moreover, some
analytical results on the evolution of the entanglement entropy and negativity in the har-
monic chain would be extremely important. Unfortunately, at the moment no results are
available for the entanglement entropy of bosonic models, not even in the ground state.

We saw in Chap. 4 that the situation is more complicated for fermionic Gaussian
states [331], such as the ground state of the tight-binding model. Here the spectrum of
the partial transpose is not directly computable, still one can obtain its moments from
the correlation matrices relative to some auxiliary Gaussian reduced density matrices. It
is however still an open problem to �nd the full negativity for two disjoint blocks of sites.
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We also discussed how the same problem arises for disjoint blocks of a spin chain: the
moments of the partial transpose can be computed, but the negativity is out of reach.
The situation is reminiscent of the one of the Rényi entropies for disjoint regions in a spin
chain [222], which is also reviewed in Chap. 4.

From the structure of the the partial transpose on the fermionic lattice it is possible to
compute its path integral representation. This allows for the computation of the moments
of the partial transpose in the continuum theory of a free massless Dirac fermion, which
has been done in Chap. 5. Thanks to the similarity with the case of the entanglement of
disjoint intervals in spin chains, the same approach was also able to reproduce the already
known formulas for the Rényi entropies of the modular invariant Dirac fermion and the
critical Ising model.

Many of the available CFT formulas for the moments of the partial transpose, as well
as for the Rényi entropies for disjoint intervals, are expressed in terms of Riemann theta
functions, which in turn are function of a period matrix of size (n − 1) × (n − 1) (for
two intervals). This makes the analytic continuation to n → 1 technically very di�cult,
even for very simple CFT. In Chap. 2 we discussed a numerical method based on the
interpolation of the known values for integer n > 1 with a rational function, which was
�rst used in this context in Ref. [152]. The resulting approximate analytic continuation is
found by extrapolating to n = 1. In Sec. 2.6 we showed some of the results obtained for
the mutual information, where we found that even if the Rényi entropies are available for
few values of n, the analytic continuation can be obtained with high accuracy. Moreover,
in App. 2.E we discussed some technical details and some drawbacks of the method. In
Ref. [236] a similar analysis is performed also for the entanglement negativity, and it is
found that in general many more values of the moments are needed in order to obtain
sensible results. Moreover, the replica space for the negativity is more complicated, since
there are di�erent analytic continuations for even and odd integer values of n. To obtain
the negativity one should continue the even series to n → 1, and this means that high
values of n are needed to get an accurate numerical extrapolation. In certain cases the
computational cost of the moments of the partial transpose grows exponentially with n,
and this is a serious obstacle to obtaining their values for arbitrarily high order, and
therefore a precise approximation of the negativity. The analytic continuation is still an
open problem, and a deeper understanding would be highly desirable.

An important open problem is the study of negativity in higher dimensions, where few
results are available [141, 142]. In particular not much has been investigated in higher
dimensional QFT [340], unlike for the entanglement entropy, the Rényi entropies and the
mutual information where some important results have been found [51�54]. Finally, let us
mention that a holographic description of negativity is still lacking, even if some steps have
been made in that direction [232, 233]. A deeper analysis of this issue would open new
interesting perspectives on the connections between entanglement and the holographic
principle.
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