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Abstract

Helicases are motor proteins that unwind double stranded nucleic acids and

are important parts of the genetic apparatus. A notable member of this family

of enzymes is the nun-structural protein NS3 from Hepatitis C Virus. NS3

helicase unwinds nucleic acids by translocating along a single strand. Single

molecule experiments and X-ray crystallography suggest that NS3 follows an

inchworm-like motion during the translocation mechanism, consuming one ATP

molecule per cycle. In spite of the available experimental data, the mechanistic

and chemical details of the translocation process are still unclear.

The aim of this study is to model at atomistic detail the NS3h-RNA complex

at the different stages of the translocation. For this purpose, atomistic molecular

dynamics simulations were performed in explicit solvent in the presence and

in the absence of ATP and ADP. Simulations were initialized based on existing

crystallographic structures. All the stages of translocation were considered, and

their relative stabilities were analyzed by computing electrostatic interactions,

relative enthalpies, and hydrogen-bond patterns. Additionally, well-tempered

metadynamics and Hamiltonian replica exchange simulations were performed

to characterize the free-energy landscape associated to translocation and to

describe the conformational transitions.
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L CHAPTER 1
Introduction

S
ince the discovery of Hepatitis C virus (HCV) in the late-1980’s, many

efforts have been done towards the prevention and treatment of a silent

disease that at long-term infection becomes the main cause of functional

and structural damages in the liver. Hepatitis C is transmitted to roughly 2 million

people every year and ends as a chronic infection for nearly 80% of patients [1, 2].

The long-term infection is the reason of serious health problems such as liver

cirrhosis and hepatocellular carcinoma. Up to now there is no vaccine that can

prevent the transmission, and for this reason the study of several pathways related

with the virus replication has been an issue of great interest for the development of

an effective therapy. The studies have revealed information about the genome, the

virus structure, and have also provided some insights about the encoded proteins

which play a crucial role for the virus spreading in the host organism.

1.1 HCV genome

Hepatitis C is originated by a blood-borne virus that belongs to the flaviviridae

family having as principal target the hepatocites, i.e. liver cells. Until now, nearly 60

species of flaviviridae viruses have been discovered, which are classified in 4 genera:

Flavivirus, Pegivirus, Pestivirus and Hepacivirus [3]. Flavivirus genus comprises

Yellow fever, Dengue fever and Tick-borne encephalitis viruses to name a few.

Pestiviruses and Pegiviruses comprise Bovine viral diarrhea, Classical swine fever,

1



1. Introduction

Figure 1.1: Cartoon representing a flaviviridae virus. The external structure formed
by the lipid bilayer (light gray) and the envelope proteins (brown) contains the
icosahedral capsid (purple). Inside the capsid there is the viral RNA genome (green).
Picture adapted from Toronto Centre for Liver Disease [7].

GB viruses and so forth. Furthermore, Hepacivirus genus includes Tamarin virus

and HCV, the latter being the most well-known member with roughly 6 genotypes

identified and various subtypes. All viruses from the flaviviridae family have

structural and biochemical common aspects [4]. Their external structure is a lipid

bilayer that binds their envelope proteins. This structure protects the icosahedral

capsid that encapsulates the positive single stranded RNA (Figure 1.1). The RNA

genome in its Open Reading Frame (ORF), which is the sequence that translates for

peptides, encodes for a long polyprotein that contains structural and non-structural

proteins, fundamental for assembling and replication of the virus. In addition,

sequence analysis between RNA protease-helicases and RNA polymerases from

different flaviviridae viruses revealed a motif conservation in similar regions of the

proteins [5, 6], suggesting common features in the mechanism of action performed

by the same type of flaviviridae proteins.

In more quantitative terms, HCV is a small virus with a size of approximately 55

nm. Its entire genome has around ∼9600 nucleotides (3011 codons), including the

flanking 5’ and 3’ Untranslated Regions (UTR) and the long ORF which is processed

co- and post-translationally by cellular and viral proteases to generate the specific

viral species [6]. The non-translated regions also called 5’UTR and 3’UTR, are

2



1.1. HCV genome

Figure 1.2: HCV genome and its encoded peptides. (a) Structure of HCV genome,
showing the long open reading frame and the non-translated regions. The initiation
sequence (AUG) that indicates the starting signal for the RNA translation is located
in the 5’ untranslated region. (b) Cartoon representing the encoded HCV proteins
and its presence in the cellular environment. Adapted from Bartenschlager et al [8]
2013.

constituted by important sequences that act as signals, essential for the regulation

of RNA replication. Moreover, the 5’UTR protects an internal ribosome entry

site, IRES, that leads the viral translation through a cap-independent mechanism

[4]. The long ORF contains a sequence that encodes for a total of ten functional

peptides corresponding to four structural proteins, which are responsible for the

assembly of the external envelope and the inner icosahedral capsid, and six non-

structural proteins, which perform different enzymatic functions related with the

3



1. Introduction

virus replication (Figure 1.2.a). As a result of several works focused on the isolation

and characterization of these peptides, now it is possible to describe and understand

in a better way their biological activity in the viral infection for most of them.

1.2 Non-structural protein 3: A multifunctional enzyme

Among the encoded peptides, the non-structural protein 3 (NS3) is a molecular

motor with a very versatile role, since it is constituted by a serine protease in the

N-terminal region and the Superfamily 2 (SF2) helicase in the C-terminal region.

The serine protease domain is a trypsin/chymotrypsin-like enzyme composed by

nearly 180 amino acid residues, and has an important function for the cleavage of

the HCV polyprotein. The structure is stabilized by the tetrahedral coordination

complex between a Zn2+ cation with three cysteine residues and one water molecule,

and the presence of Zn is indispensable for its activity [9]. Under biological

conditions, the NS3 serine protease forms a non-covalent heterodimer complex with

another encoded peptide, NS4A, which acts as a cofactor to enhance the proteolytic

function. The lack of NS4A leads to the cleavage of only one site of the polyprotein

(NS5A/NS5B), so the protease activity is remarkably reduced [10]. The promising

results obtained in the design of a HIV protease inhibitor drugs have suggested

that proteases could be good targets for a structure-based drug design. In this

context, NS3 serine protease has been widely studied in order to develop a series of

inhibitors that could cause the interruption of the protease activity, the processing

of other NS proteins and the viral RNA replication [11]. Based on the previous

consideration, some of the current treatments for chronic hepatitis C, are based

in the protease inhibition where boceprevir and telaprevir are the most widespread

drugs in the market, although their use is only limited to treat hepatitis C genotype

1 infection.

In addition, the C-terminal NS3 helicase (NS3h) is a DExH/D box ATPase enzyme

[12] with a primary structure of nearly 440 amino acid residues, being approximately

60% of the total NS3 molecular weight. The principal function of the helicase is the

unwinding and/or translocation on DNA or RNA, so it is not nucleic acid specific,

and its processivity is driven in the 3’→5’ direction through a periodic stepwise

mechanism [13, 14, 15]. The unwinding process is expected to happen when the

4



1.3. An overview of the HCV RNA helicase

protein interacts with the nucleic acid in the single strand (ss)-double strand (ds)

junction, while the translocation is intended to be the movement across the single

stranded substrate [16]. The occurrence of these processes is related with several

factors, such as the distance between the enzyme and ss-ds junction, and the energy

barrier related to the opening of the ds in presence of the enzyme, e.g. if the helicase

is located far away from the ss-ds junction, it will exclusively translocate along the ss

nucleic acid (NA). Under certain conditions, helicases can couple the ss translocation

with the ds unwinding, by means of passive or active mechanisms [17, 18]. In the

active process, the helicase affects directly the dsNA stability; whereas in the passive

process, the helicase mediates indirectly the unwinding by interacting with the

ssNA. Within the active unwinding model, the helicase should have different NA

binding sites able to interact with the ds in order to destabilize the base-pairing

and with the successive ss portion. Under normal conditions the formation of the

dsNA is stable, however, the thermal fluctuations allow transiently the opening

in the ss-ds junction. Within the passive mechanism model, the helicase is able

to translocate along the transiently formed ss and avoids the further closing to ds

[16]. The consideration of these mechanistic features across the NA is essential for

the understanding of the NS3h function as well as for other SF1 and SF2 helicases.

However, the main biological role and the details of NS3h unwinding/translocation

mechanism are still not very clear, but it is presumed to be highly involved in the

initiation of the viral RNA replication. Through a periodical mechanism, the NS3h

unwinds the base pairing interaction between nucleotides of the RNA duplex and

this process should be performed as a previous step of the replication. A potential

inhibition in the helicase process should carry out adverse consequences for the

further virus replication, and that is why the NS3h emerges as a promising target for

the design of novel antiviral therapies in alternative to the current protease-based

ones [19].

1.3 An overview of the HCV RNA helicase

The helicase region of NS3, is a motor protein that performs the unwinding/translo-

cation along the viral RNA, and leaves the genetic material available to be read by

the HCV RNA polimerase. In spite of this premise, the structural and chemical

details about its mechanism remain elusive. In this respect, several experimental

5



1. Introduction

studies such as X-ray crystallography [20, 21, 22], single-molecule experiments

[23, 24, 25, 26] and biochemical assays [27, 28, 29] have been done in order to under-

stand the helicase activity. The kinetics and stoichiometry of the unwinding has been

measured by means of Fluorescence Resonance Energy Transfer (FRET) and Optical

Tweezers. FRET assays on the NS3-DNA complex have shown that every cycle

performed along RNA has a stepwise of 3 base pairs (bp) with 3 hidden substeps.

For every substep, the helicase unwinds 1 bp per 1 ATP molecule that is hydrolyzed

following an inchworm-like mechanism [23]. Studies using double trap optical

tweezers on the NS3-RNA complex have also revealed the unwinding step size.

From these assays has been measured a resulting average step of 12 bp constitued

by 4 substeps of size 3, leading to the same relationship of 1 ATP molecule per 1 bp

unwound [30, 24]. Previous spectroscopic studies such as Dynamic Light Scattering

assays on NS3(and NS3/NS4A)-DNA have shown the formation of dimeric and

oligomeric complexes during the unwinding process [31]. However, NS3h can also

act as a monomer, and this is a common feature for all the SF1 and SF2 helicases

[32, 33]. Fluorescence Anisotropy experiments on NS3h-DNA, have shown that

the helicase acts as an independent unit when the concentration of NA exceeds the

NS3h, but when the concentration of the helicase exceeds the NA, multiple peptides

tend to interact along the same NA substrate improving in this way the helicase

activity. This behavior is known as a cooperative effect [34, 35]. The presence of

NS3 serine protease domain in complex with the cofactor NS4A has also a role

for the translocation kinetics, since it enhance the binding of the NS3h with the

NA substrate through the interaction between the serine protease domain with the

displaced ssNA [9]. However, the removal of the serine protease does not imply an

inhibition of the helicase activity [21].

From X-ray crystallography, some intermediate snapshots related to the translo-

cation mechanism have been reported in the literature. The structures of NS3 and

NS3h have been isolated in complex with ssDNA and ssRNA, in the presence or the

absence of the ATP mimic, ADP·BeF−3 [20, 21, 22]. The helicase is constituted by three

catalytic domains, where domain 1 (D1) and domain 2 (D2) are RecA-like units, and

the α helical domain 3 (D3) is an accessory unit important to guide the translocation

directionality. NS3h has a sequence of 436 residues where D1 comprises the residues

from 189 to 324, D2 from 325 to 483 and D3 from 484 to 624. From the crystal

snapshots two different conformers named as open and closed structures have been
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1.3. An overview of the HCV RNA helicase

Figure 1.3: Cartoon representation of NS3h (ribbon) in complex with ssRNA and
ATP·Mg2+ (sticks). (a) Complex NS3h-ssRNA in the open form. All the protein
motifs are colored in the ribbon representation and motif Y is also depicted in
the ball-and-stick representation. Adapted from PDB: 3O8C. (b) NS3h-ssRNA-
ATP·Mg2+ ternary complex in its closed conformation showing the three catalytic
domains: D1 (cyan), D2 (purple) and D3 (green). Adapted from PDB: 3O8R.

identified. The open conformation corresponds to the protein with a larger distance

between D1 and D2 and has been crystallized for the NS3(h)-ssNA form, while the

isolated closed conformation has been observed for the NS3(h)-ssNA in complex

with the ATP mimic (Figure 1.3). Under biological conditions, when the enzyme

binds the ATP, the phosphates of the nucleoside are coordinated to a magnesium ion.

The NS3h as many other SF2 helicases contains different conserved motifs which are

located in the RecA-like domains and are involved in the ATP and NA binding and

the ATP hydrolysis. For the NS3h 9 conserved motifs have been identified (Figure

1.3.a), that corresponds to: Motif I (residues 204 to 211), motif Ia (residues 230 to

235), motif Ib (residues 268 to 272), motif II (residues 290 to 293), motif III (residues

322 to 324), motif IV (residues 365 to 372), motif V (residues 411 to 419), motif VI

(residues 460 to 467) and motif Y (tyrosine 241 residue). In particular, the motif I

also known as the Walker A is a phosphate binding sequence corresponding to the

pattern GXXXXGK(T/S), where X means any amino acid residue. The main role

of the Walker A is the ATP binding through the interaction with β phosphate (Pi)
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1. Introduction

and the nucleoside atoms [36, 37]. Another important sequence is the motif II, also

known as DExH/D box, that is involved in the ATP hydrolysis according to some

mutational studies performed on different SF2 helicases [12]. Additionally, the motif

VI also known as arginine f inger, is an arginine-rich sequence that is presumed to

stabilize the ATP binding and the subsequent hydrolysis reaction.

Studies by means of single molecule experiments allows to estimate the kinetics

and the processivity of the enzyme in the translocation mechanism, however, they

do not provide details at structural level. Furthermore, in many experimental

assays the forces applied during mechanical manipulation are much larger than

the actual forces felt by the molecules in vivo [38, 39]. Additionally, from X-ray

crystallography detailed static snapshots at atomistic resolution for the different

forms of the NS3 complexes can be isolated, but they do not provide dynamical

details of the mechanism.

The study of the HCV NS3h translocation/unwinding along the ss/dsNA, has

been a challenging task from the experimental and theoretical point of view, however

a detailed understanding of the NS3h mechanism could also provide some insights

for the SF2 helicases. For this reason, the application of computational techniques

becomes an attractive alternative in order to describe the molecular details in the

mechanism of action of this motor protein. In this context, coarse-grained methods

such as the elastic network models [40] have provided meaningful insights in the

mechanical motion of the protein residues. Previous works done on the NS3h

have described the bidirectional transition between open and closed conformations

and modeled the helicase translocation through a ratcheting mechanism along the

DNA [41, 42]. Although this method is a good alternative to model the mechanical

motion of the peptide at low computational cost and simplicity, it does not describe

the chemical details for the ATP and ADP binding with the protein, as well as the

interactions with the solvent. Therefore Molecular Dynamics (MD) simulations [43]

with accurate force fields become an additional option that can provide dynamical

and chemical information to the available crystal structures. From previous studies

performing targeted MD simulations on NS3h, the domain motions related to the

conformational change from open to closed and backwards have been observed.

Subsequent analysis with the elastic network model have displayed the same

motion pattern obtained by targeted simulations when the first 10 modes are
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1.4. Outline

considered [42]. Nevertheless, it is important to keep on mind that in targeted MD

the pulling setup will determine how realistic is the final structure since it implies an

entropic reduction step-by-step which is linked to the number of degrees of freedom

that experience the restraint. In several cases a fast pulling protocol can lead to

trajectories out of equilibrium, and the final generated structures in general could be

thermodynamically unstable. Therefore, the implementation of other MD methods

is important to tackle with more details all the steps involved in the mechanism of

this interesting enzyme.

Additionally, to perform standard MD simulations is important to model the

system with accurate descriptors for the inter and intramolecular interactions. In

this context, atomic force fields have been an issue of constant development where

AMBER is one of the most well-known parametrization for biomolecules. In the last

decades, MD simulations have been specially addressed to model protein systems

where several improvements have been done leading to a more realistic description

of their interactions. Simultaneously, with less frequency some studies about nucleic

acids have been reported in the literature, where simulations of DNA are surprisingly

more common compared to the ones of RNA. The reason of this difference is due to

several factors such as the poorer database collection for RNA structures compared

with DNA and proteins, as well as the less accurate parametrization of the actual

force fields for this kind of molecules. In virtue of the above, MD simulations

of protein-RNA complexes is a non trivial task, for this reason only a few works

about these systems have been reported in the literature (e.g. [44, 45]). However,

recent force field improvements addressed to describe correctly the canonical and

non-canonical RNA interactions, have reflected promising results compared with

the experimental data, making possible a more accurate modeling of protein-RNA

complexes.

1.4 Outline

In Chapter 2, the computational techniques implemented in this PhD thesis are

presented, that comprise plain MD simulations, targeted MD, Well-tempered meta-

dynamics and Hamiltonian replica exchange.
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In Chapter 3, the results obtained from standard MD simulations on six NS3-ssRNA

complexes are presented: In absence (named apo form) and presence of ADP/ATP;

starting from the open and closed conformation. The structures were based on the

available crystal snapshots. For all the simulations a recent version of the AMBER

force field was selected and microsecond time scale MD were performed with the

aim of providing statistically meaningful results. The results were complemented

with targeted simulations to assess qualitatively the relative stability of the apo,

ADP, and ATP structures.

In Chapter 4, the results from enhanced sampling simulations are presented in order

to obtain a more quantitative estimation of the relative free-energy values between

the two NS3h conformations. In the initial part of the Chapter, the modeling of

NS3h conformers in complex with a ssRNA chain of 6 nucleotides in the apo, ADP

and ATP form is reported. Additionally, in the second part some preliminary results

obtained from the modeling of NS3h in complex with a ssRNA of 10 nucleotides in

the ATP form are described.

In Chapter 5 are the final conclusions and perspectives of this PhD thesis.
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L CHAPTER 2
Computational Methods

I
n the last decades, computer simulations have represented an important

scientific method for the understanding of physical systems. Their

valuable role is based on the complementary relationship with experi-

ments and theory. Simulations are built on models that allow the determination

of physical and chemical properties, and lead to the development of theoretical

and computational methods. The great advantage of performing simulations is

the possibility to tackle different levels of complexity, going from the quantum

world, to the mesoscopic scale. The constant improvements of these models have

allowed a more realistic representation of nature and have provide several details

that are not directly accessible through experimental assays. Among the different

computational methods, MD simulations have been widely implemented in the

study of biomolecules. Thanks to the advances in computer technology, nowadays

it is possible to perform atomistic MD simulations at the microsecond timescale

[44, 45] or in exceptional cases up to milliseconds when specialized supercomputers

such as Anton machine are employed [46, 47]. However, many important processes

happen at hundreds of milliseconds or even longer. With these technical limitations,

standard MD simulations are mostly able to provide details around the equilibrium

state. Processes such as conformational transitions, folding protein and ligand

binding, requires generally many computational resources to undergo the transition

to another local minima. In this context, several enhanced sampling techniques,

such as TMD, metadynamics and replica exchange methods have been developed

to accelerate the processes. These techniques coupled with MD simulations allow a
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2. ComputationalMethods

faster transition by adding an harmonical restraint, a bias potential or exploring

conformations at different temperatures (or scaled hamiltonians) and help the

system to escape from a local trapping free-energy minimum.

This chapter will be dedicated to introduce some basic concepts and the method-

ology of the computational techniques implemented to carry out the simulations on

the NS3h-ssRNA complexes.

2.1 Molecular Dynamics

MD simulations emerged for the first time as a computational technique thanks

to the works of Alder and Wainwright in the mid-1950’s, where the liquid-solid

phase transition for hard spheres and the velocity autocorrelations function decay

in liquids were described [48, 49]. Then, in 1964, Rahman independently published

the results obtained by atomistic simulations on liquid argon using a Lennard-Jones

potential [50]. These works constituted the basis of the MD simulations, so in the

late-1970’s, the first protein trajectory was obtained for the bovine pancreatic trypsin

inhibitor by McCammon et al [51]. Nowadays, due to the great advances in computer

performance and algorithmic improvements, the literature has been significantly

enriched by many MD simulations studies reported for solvated proteins, protein-

NA complexes, lipid systems and so on, addressing different thermodynamical

and structural issues and becoming a valuable tool in many areas of physics and

chemistry. In general, MD simulations are based on three considerations:

1. Born-Oppenheimer approximation [52], which is based on the difference in

mass between nuclei and electrons, so that electronic and nuclear motions can

be separated.

2. Adiabatic theorem, introduced by Born and Fock in 1928 [53], stating that

electrons will remains in its instantaneous eigenstate if a nuclear perturbation

is acting slowly enough and if there is a gap between the eigenvalue and the

rest of the Hamiltonian’s spectrum.

3. Since the dynamics of the nuclei can be considered without taking explicitly

into account the electrons, and the nuclei are heavy enough to be taken
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2.1. Molecular Dynamics

as classical particles, this means that their movements can be described by

Newton’s equations.

This separation of the electronic and nuclear parts also indicates that, instead

of solving the Schrödinger’s equation (infeasible for biomolecules), an alternative

strategy can be applied, in which the effect of the electrons on the nuclei is expressed

by an empirical potential. In this regard, atomic force fields with the optimal

empirical parameters can represent an optimal description of potential as well as

the physics and chemistry of the systems of interest.

As a consequence of the previous considerations, MD is a computational

approach based on the classical equations of motion, i.e Newton’s second law, which

are solved numerically, providing a time evolution of the positions, velocities and

accelerations of the particles. Newton’s equation is given by fi = mi · ai, where

fi corresponds to the force applied on the particle i, mi to its mass and ai to its

acceleration. The force can also be expressed as the negative of the gradient of the

potential energy, fi = −∇iV. So the combination of both expressions leads to:

−
dV
dri

= mi
dri

dt
(2.1)

Therefore, the equations of motions can be related with the derivative of the

potential energy V to the changes in position as a function of time. The potential

energy is a function that depends of all atomic position. Due to the complicated

nature of this function, there is no analytical solution to the equations of motion,

so the integration in every step must be solved numerically. MD is a determinist

method. This means that once the positions and velocities of all particles are

known, the state of the system can be predicted at any time in the future or the past.

Numerical integrators of the equations of motion, are built with the aim to find an

expression that defines positions at the time t + ∆t in terms of the already known

positions at time t. In this context, the Verlet algorithm [54] is one of most commonly

used in MD simulations, due to its simplicity and stability. This algorithm is based

on a Taylor expansion for the positions r around time t, as:

r(t + ∆t) = 2r(t) − r(t − ∆t) +
f(t)
m

∆t2 + O(∆t4) (2.2)
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From this expression, the truncation error of the algorithm when the system

is evolved by ∆t is of the order of ∆t4, even if third derivatives do not appear

explicitly. However, one the problems with this algorithm, is that velocities are not

directly generated. Although they are not necessary for the time evolution, their

knowledge is important, since they are required to compute the kinetic energy K,

whose estimation is used to test the conservation of the total energy E = K+V, which

is one of ways to verify that a MD simulation is evolving correctly. So, through the

Verlet integration, velocities are calculated from the positions as:

v(t) =
r(t + ∆t) − r(t − ∆t)

2∆t
+ O(∆t2) (2.3)

From this velocity expression, it can be appreciated that the error associated

is of order ∆t2 rather than ∆t4. Additionally, from this equation some numerical

errors during the simulation could be induced, hence some variants of the Verlet

algorithm have been developed. They give rise to the same trajectory, and differ in

which variables are stored in memory and at what times. One of these algorithms is

the leap-frog integrator [55], where velocities are evaluated at half-integer time step

(∆t/2) and the new positions are updated from these velocities in the following way:

v
(
t +

∆t
2

)
= v

(
t −

∆t
2

)
+

f(t)
m

∆t (2.4)

r(t + ∆t) = r(t) + v
(
t +

∆t
2

)
∆t (2.5)

Leap-frog integrator is the algorithm employed for all MD simulations performed

in this PhD thesis.

2.1.1 Force Field

An atomic Force Field (FF) is defined by a functional form that describes the

potential energy of a system of interacting particles, from which the force acting

on a single atom is calculated every time step of the MD simulation. The typical

FF implemented in the modeling of biomolecules, takes the following functional

form [56]:
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V =

nl∑
i

ki,l

2
(ni − li,eq)2 +

nθ∑
i

ki,θ

2
(θ − θi,eq)2

+

nφ∑
i

ki,φ

2
[1 + cos(nφi + φi,eq)] +

nξ∑
i

ki,ξ

2
(ξ − ξi,eq)2

+

vdW∑
i

∑
i< j

4εi j

(σi j

ri j

)12

−

(
σi j

ri j

)6 +

coul.∑
i

∑
i< j

qiq j

4πε0ri j

(2.6)

In the first four terms the summation indices run for all bonds, angles, dihedrals

and improper torsions defined by the covalent structure of the system, also known

as the bonded interactions. The last two terms summation indices run over all the

pairs of atoms, separated by a distance ri j = |ri− r j| corresponding to the non bonded

interactions. More precisely, the first two terms describe the energies associated to

the deformations of the bond lengths li and bond angles θi from their respective

equilibrium values li,eq and θi,eq. The harmonic form of these terms (with force

constants ki,l and ki,θ) represent the correct chemical structure, but prevents modeling

chemical changes such as bond breaking. The third and fourth terms describe the

rotations around the chemical bond, which are characterized by periodic energy

terms (being n the periodicity, φi,eq the angle where the potential passes through its

minimum value, and ki,φ the heights of the rotational barriers) in the case of proper

dihedrals, or by a harmonic potential (with a force constant ki,ξ) in the improper

ones. Whereas the fifth and sixth terms describe the van der Waals repulsive and

attractive (dispersion) interatomic forces in the form of the Lennard-Jones 12-6

potential, and the Coulomb electrostatic interactions.

The problem of defining a realistic potential that would adequately mimic the

true energy surfaces is not a trivial task, so this brings to a series of computational

simplifications. The classical MD is based on empirical potentials with a specific func-

tional form, that represents the physics and chemistry. A feasible parametrization

has to demonstrate that calculations can produce reasonable molecular structures

and interaction energies. The FF parametrization is selected in order to describe a

good fit with experimental and quantum mechanics data. It is important to take

into account, that atomic FF are empirical forms and there is no absolute correct

representation to its functional expression as well as for the parameter set. The force
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field only provides an estimation of the true underlying interaction energy, which

controls all molecular behavior. For this reason, the accuracies of MD simulations

depend directly on the quality of the chosen force field. Although the significant

efforts done on FF improvements, the parametrizations used nowadays still exhibits

some inaccuracies, becoming an issue of constant development.

2.2 Targeted Molecular Dynamics

Targeted Molecular Dynamics (TMD) is a computational method that induce a

conformational transition, starting from an initial structure to a final one known

a priori [57]. The simulations are carried out at ordinary temperature by applying a

time-dependent geometrical constraint, where the transition is enforced indepen-

dently of the height of energy barriers. Since the late-1990’s, several works based on

TMD calculations have been done to study the protein unfolding, the conformational

changes of an enzyme, or to expel ligands from binding sites [58, 59, 60, 61]. In

TMD simulations, the Root-mean-square deviation (RMSD) [62] is constrained to a

target structure, and is continuously decreased during the simulation. The system

is slowly forced to follow a path from its initial conformation to the final one. The

conformation of a protein can be described as a vector X in the 3N dimensional

space, being N is the number of atoms in the protein. The length of the difference

vector between two conformations is proportional to their RMSD. TMD simulations

are performed with an additional time-dependent holonomic constraint, which acts

on the length of the difference vector between the actual conformation and a target

structure:

φ(X) = |X − Xf|
2
− ρ(t)2 = 0 (2.7)

where Xf is the vector corresponding to the target structure. ρ(t) starts at a value

equal to the distance between the initial and the final state and is slowly reduced to

zero during the simulation. The space of conformations satisfying this constraint

corresponds to a hypersphere of radius ρ(t) around the final conformation. A

simpler implementation can be obtained using a restraining potential with the

following functional form:
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Vrestr(X) =
1
2

NK
(
RMSDf − ρ(t)

)2 (2.8)

RMSDf =
|X − Xf|
√

N
(2.9)

where K is the force constant of the harmonic potential, N is the number of con-

strained atoms and RMSDf is the Root-mean squared value between a configuration

at time point t and the target configuration, and ρ(t) is the reference RMSD value at

time t. When ρ(t) is monotonically decreased, the moving structure is gradually

driven toward the target structure. A quasi-static equilibrium transformation occurs

in the limit when the force constant goes to 0 and the time goes to infinity. So in

practice, smaller force constants and longer simulation trajectories will represent

more accurate final structures, but at higher computational cost.

With TMD, the cartesian distance between two conformers is assumed to be

a good control parameter of the progress along the reaction path. However, this

assumption must be taken carefully, since in different molecular transitions is not

valid. When a number of different pathways are possible to yield a transition, the

choice of the control parameter will affect the results significantly. Indeed, it is

important to take into account that RMSD is not symmetric with respect to the

initial and final structures since the hypersphere on which the system is restrained

is centered on the final (target) conformation. This indicates that different parts of

the conformational space are sampled in the forward and backward simulations.

Moreover, since the initial value corresponds to the RMSD between the initial and

the target conformation and is monotonically decreased, pathways that lead over

structures with a larger RMSD to the target conformation cannot be sampled. So,

although many TMD simulations are commonly performed in the forward and

backward direction, the stability of the solutions with respect to small perturbations

of the initial conditions is still a matter of discussion.

2.3 Metadynamics

Metadynamics is a computational method used to estimate the free-energy landscape

of a molecular system [63]. This method was initially proposed as a coarse dynamics
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in the collective variable space [64], but in the implementation of further works, the

dynamics were subsequently accelerated by adding a penalty to already visited

states, inspired in the taboo search method [65]. In metadynamics, a set of collective

variables, s(x), are chosen which are assumed to provide a coarse-grained description

of the system and are function of the cartesian coordinates x. During the simulation,

dynamics is driven by the free energy F(s) which is biased by a history-dependent

potential constructed as a sum of Gaussians centered on the explored points in the

collective variable (CV) space. The bias potential at time t is expressed as:

VG(s, t) = wG

t/τG∑
i=1

exp

− nCV∑
α=1

[sα − sα(iτG)]2

2σ2
α

 (2.10)

where wG and σα are the height and the width of the Gaussian distributions,

and 1/τG is the frequency at which the Gaussian distributions are deposited. The α

index runs for all CV considered in the simulation. This means that the gaussian

width must be set for every CV. These three parameters determine the accuracy

and efficiency of the free energy reconstruction. If the Gaussians are large, the

free energy surface will be explored at a fast pace, but the reconstructed profile

will be affected by large errors. On the other hand, if the Gaussian are small, the

reconstruction will be accurate, but at high computational cost.

Metadynamics disfavors the exploration of the already visited states in the CV

space, and is able to provide an estimate of the free-energy surface. While more

and more Gaussians are added to the bias, the system will explore different regions

of the CV space. Moreover, Gaussians are mostly deposited at points where the

effective total free energy F(s) + V(s) is lower (in a metastable state well), and they

will tend to flatten the F(s) + V(s) function. For long simulation times, bias will start

growing parallel to itself and will converge to VG(s, t)→ −F(s)+C(t), where C(t) is an

arbitrary constant [66]. Qualitatively, if the CV’s are uncorrelated, the time required

to reconstruct a free energy surface at a fixed accuracy scales exponentially with

the number of CV’s used during the simulation. This means, that the performance

of the algorithm will rapidly deteriorates as the dimensionality of the CV space

increases. Additionally, it is of crucial importance to bias explicitly all the slow

variables. If an important degree of freedom is forgotten, the free energy estimation

will be affected by large errors.
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2.3.1 Well-tempered metadynamics

In the last years, metadynamics has become a good alternative to tackle complex

molecular transitions that happen at long time scale (also named as rare events), and

has gain more popularity among the enhanced sampling techniques, however, from

the practical point of view, this method faces two problems:

1. Usually it is difficult to decide when to terminate a metadynamics run. When

a simulation is performed, the free energy does not converge to a value but

fluctuates around the correct one.

2. Metadynamics try to explore the whole CV space, so extending the simula-

tion time could push the system towards thermodynamically non relevant

configurations.

In this context, an alternative metadynamics scheme, named Well-tempered

metadynamics (WTmetaD), has been introduced in reference [67]. This formulation

is aimed to obtain an estimate of the free-energy that converges in the long time limit,

and simultaneously, offer the possibility of controlling the regions of free-energy

surface that are physically meaningful to explore. These improvements are based on

the rescaling of the height of the Gaussian which is decreased with the simulation

time according to the following expression:

ẇG = w0 exp
(
−

VG(s, t)
kB ∆T

)
(2.11)

where w0 is the initial Gaussian height, ∆T an input parameter with the dimension

of temperature and kB the Boltzmann constant. This equation indicates that, after

the initial filling, Gaussians of different height are deposited in different regions of

the CV space. Specially, on top of wells, where bias has been already accumulated,

the additional Gaussians will have small height, while at the border of the explored

region, where the bias is still small, the additional Gaussians have larger height.

With this rescaling of the Gaussian height, the bias potential smoothly converges in

the long time limit, but only compensates a fraction of the free energy,

VG(s, t→∞) = −
∆T

T + T∆T
F(s) + C(t) (2.12)
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In the long time limit, the CVs sample an ensemble at a temperature T + ∆T

which is higher than the system at temperature T. The parameter ∆T can be set to

regulate the extent of free-energy exploration. If ∆T=0, a standard MD is carried

out, while if ∆T → ∞ a standard metadynamics simulation is performed. This

last observation, is very important, since WTmetaD allows to limit the exploration

of the CV space only to the regions of interest. So, the choice of ∆T should be

done according to the height of the typical free-energy barrier for the problem

under consideration, in order to avoid the exploration of regions with higher energy

barriers.

2.3.2 Selecting the CV’s

When a metadynamics (or WTmetaD) simulation is performed, there are different

input parameters that must be set before, such as the set of CV’s, the width of the

deposited Gaussian potential, the energy rate at which the Gaussian potential is

grown and, for the case of WTmetaD there is also the ∆T value that determines

the rescaling factor for the Gaussian height along the simulation. However, among

these parameters, the choice of a suitable set of CV’s can become a difficult task. For

this reason some considerations should be taken into account [68]:

w A previous knowledge of the system, based on exhaustive bibliographic search

can help to understand the key factors related with the molecular transition of

interest.

w Sometimes, a good descriptor does not imply that it might be a suitable biasing

coordinate. This means, that in several cases different conformations can be

characterized by a certain parameter, but if the changes on this parameter are

a consequence of another complex rearrangement, it might be insufficient to

drive the reaction reversibly and the results from metadynamics simulations

might be quite dissapointing.

w The selected CV’s must be able to produce a force in a direction that permits

the system to travel between all relevant configurations.

w The lack of convergence of a metadynamics calculation can be due to an

incomplete choice for the set of CV’s instead of a problem with the specific

variables implemented in the enhanced sampling. This means, that can be

more useful to explore multiple sets of CV’s rather than change them.
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2.3.3 Path collective variables

The choice of various CV’s allows a better understanding of the molecular transition.

However, a larger number of CV implies a significantly longer simulation time

in order to reconstruct the free-energy surface properly. For this reason, many

efforts have been done towards the development of CV’s able to describe complex

conformational changes. In this context, the path collective variables introduced in

reference [69] provide a good alternative to sample the transition along a hypothetical

reaction tube that progresses from reactants to products. This approach focuses on

the average flux of reactive trajectories, where the flux can be described as a tube in

the configurational space. The tube center corresponds to the reaction coordinate

that comes from the average over all reactive trajectories, and its width is related to

the fluctuations around this averaged trajectory.

In the practical implementation the reactive trajectories are discretized. For

this reason, it is necessary to prepare a putative path constituted by M available

snapshots, q̃(i), that represent the transition between reactants and products. The

frames of this path are generally extracted from high temperature MD, TMD or

steered MD. So, the progress along this putative path can be defined by the variable

s(q) as:

s(q) =
1

M − 1

∑M
i=1(i − 1)e−λ||q−q̃(i)||2∑M

i=1 e−λ||q−q̃(i)||2
(2.13)

where λ is a parameter comparable to the inverse of the distance between

contiguous snapshots, and ||q − q̃(i)|| the distance between the current MD frame

and the snapshot q̃(i). This parameter gives a value that range from 0 (reactant) to

1 (product) and allows to track the conformations along this ideal path variable.

Therefore, a complementary variable is also introduced, and provides the distance

from the closest snapshot, z(q), as:

z(q) = −
1
λ

ln

 M∑
i=1

e−λ||q−q̃(i)||2
 (2.14)

The distance from the path, z(q), is a useful parameter, since its exploration

can be artificially limited avoiding to visit the regions with high distance from the

putative path.
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One of the greatest advantages of the path collective variable (s, z) approach, is

that it allows to find a thermodynamically favored path which is unrelated to the

initial and/or final guesses. Indeed, this fact has been observed in the application

with enhanced sampling simulations, where conformational transitions, enzymatic

catalysis [70], chemical reactions [71, 72], and protein folding [73] has been reported,

providing a good description of the free-energy surface on different chemical

contexts.

2.4 Hamiltonian Replica Exchange

Another alternative technique for an exhaustive sampling of the free-energy surface

is the coupling of metadynamics with replica exchange MD simulations. In general,

replica exchange methods are based on the simulation of a cold replica with unbiased

statistics, plus a series of additional gradually hotter replicas that can explore the

free-energy landscape faster. From this framework, the hottest replica is able to

overcome easily the energy barriers, while the other intermediate replicas are

simulated to take the system smoothly from the hottest ensemble to the coldest one.

One of the widely used replica exchange methods is the parallel tempering [74],

where the terms cold and hot are assigned respectively to the replicas with low and

high canonical temperature. However, in several cases the transition rates might

be caused by entropic effects, so increasing the temperature of the system does not

imply that the barrier can be overcome easily [75]. More importantly, the number of

required replicas scale with the size of the system and perturbing the temperature of

the whole system could lead to conformational changes that are difficult to recover

(e.g. protein unfolding). For this reason another replica exchange method has been

introduced, were the replicas are constructed with different Hamiltonians. This

method, also known as Hamiltonian replica exchange (HREX), allows the exchange

between replicas with the same temperature, T, but with the Hamiltonian arbitrary

rescaled. So, the resulting product ensemble corresponds to:

P(r1) × ... × P(rN) ∝ exp
(
−

1
kBT

[U1(r1) + ... + UN(rN)]
)

(2.15)

where Ui and ri are the potential energy and the coordinates of the i-th replica

and N is the total number of replicas. If U1 = U2 = ... = UN this means that the
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2.4. Hamiltonian Replica Exchange

ensemble probability only depends on the term U/(kBT), so a double temperature is

equivalent to half of the energy. One of the advantages of choosing the potential

energy instead of the temperature, is the fact that energy is an extensive property,

while the temperature is an intensive one. This implies that a region of the system

as well as some terms of the Hamiltonian can be selected for the rescaling (heated).

Technically the system is split into two regions,H (hot) andC (cold), where each atom

is statistically assigned to theH or the C region. Then, a parametrized Hamiltonian

is built as H(λ), where 0 ≤ λ ≤ 1, so if λ = 0 there is no interaction in the H region

(equivalent to infinite temperature), while if λ = 1 there is no rescaling in H. Taking

the parametrization introduced in the reference [76], the replicas are constructed by

the following criteria:

w Electrostatic interactions: If the atoms are inside the H region, the atomic

charges are scaled by
√
λ

w Van der Walls: If the atoms are inside theH region, the ε parameter from the

Lennard-Jones potential is scaled by λ

w Proper dihedrals: If the first and fourth atoms of a proper dihedral are inside

theH region, its potential is scaled by λ, while if either the first or the fourth

atom are in theH region, its dihedral potential is scaled by a factor
√
λ

From these considerations, only the FF terms that contribute to the energy barriers

are rescaled, so:

w Inside theH region the interactions are maintained at an effective temperature

equal to: T/λ

w Between the H and C regions the interactions are kept at an intermediate

temperature of T/
√
λ

w Inside the C region all interactions are maintained at a temperature T

When a metadynamics combined with HREX is performed, the free-energy

landscape is simultaneously sampled in every replica, and the CV’s space becomes

diffusive due to the metadynamics calculation. Thus HREX is able to visit regions

with lower probability and brings a better estimation of the energy barriers. More-

over, with this method it is possible to sample other degrees of freedom that are not

included by the chosen CV’s. After the coupling of both techniques, the acceptance
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for a coordinates swap is calculated in the most general manner, and allows the

exchange between replicas with different bias potential and Hamiltonian, as

α = min

1, e
−

−Ūi(r j) + Ūi(ri)
kBT

+
−Ū j(ri) + Ū j(r j)

kBT

 (2.16)

where Ūi corresponds to sum of the FF (Ui) and bias potential from the enhanced

sampling VG,i.
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L CHAPTER 3
Equilibrium properties of

NS3h-ssRNA complexes

D
uring the HCV NS3h translocation mechanism, several conformational

changes are induced to undergo every step of the cycle. In principle, each

of these steps involves an intermediate structure, whose characterization

is crucial for having a global view of the process. This can be achieved, for example,

by examining details such as the contact maps, in order to find the chronological

sequence of the events associated to the translocation mechanism along the NA

chain. In this context, the present thesis introduces a novel approach to characterize

the NS3h-ssRNA complexes based on computational simulations by means of

standard MD in the microsecond time scale. In a few words, the procedure consisted

in performing simulations starting from the crystal available structures and from

artificial putative intermediates constructed by structural alignment. Therefore,

from the MD trajectories, the equilibrium properties and the conformational space

were carefully analyzed.

3.1 Building of artificial intermediates

As discussed in Section 1.3, only a few static crystallographic snapshots of the NS3h

in complex with RNA have been isolated. These available structures correspond to

NS3h-ssRNA (apo) and NS3h-ssRNA-ATP in the open and closed conformation,
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3. Equilibrium properties of NS3h-ssRNA complexes

respectively. An important step involved in the translocation mechanism is the ATP

hydrolysis reaction, that produces phosphate and ADP molecules. This feature

suggests that the NS3h-ssRNA-ADP complex could be a possible intermediate in

every translocation cycle, although this structure has not yet been isolated for the

HCV NS3. It is therefore, reasonable to consider that during the translocation/un-

winding mechanism the helicase would exhibit three different stages in order to

complete every cycle: (1)Apo→ (2)ATP→ (3)ADP→ (1)Apo→ (· · · ). In addition,

the conformation associated to every step is not obvious, although the available

crystal structures have been purified in a specific conformer. For this reason, the

characterization of every possible scenario is useful and enlightening to describe

these stages. Therefore, it is important to consider three different molecular systems

corresponding to apo, with ADP·Mg2+ and with ATP·Mg2+, starting from two

conformations, i.e., open and closed, for a total of six NS3h-ssRNA complexes.

Since there are only two available crystal structures, named open-apo (PDB:

3O8C) and closed-ATP (PDB: 3O8C), it is necessary to build the other four miss-

ing conformations, which correspond to open-ADP, open-ATP, closed-apo and

closed-ADP. To build the closed-apo system, the ATP ligand is removed from the

crystal closed-ATP. To construct the remaining three systems, open-ADP/ATP and

closed-ADP, the protocol implemented is described in the following Subsections

(3.1.1) and (3.1.2), and is essentially based on a series of structural alignments

between different crystal snapshots.

3.1.1 Structural alignments on Dengue NS3 snapshots

Due to the lack of a crystal structure for the HCV NS3h-ssRNA-ADP complex, other

NS3 helicases encoded by flaviviridae virus were considered to observe the ADP

binding. Among the possible candidates that belong to this family of virus, Dengue

and Yellow Fever proteins has been especially analyzed. However, looking at the

protein data bank, only for the Dengue virus are available the crystal structures in the

complex NS3h-ssRNA-ATP/ADP (PDB: 2JLV and 2JLZ respectively) [77]. For this

purpose, the structural alignment of the Protein backbone between Dengue NS3 crystal

snapshots were performed using the RMSD calculator tool of VMD program [78].

The snapshots selected for the alignment correspond to: NS3-ssRNA-ATP (ATP in

ground state), NS3-ssRNA-ATP‡ (ATP in transition state) and the NS3-ssRNA-ADP.
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3.1. Building of artificial intermediates

Figure 3.1: Ligand position after the structural alignment of the protein backbone
between Dengue NS3 snapshots. Representations with solid color correspond to
PDB files 2JLX (ATP‡, depicted only up to Piβ) and 2JLZ (ADP). Representation in
transparent corresponds to PDB file 2JLV of Dengue NS3 with ATP in the ground
state.

From the structural alignment it is observed that the ligand is positioned nearly in

the same region for the three different snapshots (Figure 3.1.1). This observation is

also supported by the RMSD values of the ligands after the alignment of the protein

backbone. For the RMSD calculation the set of ligand atoms up to Piβ is considered.

This structural alignment, indicates that ATP and ADP are nearly identically located

in the 2JLV and 2JLZ PDB structures of Dengue virus. So, in order to build the

HCV closed-ADP structure, the coordinates of ATP are taken from the crystal HCV

closed-ATP omitting the Piγ.

Table 3.1: RMSD values for Dengue NS3 ligands after the structural alignment of
the protein backbone. ADP* denotes the set of ligand atoms selected for the RMSD
calculation that corresponds to the ones up to Piβ. The reference structure is the
Dengue NS3-ATP complex in the ground state.

PDB RMSDADP∗

file (Å)
2JLX (ATP‡) 0.39
2JLZ (ADP) 0.12
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3. Equilibrium properties of NS3h-ssRNA complexes

Figure 3.2: Structural alignment of Walker A residues between HCV NS3 and
Dengue NS3. Walker A residues are depicted in lines representation and the ligands
(ADP or ATP) coordinated to Mg2+/Mn2+ in sticks representation.

3.1.2 Walker A: Analysis between two flaviviridae helicases

With the aim of complementing the previous results obtained for the Dengue NS3,

an additional analysis is done on the Walker A sequence which is a well conserved

motif across SF2 NS3 helicases and it is the responsible of the ligand binding. In

this case, a structural alignment between HCV NS3 and Dengue NS3 was done to

observe the ligand binding similarities in both flaviviridae helicases. To compute

the alignments and estimate the RMSD values between the aligned structures, the

tr jconv tool from GROMACS 4.6 [79] and the RMSD calculator from VMD program

were used. From the results, is observed that ligand placement in the Walker A is

virtually identical for Dengue and Hepatitis C proteins (Figure 3.1.2 and Table 3.2).

Table 3.2: RMSD for Walker A after structural alignment between HCV and Dengue
proteins. ADP* denotes the set of ligand atoms selected for the RMSD calculation,
corresponding to the ones up to Piβ. The reference structure is the HCV NS3-ATP.

NS3-ligand RMSD (Å)
Walker A ADP*

Dengue-ATP 0.24 0.39
Dengue-ADP 0.23 0.39
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3.2. Molecular Dynamics Simulations

3.1.3 Open conformations in presence of the ligand

To build the open-ADP/ATP structures the ligand coordinates must be placed on the

available open-apo structure. For this purpose, a structural alignment between the

Walker A of open-apo and closed-ATP was done in order to get the ATP coordinates

on the open form. To perform the alignment and obtain the final atomic coordinates

the tr jconv tool of GROMACS 4.6 was used. Once the final open structure is

generated with the ATP correctly placed in the binding pocket, the missing snapshot,

open-ADP, is constructed by the Piγ removal from the artificial open-ATP.

3.2 Molecular Dynamics Simulations

3.2.1 Computational details

Every system was constructed by the NS3h peptide (436 aminoacids), a poly-

uracil ssRNA chain of 6 nucleotides, and, when present, ADP/ATP·Mg2+. All

simulation boxes were solvated with 31058 water molecules (i.e. 93174 atoms), 70

Na+ ions, corresponding to a 0.1 M concentration, and the missing Cl− counterions

to neutralize the charge of the system, for a total of ∼100000 atoms. (See also

Table 3.3). To perform all the plain MD simulations, GROMACS 4.6 program [79]

with AMBER99sb*ILDN-parmbsc0-χOL3+AMBER99ATP/ADP force field were used.

This force field is based on AMBER99 force field [80], and includes additional

corrections for the protein backbone [81, 82], the protein side-chain of isoleucine,

leucine, glutamate and asparagine amino acids [83], the RNA backbone [84], and

the RNA glycosidic torsions (χ angle) [85] as well as the parameters for ATP and

ADP [86] and Mg2+ [87]. The water molecules solvating the system were described

by the TIP3P model [88]. All the MD simulations were performed on the isothermal-

isobaric ensemble (NPT), implementing the stochastic velocity rescaling thermostat

at 300 K [89] and the Berendsen barostat with an isotropic pressure coupling of 1

bar [90]. The systems were simulated with an integration time step of 2 fs, using

periodic boundary conditions, the LINCS algorithm [91] to constrain bonds, and

the particle-mesh Ewald method [92, 93] for the long-range electrostatics. In every

system, the total simulation time was of 1 µs, and the structures obtained after 200

ns were extracted, in order to start a couple of new control simulations initializing

the atomic velocities with a random seed and performing a total of 200 ns each.
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3. Equilibrium properties of NS3h-ssRNA complexes

Table 3.3: Total number of atoms for every simulation.

System Peptide ssRNA ligand Mg2+ Na+ Cl− Water Total atoms

Apo 6528 179 - - - - - - 70 62 93174 100012
ADP·Mg2+ 6528 179 39 1 70 61 93174 100051
ATP·Mg2+ 6528 179 43 1 70 60 93174 100054

3.2.2 Simulation protocol

Step 1 Preparation of solute molecules: From the initial crystal structures, the

systems are reported as dimers of the entire NS3 (protease domain included).

For the simulations only the monomer of the helicase domains is considered,

so the additional residues from the PDB file are omitted as well as the

crystallographic water molecules farther than 4 Å from the NS3-ssRNA. Then,

the missing hydrogens are added to the solute molecules, keeping the same

protonation for all the six systems.

Step 2 Energy minimization: After the protonation of the crystal structure, it is

performed a minimization procedure for 2000 steps until the maximum force

is smaller than 0.24 kcal/(mol Å).

Step 3 Solvation and ions addition: A dodecahedral box is defined placing the

solute in the center and setting the box edge at 20 Å from the solute. Then, the

box is filled with water molecules and subsequently the Na+ and Cl− ions are

added reaching a concentration of 0.1 M and neutralizing the charge of the

system.

Step 4 Energy minimization: After the solvation and the addition of Na+ and Cl−

ions, a minimization is carried out for 50000 steps until the maximum force is

smaller than 0.24 kcal/(mol Å).

Step 5 Production MD: A long plain MD simulation of 1 µs is performed for every

system. The first 200 ns of the simulation are taken as an equilibration stage.

The structures obtained at 200 ns are extracted to perform additional control

simulations, long 200 ns each, using the same setup stated in the Subsection

(3.2.1) and initializing the atomic velocities with a random seed.
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3.2. Molecular Dynamics Simulations

3.2.3 Results

3.2.3.1 Conformational analysis

Root-mean-square deviation

With the aim of controlling the stability of the simulated structures, the RMSD is

calculated after the structural alignment with a reference frame [62]. The subset of

atoms used to calculate the RMSD, was selected based on the location in the protein

regions mainly involved in the translocation mechanism and on the proximity

to the RNA chain (around 4 Å). A detailed explanation of the subset of atoms is

shown in Table 3.4 and illustrated in Figure 3.3. The total number of atoms is 101,

corresponding to 84 Cα and 17 nucleotide atoms. To calculate the RMSD values

the g_rms tool of GROMACS 4.6 was used. From the long MD, the conformation

obtained at 200 ns is chosen as the reference structure for the least square fit and the

RMSD calculation. This frame is extracted to perform two additional simulations,

long 200 ns each, and initialized with a random seed.

Table 3.4: Subset of atoms selected to compute RMSD. The symbol "?" denotes the
protein residues around 4 Å of ssRNA.

Protein nodes: α carbon

Motif I 204 to 211, Walker A
Motif Ia 230 to 235
Motif Ib 268 to 272
Motif II 290 to 293, DExH box
Motif III 322 to 324
Motif IV 369 to 372
Motif V 411 to 419
Motif VI 460 to 467, Arginine finger
Motif Y Tyrosine 241

D1 229, 253 to 256, 273 to 277 and 296 to 298

?around 4Å D2 391 to 393, 410, 431 to 434 and 447 to 450

D3 493, 497, 499 to 503, 551, 555, 556 and 558

RNA nodes: P, C4’ and N1

Poly-uracil chain U3 (5’ terminus) to U8 (3’ terminus)

31



3. Equilibrium properties of NS3h-ssRNA complexes

Figure 3.3: Representation for NS3h-ssRNA complex. The helicase is illustrated
in ribbons and nucleic acid in sticks representation. Subset of atoms selected to
compute RMSD are depicted as solid spheres.

The RMSD is subsequently computed for the long MD and the additional control

simulations in order to observe consistent values compared with the long MD

trajectory. In general, the RMSD values obtained for the three different simulations

of every system does not show large fluctuations indicating that after 200 ns the

sampled structures are equilibrated. From the plot of open-apo, a transitory jump

is observed for the open-apo system (Figure 3.4.a, violet curve), due to a larger

opening between D1 and D2. After that, the original intra-domain gap is recovered.

Interdomain distances

Two structural conformations have been identified in the NS3h, named open and

closed. A qualitative way to differentiate the open conformation is identifying the

structure with the larger gap between D1 and D2. Due to the thermal fluctuations,

this qualitative differentiation could become ambiguous, so a quantitative criteria

is introduced in order to differentiate both conformations and control an eventual

structural perturbation. In this regard, the gap interdomain is computed as the

distance between the centers of mass (COM) of D1 and D2. Then, in order to

calculate COMD1 and COMD2 are considered all heavy atoms for the residues from

198 to 329 in D1 and from 325 to 433 plus from 450 to 483 in D2.The distances D1-D2
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3.2. Molecular Dynamics Simulations

Figure 3.4: RMSD plots for the long MD trajectories and the additional control
simulations. Violet curves are RMSD for the long MD going from 200 ns to 1 µs,
while red and blue curves are for the control simulations. RS denotes "random
seed".
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3. Equilibrium properties of NS3h-ssRNA complexes

Table 3.5: Gap between D1 and D2 computed as the average distance between the
COM of D1 and D2. Results for first and second halves of the trajectories are also
shown. Error bars were calculated by binning analysis, with a bin width of 80 ns.
Errors lower that 0.05 Å are shown as "0.0".

COMD1-COMD2 (Å)

Full Trajectory Closed Open
Apo 26.0 ± 0.0 28.9 ± 0.4

ADP·Mg2+ 25.8 ± 0.1 27.6 ± 0.0
ATP·Mg2+ 25.5 ± 0.0 28.5 ± 0.0

First Half Closed Open
Apo 26.1 ± 0.1 27.9 ± 0.0

ADP·Mg2+ 25.6 ± 0.1 27.6 ± 0.0
ATP·Mg2+ 25.6 ± 0.0 28.5 ± 0.0

Second Half Closed Open
Apo 25.9 ± 0.1 30.0 ± 0.5

ADP·Mg2+ 26.0 ± 0.1 27.6 ± 0.0
ATP·Mg2+ 25.5 ± 0.0 28.6 ± 0.1

for the whole trajectory as well as for the first and second halves of the simulation

are shown in Table 3.5. In general, the open conformations have an interdomain

distance 3 Å larger compared with the closed ones. During the first half of the

simulation the open-apo structure exhibited a lower gap, but for the second half the

interdomain distance increased and the structure presented higher fluctuations . In

the open-ADP structure it is appreciated a gap slightly shorter compared with the

other open systems.

Principal component analysis

With the aim of analyzing the motions of the protein during the simulation, a

Principal Component Analysis (PCA) was carried out [94]. The PCA was done

using a single trajectory obtained by concatenating all the 6 simulations, with a

stride of 1 ns. The same subset of atoms selected to calculated the RMSD was used

in this analysis. To calculate and diagonalize the covariance matrix and analyze the

eigenvectors, the g_covar and g_anaeig tools of GROMACS 4.6 were used. Once the

eigenvectors are extracted, every simulation is projected on the eigenvectors with
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3.2. Molecular Dynamics Simulations

Figure 3.5: Projection of MD trajectories on the first two principal components.
PCA is done on the trajectory generated after concatenate all 6 simulations. The
results for the entire trajectory are shown in panel (a), while in panels (b) and (c) are
shown the projections for the first and the second halves of the simulations.

the two largest eigenvalues. From this projection, it is observed that all the open

conformations are more flexible compared with the closed ones. In the second part

of the simulation, the open-apo structure explored a region which is very far from

the closed structures, and this fact it also supported by the interdomain distance

and RMSD values discussed before. However, from this analysis it is difficult to

observe the shorter D1-D2 gap for the open-ADP system.

3.2.3.2 ATP/ADP binding pocket

In the protein-ligand complex, the interactions in the binding pocket are determined

by the protein conformation and the kind of ligand. For this reason, it is important

to analyze with deeper details all the different hydrogen bonds formed and the coor-
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3. Equilibrium properties of NS3h-ssRNA complexes

dination features towards the magnesium ion. Inspecting the two ATP complexes,

it is observed that after 1µs of simulation the closed-ATP system is very similar to

the initial crystal structure. In particular, the interactions of ATP·Mg2+ complex

with Walker A (residues 204 to 211), DExH box (residues 290 to 293), and arginine

finger (residues 460 to 467) are maintained during the whole MD simulation (see

also Figure 3.6.a), and this structural stability is in agreement with the fact that

closed-ATP is one of the isolated crystal structures [22]. However, for the open-ATP

system it is observed a reorganization of the binding pocket after 2 nanoseconds of

simulation. The triphosphate portion of the ATP exhibits a bending that leads to the

coordination of the Mg2+ cation to α, β and γ phosphates, which is also an alternative

metastable conformation of the ATP/Mg2+ complex [95]. Consequently, a contact

between Mg2+ and D290 (from DExH box) is formed and the initial coordination of

the Mg2+ cation by S211 is then mediated by a water molecule (Figure 3.6.b).

After the hydrolysis reaction, the interactions between protein and ADP present

some differences compared with ATP. In particular, for the open-ADP system a

pentacoordinated complex with the magnesium ion is observed in a squared base

pyramidal geometry at the beginning of the simulation. After a few nanoseconds,

this complex experienced a rearrangement that lead to a hexacoordinated species,

where Mg2+ interacts with 3 water molecules, the oxygens of the α and β phosphates

(Pi’s ) and the OH- group from S211 (Figure 3.6.d). Then, this hexacoordinated

complex is maintained during the rest of the simulation. It is important to take into

account that a pentacoordinated Mg2+ is not expected for this kind of system [96], so

the force field implemented for the magnesium ion [87] is able to describe correctly

the hexacoordinated species. For the open conformation some differences are

observed according to the kind of ligand. Especially, for the open-ATP complex, the

ligand exhibits a very poor interaction with D2, however, for the open-ADP complex

a few contacts are formed as a consequence of R467 rearrangement that allows

the interaction with the Piβ. Additionally, inspecting the interactions between the

motif Y (Y241) and the ATP/ADP ligand, it is observed that for the closed-ADP and

open-ATP systems, the stacking between the phenol ring from Y241 and the adenine

from the ligand is formed for a small fraction of the time, while for closed-ATP

and open-ADP this interaction is more stable. All these features mentioned above

suggest that stability of the ligand is enhanced in closed-ATP relatively to the other

cases.
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3.2. Molecular Dynamics Simulations

Figure 3.6: ATP/ADP binding site. Residues from D1(cyan) and D2 (purple) and
ligand (yellow) are shown as sticks, Mg2+ ion is shown as a lilac sphere. Snapshots
for (a) closed-ATP, (b) open-ATP (c) closed-ADP, and( d) open-ADP are shown for
D1 and D2 separately. The initial and final structures (after 1µs of MD) are depicted
in transparent and solid color, respectively. Coordination with Mg2+ and hydrogen
bond interactions are shown with the black dashed line
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3. Equilibrium properties of NS3h-ssRNA complexes

3.2.3.3 RNA binding cleft

All nucleotides from the simulated RNA interact with the three protein domains

and the contacts with the helicase residues occur with the RNA backbone. This

important observation is consistent with the fact that NS3 can process the RNA

independently from the sequence. The way how RNA interacts with the helicase is

related with the conformation. A detailed analysis of the contacts in every domain

is described below.

Domain 1: All the interactions between D1 and RNA are maintained in closed and

open conformations. The main contacts occur between the side chains from

K272 and T269 with the phosphate oxygens from U8 and U7 respectively,

and between the V232 backbone (amide nitrogen) with U6 phosphate oxygen

(Figure 3.7.a-f).

Domain 2: According to the protein conformation, some contacts between D2 and

RNA are lost or shifted by one nucleotide. For the open structures, the T416,

T411, and K371 side chains interact respectively with phosphate oxygens from

U5, U4, and U4 (Figure 3.7.a,c,e). Conversely, for the closed structures, the

contact between T416 with RNA is missing, and both T411 and K371 interact

with phosphate oxygens from U5 (Figure 3.7.b,d,f). Moreover, the R393 side

chain shows an interaction with phosphates from U6 and U5 in all the open

structures, while in the closed-ATP structure it is observed with phosphates

from U7 and U6 after ∼50 ns and is maintained during the entire simulation.

This interaction is missing in the ADP and apo simulations.

Domain 3: The main contacts between D3 and RNA are from W501 and N556 with

the nucleobase. All the open conformations and the closed-ATP system form

an hydrogen bond with the residue N556. For all the six systems, there is a

stacking interaction between the indole group from W501 and the pyrimidine

ring from uracil.

Another important feature is observed for the residues W501 and V432 (see also

Figure 3.8), which act as gates and are located at the 3’ terminus and 5’ respectively

of the simulated RNA. In the closed conformations the residue V432 is between U4

and U3, while for the open conformations is located at the 5’ terminus facing only

the U3 ring. This difference could be associated to the shifting of the nucleotide
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3.2. Molecular Dynamics Simulations

in every translocation cycle. In addition, W501 is also a crucial residue due to the

stable stacking interaction that is formed with the U7 so, in order to complete every

translocation cycle, this interaction should be broken to form a new one with the

next nucleobase located in the 3’→ 5’ direction.

Figure 3.7: Snapshots of the RNA binding cleft. Structures depicted correspond to
the RMSD centroids of trajectories extracted by the clustering algorithm discussed in
[97], using a cutoff radius of 1.25 Å. RNA chain (gray) and the interacting amino acids
from D1 (cyan), D2 (purple) and D3 (green) and are shown in sticks representation.
Snapshots are shown respectively for open and closed conformations in the apo
(Panels a and b), ADP (Panels c and d) and ATP (Panels e and f) forms.
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3. Equilibrium properties of NS3h-ssRNA complexes

Figure 3.8: Snapshots of RNA 5’ terminus and V432 for the ATP complexes. RNA
chain (gray) and V432 (purple) are depicted in stick representation.

3.2.3.4 Hydrogen bonds

Hydrogen bonds are probably one of the most important non-covalent interactions

and play a crucial role for the stability and the molecular properties of biomolecules.

The inspection of the hydrogen bond network between NS3h, ssRNA and, when

present, ligand, could shed light on the differences between conformers and the

effect induced by the presence of ATP and ADP. In this regard, all hydrogen bonds

were determined using the distance-angle geometric criteria [98]. The cut-off radius

selected for the distance donor-acceptor was 3.5 Å and the cut-off angle between

acceptor-donor-hydrogen was set at 30◦, being 0◦ the strongest interaction. The

number of hydrogen bonds formed during the MD simulation by several groups

of solute atoms, including the three protein domains, RNA and, when present,

ATP/ADP were computed. The g_hbond tool of GROMACS 4.6 was used for the

calculations, and the errors were estimated through a binning analysis. Detailed

results for the average values are reported in Table 2 and include the number of

hydrogen bonds for the two available crystal structures, corresponding to open-apo

(PDB: 3O8C) and closed-ATP (PDB: 3O8R). The average number of contacts obtained

for the first and second halves of simulation are reported in Appendix B in order to

control the consistency of the results.
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3. Equilibrium properties of NS3h-ssRNA complexes

In general, the values obtained for the simulations starting from the experimental

structures are very similar to those obtained for the crystals (see Table 3.2.3.4 columns

open-apo vs 3O8C, and closed-ATP vs 3O8R). However, all the averages are slightly

larger for the MD trajectories when compared to the crystal structures. In particular,

this discrepancy in the open-apo case is due to the formation of some interactions

between D1 and D2 during the MD, as a consequence of a slight interdomain

proximity that allows the interaction between flexible loops. These contacts were

identified and correspond to the hydrogen bonds between an acceptor from the

arginine finger (Q460) and the donors from the DExH box motif (E291, H293).

Moreover, new interactions between D1 and D3 from the simulated trajectories

of both open-apo and closed-ATP structures were observed corresponding to the

contacts between residues T305-R512 and S297-E493. These new contacts observed

from the MD trajectories are not present in their respective crystals structures. The

reason of these differences is that the distances donor-acceptor and the angles

acceptor-donor-hydrogen are slightly larger from the cut-off values selected to

identify hydrogen bonds, so small fluctuations of these residues lead to count these

hydrogen bonds in the MD. The same explanation is also valid for the larger number

of intradomain D1-D1 and D2-D2 hydrogen bonds.

Analyzing the apo and ADP forms, it is observed a very similar number of

intra-solute hydrogen bonds for the open and closed conformations. In particular,

the number of D1-D2 interactions missing in the open structure are compensated by

an equivalent number of intradomain D2-D2 bonds. Furthermore, the protein-RNA

bonds are in general maintained during the simulation, whereas some D2-RNA

bonds are replaced with D3-RNA bonds upon opening (Table 3.2.3.4). Even tough,

the number of hydrogen bonds is not a measurement of structural stability, it

is expected to give a large contribution to the interaction energy. These results

obtained for the apo and ADP forms suggest that open and closed conformers

might have a comparable stability. Conversely, in the ATP complexes the closed

structure exhibited nearly 15 additional hydrogen bonds in contrast with the open

one. This is due to a combination of several effects, such as the formation of new

D1-D2 and D2-D2 hydrogen bonds, and the interaction of the ligand with D2.

The increased number of hydrogen bonds suggests that ATP stabilizes the closed

structure. In the presence of the ligand, some differences are appreciated for the

contacts D1/D2-ligand. In particular, for the open-ATP structure, the ligand interacts
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3.2. Molecular Dynamics Simulations

poorly with D2, while in presence of ADP, the total counts are larger due to the

rearrangement of the R467. This result is also supported by the binding pocket

analysis (subsection 3.2.3.2).

3.2.3.5 Electrostatic interactions

Electrostatic interactions were computed to determine the binding of RNA and

ligand with the helicase. The interactions between protein-RNA and protein-

ligand were estimated based on the Debye-Hückel energy (GDH) [99], using the

implementation in reference [100]:

GDH =
1

kBTεw

∑
j∈B

∑
i∈A

qiq j
e−κ|ri j|

|ri j|
(3.1)

where kB and T denote the Boltzmann constant and the temperature of the

system, εw is the water dielectric constant, A and B correspond to the set of atoms

of the selected interacting molecules, i and j are the atom indexes for the sets A

and B, qi (q j) is the charge of atom i ( j), |ri j| = |ri − r j| denotes the distance between

atoms i and j and 1/κ is the screening length. All calculations were made using

PLUMED plugin [101]. The ionic strength was selected at 0.1M that corresponds to

a screening length of ≈ 10 Å. Debye-Hückel interaction energies were computed

discarding the initial 200 ns of simulation and the associated errors were calculated

through a binning analysis.

Electrostatic interaction between protein and RNA was determined as a qualita-

tive parameter to rank the RNA binding energy for all the sampled conformations.

In general, the protein-RNA interactions are slightly larger (∼1 kcal/mol) in the

closed conformations compared with the respective open ones, and this trend is

independent from the presence and kind of ligand (Table 3.7). However, for the

system closed-ATP, the protein-RNA interaction is stronger than in the other cases.

To inspect the influence of the ligand in the protein-RNA interaction, the direct

RNA-ligand interaction (also shown in Table 3.7) was considered separately. From

these results it is observed that differences in the RNA binding are related to a

rearrangement of the protein due to the presence of the ligand and not to a direct

RNA-ligand electrostatic coupling. In order to determine the contribution of the

individual amino acids, the GDH is estimated for all the protein residues located

within a distance of 6 Å from the RNA. (see Appendix A for the detailed values).
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3. Equilibrium properties of NS3h-ssRNA complexes

Table 3.7: Electrostatic interaction computed as Debye-Hückel energies (GDH).
Protein* denotes Protein-RNA complex. Errors were computed from binning
analysis (bin width: 80ns). Errors lower that 0.05 kcal/mol are shown as "0.0".

∆GDH (kcal/mol)

Protein-RNA Closed Open

Apo -4.9 ± 0.0 -3.7 ± 0.2
ADP·Mg2+ -5.0 ± 0.1 -3.9 ± 0.0
ATP·Mg2+ -5.5 ± 0.1 -4.7 ± 0.1

RNA-Ligand Closed Open

ADP·Mg2+ -0.1 ± 0.1 -0.2 ± 0.0
ATP·Mg2+ -0.2 ± 0.1 -0.2 ± 0.1

Protein*-Ligand Closed Open

ADP·Mg2+ -0.4 ± 0.0 -1.1 ± 0.0
ATP·Mg2+ -0.8 ± 0.0 -0.1 ± 0.0

From this analysis, it is appreciated that for the closed conformations the most

interacting residue is K371 while for the open structures is R393. This result is

consistent with the fact that lysine and arginine are positively charged amino acids

that can interact attractively with the negatively charged RNA backbone. Whereas,

an exception is observed for the closed-ATP complex where also the R393 is the

most interacting residue, due to the structural rearrangement discussed previously

in the RNA binding cleft analysis (subsection 3.2.3.3).

As a final analysis, the interaction between the ligand and the protein-RNA

complex was computed and the results are also reported in Table 3.7. In presence

of ATP, it is observed a higher electrostatic interaction of the ligand with the

protein in its closed conformation, while in the ADP case, the stronger interaction is

between the ligand and the protein in its open conformation. Although the GDH

provides qualitative values to estimate the binding affinities, the results are clearly

consistent with the fact the ATP has a higher interaction with the NS3h in the closed

conformation.

44



3.3. Targeted Molecular Dynamics

3.2.3.6 Enthalpy

In the isothermal-isobaric ensemble, enthalpy (H) is defined by: H = 〈U〉 + p〈V〉,

where U is the potential energy, p the external pressure, and V the volume of the

simulated box [102]. For all 6 systems, the enthalpy values were computed with

the g_energy tool of GROMACS 4.6 program. For rational energy differences, the

simulations corresponding to different conformations (open or closed) of the same

system were prepared to contain exactly the same number and types of atoms (see

also Table 3.3). The energy values might be affected by numerical details, so to keep

uniformal conditions for all the systems, the simulations were performed using

identical settings on identical machines. The first 200 ns of MD were performed

using an hybrid GPUs+CPUs calculation and the remaining 800 ns using CPUs only.

To control the effect of using GPUs in the calculations, the energy values obtained

for GPUs+CPUs trajectories were compared with CPUs ones, without showing

significant discrepancies. The total energy calculation might be affected by statistical

errors usually due to fluctuations of solvent contributions. The average enthalpies

were computed discarding the initial 200 ns of equilibration in every trajectory, and

the errors were calculated using a binning analysis with a bin width of 80 ns.

Enthalpy differences between open and closed conformations were computed,

selecting the systems with exactly the same number and types of atoms (Table 3.8).

From the results, it is observed that all open conformations have a systematically

lower enthalpy than their respective closed ones. However, this difference is more

considerable for the ATP complexes (∼54kcal/mol). This result is very puzzling

since the crystal snapshot in complex with ATP has been isolated in the closed

conformation. The statistical errors obtained from binning analysis are very low for

all the systems. Estimation of the enthalpy values for the first and second halves of

the simulations are also reported in Table 3.8 and the values are consistent with the

reported ones from the entire trajectory.

3.3 Targeted Molecular Dynamics

With the aim of estimating the relative stability between closed and open confor-

mations, a series of short TMD simulations starting from the closed structures in

apo/ADP/ATP forms were performed [57], following a protocol similar to the one
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3. Equilibrium properties of NS3h-ssRNA complexes

Table 3.8: Enthalpy differences between open and closed conformations. The values
are computed between systems with same number and kind of molecules. Error
bars are computed from binning analysis (bin width: 80 ns).

Ligand ∆Hoc (kcal/mol)

First half Second half Full trajectory

Apo -15.2 ± 3.5 -4.2 ± 3.8 -9.7 ± 2.8
ADP·Mg2+ -28.8 ± 4.1 -21.8 ± 3.8 -25.3 ± 3.1
ATP·Mg2+ -51.6 ± 7.6 -56.5 ± 4.6 -54.1 ± 4.1

used in reference [42]. From this analysis, the relative stabilities of the closed and

open structures in presence and absence of the ligand were estimated by measuring

the work performed during the pulling.

3.3.1 Computational details

A time dependent harmonic restraint with a stiffness 500 kcal/(mol Å2) was applied

to the RMSD calculated with the open snapshot. RMSD were computed using

all heavy atoms of protein and RNA. The restraint was moved from its initial

value to zero in a simulation long 20 ns. In the first nanosecond the restraint was

left at the starting value, while in the subsequent 19 ns, the restraint was moved

linearly in time to zero. The RMSD values between the closed conformations after

equilibration and the crystal open structure were calculated for all three cases. In

order to avoid any bias, all systems started with the same RMSD values, resulting

in three different pulling conditions. Every system was simulated three times,

initializing the atomic velocities with a different random seed. This brings a total of

27 independent simulations in 3 different forms (apo/ADP/ATP), with 3 different

pulling protocols (starting from initial RMSD of apo/ADP/ATP structures) and 3

different random seeds. All TMD simulations were performed using GROMACS

4.6 program and PLUMED plugin in its version 2.1. All set-up details are similar to

the ones considered for the standard MD simulation explained in Subsection (3.2.1).

3.3.2 Analysis of the pulling simulations

The average work provides an overestimation of the free-energy change, however, a

more accurate assessment could be obtained using the Jarzynski’s equality [103]. In
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3.4. Discussion

spite of that, a very large number of simulations might be required to get a proper

estimate of the free-energy change, due to the complex rearrangement involved

in this conformational change. Moreover, when a strong restraint is applied to

many degrees of freedom in a TMD simulation, the value of the free-energy change

would be affected by the decrease in the entropy of the restrained atoms. Despite

the limitations mentioned above, the average work can be used as a qualitative

parameter to rank the free-energy differences for apo, ADP, and ATP structures

towards the opening. From the different pulling protocols, is appreciated that the

work required to open the apo form is systematically lower than the one required

to open the ADP and ATP forms (Figure 3.9). This result is consistent with the

binding pocket analysis, the hydrogen bonds network between solute molecules,

and the electrostatic interactions discussed above, so the enthalpy values might be

compensated by a large entropic change in presence of ATP. This ligand stabilization

of the closed structure is also compatible with the fact that the NS3 in complex with

ATP has been isolated in this conformation.

3.4 Discussion

After 1µs of MD simulation, all the systems were stable and did not experience any

significant structural perturbation. This validates the protocol used to build the four

artificial intermediates. The structural stability of the different conformations was

analyzed by RMSD calculations, the projections on the first principal components

and the interdomain distances. The ATP and ADP open structures have a lower

enthalpy than their respective closed structures, indicating that they have been prop-

erly equilibrated. In addition, the closed-ATP complex, presented less fluctuations

compared with the open one and with closed-apo/ADP. All open structures, includ-

ing the crystal apo form, exhibited larger fluctuations. This indicates that NS3 serine

protease domain might stabilize the open-apo in the experiments. From the binding

pocket analysis some differences were observed according to the type of ligand and

the conformation of the protein. In particular, the closed-ATP structure maintained

the contacts from the crystal between the Motifs I, VI and the ligand, during whole

simulation. However, the open-ATP complex presented some rearrangements due

to the missing interactions with D2. This could imply an ATP-induced stabilization

of the closed conformation. The modeling of ADP complexes were considered as
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3. Equilibrium properties of NS3h-ssRNA complexes

Figure 3.9: Perfomed work vs simulation time from TMD. Average work was
obtained from 3 TMD simulations initialized with different random seeds. Standard
deviations of the three trajectories are shown as error bars.

possible intermediates after the hydrolysis reaction. From these structures, more

interactions between the ligand and D2 were observed. This suggests that the

stabilizing effect of ADP on the open conformation is larger than the one induce by

ATP. Thus, after hydrolysis reaction, the closed conformation might be destabilized

and a conformational transition towards to open structure could be favored. From

the protein-RNA interactions, it is observed that NS3 interacts mainly with the

phosphate groups of the RNA backbone. This is consistent with the experimental

assays where the helicase is also processing DNA [23, 21], since NS3h is not nucleic

acid specific. Contacts formed between T269 (in D1) and T411 (in D2) with the

phosphate oxygens present different patterns according to the protein conformation

and act like hooks with the RNA during the unwinding/translocation mechanism.
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3.4. Discussion

The same type of interaction has been reported for other SF2 RNA-helicases such

as Vasa drosophila and eIF4A, suggesting a possible common mechanism among

several helicases of this superfamily [23, 104, 105]. At the same time, the contacts

with residues R393 and N556 are present only in the open conformations and the

closed-ATP complex, indicating an ligand-dependent allosteric effect for the latter

case. The average number of hydrogen bonds for the ATP systems, showed a larger

interactions between solute molecules in the closed structure when compared with

the open one. This is compatible with the eventual ATP-dependent stabilization

in the closed conformation mentioned before. In contrast, both apo and ADP

complexes presented an equivalent number of hydrogen bonds for open and closed

conformers.

All features discussed above, indicates that the free-energy difference ∆G towards

the closing might be thermodynamically more favored for the ATP case. This is

supported by the TMD simulations and the analysis of the electrostatic interactions

estimated within the Debye-Hückel approximation. This ∆G can be expressed by

the difference of the ligand affinity in the two conformations. So,

∆GATP − ∆GApo = −kBT log K(closed)
d + kBT log K(open)

d ,

being kB the Boltzmann constant, T the temperature of the system, and K(open)
d and

K(closed)
d the ATP dissociation constants in the open and closed conformation. This

expression indicates that the ATP affinity is larger in the closed form. Contrarily,

enthalpy calculations pointed out an opposite result where open-ATP is dramatically

more stable than closed-ATP. However, although enthalpy provides an important

contribution to the free-energy, in several cases is not the principal factor to measure

relative stabilities, and it is observed an entropic contribution that compensates the

enthalpic one, also known as Enthalpy-Entropy Compensation (EEC) phenomenom

[106]. From these simulations it is difficult to determine the entropic differences that

not only depend on the solute flexibility but also on the solvent entropy which is

connected with e.g. hydrophobic effects in the cavity between D1 and D2. For this

reason, the use of enhanced sampling techniques becomes an interesting alternative

to estimate the free-energy differences [107, 108]. The further implementation to

the study of the NS3-ssRNA complex is discussed in the Chapter 4. Additionally,

all the analysis discussed in this Chapter about the six simulates systems, is also

reported in a recent publication [109].
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3. Equilibrium properties of NS3h-ssRNA complexes

Total simulation time

Table 3.9: Total simulation time for the calculations reported in Chapter 3

System # runs time/run total time
(µs) (µs)

StandardMD

open-apo 1 1 1
closed-apo 1 1 1
open-ADP 1 1 1

closed-ADP 1 1 1
open-ATP 1 1 1

closed-ATP 1 1 1

Subtotal time 6

ControlMD

open-apo 2 0.2 0.4
closed-apo 2 0.2 0.4
open-ADP 2 0.2 0.4

closed-ADP 2 0.2 0.4
open-ATP 2 0.2 0.4

closed-ATP 2 0.2 0.4

Subotal time 2.4

TMD closed→ open

RMSDapo 3 0.02 0.06
Apo RMSDADP 3 0.02 0.06

RMSDATP 3 0.02 0.06

RMSDapo 3 0.02 0.06
ADP RMSDADP 3 0.02 0.06

RMSDATP 3 0.02 0.06

RMSDapo 3 0.02 0.06
ATP RMSDADP 3 0.02 0.06

RMSDATP 3 0.02 0.06

Subotal time 0.54

Total time: 8,94
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L CHAPTER 4
Enhanced sampling of NS3h

conformational changes

T
he results obtained from the standard MD simulations suggest that a

strong entropic compensation stabilizes the experimentally isolated

closed-ATP snapshot. However, the determination of the entropy is

not a trivial task, and a direct estimation of the free-energy is necessary to determine

quantitatively the relative stabilities between the studied intermediates. For this

reason, the use of enhanced sampling techniques emerges as a helpful strategy

to reconstruct the free-energy landscape of the simulated conformations. In this

particular case, the systems were sampled by means of metadynamics simulations

(in its well-tempered scheme), a method that has been widely used in several

chemical applications such as the ligand binding, the phase transitions and the

conformational changes [110, 111, 112, 113]. The great advantages of this technique

are based on the possibility to accelerate the sampling of rare events by pushing

away the system from the local minima and explore different pathways when the

system tends to escape the free-energy minima crossing the lowest transition state

[114]. Additionally, a further approach that combines metadynamics with the HREX

simulations was used. The application of these techniques accelerates efficiently the

free-energy estimation, allows a wide conformational sampling and exploits the

parallelization of the codes on high performance computers. As a final analysis, one

of the crystallographic structures is taken to build a longer nucleotide chain and
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4. Enhanced sampling of NS3h conformational changes

analyze the effect of the NA length in the conformational transitions. Some of the

enhanced sampling simulations reported in this Chapter are shown as preliminary

results, since they need a longer computational time to converge.

4.1 Modeling NS3h in complex with 6 nt ssRNA

4.1.1 Building a set of collective variables

4.1.1.1 Linear path variables

In order to monitor the conformational transitions, a set of order parameters built

as a linear combination of RMSD’s from two reference structures is defined. In

reference [42], a criterion to control a conformational change based on the difference

between squared RMSD from the open and closed structure was introduced. A

similar approach is defined in this application, where a variable S is calculated in

the same way but are taken into account some additional aspects. To compute the

RMSD values, is used the same subset of atoms described in Subsection (3.2.3.1).

This choice is done since RMSD is a global parameter and the contribution of

fluctuating loops that do not participate in the mechanism can produce some noise

in the RMSD calculation. Simultaneously, a variable Z that measures the distance

from a hypothetical transition path obtained as a linear interpolation between the

two reference structures is defined. The expressions for (S,Z) variables take the

following forms:

S =
R2

o − R2
c

2Roc
(4.1)

Z =
R2

o + R2
c

2
− S2

−
R2

oc

4
(4.2)

Being Ro and Rc the RMSD of the simulation frame from the open (PDB: 3O8C)

and closed (PDB:3O8R) crystal structures respectively, and Roc the RMSD between

the open and the closed structures. A cartoon representation that illustrates the

building of both variables is also shown in Figure 4.1. From this scheme, it is

observed that the difference between squared RMSD’s is related to the progression

variable s(q) used in the path collective variables approach [69, 115].

With the aim of controlling the suitability of the linear path variables as CV’s for

the enhanced sampling, a projection of the 6 MD trajectories analyzed before on the
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4.1. Modeling NS3h in complex with 6 nt ssRNA

Figure 4.1: Cartoon diagram for the definition of linear path variables (S,Z). The
two reference structures considered in this application correspond to the open and
closed crystal snapshots from reference [22].

(S,Z) space was done. As discussed in the previous Chapter, all simulations were

stable without undergoing any significant structural perturbation. Interestingly, this

fact is also supported by the projection of the trajectories on the linear path variables,

where all simulations remain near to the starting experimental structure (Z . 2 Å),

and every conformation is well defined in the (S,Z) space since the values do not

overlap between them (Figure 4.2). From the trajectories, it was also observed that

protein-RNA complexes were more flexible in the open conformation than in the

closed one. This fact is also reflected in the projections, due to the larger fluctuations

of the Z value for the open structures. In presence of ADP and ATP, the fluctuations

are partly reduced for both open and closed structures. This is consistent with

the fact that these systems have explored a smaller region in the linear path space.

Analyzing the distribution of the S variable, it is observed that both apo and ADP

open systems explore regions that are slightly towards the closed reference structure.

However, a bimodal distribution for the open-apo was observed, with one peak

corresponding to a lower distance from the closed structure and the other one

corresponding to the transient larger opening between D1 and D2. The projections
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4. Enhanced sampling of NS3h conformational changes

Figure 4.2: Projection of trajectories on linear path variables for apo (a), ADP
(b), and ATP (c) simulations. The contours indicate a fraction of the data in the
(S,Z) space for every conformation (25, 50, and 75%). Open and closed regions
are well defined and the projected values do not overlap between them. Panel
(d) summarizes the contour lines corresponding to 50% of the data. The S and Z
values of open and closed reference structures are shown by a circle and a square,
respectively

on the 6 systems indicate, that linear path variables might be a promising candidate

as a CV for the enhanced sampling simulations.

4.1.2 Well-Tempered Metadynamics

To explore the free-energy landscape associated to the conformational change

(open↔ closed) in the three different intermediates considered for the translocation

mechanism (apo/ATP/ADP), a series of WTmetaD simulations were performed. For

this analysis, the 6 systems discussed in Chapter 3 were simulated independently

and were initialized with the structures extracted at 200 ns from the plain MD. The

linear path variables were selected as the set of CV’s.
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4.1. Modeling NS3h in complex with 6 nt ssRNA

4.1.2.1 Computational details

Every system was constructed with the same set-up details considered for the

standard MD simulations explained in Subsection (3.2.1) with a total simulation

time of 600 ns for every system. The input parameters for the metadynamics were

selected based on the projections of the standard MD trajectories on the linear path

variables (Figure 4.2). In particular, the Gaussian widths for S and Z were set at

0.08 Å . These values were obtained as a third of the standard deviation from the

trajectories projections. The initial Gaussians were 0.72 kcal/mol high, and the

bias deposition stride was of 1 ps. To perform the enhanced sampling simulations,

GROMACS 4.6 program and PLUMED plugin in its version 2.1 were used. For

the WTmetaD formalism, an additional parameter known as biasfactor which is

the ratio between the temperature of the CV’s (T + ∆T) and the temperature of the

system (T) is required. The biasfactor selected for all simulations was equal to 15 (i.e,

well-tempered factor ∆T = 4200 K). To avoid the exploration of other regions which

are not relevant in the translocation mechanism, upper and lower walls for the

linear path variables were defined in every simulation. These potential restraints

acted on the system when the value of the CV’s is greater (upper wall) or lower

(lower wall) than a certain value ai. The expression for the bias due to the walls

(Vwall) is given by the following expression:

Vwall =


∑

i

ki

(xi − ai

si

)ni

, if xi > ai (upper) or if xi < ai (lower)

0 , otherwise

(4.3)

where ki is an energy constant, si is a rescaling factor and ni is the exponent

determining the power law. For the Z variable was imposed an upper wall at 5

Å , whereas, the values of S were limited between -2.5 and 2.5 Å. The value of k

was equal to kBT and the exponent of the potential was set to the fourth power.

Additionally, a lower wall for the RNA 3’-5’ distance was set to avoid a large bending

of the chain. The distance was computed between C3’ in the 3’ terminal and C5’ in

the 5’ terminal nucleotides, with a minimum value equal to 14Å , using the same k

and exponent selected in the other walls.
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4. Enhanced sampling of NS3h conformational changes

4.1.2.2 Results

For the 6 different NS3h-ssRNA complexes, a qualitative description of the WTmetaD

simulations is reported below. From these enhanced sampling there is no a

quantitative estimation of the free-energy, due to the lack of converge in the

simulations.

Apo form

Open: During the first 300 ns, the structure fluctuates experiencing in different

moments a larger gap between D1 and D2 (Figure 4.3, high Z values). Then,

a significantly larger opening between D1 and D2, changes the interactions

of the nucleotide in the 5’ terminus with the protein producing a bending

of the RNA chain. After this perturbation, the interdomain distance D1-D2

is decreased and the protein is found in the closed conformation up to 400

Figure 4.3: Time series for S and Z during WTmetaD, for open (green lines) and
closed (blue lines) in the apo form. The black dashed line indicates the S and Z
values for the initial conformation.
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4.1. Modeling NS3h in complex with 6 nt ssRNA

ns (Figures 4.3 and 4.6.a). In the following 150 ns, the structure fluctuates

towards to open conformation. During the last 50 ns of WTmetaD simulation,

the nucleotide in the 3’ terminus transiently moves perpendicular to the plane

of the RNA chain and simultaneously the gap interdomain D1-D2 is reduced.

Then, RNA is reincorporated shifting by one nucleotide the interactions with

the protein.

Closed: In the first 100 ns of simulation, NS3h experiences a large opening between

D1 and D2, that leads a conformational change to the open structure. In the

following 470 ns the system fluctuates around the open structure and explores

also regions around S = 0 (Figures 4.3 and 4.6.b). During the last 30 ns, the

interdomain distance D1-D2 tends to decrease but the closed conformation is

not recovered.

ADP form

Open: In the first 200 ns, NS3h fluctuates around the open conformation experi-

encing in different moments a larger interdomain distance D1-D2 (Figure 4.4,

high Z values). Then, the structure exhibits a conformational change towards

the closed structure and remains in its minima for 70 ns (Figures 4.4 and 4.6.c,

low S and Z). After that, the uracil in the 3’ terminus moves perpendicular to

the RNA chain, and the gap D1-D2 fluctuates towards the opening (S around

0). In the last 50 ns, the original stacking interaction between W501 and one

uracil (labeled U7, Figure 3.7) is replaced by the consecutive base in the 5’→3’

direction (labeled U8, 5’ terminal nucleotide) shifting by one nucleotide all

interactions protein-RNA, with a gap between D1 and D2 significantly larger

compared with the original one at the beginning of the simulation.

Closed: During the first 100 ns of simulation, the helicase experiences a conforma-

tional change towards the open structure, and this conformation is maintained

until 140 ns. After that, D2 fluctuates far away from D1, D3 and the RNA

chain, and at 200 ns of simulation the closed conformation is recovered (Figure

4.4). Then, at 270 ns the structure suffers several fluctuations in the RNA

and the interdomain distance D1-D2, and after 350 ns, the RNA chain moves

away from D3 for the following 50 ns. Finally, in the last 200 ns the RNA

is reincorporated with the NS3 in the open conformation and the stacking
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4. Enhanced sampling of NS3h conformational changes

Figure 4.4: Time series for S and Z during WTmetaD, for open (green lines) and
closed (blue lines) in the ADP form. The black dashed line indicates the S and Z
values for the initial conformation.

interaction with W501 initially formed with U7 is replaced by U8, shifting by

one nucleotide all interactions protein-RNA.

ATP form

Open: In the first 240 ns of simulation, NS3h remains in the open conformation,

and the structure fluctuates to larger interdomain distances between D1 and

D2 (Figure 4.5, high Z values). After that, the 3’ terminus moves away from

D3 during 70 ns, and then, the RNA chain moves forward by one nucleotide

in the 5’→3’ direction, shifting as well the interactions with the protein. Then,

the protein experiences a conformational change towards the closed structure

and the RNA chain is shifted backwards until 480 ns. In the last 120 ns of

simulation, the RNA chain exhibits a bending directed far away from the

protein domains. This perturbation causes that RNA is partially expelled from

the NS3h.
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4.1. Modeling NS3h in complex with 6 nt ssRNA

Figure 4.5: Time series for S and Z during WTmetaD, for open (green lines) and
closed (blue lines) in the ATP form. The black dashed line indicates the S and Z
values for the initial conformation.

Closed: The protein undergoes a conformational change to the open structure in the

first 150 ns of simulation (Figure 4.5). This transition reveals the same pattern

discussed before for the other WTmetaD simulations, where first a significantly

larger opening between D1 and D2 happens to allow the reorganization of

the RNA and then, the protein reaches the open minima. This conformation

is maintained during the following 80 ns. For the rest of simulation, D2

moves far away from D1, D3 and RNA. This perturbation leaves specially free

the RNA which experiences different bending patterns of the chain, and is

gradually expelled from the complex with the helicase.

The simulations initialized from the open-apo, open/closed-ADP and open-ATP

during the backward conformational change to the open structure experienced a

shifting of one nucleotide between the protein-RNA interactions. These changes

on the RNA contacts are very important since they are related with every cycle of
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4. Enhanced sampling of NS3h conformational changes

Figure 4.6: Free-energy as a function of the linear path variables. The symbol "8"
illustrates the starting structure of the simulation in the (S,Z) space. Panels (a), (c)
and (e) are for the initially open conformations, while panels (b), (d) and (f) for the
initially closed ones.
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4.2. Modeling NS3h in complex with 10 nt ssRNA

the translocation. However, all these transitions were observed with the opposite

directionality (5’→3’ instead of 3’→5’) of the NS3h. The resulting structures from

these transitions indicate that probably a lack of additional bases in the 3’ and

5’ terminus is one of the reasons related with this inconsistency. It is important

to take into account that all the simulations were based on the crystallographic

structures reported in reference [22]. These X-ray experiments were conducted

with a polyuracil of 8 nucleotides (nt) [22], and due to a poor resolution of the first

two nucleotides (labeled U1 and U2), it was not possible to properly solve them

and their coordinates were not reported in the PDB. The importance of the ssNA

length was also supported by previous experimental assays done on NS3-ssDNA

by means of fluorimetric titration [116], where the ssDNA chains of 8 and 10 nt

presented a higher binding rate (kon) to the monomeric NS3 compared with the

case of 6 nt. Additionally, in the open/closed-ATP simulations a disruption of the

NS3h-RNA complex was observed, due to the reorganization of the NA. The final

structures are very different compared with the original ones and it is not possible

to undergo the translocation mechanism due to the partial expulsion of the RNA

from the protein domains (see for example, open-ATP case in Figure 4.7). This is

observed after several domain fluctuations, where the short RNA was more free to

form new intramolecular interactions that simultaneously led to a poorer binding

with the protein.

From the free-energy surfaces it is observed a energy barrier around S ≈ 0

and low Z values (Figure 4.6). In general, the minima associated to the open

conformations present a wider free-energy well respect to the closed ones, except

for the cases in presence of ADP where neither the closed nor the open were very

well defined and the lowest free-energy region is observed for some intermediate

structures at higher Z values (above 2.5 Å). In addition, for the ATP forms, the

systems explored regions at larger Z, that corresponds to the protein fluctuations and

the partial expulsion of the RNA chain. All these observations reflect the necessity

to model a NS3h complex with a longer ssRNA. However, there is no an available

experimental structure that can provide a longer chain. To solve this limitation, the

building of a longer RNA chain and the modeling for this specific application was

done. The protocol implemented and the further enhanced sampling simulations

are discussed with more details in the following Section.

61



4. Enhanced sampling of NS3h conformational changes

Figure 4.7: Representation of open-ATP complex after 600 ns of WTmetaD. From
this structure is observed a partial expulsion of the ssRNA.

4.2 Modeling NS3h in complex with 10 nt ssRNA

Due to the lack of a crystal structure for the NS3h in complex with a longer ssRNA,

The inclusion of additional nucleotides to the polyuracil chain was carried out

considering a wide database collection for different RNA structures. This procedure

was exclusively done in the system closed-ATP, in order to use a snapshot that was

previously crystallized.

4.2.1 Building a longer RNA chain

To construct a longer polyuracil chain, a protocol based on structural alignments

able to provide additional nucleotides bonded to the original polyuracil chain was

implemented. A total of 1850 conformations of tri-uracil units UUU were considered

for this procedure. These conformations were extracted from 342 different RNA

molecules that presented the UUU triplet in different regions of the sequence. The

structural alignments were done in the 3’ and 5’ terminus of the RNA using the

PDB coordinates (i.e without protons).

The protocol implemented is described in the following steps:
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4.2. Modeling NS3h in complex with 10 nt ssRNA

1. Addition of new nucleotides on the 3’ terminus: Structural alignments

between the sugar and phosphate atoms of the nucleotide in the 3’ terminus

(labeled U8) with the UUU triplets were performed. For the structural

alignment, the RMSD calculator tool of VMD program was used. After this

procedure, 1850 systems of the NS3h in complex with a ssRNA of 8 nt were

generated, placing the new uracils in the 3’ terminus.

2. Control of overlapping atoms: With the aim of characterizing the suitability

of the new 1850 systems, a control of the atom clashes between the original

system and the new uracils (labeled U9 and U10) atoms was done. For this

purpose, the coordination number of the new uracils with the NS3h-ssRNA(6

nt, U3-U8) was calculated using the PLUMED 2.1 plugin. The coordination

number (CN) is defined by discrete function as:

CN =
∑
i∈A

∑
j∈B

CNi j (4.4)

where CNi j equal to 1 correspond to the case when a contact between the

atoms i and j is formed, and CNi j equal to 0 when it is not formed. However,

in the PLUMED implementation, the CNi j can be expressed as a continuos

parameter, defined by the following switching function:

CNi j =
1 −

(
ri j−d0

r0

)n

1 −
(

ri j−d0

r0

)m (4.5)

where n=6 and m=12, d0=0 Å and r0=1 Å were set for this particular case.

From these parameters, the CN with the new uracils was computed counting

the atoms of the original system that were within 1 Å.

3. Selecting suitable candidates: The systems with a coordination number

below 0.1 were selected as candidate structures. With this criteria, the total

number of candidate structures with a RNA chain long 8 nt (from U3 to U10)

was 12.

4. Addition of new nucleotides on the 5’ terminus: Following the same pro-

cedure described in the items (1), (2) and (3) for the 5’ terminus, a total of 4

candidates systems with a RNA chain long 8 nt (from U1 to U8) were selected.
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4. Enhanced sampling of NS3h conformational changes

5. Building of 10 nt systems: From the 4 candidates structures with a longer 5’

terminus, the nucleotides U1 and U2 (the last 2 nt in the 5’ terminus) were

combined with the 12 NS3h candidates constructed with a longer 3’ terminus;

for a total of 48 putative structures of NS3h-ssRNA(10 nt)-ATP.

6. Selection of 10 nt system: The 48 structures were protonated keeping the

same number of atoms and subsequently, an energy minimization for every

system was performed. This procedure was executed for 2000 steps until

the maximum force was smaller than 0.24 kca/(mol Å) using GROMACS 4.6

program. The structure with the lowest potential energy was selected as the

final system for the further modeling.

4.2.2 MD production

The selected system was constructed with the same set-up details considered for

the standard MD explained in Subsection (3.2.1), and following a similar simulation

protocol described in Subsection (3.2.2). Additionally, before the enhanced sampling

simulations, a test for the best initial conformation was done, building and simulating

4 different set-ups with a rescaled Hamiltonian for the new nucleotides in the 3’ and

5’ terminus. This is done to control how the flexibility of the new nucleotides will

affect the interactions with the helicase. For this purpose, the following procedure

was done:

1. Preparation of the systems: 4 different set-ups were prepared, rescaling the

force field terms for the new nucleotides (U1, U2 in the 5’ terminus and U9,

U10 in the 3’ terminus) based on the HREX procedure described in Chapter

2. In this particular application, 4 different scaling factor (λ = 1, 0.9, 0.8, 0.7)

were used, being the case of λ = 1 the system with the original FF.

2. Standard MD simulations: For every system, a plain MD simulation of 50 ns

was performed. All trajectories were analyzed, and the conformations of the

U3 and U8 during the simulations were compared with the original ones from

the crystal.

3. Selection of the initial guess: The system that kept a similar conformation of

U3 and U8 to the crystal, was chosen as the initial guess. In this specific case,

the structure scaled by a factor λ=0.9 was selected. Subsequently, a plain MD
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4.2. Modeling NS3h in complex with 10 nt ssRNA

simulation long 200 ns with the original FF was performed as an equilibration

stage and the final frame is taken to initialize the enhanced sampling.

4.2.3 WTmetaD using linear path variables

With the aim of exploring the free-energy landscape associated to the conformational

change closed↔ open for the ATP system, a WTmetaD simulation was performed.

For this initial analysis, the linear path variables were selected as the set of CV’s.

4.2.3.1 Computational details

In order to perform the WTmetaD simulation on the NS3-ssRNA(10 nt)-ATP complex,

the same input parameters used for the systems with 6 nt in Subsection (4.1.2.1)

were selected. To perform the enhanced sampling simulations, GROMACS 4.6

program and PLUMED 2.1 plugin were used. The total simulation time for this

application was of 850 ns.

4.2.3.2 Results

For the NS3h-ssRNA(10 nt)-ATP complex, a qualitative description of the WTmetaD

simulation is reported. From these enhanced sampling there is no a quantitative

estimation of the free-energy, due to the lack of converge in the simulations.

w Analysis of the trajectory:

From the WTmetaD trajectory, it is observed that after 20 ns of simulation the NS3h

experienced a conformational change towards the open structure, presenting some

fluctuations of the interdomain distance between D1 and D2 (Figure 4.8, high Z

values) and changing the interactions of the RNA backbone with the D2 of the

protein. After 580 ns, the basin for the open minima is explored while in the last

170 ns the interdomain distance tend to slightly decrease (Figure 4.8, S ≈ 0) without

recovering the initial closed conformation of simulation, and the U1 is placed inside

the RNA-D3 interface forming a stacking interaction with the U3. This interaction

between U1-U3 is undesirable, since it might affect the progress of the translocation

mechanism. The ATP binding pocket is also analyzed observing some fluctuations

of the adenine ring from the ATP, disrupting the stacking interaction with the Y241

in D1 in the different moments of the simulation. Moreover, during the simulation

the Mg2+ is coordinated to S211 (Walker A), E291 (DExH box), two water molecules
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4. Enhanced sampling of NS3h conformational changes

Figure 4.8: Time series of the linear path variables during the WTmetaD trajectory.
The dashed lines indicates the S and Z values for the closed-ATP (blue line) and
open-ATP (green line) conformations.

and the oxygens from the Piβ and Piγ. This coordination complex is maintained

during the entire simulation and is the same identified from the crystal.

w Free-energy surface: a qualitative interpretation

From the free-energy surface (Figure 4.9), it can be appreciated that the minima

associated to the open conformation present a wider free-energy well respect to the

closed one. However, it is not possible to provide an accurate description of the two

free-energy minima due to the lack of converge in the enhanced sampling. During the

exploration of the free-energy landscape, it is also observed an intermediate structure

at higher Z values (Figure 4.9, Z ≈ 3 Å), that corresponds to the conformation

observed between 400-500 ns of simulation. This structure is formed presenting a

slightly shorter gap D1-D2 compared with the open-ATP (S ≈ -0.5).

4.2.4 WTmetaD using path collective variables

After 850 ns of WTmetaD using the linear path variables as the set of CV’s, the

lack of converge of the simulation becomes a limiting factor to describe properly

the free-energy surface of the NS3h-ssRNA(10 nt)-ATP conformational change.

Additionally, due to the large values of the Z value, this allows the system to visit

regions that are not involved in the conformational transition. For this reason,
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4.2. Modeling NS3h in complex with 10 nt ssRNA

Figure 4.9: Free-energy as a function of the linear path variables. The symbol "8"
indicates the starting structure (closed-ATP) of the simulation in the (S,Z) space.

the initial set of CV’s is changed, substituting the linear path variables by path

collective variables [69], with the aim of observing a faster and better sampling of

the free-energy surface.

4.2.4.1 Computational details

As discussed in Subsection (2.3.3), the path collective variables are very useful for

the study of transitions between two states. In this specific case, the two states of

interest are the closed and open conformations of NS3h in presence of ATP. With

the aim of selecting an appropriate reactive path, the transition between the closed

and open conformation of the enzyme was described using the path extracted from

the TMD simulations of closed-ATP discussed in Section (3.3), selecting a frame

every 2 ns for a total of 11 reference structures q̃(i). In this particular application, the

distances between the simulation frame and the reference snapshots were computed

as the RMSD of the subset of atoms discussed in Subsection (3.2.3.1) and the λ

parameter was set to 1 Å−2. The WTmetaD was performed only in the space of
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4. Enhanced sampling of NS3h conformational changes

Figure 4.10: Projection of the WTmetaD trajectory on the path collective variables
(Panel a) and their respective time series (Panels b and c). The dashed lines
indicates the S and Z values for the closed-ATP (blue line) and open-ATP (green
line) conformations and the "C" and "O" letters denote the closed and open basins
respectively. In the

s(q) using a Gaussian width of 0.8 Å, an initial Gaussian deposition rate of 0.72

kcal/mol per picosecond and a well-tempered factor ∆T of 4200 K. Additionally, the

z(q) variable was constrained using an upper wall at 4 Å2 with a constant k equal to

kBT and the exponent of the potential set to the second power. This choice avoids

the possibility to the system of exploring other regions in the free-energy landscape

that are not relevant for the conformational transition. To perform the enhanced

sampling simulations, GROMACS 4.6 program and PLUMED 2.1 plugin were used.

The total simulation time was of 1.1µs.

4.2.4.2 Results

The analysis for the WTmetaD using path collective variable to model NS3h-

ssRNA(10 nt)-ATP conformational change, are reported as preliminary results, since

it is necessary to prolong the simulation time to reach convergence.
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4.2. Modeling NS3h in complex with 10 nt ssRNA

Figure 4.11: Free-energy as a function of the path collective variable s(q)

w Analysis of the trajectory:

After 100 ns of simulation the helicase experienced a conformational change to

the open structure (Figure 4.10) which is maintained up to 750 ns. Then, during

the last 350 ns of simulation, the interdomain distance tends to decrease without

recovering the closed conformation and the RNA presented some fluctuations

causing a slightly bending of the chain that allows the formation of a hydrogen

bond between a phosphate oxygen of U5 with the side chain of T416. Additionally

analyzing the intramolecular interactions of the RNA, the stacking between U1-U3

previously detected in the WTmetaD simulation using the linear path variables,

is not formed in this case. Analyzing the ATP binding pocket, it is observed that

the stacking interaction between Y241 from D1 and the adenine ring from the ATP

is maintained during the entire simulation, and the coordination complex formed

with Mg2+ cation is identical to the one identified from the crystal.

w Free-energy surface: preliminary results

The free-energy surface (Figure 4.11), indicates an energy barrier around s(q) ≈ 4.

Additionally, from this preliminary energy profile it is observed that the minima
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associated to the open conformation present a wider free-energy well compared

with the closed one, which is a feature also recognized from the previously discussed

WTmetaD using the linear path variables as CV’s. However, an accurate description

of the two states is still imprecise since the sampling needs a longer simulation time

for the correct estimation of the well shape and the relative free-energy values.

4.2.5 WTmetaD coupled with HREX simulations

As a final approach, a WTmetaD simulation combined with HREX for the NS3h-

ssRNA(10 nt)-ATP system was performed, using the path collective variables as

the set of CV’s. This strategy is chosen, since metadynamics is a technique that

accelerates the sampling of rare events overcoming the energy barriers and HREX

is able to reproduce correctly the free-energy difference between two metastable

states and the shape of the free-energy wells.

4.2.5.1 Computational details

For the WTmetaD, the same set-up details used in the Subsection (4.2.4) were

selected in this application. A total of 16 replicas were constructed rescaling some FF

terms of a specific region of the solute, named the hot (H) region, and following the

criteria explained in Section (2.4). TheH region comprises the atoms discussed in

Subsection (3.2.3.1) but instead of considering only the α carbons from the selected

protein residues and some nodes from the ssRNA, the entire amino acid residues

and all 10 nucleotides from the new RNA chain are taken. The λHREX rescaling

factor was selected according to a geometric distribution between 1 and 0.5, which

is equivalent to an effective temperature that goes from 300 to 600 K, even if all

replicas were simulated at the same canonical temperature of 300 K. The exchange

rate between replicas was set every 0.4 ps. The enhanced sampling simulations

were performed using GROMACS 4.6 program and PLUMED plugin in its version

2.1. The simulation time per replica was of 200 ns, for a total time of 3.2µs.

4.2.5.2 Results

Replica exchange MD, is an expensive computational technique since the simulation

cost scales proportionally with the number of replicas that are chosen for the

sampling. The choice of 16 replicas scaled up to λHREX = 0.5, presented an average

acceptance for every exchange attempt of ∼6%. This allows that the energy barriers

70



4.2. Modeling NS3h in complex with 10 nt ssRNA

Figure 4.12: Free-energy as a function of the path collective variable s(q) for the
replica with the original Hamiltonian (λ = 1).

can be overcome easily and the replicas experience several effective exchanges

during the simulation. The choice of number of replicas is crucial for an appropriate

sampling, since a too small number of replicas with a large Hamiltonian rescaling (or

high temperatures, for the case of parallel tempering [74]) will imply a significantly

low acceptance rate in every exchange attempt, while a very large number of

replicas will presuppose a very expensive simulation that in practical terms might

be inconvenient. Although the average acceptance rate for this particular case is

relatively low (∼6%), from the simulation several roundtrips between the 16 replicas

are noticed.

From the free-energy surface (Figure 4.12) obtained for the replica with the

original Hamiltonian, it is observed that an energy barrier around s(q) ≈ 5 must be

overcome to undergo the conformational transition closed-ATP↔ open-ATP. This

barrier is slightly shifted in the space of s(q) respect to the preliminary free-energy

profile obtained in the WTmetaD without HREX (s(q) ≈ 4). In addition, this graph

also indicates that the simulation have not reached convergence since the bias

potential deposited in the different moments of the simulation is larger for the open
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Figure 4.13: Graphical representation of the demux procedure implemented in
GROMACS 4.6. Courtesy of Giovanni Bussi.

minima compared with the closed one. From this preliminary free-energy profile, it

is observed that the open conformation present a wider free-energy well respect

to the closed one, which is a common feature observed on all enhanced sampling

simulations discussed in this Chapter.

In every exchange attempt, GROMACS 4.6 code implementation exchange the

atomic coordinates between replicas, however, this feature generates trajectories

that are not continuos, this means that after every successful exchange, a structure

completely different would appear in the trajectory file. For this reason, a procedure

that generates the correct time series of every replica is applied in order to analyze

the trajectory with continuos coordinates. This procedure in the GROMACS 4.6

code is known as demux. A graphical representation that illustrates the demux is

shown in Figure 4.13. After demuxing the HREX trajectories, a projection on the path

collective variables is done for every replica (Figure 4.14). This is done to control

how the replicas are evolving in the space of the path collective variables in order to

verify the recrossing between the two conformational states. From these plots, it

is observed that 8 (Reps. 0, 1, 2, 6, 10, 12, 13, 15) of the 16 replicas experienced a

transition to the open conformation basin, while the other 8 are still in the closed

minima or are exploring regions at higher z(q) values. This projection as well as

the previous analysis done in this simulation indicates the necessity to perform

a longer simulation with the aim of estimating properly the relative free-energy
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Figure 4.14: Projection of the path collective variables s(q) and z(q) on the demuxed
trajectories for all 16 replicas. "C" and "O" letters denote the location in the CV space
of the closed-ATP and open-ATP basins respectively.

between the NS3h conformers in presence of ATP. Additionally, analyzing the λHREX

graph (Figure 4.15) for the demuxed replicas, it is observed that some replicas are

not experiencing many exchanges. This means that not all of them are diffusing

effectively in λ, indicating that it is necessary to prolong the simulation in order to

fulfill this condition and estimate correctly the free-energy surface.
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Figure 4.15: λHREX graph for the 16 demuxed replicas.

4.3 Discussion

From the WTmetaD simulations using linear path variables as CV on the NS3h

structures in complex with a polyuracil chain of 6 nucleotides, the systems presented
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4.3. Discussion

different structural deviations presumably related to the length of the modeled RNA

that directly interfere with the reversible conformational change and the subsequent

translocation mechanism along the RNA chain. In particular, the partial expulsion of

the ssRNA from the complex with the protein domains and the wrong directionality

observed in four of the six simulated systems were the main indicatives that reflected

the necessity to model a longer RNA chain with the aim of understanding this

specific structural transition.

In this context, the building of a longer ssRNA chain based on structural

alignments for the closed-ATP system was carried out, leading to a putative

structure that contained a polyuracil unit of 10 nucleotides. Subsequently, a

WTmetaD simulation on this new system was performed, experiencing a transition

to the open conformation and indicating that the choice of linear path variables as the

set of CV’s might not be suitable for the modeling of the conformational transition.

The limitations of the linear path variables, are mainly related with the boundaries

for the Z values. In general, the path that connects both minima of NS3h conformers

is curved in the space of the linear path variables. This implies that a restrained

range for Z values would lead to a trajectory that is thermodynamically unfavored.

However, a larger range for Z values will allow a wider exploration of regions on

the free-energy landscape that are not relevant for this specific mechanism. For this

reason, the implementation of an advanced set of CV’s such as the path collective

variables [69] was done with the aim of modeling this complex conformational

transition that involves several changes for the contacts between protein and RNA

residues. Consequently, a WTmetaD using path collective variables as CV was

performed, presenting a conformational transition to the open structure without

experiencing a recrossing towards the initial closed one. From this simulation, there

is no a quantitative estimation of the relative free-energy values since it requires

a longer time to reach convergence. In this regard, an additional sampling that

combines WTmetaD with HREX simulations was performed, getting similar results

to the previous case but showing some differences in the energy barrier that must

be overcome for the conformational change of the ATP forms. The advantage of

implementing WTmetaD-HREX is that it allows a more exhaustive exploration of

the free-energy landscape but at the same time maintains the system closer to the

equilibrium.
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4. Enhanced sampling of NS3h conformational changes

Total simulation time

Table 4.1: Total simulation time for the calculations reported in Chapter 4

System # runs time/run total time
(µs) (µs)

NS3h-ssRNA (6 nt)
WTmetaD
CV: linear path

open-apo 1 0.6 0.6
closed-apo 1 0.6 0.6
open-ADP 1 0.6 0.6
closed-ADP 1 0.6 0.6
open-ATP 1 0.6 0.6
closed-ATP 1 0.6 0.6

Subtotal time 3.6

NS3h-ssRNA (10 nt)
WTmetaD
CV: linear path

closed-ATP 1 0.85 0.85

WTmetaD
CV: path collective

closed-ATP 1 1.1 1.1

WTmetaD/HREX
CV: path collective

closed-ATP 1 0.2×16 reps. 3.2

Subotal time 5.15

Total time: 8,75
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L CHAPTER 5
Conclusions and Perspectives

5.1 Conclusions

A novel approach to describe the HCV NS3h translocation along ssRNA based on

computer simulations was presented. From this work, the characterization of the

equilibrium properties for the helicase conformers in complex with ssRNA in the apo,

ADP and ATP forms, as well as a detailed analysis of the conformational transitions

that are involved in the translocation mechanism were carefully described.

w Insights from plain MD simulations. As an initial approach of this study,

the three different NS3h molecular forms (apo/ADP/ATP) in complex with

a short ssRNA chain of 6 nucleotides in the open and closed conformations

were modeled by means of standard MD simulations at the microsecond

time scale. Only two of these simulations were initialized with an available

experimental structure, while the additional four systems were constructed

based on structural alignments. NS3h has been experimentally isolated in the

apoa and ATPb forms [22, 21, 20], however, in this study the intermediates

after the ATP hydrolysis reaction were included in order to analyze the effect

of ADP in the NS3h complex. This consideration is consistent with the fact

that an X-ray intermediate of the NS3 in complex with ADP has been reported
aIn the open conformation
bIn the closed conformation
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for Dengue virus [77]. During the MD simulations, all experimental and

artificial structures were stable within the microsecond time scale, suggesting

that the AMBER force fields [80, 81, 82, 83, 84, 85, 86, 87] employed in this

application might be suitable for the study of protein-RNA complexes. In

general, the average values obtained for the different parameters analyzed

in the simulations presented small statistical errors, suggesting that MD

simulations were able to provide a converged conformational ensemble

around the equilibrium structures. Additionally, the analysis of the contact

network between solute molecules, as well as the electrostatic interactions

within the Debye-Hückel approximation [100] and the TMD simulations

[57] suggested an ATP-dependent stabilization for the closed conformation,

which is consistent with the fact that it is one of the snapshots experimentally

crystallized, but contradictory to the enthalpy values calculated between

the two helicase conformers in presence of the ATP molecule, suggesting an

Enthalpy-Entropy Compensation effect [106] for the closed conformation. On

the contrary, the structural analysis done on the ADP complexes indicated a

larger stabilizing effect in the open conformation, which is also supported by

the electrostatic interaction and the enthalpy differences, suggesting that after

the ATP hydrolysis reaction the NS3h might be found in the open conformation.

All the exhaustive analysis discussed in this initial approach, has been also

reported in a recent publication [109].

w Enhanced sampling of the conformational transition. Based on these results,

the second part of this study was dedicated to describe the conformational

changes of the NS3h by means of enhanced sampling techniques such as

metadynamics and HREX, in order to provide the mechanistic features of

the transition and estimate the relative free-energy values able to verify a

possible Enthalpy-Entropy Compensation effect for the ATP intermediates.

Six independent WTmetaD simulations initialized with the six different NS3h

structuresc, evidenced the necessity to model the translocation with a longer

RNA chain, due to the radical structural deviations observed in the ATP

forms that impede the progress of the mechanism and the observation of the

wrong helicase directionality in four of the six simulations. For this reason,

cOpen and closed NS3h conformations in complex with ssRNA of 6 nucleotides in the apo, ADP
and ATP forms.
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5.1. Conclusions

the building of longer ssRNA based on a series of structural alignments was

carried out. This procedure was exclusively done on the closed-ATP interme-

diate, providing a putative structure that was modeled by means of WTmetaD

using the same setup implemented in the system of 6 nucleotides, but without

reaching convergence and reflecting some limitations of the initially selected

reaction coordinates (CV’s). Metadynamics is a very robust technique that

accelerates the sampling of rare events disfavoring the already visited states

[114], however, the simulations sometimes face two inconvenients: (i) it is

difficult to obtain a converged result and (ii) it is difficult to choose appropri-

ate reaction coordinates. Both difficulties were encountered in this specific

application, for this reason, the implementation in a further modeling of

an advanced CV such as the path collective variables [69] was necessary

in order to describe properly the complex conformational change of this

helicase. From this simulations, it was observed a conformational transition

to the open structure, without exhibiting large structural deviations in the

protein domains and the RNA chain, and forming inter- and intra-molecular

interactions during this process that might not dramatically interfere with the

translocation process. Nevertheless, the analysis of these simulations were

reported as preliminary results since the enhanced sampling requires a longer

time to reach convergence. Due to this limitation, a final approach based

on the coupling of HREX simulations with WTmetaD using path collective

variables was implemented. Despite this is a strategy at higher computational

cost, it allows a more extensive exploration of the free-energy surface and

keeps the system closer to equilibrium. From this simulation, it was observed

a transition to open conformation for half of the replicas (i.e 8 reps.), however,

the analysis was also reported as preliminary results since they need a longer

time to reach convergence. This work is still in progress but will hopefully be

concluded in a few months so as to be submitted to a journal for publication.

From this PhD thesis, the total simulation time including all the systems and

the different theoretical approaches was approximately 18 µs (see Tables 3.9 and

4.1 for a complete summary), providing a detailed overview of the equilibrium

properties and the different mechanistic features of this important enzyme. Due to

the extensive analysis presented in this work, an hypothetical mechanism of the

NS3h translocation along the ssRNA can be proposed (see also Figure 5.1). Thus,
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Figure 5.1: Proposed mechanism for the NS3h translocation along ssRNA. A
quantitative estimation of the free-energy for the NS3h complexes in presence of
ATP would confirm which conformation is thermodynamically more favorable.

the order of the events during every cycle of the mechanism should be driven in

the following manner: the initially open-apo structure binds the ATP molecule

inducing a conformational change to the closed conformation. Once the hydrolysis

reaction is yield (producing phosphate and ADP molecules) the open conformation,

this time in complex with ADP, should be recovered shifting by one nucleotide

the contacts between protein and RNA in the 3’→5’ direction. Then due to the

weakerd interaction between ADP-protein, the ADP leaves the complex leading to

the open-apo structure completing in this way one translocation cycle.

5.2 Perspectives of this PhD thesis

With the aim of obtaining a quantitative estimation of the free-energy for the

open and closed conformation, it is necessary to extend the simulation time of

the WTmetaD/HREX using the path collective variables for the system with the

RNA long 10 nucleotides. Nonetheless, some additional details must be taken into

account.

Modeling the conformational change open ↔ closed, based on the available

crystal snapshots, implies several changes for the contacts between D2 and the RNA

dcompared with ATP, see also Table (3.7)
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Figure 5.2: Cartoon representation for the conformational changes closed
 open.
k1 and k2 correspond to the rate constant associated to the NS3h closing changing
the contacts between D1-RNA and D2-RNA respectively.

backbone, but not for D1. However, in order to follow an inchworm-like mechanism

during the translocation/unwinding process, it is also necessary a change of the

contacts between D1 and RNA in one of the steps involved in the complete cycle.

In this context, the modeling of the backward opening is crucial to understand

the progress of the mechanism (Figure 5.2). For this purpose, the modeling by

means of enhanced sampling using path collective variables as CV’s can be applied,

generating the reference frames of the path collective through TMD simulations that

would have as a target the open structure with different contacts between D1 and

RNA. This additional approach would be able to explain some features still unclear

about the ATP forms, but it would also provide new details about the inchworm

movement of the NS3h.

Additionally, in the last years NS3h have emerged as an alternative target to

improve the current HCV therapies [19]. For this reason, the understanding of the

translocation mechanism along the RNA might be able to provide the basis for the

future design of a novel antiviral treatment.
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Appendix A

Electrostatic interaction:

Figure 1: Protein residues within 6 Å from the RNA chain
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Table 1: GDH (kcal/mol) between RNA and protein residues located within 6 Å
from the RNA chain. Errors are calculated from binning analysis (bin width: 80 ns)
and are reported in parenthesis. Error bars lower than 0.05 kcal/mol are not shown.

Apo ADP·Mg2+ ATP·Mg2+

Closed Open Closed Open Closed Open
K371 -1.8 R393 -1.9 K371 -1.9 R393 -1.9 R393 -1.9 R393 -2.0
R393 -1.5(0.1) K272 -1.0 R393 -1.4 K272 -1.0 K371 -1.8 K272 -1.0
K272 -1.0(0.1) K371 -0.6(0.1) K272 -1.0 K371 -0.8 K272 -0.9 K371 -0.9
K551 -0.4 K551 -0.5 K551 -0.4 K551 -0.4 K551 -0.4 K551 -0.5
K372 -0.4 S231 -0.2 K372 -0.4 T269 -0.2 K372 -0.4 T269 -0.2
T411 -0.2 T269 -0.2 T411 -0.2 S231 -0.2 T411 -0.2 V232 -0.2
T269 -0.2 V232 -0.2 T269 -0.2 T411 -0.2 T269 -0.2 S231 -0.2
S231 -0.2 G255 -0.2 S231 -0.2 V232 -0.2 V232 -0.2 T411 -0.2
G255 -0.2 T254 -0.2 G255 -0.2 G255 -0.2 G255 -0.2 G255 -0.2
V232 -0.2 T411 -0.1 S370 -0.2 T254 -0.1 S231 -0.2 K372 -0.2
S370 -0.2 K372 -0.1 V232 -0.2 Y392 -0.1 S370 -0.2 T254 -0.1
T254 -0.2 T416 -0.1 T254 -0.1 K372 -0.1 Y392 -0.1 Y392 -0.1
T298 -0.1 G271 -0.1 Y392 -0.1 A233 -0.1 T254 -0.1 T416 -0.1
Y392 -0.1 Y392 -0.1 H369 -0.1 N556 -0.1 H369 -0.1 A233 -0.1
G394 -0.1 A233 -0.1 T298 -0.1 G271 -0.1 Q434 -0.1 W501 -0.1
H369 -0.1 T298 -0.1 G394 -0.1 G417 -0.1 T298 -0.1 G271 -0.1
A233 -0.1 W501 -0.1 T448 -0.1 T298 -0.1 A233 -0.1 T298 -0.1
G271 -0.1 V256 -0.1 G271 -0.1 A275 -0.1 G271 -0.1 N556 -0.1
A275 -0.1 Y270 -0.1 A233 -0.1 V256 -0.1 A275 -0.1 V256 -0.1
V256 -0.1 A275 0 A275 -0.1 T416 0 N556 -0.1 A275 0
Q434 0 G417 0 V256 -0.1 Y270 0 V256 -0.1 Y270 0
Y270 0 G554 0 N556 0 G394 0 G394 0 G394 0
Y391 0 G394 0 Y270 0 L274 0 Y270 0 G417 0
L274 0 L274 0 L274 0 Q552 0 L274 0 H369 0
N556 0 N556 0 S297 0 S370 0 S297 0 L274 0
Y502 0 S297 0 Y391 0 T433 0 T448 0 S370 0
S297 0 T433 0 T450 0 T448 0 T450 0 A413 0
T448 0 S370 0 Y502 0 H369 0 Y502 0 S297 0
T450 0 T448 0 A413 0 S297 0 Q552 0 T433 0

W501 0 Y391 0 G417 0 Y502 0 T433 0 T448 0
A413 0 A497 0 Q552 0 A497 0 W501 0 T450 0
A497 0 H369 0 T416 0 A500 0 Y391 0 A497 0
A500 0 T450 0 W501 0 T450 0 A413 0 Q434 0
G417 0 Y502 0 A497 0 W501 0 A497 0 Y391 0
T416 0 A500 0 A500 0 Y391 0 A500 0 A500 0
T433 0 Q434 0 T433 0 A413 0 G417 0 Q552 0
T449 0 Q552 0 V432 0 Q434 0 V432 0 T449 0
V432 0 T449 0 T449 0 V432 0 T416 0 V432 0
Q552 0 A413 0 G554 0 G554 0 T449 0 Y502 0
G554 0 V432 0 P230 0.1 T449 0 G554 0 G554 0
P230 0.1 P230 0.1 Q434 0.1 P230 0.1 P230 0.1 P230 0
E503 0.2 E503 0.1 E503 0.2 E503 0.2 E503 0.2 E503 0.1
D412 0.5 D412 0.5 D555 0.5(0.1) E493 0.5 D555 0.4 D555 0.4
D296 0.6 E493 0.6 D412 0.6 D412 0.5 D412 0.5 E493 0.5
E493 0.6 D555 0.7 D296 0.6 D296 0.6 D296 0.6 D412 0.5
D555 0.8(0.1) D296 0.8 E493 0.6 D555 0.7 E493 0.6 D296 0.6
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Appendix B

Hydrogen Bonds:

Figure 2: Representation of a hydrogen bond interaction. Black solid line indicates
the angle between A-D-H, while blue dashed line shows the non-covalent interaction
between A and H

Geometric criteria to count Hydrogen bonds:

w Distance D-A ≤ 3.5Å.

w Angle between A-D-H ≤ 30◦
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Table 2: Average number of solute hydrogen bonds, for the first and second halves
of the simulation. The abbreviation "lig" denotes ligand.

Ligand Apo ADP·Mg2+ ATP·Mg2+

1st half Closed Open Closed Open Closed Open

D1-D2 5.5 ± 0.6 2.3 ± 0.2 4.0 ± 0.3 2.3 ± 0.0 2.5 ± 0.2 0.4 ± 0.0
D1-D3 2.5 ± 0.1 1.9 ± 0.1 1.5 ± 0.1 1.7 ± 0.1 2.3 ± 0.1 1.8 ± 0.1
D2-D3 7.5 ± 0.3 6.3 ± 0.2 7.2 ± 0.2 6.9 ± 0.2 5.1 ± 0.2 6.7 ± 0.2
D1-D1 99.3 ± 0.4 98.7 ± 0.4 95.4 ± 0.7 96.4 ± 0.3 96.1 ± 0.2 95.3 ± 0.9
D2-D2 114.5 ± 0.7 118.4 ± 0.2 112.1 ± 1.1 115.8 ± 1.0 120.7 ± 0.3 113.5 ± 0.5
D3-D3 104.6 ± 0.4 105.0 ± 0.2 105.8 ± 0.8 103.9 ± 0.5 104.5 ± 0.3 105.0 ± 0.4
D1-lig - - - - - - 6.9 ± 0.3 7.0 ± 0.1 7.7 ± 0.1 7.8 ± 0.1
D2-lig - - - - - - 0.7 ± 0.2 2.7 ± 0.2 4.3 ± 0.1 1.0 ± 0.3
D3-lig - - - - - - 0 0 0 0
Lig-lig - - - - - - 1.0 ± 0.0 0 0.1 ± 0.0 1.0 ± 0.0
RNA-lig - - - - - - 0 0 0 0
D1-RNA 5.1 ± 0.3 3.8 ± 0.1 3.9 ± 0.1 3.8 ± 0.1 4.2 ± 0.1 3.8 ± 0.0
D2-RNA 7.0 ± 0.4 5.4 ± 0.3 7.4 ± 0.1 5.5 ± 0.0 9.1 ± 0.2 5.4 ± 0.2
D3-RNA 0.4 ± 0.1 3.7 ± 0.5 0.8 ± 0.1 2.1 ± 0.1 1.0 ± 0.1 3.0 ± 0.1
RNA-RNA 4.1 ± 0.2 3.7 ± 0.2 4.0 ± 0.1 5.1 ± 0.1 4.3 ± 0.1 3.2 ± 0.1

Total 350.5 ± 1.3 349.2 ± 0.8 350.7 ± 1.6 353.2 ± 1.2 361.9 ± 0.6 347.9 ± 1.2

∆HBoc -1.3 ± 1.5 2.5 ± 2.0 -14.0 ± 1.4

2nd half Closed Open Closed Open Closed Open

D1-D2 5.5 ± 0.4 1.0 ± 0.2 4.1 ± 0.5 2.3 ± 0.0 3.1 ± 0.4 0.4 ± 0.1
D1-D3 2.5 ± 0.2 2.0 ± 0.3 1.9 ± 0.3 1.8 ± 0.1 2.2 ± 0.1 1.8 ± 0.1
D2-D3 7.8 ± 0.4 6.3 ± 0.1 7.3 ± 0.4 6.3 ± 0.2 5.2 ± 0.0 6.1 ± 0.1
D1-D1 97.7 ± 0.1 98.6 ± 0.6 95.5 ± 0.6 96.9 ± 0.2 95.1 ± 0.3 94.3 ± 0.5
D2-D2 112.8 ± 0.6 119.0 ± 0.8 113.9 ± 1.1 116.4 ± 0.7 119.7 ± 0.9 115.7 ± 0.6
D3-D3 104.8 ± 0.7 105.8 ± 0.5 105.4 ± 0.6 104.5 ± 0.3 104.8 ± 0.2 103.6 ± 0.2
D1-lig - - - - - - 8.9 ± 0.3 7.0 ± 0.1 7.7 ± 0.1 8.4 ± 0.3
D2-lig - - - - - - 1.2 ± 0.3 2.4 ± 0.6 4.5 ± 0.1 0.3 ± 0.1
D3-lig - - - - - - 0 0 0 0
Lig-lig - - - - - - 1.0 ± 0.0 0 0.1 ± 0.0 1.0 ± 0.0
RNA-lig - - - - - - 0 0 0 0
D1-RNA 5.2 ± 0.1 4.3 ± 0.1 4.3 ± 0.3 4.0 ± 0.1 4.5 ± 0.2 3.9 ± 0.0
D2-RNA 7.7 ± 0.3 4.0 ± 0.4 7.4 ± 0.1 5.6 ± 0.1 9.5 ± 0.1 6.0 ± 0.2
D3-RNA 0.5 ± 0.1 4.2 ± 0.1 0.7 ± 0.1 1.9 ± 0.2 1.0 ± 0.1 4.0 ± 0.2
RNA-RNA 3.6 ± 0.1 3.0 ± 0.1 3.9 ± 0.2 4.9 ± 0.1 4.5 ± 0.2 3.8 ± 0.3

Total 348.1 ± 1.2 348.2 ± 1.3 355.5 ± 1.7 354 ± 1.1 361.9 ± 1.1 349.3 ± 1.0

∆HBoc 0.1 ± 1.7 -1.5 ± 2.0 -12.6 ± 1.5
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Appendix C

Accurate Multiple Time Step in Biased Molecular Simulations:

This article presents the development of an algorithm that treats smooth biasing

forces within a multiple time step (MTS) scheme. The implementation of this

approach allows a speed up when a expensive set of CV’s is selected to perform en-

hanced sampling simulations, and the computational profit can be significant when

a GPU-based molecular dynamics software is employed. A theoretical framework

to compute the errors is also introduced, which can be used to control the choice of

the integration time step in both single and multiple time step biased simulations.

Although I was not involved in the theoretical discussions for the development

of the MTS approach, I contributed in the practical application of a more realistic

system like the NS3h-ssRNA complex, performing in this particular case a WTmetaD

with an expensive and complex CV’s as the Debye-Hückel interaction energy. From

this application, it is observed a significant improvement in the computational

performance without introducing large errors.
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ABSTRACT: Many recently introduced enhanced sampling techni-
ques are based on biasing coarse descriptors (collective variables) of a
molecular system on the fly. Sometimes the calculation of such
collective variables is expensive and becomes a bottleneck in molecular
dynamics simulations. An algorithm to treat smooth biasing forces
within a multiple time step framework is here discussed. The
implementation is simple and allows a speed up when expensive
collective variables are employed. The gain can be substantial when
using massively parallel or GPU-based molecular dynamics software.
Moreover, a theoretical framework to assess the sampling accuracy is
introduced, which can be used to assess the choice of the integration
time step in both single and multiple time step biased simulations.

■ INTRODUCTION

Molecular simulations allow the dynamics of a system to be
followed at atomistic resolution and thus can be used as virtual
microscopes to investigate chemical reactions and conforma-
tional transitions in molecular systems.1−3 The time scale that
can be simulated with current computers and algorithms is on
the order of a microsecond for a system of a few tens of
thousands of atoms modeled with a typical atomistic empirical
force field. Even though recently developed ad hoc hardware
allowed for a sudden jump in this scale,4 many relevant
processes are still out of range for atomistic molecular dynamics
(MD). A lot of effort has been made in the last decades to
tackle or, at least, to alleviate this issue by means of modified
algorithms known as enhanced sampling techniques. Among
these, a class of methods is based on the idea of biasing a few
carefully selected collective degrees of freedom, known as
collective variables (CVs).5−15 Biased enhanced-sampling
simulations require these descriptors to be computed on the
fly at every simulation time step. The cost of computing the
CVs can in principle slow down the calculation. This is
particularly true for expensive CVs, such as Steinhardt order
parameters,16,17 path CVs,18 template-based CVs,19 property
maps,20 social permutation−invariant coordinates,21 sketch
maps,22 and Debye−Hückel energy,23 just to mention a few.
The calculation of the CVs and of the resulting biasing forces
can be done in dedicated routines of MD software or can be
implemented in external plugins.24−26 It is very difficult to
optimize the calculation of the CVs for several reasons. First,
they sometime involve long-range exchange of information that
makes them difficult to be compatible with domain-
decomposition algorithms. Second, because their definition is
highly system dependent, routines implementing these schemes
should be flexible, thus paying an unavoidable price in terms of
efficiency. On the opposite side, the calculation of physical
force fields is becoming faster and faster thanks to the use of

massively parallel and optimized software27−29 and hardware.4

The overall consequence of this trend is that the calculation of
CVs can be expected to become a relevant bottleneck in
enhanced sampling simulations, particularly in the context of
massively parallel or GPU-accelerated MD.
We here introduce a scheme based on multiple time step

integration (MTS) in its reference system propagator algorithm
(RESPA) formulation.30,31 More precisely, MTS is used here to
split the integration of biasing forces and physical forces. The
underlying principle is that often the former have a smoother
dependence on atomic positions; thus, they change at a lower
rate and can be integrated with a larger time step. This splitting
allows for a substantial increase in the computational efficiency
of biased sampling methods. Furthermore, we introduce a
theoretical framework so as to assess the unavoidable time-step
discretization errors. This is done by extending the concept of
ef fective energy32,33 so as to take into account the effect of
biasing forces separately. This scheme allows artifacts that could
be hidden when observing total-energy conservation to be
highlighted. In the Method section, we introduce the
methodology, first reviewing the MTS integration then
introducing the scheme to assess sampling accuracy. We then
present numerical tests of our algorithm on a one-dimensional
model, on alanine dipeptide and on a large protein/RNA
complex, using CVs of increasing complexity. In the latter case,
we show that the use of MTS can greatly improve the
performance without introducing significant errors.

■ METHODS
Multiple Time Step. We consider here a system of Nat

atoms evolving accordingly to biased Hamilton equations in the
form:
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