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Abstract

This thesis deals with the phenomenology of large scale structures in cosmolo-
gies with massive neutrinos. Cosmology has the power to constraint the value
of neutrino masses down to very high accuracy, but to achieve this target
a careful description of the effect neutrinos could induce on cosmological
observables is needed.

With the help on numerical N-body simulations that include a massive
neutrino component we provide results for clustering beyond the linear level
of both cold dark matter and neutrinos, comparing the measurements with
analytical predictions derived in higher order perturbative approaches and
with existing fitting formulae.

We also discuss the abundance in mass of tracers of the cold dark matter
like halos, identifying the right variable, the variance of the cold dark matter
field, that describe the counts measured in the simulations. We highlight the
systematics effects introduced by a wrong parametrization of the halo mass
function, that can bias the inferred cosmological parameters. We present
results for the spatial distribution of halos, focusing on the relation with
the underlying cold dark matter distribution. To this end we computed the
power spectrum of halos in the simulations, finding that the same variable
describing the halo mass function provides a consistent picture of spatial
clustering of the halos.

The analysis is repeated in redshift space and with higher order correlation
functions, the bispectrum in our case, leading to the same conclusions and
reinforcing our results.
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Introduction

Why massive neutrinos?

In the standard ΛCDM cosmological model the three active neutrinos of the
standard model of particle physics are assumed to be massless. Nevertheless,
already in 1998 the Super-Kamiokande collaboration presented evidence of
neutrino oscillations [1], indicating that at least two neutrinos are massive,
and, more recently, new neutrino oscillation experiments seem to exclude
a vanishing flavor mixing angle at more than 10 σ (see, e.g. [2; 3; 4]).
Oscillations experiment are exclusively sensitive to the differences of masses
squared and in a standard scenario with three massive eigenstates the best
fit values for the mass splitting are [4]

∆m2
12 [10−5 eV2] = 7.54+0.26

−0.22 |∆m2
32| [10−3 eV2] = 2.3± 0.06 (1)

The sign of |∆m2
32| is extremely difficult to detect with particle physics ex-

periments, although next generation of experiments, like Hyper-Kamiokande[5],
could in principle be able to do it. The absolute mass scale is therefore still
unknown and this is where cosmology can play a fundamental role.

The Big Bang paradigm predicts the existence of a cosmic neutrino
background, see, e.g. [6]. In the very early Universe, cosmic neutrinos
contributed to the total radiation energy density, affecting the nucleosynthesis
process and therefore the primordial abundance of light elements.

Much later they will become non relativistic and start contributing to
the total matter density in the Universe, both at the background and at
the perturbation level. The study of the effects of neutrino masses on
cosmological observables is of particular relevance for two, distinct, reasons.

First, as we have seen above, the absolute neutrino mass scale remains
unknown, and, in this respect, cosmology plays a key role in its determination,
being gravity sensitive to the total neutrino mass, Σmν , rather than to the
mass splitting.
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Second, an accurate description of massive neutrino effects on LSS is
required to avoid systematic errors in the determination of other cosmological
parameters, as the dark energy density and equation of state, whose mea-
surements represent one of the main goals of current and future cosmological
experiments.

Massive neutrino cosmologies have been extensively studied in the lit-
erature (see [6; 7] for a review). In particular the linear perturbation
theory in the presence of massive neutrinos is well understood and it
is widely used to derive constraints on Σmν and other cosmological pa-
rameters, from present and future CMB and galaxy surveys observations
[8; 9; 10; 11; 12; 13; 14; 15; 16; 17; 18; 19; 20; 21; 22; 23; 24; 25].

However, the increasing precision of cosmological parameter measure-
ments further requires an accurate description of nonlinear corrections, which
can be obtained by means of a direct analysis of the output of N-body simu-
lations accounting for a massive neutrino component and then a comparison
to analytic tools.

More generally, assessing the (mildly) nonlinear regime of structure for-
mation is a crucial problem in cosmology per sé, even in standard scenarios
without massive neutrinos. The nonlinear clustering on dark matter and its
relation to the spatial distribution of dark matter halos, and the galaxies
which reside in them, are extremely rich and complex processes. Future
redshift surveys like Euclid [26] and DESI [27] will be dominated by theoret-
ical systematic errors, coming from our lack of understanding of nonlinear
dynamics, in the determination of cosmological parameters. For massive
neutrinos the Euclid forecast is σmν = 20(30) meV [26; 28] and it strongly
depends on how much we will be able to describe galaxy clustering down to
small scales.

This thesis is devoted to the study of the nonlinear evolution of the large
scale structure in massive neutrinos cosmologies. After a brief description
of well known results in the linear regime in the next section , we start
by studying CDM and neutrino clustering on nonlinear scales in Section
2, comparing results from full N-body simulations to Perturbation Theory
and fitting formulae. Then we describe properties of discrete tracers such
as dark matter halos in massive neutrino cosmologies. We continue with a
comparison between analytical predictions and N-body measurements of halo
abundances in the presence of massive neutrinos in Section 3.1, presenting
some implications from cosmological constraints from galaxy clusters number
counts. In Section 3.2 we show result for the spatial distribution of halos and
their clustering properties, i.e. halo bias. It is straightforward to extend these
results to redshift space, as we will see in Section 3.3. Finally we discuss
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higher order statistics like the matter and halo bispectrum in Section 4.

Linear Perturbation theory results

Before entering the discussion let us give a brief summary of linear pertur-
bations theory facts in cosmology with massive neutrinos. This will make
more clear how we get the constraint on neutrino masses from cosmological
probes, some of which are presented at the end of this section.

For excellent reviews of neutrinos in cosmology see [6; 29]. For our pur-
poses, the key elements are as follows. Neutrinos decouple in the early Uni-
verse, just before the onset of Big Bang Nucleosynthesis, as ultra-relativistic
particles. They then behave as relativistic degrees of freedom, which not only
imply they contribute with photons to the total radiation energy density in
the Universe but also that their density fluctuations do not grow. Neutrinos
become non-relativistic when their mean thermal energy drops below the
mass, at a redshift znr given by

1 + znr(mν) ' 1890
( mν

1 eV

)
, (2)

where mν is the neutrino mass. Thereafter, the total dark matter (DM)
background density is given by

Ωm = Ωc + Ωb + Ων , Ων =

∑
mν

93.14h2 eV
. (3)

At the perturbation level the impact of massive neutrinos was first
clearly explained in 1980 by [30]. Since neutrinos are relativistic particles
at decoupling, their equilibrium phase space distribution, in a homogeneous
Universe, remains a relativistic Fermi-Dirac distribution independent of the
subsequent evolution,

fo(q) =
1

1 + exp(q/aTν)
, (4)

where q = ap is the comoving momentum and Tν is the neutrino temper-
ature that drops as the scale factor a. Therefore a priori neutrinos cannot
be treated as a (perfect) fluid as we usually do for CDM, and there is no
reason to assume anisotropic stresses to be zero. This implies that neutrinos
perturbations should be computed by solving the Vlasov equation of the
perturbed distribution function

f(q, x, ~̂n, t) = fo(q)[1 + Ψ(q, x, ~̂n, t)] (5)
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Figure 1: Evolution of a linear perturbation of wavenumber k = 1h−1 Mpc
for CDM(black), baryons(red), and neutrinos(blue).

whose moments represent density, pressure and so on. The Vlasov equation
can be expanded in an infinite hierarchy of terms, and then truncated to
achieve a given precision. This is the way Boltzmann codes like CAMB[31]
or CLASS[32] solve for the evolution of massive neutrinos at the linear level.
However one could show that long after the non relativistic transition, and
on sufficiently small scales, higher order moments are suppressed with respect
to the energy density and a fluid approximation can be employed, i.e. only
the first two equation of the hierarchy [33; 34]. Then by analogy with sound
waves propagation with finite speed of sound we can say that Fermi-Dirac
thermal velocities, vth, introduce a typical scale, the free streaming length
λFS, defined as the distance traveled by a massive neutrinos between two
different times. As relativistic particles neutrinos moves almost at the speed
of light and the free streaming scale is the Hubble scale, but then, after the
non-relativistic transition

λFS(mν , z) = a

(
2π

kfs

)
' 7.7

H0(1 + z)

H(z)

(
1 eV

mν

)
h−1 Mpc . (6)

Density fluctuations on scales smaller than λFS are washed out, while on
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scales much larger neutrinos behave as cold dark matter. In Figure 1 we plot
the evolution of linear perturbations on a small scale, k = 1h−1 Mpc, for
the three fluids filling our Universe (photons are not shown for simplicity):
while CDM perturbations start growing much earlier than others, at horizon
entry, baryons initially oscillate in the photon-baryon plasma until decoupling
and then catch up very fast with CDM. Neutrinos (in this case mν = 0.17
eV) oscillates and are suppressed because of free streaming and after the
non-relativistic start to grow but cannot catch up with CDM and baryons.

It is convenient to think of a perturbation δm in the total matter field
as a weighted sum of the fluctuations δcdm(= δb) and δν in the CDM and ν
fields:

δm ≡ (1− fν) δcdm + fν δν , where fν ≡ Ων/Ωm. (7)

and in what follows we will use Pmm(k) to denote the power spectrum of
the total field, Pcc(k) and Pνν(k) the power spectra of the CDM (+ baryons)
and ν fields, and Pνc(k) the cross-power between the two fields. Therefore,

Pmm(k) = (1− fν)2 Pcc(k) + f2
νPνν(k) + 2fν(1− fν)Pνc(k). (8)

As we already saw, the growth of neutrino fluctuations is governed by their
free streaming length λFS, below which perturbations are washed out. The
free streaming wavenumber has a minimum at z = znr

knr = kfs(znr) ' 0.018Ω1/2
m

( mν

1 eV

)
hMpc−1 . (9)

which is the largest scale can be affected by the presence of neutrino per-
turbations. This scale is typically larger than the scale at which nonlinear
effects manifest themselves at low redshifts. At sufficiently large k, there is
no power in the ν field, so Pmm → (1− fν)2 Pcc, thus,

Pmm(k) =

{
Pcc(k) if k < knr

(1− fν)2 Pcc(k) if k � knr .
(10)

that means Pcc(k) ≥ Pmm(k) on all scales, see left panel of Figure 3. These
limiting cases suggest that the CDM and matter fields are actually rather
similar when fν � 1 is small. One measure of this is the cross-correlation
coefficient

rcm ≡
Pcm√
PccPmm

. (11)

Since

Pcm = 〈δcδm〉 = 〈δc((1− fν)δc + fνδν)〉 = (1− fν)Pcc + fνPcν , (12)
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Figure 2: Left panel: linear power spectrum in cosmologies with massive
neutrinos at z = 0. Continuous lines show the total matter power spectrum,
Pmm, dashed lines the cdm contribution to it , Pcc(k), while the dotted ones
the neutrino auto power spectrum, Pνν(k). Lower panel: ration between
Pmm(k) (or Pcc(k)) and the power spectrum in a baseline ΛCDM cosmology.
All the models share the same value of Ωm, ns and As, assuming Planck2013
best fit parameters [35].

and √
Pcc Pmm =

√
(1− fν)2P 2

cc + f2
νPννPcc + 2fν(1− fν)PcνPcc

= (1− fν)Pcc + fνPcν +O(f2
ν ) = Pcm +O(f2

ν ) , (13)

differences from rcm ' 1 only appear at second order in fν .
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Figure 3: Left panel: Ratio of the CDM and total matter power spectra in
a given cosmology that includes massive neutrinos. The asymptotic regime
of equation Eq. (10) is reached at very large k. Right panel: growth rate of
CDM perturbations at z = 0 in cosmologies with massive neutrinos. Scale
dependence of f on intermediate is also function of redshift, not only of
neutrino masses.

Massive neutrinos also have back-reaction effects on the evolution of
CDM perturbations. On the largest scales we saw that neutrinos behave as
CDM and therefore nothing changes in the growth of structure. On scales
much smaller than the free streaming length, k � knr neutrinos are washed
out and we could write for CDM

δ̈c + 2H(t)δ̇c −
3

2
H(t)2(1− fν)δc = 0 (14)

which results from neglecting the neutrino contribution to the Poisson equa-
tion. The solution to the above equation reads, during the matter dominated
era, [30]

δc ∝ a1− 3
5
fν for k � knr. (15)

On intermediate scales, more relevant to current and future observations,
CDM perturbation interpolates between the two asymptotic regimes resulting
in scale dependent linear growth factor D(k, a). We can put things together
and compute the net effect of massive neutrinos on observables like the
matter power spectrum. If the total matter density in eq. (7) is fixed, then
the total matter power spectrum in a massive neutrino model, Pmm(k; fν),
is reduced by a constant factor on scales k � knr and for small values of fν
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[36; 6]
Pmm(k; fν)

Pmm(k; fν = 0)
' 1− 8fν , (16)

while from Eq. (10) and Eq. (8), it follows that the suppression for the CDM
power spectrum, Pcc, is given by a factor ∼ (1− 6fν). The difference in the
suppression between the two power spectra is shown in the right panel of
Figure 2. In an analysis of a galaxy survey this suppression is exactly what
is used to constraints neutrino masses. It is also be important, especially for
the discussion of redshift space distortions in Section 3.3, to quantify the
effect of massive neutrinos on the linear growth rate defined, for CDM, as

fc(k, a) ≡ d lnDc(k, a)

d ln a
. (17)

In the first place, in massive neutrino scenarios, the growth rate becomes
scale-dependent, as a natural consequence of the scale-dependent growth
function Dc. In particular, the small-scale asymptotic suppression expected
in linear theory is given by [30]

fc(k)

fΛCDM

k�kFS−→ 1

4

(
5−

√
25− 24 fν

)
' 1− 3

5
fν , (18)
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Figure 5: Constraints on neutrino masses from analyses of galaxy clustering
in BOSS DR11[39]. On the left, taken from [40], results in real space using
clustering wedges, and on the right results form multipoles in Fourier space
[23].

and corresponds to a 2.4% effect for a Σmν= 0.53 eV model. However, for
the same model, the suppression is below the percent level on large scales,
k . 0.05hMpc−1. In the case of the total matter growth rate, fm(k), the
suppression, again for the Σmν= 0.53 eV, reaches the 1% level at slightly
smaller scales, k ' 0.05hMpc−1 (linear theory predictions for both the ratio
fc/fΛCDM and fm/fΛCDM are shown as dashed curves in Figure 3). It is
also important to notice that on intermediate scales the scale dependence
induced on fc is also function of redshift, non just of neutrino masses.

Finally we recap some constraints on neutrino masses from large scale
structures datasets. CMB anisotropies measured from the Planck Satellite,
including CMB gravitational lensing, combined with other probes of the
expansion rate of the Universe yields

∑
mν < 0.234 eV (95%) [37], corre-

sponding to the blue line of the left panel of Figure 4. Even if at the time
of photon decoupling neutrinos were still relativistic, nevertheless CMB is
sensitive to neutrino masses through lensing, Integrated Sachs-Wolf effect
and Silk damping.

The most stringent bound on neutrino masses comes from combination
of CMB data and Ly-α forest power spectrum [38],

∑
mν < 0.12 eV (95%),

shown in the right panel of Figure 4. Ly-α forest is so powerful in constraining
neutrino masses since it probes small scales where, as we have seen, massive
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neutrinos effects are larger.
Analyses of the full shape of the galaxy power spectrum or of the two-

point correlation function also put constrains on the value of neutrino masses.
However lack of understanding of nonlinear physics responsible for the
clustering pattern we observe in the galaxy distribution make these kind on
analyses more difficult. As an example Figure 5 shows constraints on neutrino
masses from the CMASS sample of BOSS DR11, in the left panel using
measurement in real space[40], and on the right using the same data but in
Fourier space[23]. There is some tension, at more the 1−σ level, between the
two, mainly coming from different assumptions in the theoretical modeling.
In particular the analysis in [23] stands alone, with the controversial exception
of galaxy clusters [41; 42], and points towards larger value of neutrino masses,∑
mν = 0.34± 0.15 eV.
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The nonlinear regime
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Chapter 1

N-body simulations including
massive neutrinos

There are two main ways of implementing massive neutrinos in standard
N-body simulations. One is the so called grid-method[43; 44], in which
neutrinos only contribute to the long distance force through the particle
mesh (PM) method, providing a fast implementation of the matter evolution
in neutrino cosmologies, but with the limitation that it does not properly
capture the non-linear neutrino regime. Moreover the use of the grid method
is, thus, only justified on regimes where the non-linear neutrino effects are
negligible (at z > 2 and on large linear scales [45; 44; 46])

The other method includes neutrinos in the N-body as particles [44; 45],
and it is the one we employ in this work. The simulations have been
performed using the tree particle mesh-smoothed particle hydrodynamics
(TreePM-SPH) code gadget-3, an improved version of the code described
in [47], specifically modified in [44], to account for the presence of massive
neutrinos. This version of gadget-3follows the evolution of CDM and
neutrino particles, treating them as two distinct sets of collisionless particles.
In this implementation, neutrinos differ from CDM only because at the
starting redshift of the simulation they receive an extra thermal velocity
component obtained by random sampling the neutrino Fermi-Dirac linear
momentum distribution. To properly sample the distribution a (large)
minimum number of neutrino particles is required, Nν > 5123. The initial
conditions of the N-body simulations have been generated at z = 99, using the
Zeldovich approximation for both the CDM and the neutrino particles. The
same random phases as for the cold dark matter are used to ensure adiabatic
initial conditions. The transfer functions have been obtained through CAMB
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H-group
∑
mν [eV] Ωc fν σ8,mm σ8,cc mc

p[h
−1M�]

Set A

H0 0.0 0.2208 0.000 0.832 0.832 5.60× 1011

H3 0.3 0.2142 0.024 0.752 0.768 5.46× 1011

H6 0.6 0.2076 0.048 0.675 0.701 5.33× 1011

Set B

H0s8 0.0 0.2208 0.000 0.675 0.675 5.60× 1011

H0s8-CDM 0.0 0.2208 0.000 0.701 0.701 5.60× 1011

H6s8 0.6 0.2076 0.048 0.832 0.864 5.33× 1011

Table 1.1: Summary of cosmological parameters and derived quantities for
the six models assumed for our N-body simulations. The values Ωb = 0.05,
Ωm = 0.2708, h = 0.7, ns = 1 are shared by all models.

and we have incorporated the baryon effects (for instance the BAO wiggles
in the P (k)) into the CDM particles by using a transfer function that is a
weighted average of the transfer functions of the CDM and the baryons

Tcb(k) =
Ωc Tc(k) + Ωb Tb(k)

Ωc + Ωb
(1.1)

Given the large amount of memory required by the simulations, baryon
physics is not included. Nevertheless we expect baryonic effects to be mostly
insensitive to neutrinos being massless (CDM) or massive, and therefore not
relevant when we compare the effect of massive neutrinos on LSS measure-
ments to the same quantities measured in a standard cosmological model. In
addition we expect also that any additional effect produced by the interplay
of neutrinos with baryon physics should be of higher order. This is supported
also from[48] which shows that the neutrino induced suppression in the
total matter power spectrum is very much the same also when neutrinos are
considered in the presence of baryons. We will make use of two different
group of simulations, the H-group presented in [49; 50; 51] and the DEMNuni
simulation suite of [52].

The first group includes simulations for three different value of masses:∑
mν = 0, 0.3, 0.6 eV; from now on, we will use mν to mean

∑
mν . Inside

the H-group a first set of simulations (Set A) shares the following cosmological
parameters: Ωb = 0.05, ΩΛ = 0.7292, h = 0.7, ns = 1 and As = 2.43× 10−9,
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DEMNUni
∑
mν [eV] Ωcdm fν σ8,mm σ8,cc mc

p[h
−1M�]

S1 0.00 0.2700 0.000 0.846 0.846 8.27× 1010

S2 0.17 0.2659 0.013 0.803 0.813 8.16× 1010

S3 0.30 0.2628 0.022 0.770 0.786 8.08× 1010

S4 0.53 0.2573 0.040 0.717 0.740 7.94× 1010

Table 1.2: Summary of cosmological parameters and derived quantities for
the four models assumed for the DEMNUni simulations. The values of σ8

have been computed at z = 0, and Ωb = 0.05, Ωm = 0.32, h = 0.67, ns = 0.96
are shared by all the models.

with zero curvature. The total matter density is also fixed to Ωm = Ωb+ Ωc+
Ων = 0.2708, such that the cold dark matter density changes as Ων varies. In
addition, the shared value for the amplitude of initial fluctuations As results
in different values for the amplitude of cold and total matter perturbations
at late times, parametrized, for instance, respectively by σ8,cc and σ8,mm.

A second set of three simulations (Set B) explores possible degeneracies
of the initial amplitude As with the value of mν , still keeping Ωb, Ωm, h
and ns = 1 at the same values. In Set B, tow simulations describe two
massless neutrinos cosmologies where we changed the initial amplitude As to
match the σ8 of the DM component and CDM component of the mν = 0.6
model in Set A. The third one has mν = 0.6 eV but matches σ8,cc to the
massless neutrino model in Set A. Table 1.2 summarizes the different sets of
parameters of the H-group.

For each model we performed eight realizations with different random
seeds of a cubic box of linear size 1000 h−1 Mpc with 5123 CDM particles
and 5123 neutrino particles, so that for each model we reach a combined
effective volume of 8h−3 Gpc3. Auto and cross power spectra of the different
species (CDM, DM, neutrinos) are computed at z = 2, 1, 0.5 and 0, where
halo catalogs are also produced.

The second group of simulations have been presented in [52]. The
DEMNUni simulations have been conceived for the testing of different probes,
including galaxy surveys, CMB lensing, and their cross-correlations, in
the presence of massive neutrinos. To this aim, this set of simulations
is characterised by a volume big enough to include the very large-scale
perturbation modes, and, at the same time, by a good mass resolution to
investigate small-scales nonlinearity and neutrino free streaming. Moreover,
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Figure 1.1: Left panel: comparison between the DEMNUni runs and
previous, recent simulations of massive neutrino cosmologies in terms of
CDM and neutrino particle mass resolution against simulation volume. Grey
diagonal lines indicate the number of CDM particles. Right panel: same
as left one but for neutrino particle mass resolution. Multiple points for
the same set of simulations reflect the different values of neutrino masses
used ( for simplicity we always assume Ωm = 0.32 and fν = 0.02 to compute
neutrinos particle masses)

for the accurate reconstruction of the light-cone back to the starting redshift
of the simulations, it has been used an output-time spacing small enough that
possible systematic errors, due to the interpolation between neighbouring
redshifts along the line of sight, result to be negligible.

We have produced a total of four different DEMNUni simulations, choos-
ing the cosmological parameters according to the Planck 2013 results [35],
namely a flat ΛCDM model generalised to a νΛCDM , i.e. a massive neu-
trino model, by varying only the sum of the neutrino masses over the values
Σmν = 0, 0.17, 0.3, 0.53 eV (and consequently the corresponding values of
Ων and Ωc, while keeping fixed Ωm and the amplitude of primordial curva-
ture perturbations As). Each DEMNUni simulation is characterised by a
comoving volume of 8h−3 Gpc3, filled with 20483 dark matter particles and,
when present, 20483 neutrino particles. Table 1.2 provides a summary of
the cosmological parameters that characterise the different runs. It shows
as well the derived quantities σ8,mm and σ8,cc corresponding to the r.m.s. of
perturbations on spheres of 8h−1 Mpc, computed respectively for the total
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and CDM matter components at z = 0, and the CDM and neutrino mass
particle resolutions, which vary according to the value of Ωc and Ων .

The state of the art of N-body simulations including massive neutrinos
as particles is shown in Figure 1.1 in terms of mass resolution for the CDM
particles and simulation volume . The two sets of simulation used in this
works corresponds to the blue squares, the H-group, and the red disks, the
DEMNUni suite. With respect to previous simulations, the DEMNUni suite
represents an improvement of about an order of magnitude in terms of
particle number (only [45] considered a larger box, but with considerably
smaller mass resolution).
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Chapter 2

The nonlinear matter power
spectrum

As shown in the beginning of this thesis, the shape of the linear power
spectrum is quite sensitive to the value of neutrino masses. This dependence
becomes even stronger in the mildly and fully nonlinear regimes [45; 48].
Taking advantage of the large DEMNUni simulations volume, in this section
we aim at testing the accuracy of current analytical predictions for the
nonlinear matter power spectrum, Pmm, in the presence of massive neutrinos.
To this end, we measure individually the different components to Pmm in
Eq. (8), from very large scales, k ∼ 0.003hMpc−1, down to fully nonlinear
scales, k ∼ 3hMpc−1, and compare these measurements with PT predictions,
in the mildly nonlinear regime, and fitting functions as halofit [53; 54],
in the fully nonlinear regime1. The goal here is to understand if possible
departures from the linear regime of neutrino perturbations have to be taken
into account for precision cosmology at the % level.

Before proceeding to the comparison with the nonlinear, analytical predic-
tions, however, we take a look at each component and its relative contribution
to the nonlinear Pmm measured from the simulations. Figures 2.1 and 2.2
show the CDM auto power spectrum, (1 − fν)

2 Pcc (dashed curves), the
neutrino auto power spectrum, f2

ν Pνν (dotted curves), and the cross CDM-
neutrino power spectrum, 2 fν (1− fν)Pcν (dot-dashed), as extracted from
the simulations (thick curves), and the corresponding linear predictions (thin
curves). Each plot corresponds to a different value of the neutrino mass in

1While the mass resolution of the DEMNUni simulations would allow to look at much
smaller scales, of the order of k ∼ 10hMpc−1, we do not investigate this regime since it is
dominated by baryon physics [55; 56; 57; 58; 59].
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Figure 2.1: Comparison between the different contributions to the nonlinear
matter power spectrum, (1− fν)2 Pcc (dashed curves), f2

ν Pνν (dotted) and
2 fν (1− fν)Pcν (dot-dashed), as described in the text. All the measurements
at redshifts z = 0, 1, 2 are shown with shades varying, respectively, from
blue to red. Thin coloured curves correspond to the respective linear predic-
tions. Dashed and dotted grey lines on the top panels show the shot-noise
contributions to the CDM and neutrinos power spectra. The shaded area in
the bottom panel shows values below the 1-σ, relative, Gaussian uncertainty

on ∆P (k)/P (k) = 1/
√

2πk2/k2
f , kf being the fundamental frequency of the

simulation box.

the simulations. Within each plot, the top panel shows the adimensional
power spectrum, 4π k3 P (k), the middle panel the ratio of each contribution
to Pmm, in the nonlinear and linear cases, and the bottom panel shows the
ratio (PNL − PL)/Pmm, i.e. the difference between each measured nonlin-
ear component, PNL, in Eq. (8), and the corresponding linear prediction,
PL, compared to the nonlinear Pmm. All the measurements at redshifts
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Figure 2.2: Same as figure 2.1, but for Σmν= 0.3, 0.53 eV.

z = 0, 1, 2 are shown with different shades varying from blue to red. Dashed
and dotted grey lines on the top panels show the shot-noise contributions to
the CDM and neutrinos power spectra, respectively. The shaded area in the
bottom panel show the region below the 1-σ, Gaussian uncertainty on P (k),
given by ∆2P (k) = P 2(k)/(2πk2/k2

f ), kf being the fundamental frequency
of the simulation box (the shot-noise contribution to the variance is ignored
for simplicity).

In the linear regime, k . 0.1hMpc−1, most of the power comes from the
CDM component, with the cross power spectrum term accounting roughly
for a 10% of the total Pmm, and the neutrinos being already negligible (see
middle panels of Figures 2.1 and 2.2). On nonlinear scales, from the lower
panels we notice that most of the nonlinear contribution to Pmm is still given
by Pcc, which is the only component significantly deviating from the linear
prediction, while the other two terms remain linear, and, therefore, less and
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less important as we move to smaller scales2. It should be kept in mind that
each contribution in Figures 2.1 and 2.2 is multiplied by the proper power of
fν or (1− fν), with fν ' O(2− 4%) . We therefore conclude that, on the
scales probed by the DEMNUni simulations, and considering the present
constraints on the sum of neutrino masses, the total nonlinear matter power
spectrum, in massive neutrino cosmologies, can be described at the 1% level
by accounting for the nonlinear evolution of CDM perturbations alone, while
adopting the linear prediction for the other components. This result will be
useful for analytical predictions of the nonlinear Pmm discussed in the next
sections.

2.1 Perturbation Theory

The large volume of the DEMNUni simulations also gives us the possibility
to measure the matter power spectrum in neutrino cosmologies at the 1%
accuracy level, on a very large range of scales, allowing a test of PT predictions
at the accuracy level required by current and futures galaxy surveys.

Several works in the literature have discussed the effects of massive
neutrinos in cosmological perturbation theory beyond the linear level [61; 62;
63; 64; 65; 33; 12; 66; 67; 68]. In these descriptions, the neutrino component is
treated, similarly to the CDM one, as a single perfect fluid, fully characterised
in terms of its density and velocity divergence (see, however, [69; 70] for
a multiple-flow approach to the evolution of neutrino perturbations). The
main difference with respect to the ΛCDM case is represented by an effective
sound speed modifying the Euler equation for the neutrino component, and
accounting for the neutrino velocity distribution. The first consequence, at
the linear level, is a scale-dependent linear growth factor, D(k, z), for both the
CDM and neutrino components. However, the perfect-fluid approximation
fails to provide an accuracy for the neutrino power spectrum below the 10%
level [33]. Nonetheless, as shown in section 2, since the neutrino contribution
to the total matter power spectrum is order of magnitudes smaller than the
CDM one, such discrepancies on the neutrino component alone do not affect
significantly the CDM and total matter power spectra. Therefore, we will

2Let us notice that measurements of the neutrino auto power spectrum and neutrino-
cold matter cross power spectrum shown in both Figures 2.1 and 2.2, present a spurious
contribution at small scales not to be confused with a residual shot noise component. Such
contribution, which scales roughly (but not exactly) as 1/k, is due to the neutrino velocity
distribution and it does not grow with time, so that at low redshift is overtaken by the
expected neutrino power spectrum. A detailed discussion of numerical issues associated
with the set-up of the initial conditions will be discussed in a forthcoming work [60].
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assume the two-fluid approximation for all the comparisons of analytical
versus numerical results in this section.

In addition, even if in the mildly nonlinear regime the effective sound
speed affects as well the mode-coupling at all the orders of the perturbative
expansion, we will follow the same approach adopted by [63]. They have
shown that limiting the neutrino-induced scale-dependence to the linear
growth factor alone (and, therefore, the use of standard EdS- like kernels
in the perturbative expansion) proves to be a quite good approximation to
the full one-Loop PT solution for the nonlinear CDM field, on scales where
one-loop PT is expected to be accurate.

Finally, we will make the additional approximation, already proposed
in [61], of describing the neutrino perturbations by means of their linear
solution. While this is not per se a good assumption [67; 66], it does provide
the correct neutrino contribution to the total matter power spectrum on the
(large) scales where such contribution is relevant.

As a starting point for future, more accurate comparisons, we will consider,
therefore, the following perturbative prediction for the total matter power
spectrum

PPTmm(k) = (1− fν)2 PPTcc (k) + 2 (1− fν) fν P
L
cν(k) + f2

ν P
L
νν(k) . (2.1)

Here, the contribution PPTcc (k, z) represents the nonlinear power spectrum
predicted in perturbation theory along the lines of [63], i.e. it is computed
in terms of its linear counterpart, PLcc(k, z), which provides the correct
linear scale-dependence of the growth factor, but assumes the standard EdS
nonlinear kernels in the perturbative expansion. Differently from previous
works, however, we do not only consider standard, one-loop corrections to PLcc,
but we take into account also standard PT two-loop corrections, as well as
the “regularised” predictions based on the multi-point propagator expansion
of [71], computed using the RegPT code of [72]. However the RegPT code
does not account for the evolution of the scale-dependent linear growth factor,
in general, and in particular in massive neutrino models; therefore the linear
P (k) and σ8 at z = 0 are not sufficient to produce the correct outputs at
redshifts z > 0. To overcome this difficulty, we do not let the code evolve
the P (k, z = 0) using the hard-coded ΛCDM growth factor, but instead we
provide directly as input the linear P (k, z > 0) from CAMB (which therefore
correctly includes the scale-dependent evolution of the linear growth factor),
and cheat the code by pretending that the computation is done at z = 0,
so that it is not required to evolve P (k) with the wrong hard-coded growth
factor.
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Figure 2.3: Perturbation Theory predictions for the cold matter power
spectrum Pcc(k). Each panel shows the measurements from the N-body
simulations, divided by the reference power spectrum given by the two-loop,
standard PT results (black points with error-bars). Also shown are the
corresponding ratios for the linear (green, dotted), one-loop, standard PT
(blue, thin, dashed curve), multi-point propagator expansion at one- (red,
thick, dashed) and two-loops (red, thick, continuous) ass obtained from the
RegPT code of [72].

While this is not the most rigorous approach, it represents a practical
application, to massive neutrino scenarios, of available tools developed within
the ΛCDM framework. As we will see, the gain in accuracy achieved by
recent resummation schemes, applied here to the CDM component alone,
might compensate for the crude approximations that this approach implies.
Clearly we are only considering predictions for the CDM and total matter
power spectra, as these statistics are the relevant ones for galaxy clustering
and weak lensing observations.
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In Figure 2.3 we show the perturbative results against the measurements
at z = 0.5, 1, and for Σmν= 0, 0.53 eV. Error bars are the theoretical
expectation for a Gaussian field, that is

∆P 2(k) =
1

2π k2 kf

[
P (k) +

1

(2π)3 n̄

]2

, (2.2)

where kf ≡ 2π/L is the fundamental frequency of the simulation box, L
being its linear size, and n̄ is the particle number density accounting for the
shot-noise component3.

Let us first notice that, in the ΛCDM case (left panels in Figure 2.3),
the two-loops standard PT does not provide a good fit to the data at low
redshifts [74; 75], while it reproduces fairly well the simulation measurements
at z ≥ 1. Analytic predictions are 1% accurate at z = 1, up to a maximum
wave-number kmax ' 0.3hMpc−1 4.

Turning our attention to the CDM power spectrum in massive neutrino
cosmologies (right panels in Figure 2.3), at all z’s we find approximately the
same accuracy of to the ΛCDM case.

Given a prediction for the CDM power spectrum accurate at the 1%
level up to a given kmax, we check if the perturbative approach of Eq. (2.1)
reproduces, with the same level of accuracy, the total matter power spectrum
measured from the simulations. The results are illustrated in Figure 2.4,
which shows that, indeed, the linear treatment of the Pcν and Pν contributions
to the total Pmm proves to be a very good approximation. The difference in
the accuracy of the predictions between the Σmν= 0.3 eV (left panels) and
the Σmν= 0.53 eV (right panels) cases is again mainly due to the different
values of fν and, therefore, to the different effect of neutrino free streaming on
dark matter perturbations, according to the total neutrino mass: for a given
value of Ωm, a larger value of Σmν not only increases the relative amount of
neutrino perturbations that are washed out below the free streaming scale,
λFS, consequently reducing the contribution of Pν and Pcν to the total Pmm,
but also decreases the factor (1 − fν)2 in front of Pcc in Eq. (2.1), where
the nonlinear evolution of Pcc is in turn suppressed, with respect to the
massless case, by the action of the total gravitational potential sourced both
by CDM and massive neutrinos. Apart from inducing a scale-dependence of
the linear growth factors for CDM and total matter, the main direct product

3The relatively small scatter of data points with respect to the error bars is due to the
specific seed chosen for the random number generator used for the set-up of the initial
conditions [73].

4It is worth noticing that the agreement may also depend on the simulation mass
resolution; we expect that much higher resolutions lead to more power at small scales [76].
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Figure 2.4: Same as Figure 2.3 but for the total matter power spectrum
with Σmν= 0.3 eV (left panels) and 0.53 eV (right panels). Theoretical
predictions have been obtained using Eq. (2.1), i.e. computing nonlinear
correction for CDM only.

of this physical mechanism is represented by a lower amplitude of linear
perturbations at z = 0, where σ8,cc = 0.786, 0.740, and σ8,mm = 0.770, 0.717,
for Σmν= 0.3, 0.53 eV, respectively. We will show in §2.2 that, on scales
much smaller than the so-called turn-over scale, beyond the mildly nonlinear
regime, k > 0.2 hMpc−1, where the growth factor scale-dependence induced
by neutrino free streaming approaches its asymptotic value depending only
on fν (see Eq. (18) in §3.3), the effect of massive neutrinos on Pcc and Pmm
mostly reduces to a mere rescaling of the power spectra in the massless case,
according to the values of σ8,cc and σ8,mm.

Recently the BOSS collaboration released new constraints on neutrino
masses based on measurements of the galaxy power spectrum multipoles

33



in redshift space [23] at the mean redshift z = 0.57. They assumed the
theoretical modellling of the data and hence the constraint of fσ8 to be
robust against variation of the cosmology, justifying this claim in massive
neutrino cosmologies with the use of RegPT on the total Pmm. The outcome
of such a calculation, in principle even less theoretically justified than our
crude assumptions, is very similar to our results obtained via Eq. (2.1); we
have checked that any difference between the two approaches stays below
the 1% level at the scales relevant for current observations.

A test somehow similar to the one presented here is shown in [77],
where the authors compare different PT predictions, including the Time-RG
method of [78; 64], to simulations of CDM particles, modifying only the
background evolution and the initial conditions to account for free streaming
massive neutrinos. They show that PT predictions are in agreement with the
measurements of CDM power spectra, extracted from their CMD simulations,
at the % level, over a similar range of scales as tested in this work. However
they assume a scale-independent growth rate to rescale back the late time
(z = 0) CDM power spectrum, Pcc(k), to the initial redshift of the simulations.
By doing so, the linear dynamics cannot be correctly recovered at any z
other than z = 0.

Finally, the crucial results of this section rely on the discussion of section 2
and the measurements shown in Figures 2.1 and 2.2, that is the contributions
from the two terms, other than Pcc, entering Eq. (2.1), and in particular
from the cross power spectrum Pcν , always remain negligible compared to
Pcc on nonlinear scales, at least for the level of accuracy requested for PT to
be useful.

2.2 Fitting functions

Given the limitations of the perturbative approaches, it is sometimes conve-
nient and/or sufficient to resort to fitting functions for the nonlinear matter
power spectrum. In this section we see how the approximation of linear
evolution for neutrino perturbation can be applied as well to the halofit
prescription [53].

The halofit formula, originally based on stable clustering considera-
tions [79; 80], provides a mapping between the linear power spectrum and
the nonlinear one, which in turn depends on few cosmological parameters,
e.g., Ωm, and several free parameters determined by comparisons against
measurements from N-body simulations. A new, more accurate, version of
the fitting formula has been recently presented by [54]. The revised formula
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is expected to be accurate at the 5% level for k < 1hMpc−1 and z ≤ 10,
while it degrades to the 10% level for k < 10hMpc−1 and z ≤ 3.

In the context of massive neutrinos cosmologies, Ref. [48] provided cor-
rections (controlled by a few, additional parameters) to the original halofit
formula, in order to account for neutrinos effects on the nonlinear total mat-
ter power spectrum5. However, as shown in Figures 2.1 and 2.2, nonlinear
corrections to the cross power spectrum between CDM and neutrinos are
below the percent level, therefore we wonder if, similarly to Eq. (2.1), a
fitting formula for the total matter power spectrum, Pmm(k), could be given
in terms of the linear predictions, PLcν(k) and PLνν(k), and the halofit fitting
formula applied directly to the linear CDM power spectrum, PHFcc (k), that
is

PHFmm(k) ≡ (1− fν)2 PHFcc (k) + 2 fν (1− fν)PLcν(k) + f2
ν P

L
νν(k) . (2.3)

Here PHFcc (k) ≡ FHF [PLcc(k)], where the halofit mapping, FHF , between
linear and nonlinear power spectra does not account for additional corrections
due to massive neutrino physics.

In the left column of Figure 2.5 we show the ratio of the measured CDM
power spectrum, Pcc(k), to the prediction, PHFcc (k). Each row corresponds
to a distinct value of Σmν , while each panel shows the value of this ratio
at redshifts z = 0, 0.5, 1, 1.5, 2, with colour shades ranging from blue to
red. The shaded areas denote the regions beyond the accuracy claimed for
the revised formula of [54]. The left panels of Figure 2.5 show, indeed, not
only that PHFcc (k) provides the expected accuracy, but that it works equally
well for all the considered values of the total neutrino mass. This is essential
to justify our assumption of applying the halofit mapping to the CDM
component alone. Here, we stress again that the version of halofit employed
for FHF [PLcc(k)] does not include any effect due to massive neutrinos on the
CDM clustering, since here we use the halofit version developed by [54]
in the ΛCDM framework. This result is similar to that obtained in §2.1 for
perturbation theory, and it is a crucial step before checking the validity of
the assumptions made in Eq. (2.3).

The right column of Figure 2.5 presents the ratio of the measured total
matter power spectrum, Pmm(k), to the prediction PHFmm(k) of Eq. (2.3). In
addition, dashed curves show the inverse ratio of PHFmm(k) to the specific
halofit extension to massive neutrino cosmologies of [48], denoted as
PHF−νmm (k). We notice that the simple prescription of Eq. (2.3), while avoiding

5The massive neutrino corrections of [48] have been implemented, along the revised
version of [54], in the most recent versions of the camb [31] and class [81] codes.
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Figure 2.5: Left column: ratio of the measured CDM nonlinear power
spectrum, Pcc, to the halofit prediction Pcc,HF from [54], with no addi-
tional parameters to account for neutrino effects. Each panel correspond
to one value of Σmν , with different colours denoting different redshifts:
z = 0, 0.5, 1, 1.5, 2, blue to red. Shaded areas denote the regions beyond
the accuracy expected for the formula. Right column: ratio of the measured
total matter nonlinear power spectrum, Pmm, to the prediction, PHFmm , of
Eq. (2.3).
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Figure 2.6: Comparison between the nonlinear power spectra measured in
two ΛCDM models (blue curves) with σ8 = 0.68 (continuous) and σ8 = 0.70
(dashed) against the same quantity measured in massive neutrinos models
(red curves) with σ8,mm = 0.68 (continuous) and σ8,cc = 0.70 (dashed). All
the quantities are shown as ratios to the power spectrum for a ΛCDM model
with σ8 = 0.83 to compare the shape of the suppression resulting from either
a lower overall normalisation or neutrino effects. Measurements for this
figure only are from the simulations of [49].

introducing additional parameters to the fitting formula of [54], remains well
within the expected halofit accuracy. On the other hand, the discrepancies
between the prediction of Eq. (2.3) and the PHF−νmm (k) fit of [48] are within
4%, with the latter ad-hoc fit not improving particularly over the former.

Here we would like to make some final considerations. The results of this
section rely on the fact that, in the first place, in the absence of strong baryon
physics, on scales much beyond the mildly nonlinear regime, k > 0.2 hMpc−1,
where the linear growth factor scale-dependence induced by neutrino free
streaming approaches its asymptotic value, the extent of the nonlinear
evolution of the power spectrum can be accounted for via the amplitude of
the linear power spectrum, regardless of the physical mechanism responsible
for the amplitude itself. In other terms, on nonlinear scales, we expect a
similar behaviour for the nonlinear matter power spectrum evolved from a
linear power spectrum suppressed by massive neutrino free streaming, as
from a different linear power spectrum with a lower, primordial normalisation.
This assertion can be easily tested with N-body simulations and the results
are shown in Figure 2.6, which makes use, however, of measurements from
the simulations described in [49; 82]. The plot shows ratios, with respect to
the matter power spectrum in a given ΛCDM cosmology with σ8 = 0.83, of
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the matter power spectrum in other ΛCDM cosmologies (with different σ8

normalisations ), and of the CDM and total matter power spectra in massive
neutrino cosmologies, where either the value of σ8,cc or σ8,mm are matched to
the ΛCDM ones. We observe that on nonlinear scales, 0.2 < k < 1 hMpc−1,
a ΛCDM model with a given σ8 is nearly indistinguishable from a massive
neutrino model with the same value for σ8,cc. A lower agreement is found
when the match is done in terms of σ8,mm, since the relevant nonlinear
evolution is indeed given by CDM perturbations. This result represents the
well known degeneracy between Σmν and σ8 at small scales, and implies
that the enhanced, nonlinear suppression of the matter power spectrum on
nonlinear scales can be obtained tuning the normalisation of the linear one,
without resorting to peculiar effects of massive neutrinos. Nonetheless, here
we stress that, such kind of degeneracy can be broken when observing the
power spectra on a much larger range of scales, 0.01 < k < 5 hMpc−1, or
at different redshifts, by means of future large sky galaxy surveys as, e.g.,
Euclid.
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Chapter 3

Dark matter halos

The abundance by mass of galaxy clusters, and of the dark matter halos
which surround them, is a major tool for cosmological parameter estimation
(see [83] for a review). Large catalogs are now available from optical [84], X-
ray [85; 86] and Sunyaev-Zel’Dovich (SZ) observations [87; 88; 41]. Previous
work has shown that, in neutrino-less ΛCDM models, the halo mass function
over a wide range of redshifts and background cosmologies can be scaled to
an almost universal form [89; 90]. This universality is particularly useful, as
it vastly simplifies analyses of observed datasets. However, it has been known
for some time that this sort of universality should only be an approximation
[90; 91], and departures from universality of about the expected level have
indeed been detected in recent simulations [92; 93]. Here we study the issue
of universality, and departures from it, in the context of neutrino cosmologies.
While these are interesting in their own right, this study is motivated in
part by the tension reported by the Planck collaboration between their
temperature and cluster counts measurements [41; 94].

The shape of the (halo) galaxy power spectrum and correlation function
are also sensitive to the underlying cosmology, and can be used to put
strong constraints on cosmological parameters [95; 96]. In particular, such
observables are able to provide upper bounds to the sum of neutrino masses,
[8; 9; 10; 11; 12; 14; 15; 16; 19; 17; 23; 38]. In the Halo Model of large scale
structure [97] these are a consequence of the fact that the spatial clustering
of dark matter halos is biased with respect to that of the total mass, and
the details of how this bias depends on halo mass depend on the background
cosmological model. Therefore, a related goal of this work is to provide an
analysis of halo bias in neutrino cosmologies.

Halos in each simulation, both in the H-group and the in DEMNUni’s,
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are identified by running the Friends-of-Friends (FoF) algorithm [98] on the
CDM particles only, with linking length set to b = 0.2 times the mean CDM-
particle distance. The FoF halo masses are corrected for the statistical noise
arising from particle discreteness following [99], by setting Mhalo = Ncorrm

c
p,

mc
p being the cold dark matter particle mass and

Ncorr = Np (1−N−0.6
p ), (3.1)

where Np is the original number of particles linked together by the FoF
algorithm. For the minimum number of particles per halo considered in
this paper, Np = 32, this correction can be larger than 15%. Since eq. (3.1)
is a correction to Np only, halos of the same mass in different cosmologies
undergo different corrections because mc

p is different in the different runs
(because Ωc increases when Ων decreases). Halo power spectra and cross
halo-matter power spectra are computed applying different cuts in mass.
The shot-noise contribution to the halo power spectra at z = 2 is large, so
we only present results for z = 1, 0.5 and 0.

One might have worried that if neutrinos affect halo profiles, then eq. (3.1)
should be slightly modified in neutrino cosmologies. Simulations have indeed
shown that halos in neutrino cosmologies are less concentrated than their
counterparts in standard ΛCDM models, because their formation time is
delayed due to the suppression of the power spectrum induced by neutrinos
[46; 45]. However this effect is rather small and it can be safely neglected.

Another possible choice would be to run the FoF algorithm on all the
particles in the box. This test is discussed in detail in [49]. The halo power
spectra (for the two mass thresholds defined above), differ by less than 0.5%,
in good agreement with the expectation that CDM particles contribute the
most to the mass of halo and hence to its center of mass. However some
discrepancies are present in the halo mass function, especially at low masses,
produced by spurious assignment of neutrinos to halos. For small halo masses,
in fact, neutrinos are not bound, they free-stream due to their large velocities,
but the FoF finder wrongly assigns them to halos. This contamination is
more important at low neutrino number densities like those considered in this
paper. A proper procedure which excludes unbound neutrino particles would
therefore lead to differences in the halo power spectrum that are expected to
be even smaller than those found in our simple test. For high-mass halos
the contribution of both bound and unbound neutrinos to the total mass is
small, typically less than 0.5%. In the following we will always consider FoF
CDM-only halos, but see [49] for further details and tests.
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3.1 The halo mass funtion

3.1.1 Universality in the CDM component

At any redshift z the comoving number density of halos per unit mass, n(M),
can be written in the following form

n(M) =
ρ

M
f(σ, z)

d lnσ−1

dM
, (3.2)

where

σ2(M, z) =

∫
d3k P (k, z)W 2

R(k) (3.3)

is the r.m.s. of the linear density field smoothed on a scale R with a filter
function W (kR), ρ is the comoving background density. The relation between
the smoothing scale R and the halo mass M is dictated by the choice of the
filter function, being given by

M ≡ ρ
∫
d3xW (x,R) . (3.4)

In this context, we will define the mass function to be universal when
f(σ, z) = f(σ), i.e. the function f(σ) does not depend on redshift. This
shows that the quantity which is expected to be nearly universal is not n(M)
itself but

ν f(ν) ≡ M2

ρ
n(M)

d lnM

d ln ν
, (3.5)

where ν ≡ δcr/σ, for some constant δcr which we will discuss shortly. (It
is unfortunate that this scaling variable is called ν when it has, of course,
nothing to do with neutrinos! We trust this will not lead to confusion.)
Operationally, one measures this quantity by first transforming M to ln ν,
and then binning the counts in ν upon giving each halo a weight which equals
M/ρ.

Without previous knowledge of the effects that a non-vanishing neutrino
mass could have on the process of halo formation it is not obvious what
to use in eq. (3.2) for the quantities ρ,M and σ, since they can be defined
either in terms of all dark matter species or in terms of the cold one alone.
All we will justify later, we identify halos in simulations by using the CDM
component only. In this case, one would define the relation between CDM
halo mass and the scale of a TopHat filter by

M =
4π

3
ρcdmR

3 . (3.6)
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zcoll

Ν

zi

Ν

Figure 3.1: Pictorial view of spherical collapse in massive neutrino cosmolo-
gies. At the initial time, zi neutrino perturbations are so shallow on the scale
of the initial patch that are irrelevant for the subsequent evolution.

Then, since the M in eq. (3.2) is really Mcdm, the ρ in eq. (3.2) should be
replaced by ρcdm, i.e. the cold dark matter density. This choice is consistent
with previous work [45; 100; 46], where it is shown that the halo counts in
fν 6= 0 simulations are in better agreement with known (i.e. fν = 0 based)
fitting formulae if ρcdm is used.

The last piece of information we need is the appropriate quantity to use
for σ in eq. (3.2). It is tempting to assume that the relevant quantity is σcc,
which should be computed by setting P = Pcc in eq.(3.3). We believe this is
well-motivated for the following reason. In the spherical collapse model, and
assuming general relativity, the evolution of a spherical region is controlled by
the amount of mass inside its initial volume. For a Gaussian random field, as
the linear density field δ, a natural choice to describe the system is its variance
smoothed on the scale R associated to the initial region, σ(R). Due to the
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Figure 3.2: Halo mass function for the four DEMNUni models at redshift
z = 0 (left panel) and z = 0.5 (right panel). Top panels show the quantity
M2 n(M) as a function of mass, together with the predictions of the MICE
fitting formula [93] using σ = σmm (dotted curves) and σ = σcc (dashed
curves). Black, blue and red and green data points correspond respectively
to the mν = 0, 0.17,0.3 and 0.53 eV results. Lower panels show the residuals
of measurements with respect to the MICE formula with σ = σcc.
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tiny value of neutrino masses, the scale R, usually a few Megaparsecs, is much
smaller than the free streaming length of massive neutrinos λFS, typically tens
of Megaparsec, and therefore neutrino perturbations are vanishingly small
inside the collapsing region. This implies that σ(R) should be computed
using the CDM plus baryon perturbations only, i.e. treating the CDM as
though it alone is clustering in an effective background cosmology which
depends on the large scale value of ρν . A similar argument applies to the
critical overdensity required for collapse at a given redshift, δcr, that depends
on neutrino masses only through their effect on the background evolution
[101]. Moreover, studies of spherical halo collapse suggest that what really
matters for halo formation is the ratio δcr/σ, where δcr is the density which
linear theory predicts is associated with nonlinear halo collapse [89; 102; 90].
When fν = 0 then δcr ≈ 1.686 is only a very weak function of (Ω,Λ) (e.g.
[103]), so one might expect the dependence of δcr on Ωeff (fν) and Λeff (fν),
and hence on fν itself to be negligible. [101; 104; 105] have confirmed that
the effects of massive neutrinos on δcr are less than 1% for the range of fν we
will consider. solving numerically for the collapse of a Top-Hat perturbation
in a massive neutrino cosmology. That is to say, in these massive neutrino
models, the physically relevant quantity δcr/σ is really δcr/σcc, and since
δcr is almost independent of mν , the scaling variable is actually just σcc. In
Figure 3.1 we sketch how a spherical perturbation evolves in massive neutrino
cosmologies, with neutrinos playing a negligible role.

Note that σcc ≥ σmm always (see Figure 2) implying that for a given
cosmology, using σcc in the computation of the mass function leads to more
halos than using σmm

Nevertheless we emphasize that if neutrino perturbations had played
a role in the collapse of regions, as happens for warm DM or clustering
quintessence, then we would not have been allowed to simply replace σ with
σcc. In these other cases, a more complicated analysis (following methods
outlined in [106]) would be needed. Note that a model which uses σcc predicts
more halos than one with σmm, since (after the non-relativistic transition of
neutrinos) σcc ≥ σmm for all relevant smoothing scales (see eq. 10).

The uppermost panels of Figure 3.2 show M2 n(M) as a function of
halo mass M in the four DEMNuni cosmologies (black, blue, red and green
symbols); the left and right columns show results at z = 0 and z = 0.5. In
each panel, the symbols show the measurements and errorbars represent
Poisson noise. These are compared with the fitting formula which describes
the MICE simulations:

f(σ, z) = A(z)
[
σ−a(z) + b

]
e−c(z)/σ

2
, (3.7)
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where the parameters A(z), a(z), b(z) and c(z) depend on redshift (we use
the values from [93]).

For the cosmologies with massive neutrinos, we do this in two ways, by
setting σ = σmm (dotted curves) or σcc (dashed curves)1. I.e., the dotted and
dashed curves represent the assumptions that the relevant sigma is the rms
fluctuation in total density field or the CDM component respectively. For
the mν = 0 eV case, where Pcc ≡ Pmm, we only show a dashed curve. The
lower panels of Figure 3.2 show the residuals with respect to the σcc-based
curve, separately for the three cosmologies of Set A, second to fourth row.

We notice, in the first place, a small (less than 5%) discrepancy between
our ΛCDM, mν = 0 eV simulations and the MICE fit over the whole relevant
mass range. As this discrepancy is about the same at higher redshifts, we
conclude that our simulations show z-dependent departures from universality
that are close to those observed in the MICE analysis, see also Figure 3.3.
We will return to this shortly. Agreement with the MICE predictions is not,
in any event, the focus our attention. More interesting, is that the difference
with respect to the MICE fits remain roughly the same for all values of mν

when σcc is used, whereas they grow significantly when σmm is used instead
(dotted curves).

To better highlight the difference between the two descriptions, it is
convenient to compare measurements of the differential mass function directly
as a function of the variable ν ≡ δcr/σ, for which the mass function is given
by eq.(3.5). Such a comparison is made in Figure 3.4 which presents the same
measurements of Figure 3.2, this time in terms of νf(ν). In particular, each
panel shows the ratio of νf(ν) from MICE to the one of the four simulations
with different neutrino masses at a given redshift (z = 0, left panel, and 1,
right panel). Also shown is the prediction from the MICE fit of [93], which
explicitly depends on redshift, as a dashed black curve. Left column shows
the results as a function of ν = δcr/σcc(M), i.e. in terms of the r.m.s. of the
cold dark matter, while in the right column we set ν = δcr/σmm(M). It is
evident that the description in terms of σmm results in large departures from
universality as mν is varied. In contrast, using σcc yields results which are

1To partially remove finite-volume effects, we set the lower cut-off in the integral of
eq. (3.3) to the fundamental frequency of the box, kF = 2π/(2, 000h−1 Mpc). Another
possible correction for the finite size of the simulation box could be to measure the linear
power spectrum from the box itself once the initial displacements were generated instead of
using Boltzmann codes (see, e.g. [107; 108]). This method has the advantage of removing
cosmic variance and volume effects, but it gives a different σ-M relation for each box that
one has then to average over. For practical reasons we assume the linear power spectra
to be given by the CAMB predictions for each model and we always assume the mass-scale
relation as in eq. (3.6).
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Figure 3.3: Same as Figure 3.2 but at z = 1, 1.5.

much more universal.
We can also use halo mass function expressed in terms of ν to compare

the two groups of simulation used in this work, making possible to show
how the DEMNUni suite represents a huge improvement in both volume
and resolution with respect to previous simulations that included a massive
neutrino component. In Figure 3.5 we plot halo abundances as a function
of the peak height ν from DEMNUni simulations together with the mea-
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Figure 3.4: Ratio of the measured ν f(ν) to the MICE formula. Left panels
use ν = δcr/σcc while right panels use ν = δcr/σmm. Different panels, top to
bottom, show the different redshifts z = 0 and 1 with all neutrino masses
(distinguished by color) shown together.

surements in the H-group. Especially at small values of ν we see that the
large number of particles used in the DEMNUni suite allow us to properly
resolve low mass halos which instead are affected by resolution effects in
the H-group. Assuming universality with respect to cosmology, at z = 0
measurements in the DEMNUni at mν = 0.0, 0.53 eV align within the er-
rorbars at ν ' 2, which corresponds to M ' 1.9 × 1014 h−1M�, while in
the H-group for the halos in the mν = 0.0, 0.6 simulations this happens
at M ' 4.3 × 1014 h−1M�. At z = 1 in DEMNUni we are not affected
by resolution at M ≥ 1.0× 1014 h−1M� and at M ≥ 2.4× 1014 h−1M� in
the H-group. However the H-group is very useful to study degeneracy in
cosmological parameters, and halo bias given the large number of realizations
available for each model.
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Figure 3.5: Comparison between the halo mass function measured in the
DEMNUni suite and in previous work. Left panel shows in black and green
measurements in the DEMNUni suite at z = 0 for the ΛCDM model and
the

∑
mν = 0.6 eV, while grey and light green points with errorbars are

taken from [50]. Right panel presents the same quantities but at z = 1.

3.1.2 Cosmological parameters degeneracy

We now look in more detail at the degeneracy between mν and σ8, the
variance of matter fluctuations on a scale of R = 8h−1 Mpc. One might
expect that the effect of neutrino masses on the halo mass function can be
re-absorbed by a suitable change of σ8,cc in a standard ΛCDM Universe,
in which case the only way to break the degeneracy being measurements
at different redshifts, exploiting the differences in the linear growth factors.
To explore this we use the H-group of simulation, in particular set B. This
allows us to compare an mν = 0.6 eV model (H6s8) with a massless neutrino
model of set A (H0) that has the same value of σ8,mm = 0.83. In addition,
we can compare two massless neutrino models (H0s8 and H0s8-CDM) to the
mν = 0.6 eV model of set A (H6), matching the values of both σ8,mm and
σ8,cc of the latter.

As we have seen, CDM halos are primarily sensitive to the relation
between neutrino masses and the σ8 of the CDM species only. Therefore
had we normalized the power spectrum of a ΛCDM Universe with the same
σ8,mm(z = 0) of the correspondent neutrino cosmology, at fixed Ωm we would
have obtained different halo counts even at z = 0, with larger discrepancies
at higher redshifts. This is shown in figure 3.6. Here, left panels present
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Figure 3.6: Degeneracy between mν and σ8,mm, σ8,cc: comparison of the
mass functions as a function of the mass M and at z = 0 from mν = 0.0
eV and mν = 0.6 eV models, sharing the same value of σ8,cc or σ8,mm. Left
panels: comparison between model H6 (red data points) and models H0s8
(grey) and H0s8-CDM (light gray). The lower panel shows the ratio of
H0s8 and H0s8-CDM to H6, with the black horizontal line showing the ratio
Ωc(H0s8-CDM)/Ωc(H6). Right panels: comparison between model H0 (black
data points) and model H6s8 (orange). The lower panel shows the ratio of
H6s8 to H0.

measurements of the halo mass function at z = 0 as a function of mass for
the models H6 in red, H0s8 in gray, and H0s8-CDM in light gray, where as
expected from previous considerations the H6 cosmology has more objects
than the H0s8 model. The difference with increasing M increase as the ratio
σcc(R)/σmm(R) grows. The H0s8-CDM model lies much closer to the H6
model: the ratio of the two is almost constant and its difference from unity
is mainly due to the different background density appearing on the r.h.s. of
eq. (3.2), shown as a continuous horizontal line in the residuals plot. The
same arguments hold for the right panel of Figure 3.6, where we compare
the H0 run to H6s8, which has mν = 0.6 eV and σ8 matched to be the same
as that of H0 at z = 0. Again the halo counts differ substantially in the two
simulations: H6s8 has more halos because its CDM field has more power on
all relevant scales than does the H0 run.
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Figure 3.7: Ratio of halo abundances for spherically defined halos in
massive neutrino cosmologies to abundances in a standard cosmological
model. Theoretical predictions, using σcc (continuous curves) and using σmm
(dashed curves), have been obtained using the formula of [92].

3.1.3 Implications for cluster number counts

Results presented in the previous section have important implications for
cosmological parameters inference from galaxy clusters observations. In most
of previous cosmological analyses [87; 88; 41; 94] the total matter fluctuations,
i.e. σ = σmm, have been used for the prediction of the mass function, leading
to possible systematic errors in the derived constraints. The difference is not
limited to the expected number of galaxy clusters, which are more numerous
if one uses the cold dark matter matter spectrum, but, most importantly, it
affects the universality of the halo mass function with respect to cosmology.
A key assumption in cosmological analyses is that the shape of the mass
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function is insensitive to changes in the background cosmology when the
total matter power spectrum is used, while we have shown that this is not
the case for massive neutrino models. For cosmological analyses this effect is
even more relevant than the relative difference in the same cosmology of the
expected number counts from the two prescriptions for the power spectrum.

Observations of galaxy clusters with X-rays and Sunyaev-Zel’dovich mea-
surements are usually calibrated onto spherically defined objects. This means
that for this kind of observable FoF halos are not well suited. We therefore
repeated the analysis for Spherical Overdensity (SO) halos, identifying halos
with subfind[109; 110] as spherical regions with a mean matter density equal
to two hundred times the background density. The measurements, shown as
ratios to the ΛCDM case, are presented in Figure 3.7, where now we use the
Tinker et al. fitting formula as a reference for SO halos [92]. Also in this case
we observe that the Tinker et al. fit, developed in the ΛCDM framework,
provides a good fit to simulations with a massive neutrino component when
ρ̄ = ρ̄c and σ = σcc are used instead of their total dark matter counterparts.

We know would like to be a bit more quantitative, trying to quantify how
a different prescription for the HMF can affect the constraints on cosmological
parameters provided by cluster number counts by changing the number of
clusters predicted for a given cosmology and survey[111].

The number of cluster expected to be detected within a survey with sky
coverage ∆Ω in a redshift bin [zi, zi+1] can be expressed as:

Ni =

∫ zi+1

zi

dz

∫
∆Ω

dΩ
dV

dzdΩ

∫ ∞
0

dM X(M, z,Ω)n(M, z) , (3.8)

where dV/dzdΩ is the comoving volume element per unit redshift and solid
angle, X(M, z,Ω) is the survey completeness and n(M, z) is the halo mass
function. In what follows we adopt the Tinker functional from for the mass
function defined in eq. (3.7) with the best-fit parameters for the overdensity
∆ = 200 as provided by [92].

The completeness function depends on the strategy and specifics of the
survey. For the purpose of this work we can simply express this function as

X(M, z,Ω) =

∫ ∞
Mlim(z)

dMobp(Mob‖M) , (3.9)

where the lower limit in the mass integral, Mlim(z), represent the minimum
value of the observed mass for a cluster to be included in the survey, and it is
determined by the survey selection function and the fiducial signal-to-noise
level adopted.
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Figure 3.8: Ratio of the number counts obtained using the CDM over the
matter prescription for different combinations of (

∑
mν − σ8) values (colour-

coded) and different neutrino mass splitting: one massive neutrino (left
panel) and three degenerate massive neutrinos (right panel). For a given
cosmology, the cold dark matter prescription predicts a larger number of
clusters, especially for high neutrino mass and cosmology with three massive
neutrinos. Black curves trace lines of constant value of the ratio; from the
left: 1.05, 1.10, 1.15, 1.20 left panel; 1.1, 1.2, 1.3, 1.4 right panel.

The function p(Mob‖M) gives the probability that a clusters of true mass
M has a measured mass given by Mob and takes into account the uncertainties
that a scaling relation introduces in the knowledge of the cluster mass.
Under the assumption of a lognormal-distributed intrinsic scatter around the
nominal scaling relation with variance σ2

lnM , the probability of assigning to
a cluster of true mass M an observed mass Mob can be written as [112]:

p(Mob‖M) =
1

Mob
√(

2πσ2
lnM

) exp

[
−(lnMob −BM − lnM)2

2σ2
lnM

]
, (3.10)

where the parameter BM represents the fractional value of the systematic
bias in the mass estimate.

We can use Eq. (3.8) to study the implications of different prescriptions
for the HMF prediction in the predicted number of observed galaxy clusters.
By replacing Pm(k, z) with Pcdm(k, z) one neglects the suppression of the
total DM density fluctuations on scales smaller than their free-streaming
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length, the scale below which neutrinos cannot cluster due to their high
thermal velocity.

In Fig. 3.8 we show the ratio of the cluster counts predicted using the
Pcdm(k, z) prescription over the one predicted using Pm(k, z) (colour coded)
for different combinations of (

∑
mν − σ8) values and for two neutrino mass

split schemes: a single massive neutrino (left panel) and three degenerate
massive neutrinos (right panel). The plots have been obtained varying

∑
mν

and As and keeping fixed Ωm, Ωb, τ , H0 and ns to the Planck13 mean value
([35]; Table 2, Planck+WP). We computed the number counts integrating
eq. (3.8) between 0.0 < z < 1.0 with a sky coverage ∆Ω = 27.000 deg2

and using the limiting mass Mlim(z)2 provided by the Planck Collaboration
(dashed black line in Fig. 3 of [41]). Moreover, since we are simply interested
in quantify the relative effect of using an improved HMF calibration we
assumed no uncertainties in the estimation of the true mass (M = Mob) and
we set BM = 0 and σ2

lnM → 0 in eq. (3.10).
Assuming one massive neutrino, changing the matter power spectrum

to the cold dark matter one in the HMF prediction increases the expected
number of clusters by ∼ 5% in the minimal normal hierarchy scenario
(
∑
mν = 0.06eV), reaching differences of ∼ 20% for masses of

∑
mν ∼

0.4eV. Considering instead three degenerate massive neutrinos, the CDM
prescription gives even a larger correction to the cluster counts: the split of
the total neutrino mass between three species causes the free-streaming length
to increase, therefore widening the range in which Pm(k, z) is suppressed with
respect to Pcdm(k, z). As a result, the difference in cluster counts computed
with the two prescriptions reaches ∼ 30% for neutrino mass of the order of∑
mν = 0.4eV. For a given cosmology the magnitude of the ratio slightly

depends also on the specifics of the survey: a lower Mlim(z) would entail a
larger difference between the expected number of clusters computed with the
two different calibrations.

The difference in the predictions in turn affects the degeneracy between
cosmological parameters. An example of this effect is shown in figure 3.9, in
the (

∑
mν −As) plane (left panel) and the corresponding (

∑
mν −σ8) plane

(right panel). The curves correspond to constant number counts obtained
using Pm(k, z) (black) or Pcdm(k, z) (red) in the halo mass function definition,
following the same procedure of figure 3.8 to compute the expected number
of clusters. Solid and dashed curves are for models with one massive neutrino

2Following the recipe given in [113], the limiting mass has been converted to Mlim,200(z)
– the limiting mass within a radius encompassing an overdensity equal to 200 times the
mean density of the Universe – consistently with the chosen halo mass function.
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Figure 3.9: Curves of constant number counts (N = 600, 200, 100 and 50,
top to bottom) in the plane

∑
mν − 109 · As (left panel) and in the plane∑

mν - σ8 (right panel), for the two prescriptions for the halo mass function,
matter (black) and cold dark matter (red) and for two neutrino mass splitting
schemes, single massive neutrino (solid lines) and three degenerate massive
neutrinos (dashed lines). The different slope of the balck and red curves shows
the different degeneracy direction between parameters in the prescriptions.

and three degenerate massive neutrinos, respectively. The different slope
of the curves indicates a different degeneracy direction between parameters.
Consistently with the results shown in figure 3.8 the change in the slope is
more pronounced in the case of three massive neutrinos.

3.2 Halo bias

3.2.1 Scale dependent bias

In ΛCDM models with massless neutrinos the relation between halo overden-
sity δh and the matter overdensity δm on very large scales is expected to be
linear and deterministic, i.e. (see, e.g. [114; 115; 116])

δh(x) = b δm(x) , (3.11)

with a constant bias parameter b, resulting in the simple expression for the
halo power spectrum given by Phh(k) = b2 Pmm(k). Additional nonlinear
but local corrections in the equation above induce a scale-dependence in the
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relation between halo and matter power spectra and are however necessary
to describe higher-order correlations, as we will se in Chapter 4.

In a cosmology with massive neutrinos defining halo bias in terms of the
total or cold matter density field is, in principle, a matter of convenience.
Nevertheless given the scale-dependent difference between Pmm and Pcc
we can expect an additional scale-dependence in Phm or Phc, relevant at
relatively large-scales, resulting simply from a “wrong” choice. In other
words, if bias is constant on large-scales in one case, it cannot be so in the
other. We will show that – not surprisingly after the results of the previous
section – formulating the problem is in terms of the cold dark matter field is
the right thing to do.

To proceed, we define auto- and cross- bias factors with respect to the
CDM-field:

b(hh)
c ≡

√
Phh(k)

Pcc(k)
, (3.12)

b(hc)c ≡ Phc(k)

Pcc(k)
, (3.13)

as well as the analogous quantities

b(hh)
m ≡

√
Phh(k)

Pmm(k)
, (3.14)

b(hm)
m ≡ Phm(k)

Pmm(k)
, (3.15)

for the bias with respect to Pmm. Previous work in neutrino-less cosmologies
has shown that the bias factors from the cross-correlations tend to be a few
percent larger than those from auto-correlations [117; 118].

For each of the simulation sets in Table 1.2 we measured these bias
factors for two halo populations: one has M > 2×1013 h−1M� and the other
M > 4× 1013 h−1M�, irrespective of redshift and cosmological parameters.

We focus first on a comparison between the different halo bias definitions
described above, bm and bc. Figure 3.10 shows the bias, as a function of scale,
determined for halos with M > 2× 1013 h−1M� while figure 3.11 shows the
same measurements for halo populations determined by M > 4×1013 h−1M�.

Left column shows b
(hh)
c (k) (symbols with connecting continuous curves) and

b
(hh)
m (k) (symbols with dashed curves) defined respectively in eqs. (3.12)

and (3.14) for the three models of Set A. The right column shows b
(hc)
c (k)

(symbols with connecting continuous curves) and b
(hm)
m (k) (symbols with
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Figure 3.10: Halo bias as a function of scale determined from the simulation
Set A for halos with M > 2× 1013 h−1M�. Left panels show the measure-

ments of linear bias b
(hh)
c (continuous curves) and b

(hh)
m (dashed curves) from

the halo power spectrum Phh(k). Right panels show b
(hc)
c (continuous curves)

and b
(hm)
m (dashed curves) respectively from the Phc and Phm cross-power

spectra. Top left panels correspond to z = 0, bottom panels to z = 0.5. The
continuous and dotted horizontal lines show the constant bias values deter-
mined from measurements of bc and bm, respectively, at k = 0.07hMpc−1,
shown in turn as a vertical gray line in all panels. Error bars show the
uncertainty on mean over the eight realizations.
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Figure 3.11: Same as previous figure 3.10 but for halos with M > 4 ×
1013 h−1M�.

dashed curves) defined in eqs. (3.13) and (3.15) in terms of cross-power
spectra. Top row shows the results at z = 0, bottom row at z = 0.5. To
guide the eye, the continuous and dashed horizontal lines show the values of
bc(k) and bm(k) at k = 0.07hMpc−1 (shown as a vertical line): below this
value of k, the bias is observed to be constant for most measurements. This
value also defines the bias values we use for the study of bias as a function
of ν later in figure 3.13.

The fixed mass threshold clearly results in different bias values for the
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three models. This is a consequence of the fact that the same mass threshold
corresponds to quite different number counts for the different models [90].
The figure also illustrates the different scale-dependence of the two bias
definitions. The departure from a constant value is more evident for the bias
defined w.r.t. Pmm. This is consistent with eq. (3.12) and with the analysis of
n(M) presented in section 3.1, reinforcing our understanding of observables
in massive neutrino cosmologies in terms of the CDM distribution. However,
a noticeable k-dependence is also present for the bc measurements, increasing
with the value of the bias itself. This might be due to nonlinear effects that
we ignore in our comparison and are the subject of ongoing work.

Although the auto- and cross- values differ slightly, both bc and bm
converge to the same values on the largest scales (smallest k values) probed
by the simulations, reflecting the fact that for k . knr the DM and CDM
linear power spectra are the same. For k > knr but still in the linear regime,
both bhhm and bhmm exhibit scale dependence, but have the same asymptotic
behavior, given that

b(hh)
m ≡

√
Phh
Pmm

= b(hh)
c

√
Pcc
Pmm

k�knr−−−−→ b(hh)
c (1− fν) , (3.16)

and

b(hm)
m ≡ Phm

Pmm
= b(hc)c

Pcm
Pcc

k�knr−−−−→ b(hc)c (1− fν) . (3.17)

At k = 0.07hMpc−1, the b
(hh)
m coefficients are 5% larger than the correspond-

ing b
(hh)
c values for mν = 0.6 eV.

It is interesting to compare now the bias values in models with and
without massive neutrinos that have the same value of σ8. The left panel
of figure 3.12 compares the results for the lowest mass threshold at z = 0
of the model with mν = 0.6 eV (H6, red data points), already shown in
figure 3.11, with those of the two massless neutrino models from simulation
Set B, matching in turn the value of σ8,mm (H0s8, black data points) and
σ8,cc (H0s8-CDM, gray data points), the latter taken as reference model.

At fixed mass threshold objects in the H0s8 runs are more clustered than
in the H6 and H0s8-CDM runs, as expected from measurements of the mass
function (see figure 3.6). Despite these marginal differences, however, it is
important to notice that the three models are characterized by a bias bc(k)
with the same dependence on scale. This is particularly evident in terms of
their relative differences, shown in the lower panels, which are identical for

both b
(hh)
c and b

(hc)
c . One could argue that the agreement between the bias

measured in such different models could be further improved by appropriately
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Figure 3.12: Degeneracy mν-σ8: halo bias at z = 0 determined from the
simulation set B. Left panel: comparison of the H6 model (in red) to the
H0s8 (dark gray) and H0s8-CDM (light gray) models. As before continuous
lines correspond to bias with respect to the cold dark matter power spectrum,
while dashed lines to bias with respect to the total matter power spectrum.
Right panel: comparison of the H0 model( in black) to the H6s8 model
(in yellow), the two sharing the same value of σ8,mm. In both panels we
considered only halos with M > 2× 1013 h−1M�.

rescaling the spectral index of the linear power spectrum of the model H0s8-
CDM to match the one of H6 at the scale where σcc = δcr. Doing so would
not fix the additional scale-dependence of bm(k).

Similar conclusions can be drawn from the right panel of figure 3.12 where
we show, instead, a comparison of the H0 model to the H6s8 model, sharing
the same value of σ8,mm.

In recent analyses which constrain neutrino masses using galaxy clustering
in large redshift surveys bias is treated as a free parameter over which to
marginalize (see, e.g. [17; 19; 23]). The standard practice defines the
bias with respect to the total matter power spectrum, and assumes that
bm is scale-independent up to some kmax. Our analysis shows that bias
coefficients defined in this way are, in fact, scale-dependent, even at linear
scales. Therefore, to avoid systematics inaccuracies, future analysis of galaxy
surveys data must account for this.

Of course study of linear bias ia only the first step towards modeling the
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halo and galaxy power spectrum down to small scales. As we have seen in
Figure 3.10 nonlinearities in the bias kick on large scale and must be taken
into account in a realistic analysis. For extension to nonlinear bias model
in cosmologies with and without massive neutrinos we refer the reader to
[119; 120; 121].

3.2.2 Universality in the CDM component

The final part of this section is devoted to study the universality of bias,
measured at a fixed scale k and described as a function of the variable
ν = δcr/σ as the mass threshold, the redshift and cosmological models are
varied. If νf(ν) is universal, then

b = 1− 1

δcr

d ln f(ν)

d ln ν
, (3.18)

is also a universal function of ν. However, our measurements correspond to

b̄(> Mmin) =

∫
Mmin

b(M)n(M) dM∫
Mmin

n(M) dM
, (3.19)

with Mmin = 2× 1013 h−1M� and 4× 1013 h−1M�; in terms of the scaling
variable, this reads

b̄(> νmin) =

∫
νmin

b(ν) [f(ν)/M(ν)] dν∫
νmin

[f(ν)/M(ν)] dν
, (3.20)

where νmin = δcr/σ(Mmin) and where the presence of the factor 1/M in
the integrand does not allow b̄ to be a function of νmin alone. In principle,
this introduces an explicit dependence on cosmology, even if νf(ν) and b(ν)
themselves are universal.

Figure 3.13 shows the measurements of the linear bias at k = 0.06hMpc−1

from both the halo power spectrum (left panels) and halo-matter cross-power
spectrum (right panels) at three different redshifts (z = 0, 0.5 and 1), for
two mass thresholds (M > 2 and 4× 1013 h−1M�) and for all the neutrino
cosmologies (Set A and B), as a function of the value of ν = δcr/σcc. The
measured values are compared, in the upper panels, to the prediction for
the standard ST mass function and bias (dotted curves) computed from
eq. (3.19) for the massless neutrino cosmology at redshift zero. Due to the
small residual scale-dependence, a different choice of the value of k leads to
the same results, with more noise at large scales.
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Figure 3.13: Measurements of the linear bias coefficient as a function of
the value of ν = δcr/σ corresponding to the mass threshold from the halo
power spectrum (left panels) and halo-matter cross-power spectrum (right
panels) at three different redshifts (z = 0, 0.5, 1), for two mass thresholds
(M > 2 and 4×1013 h−1M�) and for all the cosmologies under consideration.
Theoretical predictions for the linear bias from the standard ST mass function
evaluated for the H0 model at z = 0 are shown by the dotted curve. The
middle panel shows the residuals w.r.t. the ST prediction. Top and middle
panels assume halos to be biased w.r.t. the cold DM perturbations and
therefore assume ν = δcr/σcc. The bottom panels shows the residuals w.r.t.
ST assuming instead halos to be biased w.r.t. the total matter perturbations
and ν = δcr/σmm.

We notice that the dependence of such predictions on cosmology and
redshift are very small. Indeed, this fact can be appreciated from the data
points themselves: all results from different masses, redshifts and cosmologies
are aligned as one would expect for a function of ν alone. Small departures
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from such overall behavior can be seen in the middle panels, showing the
residuals w.r.t. the ST predictions. Notice that we do expect some departure
from universality both from the mass function results as from the definition
of b̄(> M) itself. These effects are, nevertheless, much smaller than those
obtained defining bias from the total matter power spectrum and plotting
the results as a function of ν = δcr/σmm, as shown in the lower panels of
figure 3.13, separated for clarity. Here, we show only the ratio w.r.t. the ST
prediction, the latter coinciding with the one used in the middle panels to
allow a direct comparison.

We have seen that, if we adopt as a definition for the peak height
ν = δcr/σcc, linear bias is to a very good approximation a universal function
with respect to redshift even if the halo mass function is not, in agreement with
previous findings [122]. This can be understood from the Peak-Background
Split argument [115; 90], where bias coefficients are defined as a logarithmic
derivative of the dimensionless mass function f(ν), eq. (3.18). Linear bias
is, to a large extent, a universal function, since most significant departures
from universality w.r.t. redshift in the mass function come as changes in the
amplitude, independently of the halo mass.

3.3 Redshift space distortions

The biasing between the galaxy and matter distributions is not the only effect
to be taken into account for a correct estimate of the matter power spectrum
from galaxy redshift observations. In a real survey, the proper motions
of galaxies with respect to the homogeneous expansion of the Universe
affect the determination of their distance along the line-of-sight (see, e.g.
[123; 124; 125; 126]). However, on sufficiently large scales these redshift
space distortions provide information on the peculiar velocity field of matter
perturbations, in particular on the growth rate of the density field. As a
result, they are extensively used to constrain cosmological parameters and
test deviation from standard gravity [127; 128; 129; 130]. In preparation
for future large spectroscopic surveys, the effect of neutrino masses on RSD
modelling needs to be carefully investigated to avoid fake signatures of
modified gravity for instance. In the following we present a preliminary
assessment of the scale-dependence of the growth rate induced by the free
streaming length of neutrinos, and its measurement from the DEMNUni
simulations.

In the standard cosmological model, and in the large-scale limit where
linear theory applies, the distortion induced by peculiar velocities on the
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density contrast δm can be written in Fourier space as [123]

δm,s(~k) = (1 + fµ2) δm(k) , (3.21)

where µ = ~k · ẑ/k is the angle between the line-of-sight and the wave vector
~k, while f(a) is the linear growth rate, defined as the logarithmic derivative
of the linear growth factor D(a), that is

f(a) ≡ d lnD(a)

d ln a
. (3.22)

A similar expression holds for linearly biased tracers which follow the matter
flow (i.e. with no velocity bias3). For instance, the halo overdensity in
redshift space, δh,s, can be written as

δh,s(~k) = (b+ fµ2)δm ≡ (1 + βµ2) b δm(k) , (3.23)

where b is the linear scale-independent bias, and we define β ≡ f/b. It follows
that the halo power spectrum in redshift space can be written as the product
of a polynomial in µ times the halo power spectrum in real space. Since the
halo power spectrum in real space depends only on the modulus of the wave
vector, the angular dependence induced by RSD is entirely encoded in the
pre-factor of Eq. (3.23). As a result, the redshift-space halo power spectrum
can be decomposed in multipoles using just the first three even Legendre
polynomials L`(µ)

Phh,s(~k) = (1 + βµ2)2 Phh(k) =
∑
l=0,2,4

Phh,` L`(µ) . (3.24)

The monopole, quadrupole and hexadecapole coefficients read

Phh,0(k) =

(
1 +

2

3
β +

1

5
β2

)
Phh(k) (3.25)

Phh,2(k) =

(
4

3
β +

4

7
β2

)
Phh(k) (3.26)

Phh,4(k) =
8

35
β2Phh(k), (3.27)

where the RSD parameter β determines the relative amplitude of the mul-
tipoles. In a ΛCDM cosmology, β is predicted to be scale-independent on

3Note that the assumption of no velocity bias is better justified for halos w.r.t. the cold
matter perturbations rather than w.r.t. the total matter ones.
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Figure 3.14: Comparison of the ratio between the monopole of the
redshift-space halo power spectrum to the real-space halo power spectrum,
Phh,0(k)/Phh(k) (continuous curves) against the value predicted by the Kaiser
formula, Eq. (3.25), as a function of β = fc/bc (dashed curves) or β = fm/bm
(dotted curves). fc(k) and fm(k) correspond to the linear theory growth
rate respectively of cold and total matter perturbations, while the bc and bm
are the measured values of the halo bias according to the two definitions of
Eqs. (3.12) and (3.14). Notice that we do not use best fit values for the bias
parameters, but we use instead the measured b(k) as a function of scale.

large scales, as a direct consequence of the scale-independence of both lin-
ear bias and growth rate. On the other hand, both quantities might be
scale-dependent when massive neutrinos are present.

First, as we saw in sec , Figure 3, growth of linear perturbations become
scale dependent. At fixed linear bias this effect tend to suppress, at most a
few %, the Kaiser factor β w.r.t. a standard cosmology. In the second place, if
we defined the halo bias w.r.t. the total matter field, according to Eq. (3.14),
we would add to the quantity β an additional source of scale-dependence.
Let us notice here that, a choice of what linear bias is, bc or bm, comes with
a choice also for f = fc of f = fm.

In all the cases, we expect the Kaiser factor β to exhibit a scale-
dependence, which, by choosing β = fc/bc, will result only from the growth
rate fc(k). In the other case, β = fm/bm, a partial compensation occurs
between the linear bias, which increases with the wave-number, and the
growth factor that actually decreases with k. In Figure 3.14 we show the
ratio of the monopole of the redshift-space halo power spectrum, Phh,0(k), to
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P (k) as measured in a massive neutrino cosmology, then divided by the same
ratio in the ΛCDM simulation. Only halos with mass M > 1× 1013 h−1M�
have been considered. The two possible choices of non-linear power spectra
in a neutrino cosmology have both been considered, Pcc (continuous lines)
and Pmm (dashed lines).

the halo power spectrum in real space, Phh(k), for the models listed in Table
1.2, and we compare the measurements from the DEMNUni simulations to
the corresponding predictions provided by the Kaiser formula written both
in terms of β = fc/bc and β = fm/bm. In such predictions we do not use
best fit values for the bias parameters, but we use instead the measured
b(k) where the scale-dependence is affected by cosmic variance. While the
noisy measurements do not allow to clearly determine the scale-independence
of such a quantity, we notice that β = fc/bc does provide a slightly better
prediction than β = fm/bm, as compared to simulations.

To partially remove cosmic variancee in Figure 3.15 we show the ratio
of the halo monopole to the measured (C)DM power spectrum in massive
neutrino cosmologies, divided by the corresponding quantity computed in
a ΛCDM simulation. In this case it’s clear the extra scale dependence in
the DM case (dashed lines) coming from an different choice for linear bias.
Similar conclusions hold for the other multipoles, but cosmic variance is very
large making difficult a clear comparison with the Kaiser formula.

As a further test, in Figure 3.16 we consider directly the growth rate f
obtained from measurements of the monopole of the redshift-space halo power
spectrum, Phh,0(k), and the real-space halo and cold matter power spectra,
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Figure 3.16: Top panels: Linear growth rate obtained from measure-
ments of the redshift-space (monopole) and real-space halo power spectrum
according to Eq. (3.25) and from measurements of the linear halo bias
b(k) =

√
Phh(k)/Pcc(k) at redshifts z = 0.5 (left) and z = 1 (right). Dashed

curves denote the linear theory (scale-dependent) predictions for cold matter
perturbations, fc(k). All the quantities are shown in terms of their ratio
to the corresponding ΛCDM values. Bottom panels: Same as in the top
panels, but assuming the linear halo bias defined in terms of total matter
perturbations. In this case, the comparison is made to the linear theory
prediction for the total matter growth rate, fm(k).

Phh(k) and Pcc(k) respectively, under the assumption that the Kaiser formula
provides a good description of RSD at large scales. Assuming β = f/bc, from
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Figure 3.17: Best fit value for f obtained from measurements of P 0
hh/PNL,

assuming the Kaiser formula and linear scale independent linear bias. The
true values corresponding to the cosmology of the simulations are the black
points, while red and blue points assume constant halo bias with respect to
CDM and DM respectively.

Eq. (3.25) we have

f(k) =

√
Phh(k)

Pcc(k)

1

3

[√
45
Phh,0(k)

Phh(k)
− 20− 5

]
, (3.28)

while assuming β = f/bm we obtain a similar expression where Pmm replaces
Pcc. In order to further reduce cosmic variance, we show the recovered value
of f as ratio to the ΛCDM case. These measurements, as a function of k,
can then be directly compared with linear theory predictions for fc(k) and
fm(k).

The top panels of Figure 3.17 show f obtained from Eq. (3.28) under
the cold matter hypothesis compared to the predictions for fc(k) at redshift
z = 0.5, 1. We notice that, in the higher redshift case in particular, despite
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the noise, the measurements are consistent with the linear predictions at
large scales when f is obtained from the measured Pcc. A greater discrepancy
instead is observed when f is obtained from the measured total matter
Pmm(k), as compared to the predictions for fm(k) in the bottom panels. It
is evident that, in addition to the high level of noise, nonlinearities are highly
significant already on these scales and do not allow any conclusive statement.
Yet if such discrepancy will be confirmed by future investigations, we could
expect that using bm as a definition for bias in the Kaiser formula could lead
to a systematic error on the determination of the growth rate at the level of
1-2%, see Figure 3.17. For this purpose we took the best fit value for linear
bias b from measurements of the halo auto power spectrum Phh assuming
scale independence and then we find the best fit value for f(z) at a given
kmax. Figure 3.17 clearly shows that an incorrect assumption on the bias
leads to as systematic effect on the recovered value of the growth rate, the
effect being the 2% for mν = 0.53 eV.

Clearly this represents a very preliminary and admittedly simplistic test
of possible systematic effects in the determination of the growth rate f(k)
in the context of massive neutrinos cosmologies. If the description of halo
clustering in terms of cold matter perturbation does indeed represents the
correct approach, this test can serve as a confirmation that the DEMNUni
simulations reproduce linear theory predictions for the growth rate including,
to a certain extent, its scale-dependence. We reserve for future work a
more detailed analysis of RSD effects on the matter density field as well as
on realistic mock galaxy distributions, in massive neutrino scenarios. Of
particular interest would be any description of nonlinearity that could extend
theoretical predictions to smaller scales.
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Chapter 4

The matter and halo
bispectrum in massive
neutrino cosmologies

The late time 3-dimensional distributions of dark matter in a N-body sim-
ulations or the distribution of galaxies in a redshift surveys forms a highly
non-Gaussian field. In the absence of Primordial Non-Gaussianity, nonlin-
ear gravitational instabilities are the main sources of non-Gaussian density
perturbations. This means that two-point statistics are not enough to
fully characterize the density or galaxy field, and additional information on
structure formation and cosmological parameters is encoded in higher order
correlation functions (HOCF). The first non vanishing HOCF in Fourier
space is the the three point function of the density field, also knows as the
bispectrum B(~k1,~k2,~k3), defined as

〈δ(~k1)δ(~k2)δ(~k3)〉 ≡ (2π)3δD(~k1 + ~k2 + ~k3)B(~k1,~k2) (4.1)

The wavenumbers in the above equation cannot take arbitrary values,
they are forced by the Dirac delta to form a triangular configuration, but
statistical isotropy implies that the bispectrum does not depend on the
orientation of the triangle. Again for a review of the bispectrum and HOCF
see [114]. At the level of the density field, since the bispectrum, and HOCF in
general, are by definition nonlinear quantities, their measurements represent
an important tool to check the validity of perturbation theory beyond linear
order. If a model works for the power spectrum in the mildly nonlinear
regime, it has to work as well for the bispectrum. The same is true for RSD
beyond the Kaiser approximation. Several attempts have been performed
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in this direction, an incomplete list of reference would at least include
[131; 132; 133; 134; 135; 136; 137; 138; 139; 140].

On the other hand, as we have seen in Section 3.2, knowing how dis-
crete objects such as halos and galaxies trace the underlying dark matter
distribution is one of the major challenge in extracting cosmological param-
eters. This bias relation is nonlinear and it affects both the halo power
spectrum and halo bispectrum. It is therefore possible to use the shape
dependence of the bispectrum to partially break the degeneracy between
linear and non-linear bias, allowing for better constraints on cosmological
parameters [141; 142; 143; 144; 145; 118; 146; 138; 147]. Moreover given
the extra dependence on the angle between wavenumbers the bispectrum
contains cosmological information which is not present at all in the power
specrturm[143]. For a Fisher-Matrix calculation of the benefits of combining
power spectrum and bispectrum in the next generation of galaxy surveys,
see [148]

In real data the bispectrum of galaxies have been already measured in
different redshift surveys [149; 147; 150; 151]. One of the main difficulties
here is the computation of the Covariance Matrix for the bispectrum measure-
ments, which is related to the definition of a nearly optimal estimator for the
bispectrum that we still lack [152; 144]. However with some approximations
the authors in [153] have been able, for the first time, to constraint the growth
rate f and σ8 separately by combining measurements of the bispectrum and
the powee spectrum in the BOSS DR11 CMASS sample.

In this Section we present preliminary results for the matter and halo
bispectrum in cosmologies with massive neutrinos, comparing with PT
preditictions for the matter field, and fitting the halo bispectrum using both
a local and non local bias model.

4.1 The matter bispectrum

If the bispectrum in ΛCDM cosmologies has not received all the attention it
deserves, in cosmologies with massive neutrinos there is not a single study of
HOCFs with the only notable exception of the recent paper by [66] discussing
the matter and neutrino bispectrum. In the spirit of the analysis of the
power spectrum in Section 2, we will present the first measurements of the
density bispectrum in different cosmologies and at different redshifts, trying
to isolate massive neutrinos effects, and only afterwards we will compare
with PT predictions. For simplicity, and given the arguments in Section 2,
we assume the neutrino bispectrum is negligible and our analysis focus on
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Figure 4.1: Top panel: CDM bispectrum for equilateral configuration, at
z = 0 left panel and at z = 0.5. in cosmologies with and without massive
neutrinos. Bottom panel: ratio of the equilateral bispectrum in presence of
massive neutrinos to the same quantity in a ΛCDM Universe

the CDM bispectrum only. Given the large volume of the DEMNUni suite
we have measured the bispectrum in this simulation set only.

Figure 4.1 presents the measurements of the bispectrum for equilateral
configuration, i.e. k1 = k2 = k3, as a function of the wave number k for the
four different cosmologies of the DEMNUni suite at z = 0, 0.5. While on the
large scales there is no significant effect of massive neutrinos on B(k, k, k), as
we move to smaller scales we see a suppression of power due to the lower σ8

in cosmologies with massive neutrinos and hence lower nonlinearities. From
the lower panels we see that the suppression is around the 15% for mν = 0.17
eV at z = 0 and it is roughly constant across redshift. Figure 4.2 presents
the measurements at z = 1, 2,

In the absence of primordial non-Gaussianities there is no particular
reason to plot one bispectrum configuration rather than others, but visu-
alization of all configurations hide the effects of massive neutrinos, so we
decided to show only another configuration, a triangle with k1 = 2k2 . To
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Figure 4.2: Same as Figure 4.1 but at z = 1, 2.

avoid redundancies in the presentation, at this stage we also compare with
PT predictions for the CDM bispectrum.

Following the argument of Section 2.1 we will assume that any perturba-
tion scheme can be straightforwardly applied to massive neutrino cosmologies
without any further modification, provided the right linear power spectrum
is used. This means that at tree level in standard perturbation theory the
PT CDM bispectrum reads [114]

Bc(~k1,~k2) = 2F2(~k1,~k2)P (k1)P (k2) + cyc (4.2)

where

F2(~k1,~k2) =
5

7
+

1

2

~k1 · ~k2

k1k2

(
k1

k2
+
k2

k1

)
+

2

7

(~k1 · ~k2)2

k2
1k

2
2

(4.3)

is the standard second-order kernel that arises in PT.
Figure 4.3 shows measurements at z = 0.5, 1 of the bispectrum for a

particular configuration with k1 = 2k2 and k1 = 0.075h−1 Mpc. Differently
from the previous case we see that the bispectrum is massive neutrino
cosmologies is suppressed on all scales. The continuous lines that tries
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Figure 4.3: bispectrum for a folded configuration with k1 = 2k2 and
k1 = 0.075h−1 Mpc in presence of massive neutrinos to the same quantity in
a ΛCDM univers, at z = 0 (left) and z = 1 (right).

to go through the measurements are tree level prediction from Eq. (4.2).
The agreement is as good as it gets with these data but once again we
emphasize that PT works in massive neutrino cosmologies as well as in
ΛCDM cosmologies and this is encouraging if one wants to push PT or other
frameworks to higher orders.

Another way to visualize the effect of massive neutrinos on the bispectrum
is to compute the reduced bispectrum Q defined as follows

Q(~k1,~k2) =
B(~k1,~k2)

P (k1)P (k2) + P (k1)P (k3) + P (k2)P (k3)
(4.4)

so that it is independent of the initial amplitude of the linear fluctuations
and should isolate effects which are inherently nonlinear. Notice that at tree
level in PT the reduced bispectrum is also independent of redshift.

In Figure 4.4 we show the reduced bispectrum for equilateral configura-
tions at z = 0, 05 in massive neutrino cosmologies divided by the analogous
quantity in a standard scenario. We still notice a suppression of Q as neu-
trino masses increases even if we remove the effect of the power spectrum.
However tree-leve PT predicts the same value of the reduced bispectrum for
all cosmologies, in this particular configuration, and therefore any deviations
in the measurements require higher order corrections in PT.

73



0.01 0.02 0.05 0.10 0.20

0.75

0.80

0.85

0.90

0.95

1.00

1.05

1.10

k @h Mpc-1D

Q
c�Q

cL
C

D
M

z = 0

mΝ = 0 eV

mΝ = 0.17 eV

mΝ = 0.3 eV

mΝ = 0.53 eV

0.01 0.02 0.05 0.10 0.20

0.7

0.8

0.9

1.0

1.1

k @h Mpc-1D

Q
c�Q

cL
C

D
M

z = 0.5

mΝ = 0 eV

mΝ = 0.17 eV

mΝ = 0.3 eV

mΝ = 0.53 eV
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4.2 The Halo bispectrum

For halos the picture is only slightly different. At leading order the halo
bispectrum reads

Bhhh(~k1,~k2) = b31Bc(
~k1,~k2) + b21b2(Pcc(k1)Pcc(k2) + cyc) (4.5)

where Bc is the tree level CDM bispectrum defined in the previous section
and b1, b2 are first and second order bias coefficients. For the halo reduced
bispectrum instead we have, on large scales [116]

Qhhh(~k1,~k2) =
1

b1
Qc(~k1,~k2) +

b2
b21

(4.6)

which explicitily shows how information on the halo bispectrum can help
reducing degeneracies between bias coefficients, since b2 does not change the
actual shape of Q.

However it is well know that fitting the power spectrum and the bispec-
trum using the model in Eq. (4.5) yields different values of linear bias b1
[133; 143; 138]. That poses a serious problem for the use of the galaxy bispec-
trum in comological parameter analysis and it indicates that our theoretical
model of the halo bispectrum lacks understanding in the bias prescription.
The solution came in [120; 121] where the authors shown that even if one
starts with a local bias expansion, non local contributions to the bias arise
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Figure 4.5: Top panel: χ2 per d.o.f as a function of k for all halos of mass
M > 1013M� at z = 0. On the left the ΛCDM case, on the right mν = 0.53
eV. Lower panels show the best fit bias parameters in different models.

due to correlation of the density field with the large scale tidal field. At the
lowest order, introducing this new terms means for the halo bispectrum that
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Figure 4.6: Same as Figure 4.5 at z = 1.

Bhhh(~k1,~k2) =b31Bc(
~k1,~k2)+ (4.7)

b21[b2Pc(k1)Pc(k2) + 2γ2(µ2
12 − 1)Pc(k1)Pc(k2) + cyc]

where µ12 is the cosine of the angle between ~k1 and ~k2. The new coefficient

76



0.02 0.05 0.10 0.20

100

104

106

k @h Mpc-1D

B
Hk

,k
,k

L
M > 1013h-1M

�

z = 0.5

mΝ = 0.53 eV

LCDM

Bhhh

Bccc

0.02 0.05 0.10 0.20

100

104

106

k @h Mpc-1D

B
Hk

,k
,k

L

M > 3 ´ 1013h-1M
�

z = 0.5

mΝ = 0.53 eV

LCDM

Bhhh

Bccc

0.02 0.05 0.10 0.20

100

104

106

k @h Mpc-1D

B
Hk

,k
,k

L

M > 1013h-1M
�

z = 1

mΝ = 0.53 eV

LCDM

Bhhh

Bccc

0.02 0.05 0.10 0.20

100

104

106

k @h Mpc-1D

B
Hk

,k
,k

L

M > 3 ´ 1013h-1M
�

z = 1

mΝ = 0.53 eV

LCDM

Bhhh

Bccc

Figure 4.7: Comparison between the halo bispectrum and a non local bias
model at z = 0.5 for halos with M > 1013M� (left) and M > 3× 1013M�.
The bottom panels present the measurements at z = 1.

γ2, since it is generated perturbatively, can be predicted and it is equal,
under some assumptions, to −2(b1 − 2)/7. If now one fits for the three free
bias parameters in Eq. (4.7) and compares the best fit value of linear bias
with the one obtained from the power spectrum, one finds that the two are
compatible. This is shown in Figure 4.5 for mν = 0, 0.53 eV at z = 0 for all
the halos with mass larger that 1013M�. All triangular configurations have
been included in the analysis, although only a few triangles are shown.

The top panel shows the χ2 per degree of freedom in several different
models for the halo bispectrum as a function of the maximum wavenumber
included in the fit. In blue the case where we fit for b1, b2 and γ2 as in
Eq. (4.7), in red for the local model of Eq. (4.5), and in green and yellow
the same models but with linear bias fitted from the power spectrum. In the
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Figure 4.8: Halo reduce bispectrum for a folded configuration with k1 = 2k2

and k1 = 0.075h−1 Mpc with and without massive neutrinos.

second panel we compare the best linear bias between the different models.
Only including non local bias γ2 one recovers the same linear bias as in a
power spectrum analysis (in black). Then, as shown in the third panels, it
follows that the inferred value of quadratic bias is the same, whether we
fix or not the value of b1 from the power spectrum, only in the non local
model. Finally the bottom panel shows the best fit value of non local bias γ2

and it should be noted that the best fit value is always systematically lower
than the PT prediction, dashed line (we will come back to this shortly). The
same analysis can be carried out at another redshift, see Figure 4.6, or using
another population of halos, not shown for brevity of the analysis.

Now we are in the position to compare the measurements of the halo
bispectrum with the fit, for which we assume that b1 is fixed from the power
spectrum and b2 and γ2 from the bispectrum, since it is the consistent
model yielding smaller errorbars. We have to choose the value of the best
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Figure 4.9: Universality of quadratic and non local bias as a function of
peak height ν.

fit parameters at a given kmax and by inspection of the χ2 we found that
kmax = 0.065h−1 Mpc is the smallest scale up to which the reduced χ2

remains constant.
For equilateral configuration the comparison is done in Figure 4.7. The

left column shows the measurements with the best fit for low mass halos,
M > 3 × 1013M�, at z = 0 (bottom panel) and z = 1 (upper panel),
while the right one the same measurements but for more massive halos,
M > 3× 1013M�. Those configurations are quite sensitive to the presence
of non local bias since in this case µ2

12 = 0.25. We see that the fit is good on
a wide range of scale, and both in redshift and halo populations.

Next we discuss the halo bispectrum for the same folded configuration
presented for the matter bispectrum in Section 4.1, in Figure 4.8. In this case
to highlight difference in the bias between different cosmologies and redshift
we plot the reduced bispectrum. The first thing worth noticing is that the
dependence on the angle is suppressed in halos with respect to matter, a
direct consequences of the presence of linear bias in the denominator of
Eq. (4.6). For massive neutrinos cosmologies since linear bias at fixed mass
threshold is higher than the ΛCDM case the suppression is even larger,
and this is particularly evident for mν = 0.53 eV. As before the agreement
between the theory and the measurements is good, but it remains the same
regardless of the presence of massive neutrinos.

A final remark about the analysis discussed in this section. We would
like to stress again that this is a preliminary test, in fact all the results we
have presented are known in ΛCDM cosmologies and we have just shown
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Figure 4.10: Non local bias as a function of linear bias for all cosmologies,
redshifts and halo populations.

how to straightforwardly extend them to massive neutrino Universes arriving
to the same conclusions. A more careful analysis, including the one loop
bispectrum, scale dependent bias parameters as in [119], and a combined
analysis of power spectrum and bispectrum as in [146], also including the
halo filter is currently under investigation.

The last piece of information we want to add regards the universality
of quadratic bias and non local bias. We produced the same plot as in
Figure 3.13 but this time for b2 and γ2 and the result is shown in Figure 4.9.
As expected we find that when expressed in terms of CDM only fluctuations
bias coefficients are universal functions in both redshift and cosmologies.

Finally in Figure 4.10 we confirm previous findings in ΛCDM cosmologies
[120; 121; 146] for non local bias , the best fit value of γ2 is systematically
lower that the PT prediction, going in the direction of a contribution to non
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local bias also at the lagrangian level as proposed by [154; 155].
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Chapter 5

Conclusions and Outlook

We have investigated the effects of massive neutrinos on several observables
in Large Scale Structures. In Section 2 we presented measurements of the
power spectrum of each individual component of the total matter density,
that is the cold dark matter and baryons (here treated on the same footing
and called CDM) and the neutrinos, along with their cross-power spectrum
and the total matter power spectrum, given by the weighted sum of the three.
The analysis in terms of distinct components allows to test early hypothesis
regarding the possibility of neglecting the nonlinear evolution of neutrino
perturbations in analytical predictions [61]. In this respect we point-out,
with direct reference to our measurements, that the neutrino power spectrum,
as well as the cross-power spectrum provide a significant contribution to the
total matter power spectrum, Eq. (8), only at large-scales, where the linear
approximation is sufficient. Since the total matter power spectrum, Pmm(k),
and the cold matter power spectrum, Pcc(k), are the only quantities directly
related to actual observables, a 1% accuracy appears to be achievable even
neglecting the nonlinear evolution of neutrino perturbations. With this in
mind, we focused on the accurate description of nonlinearity of the cold
matter component alone, considering various predictions in perturbation
theory, and using, as input quantity, the simple cold matter linear power
spectrum. While this is clearly an effective, not rigorous, approach, we
have shown that the accuracy provided by PT techniques, and their limits
of validity on the matter power spectrum in ΛCDM cosmologies, can be
achieved as well for massive neutrino models in a rather simple way. In a
completely similar fashion, fitting formulae obtained from ΛCDM simulations,
and used beyond the perturbative regime like halofit, can be safely applied
to predictions of the nonlinear cold matter power spectrum, and simply
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extended, with the addition of the linear contributions from the neutrino
auto- and CDM-neutrino cross-spectra, to the total matter power spectrum,
retaining the same accuracy in presence of massive neutrinos as in a standard
massless cosmology, without resorting to additional fitting parameters.

We have shown evidence in Section 3.1 that the halo mass function for
models with massive neutrinos can be reproduced by existing fitting formulae
derived from simulations of standard ΛCDM cosmologies only if evaluated in
terms of the variance of small-scale cold dark matter perturbations. Previous
studies commonly assumed, however, a dependence on the total matter
density variance, leading to large and ultimately artificial departures from
universality as the total neutrino mass is varied. Our results are based
on halo catalogs determined by means of a FoF and spherical halo finders
accounting for CDM particles only. Lacking a proper definition of a halo
finder for neutrino particles we tested our results by considering as well
catalogs obtained including all particles, finding percent-level differences in
the mass function for low masses. Such differences are expected to be even
smaller once unbound neutrino particles with large thermal velocities are
removed from the halo by a suitable algorithm. The emerging picture shows
neutrinos with masses in the currently viable range playing a minor role in
the nonlinear collapse of cold DM structures: even though a fraction of them
do cluster inside CDM halos, their contribution to the total mass of a halo
is negligible [156; 157; 45; 158; 49].

We studied in detail the halo abundance as a function of the variable
ν = δcr/σ, showing that while universality is recovered to a large extent
by setting σ = σcc, minor departures with respect to neutrino masses are
detectable and comparable to those already seen in standard ΛCDM models
for instance as a function of redshift [92; 93]. Neutrino masses are therefore
primarily degenerate with the amplitude of the fluctuations in the CDM field
σ8,cc, and, to a lesser extent, to the slope of the spectral index on the scale
where σ8,cc = δcr.

The impact of these findings on cosmological analyses from galaxy clusters
abundances can be significant. An estimate of the systematic error induced
by the wrong assumption for the mass function dependence on the linear
power spectrum is done in section 3.1.3 and an application to recent data-sets
is the subject of [111].

We studied halo clustering in Section 3.2, identifying a definition of halo
bias in terms of cold dark matter perturbations as the only one able to recover
the expected constant bias parameters at large scales. This is, to a large
extent, a natural consequence of the results on the mass function. We notice
some small, residual scale-dependence for large bias values possibly due to
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nonlinear effects. However, bias coefficients computed from the total dark
matter power spectrum are significantly scale-dependent. A comparison of
bias measurements as a function of ν = δcr/σcc shows remarkable universality,
in stark contrast with the total matter description with variable ν = δcr/σmm.

Our results on bias have, as well, important implications for the analysis
of galaxy clustering aiming at constraining neutrino masses. In previous
works, bias parameters defined in terms of total matter perturbations are
assumed as constant and marginalized over, introducing a non-negligible
systematic error in the results. Ambiguity in the definition of halo (and
galaxy) bias, motivated a preliminary test of the Kaiser formula for redshift-
space distortions [123], where linear bias is a relevant parameter. We found,
despite the yet large statistical uncertainty, some indications of the expected
scale-dependence of the growth rate of matter perturbation, characteristic of
massive neutrino cosmologies. If such indications are correct, then we have
shown that defining the galaxy bias w.r.t. the cold matter component is
necessary to avoid a systematic error on the determination of the growth
rate f(k) at the few percent level. Indeed as discussed in [159] theoretical
uncertainties on the halo mass function and halo bias could have a large
impact on the constraining power of next generation surveys, and they needed
to be understood at the % level. That is exactly the level at which neutrino
mass effects become important.

Finally we have presented preliminary results for the matter and halo
bispectrum in cosmologies with massive neutrinos in Section 4. We confirm
all the results for both density and halo fields we have seen for the power
spectrum also at the bispectrum level. In analogy with the ΛCDM case,
a non local bias model is the only one able to consistently describe the
bispectrum of halos, and we find, in agreement with other studies, a value of
non local bias lower that PT prediction.

A lot of work has still to be done. The analysis we presented for the
bispectrum has to be improved towards more realistic modeling of both
clustering and bias, and the same higher order bias model should then be
applied to the halo power spectrum. RSD beyond Kaiser approximation are
on top of the list, for both halos and matter distribution.

With a good handle on halo statistics one should then populate those
halos with galaxies and build up realistic galaxy catalogs. Only at this stage
we will be able to check whether or not our theoretical models of structure
formation are able to recover the the input value of neutrino masses and
other parameters in the simulations.

All previous analysis should be carried out in configuration space as well.
Very little has been done in this respect, [100; 49; 68]. For instance the study
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of the BAO peak in cosmologies with massive neutrinos has been recently
discussed in [68], and it could be extended to the full shape of the two-point
correlation function.

This list could go on a few pages more, but we hope it is clear from the
discussion in this work that any observables has to be studied in cosmologies
with massive neutrinos. Not only to see which probes are the best in
constraining neutrino masses but also to avoid possible systematics effect in
the determination of other cosmological parameters introduce by our poor
knowledge of physical effect induced by massive neutrinos.
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