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ABSTRACT

The inflationary community has undoubtedly been on a rollercoaster ride
during the 2014. At first, given the detection of a high level of B-modes
polarization around the scale of the recombination bump, there was a
strong indication that the simplest potential V = 1

2m
2φ2 could represent

the benchmark model for inflation. This suggested to look for observables
that could parametrize deviations from this benchmark. For a quadratic
potential, the quantity (ns − 1) + r/4 + 11(ns − 1)2/24 vanishes (up to
corrections which are cubic in slow roll) and can be used to parametrize
small deviations from the minimal scenario independently on the reheating
process. Constraints on this quantity would be able to distinguish a quadratic
potential from a pseudo-Nambu-Goldstone boson with f . 30MP and
set limits on the deviation from unity of the speed of sound |cs − 1| .
3× 10−2 (corresponding to an energy scale Λ & 2× 1016 GeV), and on the
contribution of a second field to perturbations (. 6× 10−2).
Furthermore, for the quadratic potential, one can provide predictions

accurate up to 1% for the spectral index ns and the tensor-to-scalar ratio
r assuming instantaneous reheating and a standard thermal history: ns =
0.9668± 0.0003 and r = 0.131± 0.001. This represents the simplest and
most informative point in the (ns, r) plane. The result is independent of the
details of reheating (or preheating) provided the conversion to radiation is
sufficiently fast. A slower reheating or a modified post-inflationary evolution
(with an equation of state parameter w ≤ 1/3) push towards smaller ns
(and larger r), so that our prediction corresponds to the maximum ns (and
minimum r) for the quadratic potential.
The relations and the predictions so far considered can be derived for a

general V ∝ φp potential, however this typically requires some additional
assumption.
Eventually, the presence of B-modes polarization was mainly due to

Galactic dust. The part due to primordial signal is still unknown. Is there
any theoretical prior to guess what is the size of the primordial tensor
modes? In this respect, we investigated the possible implications of the
measured value of the scalar tilt ns for the tensor-to-scalar ratio r in slow-
roll, single-field inflationary models. The measured value of the tilt satisfies
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ns − 1 ∼ 1/N∗, where N∗ ∼ 60 is the number of e-folds for observationally
relevant scales. If this is not a coincidence and the scaling holds for different
values of N , it strongly suggests that either r is as big as 10−1, or smaller
than 10−2 and exponentially dependent on ns. A large region of the (ns,r)-
plane is not compatible with this scaling.

Given the small value for r we expect, we update the forecasts for various
ground-based experiments (AdvACT, CLASS, Keck/BICEP3, Simons Array,
SPT-3G), balloons (EBEX 10k and Spider) and satellites (CMBPol, COrE
and LiteBIRD), taking into account the recent Planck data on polarized
dust and using a component separation method. The forecasts do not
change significantly with respect to previous estimates when at least three
frequencies are available, provided foregrounds can be accurately described
by few parameters. We then argue that a theoretically motivated goal for
future experiments, r ∼ 2× 10−3, is achievable if the noise is reduced to
∼ 1µK-arcmin and lensing is reduced to 10% in power.

Of course, the constraints on inflationary cosmology do not lonely come
from 2-points statistics. Given the tight bound on the local shape of non-
Gaussianities and the room still available for non slow-roll models, we show
that in the Effective Field Theory (EFT) of inflation an ISO(4,1) symmetry
(like the one in DBI inflation) uniquely fixes, at lowest order in derivatives,
all correlation functions in terms of the speed of sound cs. In the limit
cs → 1, the ISO(4,1) symmetry reduces to the Galilean symmetry. On the
other hand, we point out that the non-linear realization of SO(4,2), the
isometry group of 5D AdS space, does not fix the cubic action in terms of
cs.
Last, we go beyond the conformal consistency condition for the scalar

three-point function. In single-field models the effect of a long mode with
momentum q reduces to a diffeomorphism at zeroth and first order in q.
This gives the well-known consistency relations for the n-point functions.
At order q2 the long mode has a physical effect on the short ones, since it
induces curvature, and we expect that this effect is the same as being in a
curved FRW universe. We verify this intuition in various examples of the
three-point function, whose behavior at order q2 can be written in terms of
the power spectrum in a curved universe. This gives a simple alternative
understanding of the level of non-Gaussianity in single-field models. The
non-Gaussianity is always parametrically enhanced when modes freeze at a
physical scale kph, f shorter than H: fNL ∼ (kph, f/H)2.
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The outline of this thesis is rather simple. We will introduce the basic
concepts that we need in the Introduction. Then, each chapter that follow
will treat a particular aspect of the inflationary observables, often related
to broad classes of models. Given the diversity of topics contained in this
thesis, we preferred to have the conclusions at the end of each chapter.
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Part I

INTRODUCTION



1
THE HOMOGENEOUS UNIVERSE

1.1 frw approximation

Modern cosmology starts with the experimental observation that the
density of matter is uniform and isotropic in space on a scale of order 100
Mpc [8]. In the attempt to describe the geometry of our homogeneous and
isotropic universe, a trivial choice for the 3-dimensional metric would clearly
be the euclidean metric

ds2 = d~x2. (1.1)

This metric is obviously invariant under rescaling, ~x→ a~x, and rotations,
however it is not the most general one. The points on a 4-dimensional sphere
enjoy the same degree of homogeneity and isotropy, i.e.

ds2 = d~x2 + dy2, where y2 + ~x2 = R2, (1.2)

is also invariant under SO(3) (and also under SO(4)). It can be shown [9]
that the only other possible choice for the 3-dimensional metric is the one
of an hypersphere

ds2 = d~x2 − dy2, where y2 − ~x2 = R2. (1.3)

By solving the constraints in Eqs. (1.2, 1.3), the 3-dimensional metrics
above can be casted in the single form

ds2 = d~x2 +K
(~x · d~x)2

1−K~x2 , (1.4)

where the spatial curvature K can take the following values:

K


+R−2 spherical

= 0 flat

−R−2 hyperspherical

(1.5)

2



1.1 frw approximation 3

Extending the above considerations to include time, and possibly a time-
dependent scale factor, the 4-dimensional metric for a homogeneous and
isotropic universe takes the famous FRW form

dτ2 = −dt2 + a2(t)

d~x2 +K
(~x · d~x)2

1−K~x2

 , (1.6)

also usually written in spherical coordinates1 as

dτ2 = −dt2 + a2(t)

(
dr2

1−Kr2 + r2dΩ2
)

, (1.7)

where the physical spatial curvature is K/a2.
The time evolution of the scale factor can be directly related to the

content filling the universe trough Friedmann’s equation [10],

H2 =
(
ȧ

a

)2
=

1
3M2

P
ρ− K

a2 ,

Ḣ +H2 =
ä

a
= − 1

6M2
P
(ρ+ 3p),

(1.8)

where ρ and p are respectively the energy density and the pressure of stuff
in the universe.
Current observations of the CMB constrain the curvature to be very

small, |ΩK | = |K/a2H2| < 0.005 [11]. In Sec. 1.2.1 we will see that the
smallness of this value is somewhat disturbing, however for all the other
considerations that follow it can be safely neglected.

Some simple solutions to Friedmann’s Eqs. (1.8) can be found in the case
of barotropic fluids, i.e. fluids for which p = wρ. In this case, one finds that

a(t) ∝ t
2

3(1+w) , H =
2

3(1 +w)

1
t
. (1.9)

For later convenience let us make a couple of example of everyday life fluids:

• in the case of pressureless fluid (e.g. matter, etc. . . ), w = 0 and

a(t) = t2/3, H =
2
3t

(1.10)

• in the case of radiation (e.g. photons, etc. . . ), w = 1/3 and a(t) = t1/2

a(t) = t1/2, H =
1
2t

(1.11)

1 Covering only half of the 3-sphere in the case of positive curvature.



1.2 problems in the old cosmology 4

1.2 problems in the old cosmology

It was soon realized that the old standard picture of the Hot Big Bang
suffers from a few critical paradoxes which goes under the name of flatness,
horizon and monopoles problems [12–16]. In this section we review the first
two of the problems that led to the formulation of the inflationary paradigm.
The third problem, the monopoles problem, is surely the weakest of the
three, given that magnetic monopoles might not exist at all, so it will be
left out of the discussion.
We closely follow the nice lectures [17] and the original works.

1.2.1 The Flatness Problem

As we just saw in the previous section, the spatial curvature of our
universe has been measured to be very small, |ΩK | < 0.005 [11], where
ΩK ≡ −K/a2

0H
2
0 . For definiteness lets take ΩK ∼ 10−2. ΩK is by definition

a time dependent quantity. From the time when the average temperature
was about T = 104 K, the scale factor has grown as t2/3, so |ΩK | has also
increased as t2/3 ∝ T−1. This implies that the curvature density could not
have been greater than |ΩK | ∼ 10−6 at that time. Furthermore, before that,
during radiation dominance, the scale factor was increasing like t1/2, so by
the time of positron-electron annihilation at T = 1010 K, ΩK should have
diminished as t ∝ T−2, i.e. to |ΩK | ∼ 10−18, and of course even smaller at
earlier times.
This means that the initial amount of energy density of matter and

radiation in the universe, had to be very tuned to the critical value (one
part in 1018) to make |ΩK | so small. Tuned initial conditions are not very
desirable since they makes the outcome quite special and improbable. As
we will see in Sec. 1.3.1, inflation is an appealing dynamical mechanism
that makes the curvature small by the time radiation dominance starts.
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1.2.2 The Horizon Problem

Assuming that indeed the curvature is small, one can analyze the propa-
gation of signals (e.g. photons) in a flat FRW metric. A convenient choice
is to replace the time variable t with the conformal time η, defined as

dη ≡ dt
a(t)

. (1.12)

In this variable, since

dτ2 = a2(η)
(
−dη2 + d~x2

)
, (1.13)

the causal structure of the metric is the very same of the Minkowski metric,
where the null geodesics are the rays

r(η) = ±(η− η0) + r0. (1.14)

The maximum distance that a particle can travel from time t0 to time t, or
from redshift z0 to redshift z, i.e. (comoving) particle horizon, is given by

∆h(z0, z) ≤ ∆η = η− η0 ≡
∫ t

t0

dt′
a(t′)

=
∫ z

z0

dz′
H(z′)

. (1.15)

The horizon problem originates from the application of these formulas to
the photons of the CMB. This is because in a universe filled with matter and
radiation and a late Λ-dominated phase, the particle horizon is finite. To
see why this is the case, it is sufficient to evaluate the integral in Eq. (1.15)
with

H(z) = H0
√

Ωγ(1 + z)4 + Ωm(1 + z)3 + ΩΛ, (1.16)

where Ωm = 0.3, Ωγ = Ωm(1 + zeq), ΩΛ = 1−Ωm and zeq = 3400,
between z =∞ and the time of recombination at zrec ' 1100. Given that
the particle horizon is finite, there should be many causally disconnected
patches on the last scattering surface, and for those an order 1 difference in
the average temperature is to be expected.
The angular size of causally disconnected patches is given by the ratio of
the size of the last scattering surface and the size of the particle horizon on
the last scattering surface itself. This is given by

θpatches = 2∆h(zrec,∞)

∆h(0, zrec)
' 2.3◦, (1.17)

and corresponds to a number of patches Npatches ' O(104). On the contrary
today we see only a single patch with a temperature of TCMB = 2.725 K
and a high degree of homogeneity and isotropy.
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LSS

⌘

0

⌘rec

�h
�h

Figure 1: In a universe in which only radiation and matter are present, the
particle horizon is finite. Consequently, patches separated by roughly 2◦

on the last scattering surface (LSS) should have different temperatures
(here depicted as different colors).

1.3 shrinking the horizon

1.3.1 Flattening the Universe

In order to grasp the idea behind inflation, one can look at how the
flatness problem can be solved. In order to do so, lets take Friedmann’s
equation written as

1 =
ρ

3M2
PH

2 −
K

a2H2 = Ω + ΩK , (1.18)

and calculate the time dependence of Ω. By direct evaluation of the deriva-
tive, and using both Friedmann’s equations, one obtains

dΩ
dlog a = (1 + 3w)Ω (Ω− 1) . (1.19)

As can be seen from Eq. (1.19), the point Ω = 1 becomes an attractor
when 1 + 3w < 0, that is, independently of its initial value the curvature
will become subdominant if a sufficient amount of time passes. So in order
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LSS

Reheating

⌘rec

⌘end

�1

⌘

In
fla

ti
on

Figure 2: The particle horizon during inflation is infinite. Consequently, all
photons coming from the last scattering surface were in causal contact
at some time in the past.

to solve the apparently fine tuned condition for Ω, it is sufficient to have
a long period dominated by a fluid with 1 + 3w < 0 (something close to
a cosmological constant, for example) before the beginning of radiation
dominance.

1.3.2 Thermalizing the Photons

The horizon problem can be solved by the same kind of fluid that solves
the flatness problem. For a barotropic fluid, the conformal time reads

η =
2

1 + 3wa
(1+3w)/2, (1.20)

and the initial singluarity, a = 0, is moved from η = 0 to η = −∞ if
1+ 3w < 0! This means that the photons of the CMB were in causal contact
in the past, if the inflationary phase is long enough. The conformal time
η = 0 is now just the beginning of radiation dominance and there is a new
phase before of it. Another way to see how this happens is to consider
the scales inside our Hubble radius. Having in mind Fig. 3, one realizes
that since 1/aH is always increasing for “standard” fluids, any comoving
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sub-horizon sub-horizon

ReheatingInflation Radiation/Matter

super-horizon k�1

(AH)�1
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log a

Figure 3: The comoving horizon is decreasing during inflation and increasing
during radiation dominance and matter dominance. Observable scales
are sub-horizon today and in causal contact during inflation.

length λ ∼ 1/k was super-horizon at some time in the past. From this point
of view, the solution to the horizon problem is to introduce a decreasing
comoving Hubble horizon before radiation dominance.

1.3.3 Conditions for Shrinking the Horizon

The idea that a single fluid can erase the initial spatial curvature of the
universe and at the same time put the scales we observe today in causal
contacts back in the past is surely very nice. Probably this was one of the
most convincing and driving factors for the adoption of the inflationary
paradigm in the early days.
For what follows we need to give a more quantitative definition of the

inflationary phase. As we just saw from the previous section, one possible
definition is given by the shrinking comoving horizon:

d
dt

( 1
aH

)
= −1

a
(1− εH) < 0, (1.21)

which can be written as

εH ≡ −
Ḣ

H2 < 1, (1.22)
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This means that inflation takes place when the Hubble scale is nearly
constant. This goes under the name of first “slow-roll” condition, even
though for the moment there is nothing rolling.
Another way of writing this equation is in term of the scale factor. By

evaluating Ḣ, one finds

d2a

dt2 > 0, (1.23)

so that inflation can be thought as a phase of accelerated expansion of the
universe. Moreover, given that H is nearly constant, the acceleration is
nearly exponential!

Additionally, to see what kind of fluid can sustain this phase of accelerated
expansion, one can use Fridmann’s equations to express εH as

εH ≡ −
Ḣ

H2 =
3
2

(
1 + p

ρ

)
, (1.24)

which, using the bound in Eq. (1.22), implies

w =
p

ρ
<

1
3. (1.25)

This is the same condition that we found in Secs. 1.3.1 and 1.3.2, so that
this definitions are all equivalent. However, to solve both problems, those
conditions must be met for quite a sufficient time. This fact is usually
expressed by an additional “slow-roll” condition (in principle there is an
infinite tower of conditions. . . )

|ηH | ≡
|ε̇H |
εHH

� 1, (1.26)

which just garantees that the first condition is satisfied for a “long time”.

1.4 classical dynamics of inflation

1.4.1 Slow-roll inflation

In Sec. 1.2 we saw that the problems or tuning appearing in the old
standard cosmology can be solved by a phase of expansion that satisfies
the slow-roll conditions Eqs. (1.22, 1.26). Obviously these conditions are
satisfied by a cosmological constant. However for a cosmological constant,
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the inflationary phase is never-ending.
A far better candidate is a classical VEV for the energy density of a scalar
field. In this case the VEV can be relaxed by quantum effects (e.g. tunneling)
or classical dynamics. Here we will concentrate on potentials for which the
dynamics is driven by classical evolution. For this purpose, consider a scalar
field φ minimally coupled to gravity and a potential V , in formula:

S =
∫

d4x
√
−g

(
M2

P
2 R− 1

2(∂φ)
2 − V (φ)

)
. (1.27)

We seek for a time-dependent homogeneous solution φ(xµ) = φ(t) for the
scalar sector and the background metric. The system of coupled differential
equation is easy to obtain and reads:

φ̈+ 3Hφ̇+ V ′(φ) = 0,

H2 =
1

3M2
P

(1
2 φ̇

2 + V (φ)
)

.
(1.28)

Combining these two equations we obtain

Ḣ = −1
2
φ̇2

M2
P

, (1.29)

which, recalling Eq. (1.22), gives a condition for the slow roll parameter in
terms of the scalar field,

εH =
1
2

φ̇2

M2
PH

2 � 1. (1.30)

For inflation to happen, the bound has to be abundantly satisfied. This
happens if the potential energy V (φ) dominates over the kinetic energy φ̇2.
Furthermore, from Eq. (1.26) one finds

ηH = 2εH + 2 φ̈

Hφ̇
, (1.31)

and for inflation to last long enough it is sufficient that∣∣∣∣∣ φ̈Hφ̇
∣∣∣∣∣� 1. (1.32)

So far these conditions are exact, however they are somewhat cumbersome
to use since one needs to solve the system in Eq. (1.28). To simplify life,
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one can assume that the dynamics is the one of slow-roll and approximate
the equation to

3Hφ̇+ V ′(φ) ' 0,

H2 ' V (φ)

3M2
P

.
(1.33)

Substituting these in Eq. (1.30, 1.31) one finds the conditions on the
approximate slow-roll parameters

εV ≡
M2

P
2

(
V ′

V

)2
� 1,

|ηV | ≡
M2

P
2
|V ′′|
V
� 1.

(1.34)

which have the advantage of having to do only with the shape of the
potential.

1.4.2 A Simple Example: the Quadratic Potential

For future reference, lets analyze a very simple model of inflation and
draw some conclusion. Lets assume that the inflaton is a massive particle
with no other self-interactions. Its potential reads

V (φ) =
1
2m

2φ2. (1.35)

For the moment we want to analyze this model as a dynamical system
without using the slow-roll approximation. The equation of motion for the
inflaton are easy to obtain and reads

φ̈+

√
3
2
φ̇

MP

√
φ̇2 +m2φ2 +m2φ, (1.36)

which can be recast in the following form

dφ̇
dφ = −

√
3
2
φ̇
MP

√
φ̇2 +m2φ2 +m2φ

φ̇
(1.37)

The classical evolution of the inflaton can now be seen as a trajectory in
the (φ̇,φ)-plane, as in the phase diagram of Fig. 4, from generic initial
conditions for the velocity and excursion of the field.
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Figure 4: The phase diagram for the quadratic potential shows that the inflation-
ary solution is an attractor. After the end of inflation the field start
oscillating around the minimum. At this point the inflaton decays and
reheating takes place.

Ultra-hard Solution

The dynamics admit a solution in which the kinetic term dominates over
the potential energy, φ̇2 � m2φ2. In this region Eq. (1.37) can be symplified
to

dφ̇
dφ = −

√
3
2
|φ̇|
MP

, (1.38)

so that the kinetic energy drop exponentially respect to the potential energy
if φ�MP. This means that, for high values of the field, the solution with
sub-leading kinetic energy is an attractor solution.

Attractor Solution

Assuming the slow-roll approximation, the slow-roll parameters are given
by the following formulae

εV = ηV =
1
2

(
MP
φ

)2
. (1.39)

From these the number of e-folds in terms of the excursion of the field
corresponds to

N(φ) ' φ2

4M2
P

. (1.40)
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Given that the largest scale we observe today corresponds roughly toN = 60,
the excursion of the field is roughly of 15MP.

1.4.3 k-Inflation

For what follows it is also useful to consider models of inflation in which
the kinetic term in not-minimal as in Eq. (1.27). The next-to-minimal
modification that one can consider is to replace the kinetic term with a
function of X = −1

2(∂φ)
2. This ensures that the equation of motion derived

from the action are still of second order and no ghost is introduced.
The class of inflationary models whose action reads [18]

S =
∫

d4x
√
−g

(
M2

P
2 R− P (X,φ)

)
, (1.41)

goes under the name of K-inflation. The function P can be thought as a
derivative expansion of the form

P (X,φ) = Λ4∑
n
cn(φ)

Xn

Λ4n − V (φ). (1.42)

In the regime in which all higher dimensional derivative operator can be
neglected, i.e. X � Λ4, the action reduces to Eq. (1.27). So, the regime we
are interested is the opposite, the regime in which also the other operators
matters, that is X ∼ Λ4. However in this regime the theory becomes non-
perturbative and large corrections to the couplings are expected. Generically
the theory is not robust enough under quantum corrections, and the only
viable models are the one in which some symmetry protects the coefficient
from renormalization.
For example in the DBI model [19], the function P is given by

P (X,φ) = −Λ4(φ)

√√√√1 + (∂φ)2

Λ4(φ)
− V (φ), (1.43)

and its form is protected by the nonlinear realization of a higher dimensional
symmetry (the symmetry generated by boosts in a higher dimension). The
symmetry saves the form of the action from renormalization and imposes
the quantum corrections to have at least two derivative on φ. Moreover, As
we will see in Sec. 7 imposing this higher dimensional symmetry at the level



1.4 classical dynamics of inflation 14

of the effective action completely fixes the relation among the operators of
the EFT.
For this class of models the slow-roll conditions cannot be written in

terms of the potential, given the higher-dimensional derivative operators
in the action. However one can still write the slow-roll conditions for the
Hubble parameters in terms of the fluid pressure p = P and energy density
ρ derived from the stress-energy tensor,

ρ = 2XPX − P , (1.44)

where the subscript X denote a derivative with respect to X. The slow-roll
parameters can now be calculated from Eqs. (1.24, 1.26) and constrain the
functional form of P . The first condition for example reads

εH =
3XPX

2XPX − P
� 1. (1.45)

One of the interesting features of this class of models is about the prop-
agation of perturbation around the background solution. Given that the
kinetic term is at leading order modified with a term of the form (∂φ)4,
perturbations propagates with a speed cs 6= 1 given by

cs =
PX

PX + 2XPX
, (1.46)

where X and the derivatives of P are all evaluated on the background
solution. As we will see later on in Sec. 8 and check explicitly in App. 8.3,
there is a generic argument for which whenever the speed of sound of
perturbation is much lower than 1, non-gaussianities are enhanced as c−2

s .



2
QUANTUM FLUCTUATIONS

Inflation is nowadays the leading paradigm for describing the early uni-
verse. Even though originally it was introduced as a solution for the two
famous problems reviewed in Sec. 1.2, it quickly turned out that inflation
gives a natural framework for the generation of primordial cosmological
perturbations [20–25]. In this Section we will summarize the theory of infla-
tionary, from the classical dynamics to the 2-point and 3-point correlation
functions. These were calculated in a very clean way [26] and constitute the
basis for the current search of signatures of the primordial universe.

2.1 perturbations in cosmology

The equations we reviewed in the previous section only describe the
background evolution, where all quantities are averaged in space. However,
small perturbations can appear on much shorter scales. In order to study
small perturbations around the background one can resort to perturbations
theory. Once the background is subtracted from Einstein’s equation, we are
left with

δGµν = 8πGδTµν . (2.1)

One issue however is the gauge redundancy of General Relativity. Since
one can perform his calculations in any coordinate frame, there is no clear
distinction between what one call background metric and what are metric
perturbations. Eventually, physical quantities cannot depend on this choice.
The way one typically deals with these issues is familiar with the calculation
of classical electrodynamics: fix some gauge, do the calculation and then
make the connection to the observables.

Lets start with the left hand side of Eq. (2.1). In complete generality, the
metric can be written in the following way

g00 = −(1 + 2Φ), (2.2)
g0i = 2aBi, (2.3)
gij = a2 [(1− 2Ψ)δij +Eij ] , (2.4)

15
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The perturbations Φ and Ψ are scalars and Bi and Eij can be decomposed
into scalar, vector and tensor parts.1 As in any gauge theory, the number of
components of the gauge field (in this case the metric gµν) is always larger
than the number of actual physical degrees of freedom.
Similarly, we can write the energy-momentum tensor like

T 0
0 = −(ρ̄+ δρ) , (2.5)
T 0
i = (ρ̄+ p̄)vi , (2.6)
T ij = δij(p̄+ δp) + Πi

j , (2.7)

where bar denotes background quantities and Πi
j is the anisotropic stress.

Let us at the end mention two important gauge invariant quantities that
we will use later. One is the curvature perturbation on uniform-density
hypersurfaces

ζ ≡ −Ψ− H
˙̄ρ
δρ . (2.8)

The other one is the comoving curvature perturbation

R ≡ Ψ− H

ρ̄+ p̄
v , (2.9)

where v is the velocity potential vi = ∂iv. One can explicitly check that
these two quantities remain invariant under a change of coordinates.

2.2 origin of quantum fluctuations

2.2.1 Power Spectra in Slow-Roll Inflation

We begin the study of inflationary perturbations with the 2-point function
for single-field slow-roll inflationary models and follow closely the presen-
tation in [26] (some of the original works are [20–25]). The starting point
is the action of the inflaton minimally coupled to gravity (1.27). To study
the perturbations is is useful to decompose the metric using the ADM
formalism,

ds2 = −N2dt2 + hij(dxi +N idt)(dxj +N jdt), (2.10)

1 Vector modes are not produced during inflation and we will neglect them in the rest of
the discussion.



2.2 origin of quantum fluctuations 17

whereN is the so-called lapse andN i the shift function. Using this formalism,
the action in Eq. (1.27) becomes

S =
1
2

∫
d4x
√
h
[
NR(3) − 2NV (φ) +N−1(EijE

ij −E2) (2.11)

+N−1(φ̇−N i∂iφ)
2 −Nhij∂iφ∂jφ

]
, (2.12)

where we have defined

Eij =
1
2
(
ḣij −∇iNj −∇jNi

)
. (2.13)

To study perturbations we have expand the inflaton field and the metric
around the homogeneous solutions. As we have already pointed out, due
to the diffeomorphism invariance, some of the fields we have introduce
are redundant. To resolve this redundancy, we have to fix the gauge. For
the calculation of inflationary correlation functions, a convenient choice
is the so called ζ-gauge. In this gauge the inflaton is unperturbed and all
perturbations are in the metric, namely

δφ = 0 , hij = a2e2ζ (eγ)ij , ∂iγij = 0 , γii = 0 . (2.14)

In this gauge, we are left with three physical degrees of freedom: one scalar
mode ζ and two polarizations of a transverse and traceless tensor mode γij .

To find the action for the perturbations, ζ and γij in this gauge, one has to
solve the equations of motion for N and Ni. The ADM formalism is designed
in such a way that those two functions are not dynamical variables and
their equations of motion are (the momentum and hamiltonian) constraints,

∇i
(
N−1(Eij − δijE)

)
= 0,

R(3) − 2V (φ)−N−2(EijE
ij −E2)−N−2φ̇2 = 0,

(2.15)

which can be solved perturbatively. For the purpose of finding the quadratic
action, it is enough to solve for N and Ni up to first order in perturbations.
For example, the second order solution of N would multiply the hamiltonian
constraint that vanishes, because it is evaluated at zeroth order and the
solution obeys the equations of motion. If we write

N = 1 + δN , N i = ∂iψ+N i
T , ∂iN

i
T = 0, (2.16)

then from Eq. (2.15) we get the following solutions [26]

δN =
ζ̇

H
, N i

T = 0 , ψ = − ζ

a2H
+ χ , ∂2χ =

φ̇2

2H2 ζ̇. (2.17)
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Now it is straightforward to find the quadratic actions for ζ and γij . We
have to replace these solutions into eq. (2.11) and expand the action up
to second order in perturbations. After some integrations by parts, the
quadratic action for ζ takes the following simple form [26]

S
(2)
ζ =

1
2

∫
d4x a3 φ̇

2

H2

(
ζ̇2 − 1

a2 (∂iζ)
2
)

. (2.18)

Similarly, the quadratic action for tensor modes is given by

S(2)
γ =

1
8

∫
d4x a3

(
γ̇2
ij −

1
a2 (∂kγij)

2
)

. (2.19)

In order to quantize these fields, we first have to canonically normalize
them and find the solutions of the classical equations of motion. For example,
for ζ, the canonically normalized field is ζc = φ̇

H ζ. The equation of motion
can be easily obtained from the action (2.18). In momentum space, using
conformal time, it reads

ζc
~k
′′(η) + 2Hζc

~k
′(η) + ~k2ζc

~k
(η) = 0 . (2.20)

Given that the inflationary background is quasi de-Sitter, we can write
H = −1/η. Small deviations are captured by the time dependence of the
factor φ̇

H which is proportional to the slow-roll parameter. The general
solution of this equation of motion will contain two modes, described by
Hankel functions.
Given a classical solution ζc, we can quantize the field as

ζ̂c
~k
(t) = ζc

~k
(t)â†~k

+ ζc∗
~k
(t)â−~k , (2.21)

where â~k and â†~k are annihilation and creation operators. In order to fix the
vacuum state, we have to specify additional boundary conditions for the
modes. In order to do so, it is sufficient to consider the modes deeply inside
the horizon, kη � 1, when we can neglect the curvature effects and choose
the standard Minkowski vacuum state. This imposes the conditions on the
solution of Eq. (2.20) bringing it to the form

ζc
~k
(η) =

H√
2k3

(1− ikη)eikη . (2.22)

This form of the modes is the standard Bunch-Davies vacuum [26].
Now we can finally write the 2-point function for scalar perturbations ζ

〈ζ~k1
ζ~k2
〉 = (2π)3δ(~k1 + ~k2)

H2

φ̇2

∣∣∣ζc
~k1
(η)

∣∣∣2 . (2.23)
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In the late time limit the two-point function becomes

〈ζ~k1
ζ~k2
〉 = (2π)3δ(~k1 + ~k2)Ps(k1) , (2.24)

where the power-spectrum P (k) is given by

Ps(k) =
H4

φ̇2
1

2k3 =
H2

2εM2
P

1
2k3 , (2.25)

where in the last equality we explicitly reintroduced the Planck mass.
As it become apparent from the solution of the equation of motion, the

main advantage of ζ-gauge is that the modes outside the horizon freeze and
they do not evolve in time. This implies that any correlation function of
ζ will remain frozen once all modes are outside the horizon. Furthermore,
ζ has a clear physical meaning: it is directly related to the perturbations
of the expansion of the universe. This is easy to see form the form of the
line element in ζ-gauge ds2 = a2e2ζd~x2, or just by calculating the spatial
curvature of the universe that reads R(3) = 4∂2ζ.

Notice that the quantities H and φ̇ entering in the power spectrum have
to be evaluated once the mode with a given ~k crosses the horizon, k ≈ aH.
Given that the background inflaton field evolve with time, we expect some
small k-dependence of H and φ̇. This small scale dependence is usually
parametrized as Ps(k) ∝ k−3+(ns−1). From Eq. (2.25) we can explicitly
calculate the scalar tilt ns of the power spectrum. Using k ≈ aH we get

ns − 1 ≡ d log k3Ps(k)

d log k = k
d
dk log H

4

φ̇2 =
1
H

d
dt log H

4

φ̇2 = 2η− 6ε . (2.26)

In the quadratic model we discussed in Sec. 1.4.2, η = ε and we see that
we expect to find a small negative tilt of the power spectrum. Indeed, the
current best measured value of the tilt is ns = 0.967± 0.004 at 1σ [11], in
agreement with the prediction of the simplest inflationary models.

The same procedure can be repeated to find the power spectrum of tensor
modes. In this case, the expansion in Fourier modes is only complicated by
the polarization of gravitons εsij . With this taken into account, we can write

γij(t, ~x) =
∫ d3~k

(2π)3
∑
s=±

εsij(~k)γ
s
~k
(t)ei

~k·~x , (2.27)

where εsii(~k) = 0, kiεsij(~k) = 0 and εsij(
~k)εs

′
ij(
~k) = 2δss′ . The two point

function is given by [26]

〈γs~k1
γs
′
~k2
〉 = (2π)3δ(~k1 + ~k2)Pt(k1)δss′ , (2.28)
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where the power spectrum is

Pt(k) =
8H2

M2
P

1
2k3 . (2.29)

Notice that in this expression the only variable is the Hubble scale during
inflation H. Therefore, the detection of primordial gravitational waves would
tell us about the energy scale at which inflation happens. Taking the ratio
between the tensor and the scalar power spectrum, we have

r ≡ Pt(k)

Ps(k)
= 16ε. (2.30)

For large-field inflationary models, the tensor-to-scalar ration r is of order
O(0.1). Currently there is no detection of primordial tensor modes in the
CMB. The best current limit on the tensor-to-scalar ratio is r < 0.08 at
95% C.L. [11].

In the same way as for scalars, we can also calculate the tilt of the power
spectrum for tensors. It is simply given by

nt ≡
d log k3Pt(k)

d log k = k
d
dk log H2

M2
P
= −2ε. (2.31)

Notice that in four observables related to the power spectra of scalars and
tensors we have only three parameters: ε, η and H. This is probably the
most distinctive and robust consistency check of the inflationary phase.
However, as we will comment later in Sec. 6 this relation is hardly going to
be measured in ongoing CMB experiments.

2.2.2 Non-Gaussianities

In this section we turn to higher order correlation functions. They are
very important because they carry information about interactions of the
inflaton. Given that the inflationary potential is expected to be very flat,
the interactions are expected to be suppresed. Therefore, one can say that
in inflation the generic prediction is that initial curvature perturbation field
is highly Gaussian, which is indeed what we observe in the CMB. However,
non-Gaussianities are a very important tool in constraining inflationary
models: even in the absence of any feature we would understand what in
this phase was not happening.

In order to calculate higher order correlation functions one has to find the
action to higher order in perturbations ζ or γ. This is not a straightforward
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task. To illustrate the procedure, in this Section we will focus only on the
cubic action for ζ and the corresponding three-point function. It turns out
that in order to do so we do not have to solve for N and Ni neither at
second nor at third order in perturbations. As before, the third order term
would multiply the momentum and hamiltonian constraints evaluated at
zeroth order on the solution of the equations of motion. The second order
term would multiply constraints evaluated using eq. (2.17), but it turns
out that this contribution is zero too. In conclusion, the first order solution
(2.17) is all we need.

With this simplifications, the expansion of the action is (2.11) is straight-
forward. The final result is given by [26]

S
(3)
ζ =

∫
d4x

[
aeζ

(
1 + ζ̇

H

) (
−2∂2ζ − (∂ζ)2

)
+ εa3e3ζ ζ̇2

(
1− ζ̇

H

)
+

+a3e3ζ
(

1
2
(
∂i∂jψ∂i∂jψ− (∂2ψ)2

) (
1− ζ̇

H

)
− 2∂iψ∂iζ∂2ψ

)]
,

(2.32)

where ψ is given by eq. (2.17).
Using field redefinitions this action can be further simplified, which makes

the calculation of the three-point function much easier. We will not repeat
this procedure here, because it is not essential to describe the main steps
of the calculation (for details see [26]). The most important difference
compared to the standard QFT calculation is that we are not interested in
scattering amplitudes but correlation functions. Therefore, in the interaction
picture, the expectation value of an operator O is given by [26, 27]

〈O〉 = 〈0|T̄ ei
∫ t
−∞(1+iε)Hintdt

′
O Te

−i
∫ t
−∞(1−iε)Hintdt

′
|0〉 , (2.33)

where Hint is an interaction Hamiltonian. This formalism is known as “in-in”
formalism instead of what is usually computed in QFT

〈O〉 = 〈0|T O e
−i
∫ +∞(1+iε)
−∞(1−iε) Hintdt

′
|0〉, (2.34)

that correspond to “in-out”. Indeed, we evolve the vacuum using the evolu-
tion operator until some moment of time t, insert the operator O and then
we evolve backwards in time. Notice that in order to project to the vacuum
of the theory we had to deform the lower boundary of the integral. Here we
use the standard iε prescription.
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The expectation value in eq. (2.33) is calculated in the standard way using
the expansion of ζ in creation and annihilation operators (2.21) and Wick’s
theorem. For example, using the action (2.32), the three-point function of ζ
is at the end given by

〈ζ~k1
ζ~k2
ζ~k3
〉′ = H4

4ε2M4
P

1∏
(2k3

i )

(2η− 3ε)
∑
i

k3
i + ε

∑
i 6=j

kik
2
j + ε

8
kt

∑
i>j

k2
i k

2
j

 ,

(2.35)
where kt = k1 + k2 + k3 and prime on the correlation function means that
we have removed (2π)3δ(~k1 + ~k2 + ~k3) form the expression. In the same
way one can calculate the other three-point functions involving gravitons,
or higher order correlation functions.

The calculation presented here was based on a single-field slow-roll infla-
tionary model, and it is not valid for example for the model introduced in
Sec. 1.4.3. The method for calculating the correlation functions is however
very similar. To calculate the three point function, starting from the La-
grangian Eq. (1.41), one has to expand the action up to cubic order, find the
interaction Hamiltonian and use the standard in-in formalism. Following
[28, 29] we can write the n-point function as

〈ζ~k1
· · · ζ~kn〉 = (2π)3δ(~k1 + · · ·+ ~kn)P

n−1
ζ

n∏
i=1

1
k3
i

M(n)(~k1, ...,~kn) (2.36)

and the two-point function as

〈ζ~k1
ζ~k2
〉 = (2π)3δ(~k1 + ~k2)Pζ

1
2k3

1
, Pζ =

1
2M2

P

H2

csε
, (2.37)

with the speed of sound defined as in Eq. (1.46).
The amplitude of the three-point function as calculated in [28, 29] reads

M(3) =

(
1
c2s
− 1− 2λ

Σ

)
3k2

1k
2
2k

2
3

2k3
t

+

(
1
c2s
− 1

)− 1
kt

∑
i>j

k2
i k

2
j +

1
2k2
t

∑
i 6=j

k2
i k

3
j +

1
8
∑
i

k3
i

 ,
(2.38)

where the parameters λ and Σ are related to derivatives of the function P
with respect to X

λ = X2PXX +
2
3X

3PXXX ,

Σ = XPX + 2X2PXX . (2.39)
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In the squeezed limit the three-point function becomes

〈ζ~qζ~k1
ζ~k2
〉′~q→0 = Pζ(k)Pζ(q)

(−1 + 1
c2s

)−2 q
2

k2 +
5
4
(~q ·~k)2

k4

− 3
2
q2

k2
λ

Σ

 .

(2.40)
There is however one important difference between the two models we

described. They predict very different “shapes” of non-Gaussianities [30].
Given that the interactions in slow-roll models are local they peak in
squeezed configuration, when one of the momenta is much smaller than the
others k1 � k2, k3 [30]. This kind of non-Gaussianities are called local and
their amplitude is parametrized by f loc

NL. On the other hand, for derivative
interactions, the three-point function has a maximum in configuration where
all momenta have similar magnitudes k1 ≈ k2 ≈ k3 [30, 31]. For these reason
this situation corresponds to equilateral non-Gaussianities parametrized by
f eq

NL. The current constraint form Planck on these two parameters are [32]

f loc
NL = 0.8± 5.0 , f eq

NL = −4± 43 . (2.41)

It is important to stress that although in general non-Gaussianities can be
large, local non-Gaussianities in any single-field model of inflation must
be always very small. As we are going to see later, this is one of the main
consequences of Maldacena’s consistency relations for inflation.
Let us close this Section saying that, although we used some particu-

lar models to introduce non-Gaussianities, there exists a general, model-
independent approach to study small fluctuations of the inflaton and their
correlation functions. It is based on the effective field theory approach to
inflation. The Effective Field Theory of Inflation was first formulated for
single-field models [33] and later generalized to multi-field inflation [34]. In
the EFT of inflation one writes down all possible operators compatible with
the symmetry. Different inflationary models then correspond to a different
choice of the parameters of the effective action.

2.3 consistency relations

In single-field inflation, correlation functions of the curvature perturbation
ζ and of tensor modes satisfy general, model-independent relations in the
limit in which one of the momenta (or the sum of some of the momenta) be-
comes very small compared to the others: the so-called consistency relations
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[26, 35–42]. Physically, they are based on the observation that the effect of
a long mode on the dynamics of the short ones reduces to a diffeomorphism.

In this Section we will focus on the squeezed limit of correlation functions
involving only scalar modes ζ at zeroth order in the long momentum,
obtaining the so-called Maldacena’s consistency relation [26].This relation
has been generalized to include gradients of the long mode, obtaining the
so-called conformal consistency relation [37].

The physical argument behind the consistency relations [26, 35] is based
on the observation that in the squeezed limit of an (n+ 1)-point function,
the configuration in which one mode is much longer than the other and is
far out of the horizon, the long mode is equivalent to a classical background.
Therefore, the long mode can be removed by a suitable change of coordinates.
This change of coordinates relates two solutions, one with and without the
long mode, and consequently it relates the squeezed (n + 1)-point and
n-point correlation functions.
Starting from real space, we have

〈ζ(x1) · · · ζ(xn)〉ζL = 〈ζ(x̃1) · · · ζ(x̃n)〉 , (2.42)

where on the left hand side the correlation function is evaluated in the
presence of a long background mode, while on the right hand side the latter
has been reabsorbed in a change of coordinates. Multiplying both sides with
ζL and average over it we find that〈

ζL(x)〈ζ(x1) · · · ζ(xn)〉ζL
〉
=
〈
ζL(x)〈ζ(x̃1) · · · ζ(x̃n)〉

〉
. (2.43)

Written in this form the left hand side is just an (n+ 1)-point function
involving ζL and n short modes. On the other hand, on right hand side,
x̃ contains ζL and in general one cannot find the average over ζL easily.
However, by expanding the n-point function around x̃ = x+ δx, we have

〈ζ(x̃1) · · · ζ(x̃n)〉 = 〈ζ(x1) · · · ζ(xn)〉+
n∑
a=1

δxai ·∂ai〈ζ(x1) · · · ζ(xn)〉+ · · · .

(2.44)
The first term on the right hand side, once plugged into Eq. (2.43) averages
to zero because it is proportional to 〈ζL〉. Therefore, the only relevant
contribution comes from the variation of the n-point function

δ〈ζ(x1) · · · ζ(xn)〉 =
n∑
a=1

δxai · ∂ai〈ζ(x1) · · · ζ(xn)〉 . (2.45)
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Finally, in real space the consistency relation reads

〈ζL(x)ζ(x1) · · · ζ(xn)〉 =
〈
ζL(x) ·

n∑
a=1

δxai · ∂ai〈ζ(x1) · · · ζ(xn)〉
〉

. (2.46)

To derive Maldacena’s consistency relation, we have to specify the change
of coordinates δx. At leading order in derivatives, the long mode is equivalent
just to a simple time-independent rescaling of spatial coordinates

xi → xi + ζL(~x+)x
i . (2.47)

For the homogeneous long mode the point ~x+ is arbitrary, and for con-
creteness we will take ~x+ = (~x1 + · · ·+ ~xn)/n. Using δ~x = ζL(~x+)~x in
Eq. (2.45), the variation of an n-point function is

δ〈ζ(x1) · · · ζ(xn)〉 =
∫ d~q+

(2π)3 dKn ζ~q+
∑
a
Mδ( ~P )kai∂kaie

i~q+·~x++i~kb·~xb

= −
∫ d~q+

(2π)3 dKn ζ~q+
∑
a

(
3Mδ( ~P ) + kai∂kaiMδ( ~P ) + kaiM∂kaiδ(

~P )
)
ei~q+·~x++i

~kb·~xb ,

(2.48)

where

dKn ≡
d~k1
(2π)3 · · ·

d~kn
(2π)3 , M≡ 〈ζ~k1

· · · ζ~kn〉
′ , ~P ≡ ~k1 + · · ·+ ~kn ,

(2.49)
After an explicit calculation, one can finally write

δ〈ζ(x1) · · · ζ(xn)〉 = −
∫ d~q+

(2π)3 dKn ζ~q+

[(
3(n− 1) +

∑
a
kai∂kai

)
M
]
δ( ~P )ei~q+·~x++i

~kb·~xb .

(2.50)

where now derivatives act only onM. After multiplying this expression by
the long mode ζL(x), averaging over it and going to Fourier space, we get
Maldacena’s consistency relation [26]

〈ζ~qζ~k1
· · · ζ~kn〉

′
~q→0 = −P (q)

(
3(n− 1) +

∑
a
kai∂kai +O(q/k)

)
〈ζ~k1
· · · ζ~kn〉

′ .

(2.51)
For the 3-point function this expression greatly simplify. Using the ex-

pression for the power spectrum in Eq. (2.25) one finds

〈ζ~qζ~k1
ζ~k2
〉′~q→0 = −P (q)P (k1) (ns − 1) . (2.52)
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3
TESTING THE S IMPLEST POTENTIALS

3.1 motivations

The detection of B-modes in the polarization of the cosmic microwave
background (CMB) by BICEP2 [43] has recently revamped the interest
in inflationary models with a high level of primordial tensor modes. This
requires [44] a large excursion of the inflaton during inflation ∆φ & MP,
which challenges the naive expectation that higher-dimension operators,
suppressed by powers of MP, spoil the slow-roll conditions. Before the an-
nouncement of the BICEP2 collaboration, the crucial question for inflation
was “large or small r?” However, the size of tensor modes measured by BI-
CEP2 and an erroneous account of foregrounds led to face a new dichotomy:
“φ2 or not φ2?” The two possibilities are qualitatively different. A large
field model that is not quadratic, say V ∝ φ2/3, suggests an interesting
UV mechanism, such as monodromy inflation [45], for instance. If data had
favored, on the other hand, a quadratic potential, the simplest explanation
would have been that inflation occurs at a generic minimum of a potential
whose typical scale of variation f is much larger than the Planck scale.
Indeed, an approximate shift symmetry gives rise to potentials that are
periodic in φ/f , such as, for instance, V = Λ4(1− cos(φ/f)) [46, 47]. For
f � MP, inflation occurs near a minimum of the potential, where one
can approximate V ∝ φ2. In string theory, it seems difficult to obtain a
parametric separation between f and MP, although there is no issue at
the level of field theory [48, 49]. Therefore, if quadratic inflation remained
compatible with the data, it would have been important to study small
deviations from it, in order to understand to which extent the quadratic
approximation holds and to limit other possible deviations from the simplest
scenario of inflation.
Inflationary predictions must face our ignorance about the reheating

process and the subsequent evolution of the Universe. All this is encoded in
the number of e-folds N between when the relevant modes exit the horizon
and the end of inflation. The dependence on N is rather strong (see Fig. 5)
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and it will possibly become larger than the experimental sensitivity on ns and
r. To study small deviations from V = 1

2m
2φ2, we have to concentrate on a

combination of observables that does not depend on N (1). At linear order
in 1/N , given that for a quadratic potential ns− 1 = −2/N and r = 8/N ,
a prediction that is independent of N is obviously (ns− 1) + r/4 = 0. Since
corrections at second order in slow roll might not be completely negligible
in the future, it is worthwhile to go to order 1/N2. With the use of the
explicit formulas at second order in slow roll [50], it is straightforward to
verify2 that for a quadratic potential

(ns − 1) + r

4 +
11
24(ns − 1)2 = 0 , (3.1)

up to corrections of order N−3 (3), which we can safely ignore. Assuming
that data favours a φ2 potential we can use the equation above to study how
sensitive we will be to small departures from the simplest scenario. If we
take the measurement of the tilt from Planck [11] ns − 1 = −0.032± 0.004
and the value of r measured by BICEP2 [43] r = 0.20+0.07

−0.05, the lhs of
Eq. (3.1) is equal to 0.02± 0.02 (4). Optimistically, for large tensor modes,
we can assume we will be able to measure r with a precision of 1% [51].
Regarding ns − 1, future experiments such as EUCLID [52] or PRISM [53]
should be able to go down to a 10−3 error. Therefore, the uncertainty on

1 The power spectrum normalization fixes m ' 1.5× 1013 GeV, V ' (2× 1016 GeV)4 and
∆φ ' 15MP, assuming N = 60.

2 Up to second order in slow roll we have

ns − 1 = 2η− 6ε− 2C(12ε2 + ξ) +
2
3 (η

2 − 5ε2 + ξ) + (16C − 2)ηε ,

r = 16ε
[
1− 4ε

3 +
2η
3 + 2C(2ε− η)

]
,

where C ≡ −2 + ln 2 + γ, with γ = 0.57721 . . . the Euler-Mascheroni constant, and the
slow-roll parameters are defined as

ε ≡
M2

P
2

(
V ′

V

)2
, η ≡M2

P
V ′′

V
, ξ ≡M4

P
V ′′′V ′

V 2 .

3 Up to 1/N3 corrections we can equivalently write (ns− 1) + r/4+ 11/384 · r2 = 0. This
form can be useful in future given that the error on (r/4)2 is expected to be smaller
than the one on (ns − 1)2.

4 The current understanding of foregrounds lead to a quite different best fit value for the
tensor-to-scalar ratio, r < 0.08 at 2σ [11]. This value strongly depends on the data set
used for the analysis and the extrapolation in frequency of foregrounds. The bottom line
is that to our best knowledge the φ2-consistency relation is violated at 3σ.
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the quantity above will be ∼ 10−3, dominated by the error on the spectral
index. Notice that different experiments are sensitive to different scales k.
Given that Eq. (3.1) is independent of N , it is valid on any scale provided
that both ns and r are evaluated at the same k. Therefore, it is important
to keep in mind that the experimental results have to be properly combined
at the same scale5.

Let us now study what these futuristic limits would imply for deviations
from the simplest model of the Universe.

3.2 pseudo-nambu-goldstone boson potential

A PNGB has a potential of the form V = Λ4F (φ/f) (6), where Λ is
the scale of breaking of the approximate shift symmetry, F is a periodic
function and f is the decay constant. The simplest example is given by

V (φ) = Λ4
[
1− cos

(
φ

f

)]
, (3.2)

where f has to be bigger than MP in order for the slow-roll conditions to be
satisfied and for very large f �MP the model becomes indistinguishable
from a φ2 potential. For this potential, Eq. (3.1) will not be exactly zero. It
is easy to calculate the leading correction in slow roll and for MP/f � 1

ns − 1 = − 2
N

+O
(
MP
f

)4
, r =

8
N
− 4

(
MP
f

)2
. (3.3)

This gives a correction to Eq. (3.1)

(ns − 1) + r

4 +
11
24(ns − 1)2 = −

(
MP
f

)2
. (3.4)

If the error on the lhs is of order 10−3, this translates into the limit f & 30MP.
This would convincingly suggest there is a parametric separation between
the two scales, which the UV theory would have to address. To illustrate this
point, in Fig. 5 we present a plausible forecast for the future observations
in the (ns, r) plane together with the predictions of natural inflation for
different values of f .

5 This is the case also for BICEP2 and Planck, but with the current errors this difference
is negligible.

6 In the extra-dimensional model of Ref. [48], the explicit form of F depends on the number
of particles, their charges, masses, and boundary conditions.
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N = 60
Trh= 1015GeV

N = 47
Trh=10MeV

f = 20MP

f = 10MP

V∝ϕ2
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Figure 5: Possible constraints on f assuming a simple cosine potential. The
dashed curve corresponds to Eq. (3.1), and the black segments cover
the interval of reheating temperatures Trh ∈ [10 MeV, 1015 GeV]. A
wider range of N is allowed if one considers nonstandard cosmological
evolutions after inflation. Red 1σ contour corresponds to a futuristic
measurement with σns−1 = σr = 10−3, compatible with a quadratic
potential. All quantities are evaluated at k = 0.002 Mpc−1.

For a generic F expanding around the minimum we get

V (φ) = Λ4
(

1
2
φ2

f2 +
F (3)

6
φ3

f3 +
F (4)

24
φ4

f4 + · · ·
)

. (3.5)

For the following analysis, we assume F (n) to be of order 1. For the moment,
let us assume the function F is symmetric around the minimum. Notice
that with positive F (4) we can get ns and r above the m2φ2 curve, unlike
in the case of a simple cosine potential (see Fig. 5). At leading order in slow
roll

(ns − 1) + r

4 +
11
24(ns − 1)2 = F (4)

(
MP
f

)2
, (3.6)
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and one can constrain the combination on the rhs f/
√
|F (4)| & 30MP.

Therefore, for F (4) of order one, this does not change the lower bound on f
significantly.

If we now allow for nonzero F (3) and the cubic term dominates, Eq. (3.1)
reads

(ns − 1) + r

4 +
11
24(ns − 1)2 = ±2

3
√

2ε F (3)MP
f

, (3.7)

where the sign depends on whether inflation occurs for positive or negative
values of φ. The constraint on the rhs imposes7 f/F (3) & 86MP. Notice
that in this case the lower bound on f is even stronger.

3.3 general deviations from φ2

One can use the same technique to constrain other deviations from the
simplest scenario: they will all contribute to the rhs of Eq. (3.1). Let us
first focus on small deviations from m2φ2 coming from the shape of the
potential (see for example, Refs. [54, 55]). It is straightforward to obtain the
corrections to Eq. (3.1) for a generic V (φ) up to second order in slow-roll
parameters

(ns − 1) + r

4 +
11
24(ns − 1)2 = −2(ε− η) . (3.8)

Notice that on the rhs of Eq. (3.8) we keep only the first nonvanishing
correction.
Another kind of corrections comes from derivative interactions. Indeed,

from the effective field theory point of view quantum corrections will gener-
ate higher-dimensional operators suppressed by some scale Λ. Particularly
important are the operators compatible with an approximate shift symme-
try for φ. For example, a term of the form (∂φ)4/Λ4 in the Lagrangian
corresponds to a correction to the speed of propagation of the perturbations

c2s − 1 = 16ḢM
2
P

Λ4 . (3.9)

Therefore, constraints on the speed of sound transfer into constraints on
Λ. In models with cs < 1, it is important to stress that r = 16εcs, whereas
ns − 1 is independent of cs (it only depends on it through s ≡ ċs/Hcs). In

7 Here and in the following estimates, to be conservative, we use the minimal value of ε
that corresponds to the maximal number of e-folds.
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the absence of cancellations, the current value for ns − 1 and the detection
of a high level of primordial tensor modes imply that cs cannot be much
smaller than 1.

For the case of a quadratic potential, one can quantify the bounds on cs
more precisely in a way that is insensitive to N . The correction to Eq. (3.1)
reads

(ns − 1) + r

4 +
11
24(ns − 1)2 = −s+ r

4

(
1− 1

cs

)
. (3.10)

If the total error on the lhs is of the order 10−3, |cs − 1| is constrained to
be . 3× 10−2. In particular, we can put a lower bound on the energy scale
Λ to be Λ & 2× 1016 GeV which is as high as the inflationary scale.
Another way to constrain cs is to use the standard consistency relation

for the tilt of tensor modes nT

r+ 8nT =
(

1− 1
cs

)
r . (3.11)

This relation has the major advantage of being valid for any potential, but
it is difficult to imagine we will be able to verify it with significant precision.
Given that from CMB experiments it will be hard to measure nT with a
precision better than ∆nT ∼ 0.1, the constraint on cs is weaker than the
one obtained above. However, in the very far future we might be able to
constrain r and nT much better by the detection of primordial gravitational
waves with interferometers [56]. Optimistically, the error on nT could be
as low as 5× 10−3 and the relation of Eq. (3.11) could constrain cs even
better than Eq. (3.10).
Another possible departure from the simplest model is the presence

of a subdominant component in the spectrum due to a second field. In
these models (curvaton, modulated reheating, etc.) inflation is driven by
the inflaton, but a second scalar field σ is contributing to the curvature
perturbation with a fraction

q ≡
P σζ

Pφζ + P σζ
, (3.12)

where P xζ is the contribution of the field x to the power spectrum of the
curvature perturbation ζ. The correction to Eq. (3.1) up to first order in
slow roll is

(ns − 1) + r

4 +
11
24(ns − 1)2 = q

(
−r8 +

2
3
V ′′σ
H2

)
. (3.13)
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Assuming that the error on the lhs of Eq. (3.13) is 10−3, this relation
constraints q . 0.06.
One may consider the case in which different corrections to the rhs

of Eq. (3.1) cancel, so that we accidentally get the same predictions as
the φ2 model. In this case, one can hope to break the degeneracy by
looking at the running of the power spectrum. For a quadratic potential
α = −(ns − 1)2/2 = −r2/32 ' 8× 10−4.

3.4 constraints on N

So far, we have focused on a combination of observables that is N
independent. On the other hand, for a quadratic potential one will also
get a good constraint on the number of e-folds. With the numbers quoted
above, the best constraint would come from r, which will give ∆N ' 0.4.
This translates into an error on the reheating temperature

∆Trh
Trh

' 1.2 , (3.14)

assuming we know the evolution after reheating. Notice that while it is
easy to reduce N (longer reheating, periods of matter domination or phase
transitions in the late universe, large number of relativistic degrees of
freedom g∗), the upper bound onN corresponding to instantaneous reheating
and conventional cosmological evolution is very robust. In some sense, it
corresponds to the very simplest Universe.

3.5 what if not φ2 ?

All the discussion so far concentrated on φ2 inflation. If nature has chosen
another monomial potential V ∝ φp, as data currently suggests, we can still
build an observable which does not depend on N . It is easy to get

(ns − 1) + 2 + p

8p r+
3p2 + 18p− 4

6(p+ 2)2 (ns − 1)2 = 0 . (3.15)

As before we will have errors of order 10−3 on this expression8. It is straight-
forward to generalize Eqs. (3.10) and (3.13) to analyze the constraints on

8 Notice that in eq. (3.15) as we go to lower values of p the coefficient of r increases: the
tensor contribution becomes more and more important to discriminate the model.
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the speed of sound or the presence of a curvaton component. One can also
invert Eq. (3.15) to find the allowed range of p. This reads

p =− 2r
8(ns − 1) + r

− 64(ns − 1)3

(8(ns − 1) + r)2 + (ns − 1)− 7
24r .

(3.16)

For “normal” powers we will be quite convinced we have found the correct
model of inflation. With the current errors the bounds on p are too loose to
be interesting, but this may change in the future. For example, for a linear
potential the error will be ∆p ' 0.06, and this will allow discrimination of
this model from φ2/3.

Non-Gaussianity.—So far our discussion has concentrated on the power
spectra: what about higher-order correlation functions? As discussed above,
in single-field models (independently of the potential) r is suppressed by
cs, so that the speed of sound cannot be much smaller than 1. Therefore,
the cubic operator related by symmetry to cs [33] cannot give sizeable
non-Gaussianities since f eq

NL ∼ 1/c2s (the Planck constraint [32] is cs ≥ 0.024
at 2σ). However the second independent operator π̇3 can still be large. It is
straightforward to check that this situation is radiatively stable [57]: loops
induce order-one corrections to the speed of sound. Moreover, the three-point
function can be large for cs = 1 if it is generated by operators with more
than one derivative per field [58]. Another possibility is that the four-point
function is large, while the bispectrum is suppressed: this can happen in
a technically natural way as studied in Refs. [59]. Non-Gaussianities are
also relevant if scalar and tensor perturbations are both produced through
particle creation involving dissipative effects [60, 61].

Also, in multifield models r is always suppressed compared to the single-
field case (by a factor of q assuming no mixing). It is, thus, unlikely that
perturbations are dominated by a second field. However, when the perturba-
tions due to the second field become very non-Gaussian, they induce a large
observable non-Gaussianity fNL ' 105q3/2, even when they are subdomi-
nant in the power spectrum [34]. Notice that the shape of non-Gaussianity
can vary from local to equilateral if we consider general quasi-single-field
models [62, 63]. In conclusion, non-Gaussianities remain a powerful probe
of inflation.
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3.6 conclusions

Any experimental result on the (ns, r) plane can be explained with a
proper choice of the slow-roll parameters ε and η. On the other hand
a particular curve on this plane stands out since it corresponds to the
prediction of V ∝ φ2, varying the number of e-folds N . Assuming data are
compatible with this simple scenario, we studied the constraints we will be
able to set on various deviations from the benchmark model.



4
ACCURATE PREDICTIONS FOR LARGE-F IELD
MODELS

4.1 introduction

As we argued in the previous section, one relevant point of measuring
large tensor modes is that it will be possible in future observations to
ultimately measure r with a precision of 1% [51]. This precision requires
both to go to second order in slow-roll and to know the number of e-folds N
up to ∆N ∼ 0.5 [4]. Thus, one has to specify the details of reheating (for a
recent study see [64]) and include subleading corrections in the predictions
of r and ns, which are usually neglected.
In this section we focus on the inflationary model V = 1

2m
2φ2, both

because it is simple and because it is the only case in which predictions can
be made without further assumptions about the behavior of the potential
between the inflationary region and the final minimum. We provide improved
formulas for ns and r that are correct up to 1% relative errors, in the limit of
fast reheating (the details turn out to be irrelevant as long as the energy is
transferred to radiation fast enough) and with a standard expansion history
after inflation. Deviations from this scenario, such as a slower reheating,
entropy injections due to phase transitions, higher number of degrees of
freedom at reheating, additional periods of matter dominance or inflation,
move the predictions in the direction of higher r and lower ns. In this
sense, the values for ns and r we provide are the “endpoint” on the line in
the (ns, r) plot for V = 1

2m
2φ2, corresponding to the largest possible N .

This point deserves special attention, because in some sense it is the most
informative place in the (ns, r) plane: if data eventually converge there, it
will be possible to have strong bounds on any deviation from this minimal
scenario.

36
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4.2 predictions for instantaneous reheating

In order to determine the point in the (ns, r) plane that corresponds
to the limit of instantaneous reheating, we will start the calculation in
the usual way and refine some of the steps. Take a mode with comoving
momentum k∗, which crosses the horizon during inflation when the scale
factor is a∗, k∗ = a∗H∗. We want to compare the wavelength of this mode
with the size of the horizon today

k∗
a0H0

=
a∗
aend

aend
arh

arh
a0

H∗
H0

, (4.1)

where aend is the scale factor at the end of inflation and arh the scale factor
when radiation starts to dominate. Of course this splitting in various phases
is somewhat arbitrary and one expects to introduce errors of order ∆N ∼ 1.
However, we will show later, using numerical solutions, that our analytical
calculations are accurate up to 1%. In our analytical calculation, we will
assume instantaneous reheating: aend = arh. Under these assumptions
Eq. (4.1) becomes

k∗
a0H0

= e−N
arh
a0

H∗
H0

, (4.2)

where N is the number of e-folds from the moment the mode k∗ crosses the
horizon until the end of inflation. Let us calculate the different terms on
the rhs of Eq. (4.2).
The number of e-folds is given by

N =
∫ tend

t∗
Hdt =

∫ φ∗

φend

1√
2εH

dφ
MP

. (4.3)

The slow-roll parameter εH is related to the derivatives of the potential as

εH ≡ −
Ḣ

H2 = εV

(
1− 4

3εV +
2
3ηV

)
, (4.4)

where εV and ηV are defined as

εV ≡
1
2M

2
P

(
V ′

V

)2
, ηV ≡M2

P
V ′′

V
. (4.5)

For V = 1
2m

2φ2, we have εV = ηV = 2M2
P/φ2, and the number of e-folds

from Eq. (4.3) is given by

N =
1
4
φ2
∗ − φ2

end
M2

P
+

1
3 log φ∗

φend
+ · · · . (4.6)
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The first term is the standard result, while the second is the next to leading
order in the slow-roll expansion. Notice that typically, given that φ∗ � φend,
both φ2

end and the logarithmic correction are dropped in the usual calculation,
but we are going to keep them here. Of course, the formula above must
break down towards the end of inflation because higher slow-roll corrections
(encoded in + · · · ) become important. Naively this can change the result for
the number of e-folds by order one. However, as we will show later, Eq. (4.6)
appears to be an excellent approximation to the numerical solutions.

The first fraction on the rhs of Eq. (4.2) can be evaluated using entropy
conservation. Here we are assuming that none of the processes in the early
universe lead to an entropy injection. This is a good approximation for the
known phase transitions (electroweak and QCD). If entropy is conserved,
then

grh
∗ a

3
rhT

3
rh = a3

0T
3
γ

(
2 + 4

11g
ν
∗

)
, (4.7)

where grh
∗ is the number of degrees of freedom at the end of inflation, gν∗

the number of degrees of freedom of neutrinos, Tγ is the temperature of
the CMB photons today, and we have set the temperature of neutrinos to
T 3
ν = 4

11T
3
γ . For the 3 neutrino species, gν∗ = 21/4, and the first ratio on

the rhs of Eq. (4.2) becomes

arh
a0

=
Tγ
Trh

(
43

11grh
∗

)1/3
. (4.8)

To calculate the temperature at the beginning of radiation dominance,
we will assume that inflation ends when ä = 0. Although this definition is
arbitrary, one can check that analytical results with different choices of the
point where inflation ends (some popular choices are εV = 1 or φend = 1MP)
give the same predictions within the precision we are working at. Assuming
that φ̇ has the attractor value φ̇ = −

√
2/3mMP, from the relation

Ḣ =
ä

a
−H2 = −1

2
φ̇2

M2
P

, (4.9)

one finds that inflation ends at φend =
√

4/3MP. The energy density at
the end of inflation is

ρend =
1
2m

2φ2
end +

1
2 φ̇

2 = m2M2
P. (4.10)

In our toy model this energy density is instantaneously converted into
radiation with temperature

Trh =

(
30m2M2

P
π2grh
∗

)1/4
. (4.11)
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This fixes the ratio arh/a0.
The last fraction on the rhs of Eq. (4.2) depends on H∗

H∗ =
m

3

√√√√1 + 3
2
φ2
∗

M2
P
≈ mφ∗√

6MP
. (4.12)

The mass of the inflaton is determined from the normalization of the power
spectrum

∆2
ζ =

k3

2π2Pζ =
1

96π2
φ4
∗

M4
P

m2

M2
P

. (4.13)

Replacing all previous results in Eq. (4.2), we obtain a relation between φ∗
and k∗

log k∗
a0H0

=
1
4
φ2

end − φ2
∗

M2
P

− 1
3 log φ∗

φend
+ log Tγ

H0

− 1
12 log grh

∗ +
1
4 log ∆2

ζ + log 4π(43/11)1/3

28801/4 . (4.14)

Setting grh
∗ = 106.75, H0 = 1.5× 10−42 GeV, Tγ = 0.235× 10−12 GeV

and ∆2
ζ = 2.19× 10−9 (1) [65] we get

log k∗
a0H0

= −1
4
φ2
∗

M2
P
− 1

3 log φ∗
MP

+ 63.3. (4.15)

The logarithmic contribution in this equation is very small and a very good
approximate solution is

φ∗
MP

= α− 2
3α logα , α = 2

(
63.3− log k∗

a0H0

)1/2
.

For the pivot scale k∗ = 0.002 Mpc−1, the numerical value for α is α = 15.6.
Once φ∗ is known, it is an easy exercise to calculate the tensor-to-scalar
ratio and the spectral index. For a quadratic potential εV = ηV, and at
second order in slow-roll [50]

r = 16εV
(

1− 2
3εV + 2CεV

)
,

ns = 1− 4εV − ε2V
(

8C +
14
3

)
, (4.16)

1 Strictly speaking, this value of ∆2
ζ is given for k = 0.05 Mpc−1. Although k∗ can be

different from this scale, ∆ζ appears only inside logarithms and the error one makes is
much smaller than the precision we want to achieve.
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where C = −2+ log 2+ γ and γ = 0.75521 . . . is Euler-Mascheroni constant.
The prediction for the endpoint of the quadratic inflationary potential in
the limit of instantaneous reheating is

ns = 0.9668± 0.0003, and r = 0.131± 0.001, (4.17)

for k∗ = 0.002 Mpc−1. This point corresponds to the number of e-folds
N = 60.7± 0.5.
What happens if the post-inflationary evolution is modified? A slower

reheating gives a lower N . The same happens if we increase the number
of relativistic degrees of freedom at reheating. The dependence of N on
g∗ is anyway very mild, N ∼ − 1

12 log g∗, see Eq. (4.14), and one should
vary g∗ by orders of magnitude to get a relevant effect. Another effect
that pushes towards a smaller value of N is entropy injection during the
thermal history of the Universe. For example this happens with a first-order
phase transition or when a massive particle goes out of thermal equilibrium
before decaying. Notice also that a “standard” equation of state w ≤ 1/3
before thermalization pushes again towards smaller values of N . The only
way to get to larger values is to have w > 1/3 after inflation, which is
a somewhat exotic possibility2. Therefore, the point in the (ns, r) plane
defined by Eq. (4.17) corresponds to the maximum value of N for the
quadratic potential.

Numerical checks.—The predictions for ns and r are derived under a
number of assumptions. Given the level of precision we are working at, one
might be worried that the corrections to the analytical calculation are large
enough to spoil the final result. There are several possible sources of errors
and we discuss them in this section.

The first one is the issue of matching different phases of evolution before
thermalization. One would expect a sharp matching between different phases
to give an error of order ∆N ∼ 1, and this would be relevant for the precision
we want to achieve. The other problem is that it is not obvious how our
final result depends on the details of reheating or preheating. To address

2 For example one can have a period of kinetic domination (w = 1) after the end of the
slow-roll regime: after that the inflaton can get trapped in a minimum and reheat the
Universe. Even if we allow for values of w larger than 1/3, one can still get an absolute
bound on the value of N . This is achieved in the extreme case where w � 1 from the end
of inflation until BBN: the maximum value is N ≈ 100 and this corresponds to ns = 0.98
and r = 0.08.
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these two questions we numerically solved a toy model that describes the
evolution of the inflaton field and of radiation with energy density ρr

φ̈+ 3Hφ̇+ Γφ̇+m2φ = 0,
ρ̇r + 4Hρr − Γφ̇2 = 0,

3M2
PH

2 =
1
2
(
m2φ2 + φ̇2

)
+ ρr. (4.18)

Γ is a constant that characterizes the efficiency of the transfer of energy
from the inflaton field to radiation. Of course, this is not a realistic model,
especially when preheating effects are relevant, but it will be sufficient to
show that the details of the transition are not relevant, provided it is fast
enough.

This section
Standard
Γ = 0.1 m
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Figure 6: Energy density as a function of log(a). Green dot-dashed line: the stan-
dard analytical result. Red solid line: analytical result using Eq. (4.6).
The grey region corresponds to numerical solutions between Γ = m/10
and Γ = m/1000. The improved analytical formula is within 0.3
e-folds from the numerical solutions for this range of Γ.

In Fig. 6 we show how the total energy density depends on log(a).
The initial conditions for the numerical integration are φin = 15 MP,
φ̇in = −

√
2/3mMP (i.e. on the attractor solution) and ρr(ain) = 0. We
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take ain = 1, m = 6× 10−6MP, and turn on Γ when ä = 0 (we are going
to comment on this choice later). Fig. 6 shows the numerical results for
a range of Γ from Γ = m/1000 (cyan dotted line) to Γ = m/10 (blue
dashed line), while the analytical solution, using Eq. (4.6), is represented
by the red solid line. For this range of parameters analytical and numerical
results agree within ∆N = 0.3, once radiation dominance is reached. This
agreement is better than what one would naively expect and justify the use
of the analytic formula. Therefore, as long as Γ & m/1000, the transition
to radiation can be considered instantaneous in order to make predictions
with 1% accuracy. We also plot the result using the standard analytical
formula Eq. (4.6) without the logarithmic term (yellow dot-dashed line).
The difference compared to numerical solutions is ∆N ≈ 1, and it is not
accurate enough for the precision we are working at.

a.. = 0
ϵ = 1
H = m

0.00 0.01 0.02 0.03 0.04 0.05

60.24

60.26

60.28

60.30

60.32

60.34

60.36

Γ/m

lo
g
(a
)

Figure 7: Dependence of the expansion of the universe log(a) on Γ for fixed ini-
tial conditions and fixed final energy density (in radiation dominance).
Different curves are obtained for different choices of time at which
the inflaton starts to decay.

In Fig. 7 we plot the expansion log(a) required to reach a fixed final
energy density (in radiation dominance) as a function of Γ, for fixed initial
conditions. We note that it flattens out for sufficiently large values of Γ,
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indicating that the number of e-folds N becomes insensitive to Γ in that
regime3. To assess the relevance of our choice of turning on Γ when ä = 0,
in Fig. 7 we also plot the curves corresponding to the conditions ε = 1 and
H = m. The alternative conditions give a negligible difference in the amount
of expansion. For small values of Γ the curve steepens and approximately
approaches the analytical expectation a ∝ Γ−1/6.
One may wonder whether our results apply when the energy transfer

to radiation occurs through a preheating stage. In this case the energy is
efficiently converted to light particles and the equation of state quickly
approaches w = 1/3, even if the complete thermalization of the system
will occur much later [66]. To verify that, within the required accuracy, the
phenomenological model of Eq. (4.18) gives results which are quite similar
to what happens with preheating, we plot in Fig. 8 the evolution of the
equation of state w for several values of Γ (for which our prediction (4.17)
applies, see Fig. 6). This can be compared with the analogous results of [66,
67]: in both cases the equation of state reaches w ∼ 1/3 in approximately 3
e-folds. Therefore preheating models, for a wide range of couplings, give a
sufficiently fast reheating and lead to our result (4.17).

It is worth stressing that preheating makes an efficient conversion to radi-
ation rather natural and compatible with the approximate shift symmetry
that keeps flat the inflaton potential. Indeed a coupling g2φ2χ2 induces a
quick conversion to χ particle for g2 & 10−10. For these small couplings one
can safely neglect the radiative corrections to the quadratic potential [66].

4.3 other monomial potentials

Everything we have said so far can be generalized to other monomial
potentials V = M4−pφp (we focus on p ≤ 2, given the present experimental
bounds). However, unlike the case of a quadratic potential, we expect that
a generic monomial cannot be extrapolated to the origin. In particular, we
expect the potential to steepen approaching the minimum: this steepening
increases N and can thus push the predictions beyond the would-be endpoint
of the exact φp potential. In the following we assume that the modification of
the potential happens at φ�MP, so that it does not affect the predictions.

3 The mild raise at large Γ of the curve corresponding to H = m is due to the friction
induced on the inflaton by the production of radiation.
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Figure 8: Evolution of the equation of state (averaged over a period of oscillation)
as a function of log(a) for different values of Γ.

Otherwise one should have control of the shape of the potential until the
final minimum [45, 68, 69].
Eq. (4.14) generalizes to

log k∗
a0H0

=
1
2p
φ2

end − φ2
∗

M2
P

+
3p− 10

12 log φ∗
MP

+
1
3 log φend

MP
+ log Tγ

H0
− 1

12 log grh
∗ +

1
4 log ∆2

ζ

+ log
2π(43/11)1/3√p

5401/4
(
p/
√

3
)p/4 , (4.19)

with φend = p/
√

3MP. For instance, in the cases of V ∝ φ and V ∝ φ2/3,
motivated by string-theory monodromy [45, 68, 69], the predictions for the
endpoint are

p = 1 : ns = 0.9749, r = 0.0664, N = 60.0,
p = 2/3 : ns = 0.9776, r = 0.0446, N = 59.7.

Independently of p, ns − 1 and r have relative errors . 1%.
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4.4 conclusions

For a generic potential it is of limited interest to consider second order
slow-roll corrections or changes in the number of e-folds ∆N ' 1, because
the effects are degenerate with small changes in the shape of the potential.
However, this is relevant for the “simplest” inflationary model, i.e. V ∝ φ2

with fast reheating, and one can make predictions with 1% accuracy. This
represents in some sense the most informative point in the (ns, r) plane:
if future data will be compatible with it, we will be quite confident about
the inflationary potential, the reheating process and the following thermal
history.



5
THE 1/N SCALING OF THE TILT

5.1 introduction

Planck confirmed previous indications that the spectrum of scalar per-
turbations is not scale invariant: ns − 1 = −0.032± 0.004 at 1σ [11]. This
is surely an important step in the understanding of the early universe:
inflation generically predicts a deviation from scale-invariance, although the
magnitude is, as we will discuss, model-dependent. The experimental value
of |ns − 1| is of order 1/N∗ ' 0.017, where N∗ is the number of e-folds to
the end of inflation for observationally relevant scales (we are going to take
N∗ = 60 for definiteness). This did not have to be the case: it is easy to
find models on the market with |ns − 1| much bigger, say 0.2 (of course
the slow-roll approximation requires the tilt to be much smaller than 1), or
much smaller, say 10−4. For example in the prototypical hybrid inflation
model

V =
1
2m

2φ2 +
1
4λ(ψ

2 −M2)2 + λ′φ2ψ2 (5.1)

the tilt is ns − 1 ' 2η = (2m2M2
P)/V0, where V0 = 1

4λM
4 is the vacuum

energy during inflation, before the field ψ relaxes to the true minimum. The
tilt is a constant and does not depend on N : it can be much smaller or much
larger than 1/N . (In this example the tilt is positive, but the same applies
to inverted hybrid models with red tilt.) In this kind of models, the inflaton
“does not know” when inflation is going to end, i.e. when the waterfall field
will become tachyonic. Thus there is no relation between the tilt, which only
depends on the derivatives of the potential at a given point, and N , which
measures the distance to the end of inflation. The approximate equality
ns − 1 ∼ 1/N could just be an accident.

On the other hand in this section we want to take this indication seriously
and see what are the implications on inflation, and in particular on the
expected amount of gravitational waves. Our formulae will be similar to
[70] and [71] (see also [72] and [73]) although the implications we will draw
will be slightly different.

46
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5.2 main argument

The experimental value of the scalar tilt suggests

ns − 1 = − α
N

(5.2)

with α of order unity. We assume the equation above to be valid in a window
which is comfortably larger than the observable one: in other words the
same equation would hold if one were to measure perturbations at, say,
N = 10 or N = 200 instead of N = 60. For the time being we assume
α is strictly a constant and later discuss deviations from this assumption.
Writing the tilt in terms of ε ≡ −Ḣ/H2 and its derivative, the equation
above becomes (at first order in slow-roll) a differential equation for ε

ns − 1 = −2ε+ d log ε
dN = − α

N
. (5.3)

This is easily integrated to give

ε(N) =
1

2(α− 1)−1N +ANα
, (5.4)

with A an integration constant. By a judicious choice of A one can choose any
value for ε (and thus for r) at N∗ = 60. However the scaling (5.2) says that
there is nothing special at the scale N∗ = 60 we measure, therefore it looks
reasonable to further assume that, in a certain window which encompasses
the observable 60 e-folds, only one of the two power laws in the denominator
of (5.4) dominates. Conversely N∗ = 60 would be accidentally close to the
transition point between the two regimes. Within this assumption one has
two different cases depending on whether α is larger or smaller than 1. For
α > 1 there are two possible behaviors, depending on which scaling of ε is
chosen, while only one solution exists for α < 1, since ε cannot be negative.
Therefore there are three cases:

1. α > 1 and ε ' (α− 1)/2N . The value of ε (and thus of r) is fixed
and large. This is the case of monomial potentials V ∝ φ2α−2. This is
the simplest and most informative scenario: inflation is driven by a
simple monomial potential, as previously stated, r is large enough to
make %-measurements possible [51] (see also [1, 74]) and we would
be quite confident on what is going on [3, 4].

2. α > 1 and ε ' A−1N−α. In this case one cannot fix the value of ε:
the only requirement is that the constant A is big enough so that one
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can neglect the first term at the denominator of (5.4). In terms of r
this gives

r = 16ε ' 16A−1N−α . 8(α− 1)N−α . (5.5)

It is easy to find the potentials that correspond to these behaviors
[75].

The case α > 2 consists for example of hilltop models that inflate
around the origin,

V (φ) = V0

[
1−

(
φ

M

)n]
(5.6)

with n > 2 and M .MP. For these potentials α = (2n− 2)/(n− 2).
Notice that for n = 2 the potential does not follow the 1/N scaling,
since η (and thus ns) goes to a constant at small φ (1).

For α = 2 one has models that approach a constant exponentially for
large φ

V (φ) = V0
[
1− e−φ/M

]
, (5.7)

with M .MP (2).

In the case 1 < α < 2 one finds models that approach a constant
polynomially at large φ

V (φ) = V0

[
1−

(
M

φ

)n]
, (5.8)

with n > 0 and M .MP. For these α = 2(n+ 1)/(n+ 2).

The potentials given above are just examples which reproduce ap-
proximately Eq. (5.2). For example in the case above of models that
approach a constant polynomially, corrections to Eq. (5.2) go as
(N−1 ·M2/M2

P)
n/(2+n): for M .MP, this is a good approximation

to Eq. (5.2) (unless n is too small, see later).

1 This suggests that if one modifies the potential with n = 2 with a correction which goes to
zero slower than any polynomial, one gets intermediate behavior for ns − 1. For example
the potential V = V0[1 + (φ/M )2/ log(φ/M )] gives ns − 1 ∝ 1/

√
N . This shows that

the 1/N scaling is not the only possibility, although arguably the most natural. It is the
experimental value of ns that suggests 1/N .

2 Notice that the potentials we are quoting for each case are just examples and that
there are completely different potentials giving the same α. For instance the potential
V0[1− exp (M/φ)] near the origin gives the correct 1/N scaling with α = 2.
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In all the cases A−1 ∼ (M/MP)
2α−2. As we discussed, this number

cannot be large, see Eq. (5.5), but unfortunately it can be arbitrarily
small, when the scale M is smaller than the Planck scale. As done in
[70, 71] one can assume that M 'MP, or equivalently that ε ' N−α,
however this is an additional assumption and not a consequence of
Eq. (5.2). For smaller values of M (and thus of ε) slow-roll terminates
because η becomes of order one: after that ε starts varying fast and
reaches unity in one e-fold or so. For example brane inflation corre-
sponds in its simplest form to a potential of the form of Eq. (5.8)
with n = 4 and M parametrically smaller than MP [76]. Further-
more, exponential potentials are ubiquitous in field and string theory
constructions, both with M ∼MP and with M �MP [76, 77].

3. α < 1 and ε ' A−1N−α. This regime is qualitatively different from
the previous ones. The second term in the denominator of Eq. (5.4)
must dominate, since the first term would give a negative ε. Since the
first term grows faster than the second for large N , this case cannot
be sustained for arbitrarily large N . On the other hand we can require
it is valid for a large window around the observable scales, say up
to N̄ = 10N∗. Again this gives an upper bound on the amplitude of
gravitational waves

r = 16ε . 1− α
2

1
N̄

(
N̄

N

)α
. (5.9)

Although it may look artificial, this behavior can be obtained with
the potential

V = V0

[
1 +

(
φ

M

)n]
(5.10)

with 0 < n < 2 and M � MP. Eq. (5.2) is valid with α = −2(n−
1)/(2−n) for φ�M (as we said this regime cannot last for arbitrarily
large N).

This class covers also the case of blue tilt of order 1/N . But there is
an important difference: for red tilt slow-roll breaks when η becomes
large and negative, so that ε is increasing and naturally leads to the
end of inflation ε = 1. For blue tilt η is large and positive at the end of
slow-roll, so that ε is small and decreasing. Some additional ingredient
is needed to ultimately terminate inflation. Of course this is not so
interesting since a blue tilt is ruled out experimentally. Notice also
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Figure 9: Possible allowed regions in the experimental (ns,r)-plane, as derived
from our assumptions. The solid blue and orange lines correspond to
the behavior of case 1) and 2). Dashed lines depend on the choice of
N̄ . The experimentally allowed region is in green (1 and 2σ contours).
In the gray shaded regions |α| is significantly different from one, so
that the assumption in Eq. (5.2) may not apply. The solid purple line
corresponds to the Lyth bound.

that one should not use our arguments too close to the scale-invariant
point |α| � 1 because this would violate the assumption that ns − 1
is of order 1/N . The same applies when |α| becomes parametrically
larger than one. Anyway, both these cases are experimentally ruled
out.

In Fig. 9 we draw the various possibilities together with the current
experimental bounds [11], requiring one of the two behaviors of ε dominates
in a window up to N̄ = 10N∗. The solid orange line corresponding to
Eq. (5.5) is defined only up to a factor of order unity; in the plot we chose
such factor so to include the point corresponding to the Starobinsky model
[12]. The dashed line for α < 1 and around the large ε solution depends on
N̄ , and should be thus interpreted with care. We also draw (solid purple
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line) the Lyth bound [44]: in Eq. (5.4) we choose the value of A such that
the displacement of the inflaton from N∗ = 60 to the end is ∆φ = MP [78].
Within the experimentally allowed region for the scalar tilt, all “measurable”
values of r (& 5× 10−4) corresponds to ∆φ > MP.

It is important to stress that the 1/N scaling, given in Eq. (5.2), can
be checked experimentally by the measurement of the running which is
obviously fixed to be αs = −α/N2

∗ ' −7 · 10−4 [75]. Unfortunately this
value is probably too small to be measured with CMB experiments [79],
however a measurement of a larger running would disprove Eq. (5.2).

5.3 stability of the constraints

Of course one cannot argue from the measurement of the tilt that Eq. (5.2)
holds with α strictly constant. At most one can argue that α(N) is a slowly
varying function of N (3). Let us check that the qualitative features of the
plot in Fig. 9 remain the same. If α depends on N , Eq. (5.3) can be written
as a linear differential equation

dε−1

d logN − α(N)ε−1 = −2N , (5.11)

whose general solution is

ε−1(N) =− 2e
∫ N

1
dÑ
Ñ
α(Ñ)

∫ N

1
dÑe−

∫ Ñ
1

dN̂
N̂
α(N̂)

+Ae
∫ N

1
dÑ
Ñ
α(Ñ) .

(5.12)

The first line on the rhs is the non-homogeneous solution and it reduces
to 2(α− 1)N for constant α. When α is not a constant the solutions will
not be power-laws, but we can still assume that one of the two behaviors
(corresponding to ε ∼ η or ε � η) dominates over a parametric window
without moving from one to the other. The constraints on ε (and thus on
r) will be perturbatively close to the case of constant α if the variation
is small. The second line corresponds to the homogeneous solution of the
differential equation. It amounts to neglect the contribution of ε to the tilt,
ε� η, and it reduces to the power law Nα for a constant α.

3 It is easy to find examples of potentials where there are corrections to the exact 1/N
scaling: for example the potential V = V0[1− exp (−φ2/M2

P)] has ns − 1 ' −2/N · (1 +
1/(2 logN)).
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If α weakly depends on N , the plot of Fig. 9 will be slightly “blurred”.
For example if Eq. (5.2) is modified to allow for a “running” α

ns − 1 = − α
N

(
N

N∗

)δ
(5.13)

then the power law solution ε ∝ N−α is modified for small δ by a factor
(1 + αδ(logN∗)2/2 + . . .). If we take δ ' 0.3, in such a way that the
effective α changes by a factor of 2 as N varies by an order of magnitude,
the correction is of order 2. This does not affect our conclusions, since
Eq. (5.5) is anyway defined up to a factor of order unity. These uncertainties
will sum up with the experimental uncertainties on ns and the theoretical
ones on the number of e-folds N . This in particular tells us we should not
take too seriously the small value of r in the region close to α = 1: the
two solutions N and Nα becomes closer and closer and the results are very
sensitive to the corrections we just discussed.

5.4 conclusions

The robust conclusion is that there are regions in the (ns, r)-plane which
are not compatible with the 1/N hypothesis of Eq. (5.2) (see also [70]),
and the assumption that there is no change of behavior for ε. Unfortunately
these assumptions do not set a lower bound for r. If one further requires
that ε becomes of order one when slow roll breaks, then we have either the
case 1) or the case 2) with the inequality (5.5) saturated (solid orange line
in Fig. 9). Conversely the 1/N scaling is compatible with an arbitrarily
low energy during inflation. In particular it is also compatible with large-fa
QCD axion models, which would be in tension with high-scale inflation
models [80, 81].

It is important to stress that, since in Eq. (5.5) r depends exponentially
on the tilt, an improvement on the experimental limits of this quantity will
be of great importance.

Current and upcoming CMB-experiments will be able to probe values of
r as small 2× 10−3 [1] in a not-so-distant future. If experiments will put us
in the “forbidden” region, we will have to give up one of the assumptions.
One possibility is that the value of the tilt is only accidentally of order
1/N . Inflation requires the slow-roll parameters to be small, but in explicit
constructions it may be difficult to make them as small as we like. For
example supergravity corrections (or in general Planck-suppressed operators)
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tend to push η towards one (η-problem), thus giving large contributions
to the tilt. Similarly it appears difficult to have pseudo Nambu-Goldstone
bosons with a decay constant much bigger than MP [82], so that a not-so-
small tilt of order M2

P/f2 is expected. One can surely reproduce the tilt we
observe in these cases, though one might argue that a larger value would
be expected if the flatness of the potential is so hard to maintain. Another
way out is a small speed of sound for the inflaton. Current constraints still
allow a substantial reduction in the value of r. The other assumption we
might have to relax is that ε does not move from one behavior to the other
in the observable window. For example in ref. [83] the authors consider the
model V ∝ tanh2(φ/

√
6β) which satisfies, for any β, eq. (5.2) with α = 2.

One can obtain values of r in the forbidden region by adjusting β in such
a way that the two terms in the denominator of (5.4) are comparable for
N = N?. However, this requires some amount of tuning since observable
inflation happens very close to the inflection point of the potential.



6
FUTURE BOUNDS ON TENSOR MODES

6.1 motivations

The year 2014 marked the beginning of the B-mode era in cosmology.
After the direct detection of the lensing B-mode signal by Polarbear [84],
BICEP2 [43] pushed the constraints on primordial tensor modes using
polarization to a level that is competitive with temperature. Given that
temperature measurements are close to the cosmic-variance limit for the
tensor-to-scalar ratio r, improvements in the future will practically only
come from polarization. However from Planck’s [85] measurements of the
level of polarized dust emission (for previous measurements see for example
[86, 87]), it is clear that a detection of primordial tensor modes will have to
deal with foregrounds.

With the recent release of Planck [11, 88], we are constraining at 2σ the
region r ∼ 0.1, which corresponds to simple monomial potentials. As we
argued in Sec. 5, if gravitational waves are not detected, there is another
motivated threshold at r ∼ 2× 10−3. In this section we want to look ahead
at the future (and futuristic) experiments and understand whether the new
data on dust polarization substantially change the reach expected for the
various experiments.

6.2 forecasting method

6.2.1 CMB and Noise

The anisotropies of the temperature and polarization fields can be de-
composed into spin-weighted spherical harmonics

T =
∑
`,m

aT`mY`m,

Q± iU =
∑
`,m

a
(±2)
`m Y

(±2)
`m ,

(6.1)
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or, for the polarization field, into the more conveniently defined E- and
B-modes

E =
∑
`,m

aE`mY`m, B =
∑
`,m

aB`mY`m, (6.2)

whose coefficients are

aE`m = −a
(+2)
`m + a

(−2)
`m

2 , aB`m = −a
(+2)
`m − a(−2)

`m

2i . (6.3)

Let us consider the CMB first. In linear perturbation theory, the coeffi-
cients a`m of the T -, E- and B-modes of the CMB are Gaussian random
variables with zero mean and variance

〈aX`maY ∗`′m′〉 = CXY` δ``′δmm′ , (6.4)

where X,Y = T ,E,B. From these, as customary, one defines the “curly"
correlators as CXY` ≡ `(`+ 1)CXY` /(2π). Due to parity invariance, only
the TT , EE, TE and BB power spectra are necessary to characterize
the CMB, the others being zero. In our analysis we consider the B-mode
power spectrum only, so we drop the superscript BB where possible. This is
generated by CAMB [90] and, since we are solely interested in the forecast
for the tensor-to-scalar ratio r, we set all cosmological parameters, except
r and the optical depth τ , to the current best fit values of Planck [11].
Although this may look like a rough approximation, r is expected to be only
mildly degenerate with the other parameters, the biggest degeneracy being
the one with τ at low multipoles. We are going to marginalize over τ using a
gaussian prior given by Planck analysis [11]. This is a conservative approach
for satellites since they will have additional information on reionization. On
the other hand, since large scale polarization measurements are affected by
systematics, it is not clear how much they will improve the constraints on
τ .

In the presence of white noise due to the instrumentation, the integration
over a Gaussian beam to go from real space to harmonic space creates a
bias N` for the estimators of the power spectra. At each frequency channel,
this is given by [91]

N` =
`(`+ 1)

2π σ2
pix Ωpix e

`2σ2
b , (6.5)

where σpix is the noise variance per pixel of size Ωpix = Θ2
FWHM, and

σb = 0.425 ΘFWHM is the beam-size variance. Our treatment here is clearly
simplistic, since it does not take into account systematics. However, these
are very experiment-dependent and go beyond the scope of this section.
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6.2.2 Foregrounds

The presence of foregrounds limits our ability in extracting the CMB
signal from the data. Fortunately, each component scales differently in
frequency, and thus it is possible to separate them using maps at different
frequencies. We consider two diffuse components: synchrotron emission (S)
and thermal dust (D).

The BB power spectra of the Galactic synchrotron emission and thermal
dust in antenna temperature is given by the following simple parametrization

S`,ν =
(
WS
ν

)2
CS` =

(
WS
ν

)2
AS

(
`

`S

)αS
, WS

ν =
(
ν

νS

)βS
,

D`,ν =
(
WD
ν

)2
CD` =

(
WD
ν

)2
AD

(
`

`D

)αD
, WD

ν =
(
ν

νD

)1+βD ehνD/kT − 1
ehν/kT − 1

,

(6.6)

where the parameters are given in Tab. 1. This parametrization fits well
the observed power spectra [85, 92, 93]. Since for our analysis we are using
as a reference the CMB signal, one has to rescale the antenna temperature
of these components to the thermodynamic temperature of the CMB. The
conversion is provided by the frequency dependence of the CMB

WCMB
ν =

x2ex

(ex − 1)2 , x ≡ hν

k TCMB
. (6.7)

The frequency dependence of synchrotron and dust rescaled to the thermo-
dynamic temperature of the CMB then reads

WS
ν → WS

ν =
WCMB
νS

WCMB
ν

(
ν

νS

)βS
,

WD
ν → WD

ν =
WCMB
νD

WCMB
ν

(
ν

νD

)1+βD ehνD/kT − 1
ehν/kT − 1

.
(6.8)

Synchrotron emission is the dominant one below 90 GHz1, while dust
becomes increasingly important for higher frequencies. In our forecasts, for
sky coverage of 70% and 20% we have fixed the synchrotron amplitude to the
value measured byWMAP for the P06 mask [92], while for the 10% and 1% to
the extrapolation of [94] of the WMAP data. The synchrotron spectral index

1 The synchrotron and dust power spectra are comparable at roughly 90 GHz for the
cleanest 1% of the sky. In regions with higher levels of polarized dust emission the
transition happens at a lower frequency.
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is known to steepen as Galactic latitude increases (see e.g. [95]). However
we checked that this effect can be safely neglected for our purposes.

Parameter Synchrotron Dust

A72% [µK2] 2.1× 10−5 0.169
A53% [µK2] 2.1× 10−5 0.065
A24% [µK2] 2.1× 10−5 0.019
A11% [µK2] 4.2× 10−6 0.013
A1% [µK2] 4.2× 10−6 0.006
ν [GHz] 65 353

` 80 80
α −2.6 −2.42
β −2.9 1.59

T [K] − 19.6

Table 1: Foreground parameters obtained or extrapolated from [85, 92, 94], as
explained in the text. Afsky

refers to the cleanest effective area fsky.

However, polarized dust emission is the leading contaminant for balloon
and ground experiments probing frequencies higher than 90 GHz. A detailed
measurement of the polarized dust has become available only recently
[85]. For this reason, its impact has been underestimated in some previous
analyses. For example, the observed value of the dust power spectrum at
353 GHz for 72% of the sky is roughly 10 times bigger than the dust-model
A used for the forecast of CMBPol [96]. It is now clear that there are no
regions in the sky for which a measurement of r is achievable without having
to deal with foregrounds [85, 94]. One of the primary goals of this work
is to provide new forecasts for the detection and measurement of r with
more realistic levels of thermal dust contaminating the primordial signal.
In this respect, we use the levels of dust presented in [85] for the 353 GHz
channel of Planck and extrapolate their results when needed. In particular,
Planck [85] has recently provided the power spectra of dust at 353 GHz for
a clean effective area of 72%, 53%, 24%, and 1%. For the 1%-patch we use
as a reference the value of the dust amplitude in the BICEP2 region. Even
though Planck observed cleaner patches of the same size, the associated
errors are too large to reliably determine the correct level of dust.
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Some experiments, e.g. Spider, will probe patches of the order of 10%
and we need to extrapolate the amount of dust on a patch roughly as big as
theirs. This can be done in several ways. As a first guess, the interpolation
of the values provided by Planck as a function of fsky gives ABBD = 0.013.
Another way consists in using the low NHI region of [97] which covers 11%
of the sky. Using the relation NHI = 1.41× 1026 cm−2 〈ø353〉, where τ353 is
the optical depth at 353 GHz, we find NHI = 1.35× 1020 cm−2. Substituting
this value in the relation between the amplitude of B-modes and NHI [85],
we find that ABBD = 0.013. We tested this procedure against the amplitudes
indicated by Planck for the 1% of the sky for BICEP2, and found good
agreement. A third way consists in using the relation between the amplitude
in polarization and the one in intensity [85], AD ∝ I1.9

353. This relation for
the same low NHI region gives ABBD = 0.009. We will use ABBD = 0.013 as
an upper bound for the dust levels in the region observed by Spider.
An additional complication comes from the correlation between syn-

chrotron and dust. It has been observed [94] that the correlation among
these two components can be as high as 70%. To account for this effect in
our forecast, for simplicity we will assume that in the power spectrum the
correlation enters as g

√
S`,νiD`,νj and set g = 0.5 in our fiducial sky-model,

independently of fsky and `.

6.2.3 Likelihood and Fisher Analysis

In the case of an experiment covering the whole sky, one can write the
signal d measured at the frequency νi, in harmonic space, as

dνi`,m = W̄ νi
c a

c
`,m + nνi`,m (6.9)

where W provides the frequency dependence of each component2, the bar
indicates that the parameters are fixed to their “true" value, and n is the
instrumental noise. Assuming that the amplitudes are Gaussian (also those
of foregrounds), starting from the χ2 (and avoiding the use of indices)

χ2 =
∑
`,m

(d−W · a)T ·N−1 · (d−W · a) + aT ·C−1 · a, (6.10)

2 Since we are considering three components (the index c runs over CMB, Dust and
Synchrotron), and we are expressing everything in thermodynamic temperature, W is a
3×Nchannel matrix whose rows are

(
1,WD

νi
,WS

νi

)
.
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where C is the covariance matrix of the amplitudes of the various components
and N is the covariance matrix of the noise, the likelihood can be written as

LBB(d, p) ∝
∫

d3a e−
1
2χ

2
∝ e−

1
2
∑
`,m dT ·(W ·C·WT+N)

−1·d. (6.11)

In order to do a Fisher analysis we are interested in the average of the
log-likelihood,

〈logLBB〉 = −
1
2
∑
`

(2`+ 1)
 log Det

[
W · CBB` ·W T +N`
W̄ · C̄BB` · W̄ T +N`

]

+Tr
[
W̄ · C̄BB` · W̄ T +N`
W · CBB` ·W T +N`

− I
] ,

(6.12)

where the normalization is such that for C̄` = C`, 〈logLBB〉 = 0. In the
following we will refer to the use of this formula as “Component Separation"
(CS).

Given the likelihood as a function of the parameters p, one can define
the Fisher matrix

Fij = −
∂2〈logLBB〉
∂pi∂pj

∣∣∣∣∣∣
p=p̄

, (6.13)

where p̄ is the set of “true" cosmological parameters. The minimum error
on the parameters given the data, is set by the Cramer-Rao bound to be

σ2
pi ≥ (F−1)ii. (6.14)

In real experiments, only part of the sky is observed or can be used for
cosmology, and thus not all modes are available for the analysis. To capture
this effect in a simple way one can multiply the RHS of Eq. (6.12) by the
fraction of the sky available fsky.

In general the analysis is far more complicated. The likelihood as written
in Eq. (6.12) becomes lossy, modes of multipole ` will be coupled with their
neighbors. In addition, for experiments covering only a few percent of the
sky, the leakage of E- into B-modes will add additional complications to
the detection of the signal produced by gravitational waves [98]. In our
discussion, we will neglect these details, and thus the results produced with
this method can be seen as optimistic.
In the analysis of Sec. 6.3, the likelihood in Eq. (6.12) is a function of

6 parameters3 p = (r,AD,AS , βD, βS , g), and the error on the tensor-to-
3 Notice that even in the limit in which there is no additional information coming from the

difference in `-dependence, an experiment with three frequencies would allow a complete
reconstruction of the parameters, since its covariance matrix would have six entries.
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scalar ratio is marginalized over the other parameters. Notice that at low
frequency the effect of changing TD is very similar to a change in βD. As
done in [99], we are assuming that the temperature of the dust emitting
polarized radiation is the same as the one determined from the intensity
maps. In the following we will assume gaussian priors for AS , AD, βS with
variance of 50%, 50%, 10% respectively. For βD we use a gaussian prior of
10%, 30% and 50%, for fsky & 50%, ∼ 5− 10% and ∼ 1% respectively. For
the optical depth we assume a gaussian prior given by Planck analysis [11].
No priors are assumed for the other parameters.

In Sec. 6.4 we will instead take a more conservative approach and consider
the likelihood in Eq. (6.12) as a function of 10 parameters. Namely, in
addition to the 6 previous parameters, we will include the `-dependence of
the foregrounds, αD and αS , the spectral dependence of the CMB and its
`-dependence. In particular we will constrain how much the CMB deviates
from what expected using simple power laws with parameters αCMB for the
`-dependence and βCMB for the spectral dependence. Notice that αCMB

roughly corresponds to the tensor tilt.
In all the tables that follow, we use the symbol “−" when σr ≥ r.

6.2.4 Likelihood and Fisher Analysis: a Phenomenological Approach

The foreground model used in the previous section is of course approx-
imate. For instance the foreground parameters may be space-dependent,
and the distribution is not exactly gaussian. For this reason, and also to
compare our results with previous forecasts, we also adopt a second, more
phenomenological, method for estimating the error on the tensor-to-scalar
ratio. It was proposed in [100] and already used also in previous forecasts for
CMBPol [96] and more recently also in [74]. The method assumes that with
already known techniques such as [101, 102] it is possible to subtract the
foregrounds up to a certain level in each single map. The noise introduced
by the foreground removal is then modeled by accounting the number of
possible cross correlations. The sum of foreground residual and noise is

NF
`,ν =

∑
F

σF (S`,ν +D`,ν) +
4N`,νtmp

Nchannel(Nchannel − 1)
WF
ν

WF
νtmp

 , (6.15)

where σF is the fraction of leftover foregrounds in power, WF
ν includes the

conversion to thermodynamic temperature, νtmp is the reference frequency at
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which the foreground template has been created (e.g. 30 GHz for synchrotron
and 353 GHz for dust), and Nchannel is the number of frequency channels.
This quantity is then treated as an additional source of uncorrelated noise
and as such is added to the noise bias. The resulting effective noise is given
by

(
N eff
`

)−2
=

∑
i,j≥i

((
NF
`,νi +N`,νi

) (
NF
`,νj +N`,νj

) 1
2(1 + δij)

)−1
. (6.16)

This method has the advantage of being independent on any specific tech-
nique of foreground subtraction, but, as already noted in [103] (see also
[104]), it has the downside of not being specific of any real experiment. By
comparing the results of this and the CS method, one can estimate what is
the level of foreground subtraction obtained by the component separation,
and therefore the level at which the foreground modeling needs to be trusted.
As already done in [96, 100] and recently in [74], in our forecasts we will
assume that foregrounds can be subtracted at 1% in power level in each
map.
The likelihood in this approach is the one of a single channel with an

effective noise bias given by Eq. (6.16), and it reads

〈logLBB〉 = −
1
2
∑
`

(2`+ 1)fBBsky

log
CBB` +N eff

`

C̄BB` +N eff
`

+
C̄BB` +N eff

`

CBB` +N eff
`

− 1
 .

(6.17)

In order to render the forecasts more realistic, we marginalize the error of
the tensor-to-scalar ratio over the foreground residuals. This can be done by
considering the percentage of foreground removal as an additional parameter
and by multiplying the likelihood in Eq. (6.17) by a gaussian prior describing
our ignorance about the exact level at which foregrounds have been removed.
We will assume that the percentage of foreground removal σF is known with
relative error of order 1.

6.2.5 Delensing

One of the most important limiting factors in measuring primordial B-
modes is gravitational lensing. Since B-modes induced by lensing have the
same frequency dependence as primordial ones, one cannot proceed in the
same way as with foregrounds. The idea then is to use the measurements
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of polarization or temperature on short angular scales to reconstruct the
lensing potential and remove lensing effects from the B-mode polarization
on the larger angular scales [105–108].
Polarization delensing is not always important in improving the con-

straints on r. In the case of a large tensor-to-scalar ratio, the dominant
contribution to the signal-to-noise comes from the low multipoles. For ex-
ample, the lensed B-modes power spectrum becomes comparable to the
power spectrum of the primordial B-modes corresponding to r = 0.1 around
` ∼ 100. In this case delensing cannot improve the errors significantly. The
other case in which delensing is irrelevant is when the noise is larger than the
lensing signal. Indeed the power spectrum of lensing B-modes for ` . 150
is similar to white noise with amplitude 4.4µK-arcmin, so that only for
experiments with smaller noise delensing is relevant. If the instrument has a
high sensitivity and a good angular resolution needed for the reconstruction
of the lensing potential, delensing the maps can become important and
can improve the errors on r even by a factor of a few for the beam sizes
and the sensitivities of different proposed future experiments [107–109].
For example, Fig. 3 of [108] shows that with a beam size of 5 arcmin and
sensitivity of 1µK-arcmin one can improve the constraints on r by a factor
of 5. Moreover, as the sensitivity and the resolution increase, there are no
limits in how much of the lensing signal can be subtracted. This improve-
ment is marginal for all the experiments considered in this section, except
for the generation-IV experiments (GRD, BAL and ULDB) and for the
satellites COrE and CMBPol. For all other experiments either the noise
level is high enough to make delensing irrelevant or the angular resolution is
too large to implement delensing. To include delensing in those experiments
where it is viable, we assume that the power of lensing B-modes is reduced
to 10% of the original value. The residual power would correspond to a
noise equivalent power of 1.4µK-arcmin. It would be useful to explore how
the presence of foregrounds impacts the ability of delensing, but this goes
beyond the our scope.
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Figure 10: Contours represent the 1σ error on r for r = 0, marginalized over the
foreground residuals, using a single map of 1% of the sky at 150 GHz
with beam of 30 arcmin, as a function of foreground residuals and
instrumental sensitivity. This is the case of BICEP2/Keck, which
has sensitivity of 3.4 µK-arcmin.
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6.3 results

6.3.1 BICEP2/Keck and Planck

Let us begin our analysis by checking that our forecasting method is
compatible with the recent recent joint analysis [110]. In order to do so, we
combine the BICEP2/Keck 150 GHz channel with the Planck 353 GHz one.
With the CS method, for a fiducial value of r = 0.05 using the multipoles
[20-150] and a gaussian prior on βD with variance σβD = 0.11, we obtain
an error σr = 0.04, which is in good agreement with what was reported in
[110].
Alternatively, using the phenomenological approach of 6.2.4, in Fig. 10

we plot the contours representing the error on r assuming r = 0 as a
function of sensitivity and foreground residuals. As can be seen, our ability
to constrain r crucially depends on the foreground removal. A reduction of
foregrounds to 10% in power can lead (in the absence of gravitational waves)
to a quite strong upper bound r ≤ 0.05 at 3σ. Polarization experiments are
already competitive with constraints from temperature alone, even with
only one frequency and very mild foregrounds removal. Notice that with
T -modes only cosmic variance prevents to constrain r better than 5× 10−2

[111].4 Notice moreover that in the near future it will be possible to include
in the analysis the 95 GHz channel of Keck (here we assume a noise of
9µK-arcmin). As can be seen in Tab. 2, the inclusion of such a frequency
would allow to reduce the error on the tensor-to-scalar ratio by a factor of
2 with respect to the current constraint.

6.3.2 Balloon-borne and Ground-based Experiments

The situation will improve in the next few years since there are several
experiments that are already collecting data and will have maps in two
or more frequencies. In our forecasts we concentrate on a few proposed
and funded experiments. In particular, for what regards ground-based
experiments we consider Keck/BICEP3 and the Simons Array, and also
AdvACT, CLASS and SPT-3G. The specifications used are in Tab. 10. We
vary the level of foregrounds according to the fraction of the sky targeted

4 This bound of course is impossible to achieve due to sample variance induced by masking
the sky.
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r BICEP2/Keck + Planck353

CS

0.1 3.5× 10−2

0.01 —
0.001 —
0 2.2× 10−2

Table 2: 1σ errors on r for BICEP2/Keck (95 and 150 GHz) and the 353 GHz
channel of Planck. This error, as calculated from the phenomenological
method of Sec. 6.2.4, corresponds to a 30% level of leftover foregrounds
in power.

r Keck/BICEP3 Simons Array AdvACT CLASS SPT-3G

CS

0.1 2.2× 10−2 7.6× 10−3 5.4× 10−3 6.5× 10−3 9.0× 10−3

0.01 — 5.0× 10−3 3.1× 10−3 3.4× 10−3 4.2× 10−3

0.001 — — — — —
0 9.1× 10−3 3.4× 10−3 1.4× 10−3 9.0× 10−4 3.7× 10−3

FG 1%

0.1 1.9× 10−2 1.1× 10−2 7.8× 10−3 6.0× 10−3 8.1× 10−3

0.01 7.8× 10−3 8.1× 10−3 4.8× 10−3 3.5× 10−3 4.1× 10−3

0.001 — — — — —
0 6.4× 10−3 7.8× 10−3 4.6× 10−3 3.3× 10−3 3.7× 10−3

Table 3: 1σ errors on r for future ground-based experiments.

by each experiment, as given in Tab. 1. For what concerns the available
multipoles, we consider the range [30, 150]. For AdvACT, CLASS and the
Simons Array we consider the range [2, 150], since they observe a larger
fraction of the sky. This range is probably larger than what these experiments
will actually be able to observe, since to handle atmospheric contamination
they need to filter the data, losing power at low `’s. In Sec. 6.4 we will
take a more conservative perspective. As can be seen in Tab. 3, which
summarizes our forecasts, we expect these experiments to explore values of
r of order 10−2. The CS method gives results which are roughly comparable
to a reduction of foregrounds to 1%. Of course there are sometimes sizable
differences, since we do not expect all experiments to reduce foregrounds in
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the same way. Still 1% represents a rough estimate of the level at which
one should trust the foreground modeling for the CS.

r EBEX 10k Spider

CS

0.1 1.5× 10−2 1.8× 10−2

0.01 7.4× 10−3 —
0.001 — —
0 6.4× 10−3 1.3× 10−2

FG 1%

0.1 2.2× 10−2 2.6× 10−2

0.01 — —
0.001 — —
0 9.2× 10−3 2.1× 10−2

Table 4: 1σ errors on r for future balloon-borne experiments.

Regarding balloon-borne experiments, we consider EBEX 10k and Spider
(which has already finished the first flight), with specifications in Tab. 11.
As can be seen in Tab. 4, we expect these experiments to explore values
of r ∼ few × 10−2. It is fair to say that the level of dust measured by
Planck only slightly degrade the previous forecasts and that the goal of
these experiments are still within their range.

For all these experiments the error on the dust amplitude will be substan-
tially smaller than the present Planck constraints, so that a cross-correlation
with Planck will not significantly reduce the errors. However, Planck’s data
will still be useful to test the spectral dependence of the polarized dust
emission model.
Looking a bit further into the future, we also consider an idealized bal-

loon (BAL) and an ultra long duration ballon (ULDB) with the same four
frequencies of EBEX 10k (150, 220, 280 and 350 GHz) and beams of 5
arcmin, but leave their sensitivity as a free parameter. For simplicity we
assume that the sensitivity is equal across the frequencies, even though this
may not be the optimal choice. The results of our forecasts can be found in
Fig. 11 where we estimate the 1σ error for r = 0 for BAL covering the few
supposedly clean patches found by Planck (∼ 5% of the sky), and ULDB
covering 60% of the sky. As it can be seen, with a noise level ∼ 1µK-arcmin
and lensing removed to 10%, which are possible but challenging, one can
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Figure 11: 1σ error on r as a function of the instrumental sensitivity for two
hypothetical balloon experiments (BAL and ULDB in Tab. 11). These
estimates use a patch of 5% of the sky for BAL and 60% of the sky
for the ULDB. The solid line assumes lensing is not subtracted, the
dotted line assumes lensing has been reduced to 10% in power. Since
also delensing is applied, we considered the multipoles [30, 300].
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detect r ∼ 2× 10−3 with high statistical significance. Notice however that
obtaining a noise level close to 1µK-arcmin on 60% of the sky with an
ULDB seems out of reach with a single 100-days flight (which is the target
of this kind of experiments). We will discuss about a futuristic ground-based
experiment (GRD) in Sec. 6.4.

6.3.3 Satellite Experiments

Finally, let us present our forecasts for various proposed satellite exper-
iments (see Tab. 12 for the specifications). We assume that an effective
area of 70% is observed with foregrounds parameters given in Tab. 1, and
limit the multipole range to [2, 300] for COrE and CMBPol (EPIC-2m)
and [2, 150] for LiteBIRD5. The summary of our estimates can be found
in Tab. 5, and it shows that with respect to previous forecasts [96] there
is only a minor degradation (no more than a factor of 2) of the ability to
detect primordial tensor modes. In particular a detection of r ∼ 2× 10−3 is
still achievable for the proposed missions. Notice however that the upper
limit for r = 0 below 10−4 are very optimistic and degrade significantly
when the reionization bump is excluded (we are going to comment on this
in the next section).

6.4 more conservative analyses

It is obvious, especially after the case of BICEP2, that a detection of
primordial tensor modes must convincingly show that the signal is not
contaminated by astrophysical foregrounds. If the description of foregrounds
in terms of few parameters is accurate, we saw that future experiments
will be able to remove them with very good accuracy. On the other hand,
our knowledge of astrophysical foregrounds is rather qualitative and it is
not clear at what level the model works. For example, for r = 2× 10−3

foregrounds at 150 GHz are larger than the primordial signal by a factor of
10 in amplitude at the recombination bump on the cleanest 1% of the sky,
and a factor of 50 in the 70% of the sky.

5 The angular resolution of LiteBIRD is not good enough for delensing and there is no
advantage in considering higher multipoles when lensing is not subtracted.
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r CMBPol COrE LiteBIRD

CS

0.1 1.6× 10−3 1.7× 10−3 2.3× 10−3

0.01 3.0× 10−4 3.5× 10−4 6.7× 10−4

0.001 1.1× 10−4 1.7× 10−4 3.1× 10−4

0 2.1× 10−5 3.3× 10−5 8.9× 10−5

FG 1%

0.1 2.6× 10−3 2.6× 10−3 3.8× 10−3

0.01 5.7× 10−4 7.1× 10−4 1.3× 10−3

0.001 3.6× 10−4 5.1× 10−4 1.0× 10−3

0 3.4× 10−4 4.9× 10−4 9.9× 10−4

Table 5: 1σ errors on r for various proposed satellite experiments. For CMBPol
and COrE a delensing of 10% has been taken into account.

There are of course various ways to check that we are observing primordial
gravitational waves. The primordial signal is homogeneous over the sky and
it has Gaussian statistics, contrary to what we expect for foregrounds [112].
Other features that are well known about the signal are its dependence both
in frequency and in `. To study the ability of future experiments to check
these features, we add to the parameters discussed in the previous section
also the possibility of a power-law frequency dependence of the CMB signal
(ν/νCMB)

βCMB with νCMB = 150 GHz. Moreover, we multiply the tensor
mode power spectrum by a power-law `-dependence (`/`CMB)

αCMB with
`CMB = 80. This roughly corresponds to the tensor tilt, although we are
here interested in checking the expected approximate scale-invariance and
not to assess the possibility to detect the tensor tilt. A convincing detection
of primordial tensors should constrain both αCMB and βCMB to be close
to zero. This will also give a sense of how close an unmodelled foreground
component must be to the CMB signal to be undistinguishable from it.
Since we want to be more conservative we also add as new parameters the
`-dependence of dust and synchrotron (αD and αS) so that the likelihood
is a function of 10 parameters.

The results for ground-based and balloon-borne experiments are reported
in Tab. 6 and include only values of r for which a significant detection is
possible, since only in this case the additional parameters αCMB and βCMB
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r σr σαCMB σβCMB

AdvACT
0.1 9.3× 10−3 9.9× 10−2 1.3× 10−1

0.01 7.0× 10−3 3.3× 10−1 1.1
0.001 — — —

CLASS
0.1 2.3× 10−2 1.9× 10−1 2.2× 10−1

0.01 — — —

Keck/BICEP3
0.1 3.1× 10−2 5.6× 10−1 4.1× 10−1

0.01 — — —

Simons Array
0.1 1.9× 10−2 1.3× 10−1 2.2× 10−1

0.01 — — —

SPT-3G
0.1 1.2× 10−2 1.3× 10−2 2.2× 10−1

0.01 7.2× 10−3 9.8× 10−1 1.1
0.001 — — —

EBEX 10k
0.1 1.6× 10−2 4.7× 10−1 3.9× 10−1

0.01 — — —

Spider
0.1 3.3× 10−2 4.7× 10−1 5.4× 10−1

0.01 — — —

Table 6: 1σ errors on r, αCMB and βCMB for future ground-based and balloon-
borne experiments.
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r σr σαCMB σβCMB

CMBPol
0.1 1.6× 10−3 2.2× 10−2 6.8× 10−3

0.01 3.9× 10−4 5.1× 10−2 2.6× 10−2

0.001 2.1× 10−4 1.4× 10−1 1.3× 10−1

COrE
0.1 1.7× 10−3 2.5× 10−2 1.0× 10−2

0.01 4.9× 10−4 6.1× 10−2 4.3× 10−2

0.001 2.7× 10−4 1.7× 10−1 2.1× 10−1

LiteBIRD
0.1 2.7× 10−3 3.9× 10−2 1.5× 10−2

0.01 1.2× 10−3 1.2× 10−1 7.3× 10−2

0.001 8.0× 10−4 3.4× 10−1 3.7× 10−1

Table 7: 1σ errors on r, αCMB and βCMB for future satellite experiments.

are relevant. We see that the next generation of experiments will not be
able to constrain αCMB and βCMB, unless r ∼ 0.1.

r Simons Array AdvACT CLASS CMBPol COrE LiteBIRD

CS

0.1 1.0× 10−2 7.5× 10−3 8.3× 10−3 2.7× 10−3 2.8× 10−3 3.7× 10−3

0.01 8.3× 10−3 5.3× 10−3 6.1× 10−3 3.9× 10−4 4.6× 10−4 1.0× 10−3

0.001 — — — 1.6× 10−4 2.4× 10−4 7.5× 10−4

0 8.1× 10−3 5.0× 10−3 5.9× 10−3 1.4× 10−4 2.1× 10−4 7.2× 10−4

Table 8: 1σ errors on r for big-patch experiments, assuming ` > 30.

Our results for satellite experiments are given in Tab. 7: we find that the
inclusion of additional parameters does not significantly degrade the errors
on r (at most by a factor of 2) . Even for r = 0.1 the check of the tensor
consistency relation, which would give αCMB ' 10−2, looks impossible.

Another point of concern about foregrounds is the possibility of detecting
the reionization bump. This of course is only relevant for experiments looking
at a large portion of the sky. At this stage our knowledge of polarized
foregrounds on large scales is very limited and it is not clear whether
the reionization bump will be accessible once foregrounds are included.
Moreover, ground-based experiments will also be limited by atmospheric
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contaminants. While in the previous sections we extended the analysis to
low multipoles for experiments with large fsky, in Tab. 8 we consider a
more conservative analysis where only the multipoles ` > 30 are considered.
To do so we consider the likelihood a function of six parameters, as in the
previous section. While the change is moderate for large values of r, since
the low multipoles do not help much with the statistics, the effect is relevant
for small values of r and becomes dramatic for r = 0: the upper limit is
degraded by a factor of 10 (this is compatible with the results of [108]).
Notice that the amplitude of the reionization bump depends strongly on τ ,
so that when the measurement of tensor modes relies on the large scales,
the error on r is significantly affected by the uncertainty on τ .

Let us now comment on our fiducial threshold r = 2× 10−3. Ground-based
experiments of the so-called stage IV are expected to achieve a sensitivity
of the order 1µK-arcmin with O(105) detectors over 5 years. For this value
of r, in Fig. 12 we show the error on r, αCMB and βCMB for a hypothetical
ground-based experiment (GRD) as a function of fsky for two different
sensitivities. The detection of r = 2× 10−3 can be achieved at more than
3σ if the maps are delensed to 10% and roughly 20% of the sky is observed.
In this case the constraints on αCMB and βCMB are small enough to allow
a clear distinction from our modeled foregrounds. For satellite experiments,
from our results shown in Tab. 7 and 8, we see that r = 2× 10−3 is still
detectable with large significance, even when it is not possible to detect
the reionization bump. From Tab. 7 we also see that the error on βCMB is
small enough to allow for a clear distinction of βCMB from βD (or βS).
The skeptical reader may be worried about the possibility of detecting

gravitational waves buried under a foreground signal: we can model fore-
grounds, but how can we be sure that what is left in map is due to tensor
modes and not some additional “evil dust” component we are unaware of?
It is fair to say that a robust detection of primordial tensor modes requires a
detection of the recombination bump. This feature, like a resonance in par-
ticle physics, should be robust against foregrounds which are not expected
to peak al ` ∼ 80. To assess the ability of future experiments to measure
the bump and distinguish it from a featureless power-law dependence, we
compare the analysis in Sec. 6.3 (extended to include αCMB), with a model
which does not include the tensor transfer function, so that the spectrum is
just a power law in `. By treating the amplitude of the bump as a continuos
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Figure 12: Top panel: Error on r = 2 × 10−3 as a function of fsky for a
hypothetical ground experiment (GRD in Tab. 10). Solid lines as-
sumes lensing is not subtracted, dotted lines assumes lensing has
been reduced to 10%. Since also delensing is applied, we considered
the multipoles [30, 300].
Middle panel: Error on αCMB.
Bottom panel: Error on βCMB. Notice that only for fsky & 30%
the constraints on the spectral dependence allows to reject dust at
2σ.
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parameter, one can use Wilks’s theorem.6 In Tab. 9 we report for some
of the experiments the minimum value of r for which a 3σ evidence of
the bump (compared to a featureless power law `-dependence) is possible.
The rule of thumb is that a 10σ measurement of r gives a 3σ evidence
of the recombination bump. For r = 2× 10−3 it will be challenging to
obtain evidence of the recombination bump even with satellite experiments.
Indeed, for such a small value of r the primordial power spectrum at the
recombination peak is comparable to the lensing B-modes reduced to 10%
in power or 1.4 µK-arcmin.

Simons Array AdvACT CLASS GRD CMBPol

rmin 0.08 0.045 0.095 0.005 0.003

Table 9: Minimum value of r for which a 3σ detection of the recombination bump
is possible. For GRD we choose a noise of 1µK-arcmin, 10% delensing
and 20% of the sky. Since we are interested in the recombination bump,
the analysis is restricted to ` > 30.

6.5 conclusions

We updated the forecasts for various future B-mode experiments taking
into account Planck data on foregrounds. For experiments with at least
three frequencies, the forecasts on r do not change significantly with respect
to previous estimates, provided a simple modeling of foregrounds in terms
of few parameters works at the required accuracy.
In particular we focussed on the theoretically motivated target of r =

2× 10−3. This is achievable both with balloon-borne and ground based
experiments if the noise can be reduced to ∼ 1µK-arcmin and lensing B-
modes are reduced to 10%. The ground-based experiments covering & 30%
of the sky should also have the statistical significance to check that the
gravitational wave signal has a frequency dependence compatible with the
one of the CMB and very different from the known foregrounds. Even for

6 We compute the minimum value of r for which
1
2 (1−CDF (2〈logLbump〉 − 2〈logLno bump〉)) < 0.003, which corresponds to a 3σ
confidence level, where CDF is the cumulative distribution function for the χ2

distribution with one degree of freedom.
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satellite experiments observing the recombination bump, which would likely
be a convincing evidence that the signal is indeed due to primordial tensor
modes, will be challenging for r = 2× 10−3.
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7
I SO (4, 1) IN THE EFT OF INFLATION

7.1 motivations

The study of non-linearly realized symmetries in the context of inflation
has proven to be a powerful tool to make model-independent predictions. A
spontaneously broken symmetry is manifested in relations among operators
with different number of fields: for example, in the framework of the EFT
of inflation [33] one finds a relation between the kinetic term and the
cubic operators, as a consequence of the non-linear realization of time
diffeomorphisms. This implies that in any model with small speed of sound
cs � 1, one has parametrically large non-Gaussianities ∝ c−2

s . This regime is
still allowed by observations, although severely constrained by the beautiful
Planck data [32].

In this section we study the consequences of the non-linear realization of
ISO(4,1), the 5D Poincaré symmetry, in the EFT of inflation. The motivation
is twofold. On one hand this symmetry is typical of inflationary models
based on brane constructions, where the position of a brane moving in an
extra dimension plays the role of the inflaton. Although the inflationary
solution spontaneously breaks ISO(4,1), the dynamics of perturbations is
constrained by the non-linearly realized symmetries. On the other hand,
observations are only sensitive to small perturbations around the inflating
solution and their dynamics is encoded in the EFT of inflation. It is then of
interest to study the possible symmetries that can be imposed in this theory.
In this respect ISO(4,1) naturally stands out, since it contains both the
4D Poincaré group and the shift symmetry of the inflaton, which is usually
imposed to justify slow-roll and the consequent approximate scale-invariance
of the power spectrum. We will show, for example, that the relation between
the cubic operators π̇3 and π̇(∂iπ)2 which occurs in DBI inflation [19] does
not require any UV input, but it is just a consequence of the ISO(4,1)
symmetry at the level of the EFT of inflation.
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7.2 nonlinear realization of iso(4,1).

In general, the homogeneous inflaton background φ0(t) breaks the 4D
Poincaré symmetry to translations and rotations: ISO(3,1) → ISO(3). Lets
concentrate on scales much shorter than the Hubble scaleH, where spacetime
can be considered flat; we will consider gravity later on. At leading order in
slow-roll, the inflaton φ is also endowed with an approximate shift symmetry
φ→ φ+ c and a solution φ0(t) = vt preserves a combination of this shift
symmetry and time translations.

Perturbations around this background can be parametrized by the Gold-
stone mode π

φ(~x, t) = φ0(t+ π(~x, t)) = v · (t+ π(~x, t)), (7.1)

and the most general action compatible with the symmetries reads

S =
∫

d4x
(
a0π+ a1π̇

2 + a2(∂iπ)
2 + f1π̇

3 + f2π̇(∂iπ)
2

+g1π̇
4 + g2π̇

2(∂iπ)
2 + g3(∂iπ)

4 + · · ·
)

. (7.2)

All the constants are time independent as a consequence of the residual
shift symmetry1.
Let us now impose the extra symmetry. We want to enlarge ISO(3,1) ×

shift (11 generators) to a 15-dimensional group, ISO(4,1). The additional
four transformations act as2

δφ = ωµx
µ + φ ωµ∂µφ. (7.3)

If we interpret φ as a coordinate in the extra dimension, for example
describing the position of a brane, these transformations are rotations and
boosts in the 5th dimension. The shift symmetry of φ is interpreted as
translation in the 5th dimension to complete the isometry group of 5D flat
space. However, the geometric interpretation is not mandatory and we may
remain agnostic about the origin of this symmetry.
These transformations act on the Goldstone π as3

δπ =
1
v
δφ = ωµx

µ + v2 · (t+ π)(ωµ∂µπ+ ω0), (7.4)

1 The observed deviation from exact scale-invariance [113] implies that the shift symmetry
(and therefore the whole ISO(4,1)) is not exact, but slightly broken by corrections of
order slow-roll. Here we neglect these corrections.

2 Notice that we are using a parametrization where the 4D coordinates do not transform
and the symmetry only acts on fields.

3 In general φ0(t) = c+ vt, but because of the shift symmetry the constant can be set to
zero without loss of generality.
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where in the last equality we have reabsorbed a factor 1/v into the definition
of ωµ. Demanding that the action (7.2) is invariant under these additional
transformations imposes some conditions on the coefficients a0, a1, a2, . . .(4).
Focusing on the variation of the action quadratic in π, we get the following
relations

a2 = −a1(1− v2), f1 = a1
v2

1− v2 , f2 = −a1v
2. (7.5)

The first equation says that the speed of propagation of π excitations, the
“speed of sound” cs is related to v as

c2s = 1− v2. (7.6)

From the 5D geometrical point of view, this is a consequence of the rela-
tivistic sum of velocities. Here it is simply a consequence of the ISO(4,1)
symmetry in the EFT of inflation. The cubic action is fixed by the second
and third relation, so that up to cubic order the action (up to an overall
coefficient) reads

S =
∫

d4x

(
π̇2 − c2s(∂iπ)2 +

1− c2s
c2s

(
π̇3 − c2sπ̇(∂iπ)2

))
. (7.7)

This is exactly the same result one gets in DBI inflation [19], but here we see
that one does not need any UV input: this action follows from the ISO(4,1)
symmetry in the EFT of inflation.

As we are going to discuss later, these results will not change when gravity
is taken into account. In the notation of [114]

S3 =
∫

d4x
√
−g ḢM2

P(1− c−2
s )

[
− 1
a2 π̇(∂iπ)

2

+

(
1 + 2

3
c̃3
c2s

)
π̇3
]

, (7.8)

the coefficient c̃3 (that is in general free), is fixed by ISO(4,1): c̃3 = 3
2(1− c

2
s).

In terms of the relative coefficient between the two operators A ≡ −(c2s +
2
3 c̃3), the symmetry fixes A = −1. The Planck limits [32] on these parameters
are shown in Fig. 13.

4 Notice that the tadpole term a0 will in general be different from zero, since the background
solution will also be affected by terms which are not ISO(4,1) symmetric, as a potential
term and the Hubble friction. Anyway a0 does not enter in the conditions below since its
variation, eq. (7.4), is a total derivative.
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Figure 13: Planck limits [32]: the 68%, 95% and 99.7% regions in the parameter
space (cs, c̃3) (above) and (cs,A) (below). The orange line shows the
prediction imposed by the ISO(4,1) symmetry (the same as in DBI
inflation).

We can go to higher order and set to zero the cubic variation of the action
(7.2). We get a simple system of algebraic equations whose solution is

g1 = a1
1− c2s
c4s

(5
4 − c

2
s

)
,

g2 = −a1
1− c2s
c2s

(3
2 − c

2
s

)
,

g3 = a1
1
4
(
1− c2s

)
.

(7.9)
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Again all the coefficients are completely fixed in terms of a single parameter,
the speed of sound cs. This can be easily explained in terms of symmetries:
the only operator with one derivative per field, that linearly realizes the
4D Poincaré group and non-linearly realizes ISO(4,1) is the brane tension
operator

S = M4
∫

d4x
(

1−
√

1 + (∂φ)2
)

, (7.10)

so it is not surprising that everything is fixed for operators with one deriva-
tive per field. One can check that expanding (7.10) around φ0 = vt one gets
operators which satisfy (7.5) and (7.9). Still it is nice to see the constraints
directly at the level of the EFT of inflation, without assuming to be able to
extrapolate far from the inflationary solution.
One can also explore the consequences of ISO(4,1) for operators with

more derivatives. If we look at operators with two derivatives on one of the
π’s then the effective action starts with cubic terms (quadratic terms are
total derivatives) and reads

S =
∫

d4x
(
λ1π̇

2∂2
i π+ λ2(∂iπ)

2∂2
i π

+µ1π̇
3∂2
i π+ µ2π̇(∂iπ)

2∂2
i π+ · · ·

)
. (7.11)

Using the transformation (7.4) we can easily find the relations among λ1,
λ2, µ1 and µ2

λ2 =
−c2s

2 λ1 , µ1 =
4
3

1− c2s
c2s

λ1 , µ2 = (c2s − 1)λ1 . (7.12)

As a check, one can start from the brane picture and consider an operator
with one extra derivative on π compared to the brane tension: there is only
one, the extrinsic curvature of the brane. This gives the following operator
which non-linearly realizes ISO(4,1) [115]

S = M3
∫

d4x
1

1 + (∂φ)2∂µ∂νφ∂
µφ∂νφ . (7.13)

Indeed, expanding (7.13) around φ0 = vt we find that the cubic action for
the Goldstone is

S3 = M3
∫

d4x

(
1− c2s
c2s

π̇2∂2
i π+ ∂µ∂νπ∂

µπ∂νπ

)
, (7.14)

which satisfy the constraints (7.12).
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7.3 galilean symmetry and the coupling with gravity.

The ISO(4,1) transformation (7.4) contains a dimensionless parameter v,
which can be interpreted in a 5D picture as the brane velocity in the bulk.
As we discussed, this parameter fixes the speed of sound of perturbations,
Eq. (7.6). One can consistently take the limit v → 0 of the symmetry5.
This is a group contraction and in this limit the symmetry does not act on
coordinates anymore and it thus commutes with the 4D Poincaré group. It
reduces to an internal symmetry acting on π only

δπ = ωµx
µ . (7.16)

This is the Galilean symmetry studied in [116], whose implications for the
EFT of inflation have been discussed in [58] (see also [117]). This symmetry
requires cs = 1 and forbids all interactions with a single derivative per
field. All interactions come from higher derivative terms. For example in
eq. (7.14), for cs = 1 we have only the second operator which can be written
as (∂π)2�π, i.e. the cubic Galileon.

So far we discussed the ISO(4,1) symmetry in Minkowski space, without
including gravity. Ultimately we are interested in calculating correlation
functions during inflation, so that the coupling with gravity cannot be
neglected. Similarly to what happens in the case of the Galilean symmetry
discussed above, gravity breaks the ISO(4,1) symmetry6. This implies that
the symmetry is not a good one for the background evolution, since in
general the Hubble friction plays an important role. This is an additional
motivation to formulate the symmetry directly in the EFT of inflation as a
non-linearly realized symmetry for π on scales much shorter than Hubble,
without reference to the background solution.

Another point to address is whether the actions for π derived above
can be used, once minimally coupled to gravity, to calculate observables
during inflation or gravity will completely change the picture. The breaking

5 Notice that this simply corresponds to the non-relativistic limit, when the brane motion is
slow compared to the speed of light. This does not imply that the 4D Poincaré symmetry
is restored. Indeed the transformation of π under a 4D boost parametrized by βi is given
by

δπ = βixi + π̇βixi + ∂iβ
it . (7.15)

This does not depend on v and is still non-linearly realized for v → 0.
6 On a curved background, one cannot consistently define the constant vector ωµ that

appears in eq. (7.4): this shows that the symmetry is ill-defined in the presence of gravity.
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of the symmetry due to gravity will manifest in two ways. First of all,
graviton radiative corrections will induce operators which do not respect
the symmetry. This effect is arguably small, as suppressed by powers of MP.
Second, in calculating π loops on a gravitational background, non-invariant
terms will also be generated. These operators will be invariant under a shift
of π, as the shift symmetry is compatible with the coupling with gravity,
but not fully ISO(4,1) invariant. As these terms arise only on a curved
background they will contain powers of the Riemann tensor, schematically

(Rµνρσ)
n(∂π)m . (7.17)

On a quasi de Sitter background R ' H2, so we expect these terms to
be suppressed with respect to the ones we considered above by powers of
(H/Λ)2 � 1, where Λ is the UV cut-off of the theory.

These corrections can become relevant if the coefficient of some operator
is unnaturally large. For example, the effect of the induced gravity term on
a brane is studied in [118, 119] and the conclusion is that the cubic action is
in general not uniquely fixed in terms of cs: a different linear combination of
the operators π̇3 and π̇(∂iπ)2 is possible, giving in particular an orthogonal
shape of non-Gaussianity. This is at first surprising as the model respect the
ISO(4,1) symmetry we are discussing. However, the deviations are indeed
due to cubic operators with more than three derivatives in the EFT of
inflation [119]: in curved space some of these derivatives can be traded
for the curvature scale H and one is left with only three derivatives on
π. However a basic tenet of the EFT approach is that operators of higher
dimension give small corrections: if they induce O(1) changes, it is not clear
why one can neglect all the other higher dimensional terms.

7.4 iso(4,1) or so(4,2)?

In DBI inflation [19] a probe brane lives in an AdS throat and non-linearly
realizes the SO(4,2) group, so that one may wonder why we did not consider
this group instead of ISO(4,1). One simple answer is that during inflation
the brane does not move much in units of the AdS radius L, so that the
difference between flat and curved bulk is immaterial. It is still interesting
to understand whether SO(4,2) would give the same predictions.

The answer is no. It is straightforward to check, for example supplement-
ing the DBI action with other SO(4,2)-invariant operators like the AdS
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conformal Galileons [115], that the nice predictions of ISO(4,1) are lost. In
particular the speed of sound is not fixed in terms of the velocity v in the
bulk and the cubic operators π̇3 and π̇(∂iπ)2 can appear in a general linear
combination. The fact that c2s is not fixed in terms of v may come as a
surprise: after all it simply comes from the relativistic sum of velocities and
this should apply locally also in AdS. This intuition however requires that
higher derivative operators are suppressed by a cutoff scale Λ � L−1: in
this case only the tension of the brane is important and we get back to the
DBI inflation case. When, on the other hand, Λ ∼ L−1 higher derivative
operators are unsuppressed, the brane is a thick object in comparison with
the AdS radius: it will not follow geodesics and we do not expect the same
predictions as for DBI inflation, though the SO(4,2) symmetry is preserved.

All this can also be seen at the level of the EFT. The most general action
allowed by the symmetry up to quadratic order is

SEFT =
∫

d4x
(
a0π+ a1π̇

2 + a2(∂iπ)
2 +m2π2

)
, (7.18)

where all the coefficients are now time dependent. As in the ISO(4,1) case,
a background solution with constant velocity is not in general a solution,
therefore we have to keep a0 that will be cancelled by additional terms
which are not SO(4,2) symmetric. The non-linear transformation of π that
realizes SO(4,2) is

δπ =
1
φ̇0

(
ωµx

µφ+ ωµx
µxν∂νφ−

1
2x

2ωµ∂µφ

+
1
2ω

µ∂µφ−
1

2φ2ω
µ∂µφ

)
.

(7.19)

Again, requiring the invariance of the action under this transformation leads
to a set of three constraints on the coefficients

m2 − 1
2 ȧ0 +

φ̈

2φ̇
a0 = 0,

3a0 + 4ȧ1 − 2∂t
(
a1
φ̈0φ0
φ̇2

0

)
− 2φ0

φ̇0
m2 = 0,

6a2 + 4a1 + 2∂t
(
a1
φ4

0 − φ̇2
0

φ3
0φ̇0

)
− 2 φ̈0φ0

φ̇2
0
a1 = 0.

(7.20)

It is straightforward to verify that, for a constant φ̇0, these constraints do
not fix the relation among the coefficients of the kinetic term and therefore
they do not fix cs.
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A particular case in which these constraints actually fix the form of the
speed of sound, is the one in which the background preserves an SO(4,1)
subgroup of SO(4,2) [120]. This happens for a background solution φ0(t) =

α t−1. In this case the tadpole term is absent and π is massless so that the
constraints in (7.20) greatly simplify. The speed of sound is then fixed by
the last constraint and the residual dilation symmetry [120]: c2s = 1− α−2.

7.5 conclusions

Imposing an ISO(4,1) symmetry in the EFT of inflation leaves (at leading
order in derivative) a single free parameter, the speed of sound cs. It should
be straightforward to study the consequences of ISO(4,1) in the EFT of
multi-field inflation [34]: this symmetry is indeed at play in multi-field DBI
models [121].



8
CONSISTENCY RELATIONS AT SECOND ORDER

8.1 motivations and main results

As we saw in Sec. 2.3, at zeroth and first order in gradients, a long
mode can be removed by a suitable change of coordinates, so that the
correlation function boils down to the effect of this diffeomorphism on
the short modes. Single-field consistency relations are therefore completely
model-independent and their violation would represent a clear smoking
gun of multi-field models. On the other hand these relations are somewhat
trivial, as they simply state that the long mode does not affect the short
ones in a coordinate-independent way, and so they do not contain any
dynamical information. Of course this does not hold at second order in
gradients, because at this order the long mode induces curvature [6], which
obviously cannot be erased by a change of coordinates.
In this section we study single-field correlation functions in the limit

in which one of the momenta, for definiteness we’ll use ~q, becomes soft,
focusing on the leading “physical” effect, i.e. at order q2. At this order the
long mode induces curvature and we expect that, after we take a proper
average over directions, its effect is the same as being in a curved Friedmann-
Robertson-Walker (FRW) universe. This equivalence will be verifyied in
section 8.2. Schematically we will show that for the three-point function

〈ζ~qζ~k1
ζ~k2
〉q→0, avg=Pζ(q)

2
3 · q

2 · ∂
∂κ
〈ζ~k1

ζ−~k1
〉 , (8.1)

where Pζ is the power spectrum, κ is the spatial curvature of the FRW and
the subscript avg indicates that an angular average has been taken. Notice
that the equation above is rather different from a standard consistency
relation, which connects observable correlation functions in our universe, so
that one can check whether it is experimentally violated. Here the right-
hand side of Eq. (8.1) contains the power spectrum in a curved universe,
which cannot be measured independently. Therefore one cannot check
experimentally whether the relation holds or not. Its interest is mostly
conceptual since it allows to understand in simple physical terms the origin
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Figure 14: Parametric dependence of non-Gaussianity on the freezing scale. On
the left the freezing scale is the Hubble scale. On the right the freezing
scale k−1

ph,f is parametrically shorter than Hubble radius H−1: in this
case the effect of the curvature induced by the long mode is bigger,
since it has to be compared with H2 in the Friedmann equation.

of non-Gaussianities in the regime of squeezing, O(q2), where they are
potentially large. Indeed the equivalence between a long mode and a curved
universe allows to deduce some general property of correlation functions.
However from Eq. (8.1) one can draw a general conclusion: the level of

non-Gaussianity is always parametrically enhanced when modes freeze at a
wavelength shorter than the Hubble radius. More precisely

fNL ∼
(
kph, f
H

)2
, (8.2)

where kph, f is the physical freezing scale.
The argument for Eq. (8.2) is very simple and it is illustrated in Figure 14.

Let us consider a squeezed triangle with a given ratio between the long
and the short modes ε ≡ q

k � 1. The power spectrum of short modes is
imprinted at freezing and at this moment the long mode has momentum
ε kph, f . The effect of the long mode is the same as being in a curved FRW,
with curvature κ ∼ q2/a2 · ζq ∼ ε2k2/a2 · ζq. Curvature will modify the
spectrum of the short modes through its effect in the Friedmann equation
and its consequent change of the inflaton speed φ̇. The relative correction
introduced in the Friedmann equation, and thus in the power spectrum for
the short modes, is obtained by comparing the spatial curvature with H2

at freezing time: (q2/a2
f · ζq)/H2 ' ε2k2

ph, fζq/H
2. This implies that the

three-point function behaves as (kph, f/H)2(q/k)2P (q)P (k) in the squeezed
limit, i.e. fNL ∼ (kph, f/H)2. Although the derivation works only in the
squeezed limit, we expect by continuity (since at this order we are capturing
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the physical effect of the long mode) that it gives the correct parametric
dependence also when modes become comparable1.

The relation (8.2) obviously works for models with reduced speed of sound
[18, 19, 33, 122]:

Reduced cs : kph, f =
H

cs
⇒ fNL ∼

(
kph, f
H

)2
∼ 1
c2s

. (8.3)

Indeed we are going to check Eq. (8.1) both at order 1/c2s, when one can
neglect the curved spatial geometry and take only into account its effect on
the scale factor and the inflaton speed (see section B.1.2), and at order one,
when the check is more complicated since one has to relate the three-point
function calculation done in terms of Fourier modes with the spectrum in
the curved geometry (see section B.1.3). The same argument works when
dissipative effects are present. In this class of models [60] a parameter
γ � H plays the role of an effective friction and the freezing happens when
c2sk

2/a2 ∼ γH. This means that Eq. (8.2) reads

Dissipative : kph, f =

√
γH

cs
⇒ fNL ∼

(
kph, f
H

)2
∼ γ

Hc2
s

. (8.4)

This matches the explicit calculations of [60]. The argument leading to
Eq. (8.2) does not rely on a linear dispersion relation for the inflaton
perturbations and indeed it gives the correct estimate for Ghost Inflation
[123] where the dispersion relation is of the form ω = k2/M . This gives

Ghost Inflation : kph, f = (HM)1/2 ⇒ fNL ∼
(
kph, f
H

)2
∼ M

H
.

(8.5)
The check of Eq. (8.1) for Ghost Inflation is deferred to appendix B.3. A
peculiar example is the one of Khronon Inflation [124]: in this case the power

1 Strictly speaking, fNL is defined as proportional to the value of the 3-point function in the
equilateral configuration. In this regime, the derivative expansion in q/k clearly does not
apply and we therefore have nothing to say for this configuration. Here for fNL we simply
mean a typical value of the 3-point function apart from points where it accidentally
cancels, or equivalently the observational limit on fNL that would be obtained by a
dedicated analysis of the 3-point function in the data. Indeed, since at order q2 we are
capturing a true physical effect, it is hard to imagine that there are cancellations for
all configurations so that the size of the non-Gaussianities is parametrically different
than the one obtained by extrapolating our expression (8.2) to the equilateral limit. This
expectation is indeed confirmed by explicit calculations of the 3-point function in all
triangular configurations.
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spectrum is not affected by the background curvature at order 1/c2s since in
the quadratic action the scale factor does not appear at this order and the
speed of the inflaton background is immaterial due to the field redefinition
symmetry. Indeed, we check in appendix B.4 that the 1/c2s terms of the
three-point function at order q2 vanish, when the proper angular average
is taken. The general argument above implies that one has completely
non-Gaussian perturbations, i.e. strong coupling, when freezing occurs at a
sufficiently short scale

Strong coupling :
(
kph, f
H

)2
∼ P−1/2

ζ . (8.6)

It is worth noticing that our arguments cannot be extended beyond the
q2 order. At order q3 one cannot interpret the three-point function as a
calculation of the two-point function on a long classical background. Indeed,
at this order one cannot neglect the time-dependent phase of the long mode
and therefore one cannot describe the long mode classically. Moreover, one
cannot neglect anymore the probability that two short modes combine to
give a long one.

Some of these arguments can be straightforwardly extended to the trispec-
trum and higher correlation functions. For example one can apply twice
the argument leading to Eq. (8.1) to conclude that the amplitude of the
four-point function will behave as

τNL ∼
(
kph, f
H

)4
. (8.7)

This corresponds to 1/c4s for models with reduced speed of sound and
(M/H)2 for Ghost Inflation.

8.2 from ζ -gauge to a curved frw universe

The consistency relations at zeroth and first order in the Taylor expan-
sion in q of ζL, the long wavelength component of ζ, have already been
exhaustively considered in [26, 35–41]. Thus in this section we will neglect
constant and gradient terms, and consider only the Taylor expansion at
second order,

ζL(~x, t) = ζL|0(t) +
1
2∂i∂jζL|0 x

ixj . (8.8)
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The time dependence of ζL is fixed by the equation of motion of ζ. Focusing
on models with reduced speed of sound we have

∂t
(
εHa

3
0ζ̇L

)
− εHa0c

2
s ∂

2ζL = 0 , (8.9)

where a0 is the scale factor of the flat FRW universe and εH = −Ḣ/H2 is
the slow-roll parameter. Notice that we cannot neglect the time dependence
of ζL since it is of order q2, if not larger. In this section we will assume that
the time dependence of ζ starts at order q2. Indeed the differential equation
above admits, in the limit q → 0, also a time-dependent solution for ζ. This
solution is relevant when the background solution has not yet reached the
attractor. This leads to a violation of the standard Maldacena consistency
condition [125], though we expect that generalized consistency conditions
hold even for these cases by considering that the universe in the presence of
a long mode can now be locally described as a flat anisotropic one [39, 126].
Here we focus only on the case in which the background has already reached
the attractor and the modes are in the Bunch-Davies vacuum, so that the
time-dependence of ζ outside the horizon is of order q2. Substituting in
Eq. (8.8) and solving for ζL(t) at first order in the slow-roll parameters, we
find that the long mode at quadratic order is (2)

ζL(~x, t) = −c
2
s∂

2ζL|0
2a2

0H
2
0
(1− 2ε) + 1

2∂i∂jζL|0 x
ixj . (8.10)

In order to show that at this order the long mode is equivalent to being
in a spatially curved FRW, it is enough to consider the perturbed metric in
ζ-gauge at linear order (see for example [122])

g00 = −1− 2 ζ̇L
H0

,

g0i = −
∂iζL
H0

+
a2

0ε

c2s

∂iζ̇L
∂2 ,

gij = a2
0 (1 + 2ζL) δij ,

(8.11)

2 In solving the differential equation (8.9) the lower bounds of the integrals give contribu-
tions proportional to q2 that are either constant in time or decaying as 1/a3. The first
term can always be reabsorbed in the definition of the asymptotic value of ζ, while we
set the other term to zero since it would correspond to a decaying mode proportional to
q2, which is absent for any time-translation invariant state, such as the vacuum state.
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and make a gauge transformation to rewrite it in the usual FRW form
(i.e. by setting g00 = −1 and g0i = 0). Under the coordinate transformation
xµ → x̃µ = xµ + ξµ(x̃), the metric transforms as

g̃00 = g00 + 2ξ̇0 ,
g̃0i = g0i − a2

0ξ̇
i + ∂iξ

0 ,
g̃ij = gij − a2

0∂iξ
j − a2

0∂jξ
i − 2a2

0H0ξ
0δij ,

(8.12)

and we can set g̃00 = −1 and g̃0i = 0 by choosing the transformation
parameters to be

ξ0 =
∫ t

dt′ ζ̇L
H0

= −c
2
s∂

2ζL|0
2a2

0H
3
0

(
1− 3

2ε
)

,

ξi = −
∫ t

dt′ ∂iζL
a2

0H0
(1− ε) = ∂i∂jζL|0x̃j

2a2
0H

2
0

. (8.13)

The effect of the long mode is now entirely encoded in the spatial part of
the metric

g̃ij = a2
0

(
δij −

∂i∂jζL|0
a2

0H
2
0

+ ε
c2s∂

2ζL|0
2a2

0H
2
0
δij

)(
1 + ∂a∂bζL|0x̃ax̃b

)
, (8.14)

which, once averaged over angles, takes the familiar form

g̃ij, avg=a
2
(

1− 1
2κx̃

2
)

, (8.15)

where the spatial curvature κ and the scale factor a in the curved universe
are given by

κ = −2
3∂

2ζL|0 ,

a2 = a2
0

(
1 + κ

2a2
0H

2
0
− ε 3c2sκ

4a2
0H

2
0

)
. (8.16)

It is important to stress that the change of coordinates (8.13) decays away at
late time. This implies that, since we are interested in correlation functions
at late times, one can forget about the change of coordinates and just treat
the long mode as adding spatial curvature to the FRW solution.
Eventually the consistency condition at this order can be written as

〈ζ~qζ~k1
ζ~k2
〉′q→0, avg=Pζ(q)

2
3 · q

2 · ∂
∂κ
〈ζ~k1

ζ−~k1
〉′κ , (8.17)

where the subscript κ means that the two-point function is calculated in
the curved universe and primes on correlation functions indicate that a
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(2π)3δ(
∑
i
~ki) of momentum conservation has been removed. As stated

above, the assumption used to derive this formula is the fact that the
background solution is on the attractor, so that the time-dependence of
the long ζ mode starts at order q2. Additionally, in deriving Eq. (8.16) we
used the slow-roll approximation, though we expect the relationship to hold
at all orders in the slow-roll expansion. Our consistency condition should
indeed hold for all FRW backgrounds that are accelerating so that modes
freeze after horizon crossing. This implies that the effect of the long mode
on the short ones is captured by a derivative expansion of the long mode
at the time when the short modes cross the horizon. This ceases to be the
case for decelerating FRW backgrounds, when modes re-enter the Hubble
scale, and so the derivative expansion is not applicable.
One can generalize these arguments without taking the angular average

and consider a curved anisotropic (but homogeneous) universe. In this case
Eq. (8.17) becomes

〈ζ~qζ~k1
ζ~k2
〉′q→0 = Pζ(q) qiqj

∂

∂(qiqjζ~q)
〈ζ~kζ−~k〉

′
local , (8.18)

where 〈. . . 〉local means that the two-point function is calculated in a lo-
cally anisotropic curved universe. We will study the anisotropic case in
appendix B.2.

8.3 models with reduced speed of sound

In this section we are going to explicitly check our consistency relation in
models with reduced speed of sound. We are going to work in the framework
k-inflation [18], while in appendix we derive more general results using the
Effective Field Theory of Inflation (EFTI) developed in [33]. Starting from
the action for k-inflation in the curved universe of Eq. (1.41),

S =
∫

d4x
√
−gP (X,φ) , (8.19)

whereX = −1
2g
µν∂µφ∂νφ, and expanding around φ(t,x) = φ(t)+ φ̇(t)π(t,x),

we get the action for the homogeneous background φ(t)

S =
1
2

∫
d4x

(
a3PX φ̇

2 − a3V (φ)
)

, (8.20)

and the equation of motion

∂t(a
3PX φ̇)− a3V ′ = 0 . (8.21)
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Eq. (8.21) implies that the curvature not only changes the scale factor
through Friedmann’s equation and the spatial part of the metric but it
also affects the background velocity φ̇(t). Solving perturbatively for the
background field φ(t) = φ0(t) + δφ(t), one obtains3

δφ̇ = C a−3
0 +

3
2c

2
sφ̇0

κ

a2
0H

2
0

. (8.22)

Thus in P (X) models one has to consider only the effects induced by the
change of the background cosmology, which means the variations of a(t),
H(t), and φ̇(t), and the geometrical effect proportional to x2. To relate the
coefficients of the curved action for perturbations,

S =
1
2

∫
d4x
√
−g
(
(XPX + 2X2PXX)π̇

2−XPXgij∂iπ∂jπ+ 3κXPXπ2
)

,
(8.23)

with those of the flat one, one has to expand Eq. (8.19) around flat quantities
using the variations

δa(η)

a(η)
=
κ

6η
2 and δX

X
= 2δφ̇

φ̇
= 3 c2sκ

H2
0a

2
0

. (8.24)

so for example

PX → PX

(
1 + XPXX

PX

δX

X

)
, PXX → PXX

(
1 + XPXXX

PXX

δX

X

)
.

(8.25)
Using the definition for the parameters c2s, λ and Σ of Ref. [122],

XPXX
PX

=
1
2

(
1
c2s
− 1

)
, 2X2PXXX

PX
=

3λ
c2sΣ
− 3

2

(
1
c2s
− 1

)
, (8.26)

the action in Eq. (8.23) reads

S =
∫

d4x H2
0 εa

2
0

[
1
c2s

(
1 + κ

3a2
0H

2
0
+

9c2sκ
a2

0H
2
0

λ

Σ

)
π′

2 −
(

1 + 11κ
6a2

0H
2
0

)
(∂iπ)

2
]

.

(8.27)

Here again we are considering only terms which contribute at order 1/c2s.
This greatly simplifies the calculation since the metric can be taken to

3 The homogeneous solution Ca−3
0 decays faster than the particular solution and thus can

be neglected.
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be spatially flat and the field can be decomposed in Fourier modes. The
equation of motion derived from this action is

π′′~k −
2
η
π′~k + c2sk

2π~k +
κ

a2
0H

2
0

((
1
3 + 9c2s

λ

Σ

)
π′′~k +

11
6 c

2
sk

2π~k

)
= 0 , (8.28)

and can easily be solved perturbatively in κ. Once one has checked that the
solution has the correct normalization, the power spectrum for ζ can be
calculated using the standard procedure and the result is

〈ζ~kζ−~k〉
′
κ = Pζ(k)

(
1−

19 + 18λΣ
8c2sk2 κ

)
. (8.29)

The contribution to the squeezed limit of the three-point function is then
obtained by averaging over the long mode and substituting κ = 2

3q
2ζ~q

〈ζ~qζ~k1
ζ~k2
〉′q→0 = −Pζ(q)Pζ(k)

1
c2s

(
19
12 +

3
2
λ

Σ

)
q2

k2 . (8.30)

Indeed, this agrees with the squeezed limit of the three-point function
calculated with the standard in-in formalism, Eq. (2.40), once the angular
average is taken and terms not enhanced by 1/c2s are neglected.

8.4 conclusions

We have shown and verified in few examples that, in single-field models
of inflation, the three-point function in the squeezed limit at order q2

can be understood as the effect of spatial curvature on the short modes,
i.e. calculating the power spectrum in a curved FRW. This gives a nice
alternative way to understand the connection between large non-Gaussianity
and freezing at a scale shorter than H−1. In some sense this represents the
“last” consistency relation for scalars (for relations including also tensor
modes see [40]): at order q3 one cannot think about non-Gaussianity as the
effect of a classical background mode modifying the dynamics of the short
modes.
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A
INSTRUMENTAL SPECIF ICATIONS

a.1 balloons and ground-based experiments

Experiment fsky [%] ν [GHz] θFWHM [′] δP [µK′]

AdvACT 50
90 2.2 7.8
150 1.3 6.9
230 0.9 25

CLASS 70

38 90 39
93 40 13
148 24 15
217 18 43

Keck/BICEP3 1
95 30 9.0
150 30 2.3
220 30 10

Simons Array 65
95 5.2 13.9
150 3.5 11.4
220 2.7 30.1

SPT-3G 6
95 1 6.0
150 1 3.5
220 1 6.0

GRD [1,50] 100, 150, 220 5 1, 3

Table 10: Specifications for ground-based experiments used in our forecasts: [127–
134]. The sensitivity δP = σpixθFWHM is for the Stokes Q and U .
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Experiment fsky [%] ν [GHz] θFWHM [′] δP [µK′]

EBEX 1
150 8 5.8
250 8 17
410 8 150

Spider 7.5
94 49 17.8
150 30 13.6
280 17 52.6

BAL 5 150, 220, 280, 350 5 [1,5]

ULDB 60 150, 220, 280, 350 5 [1,10]

Table 11: Specifications for balloon-borne experiments used in our forecasts:
[127–134]. The sensitivity δP = σpixθFWHM is for the Stokes Q and
U .
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a.2 satellites

Experiment ν [GHz] θFWHM [′] δP [µK′]

CMBPol (EPIC-2m)

30 26 19.2
45 17 8.3
70 11 4.2
100 8 3.2
150 5 3.1
220 3.5 4.8
340 2.3 21.6

COrE

45 23 9.1
75 14 4.7
105 10 4.6
135 7.8 4.6
165 6.4 4.6
195 5.4 4.5
225 4.7 4.6
255 4.1 10.5
285 3.7 17.4
315 3.3 46.6
375 2.8 119

LiteBIRD

60 32 10.3
78 58 6.5
100 45 4.7
140 32 3.7
195 24 3.1
280 16 3.8

Table 12: Specifications for satellite experiments used in our forecasts: [96, 135,
136]. The sensitivity δP = σpixθFWHM is for the Stokes Q and U .
All experiments target approximately 70% of the sky.



B
CONSISTENCY RELATION

b.1 checks of the consistency relation

In this appendix we want to show how it is possible to obtain the same
result obtained in section 8.3 with the dictionary of the Effective Field
Theory of Inflation (EFTI) developed in [33]. The EFTI is built on the
fact that during inflation there is a physical clock that breaks spacetime
diffeomorphism invariance while preserving time-dependent spatial diffeo-
morphisms. Thus the dynamics of the inflaton is captured in an effective
action derived by writing all terms consistent with the residual symmetries
around a given cosmological background. The most general effective action
around the flat FRW background at lowest order in derivatives and up to
cubic order in perturbations is [33]

S =
∫

d4x
√
−gM2

P
[
−
(
3H2

0 + Ḣ0
)
+ Ḣ0g

00

+
1
2

(
c2s − 1

2c2s

)
Ḣ0

(
g00 + 1

)2
+

1
6

(
1− c2s

2c4s
c3

)
Ḣ0

(
g00 + 1

)3
+ . . .

]
,

(B.1)

where a0 is the unperturbed history for the spatially flat FRW, cs is the
speed of sound of the perturbations, and c3 is a dimensionless parameter
not fixed by symmetries. For simplicity we take cs and c3 to be time
independent. To describe the fluctuations around a flat FRW background
it is useful to introduce the Goldstone boson π that nonlinearly realizes
time diffeomorphisms. Following [33], at leading order in slow-roll, we can
neglect metric fluctuations and go to the decoupling limit. The cubic action
for π becomes

S(3) =
∫

d4x a3
0

(
−Ḣ0M2

P
c2s

)[
−(1− c2s)π̇

(∂iπ)2

a2
0

+ (1− c2s)
(

1 + 2
3
c3
c2s

)
π̇3
]

.

(B.2)
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Now it is straightforward to calculate the three-point function. Using ζ =
−H0π, we get the following expression

〈ζ~k1
ζ~k2
ζ~k3
〉′ =

 H2
0

4εcsM2
pl

2
1∏
i 2k3

i

[(
1− 1

c2s

)(
c3 +

3
2c

2
s

) 32k2
1k

2
2k

2
3

k2
t

−4
(

1− 1
c2s

)12k
2
1k

2
2k

2
3

k3
t
− 8
kt

∑
i>j

k2
i k

2
j +

4
k2
t

∑
i 6=j

k2
i k

3
j +

∑
i

k3
i

 ,

(B.3)

with kt ≡ k1 + k2 + k3. In order to find the squeezed limit we can expand
the expression above using

~k1 = ~k− 1
2~q , ~k2 = −~k− 1

2~q , ~k3 = ~q , q � k , (B.4)

because in this way it is evident that the three-point function does not have
corrections that are linear in q. Expanding up to second order in q we find

〈ζ~qζ~k1
ζ~k2
〉′q→0 = Pζ(q)Pζ(k)

(
1− 1

c2s

)(2 + 1
2c3 +

3
4c

2
s

)
q2

k2 −
5
4
(~k · ~q)2

k4

 .

(B.5)

What is left to do in order to verify the consistency condition (8.17) is
to calculate the two-point function in the spatially curved FRW. What
makes this calculation nontrivial is that the two-point function in the curved
universe must be expressed in terms of flat universe parameters (the speed
of sound cs and c3) because we want to compare it to the three-point
function. In the rest of this section we are going to show how this can be
done. First, we will derive the quadratic action for short modes in a curved
FRW and match the parameters with the flat ones. Then, we will calculate
the two-point function and show that the consistency relation is satisfied.

b.1.1 Quadratic action for short modes in a curved FRW universe

In order to calculate the two-point function in a curved FRW we need
the action for the short modes. The most straightforward thing to do is to
write the EFTI for a curved FRW [33],

S̃ =
∫

d4x̃
√
−g̃ M2

P

[
−
(

3H2 + Ḣ + 2 κ
a2

)
+
(
Ḣ − κ

a2

)
g̃00

+
1
2

(
c̃2s − 1

2c̃2s

)(
Ḣ − κ

a2

) (
g̃00 + 1

)2
]
,

(B.6)
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where tildes indicate curved quantities, and introduce the Goldstone π̃S via
the Stueckelberg trick t̃ → t̃+ π̃S . This procedure leads to the following
action

S̃avg=−
∫

d4x̃
√
−g̃

(
Ḣ − κ

a2

)
M2

P

[
1
c̃2s

˙̃π2
S − ∂iπ̃S∂iπ̃S + 3Ḣπ̃2

S

]
. (B.7)

Note however that c̃s, which represents the speed of propagation of the
π̃S waves, is a free parameter which is not determined by the background
cosmology and has to be related to cs and c3, the parameters of the effective
action in the flat universe. The relation can be found by noticing that the
speed of propagation is a physical quantity that can be measured on short
scales, where the universe is locally flat. Thus the speed of propagation
must be the same in the curved and in the flat EFTI, provided that in the
latter we take into account the background of the long wave πL. The speed
of πS waves over the background of the long mode can be read directly from
the action in the flat universe Eq. (B.1) once in the interaction Lagrangian
in Eq. (B.2) we replace π = πL+ πS . We can go on short scales and neglect
the space dependence of πL. The relevant action reads

S =
∫

d4x εM2
PH

2
0a

3
0

1
c2s

(1 + (1− c2s)
(

1 + 2
3
c3
c2s

)
3π̇L

)
π̇2
S

− c2s

(
1 + 1

c2s
(1− c2s)π̇L

)
(∂iπS)

2

a2
0

 .
(B.8)

If we consider the long mode of π: πL = −ζL/H0, where ζL is given in
Eq. (8.10), we obtain the following quadratic action for πS

S(2) =
∫

d4x εM2
PH

2
0a

3
0

1
c2s

(1 + (1− c2s)
(
3c2s + 2c3

) 3κ
2a2

0H
2
0

)
π̇2
S

− c2s

(
1 + (1− c2s)

3κ
2a2

0H
2
0

)
(∂iπS)

2

a2
0

.
(B.9)

From this we can read the speed of sound in the flat EFTI and this must
be the same as c̃2s:

c̃2s = c2s

(
1 + (1− c2s) 3κ

2a2
0H

2
0

)
(

1 + (1− c2s) (3c2s + 2c3) 3κ
2a2

0H
2
0

) ' c2s

(
1 + 3κ

2a2
0H

2
0

(
c2s − 1

) (
3c2s + 2c3 − 1

))
,

(B.10)
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where in the second passage we have expanded up to linear order in κ, as we
always do in this thesis. This fixes the speed of sound in the curved EFTI.
We can now plug this value for c̃s and use the scale factor of Eq. (8.16)

in the action of Eq. (B.7) to obtain the action for the short modes. At first
order in κ and ε it reads

Savg=
∫

d4x εM2
PH

2
0a

2
0

(
1− 3

4κx
2
) [ 1

c2s

(
1 + 3κ

4a2
0H

2
0

(
1 + 4c3 + 10c2s − 4c3c2s − 6c4s

))
π′2S

−
(

1 + 1
2κx

2
)(

1 + κ

4a2
0H

2
0

(
7 + 6c2s

))
(∂iπS)

2 + 3κπ2
S

]
,

(B.11)

where we have used conformal time and suppressed tildes for simplicity.
Starting from this action, in the next sections, we will calculate the two-point
function of the short modes and check the consistency relation.

However, before doing so, it is important to notice that the two Goldstone
modes – π̃S in the curved universe and πS in the flat universe – are different
given that we are expanding around different backgrounds. To relate the
two it is sufficient to consider the change of coordinates in Eq. (8.13). Since
π̃S is the perturbation around t̃ and πS is the perturbation around t, the
relation between the two is

π̃S = (1 + ξ̇0)πS , (B.12)

where the time dependence of ξ0 is a−2
0 . Eventually the effect of curvature

and anisotropy goes to zero at late times and thus π̃S = πS when we evaluate
correlation functions. This also means that we can directly relate correlation
functions of π̃S in the local curved universe to correlation functions of global
quantities. The nonlinear relationship between ζS and πS in the flat FRW
universe is

ζS = −H0πS +
1
2Ḣ0π

2
S , (B.13)

at second order, plus terms with derivatives of πS that vanish after horizon
crossing [36]. The π2

S term in Eq. (B.13) is slow-roll suppressed so we can
neglect its contribution to the three-point function. We then find that at
late times the local π̃S is related to the global ζS as

ζS = −H0π̃S , (B.14)

to leading order in the slow-roll parameter ε.
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b.1.2 The two-point function at leading order in 1/c2s

Now that we have the action for the short modes in the curved universe
(B.11), we can proceed with the calculation of the two-point function and
check the consistency relation. In this subsection we will focus on the case
of leading order in 1/c2s for an isotropic long mode. When the speed of
sound is parametrically smaller than 1 the relevant effects of the long mode
are the modifications of the scale factor, the Hubble constant and the speed
of sound. As we discussed in the introduction, these affect the 2-point
function of the short k-modes proportionally to κ/H2 ∼ (q2/a2

f · ζq)/H2 ∼
ε2k2

ph, fζq/H
2 ∼ ε2ζq/c2s, where q is the long mode and ε = q/k � 1

is the squeezing parameter. On the contrary, geometrical effects scale as
κx2 ∼ q2/k2 · ζq ∼ ε2ζq, and are therefore not enhanced for cs � 1.
Given that at order 1/c2s geometrical effects and the mass term do not

contribute, the leading part of the action (B.11) is given by

Savg=
∫

d4x εM2
PH

2
0a

2
0

[
1
c2s

(
1 + 3κ

4a2
0H

2
0
(4c3 + 1)

)
π′

2 −
(

1 + 7κ
4a2

0H
2
0

)
(∂iπ)

2
]

.

(B.15)

In this approximation space can be considered to be flat and one can get
the power spectrum for the short modes using the standard quantization of
the scalar field. After going to Fourier space the equation of motion for the
short modes is

π′′~k −
2
η
π′~k + c2sk

2π~k +
κ

4a2
0H

2
0

(
3(4c3 + 1)π′′~k + 7c2sk2π~k

)
= 0 , (B.16)

and it can be easily solved perturbatively in κ. The zeroth order solution is
proportional to the standard de Sitter modes, but the normalization can
be in principle different. In order to fix it we have to demand that the
commutator of the field π and the generalized momentum Π is given by

[π~k(η), Π~k′(η)] = iδ(~k+ ~k′) . (B.17)

After fixing the normalization it is easy to find the two-point function in
the late time limit. The result is

〈ζ~kζ−~k〉
′
κ = Pζ(k)

(
1− 19 + 6c3

8c2sk2 κ

)
. (B.18)
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We can use this result to get the contribution to the squeezed limit of the
three-point function. We only have to average over the long mode and recall
that κ = 2

3q
2ζ~q

〈ζ~qζ~k1
ζ~k2
〉′q→0 = −Pζ(q)Pζ(k)

1
c2s

19 + 6c3
12

q2

k2 . (B.19)

Comparing this result with (B.5), we can see that two expressions are the
same at the leading order in 1/c2s expansion if the proper angular average
is taken into account.

b.1.3 The two-point function at all orders in cs

Similar arguments can be used to recover the squeezed limit of the three-
point function at all orders in cs. In this case we have to use the full action
(B.11). The effects that induce the change of the two-point function are
coming from the mass term, the curvature of the spatial slices (geometrical
effects) and the change of the scale factor, the Hubble constant and the speed
of sound induced by the long mode. Given that everything is perturbative
in ζL we will treat these two effects separately.

Let us for the moment focus on the mass term, the change of a, H and cs
and neglect geometrical effects. This simplifies the calculation since we can
still use Fourier transform and standard quantization procedure as before to
obtain the power spectrum. The equation of motion obtained from (B.11)
neglecting the geometrical effects can be solved perturbatively in κ and the
normalization can be fixed in the same way as in the previous subsection.
Looking at the late time limit of the solution, the two-point function we
get is

〈ζ~kζ−~k〉
′
κ = Pζ(k)

[
1 + 3

2

(
1
2 +

c3
2 −

19
12c2s

− c3
2c2s

+
3
4c

2
s

)
κ

k2

]
. (B.20)

The squeezed limit of the three-point function can be obtained straightfor-
wardly by correlating with the long mode, which gives

〈ζ~qζ~k1
ζ~k2
〉′q→0 = Pζ(q)Pζ(k)

(
1
2 +

c3
2 −

19
12c2s

− c3
2c2s

+
3
4c

2
s

)
q2

k2 . (B.21)
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Finally, we can focus on the contribution to the two-point function coming
from the geometrical effects. We can read from (B.11) that the relevant
part of the action is

S =
∫

d4x εM2
PH

2
0a

2
0

(
1− 3

4κx
2
) [ 1

c2s
π′

2 −
(

1 + 1
2κx

2
)
(∂iπ)

2
]

. (B.22)

In principle, we can proceed as before solving the equation of motion.
However, given that we are not in flat space anymore, we cannot expand π
in Fourier modes. The easiest way to calculate the two-point function is to
treat the terms proportional to the curvature as an interaction. Then we can
use the standard in-in calculation which guarantees the correct choice of the
normalization and the choice of the vacuum for the modes. The interacting
Hamiltonian is given by

Hint =
∫

d4x εM2
PH

2
0a

2
0

[
3

4c2s
κx2π′

2 − 1
4κx

2(∂iπ)
2
]

, (B.23)

and the contribution to the two-point function is

δ〈π(x1)π(x2)〉κ = −2Re
[
i
∫ η

d3~xdη′ π(x1)π(x2)Hint(~x, η′)
]

, (B.24)

where the contour of integration has been implicitly rotated to pick up the
interacting vacuum in the past. At the end we want to write the result in
momentum space. Using x2 =

∫ d3~p
(2π)3 (−∇2

pδ(~p))e
i~p·~x, we get the following

equality∫
d3~k1d3~k2〈π~k1

π~k2
〉ei~k1·~x1+i~k2·~x2 =

∫
d3~k1d3~k2 F (~k1,~k2)∇2

k1δ(
~k1 + ~k2)e

i~k1·~x1+i~k2·~x2 ,
(B.25)

where the function F (~k1,~k2) is

F (~k1,~k2) = (2π)3 Re
[
iεκM2

P π
∗
~k1
π∗~k2

∫ η dη′
η′2

(
3
c2s
π′~k1

π′~k2
+ ~k1 ·~k2 π~k1

π~k2

)]
.

(B.26)
In the late time limit η → 0, we find

F (~k1,~k2) = (2π)3 κ

4εcsM2
P

3k2
1k

2
2 + ~k1 ·~k2(k2

1 + k1k2 + k2
2)

4k3
1k

3
2(k1 + k2)

. (B.27)

Plugging back this result in Eq. (B.38) and integrating by parts we are left
with three kind of terms: with two derivatives on F , with one derivative on
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F and one on the exponent, and with two derivatives on the exponent. All
of them are multiplied by the delta function and have to be evaluated for
~k2 = −~k1. It can be easily shown that

F (~k1,−~k1) = 0 , and ∇k1F (
~k1,~k2)

∣∣∣∣~k2=−~k1
= 0 . (B.28)

This means that the only term that survives is the one where two derivatives
act on the function F (~k1,~k2). The perturbation of the two-point function
is therefore

δ〈π~k1
π~k2
〉 = δ(~k1 + ~k2)∇2

k1F
∣∣∣∣~k2=−~k1

= (2π)3δ(~k1 + ~k2)Pπ(k1)
κ

2k2 ,
(B.29)

so that the contribution to the squeezed limit of the three-point function
becomes

〈ζ~qζ~k1
ζ~k2
〉′q→0 = Pζ(q)Pζ(k)

q2

3k2 . (B.30)

If we sum up this result with the contributions (B.21), we get

〈ζ~qζ~k1
ζ~k2
〉′q→0 = Pζ(q)Pζ(k)

(
5
6 +

c3
2 −

19
12c2s

− c3
2c2s

+
3
4c

2
s

)
q2

k2 . (B.31)

which agrees with of Eq. (B.5) once the angular average is taken into
account.

b.2 full diffeomorphism from flat to curved efti

In section B.1.1 we used a simple physical argument to find the curved
speed of sound by giving a VEV to π. Alternatively it is possible to derive
the curved action directly by doing the full diffeomorphism from the flat
action (B.1). Using this method the speed of sound can be read off directly
from the action in curved coordinates in terms of cs and c3. We will check
that this procedure gives the same result for c̃s as Eq. (B.10).

To find the action for π̃ we have to transform (B.1) to x̃ coordinates and
then introduce the Goldstone boson π̃. It is important to note that the two
Goldstone modes – π̃ in the curved universe and π in the flat universe – are
different given that we are expanding around different backgrounds. As a
consequence, in order to go from the action (B.1) to the action for the short
modes in curved coordinates π̃ we have to do two steps. One is the change
of coordinates that brings us to the locally curved universe and the other
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is a field redefinition that corresponds to the redefinition of π due to the
change of the background. In order to combine these two steps we have to
take t̃ → t̃+ π̃(t̃), where the curved FRW coordinates are related to the
flat FRW coordinates by t̃ = t+ ξ0(t̃), with ξ0 given by Eq. (8.13). Then
we can introduce the curved Goldstone boson π̃ in the action (B.1) using
the transformation

t = t̃+ T (x̃) ,
x = x̃+ ξi(t̃) , (B.32)

where T (x̃) = π̃(x̃)(1− ξ̇0(t̃))− ξ0(t̃). Under this change of coordinates
the parameters in the action transform as

g00(x) = g̃µν(x̃)
∂(t̃+ T (x̃))

∂x̃µ
∂(t̃+ T (x̃))

∂x̃ν
, H0(t) = H0(t̃+ T (x̃)) , . . . .

(B.33)

Implementing the transformation (B.32) on the action (B.1), we find that at
quadratic order in π̃ the action for the short modes in curved coordinates is

S̃ =
∫

d4x̃ εM2
PH

2
0a

3
0

(
1 + 3

2∂i∂jζL|0x̃
ix̃j
)
×[

1
c2s

(
1 + ∂2ζL|0

2a2
0H

2
0

(
−1− 4c3 + 2 (−5 + 2c3) c2s + 6c4s

))
˙̃π2

−
(
1− ∂i∂jζL|0x̃ix̃j

)(
1− ∂2ζL|0

2a2
0H

2
0

(
3 + 2c2s

)) (∂iπ̃)
2

a2
0
− ∂i∂jζL|0

a2
0H

2
0

∂iπ̃∂j π̃

a2
0
− 2∂

2ζL|0
a2

0
π̃2

 .

After angular averaging we find

S̃avg=
∫

d4x̃ εM2
PH

2
0a

3
0

(
1− 3

4κx̃
2
) [ 1

c2s

(
1 + 3κ

4a2
0H

2
0

(
1 + 4c3 + 2 (5− 2c3) c2s − 6c4s

))
˙̃π2

−
(

1 + 1
2κx̃

2
)(

1 + κ

4a2
0H

2
0

(
7 + 6c2s

)) (∂iπ̃)
2

a2
0

+ 3 κ
a2

0
π̃2

 . (B.34)

We can match this to the angular average of the action (B.7), the most
general effective action that has the metric (B.6), to find c̃s. We find that
the actions (B.34) and (B.7) match if the speed of sound in the curved
background is given by Eq. (B.10). Thus we confirm that this is the correct
speed of sound in the curved background.
We can use the action (B.34) to compute the fully anisotropic squeezed

limit of the three-point function in the same way that we calculated the
isotropic limit in Section B.1.3.
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The non-geometric two-point function that we find from the equation of
motion of Eq. (B.34) can be solved straightforwardly. We find that the late
time limit is

〈ζ~kζ−~k〉
′
κ = Pζ(k)

[
1 +

(
−1

2 −
c3
2 +

2
c2s

+
c3
2c2s
− 3

4c
2
s

)
∂2ζL|0
k2 − 5

4c2s
∂i∂jζL|0kikj

k4

]
.

(B.35)
Correlating Eq. (B.35) with the long mode gives the non-geometric part of
the squeezed limit of the three-point function,

〈ζ~qζ~k1
ζ~k2
〉′q→0 = Pζ(q)Pζ(k)

(− 2
c2s
− c3

2c2s
+

1
2 +

c3
2 +

3c2s
4

)
q2

k2 +
5

4c2s
(~q ·~k)2

k4

 .

(B.36)
Now we need to include geometric effects. The geometric interaction

Hamiltonian is given by

Hint =
∫

d4x εM2
PH

2
0a

2
0

[
−3

2∂i∂jζL|0x
ixj

1
c2s
π′

2
+

1
2∂i∂jζL|0x

ixj(∂aπ)
2
]

.

(B.37)
The two-point function can be written as∫

d3~k1d3~k2〈π~k1
π~k2
〉ei~k1·~x1+i~k2·~x2 =

∫
d3~k1d3~k2 Fij(~k1,~k2)∂k1i∂k1jδ(

~k1 + ~k2)e
i~k1·~x1+i~k2·~x2 ,

(B.38)

where the function Fij(~k1,~k2) is

Fij(~k1,~k2) = −2(2π)3 Re
[
iεM2

P∂i∂jζL|0 π∗~k1
π∗~k2

∫ η dη′
η′2

(
3
c2s
π′~k1

π′~k2
+ ~k1 ·~k2π~k1

π~k2

)]
.

(B.39)
In the late time limit we find

Fij(~k1,~k2) = −2(2π)3∂i∂jζL|0
4εcsM2

P

3k2
1k

2
2 + ~k1 ·~k2(k2

1 + k1k2 + k2
2)

4k3
1k

3
2(k1 + k2)

. (B.40)

After integrating Eq. (B.38) by parts we find that the perturbation of the
two-point function is

δ〈π~k1
π~k2
〉 = δ(~k1 + ~k2)∂k1i∂k1jFij

∣∣∣∣~k2=−~k1

= (2π)3δ(~k1 + ~k2)Pπ(k1)
5∂i∂jζL|0k1ik1j − 3∂2ζL|0k2

1
4k4

1
,
(B.41)

because Fij satisfies

Fij(~k1,−~k1) = 0 , and ∂~k1
Fij(~k1,~k2)

∣∣∣∣~k2=−~k1
= 0 , (B.42)
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just as we found in the isotropic case. The geometric part of the squeezed
limit of the three-point function is then

〈ζ~qζ~k1
ζ~k2
〉′q→0 = Pζ(q)Pζ(k)

−5(~q ·~k)2 + 3q2k2

4k4 . (B.43)

Combining this result with the non-geometric contribution (B.36), we find
that the squeezed limit of the three-point function is

〈ζ~qζ~k1
ζ~k2
〉′q→0 = Pζ(q)Pζ(k)

(− 2
c2s
− c3

2c2s
+

5
4 +

c3
2 +

3c2s
4

)
q2

k2 −
5
4
(~q ·~k)2

k4

(
1− 1

c2s

) .

(B.44)
which agrees with Eq. (B.5).

b.3 ghost inflation

In this appendix we show that the argument presented in the main part
of the thesis can be applied also in the case of ghost inflation [123]. The
ghost condensate can be thought as a model in which the background field is
brought dynamically in a minimum of P (X). This means that the equation
of motion for the background

∂t(a
3PX φ̇) = 0 (B.45)

is trivially satisfied for a constant velocity φ̇ equal to the unperturbed
one, so that the curvature does not change the background solution. The
curvature thus will enter only through the change of the scale factor1. The
quadratic action for perturbations in conformal time reads

S =
∫

d4x

(
2M4

2a
2π′2 − M̄2

2 (∂2π)2
)

. (B.46)

From this, the variation of the two point function in the presence of curvature
is easily obtained by solving perturbatively the equation of motion

4M4
2∂η

(
a2

0

(
1 + 2δa

a

)
π′
)
+ M̄2k4π = 0 , (B.47)

by defining π = π0 + κH−2
0 π1. The solution of the unperturbed equation

4M4
2π
′′
0 + 8M4

2H0π
′
0 + M̄2k

4

a2
0
π0 = 0 , (B.48)

1 We are neglecting here the geometrical effects coming from the x-dependent part of the
metric.
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is given by [123]

π0(k, η) = 2−1/4H1/4
0 M−1/2

2 M̄−3/4k−3/2F

H1/2
0 M̄1/2
√

2M2
kη

 , (B.49)

where we defined F (x) =
√
π/8(−x)3/2H

(1)
3/4(x

2/2), andH(1)
α is the Hankel

function of first kind. After expanding Eq. (B.47) at first order in κ, we
have to solve

4M4
2π
′′
1 + 8M4

2H0π
′
1 + M̄2k

4

a2
0
π1 = −4M4

2
3a2

0
π′′0 . (B.50)

This can be done using the Green function of the unperturbed equation of
motion, which is given by the commutator of the free fields

G(x1,x2) = i a−2(η2) θ(η1 − η2) [π0(x1), π0(x2)] . (B.51)

The first order solution is then given by

π1(k1, η) = −4H4
0M

4
2

3

∫ η

−∞
dτ a4

0(τ )G(k1, η; k2, τ ) τ2π′′0 (k2, τ )

= −4H2
0M

4
2

3

∫ η

−∞
dτ iθ(η− τ ) [π0(k1, η), π0(k2, τ )] π′′0 (k2, τ ) .

(B.52)

The field π0, being the solution of the unperturbed equation of motion,
is normalized in such a way that

[π0(η), Ππ0(η)]κ=0 = 4M4
2a

2
0[π0(η), π′0(η)] = i , (B.53)

where Ππ0 is the conjugated momentum. We can check that the same condi-
tion is satisfied by π at first order in κ without changing the normalization
of the homogeneous part, by direct evaluation of the commutator

[π(η), Ππ(η)] = 4M4
2a

2[π0(η), π′0(η)] + 4M4
2a

2
0κH

−2
0
(
[π0(η), π′1(η)] + [π1(η), π′0(η)]

)
= i+ i

κη2

3 + 4M4
2a

2
0
κ

H2
0

(
[π0(η), π′1(η)] + [π1(η), π′0(η)]

)
,

(B.54)

where the commutators involving π0 and π1 are

[π0(η), π′1(η)] = −
4H2

0M
4
2

3

∫ η

−∞
dτ iθ(η− τ ) [π′0(η), π0(τ )] [π0(η), π′′0 (τ )] ,

[π1(η), π′0(η)] = −
4H2

0M
4
2

3

∫ η

−∞
dτ iθ(η− τ ) [π0(η), π0(τ )] [π

′′
0 (τ ), π′0(η)] .

(B.55)
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After many integrations by parts the commutators appearing in the RHS
can be written as commutators at equal time. Furthermore, when the two
are summed we obtain

[π0(η), π′1(η)] + [π1(η), π′0(η)] = −i
4M4

2
3 [π0(η), π′0(η)][π′0(η), π0(η)]

= −i 1
12M4

2a
4
0

.

(B.56)

Plugging this result back in Eq. (B.54) gives [π(η), Ππ(η)] = i, thus the
solution is correctly normalized.

The two point function in the presence of the long mode is then given by
the following expression

〈ππ〉′πL = π∗(0)π(0) = Pπ +
2κ
H2

0
Re[π∗0(0)π1(0)] , (B.57)

where Pπ(k) = 〈π0π0〉′ = 2−1/2H1/2
0 M−1

2 M̄−3/2|F (0)|2k−3, and its pertur-
bation is

δ〈ππ〉′πL =
2κ
H2

0
Re[π∗0(0)π1(0)]

= − 4M2
2κ

3H0M̄3k5
H1/2

0 M̄1/2
√

2M2
Re

[
iF ∗(0)

∫ 0

−∞
dx
(
F (0)F ∗(x)− F ∗(0)F (x)

)
F ′′(x)

]

= − 8M2
2κ

3H0M̄3k5
H1/2

0 M̄1/2
√

2M2
|F (0)|2 Re

[
i
∫ 0

−∞
dxRe[F (x)]F ′′(x)

]

=
8M2

2κ

3H0M̄k2Pπ(k) Im
[∫ 0

−∞
dxRe[F (x)]F ′′(x)

]
.

(B.58)

Now we can use the following property of the function F (x)∫ 0

−∞
dxRe[F (x)]F ′′(x) = 1

2

∫ 0

−∞
dxF (x)F ′′(x) , (B.59)

to rewrite the variation of the power spectrum as

δ〈π~kπ−~k〉
′
πL

=
4M2

2κ

3H0M̄k2Pπ(k) Im
[∫ 0

−∞
dxF (x)F ′′(x)

]
. (B.60)

Taking the average over the long mode and using ζ = −H0π and κ = 2
3q

2ζ~q,
we find the three-point function in the squeezed limit

〈π~qπ~k1
π~k2
〉′q→0 = −8M2

2
9M̄ Pπ(q)Pπ(k)

q2

k2 Im
[∫ 0

−∞
dxF (x)F ′′(x)

]
. (B.61)
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This result has to be compared with the squeezed limit of the three-point
function in [123],

〈π~k1
π~k2

π~k3
〉′ = N

1∏
k3
a

2Re
[∫ 0

−∞

dη
η

(
F ∗(k1η)F

∗(k2η)F
′∗(k3η)k3(~k1 ·~k2) + symm.

)]
,

(B.62)
where the constant N is given by

N = − (2π)3/2

Γ(1/4)3
H5

0
2M2

2

(
2M2

2
M̄H0

)4 ( 1
2M2

2

)3
. (B.63)

The terms in the parentheses are proportional at least to q, so if we use the
symmetric expansion (B.4) the product in front of the integral gives only
the leading contribution 1/q3k6 (corrections are of order q2). Keeping only
the terms contributing at order q2, we get

〈π~qπ~k1
π~k2
〉′q→0 = −8

3
M2

2
M̄

Pπ(q)Pπ(k)
q2

k2 Im
[∫ 0

−∞
dx
(
−1
x
F ∗(x)F ′∗(x) + F ∗(x)F ′′∗(x)

)]
.

(B.64)
We can then numerically show that the following relation holds

Im
∫ 0

−∞
dx
(
−1
x
F ∗(x)F ′∗(x)

)
= −4

3 Im
∫ 0

−∞
dxF ∗(x)F ′′∗(x) , (B.65)

such that

Im
[∫ 0

−∞
dx
(
−1
x
F ∗(x)F ′∗(x) + F ∗(x)F ′′∗(x)

)]
=

1
3 Im

∫ 0

−∞
dxF (x)F ′′(x) .

(B.66)
Finally, we get for the squeezed limit of the three-point function

〈π~qπ~k1
π~k2
〉′q→0 = −8

9
M2

2
M̄

Pπ(q)Pπ(k)
q2

k2 Im
∫ 0

−∞
dxF (x)F ′′(x) , (B.67)

which indeed agrees with Eq. (B.61).

b.4 khronon inflation

In this appendix we want to check that our consistency relation (8.17)
works also for Khronon Inflation [124]. We concentrate only on terms
enhanced by c−2

s and on the isotropic case. The action for Khronon Inflation
at leading order in derivatives and in the decoupling limit is

S =
1
2

∫
d4x
√
−g

(
M2
λ(∇µuµ + 3H0)

2 +M2
αu

µuν∇µuρ∇νuρ
)

, (B.68)
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where uµ = ∂µφ√
gαβ∂αφ∂βφ

. Since in this model time reparametrization is
promoted to an exact symmetry, the curvature will not affect the background
solution and perturbations can be expanded around φ(t) = t+ π. Moreover
the term proportional to M2

α, when expanded at quadratic order, does
not depend on the scale factor a: since this is the only term enhanced by
c−2
s = (Mλ/Mα)−2, we expect no variation of the two-point function at
this order. Indeed the action for perturbations, at first order in curvature,
reads

S =
1
2

∫
d4x

(
M2
α(∂π

′)2 −M2
λ

(
(∂2π)2 − 6a2(H0 −H)H(∂π)2

))
.

(B.69)

Expanding the equation of motion at first order in κ, we see that the
curvature does not source any variation of the action enhanced by c−2

s , so
there is no variation of the two-point function ∝ c−2

s . This means that the
three-point function in the squeezed limit at order q2, after we take the
angular average, should not be enhanced by c−2

s . Indeed the three-point
function ∝ c−2

s reads [124]

〈ζ~k1
ζ~k2
ζ~k3
〉′ = 1∏

k3
i

P 2
ζ

[
− 1
c2s

k3
1
k2
t

~k2 ·~k3

]
+ cyclic perms. , (B.70)

and the angular average of the O(q2) term is zero. The consistency relations
holds.
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