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INTRODUCTION

The main aim of this thesis id to introduce the reader into . the
world of long range interaction (LRI). We will discuss many of
the effects deriving from such interactions and which have no
counterparts for potentials with short range.

In particular we will show all the details for spin models which
are by far  the easiest non trivial physical models. we can
imagine. _ _ :

Our work is divided in six chapters:

in Chapter I we discuss some physical motivation that suggests
the relevance of (spin models with) LRI in physics. In particular
we discuss Fractional Quantum Hall Effect (FQHE) and High Tc
Superconductivity;

, in Chapter II some more technical insight is given. We
discuss symmetry breaking with Goldstone mechanism. Two models
with LRI, namely Schwinger model and Stuckelberg-Kibble model,
are sketched; :

in Chapter III a (almost) self-contained mathematical
formulation relevant for LRI is developed. Of course not all the
details are showed;

in Chapter IV we start dealing with mean field spin models.
In particular the removing of the infrared cutoff in these models
is discussed and we show that the breaking of the global
symmetries gives rise to massive particles, even if no Higgs
mechanism can be advocated; ‘

in Chapter V .the same models are treated at a non zero
temperature. The framework used for T=0 is extended to T>0 and a
phase transition is shown to happen at a critical temperature;

in Chapter VI we end studing a long range Ising model. Again
~the removing of  the infrared cutoff is studied and Goldstone
mechanism, symmetry breaking and mass gap are investigated.



CHAPTER I : MOTIVATIONS

I.1 GENERAL PROBLEMS , .

In its original formulation, Quantum Mechanics (QM) was
essentially dealing with systems with a finite number of degrees
of freedom. Many of the original problems arising for such
systems were in fact explained by QM which moreover, in the past
years, has been taken to an high level of rigour. However there
are physical systems whose theoretical description requires
infinite degrees of freedom. The historical motivations of such
an extension come from the problem of combining QM and (special)
Relativity. The need of describing interactions (or forces) for
relativistic systems no longer as "actions at a distance" but as
contact actions, mediated by "fields", necessarily leads to
considering system with infinite degrees of freedom. For such
systems QM has to be replaced by QM. and by its branches: Quantum
Field Theory, Many Body Theory and so on.

Many questions of principle of QM,are still unsolved, expecially
from a non-perturbative point of view but the main features and
structures of the theory are becoming more and more established.
We know that important phenomena like collective phenomena and
spontaneous symmetry breaking (SSB), which plays such a crucial
role in modern Theoretical Physics, have no counterpart in
ordinary QM. :

Inside the structure itself of OM in these last years another
trend has become more and more appealing: it has become clear
since some years that LRI plays a very crucial role in QM , quite
different from the one played by short range interactions (SRI);
infact many new phenomena appear which are not observed in the
SRI case.

A tipical example is given by the SSB mechanism and the related
mass gap. It is well known that if the Standard Goldstone Theorem
(SGT) holds a broken symmetry, that is the existence of an order
parameter, implies the existence of massless particles. This
result is however not verified for some relevant model such as
BCS, spin models with LRI, and it seems that also the U(1)
problem for QCD should be considered in this perspective (U, (1)
has to be broken since no parity doubling is observed and, being
our symmetry global, we expect a massless particle which,
however, is not found).

The Higgs mechanism is well known as a possible way out to the
existence of Goldstone particles at least at a perturbative
level.

Our symmetry is now local and the gauge fields introduced in the
lagrangian can explain the disappearance of the massless



particles.

However, of course, Higgs mechanism cannot be advocated for
global symmetries (BCS for instance) and therefore we are led to
think that the main reason for the absence of massless bosons is
more substantial than the locality of the symmetry. Infact it
lies in the impossibility of applying the SGT since some of its
assumptions is not verified anymore. In fact Swieca, [1], showed
that one of the main hypothesis of this theorem, namely the
possibility of using local charges for describing the action of
the symmetry at each time

5A€:= i l&j'-g [Q&IA{;]I

is strongly related to the range of the interaction. In general
in fact we cannot apply the SGT if we are dealing with LRI. The
reason is that, as it will be discussed much more in details in
the following, LRI implies the existence of unavoidable
delocalization effects in the equations of motion, where
therefore also variables 1localized outside any finite region
appear. Of course, such variables commute with any ~ localized
operator, -in particular with Q;, so that the equation for SA. is
not well posed anymore.

This is not the only problem due to LRI. Another tipical example
is given by the boundary effects in functional integral. This is
computed, for instance by means of computers, fixing a volume V
and a lattice spacing a. Once the result is obtained one lets the
volume go to infinity (thermodynamical limit) and a go to zero.
‘The thermodynamical limit is quite subdle here. If we are dealing
with SRI the boundary effects are smaller and smaller when V- |

This 1is not the case if our interaction has long range: the
boundary can affect strongly the final result and in general we
cannot neglect such boundary terms. :
The thermodynamical limit has to be considered carefully even in
the definition of the "dynamics of the system" (see note (1) at
the end of the chapter).

The standard method used for finding the dynamics of the .- system
in dealing with QM.is fixing ourself in a finite volume V and to
use the cutoffed Hamiltonian H, instead of H in (1.1) to findx$.
It will be discussed in Chapter II that when we take the
thermodynamical 1limit no problem arises in the SRI case while
many points have to be treated more carefully if the interaction
is a long range one. In particular we will show that we have to
"weaken" in some sense the definition itself of = ,in such a way
that, however, the group nature of %, KEF = x®"% ,is
preserved. _

This 1is not the end of the story. Another critical difference

U1



between SRI and LRI ,also related to the above discussion, is the
relevance that the states assume for LRI. This is due to the fact
that if we make a physical measure of some localized variable no
effect comes out from the boundary if the interaction has short
range while for LRI every localized measure is in general
affected by boundary effects just as a consequence of the range
of the interaction.

The last point I want to mention here is the role that for LRI
may take terms related to space delocalization and usually
descharged for SRI.

In particular the topological term introduced to explain the U(1)
problem in QCD, 6 Tr(FF), and the Chern-Simon action used to
obtain charged vortices in 2+1 dimensions, are related to
effects of strongly delocalization. The first term can be
written, when integrated over d%*x, as an integral on a surface at
infinity of a vector which is different from zero since
instanton solutions are considered; the second term gives rise
to particles with "any" spin, anyons, which therefore cannot be
generated by local fields,as showed in [2].

The above discussion shows the relevance of delocalized objects
in Physics and therefore an algebraic mathematical *framework in
which such objects could be treated appears to be more and more
useful. :

I.2 HALL EFFECT

The main effort of this thesis is to study long range spin models
and their peculiarities. The relevance of these models relies on
the fact that often they are the discretized form of much more
complicated models and allow a relative easy discussion of many
crucial points that in the original model can be quite difficult
to analyse.

A typical example of such a "trick" is given by the Anderson's
approeach to BCS model, [3], where some consideration on the wave
function and on the spectrum of the original model gives the
right hint for translating the problem 1in terms of spin
variables.

In this paragraph we will show, using heuristic arguments, that
it seems possible to rewrite the hamiltonian used in [4] for
describing the FQHE introducing spin variables. The Hamiltonian
that one gets looks very much the same as the one that will be
studied in Chapter VI.

Of course since a lot of conditions are imposed during the "spin



translation" there are some points that need to be clarified.
However in our opinion the strong analogy between the two
hamiltonians urges to better study Hamiltonian (6.1)

Let us suppose to have some semiconductor devise. If we apply a
magnetic field B in the z direction an Hall voltage E, can be
measured along y (open circuit direction), when a currént jx is
forced along the orthogonal direction x (closed circuit
direction). ’

The Hall resistivity

G E /3
is expected to increase linearly with B while we get T:
O\::))ez/h' 5—;)‘;-()\;7-‘-'0

where = ) =N/N, is the "filling factor", that is the number of
filled Landauy levels. ‘
Experimentally it has been seen that  can take integer values
(Integer Quantum Hall Effect) or fractional values : =1/3,2/3,
2/5,3/5,2/7,3/7,.... (see ref.[5]). The current belief is that
this fractional effect is due to electron-electron interaction
and that the disorder does not play any crucial role, countrarily
to what happens for IQHE in which disorder is at the basis of the
process. This belief is mainly due to the finding that increasing
disorder tends to wipe out the fractional effect, making integer
effect wider and wider.

In the model of FQHE one deals with N electrons confined along z
by a strong electrostatic potential, mobile along x,y in a

neutralizing background potential Ve (X,y) (We will ignore
possible impurity effects). The electrons interact each other via
a Coulomb interaction e?/r (no screaning effect will be
considered here) , r?* =x*+ y%, and are immersed in a strong

magnetic field parallel to z, plus an electric field E,. If A is
the vector potential describing the magnetic field, B=Y A A, then

we have
T

N
5 T £ 3 Z‘
H = 1l/2m it e/c A) + 1/2 —— Vo (L. - eE N 1.2
£ (1/2m) (pi+ o/c B) 2L T Ve ) - By (12)
Many approximations are done in order to make easier this
formidable problem:

~ We suppose that V, arises from an uniform density N/L';

- B is taken so strong that only the first Landau level can be
filled; all higher Landau levels can be dropped from the
problem;

- E, is taken equal to zero.



As it is discussed in ref.[4] the Hamiltonian can be written as

t&) 2 . s C_L »
‘H = —-2-5' 2 c.c: +1/2 -{'jkg <ij | Wl k1> c;cj’ckcb (1.3)
where second-quantized notation is adopted. The creation operator
c{ spans the lowest Landau level (i=1,...,N ). We have
N=/27, cfc;< N,. Moreover
[4 — d o — . Y .
{CL)C)‘ } = {Cf.lcj} =0 {C‘,,C) }=d;

The first contribution in' H has no particular interest for our
purposes since it only counts the electrons in the first Landau
level. The second term is instead the one that contains all the
relevant informations.

We recall that the wavefunction has the form

¢(nl_rnzr ''''' lnuo)

where n; is equal to one or to zero according to have the i-th
position occupied or not. We have to make some approximation in
.order to transform Hamiltonian (1.3) in a more suitable form. We
will show that the relevant ones are:

i) restrict in some way the sum over the four indices
ii) suppose that the matrix elements satisfy some simple rules.

Let us define

Vijk¢= <ijl ax di/’ (1.4)

€ s J ) W) Y G) By
¥ - lf—%l

The main steps now are:

H

]

ar 1 &«
s ol = V. il (e ST . =
l/zéia Vvkacbc)cﬁc& l/ZF; jktch( i~ cncj)ct
= . * — * .‘
= 1/2 L)é VCJ'J?‘ c.c, 1/2”:; V‘-J-M C; c,z_cJ Ce
Using restriction i) we get:

l

H = 1/22 .V, cfe, = 1/2 v, A,
o e L T e

H =-1/2 V;-Mc’;'c‘c-’ce = _I/ZLZ:VF{ f; n:
e S AT

and therefore hh@

A A A
H=1 zz Ve.e n, -1 ZZ,V...-n; o (1.5)

/ g ) v / §) ) )
We further suppose that the relevant physics is obtained if



= Vi (1.6)

Vg V=

and so we get
H=l/2LV¢j (A; - ﬁ;ﬁj)

that can‘be written, a part a c-number, in the form:
H=—1/8%’,v;j (-1+2R;) (-1+2;) | | (1.7)

For reasons that will be clear in the following we add to (1.7) a
term which looks quite irrilevant since it is already contained
in the same H . We will see that it has a strong role in the
convergence discussion. ‘ :

o

H=-—l/8[_“V;:\ (-1+211, ) (—1+2ﬁj)+ ax ! V;J. fl: o (1.8)
U i)

We notice that

R + é (n,,....ng) if n;=1
(-1+20;) (n,,...n,)= {

- <¢(n,,.f..n%) if n:=0

Using this result we can apply a trick quite similar to the
Anderson's one. We introduce spin variables:

$(n,,..,1,,..n,)=0 ; Qs(n,,..,o;,..n,,o):(%; (1.9)
(-1+27;)= G} ' , | (1.10)
With these positions we get, a part a c-number ’

H=—1/8;ZB) Vij 03" 0y +2e Z)L vy 5 (1.11)
which has just he same form of the Hamiltonian (6.1), with «
playing the role of G . _

As it will be discussed in Chapter VI ( is basic if the potential
is not integrable since it allows the .cancellation of the
otherwise unavoidable divergences and therefore it needs to be
introduced in our model.



I.3 HIGH TEMPERATURE SUPERCONDUCTIVITY

Spin models are believed to play a crucial role also in
understanding High Tc ‘Superconductivity.

In particular ancestor of all the actual models of High Tc 2-dim
Superconductors is the Hubbard model, described by the following
Hamiltonian:

H=-—2 t clr Cip + U ngen;, (1.12)
RO o v

The fi%st contribution is an hopping term since it annihilates an
electron with spin G in the site J and creates another electron
with the same spin at site i. The U term is a repulsive one: it
gives a great positive contribution to the energy if, in the site
i, we have an electron with spin up, n.,- =1, and an electron with
spin down, n;.=1 (Of course only opposite spins are possible in a
single site due to Pauli principle). In order to minimize the
energy 1is therefore favourite a configuration of two electrons
(far) away from each other (even if with the same spin), than one
with two electrons with opposite spin in the same site.

It is possible to show that, in the limit of large U, the above

Hamiltonian can be written in the form:

= =— -n. o -n- YUY ) . SeS.
H ~H t%}(l n:)Cl Cje (1 Ry HEUL 808, (1.13)
where
S: = C-:'g_"C; , (1.14)

If the number of the electrons is equal to the number of sites
(half-filling) the U term in (1.12) distributes the electrons in
such a way that each site in the lattice is occupied and
therefore we have n;.=1 in (1.13). We get therefore the following
result: '

H'SHu=(t/U0). L S¢§; (1.15)
<y -
which is an Heisemberg antiferromagnetic Hamiltonian for spin 1/2
with interaction only between nearest sites.
Suggested continuum limits of this H' give rise to different
models like CP’ model with Chern Simon term

N -
—_ 2 UL v <7 Z_
St “é\(9ﬁ° A/.l)Z;\ Y /"TA/“; ac, %IZ:I =1
or SU(2) massless fermions

Su(t,a) =¥ 4 +;(‘*"),“f’b
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or two families of U(l) massive fermions
2 +
v[ —
S ( Y,8) =4, Y7+ X+ mn )%
V=i

It is worthwhile to note that since all these Syt involve non
local term, while H' is "highly" local, the continuum 1limits
proposed have in some way introduced LRI that does not appear in
the original problem and therefore some care is required.
We conclude this paragraph noticing that even if BCS spin model
has to be rejected for sperimental reasons for High Tc
Superconductivity (the critical temperature given by BCS is much
less than the one obtained using new materials; for these
materials the isotope effect, MY T ~constant, is not observed;..)
other spin models seem to be relevant to obtain some information
and in particular antiferromagnetic Heisemberg model for spin
1/2 is believed to contain most of the physical features of High
Tc. :

NQTES

(1) ,
Let us suppose to have a well defined Hamiltonian H. -
The equation of motion for a localized variable A is given by

dA/dt = i [ H, A] - (1.1)

which, once solved, defines the time evolution A(t) of A. We put
«MA) = A(t) and we call o® the dynamics of the system.

11



CHAPTER II: PROBLEMS AND GENERAL STRUCTURES OF LRI

This chapter is devoted in fooking with a bit more critical
insight to the main features outlined in Chapter I, without going
too much in the mathematical detais.

II.1 THERMODYNAMICAL LIMIT AND LONG DISTANCE BEHAVIOUR OF THE

STATES

The only possible measures that can be done on.a physical system,
from a practical point of view, are localized in a certain region
of space and time. This explain way the local observables, that
is observables localized in a finite region, are so relevant.

As we have already sketched in the previous Chapter given a
cutoffed Hamiltonian H, we can find the equation of motion for
every local variable using the Heisemberg equation

'dA/dt = i [ Hy, A] (2.1)

This equation, when solved, gives the time dependence of A, AV(t)
(the suffix V shows that we are at fixed volume). We put 5 (A)=
A%t). s is an automorphism of the local algebra (see note (1) at
the end of this Chapter), that is, it maps localized variables
into themselves as long as we are at finite volume. If we take
the thermodynamical limit two kinds of problems arise:

1) we have to take the limit V-oo in the correlation functions
for any fixed t; €

2) we have to define the "algebraic dynamics", oK, using some
limiting procedure starting from o

We have already discussed the relevance of LRI for both problems.
Here we want to give some more informations about the last point.
We can fall into three different classes of physical situations:

i) let us suppose that our system is described by caw:zal field so
that the signals propagate at a finite speed (relativistic
system). Therefore an observable which at t=0 is localized in
a finite volume at any t>0 is still localized;

ii) if we have SRI the situation is similar. For concretness sake

let us suppose that

Hv»j Yix) Yy vix-p Y Yo dk af

A
which 1is a typical many-body interaction Hamiltonian, with
potential U(x-y). If we calculate (2.1) for A=Y (z) we get

12



(d/dt) ('Y (2)) =“t’[(_z_)j Ulx-y), 0(v) d¥, o)=Y Y (2.2)
S

If the potential has short range, that is if U=0 outside a
finite volume W, the only contributions toW(z,t)= xS (Y (2))
come from the values of U inside W.Therefore also if V- oo
Y (z,t) is again localized inside W.

iii) The situation is quite different for LRI since, as it is
clear from (2.2), contributions to Y (z,t) come from each
point of the space when V- oo . Delocalization effects
therefore are unavoidable for such interactions.

The differences just outlined are reflected in the definition of
the dynamics «* as already anticipated in the previous Chapter.
In ref.[6] it is shown that for a spin system if the interaction
goes to zero faster than |i-j|"® then &% can be defined as a
norm limit of «, (see the appendix 1 for a summary of the
relevant convergence methods used in this work). This explicitly
means that

Yae 4 lecE(ny - oc"-(A)u — 0 (2.3)

We know that definition (2.3) does not make reference to any
particular state. This is in agreement with what already pointed
out, that is the fact that for SRI no particular relevance has to
be given to the states which in particular need not to be regular
at infinity.
The result above can be expressed even for continuous systems,
stating that every time we deal with LRT & § cannot be norm
converging. We have therefore to substitute norm convergence of
<F with a weaker requirement that however has to be strong
enough to preserve the group nature of % :

D(to<’c= C><*L:t—&' (2.4)
The reason of.this weakening is, how will be clarified in the
explicit models, that LRI implies the existence of infinitely
delocalized variables, that is variables localized outside any
finite region and that therefore commute with every localized
variable. A tipical example of "variable at infinity" which

appear in Chapter IV is

< 02> = <lim 6o’ > = < 1im 1/1Vl22iﬁlf > (2.5)
Vi Vb0 X3V
where <.> is a state on the spin algebra (see note (2)).

The necessity of introducing a state in the definition (2.5)
comes from the fact that the mean 6. is not norm converging and

13



therefore this kind of convergence, which is the 'strongest' one
must be substituted using a weaker topology.

In particular if an operator B is such that its correlation
functions :

i

<A BYC> = (%,A B'CY,) YA,Ce &

converge when V- oo we say that BY is weakly convargent.
For instance one can verify that if in (2.5) we take an highly
irregular state

Vo Tl Ly

(where liand | are spin up and down in the « direction at the site
i) the 1limit above oscillates and therefore we cannot define the
ergodic mean 6.7 . If on the countrary

Y~tttrtr -

(or local modification of this vector) the seriesa in (2.5) is
converging and therefore to G can be given a well defined
meaning. The characteristic of the states of being quite regular
at infinity is known as "good behaviour of the States at large
distances". The set of states which share this feature form a set
of "physically relevant states", F.

IT.2 SYMMETRY BREAKING

SGT 1is one of the most powerful tool available to theoretical
physicists in order to obtain non perturbative intormations on
the spectrum of a given theory. However some care isg required in
order to get the right results. In fact we know that in some
situation the conclusions of the SGT are in contrast with the
explicit solution of the model.

Let ¢ be a symmetry of the algebra & , that is an automorphism
of & such that p (A*)= p(a)" .

We say that the symmetry is not broken in the reprasentation ¢
(see note (3)) iff there exists an unitary oparator which
describes such a symmetry in Tt . Equivalently £ is spontaneously
broken iff ‘

1acd such that  (%,8 (2)4,) # (Y ,A%) (2.6)

14



where ‘Y% 1is the ground state of the Hilbert space Hx of the T
representation (see appendix 2).

For SRI symmetry breaking can ‘arise only if the ground state is
not symmetric. All the standard wisdom on SSB relies on the
following characterization: symmetric equations of motion for
local wvariables and non-symmetric correlation functions. The
asymmetry of the ground state is in general understood as the
dependence of the correlation functions from the boundary
conditions, which however cannot affect the equation of motion of
local wvariables, as a consequence of the short range of the
interaction.

In this framework the conclusion of the SGT become very clear. In
fact the spectrum of the excitations associated to the breaking
of the one parameter group of symmetries p*, A¢ R, generated by
local charges, is given by the (support) of the Fourier transform
J(w) of

(2.7)

T()= 1 lim <%, [03,A,]%>= (d/dA )<p’ «*(2)3
?‘lo‘ A=O R

Since the equations of motion are ¢ symmetric, plot =uxtgt , if

they are symmetric at finite volume and under some technical

assumption, we have from (2.7)

J(t)= (d/d))< g* <" (a)y> | = (d/ar) <8 (a)3 | =T (0) (2.8)
Az0 Azo

using the stationarity of Y%, . Hence J(w)~d(w) and the energy
spectrum of the Goldstone boson, in the limit k- 0 (or R-> @),
reduces to the single point @ =0. ' '
The existence of a mass gap associated to a SSB implies that the
basic ingredient of the SGT, namely @A being generated by a local
charge on an algebra stable under a symmetric algebraic dynamics,
must fail. ~ ' .
As we told in advance for LRI two kinds of problems arise:

i) the local algebra & is no more stable under time evolution
since if A ¢ & in general o%(A) depends also from the
variables at infinity which necessarily appear (and of course
such variables are not local so that ° (A)g€ & );

ii) Since Q. commutes with the variables at infinity the
conservation of the total charge does not imply that, when
R=>?o ,the vev of the commutator [Q;,A:] is time independent.

It is shown in refs.[7] that under this condition the correct
Goldstone spectrum can be obtained by considering a particolar
factorial representation  (see note (4)) and using the
"effectively localized dynamics", o(% , whose main

15



characteristics will be discussed in the next Chapter. At this
level it is relevant to stress simply that it differs from o<
since the variables at infinity, A« , entering in the
definition of «*, are now substituted by the c-numbers T (Ay ),
that is by their expectation values in the representation Tt .

The physical meaning of this structure is that the essential
nonlocal effects of the algebraic dynamics are due to the
involvement of the variables at infinity; once these variables
are frozen to c-numbers, as it happens with the choice of a
factorial representation T, then one obtains a dynamics which
maps a complete set &, of "essentially local variables" into
themselves. . ] ’

This structure offers a convenient mathematical framework for the
generalization of the SGT:

the "effective localization algebra" £, is in fact a natural
algebra on which symmetries may be locally approximated and
furthermore it is stable under a reduced dynamics, ~3% , Wwhich
coincides with «* in 7T .

We will consider automorphisms @*,Ae R, which are generated on 51
by local charges Q;, that is

(A/82) & (g'(m))]= 1 1lin 4, ([94,2])
A:p ?\\'DO
on a space-time translationally invariant primary state (see note
(4)) & . Since % maps 9., into 4, it can be shown that:

T(E) =1 lim &, ([0, «%A)]) = (4/dA ) 4, (£ 5 (2)) |
K, oo A< O
which is the natural extention of (2.7). This equation can be
even simplified: in refs.[7] is proven that we can write
T(6)= (4/A0) d(pah(An))| , Bu=lin (/W) axac  (2.9)
Azo . ' Y

and therefore the spectrum is given essentially by the motion of
the variables at infinity. Since they form an abelian algebra,
stable under time evolution, the problem is reduced to the study
of a "classical dynamical system".

It is not difficult to understand now the reasons that allow the
existence of a non zero mass gap. It is possible to show that if

* is broken in the representation U , see eq.(2.6), even if
@Ao(t — Oét@A
we have -
L ] A
(g“g(.ﬁ?éo(“ (9; (2.10)

and therefore a non trivial time dependence of J(t) is in general
obtained and its Fourier transform gives a massive particle. The
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non symmetricity of the reduced dynamics «% depends on the c-
number nature of the variables at infinity in T¢ ,since they do
not transform anymore under AL

It is worthwhile to note that' this is a new mechanism of symmetry
breaking with respect to what it happens in the SRI case, since
as we see the boundary conditions affect directly the equation of
motion and not only the correlation functions.

IT.3 EXAMPLES

We will show now some easy effect of what untill now have . been
discussed with two specific models, without going too much into
detais.

Stuckelberg-Kibble Model (D=4) .

This model is relevant since it is usually regarded as a
prototype of gauge theories exhibiting Higgs phenomenon. The
cutoffed Hamiltonian is (in Coulomb gauge)

H =1/2 J [(V(g )Z + Tfl]dsx + e‘/Z\S dsxdsyTt(x)VL(x—y) T (y)

where
1 <L
Ve(x)= (1/1xl) £L(x) ; fL(X)=§ . (2.11)
0 (xPL(1+&) :
The equations of motion defining df(?) = Le(t), give:
E(' = Vlclo + ef VL*VZCF (2.12)

It can be shown that the second term in the rhs can be written in
the form

vV _* VLC€= -4T ce +jb‘£_(>$—¥) ((o(y) APy = -4n P+ Di*iﬂ
where

O (¥-y) =4 T &(x-y) + \7,z Vi (x-¥)
From the above definition can be verified that

supp 6L < (¥ @ IL<lyl< L(1+&) ) ’ (2.13)
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Therefore O * is the mean of the field in the space region

defined by (2.1;§. Of course when the cutoff is removed, L—»oe,
Oc * is localized outside any bounded region and, on states

sufficently regular at infinity, we can put '

= i G‘ *
<?oa> (L/4T ) }qlgn< e C€>
We see therefore that the equation (2.12) can be set in the form
t (C(%-cem) = 4T e* (¢=0u) (2.14)
and we conclude that:

1) an accurate removing of the cutoff is crucial in finding the
right equation of motion (in fact if we use V(x) without the
cutoff we would get an equation of motion which has not the
same symmetry of H (?-» ?~+ c ;W —T),while (2.14) is
symmetric) ; '

2) the good behaviour of the states on which s« COonverges 1is

- fundamental. 1In particular such states must be regular at
infinity, since O_=* is localized at large distances;

3) In representation T , in which (e i& a c-number and does
not transform anymore, (2.14) shows that the symmetry is
broken and that a massive particle nevertheless appears.
Therefore SGT is evaded. ‘

Schwinger model (D=2) ,

This model is relevant in understanding the breaking of chiral
U(1l) symmetry in QCD.

Originally Scwinger model is simply QED in two dimensions:

<= (i2-x)Y - 1/4 7 (2.15)

We treat it in Coulomb gauge, 9, A, =0, and in the bosonized form.
Without giving the details we claim that our problem above is
equivalent to the one described by the following cutoffed
Hamiltonian

Ho= 1/2( ax (n+ (o ) - (e1/2) [ axdy a.9(x) v (x-v) 5, (v)
Where like in the S.K. model we have Vo(x)= V(x) £ (x) and V(x)

is the Coulomb potential in two dimensions. The equations of
motion are :

Gx) =T (%)
afcgm - e"(ava)*ch)

T (%)
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But:

(25 V)%= Vir(alg) = 4T @ + T x g
Ou(x) =985V (x) + 4TS (%)
Condition (2.13) is verified even in this model andAagain we put
<(€N> = lim (1/47) <G*@>
The equation of motion is

O(@ =) = 4T & (@ - @) (2.16)

We can now discuss the symmetry of the model. The original
lagrangian (2.15) 1is symmetric under the chiral transformation
¥ — exp(id¥s ) ¥ .In the bosonized form this becomes gfo —>ﬁ+z\/ﬁ'
and we see that (2.16) is symmetric under this transformation.
Like for the S.K. model we can show that if the infrared cutoff
is not introduced a non-symmetric equation of motion is obtained
starting by the symmetric Hamiltonian !!

However in each representation™ » 1s a c-number and does not
transform under the symmetry, which is said to be broken in T .
Nevertheless we get a massive particle which shows that no  SGT
can be applied. So even if the chiral symmetry is broken no
massless particle is cbtained when the model is solved correctly.

From both models it appears evident that the mechanism by which
the symmetry 1is broken is related to the fact that x are c-
numbers in each (factorial) representation, and there'fore do not
transform anymore under the symmetry. Since the appearance of
these variables is due essentially to the long range of the
interaction we conclude that LRI gives a possible way out to the
SGT. We remark that this is the same conclusion of the Swieca's
analysis, (1], which was obtained through heuristic motivations.

Other models showing in detail all these points are tipically -

long range spin models, which we are going to treat in the
following Chapters.
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NOTES

(1) T
In general given an algebra & we say that (g is an automorphism
of & if:

+

a) vAsAQ B(A)e @
D) @ (AB) = @ (a) ¢ (B)
C) @15 linear
(2)
For instance we can think < * > = (Y, *V¥), where Y is a

vector describing the spin in each lattice site in the wup
position. :

(3)
A representation T of an abstract (C*)~algebra is a map T (@ )
such that M :4Q — B(H) where B(H) is the set of bounded
operators on a given Hilbert space H.

T is a continuous map preserving the algebraic properties
included the #*-operation.’ ' - ‘

(4)

A representation T is said factorial if its center, that is
TL(A)n TL(Q') (TL(a’) is the set of all operators commuting with
all the operators of [ (8 )), consists only in multiples of the
unit operator. ' '

Moreover a state is called primary if its GNS-representation (see
app.2) 1is factorial. '
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CHAPTER III : MATHEMATICAL FORMULATION AND PROBLEMS

The general motivations and the models discussed in the previous
Chapters clearly show how the role played by LRI is crucial for
Physics and how new phenomena in general arise.

All this wurges a mathematical formalization and the developing
of some techniques that seem to be essential for dealing with
LRI. In this Chapter some of these technigues will be explained .
They form the relevant framework by which LRI has to be treated
and in which this work is inserted.

For SRI the natural algebraic framework is given by a (quasi)
local algebra: we call QM the algebra generated by the set of
all the variables localized in V, satisfying the natural isotony

property Qv, 2 Q. if V.2 V, . We further consider the
union of all such algebras
Qo= U Gy | (3.1)

For technical reasons is actually convenient to consider also the
norm limit of the element of &,,namely the norm closure & of Q..
The space-time translations are in general assumed to be
automorphisms of €& . The symmetries are generated by local
charges ,Qgq , oné,. For instance for a one parameter group 54 ’
A e R, we have

YAe@, @WA)= norm-%%g %ijA)= norm %im exp(iQyA) A exp(-iQyA)

The mechanism that allows breaking of the symmetry is the
dependence of ground state by the boundary conditions, so that
condition (2.6). is verified and, as showed in (2.8) a massless
Goldstone particle appears.

For LRI we have to generalize the above structure. First of all
the norm convergence of o<§ has to be replaced with the
convergence of the expectation values of &«J on a family F of
"physically relevant" representations of &, . More precisely,
the algebraic dynamics is defined as a weak limit of &% with
respect to the weak topology 7 of the states of F:

ol®= 2t - 1im ¢ (3.2)
Vi
Consequently the algebraic dynamics is naturally defined on the
¢ closure M of &, , (see app.l), rather than on & .
The set F is assumed to be:
1) closed under linear combinations;

2) norm closed and separating, i.e. & (a)=0 Acd& , 'v'cbe F
implies A=0
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3) stable under local operations, in the sense that if be F also
Q&(.) = §(A.B), A,Beg¢ a , belongs to F.

If the interaction is of sufficently long range, the commutator
[Hy,A ], A a local variable, involves in a substantial way
operators localized on (or near) the boundary of V, which, when
V=> 00 , Dbecome variables localized outside any bounded region,
the so called variables at infinity, which obviously commute with
any local variable.

Typical example of variables at infinity are

V5

lim 1/vj a'x A(x) = lim A, = A,
V' Da
v L
or

Lin &% £ A(0) - lin A,
where f, (x) is a reqular function with support in R<ixl< R(1+¢&)
and normalized. As it was already discussed the above limits do
not exist in the norm topology but only in the weak topology
defined by the states sufficently regular at infinity.

Thus, gquite generally, when the intexaction is of sufficently
long range so that the time evolution of local variables 3% (a)
involves largely delocalized variables, the infinite volume limit
requires to make reference to a family F of regular states in
order to define «* by (3.2). :

It can be proven that «t satisfies the group law (2.4) 1if the
convergence of the cutoffed dynamics is (ultra)strong (see app.
1) . -

The presence of variables at infinity in <xt(A), A a local
variable, implies moreover that &, is no longer stable under «F.
What 1is now true is that * defines a one parameter group of
automorphisms of M and actually % leaves stable the algebra
generated by an essentially local algebra €&, with trivial
Ccenter (weakly dense in M ) (see note (1)), and by an algebra of
variables at infinity.

It 1is worthwhile to stress that in the above generalization of
dynamical system, the algebraic structure is fully determined by
the algebra & and by the family F since M is obtained as weak
closure of & with respect to the weak topology of F. With
respect to the local formulation, the new ingredient is the non
trivial role played by the states. '

Within this framework a symmetry o< 1is naturally defined as a
*-automorphism of the & algebra and it is possible to prove that
if the family of states F is stable under o¢* and (x*)"' , that
1s if for & < F then o*d (.) =¢d(x (.))€F, then & can be
extended to an automorphism of M.
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Moreover one can prove that x
- If «. 1s a *-automorphism of & and ov is o symmetric,

Xt = LE (e.g. 1if &&F 1is generated by a symmetric finite

volume Hamiltonian H. ), then F being «* stable implies
¥ ={o¢®  on M.

The algebraic structure desribed above can be in some sense

trivialized by making reference to a particular factorial

representation TU (of the algebra € ) and by defining a ‘'new!

dynamics replacing the variables at infinity with their c-number

expectation values in T .

This explicitly means that if c{b(A) = F(&, Qe ) then we define

another dynamics o%(2) = F(&, T (Qe)) -

The so defined &% does no longer contain variables at infinity

and in general it leaves stable some essentially local algebra

with trivial center.

We say that «% gets effectively localized, with respect to a

factorial representation T of F, if there exists a subalgebra
@ ¢< M such that

1) @d¢has trivial center
2) &, is weakly dense in M
3) there exists a one parameter group of automorphisms cx?“ of‘Qe
such that o
b (oM(2)) = & (K%(n)) VAcQ,

The above property has the very simple physical interpretation
that the algebra of essentially localized observables &,  is
stable wunder time evolution once the boundary conditions are
fixed.

The property of effective localization may be regarded as the
clear and rigorous version of the seizing of the vacuum advocated
by Kogut & Susskind on the basis of the Schwinger model, [8]. In
this paper it is stated that this effect, caused by 1long range
forces, prevent distant parts of the vacuum from behaving
independently.

Clearly the fact of making reference to a particular factorial
representation, even if allows the recovering of the Haag &
Kastler 1local formulation, makes one 1loses the algebraic
characteristics of the problem that are quite important for their
unifying nature. For instance different "phases" of the same
physical system are described by the same algebraic dynamics &t ,
but by different effective dynamics % , depending on the T
representation and therefore by the expectation values in W of
the variables at infinity. ‘
Moreover one loses the general mechanism by which symmetries of
the finite volume Hamiltonian get broken in each factorial
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representation: if in fact the boundary conditions are already
been fixed (and we are therefore dealing with «% ) our
symmetries are clearly the ones which commute with «% and
they cannot be broken in the sense of equation (2.10). On the
countrary we have already discussed that if we start with the
algebraic dynamics «* a symmetry 8 §c%fﬁ=¢xbﬁ , . can give,
frezing the wvariables at infinity, X" #£ XX . and
therefore another way to break the symmetry arises. This is the
relevant one, as we will see in the next chapter, since provides
a2 new mechanism by which J(t) can get a non trivial time
dependence (and in this way one can get a massive Goldstone
boson) .

This discussion of course does not conclude the mathematical
treatment of LRI, but can be sufficient for our aims. A much more
complete technical treatment can be found in ref.[7].

NOTES

(1)

"Essentially" 1is due to possible small delocalization effects
associated to the infinite propagation speed of non-relativistic
dynamics that simply change the class of the test functions used
to regularize the field operators. 9 1is now too restrictive and
We use & or qu.

"With trivial center™ means that the element of the center of the
algebra are multiples of the unit operator.

"Weakly dense in M" means that the weak closure of & is the same
M. e



CHAPTER IV : HEISEMBEG-WEISS AND BCS MODELS

<

IV.1l GENERAL PROBLEMS AND RESULTS

This Chapter will be devoted to the discussion of the well known
BCS and Heisemberg-Weiss models. Both of them are mean field
models, that is models with infinite range interactions; every
spin interacts with every other spin with the same strenght.
Clearly all the problems of LRT discussed untill now arise.

We will focus our attention to the basic problem of the
definition of the dynamics in the thermodynamical limit, namely
when the infrared cutoff is removed, in the dynamics «% .

As briefly discussed in Chapter II, for such models the dynamics
of a spin at the site i involves the operator GV , 1localized on
the volume V. For instance for

H, = J/lvlé}}v .o we get

VAL o (%) =2 T ey, («F (57),d5(w)) ,  gl=1/1v] Z o

The problem is then to discuss what meaning, if any, can be given
to GY as Voo . It is easy to see that in general such 1limit
does not exist, as already anticipated in paragraph II.1, where
it is very well illustrated that the removal of . the infrared
cutoff (V- t0o) cannot be done without making restrictions on the
large distance behaviour of the states, namely without
identifying the "physically relevant™" states.

The main result of this Chapter is to prove that for such models
one can determines the condition which identifies the family F,
i.e. the states with respect to which «¥ converges to an
~automorphism «* which obeys the group law.

Such condition is that @' converges (ultra)strongly with respect
to such states.

Thus the thermodynamical limit of the dynamics gives a meaningful
result only if the states are sufficently regular at large
distances (infrared reqular states).

The idea of the proof is to study the closed system of equations
of motion

& 5
d/dted (0) = f(ws (T), 0 (5Y))
where £ does not depend explicitly on V, and to deduce that the

solution of such system is an analytical function of its
variables:

(T = X(t , T, oY)
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Hence X can be expanded in a (norm) converging power series of
0¥, which is the relevant variable. We know that the only
topology that preserve the product, apart the norm topology that
cannot be used here as we have already discussed, 1is the (ultra) -
strong topology. Asking that oY converges (ultra)strongly to 0
we have also (qyf-9(0j)“ for every n integer and therefore
X(8Y) — X(%).-

Actually such arguments apply generally to all mean field
models described by a finite volume Hamiltonian of the form

Hy = 1/1VI 2, 27, 640 6 a0 + 5 50 cued (4.1)
ijev «+a v
where i and j are lattice site indexes while « and e are spin
components.
In (4.1) the particular choice

1 i o
At =—(1./2) [-i 1 o Cy = =& dus (4.2)
0O 0 o
gives the BCS model of Superconductivity, see [3],[9], while
AN = T g% Cu = B Su3 | (4.3)

gives the Heisemberg-Weiss model.
The equation of motion obtained from (4.1) are

YVAE (53) = =28y ( Bl (0F (5F), o (5)) +
S+ Ai(, Loty () o/ 03)1 ) = 2 Cu Exsy X (6) (4.4)
This equation defines & which, as long as V is finite, is a

one parameter group of automorphisms of & . The following
quantities are defined:

Af?:(Aa(e“f‘ A(;,()/Z,‘ A:fz(A"F— A;x)/Z; G;V=(1Av1 )%6\(;- (4.5)

Equations (4.4) and (4.5) give also the equation of motion for
the mean F () :

/At el (67) = -2 fuy ( Ay (xS (57), % (03)) +
e oy £
G [ (5,08 )1 ) - 2 Cubusy oLF (5)) (4.6)
We rewrite equations (4.4) and (4.6), which form a closed set,
as: \
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dx//dt = £(x7,v)) (4.7)

dy//dt = £(y?,y)) (4.8)
where N ' . |

xy = &XJ(0) yi =/ (6Y)

£0,Y) = =2 &y (AL (%,¥) + ALIX,Y]) - 2 Gufy X (4.9)

(We note that no explicit dependence on V is present in f(x,y))
Following ref.[10] we claim that equation (4.8) admits, once the
initial conditions are fixed, one and only one solution
y{ =Y(t,y’) which is analytical entire and contains, obviously,
- no explicit dependence on V. When this solution is substituted in
equation (4.7) we get

dx//dt = F(t, x¥ ,vy”) ‘ (4.10)

with F again analytical entire and therefore, again ref.[10], it
exists an unique analytical entire solution

Xy = X(t,x,y") . (4.11)

Returning to the original spin language this means that equation
(4.4) admits one and only one solution

o(vt(q") = X(t,0°,5) (4.12)

which is analytical entire in its variables. The following
theorem can now be stated:

Theorem 1 :

Given the equation (4.4) this admits an unique solution and if
Y converges (ultra)strongly to 6™ +this solution converges

in the (ultra)strong topology to the solution of the
(ultra)strong limit of equation (4.4)

The main ideas of the proof of the theorem have been already
discussed previously and we will prove it in details in a bit
generalized form in the mathematical section of this Chapter.

This framework developed for solving, at 1least formally, the
equations of motion for a given system can be used everytime the
system of differential equations we deal with is closed. This is
certainly what it happens for mean field models and even for the
long range 1Ising model described in Chapter VI. Of course the
'good analytical properties' of the functions in the rhs of the
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cutoffed differential equations are also crucial in deriving the
existence of the solution at V finite and then to verify the
existence of its thermodynamical limit.

As a family F of physically relevant states one can take the
largest set of states on which the average in (4.5) converges
(ultra)strongly to the ergodic mean

0’ = (u.)s. 1lim G (4.13)
vV o9

This 1is of course the condition of sufficient regularity (see
Chapter 1II) of the states at large distance needed to guarantee
the (ultra)strong convergence of «f to a one parameter group of
automorphisms «* of the (Von Neumann) algebra M obtained by the
weak closure of & with respect to F.

We further specify F as the set of product states ¢ with the
property '

b (xt(EGE)) = o (G2) ©(4.14)

t .
On the states of F theorem 1 says that & converges in the
(ultra)strong topology to «*:

(03 = X(t,5°, 5% (4.15)
which is solution of the equation
. : t
d/dt &°(0") = -2, Ai(,_ (o (5}, (G) ) +
= 2 Cuusy X(0F) (4.16)
This equation shows that the algebraic dynamics «% involve in
its definition itself the presence of the variable at infinity
Z¥. So 1in these models we verify that % 1leaves stable the
algebra generated by the local algebra & and by the algebra at
infinity @~ generated by &> . . :
Equation (4.16) moreover shows that o is nothing but a
rotation around the vector
@=4A56_‘°°+2g (4.17)
and so we write
() = (Rg(£)0F),, | (4.18)
where Re(t) is a rotation around the vector o .

If we Consider a factorial representation W~ of F the variables
at 1infinity are "frozen" to their expectation values T ( §>)
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which are now c-number becouse of the factoriality of TU .
Different representations are defined by the different values
that these variables at infinity assume.

The essentially localized dynamics & is simply given by the
rotations around the vector :

C_D"_——_Tt(4 AE®+2C) =4A°T (%) +2¢C (4.19)

ol () = (Rge (£)0%), (4.20)

and of course no variable at infinity is anylonger present so
that we can say that «% maps ®e in 4. (Due to lattice
formulation the algebra of essential localization &e¢ coincide
with &€ ). We conclude that stability under time evolution is
regained once the boundary conditions are fixed and that the
effective dynamics o5 depends on the boundary conditions
themselves. Thus different phases are described by different
effective dynamics.

The T representations used above are the ones that are derived
(see app.2) by , the pure product states invariant under" space”
translations, @) :

-'-‘, .
@O(U;l) = nK F4

Moreover we require also invariance under time—translatipns,
equation (4.14), which gives some restriction on the vector m :

n| =1 | - (4.21)

BCs n= (0,0,% 1) or n,= (n,,n,, £/T.) (4.22)
HW n«= (0,0,-B/2J) or n= (n,,n,, m) B=0 (4.23)

(The choice of one or the other solution is crucial for the
breaking of the symmetries)

Let us discuss now the symmetries for the HW model, with B=0.
Here the symmetries are the three dimensional spin rotations.
They define automorphisms of & which commute with &v , and
therefore they can be extended to automorphisms of M which
commute with % (This follows from a theorem given in Chapter
III, thanks to the stability of F under ¥ ).

Of course if M is the representation defined by the ground state
@, only- the rotations around R are unbroken in Tz .

The classical motion at infinity defined by «% is the group of
the rotations of & around R’=T (5¥) with frequency () =4J, as
it can be obtained from equation (4.16) recalling that Cwx= 0 and
that AZF = Ayp= T dxp - This is the energy gap at k— 0 of the
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generalized Goldstone boson associated to the spontaneous
breaking _of rotations in each representation definited by the
states o4 (n #7 (%)) .

The discussion is quite similar for BCS model. Here the
symmetries are the rotations around the 2z axis. These are
automorphisms @*,Ae R, of the algebra @, which commute with o
Again we can extend @' to automorphisms of M thanks to the
stability of F under (g&*)*.
In the representation TM& with n = (n,,n.,<& /T.), is broken
since n is not alligned with the 2z axis. ™ndefines rotations
around the wvector Tl(@ ) with a frequency «J =2 T, when k- 0.
This mass gap is again due to the long range of the interaction
and it can be foreseen using the Generalized Goldstone Theorem
(see for instance ref.[7a]).

_We see from this analysis that all the tipical features discussed
in [7] naturally appear in these models: the need for enlarging
“the algebra by introducing variables at infinity, the relevance
of the family F in order to define an algebraic dynamics, the
essential localization of- the dynamics and  finally the
Generalized Goldstone Theorem with its mass generation (we note
that no Higgs mechanism can be advocated here 1y,

Moreover it will appear clear in Chapter VI that the appearance
of the variables at infinity is not a tipical feature of the mean
field approximation but naturally follows from the long range of
the interaction. :

A

IV.2 MATHEMATICAL DETAILS AND PROOFS

Here all the relevant mathematical results claimed in the
previcus discussion will be proven. Since no physical information
is contained in this paragraph it can be omitted at a first
reading.

In particular

1) the existence and unicity of the solution of the equation of
motion will be recaved;

2) a generalization of theorem 1 will be stated and proven;

3) the group nature of the algebraic dynamics &® in (4.15) will
be verified;

4) conditions (4.22) and (4.23) will be obtained.
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(1)

We start proving that equation (4.4) can be solved and that the
solution is analytical entire in its variables.

Equation (4.6) is really a system of three equations in three
variables and can be written in the following form:

(d/at)yl (t) = £, (y/(L),y. (t),yI(t))

(d/dE)yi(t) = £, (y)(t),y)(t),y! (L)) A (4.24)
(dsdt)y;(t) = f;(Yf(t),Y{(t),Y§(f))
where y; (t) =<xf(62“) and where the functions f« (x,y,2) are

polynomials, whose explicit form can be deduced directly from
(4.6), and therefore they are analytical entire functions.
We have to consider together with (4.24) the intial conditions:

Yi:’(to) = YC,, r ¥o = (Yu.le‘,IY;,) ) (4°25)

‘This is a typical example of a system of differential equations
in normal form on a Banach algebra. We can therefore use theorem
2.2.2 , [10], that guarantees the existence and the unicity of
the vectorial solution y(t;t,,yY.) of the above system.

This solution is defined and holomorphic in the disk : lt-tol £ r
where
r < min{ a, b, /M, b./M, b,/M, 1/k} ' (4.26)

-

The above coefficents are determined by the following conditions:

i) Let us call F = (£, ,£.,fy). E is defined in a cylinder 3+1
dymensional: ‘

D: |t - tol < a ly. - v:.| £ b, i=1,2,3

ii) M=max{M,}, where the M. are the sups|f;(t,y)|, with t and y
running in D ‘

iii) k is obtained from Lipschitz conditions
|£ (£,y) - £(5,0)] <k|¥ - 3
What we get for our present condition is that:
a = b = +00 becouse of the polynomial nature of our f ;

M is a finite quantity being fi(t,y) continuous in D and
therefore finite in every compact region of D;
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k can be small as we like becouse of the continuity of the f.

The result is therefore thdat +the solution y(tite,¥o) is
holomorphic in a dysc D : |t - t,[/< + % ; SO0 y is an entire
function.

If we now substitute y(tito,¥,) in equation (4.7) we get a
differential equation whose rhs is again an entire function
depending on an external parameter, Y. . '

We use again ref.[10], theorenm 2.8.5, that ensures us the
existence and the wunicity of the solution, which is again
analytical entire. ’

(2)

The more general form of theorem 1 we will now prove is:

-If xi= X(t,x ,yY) is a formal norm-converging power series and
if yY converges to Y in the wultrastrong topolegy, then x¢
converges in the ultrastrong topology to x:¢= X(t,x,y). Moreover
if x¢ is.the solution of equation (4.7) then x, is the solution
of -

u.s. lim (dx//dt) = u.s lim f(x!,y’) ,that is
V, o B ]
dx/dt = f(x,,yy) (4.27)

We first recall that if yV converges ultrastrongly to y then
uniformly in V we have Il y'| < C (C is a constant).

Moreover also the power n of yY converges ultrastrongly to (yf
for every n.

So if pj(yv)~is a polynomial in yY of the j-th degree we have

B (y)=>p (¥) - (4.28)
Since X(t,x,yVY) ‘is analitycal in norm it can be approximated as

well as we want by polynomials. That is, expliciting only the
relevant variable yV ,

X(yY) = norm lim p; (v") P, (¥)=/7 aw(y’)
Jix K =0
Let us indicate with | -lhg\ a seminorm of the ultrastrong

topology. Obviously becouse of the norm convergence of pj to X we
have also its ultrastrong convergence.

In order to prove that X(yY) converges to X(y) we study the
following quantity: ‘

I x(v¥) - x(y) u(({)= | X(y")-p; (v")+p; (y*)-pj (Y)+p; (¥) - X(y)ulsv
. o’
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¥

lx ez =p5 )], + [l 2y ) >, (y)!} ey (¥) =X (y)]
i J (92

Now we note that: ‘
-the first term in the last line goes to Zzero becouse of the norm
convergence of pJ(yV ) to X(yY) (which implies also its
ultrastrong convergence) ;
-the second term goes to zero becouse of the (4.28);
-the third term is zero for the same reasons discussed for first
one.

This proves the first part of the theorem show1ng that 1in fact
fX(y ) converges ultrastrongly to X(y) -

For what concerns the second part we compute the limit below:
u.s. 11m dxt/dt = Uu.s. 11m f(x,,yb) (4.29)

We have just proven that if y —> Yy then xt—+ X, . An immediate
consequence is that in this hypothesis , y —r y , we have

u.s %‘%Qm f(xt,yt) = f(Xt-,Yc)
The lhs of (4.29) it is showed to give

u.s. lim dx//dt = d/dt u.s. lim x; = dx, /dt
4]

Vioo

This 1is due to the analltyc1ty of X(t,x,yY) and to the
ultrastrong convergence of yv In fact we can easily prove that
dx{/dt is uniform in V:

norm %%p.(xid x’)/g llm 1/5 u X(t+¢ , x, yh) - X(t,x,y')u =
=lim 1/¢ | Zi(c (t+& )=Cu(E)) (v u \(éu(t)]l “ ¥" <

</ ey ¢

n

which is independent onV, as we needed to prove. This unlformlty
lets one changes the llmlt in V with the time derivative giving
the de51dered result.

(3)
We have just proven that (4.29) is nothlng but the differential
equation for the algebraic dynamics &t Shifting back to spin

language we get:
d/at & (7)) = £(o5 (o), & (r?)) . (4.30)

This equation allows us to prove that
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XEXE =yt B (4.31)

+

and therefore that <t define a one parameter group . of
automorphisms of M. In fact we have

d/at &F Gy = £ (o (7)), o (g2

d/dt X" ¥ (§) = d/dt ot ()] = |

= 4/dE £(P LT (0) ], oM [oF (%) ]) = d/dt £ (bt (7 ), <t (0 )
This means that ot E (o and o ¥ () satisfy the same equation
of motion. But we know, for what already has been discussed in
point (1), that when we fix the initial conditions the solution

of the equation is unique, due to the analitycity of f.
Since in t=0

oL | =ttt (o) | = o(r )

EF)
then «t*¥ (00) and «°x¥(0 ) must be the same function. So
equation (4.31) is verified.

éé&ations (4.22) and (4.23) can be easily obtained simply by
imposing condition (4.14), or the equivalent one
bazdatat (5)) = o
We use (4.16) and therefore we get _
d/ar® (67) = -4ty Aie,o("w}“’) Kb (7)) - 2 Cy Eusg (08 )
Since ¢ ( B’J”) = ng and St (02°)) = P (x5 (5.°)) we obtain
(22 n+C)rn=o0 (4.32)

The solutions are of two kinds:

I

0

2 A?g + C
(4.33)

22An+c=2n

And from these equation one easily gets the conditions (4.22) and
(4.23).-
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CHAPTER V : KMS CONDITION AND FINITE TEMPERATURE STATES

This Chapter is devoted to discduss the peculiarities of the spin
models introduced in the previous Chapter at a non-zero
temperature. We will show what of the framework previously
discussed can be extended to the T>0 situation. Moreover the
existence of a phase transition will be proven in all details.

We will make extensive use of the powerful algebraic tool given
by the KMS states which we will briefly discuss in the first
paragraph. ‘ '

V.1l KMS CONDITION

We discuss here some characteristic of KMS states. For more
details we refer to [6] and [11] as a first reading and to [12]
for a more sofisticate review of the subject.

We start defining an equilibrium state for a finite volume V
lattice by: - :

Wud) = tr (g,n) , 0s= exp(- §H,)/ tr(exp(-¢ H,))

where  p =(KT).

This 1is the state of our lattice corresponding to the Canonical
Ensemble at temperature T.

Some problem arises when we try to take the thermodynamical limit
since as it is clear from the previous Chapters the Hamiltonian
H, may not be well defined in this limit, being representation
dependent since variables at infinity in general appear.

This problem is usually overcome introducing, instead of Hy, , the
relative cutoffed dynamics o , «§ (A) = exp(iH.,t) A exp(~iH,t).
Using the definition of v and the fact that the trace is
invariant uncer cyclic permutations we can prove that

-If A,B €@, then (v («&f(A)B) can be extended to an entire
function of a complex variable t which is uniformly bounded in
-t < Im t < 0; similarly wy (B x§(A)) can be extended to an
entire function of t which is uniformly bounded in 0 ¢ Im té_—@ .
Moreover we have

LDy(XE (R)B) = 0, (Bl (A)) -8< Imtg¢ 0 (5.1)
In 'ref.[6] 1is showed that if converges to «% in the norm
topology and if Wy (A)=» O (A), o Ae Qv , We can derive from

(5.1), without making reference to the Gibbs states, the RKMS
condition:
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w (x5(a)B) =0 (Bx"fa)) -psImt <0 (5.2)

States which satisfy equation (5.2) are equilibrium states for
the infinite lattice at the temperature T = (@IQ“. They look
very much the same as the ground state for zero temperature. This
analogy is showed, for instance, noticing that, Jjust like the
ground state, also KMS states are stationary, i.e. invariant
under «*t .

KMS states have also a clear physical interpretation: 1let us
consider a finite system S coupled with an infinite system W at
t=0, when W is in the state f. One can prove that, under some
technical requirement, S is taken to the Gibbs state at @~
temperature iff f satisfies equation (5.2). This means that W
behaves like a thermostat a - temperature.

Even 1if in our models norm convergence of &f is not verified
and therefore (5.2) cannot be deduced from (5.1), we will take
(5.2) as the definition of equilibrium state for infinite system
as its physical interpretation suggests to do.

Under some technical assumptions that need no to be emphasized
here, see [11], one can deduce that the Space average of an
observable (ergodic mean) exist and is a c-number on the KMS
state w

Therefore the mechanism of essential localization of the dynamics
can be applied also for representations TU constructed starting
by KMS states via GNS construction (see app.2). The reduced
dynamics obtained maps &, in &¢. , )

Since we know from the discussion in Chapter III on effective
localization that if ¢ ¢T™ then ¢ («*(a)) = & ( x%(A)) we can

-

implement (5.2) using «®n instead of x* :

 ( «%(2)B) = ) (B«Ea)) (5.3)

We note that even if the above equation widely simplifies the
explicit calculation it also present a drawback: it is valid only
if the T representation is the one GNS related to the state
t .If we use in (5.3) another reduced dynamics we obviousy get
wrong results and therefore some care is required.

V.II SYMMETRY BREAKING AND PHASE TRANSITION

In order to implement equation (5.3) we have to find the explicit
time dependence of 0w . We have already discussed in the
previous Chapter the main problems related to the thermodynamical
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limit for our mean field spin models and we have showed that an
algebraic dynamics can be defined even if we are dealing with a
LRI since < converges (ultfa)strongly to ot .

The dynamics so obtained satisfies the same equation of motion
that one gets using the following effective Hamiltonian:

%H=E-ZL'-CZ; - ~ (5.4)

Fu= 260" AP+ Co , (5.5)

HW A = J g% Cu= B S (5.6)
1 0 o

BCS Af=-m1.s2 [0 1 o0 Cy= =88 .un (5.7)
0 0 o0

We can use Hamiltonian (5.4) to deduce the time evolution of the
spin variables. It turns out to be convenient to use two
different explicit form of the dynamics for the two models since
otherwise some problem in understanding the final results may
arise for HW model.

for BCS we obtain

ocb(5.)) = exp(iHt) w exp(-iHt) = cos® (Ft) 6 + i sin(Ft) cos (Ft)-
“E/F [o',6] + 1/F> sin® (Ft) (-F 6 +2F, (F -0')) (5.8)

while for HW model with B=0, which is the one that will be
considered in the following

" (%) = exp(ige=Tuit) & exp(-igE=T s t) =

cos® (Jlg=l £) o + isin(JlT*] t) cos(JlE“\t)%§%[§5,6;1]+

+ =iosin (JIEelt) (-0 + 268 (5 oh))  (5.9)

(=
We have used the algebra of the Pauli matrices and the shorthand
notation Gu= 0« (t=0), F =] Fl\.

The effective dynamics *: related to the representation T%
generated by the KMS state ¢«) via GNS construction is obtained
substituting in (5.8) and (5.9)

6:0 > mu‘—"T( (O_d.q)
(5.10)
FE —> £=T(E) =2a* m+ ¢

-——

Therefore we get for BCS
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cos®(ft) i + i sin(ft) cos(ft) £/f [of, 0] +

Il

K5 (W)
+ 1/£% sin® (£t) (—£°0; +25, (£-0)) (5.11)

and for HW

®u (0¢) = cos® (Imt) O + 1 sin(Imt) cos(JImt) m/m [, 5] +
+ 1/m* sinL(Jmt)(—m‘mf+2m“(m-§z)) ‘ (5.12)

We use the above results in equation (5.3) ,taking for simplicity
t=0 and A=B=0x (we will omit the unessential index i in the
following computation).
Using the relations:

W (0x6e) =1 ' sin iz = i sinh z

cos iz = cosh z = ' cosh’z - sinh’z = 1
condition (5.3), which reads

L (Tu,) = ) (U3 o5t (0w)) (5.13)

gives hyperbolic equations which depend on the model.

HW MODEL
Equation (5.13) after some minor manipulation gives the following
condition

tgh(Jm@') = -m _ (5.14)

for each « =1,2,3. This is solved by m = 0. However also a not
trivial solution, m = 0, is allowed iff J < 0 and - Jg > 1.

In these conditions we can define a critical temperature Tx, 1in
unity K = 1, by the

Te=-J (5.15)
We conclude that for T < T« KMS condition givesv a magnetization
different fom zero while m = 0 is the only allowed solution for

T > Tk . A phase transition therefore arises at the critical
temperature.
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BCS MODEL

The situation is a little bit more involved here essentially
becouse we are dealing with an‘anisotropic situation.

The KMS condition can be simplified noticing that Hamiltonian
(5.4) describes rotations of the spin & around the vector F
and therefore (Stationarity Condition) its mean value, ¥% , has
to be alligned with F itself:

F = M G and then ft=Am (5.16)
Equation (5.13) with the above condition gives
(1 - £./F%) tgh(£8) = -1/f [f,m ( 1-d) + £,m ( 1-dar) +
+ £imy( 1-dur) ] (5.17)

We will show in a while that even now a critical temperature, Ty,
can be defined and that the conclusions are very similar to those
of the previous model:

a spontaneous breaking of the symmetry is allowed for T < T, .and
a mass gap appears while for T > T, the only solution admitted is
m,=m,= 0, m4 arbitrary, and therefore no order parameter arises
and no Goldstone Theorem can be used. '
Equation (5.17) gives no information if o is taken in the same
direction of the f vector. If we take « in the plane
perpendicular to f we obtain

tgh(fp) = - (£ w)/f (5.18)

which has to be solved consistently with condition (5.16). This
one together with definition (5.5) gives two possible conditions:

1. if m#O ( m,#0 automatically) then Mu=-T.and m;= E/T,
2. if m,=m,=0 then A is not fixed and m,= ~E/ -

If we implement condition 1. equation (5.18) becames
tgh(f@) = £/T. (5.19)

which admits a non zero solution, the relevant one, only if
g >1/T., that is for T < T,.

Self-consistence conditions, however, cause some minor change in

‘the critical temperature. In fact in order to ensure that m,# 0

T < T, is not a sufficient condition. We see it if we plot the

functions y=tgh (ax) and y=x, a= @/G‘ ; X = f(&c, @c= /T, .
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ard

=t }}':t}hqx

A<t

We see that for a & 1 the only solution of the equation
tgh(ax) = x is x=0 and for a a bit greater than 1 the solution x
is almost zero.

Recalling the definition of f and calling f the solution of the
KMS condition (which surely exist for T < T.) we see that

W+ 8= (E-€6)/ 1

and therefore-mm_#o only if fa>6z. It follows that for a certain
range 1 < a < 3, @ to be determined, this self-consistence check is
not verified and therefore we must have m,= m,=0, that is we go
back to condition 2 above. We must therefore have a > a and so
the critical temperature T. is not_equal to T. but is obtained by
a which is defined by asking that = £ This gives

T.= T./ a (5.19)

which shows that T. is less than T., being 3 > 1.

For a < &, which includes also T > T., the only solution is
m=m, =0 and therefore no symmetry breaking is allowed. Only a
magnetization in the direction of the magnetic field appears in
this range of temperature (which moreover turns out to be
continuous at the critical temperature).

We still have not calculated all correlation functions, which are
of the form Q)(G;‘G@J...). Following ref.[11] we will consider
the following expression: :

(o (A0) /¢) (0) Acf; , 068Q, with igA
(1 is a lattice site which does not belong to the lattice volume
A

If O is positive (that is it can be written as O = c'c, for some
C €@ ) the state L definite by

JL (&) = © (A0)/ w (0)



is a state on & which satisfies KMS condition. Since this
condition applied to a finite system determines the state
univocally we deduce that JUL = ¢ . Therefore

(3(A0)/ LI (0) = )(A) and then CJ(A0) = (J(A) I (0)
We conclude that for different lattice sites we can write

A (mf* o‘(,f‘ ..... ) = MMy (5.20)
that determines (J completely.
The last point of this Chapter consists 1in applying the

Generalized Goldstone Theorem for this T > 0 situation. We simply
substitute the ground state ¢, in (2.9) with the KMS state w :

€
T(E) = a/dx W(Fxn(Aw))] (5.21)
Azo
The motion of the variables at infinity is derived by (5.11) (or
by (5.12) for HW model) and we can put it in the form:

L T(O) = cos(2£) [GF-(Fu/EY)E-0"] +(fa/ET) L 0 +
-1/f sin(2ft) (£&uxp + Fobaxy + £3 &5 ) (5.22)
that shows the existence of a frequence '
& =21 |  (5.23)

which is different from zero for both models for T < Te . For
T > Ty the HW model gives f=0 and therefore ¢y =0. For BCS we
know that is not possible to break the symmetry (for T > T,) in
the allowed representations. Therefore no Goldstone mechanism can
be advocated.

This result is in agreement with the result of the Landau
analysis which shows that superconducting phoenomenon is allowed
only if an energy gap appears in the energy spectrum.
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CHAPTER VI : ISING MODEL WITH LRT

In this last Chapter we will discuss a spin model with LRI Ji: ’
assumed not to be integrable so that condition of ref.[6] is not
verified. The Hamiltonian is

Hy= -2, T4 (6°-F ) (9 -F ) (6.1)

We have already discussed in paragraph I.2 the likeness between
this Hamiltonian _ and the one that is actually believed to
describe FQHE. G3* is related to the occupation number of the
original Jj-th electron while & is an uniform neutralizing
background. Hence we can think that a good control of this model
is a first step in understanding FQHE.

VI.1l GENERAL PROBLEMS AND RESULTS

Because of the long range of the interaction we cannqt define the
algebraic dynamics &K* as a norm limit of & ,[(61. This is
clearly due to the presence of a variable at infinity, o , in the
equation of motion itself and we know that such variable cannot
be norm converging. We have to use a weaker topology defined by a
family F of relevant states which must be regular at large
distances in order to get a well defined thermodynamical limit of
the cutcffed dynamics.

The allowed form of Ji{; will appear to be strictly connected with
the definition of the “family F. It is discussed in the following
that if we take F as the set of states pointing (at large
distances) in the z direction then no limitation needs to Dbe
introduced on J;; . On the countrary if we assume that the states
of F point in ‘the generic n dirsction then «% can be defined
only if the potential is square-integrable.

These +two different situations will be analyzed with different
techniques which, however, turn out to be equivalent for what
concerns the convergence discussion in the sense that both are
sufficient to guarantee the group nature of «

It 1is worthwhile +to stress here that & in H is really a
variable at infinity, %3 , as it will follow from the definition
of the F family. We write it in this form only for simplicity of
notation but we must have some care since & is actually an
Ooperator. Nevertheless in each factorial representation this
variable will take a definite expectation value and therefore it
will become a c-number.
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We also want to notice that this model is, as long as we know,
the first spin model with LRI (not mean field) which has been
exactly solved.

We suppose that in (6.1) the following conditions hold:

1) Jij is not integrable
2) iFl< 1
3) Jﬁ = Jﬁ and Ji= 0 (6.2)

The equation of motion for ch can be found using the canonical
commutation relations for spin matrices and we get

+ € .

d/dt «; (Su) = T Esup o () (6.3)
where we have defined

TY =4/ T, (%'-G) (6.4)

ev

System (6.3) can be easily solved noticing that T,, does not
depend on time. This is due to the fact that 63t is  time
independent as it is showed by (6.3) itself, so that we can
integrate the equations of motion getting

s (OF) = cos(TYt) 07°(0) + sin(TVt) §7(0)
¥y (§5) = cos(Tit) 6,5(0) - sin(TYt) T;%0) (6.5)
S %) = B3%(0)
It 1is however convenient to express these solutions in terms of
Oy, F = U 4+ i B, 0 = §5- i 5% . In fact we will use

these variables to show the existence of the dynamics when the
thermodynamical limit is taken. The equations of motion and their
solution look now: '

d/dt o (6F) =% i TLwf(f) ;  d/at et (5F) = o (6.6)
and
o7 (079 = exp(-iT!t) r5(0)
oty (%) = exp(+iTdt) UX(0) (6.7)

& (mE) = 67(0)

As we have already discussed we are interested in the case in
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which J{ 1is not integrable since otherwise ref.[6] ensures the
existence of % as a norm limit of oS .

In order to define a one parameter group of automorphisms LY of
M= Q% it is necessary to require strong convergence of Te on a
dense set of analytical vectors (see eq.(6.17) below for the
definition of such vectors) or wultrastrong convergence of
exp (*iTyt).

This difference 1is due to the fact that Tk is not a bounded
operator (since Jiy i1s not integrable) and therefore ultrastrong
convergence cannot be asked for (see app.l) while exp (ziTlt) is
bounded and hence can be ultrastrongly convergent.

States of F are defined by the condition:
Yoe F Jv_i;pcp(T:) =& (T) <+ (6.8)
\
which is satisfied requiring that
Jh‘d>(G§ -T ) is integrable. - (6.9)

In particular if J, ~| i - jl'xa sufficient condition for (6.8)
is '

(03 -C )n /11138 Xc 3, £30, 1> i, (6.10)

As it 1is obvious from (6.10) condition (6.8) is a demand of
sufficently reqularity at infinity of the F states since for i
going to infinity we get ¢ (63) ~ & .

We would like to recall that states $ e F_can be considered as
(quasi) 1local perturbations of states ¢" which are invariant
under space translations. So rewriting (6.10) in terms of these
states we obtain:

SR (F =T ) B~ 111070 A,Be @ (6.11)

We will show in the next paragraph that on these states it
results

limp (IAVISL 073 ) = 4 (07=) = O (6.12)
Ve av .

so that ,as we already pointed out before, the equations of

motion are really affected by one variable at infinity.

It 1is worthwhile to note that even for this model the strategy
developped in Chapter IV for proving the existence of the
solution of the equation of motion could be used.

>
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For simplicity of notation we write
a/dt o5 () = X (xS (), T) (6.13)
t
o (§F) = F, (t, TY, GX0)) (6.14)

with both Fx and X, analytical entire.

We deal now separately with two different situations +that
naturally appear, as we advanced before:

the one in which we study the behaviour of the limit for states
in the =z direction and the one in which the states point in a
generic n direction.

As in Chapter IV the mathematical details will be given in a
separate section.

Zz-pointing states
We «can show. that a sufficient condition that ensures strong
convergence of Ty to T, is

v 3~dr &

(% - el < 114 i>i, (6.15)
which implies
T =*1 (6.16)

This means that if O =+1 then the vector ¥ has to be a (quasi)
local perturbation of the vector

Y~ f et etet ... oty oty

where . are the eigenstate of 6% with eigenvalue +1.
On the countrary if & =-1 then the vectors which satisfy (6.15)
are perturbations of

td‘““"‘=!/@’\!/a\l/9<b ....... 2(3\(52. (l; .....

Since TY 1is not bounded we cannote require its ultrastrong
convergence. However we can prove, and we will prove it in the
next paragraph, that T: converges strongly on a dense set D of
analytical vectors which is defined by:

D=(Y : [l(oI)y ¥l c™ ;, C independent of V
(6.17)
We write D-s lim T,= T,
V| 0o



It will be showed in the next paragraph that this is a sufficient
condition for the existence of the D-strong limit of «} defined
in equation (6.14):

% (6) = Fu(t, Te, ®Y0)) (6.18)

This function is the solution of the infinite volume limit of the
equation of motion (6.13), that is

Q/at o (B = Xy (a® (), T.) (6.19)

The algebraic dynamics F defined by (6.18) satisfies the group
property

O{h'b(’r =°¢t*t (6.20)
We stress here that:

-No condition. needs to be imposed on J
The strong limit of equation (6.5) gives:

¥ (0¥ = cos(Tt) I\ (0) + sin(Tt) 6y%0)

o (079 = cos(Tt) 6y<(0) - sin(Tt) ¥7(0) (6.21)
6" (3 = 03%(0)

where
T = D-s lVli;n Ty (=Te) | (6.22)

(Of course T in the thermodynamical limit is independent of the k
index for symmetry reason)
We can write system (6.21) in the form

&° () = ( RY(t) 0°0)), (6.23)

where the matrix R describes rotations around the z axis with
frequency T.

Each factorial representation T:. is defined here by a state ¢?
in which & can be frozen only to the values + 1. The only
continue symmetries of our Hamiltonian are given by the rotations
around the 2z axis and therefore they cannot be broken in any
representation M. . In fact we have always

+
oz, ,;3‘ - (l”\o(*q& (6.24)
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Thus no Goldstone mechanism can be applied and no Goldstone
boson, massless or massive can be predicted on general ground.

H-pointing states - ' "

The situation is more complex for states ¢" with A not aligned
with the =z axis. Moreover it turns out also to be more
interesting since in the representations constructed with these
states order parameters appear and therefore the symmetry is
broken.

We have previously obtained that a sufficient condition for the
existence of the dynamics is given by (6.15) which implies
(6.16) and therefore that the only relevant states are the ones
pointing in the z direction. However it is possible to search for
some other characterization which permits the existence of Kt .
This 1is in fact possible if we make an assumption on the nature
of the potential which has to be square-integrable. In this
situation & needs not to be equal to * 1 but is given by

~—

G =cos® (6.25)

where © 1is one of the angles defining the #® vector.
We will prove in the next paragraph that the cutoffed dynamics
defined by (6.7) is ultrastrongly convergent if we assume

2. T35 < w0 (6.26)

and of course the thermodynamical limit so obtained satisfies the
group law. :
The  main steps of the derivation of this result are the
followings: '

1) first of all we prove that the exponentials appearing in
(6.7), exp(riT/t), converge on the vector %z invariant under
space translations if condition (6.26) is satisfied;

2) Once the above result is obtained we prove that exp(ziT. t)
converges also on A, %2 , A,¢& and, also on its closure,
Al te H

3) Using the norm limitation of exp(tiT.t) we conclude that
these exponentials are ultrastrongly convergent.

(in the same fashion one can prove that alsoc the polynomials in
0" are ultrastrongly convergent) &
Therefore we conclude that «.f converges ultrastrongly to &~ .
Every t» defines a representation T2 on which (6.25) is satisfied.
In general 1 is not aligned with the z axis and therefore an
order parameter appear. Nevertheless «* and oK% differ only for
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having fixed the value of T = $ (6%) = cos & , which is in any
way not affected by the continuous symmetry of our model which,
we recall, are the rotations around the z axis. .

We stress that the Generalized Goldstone Theorem cannot be
applied here since the states we are now considering are not
stationary and therefore no information about the spectrum can be
deduced.

Since condition (6.26) should be verified a Coulomb potential can
be treated only taking F as the set of z-pointing states where no
condition has to be imposed on the potential.

The last point I want to discuss here is the reason why two
different convergences have been used. The main reason is the
fact that, instead of mean field models, in the equations of
motion it appears here an unbounded operator which cannot be
ultrastrongy convergent. We have to relax this condition or to
use functions of Ty which are bounded independtly of the nature
of Ty, . As we see from (6.17) the convergence on a set of
analytical vectors is a good candidate since it gives a kind of
uniformity in V which is often required in the proofs and which
is clearly satisfied by the ultrastrong convergence. In this
sense we consider these two kind of convergences 'equivalent!. Of
course the use of the one or the other is only matter of
convenience. '

In particular for n-states convergence properties are easier
discussed using ultrastrong convergence since many practical
difficulties arise trying to prove the existence of the D set.
Moreover the form of the solution in (6.7) gives directly the
norm limitation of the operators and therefore only strong
convergence has to be proven. Nevertheless explicit calculations
of both strategies look very much the same, showing once again
the strng relation between the two possible methods.

VI.2 MATHEMATICAL DETAILS AND PROOFS

Some of the assertion of the previous paragraph will be now
proven. In particular:

(1) We prove that on the states belonging to F 0O coincides
Wi th G‘fc hH

(2) Conditions (6.15) and (6.16) are obtained;

(3) D - strong convergence of T is discussed and its

consequences, (6.18) and (6.19), are deduced;:
in particular we prove the existence of the set D which is
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by no means ensured by general properties;

(4) For n-pointing states we give the general steps of the
convergence of exp(lT;t) on the ground ciclyc state %2 ;
(3) We use the result in (4) to prove the existence of the

ultrastrong 1limit of the dynamics proving the various
points outlined in the previous paragraph.

(1)
Our states satisfy condition (6.8) and therefore, for instance,
(6.9). On such states we can write:

eV £ (& -F) < l/v‘f;"vl‘b (()—Bf-zy‘)l
=1V Z Lok ik (o - F)] g (&> 0)
< (/v sup(i—k\'*%—) (2 l/li"klul-% l/lill’—“fé)
eV

But
o-55

D(/;_

B(1)= 1/V supli-kl| = 1/V suplil&.%= 1/v Sup[(l +1i° +1;f1]

. . . . D e . A
Considering a cubic lattice we have i, =i ,=i,=i and sup i= V. It

follows that 4

& Ry~ &L |
B(1)=1/V sup (V3 i} *e v ™%

and since we are dealing with « < 3 and &> 0 we have

lim B(1) = 0
Ve
The second term is approximately
B2)= 21/ | 1=k 1/ 07w 21y
(e V&

which is convergent in the limit V-—>¢t .
We conclude that

0 < 1Vim‘4> (1/v 77 (Gy —vr)){ < lui;‘.‘ (B(1)-B(2)) = 0O

l.&\f
and therefore:
lim ¢ (1/vZ ") =@ (67) =
[ .
(2)

Let us suppose that Ti converges strongly to T. This means that
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VES o 3N Z® ;. Yy, vis g, l(Td -T2 )| <& D
We can take V>V!' and therefore

[(Ti- TH¥L = 412 sy -Fo¥l < oSN\ s -5y %1l <€
& 4 \'6\?\1‘
which is surely satisfied if the series a;= | T (5 -&) ¢
is convergent due to the Cauchy theorem. So if we have in
particular Jy=l i - j1™, o< 3, a sufficient condition for strong
convergence of T is

Loy -F )%l ¢ 114>t , €50

It is now immediate to verify that the equation above implies
(6.16). In fact since

w@}f"’(“- Hé:lt“l < l(af -F)%) VAT R we have
% N b= UF %N« 1 51-20¢
lﬁ'lﬂl_u ()E"lﬂ\ < l/[ilz-“”‘:‘

But [ 05 % | =I¥%l= 1 and then, in the limit of large i, 1¢\ol g 1
which implies (6.16).

(3)

We start proving that there is a set D, dense in H, for which
equation (6.17) can be written. _

To fix the ideas we_suppose that O =+1 so that the ground
state is Y and H= QY® . wWe begin proving (6.17) for W

[ (ze) Yo ll < c® (6.27)
For n=1 we have
Te P = a7 T (6 -1) ¢ =4 [ B (03 ~1) 8T +3, (G -1) 4P +...] = 0
&V

and therefore

(T %1 = (TO7TL W= 0 and then (1) wF[=0  ¥n

So that (6.27) is trivially satisfied.
Let wus take now A<¢8.,s so that the vector % = AW,'P coincides
with %" outside the volume V! and it is different from Yot in-
side such volume.

[ T2%l = |1/ ] = | (zv ) ata=| TL'AQ;“‘\[ <l 2l ae

'S

|=K .4
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K, = || ¢ | <0 since A is local, d =la%"rl
Lezrell = re )t aketlle | nlt lavtl = (xof a
and therefore |
Ll ¢ | =2 javt] = x5 a
so that (6.17) is verified.

The second step consists in deriving (6.18) from (6.14). We want

to show that if T{ is D-stongly convergent then also F(TY ) in
(6.14) is D- strongly convergent. _ ‘
Due to the analyticity of F, we can expand it in a norm

converging power series

F(TY) =% o, (Ty)"

heo

We want to study now the following quantity: '
L€ E(Td) - By AP AL P YeD
in order to verify the Cauchy nature of F, (TY). We have

1( Fu(T) - F, <T:'>)’~e\ls§ucnu

Let us suppose that the rhs is uniform in V,V'. We can therefore
take V and V' great as we want and since T is D-strongly
convergent also any of its power (TY)" converges strongly on D.
This gives WThH*= (memyll<E , ¥ n. Moreover due to the
entirety of Fy(TY) we have Z lcl= N (becouse even in | Til= 1
our series converges). Therefore

| Cm® = Ty (6.28)

€ BTy - B (m))¥llce w

which proves the D-strong convergence of F . (TY).
Uniformity of the rhs of (6.28) directly follows from condition

(6.17): o
fill\c"n&(TQY‘- (Tif)zf“eéiOUcu“(u(miY?H + T Y ) ¢ ZéiﬂcdlC"

which is converging thanks again to the entireness of F , and it
does not depend on V.

In a quite similar way we can derive that (6.19) from (6.13). We
must consider
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. + k . £ v
— ol 6‘ = . ht
Ds]\}:‘Lin d/dt £, (09 Dsﬁl.m X (&g (E?)’ T.)

The rhs is obtained using the result just derived:
D-s lim Xo (o (%), T)) = X (&6, Ty)

being X« an analytical entire function. Of course if the lhs is
uniform in V we can write

D-s lim d/dtel’ (5.°) = d/dt D-s lim & (68) = d/dt o® (1)
L9 [R:]
and uniformity is a consequence of (6.17), just as before.

(4)

This is the most involved point. We have to show that
¥é&0 dRcec2? o v v,viol U(exp(iT:t)—exp(iT:t))1“’;:“ <é
We have: -

M(V/V')= || (exp(iTit) ~exp(iTit)) ¥a ll =

=A{( e, (exp (-iT{t) -exp(~iTLt)) (exp (iTIt) —exp (iITLE)) ¥z) =

=42 (%, (A%/20 = A'/a1 ¥ 2%/61-. 1) 4

Using the following properties and definitions:

As (- Tt = et T (5 -7)
7 (¥ '

exp(iA) + exp(-iA) = 2 cos A

cos A =1 - A%/21 + Ab/a1-. ...

We see from the expression for M(V/V') that the relevant
quantities that need to be studied in order to deduce convergence
are the matrix elements (y,, & %) ¥ n. "

In particular we will show that the sequence (%3, A ¥2)/(2n)!
is decrescent. Therefore M(V/V') is majorated by its first term
which 1is or order & . So the Cauchy nature of exp(+iTit) %3 is
proven.

Let us calculate explicitly the matrix element for n=1:

: T < —~ = —
(t2, A %) = (at)" > Tie Tee (42, (S -F 63" -F 6%+ &% ) k)
4,@6%1
Being Y%z invariant under space translations we have:
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(Y2, B3° ¥2) = (%2, %2 ) = &

(G GPO Yo ) = §%+ §2-4Y
and finally

(%2, A %) = (at) 1-FH 2 I (6.29)
This result gives an hint onvthe way to follow. We ask for a

potential J; which 1is square-integrable so that, for Cauchy
condition,

(=
D PR : (6.30)
Ley
A direct consequence of the above condition (or equivalently of

the condition (6.26)) is the fact that every other power of J.. |,
except Ji. itself, gives a series which is again convergent. This
easily follows from the next considerations:

J.2 = J;k_\l 7 \ J,;K\tal J;ulh ny?2 definitively

e
and therefore, by the confront theorem for series with positive
elements, if (6.26) holds also

LA I8 WP ¥ns 2 (6.31)
3
is satisfied. Moreover we known that absolute convergence implies
convergence so that from (6.31) we deduce

2, Il < ¢ny 2 (6.32)
%

This result will be used in the main demonstration since in all
the other matrix elements, (Y2, A™ %2 ), n>1l, such terms appear.
For example we have:

L z
(Y, A% Y2 ) = (4t)* (B, L I+ 6 B 2 I ) de) (6.33)
caVip L&) ¢ev,p
— — — 2 <
B‘zl + 20.'1— - 35" B?—= (1 __O_x)'l. sl

€ & 4 1

L& Lavy, L6y 7%
‘ > Py
3 3 ™ T kA
+ 20¢, 0 3, /L3, + socs . g QZV Tl 3.2) (6.34)
61 ee"/\/‘m‘\;l _ &Y, mé;/(gcll Ky ol

(The C, are functions in ¢ which can be easily found but have
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no particular interest in the convergence discussion since are
all of order 1 and therefore will be neglected in the following).
The numerical coefficents appearing in the equations above and in
all the other matrix elements can be found, to bypass direct
computation, by the

k =nl/(n! n,l...n,1); n,+n,+n;+....= n; nFl W (6.35)

Here n is the power of A in the relevant matrix element, n; is
the power at which is raised the relativeJic .. and 1 is the number
of (& Jl) appearing in each term of the matrix element. For
instance in (6.34) we have:

coefficient of 25 3l = s1/61=1

coefficient of %? I 2 30 = 6l/(4l2l)= 15
coefficient of 2;. T Z‘f J,: = 6l/(2!41)= 15
coefficient of g 3. Z 3= 61/(3131)= 20

coefficient of 2 3k 2 I 2 Jj: = 6l/(212!121)= 90
. < J

In particular in the last term we have n=6, n;=2 ¥ i and 1=3.
We write condition (6.30) in the more convinient form

2 35 ~0()
so that we can deduce that
%;%ggiéigj;~0(¢); é;z§w~0(€); ,Cé;fgg-oa%a and so on.
We write finally '
(%a,a" Y2 ) (at) [4al/at+al/(2121)] = (at)h 41[1/41+1/(2121)]
(42,2° Yo )  (at) 6! [1/61+1(2141)+1/(3131)+1/(4121)+1/(212121)]
(%2, 2' ¥3) (at) 81 [1/81+1/(2161)+1/(3151)+1/(4141)+1/(5131)+
+(1/(21214!)+perm.)+(1/(2!13!3!)+perm.)+1/(21212121)]
and so on.

Let us call a;= [.....], above. We can calculate these
coefficents:



0.29 ag= 0.141 a,=0.105 a,~ 0.086
0.064 a ”

This 1is a strong indication that the sequence ({a;} is positive
and decrescent. Therefore we can write

C(%2,A% YR ) & (4t)" n! a, g (6.36)
and:
M(V,V') ~ ./2((41:)L a, & -(at)f a,e” +(atfa e - ... )

This is a series with alternate sign terms and it decreases
certainly if

(4t)* e < 1 (6.37)

Therefore M(V,V') is majorate by its first term and hence Cauchy
condition is satisfied.

(5) B
Once this heavy proof has been carried out the next points are
easy to deal with. First of all we will prove that

exp(iT:t) is strongly convergent on all the vectors Ax%¥2 , Acl,
We have to estimate the quantity

N1 - expi(ri-THt)atzl = |(1- exp(iT't))a =] =

=l 2% - [exp(iT*'t), A%z - A exp(iT't) ¥z |l <

slla%e - 2 exp(iTe) %2 | + || [exp(iT*), a1 ¥z

But

Nace- expar?” o)) Ll all | (- expaTd™ )%= |=all - m(v,vr) ¢
<lale =¢

[ rexp(its’t),a1%2ll = | exp(-4iF tZ 3 [exp(4itZ T3 ,Al%s |
= | [exp(4it§éwJ;kp;") AT Yol < €.

as V and V' goes both to infinity since A is localized in a
finite volume. Therefore

(1 - exp(i(ri-rye))a val < &+
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and this ends the prove.

Let us now prove that —_—
exp(iT/t) is strongly convergent on A %2
Let Yte H. It satisfies the following relation:

Lim WY -a %ll=o0 A 6 Qo
We have to verify now that
| (exp (iT¥t) ~exp (iT't)) ¥l < £ 9V, V>R
[[(exp (iTSt) ~exp (iTit)) Y= || (exp(iTVt)-exp(iTlt)) (¥ “AL YAt ¢

<Jlexp(imit) ~exp (ATL')) (¥ - Akta)l| +] (exp(iTit)-exp(iTyt))a, o ||
Of course we have just proven that
[ (exp (iTit) —expitiit))an¥all < g YU,V o0,
For what concerns the first term we have:
[(exp(imlt) —exp (iTL'e)) (¥ - Akall € ( Nexprizie)ll +
lemdréo)) | ¥ - a¥alls 28
and therefore we get
| (exp (1T t) ~exp (iTl't)) ¥ | < 25« €z &'
The éonclusion is that exp(iTit) converges strongly on H.
Moreover since the exponential is unitary its norm is 1 v v,
which means that the convergence is ultrastrong.

We conclude that if (6.26) is satisfied KF =B ot on this
large family of states.
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APPENDIX 1: Some Convergence Definition

Let wus consider a sequence of'operators‘{A;} and an operator A.
We say that (A} is converging to A:

in norm if
la:-al = o
where ||all= sup, laywll /t.\‘t(l
in the strong topology if
¥%e H la: - a)%l—o
in the weak topology if
¥ote H (&, (& - MY )= o

in the ultrastrong topology if

z

¥ sequence {%k} such that 4{§\?K\ L= then
®

z

%’ l(ai- 2 ) % | =2 0
The 'strongest' topology is of course the one given by the norm,
in the sense that all the other kind of convergence follow from
this one. Moreover ultrastrong convergence implies the strong and
weak ones.
We note that the norm convergence does not depend on the states
while all the other topologies do. This is related to the fact
that SRI does not give delocalization effects and therefore no
particular request needs to be done about the states. This is not
the case for LRI as it is widely discussed in this work.
Moreover weak convergence of &y to % is not enough to make o*
be a group; infact only (ultra)strong convergence "passes through
the product", as it was discussed in IV.1(see ref.[12]).
For spin system strong convergence of bounded operators implies
their ultrastrong convergence. While 0¥ is a bounded operator T,
is not. Therefore many tecnical differences arise.

By norm closure % of (. we mean that @  contains all the
elements of @, and all the norm limits of such elements.

In the same way M, weak closure of &, with respect to F, differs
from & since it contains also all the weak 1limit of the
elements of €, (with respect to the topology introduced by F).
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APPENDIX 2: GNS Construction

We start noticing that, given’a representation R and an Hilbert
space H on which the operators R(aA), Ac& ; act, we can define
many states £ of the form

E(R)=(Y% ,R(A)Y) YeH
GNS construction shows that this process can be reversed: to

every state f it is possible to associate a cyclic representation
R with a cyclic vector . such that

£(a) = (L ,R(A)Q)

Given f let us consider the following set:
I=(Ach : £(a*a) = 0 )

We will not prove that this is a left-ideal:

i) Bel and Cesd = CBeI ;
ii) I is a subalgebra of & .

Let us now take the space Q// I of the equivalence classes e(A)
to which the element A ¢ & belongs:

&/ I =( e(d) : Ace(r) )
We introduce the equivalence relation

e(A) = e(B) <= A -Be€1I
and a scalar product

( e(d),e(B)) = £(a*B)
Of course I is the zero of the factor space. If we close 4 / I
we get an Hilbert space H. To construct a representation R of &
in H we define (on a dense set) :

R(A) e(B) = e(AB)

R(A) 1is bounded and is an homomorphism: therefore R is a
representation of & . Let us define 1L = e(l)

This is a cyclic vector in fact R(A) i = R(A) e(l) = e(A) which
is dense in H. Finally '
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(2, R(A))

(e(1), e(a) ).
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