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Introduction

A neural network is a complex system consisting of a large number of mutu-
ally connected elements (called neurons) with a simple input-output relation.
In a Neural Network each unit can operate simultaneously to each other, in
a synchronous or asynchronous way. Each element receives input from the
other neurons, integrates these inputs and generates an output. Neural net-
works are inspired by human brain and, like the brain, they are required
to perform many functions; so a neural network would be able to learn, to
store data, etc. On one hand, they would be a model for understanding the
brain functioning, on the other hand, they would represent a way to built an

artificial intelligent system. This dualism has often led to a sort of conflict.

A neural network is a system with a massive parallel structure; two funda-
mental problems must be solved to understand its functioning: how it works
and how it can be programmed. The early theories have considered intercon-
nected systems in which each element is a device with a binary input-output.
These theories produced some models addressed to the understanding of some
fundamental aspects of the brain functioning. For example some attempts
have been made to let a network learn. In fact, the overall behaviour of the
system is determined by the structure of the strengths by various learning
algorithms. Some interesting and exciting results have been obtained, but a
real understanding of the brain functioning has not been reached. So, neural

networks failed in their too ambitious program.

In a more operative approach, that prevails today, neural networks are models
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to study how a parallel computer works, so they represent a tool to investigate

a new approach to computation.

If one considers an artificial system with a small number of interconnected
elements, enormous difficulties are encountered. So, it is foreseeable how
many problems might arise if one consiaers a system, like the human brain,
in which there are on the order of 10'! neurons and the number of intercon-
nections is probably up to 10%%. A real understanding of a parallel structure

is a very difficult task and requires the development of new tools.

The work presented in this thesis has to be considered in this context. A
classical optimization problem, the Travelling Salesman Problem, has been
studied by using three different models based on a neural network approach.
A particular preference has been given to the Hopfield-Tank model. This
model employs NxN interconnected units (N is the number of cities that the
salesman must visit). Each unit has a continuous input-output relation. This
peculiarity yields a “more biological” model, in the sense that it exhibits a
continuous response to a stimulus. However the model should not be seen as

a model of the brain.

The Hopfield-Tank network is a dedicated network and it can be imple-
mented as hardware. The fundamental idea of this model is to introduce an
energy that is minimum when a good tour is obtained. A simple dynamical
rule controls the input of each neuron and drives it to reach a configuration
corresponding to a valid tour. This model has been extensively considered
because it is a good example of a dedicated network. Moreover it allows to
study the behaviour of a simple parallel structure. In spite of this, many
problems are encountered in the applications of this method. First of all,

there is an insufficient knowledge of the dynamical behaviour of the process;
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furthermore the computation efficiency is very small.

In this thesis, a detailed analysis of the dynamical behaviour of the net-
work is presented. The energy and the force courses are studied by varying
the param;ater sets. The system stability has been investigated in order to
see if it is possible to guarantee a final convergence of the process. Some
interesting aspects have been shown, and a deeper understanding of the net-
work behaviour has been reached. By these analysis and by means of simple
considerations, an attempt has been made to improve the efficiency of the
network. A modification of the energy expression has been done by adding a
new term; this is able to rectify some defects of the network behaviour, and

to drive the system to states corresponding to valid tours.

The Hopfield-Tank model with the parameter sets presented in the original
work, yields 5 valid tours out of 100 guesses. A partial searchin the parameter
space improves the network behaviour, and yields up to 20 valid tours out of
100 guesses. By adding the correction term 80 valid tours (in average) out
of 100 guesses are obtained (in some cases a convergence of 94% has been
reached). So the correction term yields a significant improvement of the
computation efficiency of the network. The achieved improvement assigns
more reliability to this kind of models: parallel structures, like the Hopfield-
Tank network, are able to yield good results and so they could be employed

to do serious computations.

Other two models that solve the Travelling Salesman Problem by using a
neural approach are presented. These methods describe how it is possible to
obtain valid tours by deforming a circular path in a opportune way. These
models can also be considered as a different approach to parallel computation.

All runs have been made using a VAX Station 2000; programs have been
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written in Fortran 77.

In Chapter 1, a brief historical introduction is given; the works that can be
considered the foundations of the neural network approach are presented.
In Chapter 2, the Hopfield-Tank model has been analyzed. Results of the’
computation for different parameter sets and different city set are shown.
In Chapter 3, the modified Hopfield~Tank model has been considered. An
analysis of the network behaviour has been done. In Chapter 4, the Elastic
Net Method and the Kohonen method are introduced. A comparison among
the three methods studied has been done.

In conclusion, Neural Networks are interesting objects that could certainly
be useful to understand some brain functions and to build artificial intelligent
systems. But a real better understanding of parallel processes is necessary

to employ them in a more operative way.



Chapter 1

An introduction to Neural Networks

Before passing to analyze some particular models of neural networks that
solve the TSP, let’s present a brief historical introduction to Neural Networks.
The variety field of Neural Network applications is wide and the general
view is rather confused. Many different models apply a neural approach for
trying to explain some fundamental aspects of the nervous system (memory,
vision, learning). Many of them are a new application of few old ideas. So,
it is important to present the fundamental models that continue in direct
or indirect way to inspire people. The models are: the McCulloch—Pitts
Model, that represents the first analysis of properties of neural network;
the Caianiello Model that represents the first attempt to reduce the brain
functioning to mathematical equations; and the Perceptron by Rosenblatt
that represents the first attempt to teach something to a network. Further
a brief presentation of the Hopfield Model has been done. The Hopfield
Model is a revisitation of old models (like Caianiello-Model), by means of
mechanical statistics (spin glass theory). An introduction to the Travelling

Salesman Problem is also given.



1.1 The McCulloch—-Pitts Model

The McCulloch—-Pitts network (1943) [1] had been the first example of neural
computation. It describes perhaps the first true connectionist model. It has
had an enormous importance in neurophysics.

The McCulloch-Pitts neuron has the following characteristics:

1 The activity of the neuron is an ”all-or-none” process.

2 A certain fixed number of synapses must be excited within the period of
latent addiction in order to excite a neuron at any time, and this number
is independent of previous activity and position on the neuron.

3 The only significant delay within the nervous system is synaptic delay.

4 The activity of any inhibitory synapse absolutely prevents excitation of
the neuron at that time.

5 The structure of the net does not change with time.

The mode of operation of the McCulloch—-Pitts is simple; during a time in-
terval, the neuron responds to the activity of its synapses. If no inhibitory
synapses are active, the neuron adds its synaptic inputs and checks to see if
the sum meets or exceeds its threshold. If it does, the neuron then becomes
active; if it does not, the neuron is inactive.

The central result of the work is that any finite logical expression can be
realized by McCulloch-Pitts neurons. This was an exciting result, since it
is possible to implement the logical connections not, and and or by means
of neural connections and appropriate thresholds of the neurons. So, one
can represent every conceivable finite logical combination of the elementary
propositions in a neural network; and this means that simple elements con-
nected in a network could have immense computational power.

Since the elements were based on neurophysiology, it suggest that the brain
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was potentially a powerful logic and computational device. A single neuron is
simple, so the computational power derives from connection among neurons.
Given the state of neurophysiology in 1943, when the ionic and electrical
basis of neural activity was unclear, the approximations were much more
supportable; now we know that neurons are more complicated, and they
are not simple computing devices realizing the prepositions of formal logic.
Moreover this type of networks is very slow. For example for 100 neurons the
network may need until 10°° time units to reach a stable state. In any case,
binary models have had an immense theoretical influence not only among

neuroscientists but also among computer scientists.

1.2 The Caianiello Model

The ideas of McCulloch and Pitts were developed by Caianiello in 1961 [2];
he thought that mental phenomena could be schematized into exact mathe-
matical definitions.

The treatment of his model is based on two set of equations called neu-
ronic equations, and mnemonic equations. The formulation of the equations
for neural information processing is preceded by the “Adiabatic Learning
Approximation” assuming the separation of variables and parameters by a
difference in time-scale.

The instantaneous behaviour of the network is described by neuronic equa-

tions

up(t +71) =46 ZZahk(t,rT)uk(t——rT)—sh (1.1)

6 is the unit step function;
7 is the time unit;

sy, 1s the threshold of unit h;



up, is the binary action potential of the unit h;

apk is the synaptic coupling between the unit h and the unit k.

In the Adiabatic Learning Approximation, all coupling coefficients and thresh-
olds are considered to be constant. The equations represent the neural inter-
action, and they are completely in the McCulloch~Pitts tradition of formal
dynamical logic. The complementary set of equations is based on Hebb’s
idea of association by synchrony. The mnemonic equations are

dapk
dt

= a(r)up(t)ur(t — r7) — B(r)ank(t,r7) (1.2)

with a >3 >0.

These equations yield the change of the synaptic connecfions and determine
the long term behaviour.

The formulation of these two sets of equations supplies a firm base of sig-
nal processing in associative computing nets; it also formed an acceptable
approximation of the information processing in the brain. In a long series
of papers from 1960 onward Caianiello [3],[4] and co-workers developed the
theory and derived many properties of the process in the neuronic machine.
But results are not achieved the exspectations. Caianiello in 1984 [5] affirmed
that the application of a so crude model to biological situations has given

results exceeding the exspectations.

1.3 The Perceptron

In 1958 Rosenblatt proposed the “Perceptron” [6], it was a learning machine
which was potentially capable of complex adaptive behaviour. It was the
first computationly orientated neural network, and it made a major impact

on a number of areas simultaneously.



Rosenblatt was originally a psychologist, and the things that the perceptron

was computing were things that a psychologist would consider important.

The Rosenblatt basic model is a three layer perceptron. Each layer is a set
of simple threshold elements, or "neurons”. Layers S, A, R are coupled in
series by synaptic connections S — A — R; S is a sensory surface, layer A
contains ”associator units”, or feature detector cells, and R contains R—cells

or "recognition cells”.

Present a pattern S; in S; after one synaptic delay a pattern A; in A is active,
after another delay a set of R—cell fires. An R—cell is to be activated precisely
when the pattern projected onto S is of a certain type. Each A-unit receives
connections from a specific subset of the cells of S and it is fired by a specific
pattern on this support. The activation of the appropriate R~unit for a given
input pattern or class of input patterns was the goal of the operation of the

percepiron.

The weights of the connections from A to an R-—cell are set by synaptic
plasticity. When a pattern has been presented to S, an external "teacher”
decides for the R—cell whether it has responded correctly. If the cell fires
although it shouldn’t, the synaptic weights of all currently active A—cells to
the R—cell are reduced. If the cell doesn’t fire although it should, the synaptic
weight of all active A—cells to the R—cell are increased. No changes take place

in the case of correct response.

It is a serious weakless of the three-layer perceptron. If an R—cell has learnt
to discriminate a particular pattern in S from other patterns, it does not
recognize the same pattern in other positions on S. Rosenblatt therefore
introduces the four layer perceptron. It has layers S, A', A%, and R. The

perceptron has various limitations, many of which have been discussed by
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Rosenblatt himself in his book.

An example of learning machine with a structure similar to the Perceptron
is the PAPA, built in Italy in 1961 by A.Borsellino and A.Gamba [7]. PAPA
(italian abbreviation for Automatic Programmer and Analyzer of Probabil-
ities) works as follows. A set of photocells (A-units) receives the image of
the pattern to be shown as filtered by a random mask on top of each pho-
tocell. According to whether the total amount of light is greater or smaller
then the amount of light falling on a reference cell with an attenuator, the
photocell will fire a yes or a no answer into the brain part of PAPA. The
latter is simply a memory storing the yes and no frequencies of excitation
of each A-unit for each class of patterns shown, together with a computing
part that multiplies in order to evaluate the probability that an unknown
pattern belongs to a given class.

In 1969 Minsky and Paper [8] placed the study of computational limitations
of perceptrons on a solid foundation. The most famous mathematical results
in the book come from Minsky and Papert’s discussion of the geometrical
predicate connectedness: it is possible to show that, under certain conditions,

perceptron cannot compute connectedness.

Perceptrons and early related network models were in decline for several years
before this book because they had failed to achieve much beyond their initial
successes; results failed to materialize. So the appearance of "Perceptrons”

was the final step in a process that had gone on for several years.

1.4 The Hopfield Model and Boltzmann Machines

Developments of recent years revive in Artificial Intelligence the neural ap-

proach. Perceptrons have asymmetric connection matrices w; j, they all go in
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one direction, thus it is not possible to use equilibrium statistical methods.
Putting w;; = wj; statistical method can be employed.

In 1982 Hopfield introduced a fully interconnected network with symmetric
connections, in which the processor elements (neurons) update their state
asynchronously [9]. This model is an extension of McCulloch-Pitts and Ca-
iainiello models. The assumption of symmetric connections is one of the
most biologically unrealistic features. So, the application of this type of net-
work to explain biological behaviour is very disputable. By an analogy with
the energy function of a physical system, Hopfiel was able to show that this
network displays collective computation properties.

The Hopfield energy function has the following form:

1 N N N
FE = —~§ Z zTijsiSj -+ Zfisi (13)

=1 j=1 i=1
T;; is the strength of connection between units i and j
s; = *+1 is the binary state value of the unit i
I; is a threshold.
Equation (1.3) shows that the energy of a given state is a function of the
T;;. Therefore information can be stored in the Hopfield net through proper
selection of the T;;. The basic goal of synaptic modifications is to create
attractors for subsequent dynamics processes, which retrieves the learnt in-
formation. Hopfield gives the following Hebbian rule for selection of the Tj;

and for storing a number of patterns S7 = [s],s7,...5}]

Tij =) (2s% —1) (283 = 1) with Ty =0 (1.4)

a

The Hebbian rule produces local minima in the energy function for each of

the stored patterns, up to the storage capacity. The dynamical rule for the
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neurons is given by

s;=1 if H;>0
s; =0 of H;<0 (1.5)

where H; is the local field

Hi= Y Tyl (1.6)
i

The fixed points of the dynamics are local minima of the energy function, so
they can be considered as memories of the system. Therefore, the Hopfield
Model can perform a content-addressable-memory which is characterized
through the ability of recalling the storage contents by an incomplete data.
In the Hopfield point of view, any physical system whose dynamic in phase
space is dominated by a substantial number of local stable states to which it
is attracted can be regarded as a general content—addressable- memory. The
performance of the system depends on several factors: the size of the basins
of attraction of the embedded patterns; the number and the properties of
additional dynamically stable spurious states; the storage capacity, i.e., the
maximum number of patterns that can be embedded in the network without
destroying their own stabilitj Many theoretical works for investigating these
aspects are done by means sophisticated mathematical tools [10],[11].

Hilton and Sejnowski in 1984 [12] introduced a learning rule applicable to
any network, like Hopfield network, with symmetric connections. The units
s; are divided into visible and hidden units. The visible units can, but need
not, include separate input and output variable. The hidden units have
not connection to the outside world. The Boltzmann learning consists of
adjusting the connection to give a particular desired probability distribution

to the states of the visible units. Simulated annealing is applied to reach a
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global energy minimum by means of a T-parameter like the temperature of
a physical system. The learning algorithm is divided into two parts: PART
I) the input and the output units are clamped to a special pattern that is
desired to be learned while the whole network comes to a state of low energy
by annealing procedure.

PART II) The whole network comes to a state of low energy by simulated
annealing but now only the input units are clamped.

The goal of the learning algorithm is to find weights such that the learned
outputs as described in part IT match the desired outputs in part I as nearly

as possible. Many applications of the Boltzmann machine have been done

[13].

1.5 Neural Networks and Optimization Problems

Neural Networks have been applied to solve different kinds of problems.
In the following some applications of Neural Computation to Optimization
Problems will be considered. Optimization problems are found in many real
situations, and also our brain often must face this type of problems; so it is
interesting to observe how a system with a parallel structure, like a neural
network, can tries to solve them.

One of the most famous optimization problem is the Travelling Salesman
Problem (TSP) [14]. The TSP problem is the following: given N points
(cities) and the distances between two of them, find the shortest tour, i.e.
closed connected path, that goes through all the points. The TSP is a com-
binatorial optimization problem; this means that it has a finite number of

solutions; for example if we have N cities, there are:

—1)!
DIFFERENT TOUR = u
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N =10 — D.T. = 181440, N = 20 — D.T. ~ 6e*®

so, also for a small number of cities we have a lot of different possibilities.

A popular family of TSP’s is the one where di;s are Euclidean distances

between points distributed randomly in a square, (Fig.(1.1)).

1.000

0.7500-

0.5000

=

0.2500-

0.0000

{

0.0000

0.2500

!
0.5000

0.7500

1.0000

Figure 1.1 Twenty points distributed randomly in the unit square

It is an example of NP—complete problems (non deterministic polynomial

time complete problems), which has received extensive study in the past

years. No method for exact solution with a computing effort bounded by a

power of N has been found for any of these problems; but if such a solution

were found, it could be mapped into a procedure for solving all members of

the class.

Many different approaches can be employed to find good solutions to the

TSP. Upnow one of the most efficient is the simulated annealing [16]. The
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simulated annealing method, discovered by Kirkpatrick [15], combine a well
known combinatorial algorithm and a stochastic process introducing a tem-
perature slowly decreasing to zero. Some new algorithms combine conven-
tional strategies with biological behaviour [17],[18]. Finally new models are
based on Neural Networks. These approaches are not very efficient, but they
develop new ideas and can be useful for understanding the behaviour of par-
allel structures. In next chapters three different models of neural networks

have been analyzed.

15



Chapter 2

The Hopfield-Tank Model

The Hopfield—-Tank model, an analog computational network to solve
the TSP, is described. Some results for a system composed by 100 units,
applicable to a set of 10 cities, are presented. A search in the parameter
space and the results of Hopfield and Tank are discussed. The dynamical
behaviour of the network is analyzed by means of the energy courses, the
force courses and the iterated maps. An attempt to analyze the stability of

the system and its convergence properties has been done.

2.1 The Model
The Hopfield-Tank Model [19],{20] (HT model) is a highly interconnected,

synchronous network with continuous input—output relations; this last prop-
erty is the peculiarity of this model; in fact, in the large part of neural network
models, neurons are schematized as binary devices, but we know that real
neurons are not so simple. A way to approach to the real nervous system is

to introduce a little bit more complex device in order to represent neurouns.

Given the number of the cities is N, the HT network is composed of N x

N elementary units that we call “neurons”. Each neuron is modeled as an
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Figure (2.1) The analog circuit. Two neurons are shown.

amplifier having an input resistor p; and an input capacitance Cj.

V; is the amplifier output voltage and V; is the inverted output voltage. The
output voltage from each neuron can be connected to the input of each other
neuron. A synapse between two neurons is defined by a conductance Tj;
which connects one of the two outputs of amplifier j to the input of amplifier
i. The connection is made through a resistor of value R;; = |Ti;]| 7.

If the synapse is excitatory (T}; > 0), this resistor is connected to the normal
(+) output of the amplifier j. If the synapse is inhibitory (T3; < 0), it is
connected to the inverted output of amplifier j.

Moreover, each neuron gets an externally supplied input current I;; the func-
tion of these current is to set the general level of excitability of the network.
All amplifiers have a sigmoid monbtonic input—output characteristic. If U
is the input voltage the chosen relation between input and output is the

following one

V= % [1 + tanh (gz)} (2.1)

where U, is a constant. Thus the output voltage can only assume values

between 0 and 1.
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Figure (2.2) The input output relation for each neuron

The network shows different forms of parallel organization, such as parallel
input channels, parallel output channels, and large amount of interconnec-
tivity among processing elements. Let’s try to solve the TSP by using this
type of network. A solution to the TSP may be represented as a NxN ma-
trix, called Permutation Matrix. Each row of this NxN matrix corresponds
to a particular city, while each column corresponds to a particular position
in the tour. An example of a permutation matrix corresponding to the tour

BDEAFCB is shown in the following matrix:

0 0 0100
10 0 0 0 0
0 0 0 0 0 1
010 0 0O
0 01 0 0 O
0 0 00 1O

18



Each element w;; of matrix W is connected to the output state of a neuron.
A threshold is used so to have either 0 or 1 at the output voltage V, according
to the rule

zf ‘/ij ZS then 'wijrzl
if Vi; < S then w;; =0

The equation of motion, which describes the time evolution of our circuit is

dU: N N
Oi:c dtw = + Z Z Tl:c,]y "‘ Iiz (22)
ji=1y=1 v
where
1 }N: i 1
R}t =—+
Piz j=1y=1 Rizvjy

For simplicity, HT chose R; and C; independent of i. So, dividing by C and

redefining %i and é‘— as T;; and I; respectively, the equations become:

N N

dUia: Ui;c

a7 +ZZ iz,5y Viy + Liz (2.3)
j=1y=1

with 7 = RC =Time Constant.

In order to obtain the time evolution of the system it is necessary to know
T, Ti,;,jy, and Ii:c-
HT considered the second and the third term in the r.h.s. of equation (2.3)

as an external force derived from an energy

=75 Z Z Z Z Tiz,jy Vi Viy Z Z Vializ (2:4)

the force on the ix—neuron is given by:
Fio=-Vy,E=Y Y TijyViy + Lic (2.5)
i v
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Hopfield-Tank said that the equations of motion for a network with symmet-
ric connections (I;; = Tj;) always lead to a convergence to stable states in
which the outputs of all neurons remain constant, but the demonstration to
which they refer [21], uses a different expression of the energy, with a further

term. So, the conclusion is not correct.

2.2 The energy expression

Later on, we will see a different expression for the energy which improves the
behaviour of our system. For now let’s start with the HT energy expression.
As we have said, the HT strategy consists of writing an expression for the
energy, which reaches a minimum when the network produces a good tour.
This is one of the most delicate point of the model, because the result will
depend on this choice. The Hopfield-Tank energy is a sum of four terms,

each one corresponding to a different condition.

A
EZEZZZV21V33+‘§‘ZZZV31Vyz+

i gt i oz oy#z

2
modIN

_g_ SN D day(Vyiwr + Vyim1)Vai (2.6)

z y#Fz i
where A, B, C, D are positive constants.
The first term is minimum when each row contains at most one nonzero
element, and the other terms are null. The second term is minimum (and
equal to zero) when in each column there is at most one non zero element,

and the other ones are null. The third term requires N outputs to be 1
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and the others null, but it does not force the position of the null elements.
Finally, with the last term the distance matrix dzy is introduced, d,, being
the Euclidean distance between city x and city y. This teﬁn requires that E
favours valid tours representing short paths. It is easy by seeing that, the
other conditions being satisfied, E equals the tour length.

The force is given by:

Fio=—AY Vaj—BY Vit
J# y#Ez

—C| > > Ve; =N | =D (Vyiss + Vyic1) (2.7)
z J y

Of course, the choice operated by HT for the energy is not the sole possible
choice but it has an interesting form, and it is easy to modify by adding new
terms. The terms in the eq.(2.6) may be antagonist, so it will not be simple
to analyse the behaviour of the network, for we have a sort of frustration. At
any rate frustration represents a peculiar aspect of many complex systems,
and it may yield many interesting phenomena.

In the next step we study the time evolution of the network by using expres-
sion (2.6) for the energy.

If we compare equations (2.4) and (2.6) we obtain the connection matrix (or

conductance) (T;;) between the i—th x-neuron and the j-th x—neuron.
Toij =— Abay(1 - 635)
— B6ii(1 = 64y)
(2.8)
—C

= Dday(8j,i41 + 65,i-1)
All synapses are inhibitory or null. The only term that depends on the par-

ticular problem we are analyzing is the last one, in which the presence of
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the distances (d;,) should be noticed. The first term shows inhibitory con-
nection within each row; the second one shows inhibitory connection within

each column, while the third term yields a global inhibition.

2.3 Examples of computations
Upon starting, it is necessary to have a set of N cities in a given order, an
initial value for each U;, (and therefore V;;),a set of values for A, B, C,D

and the threshold S.
HT chose all initial Vj, equal and satisfying the condition

If we put Vi, = & for each i,z = 1,..., N, from the input output relation,
P N ’ yrrey AV P

we obtain for the initial value of the inputs, U, the expression

qu—%mm>n (2.9)

where U, is an arbitrary constant and i,x = 1...N.
In order to prevent the system from being trapped in an unstable equilibrium,

a certain amount of noise is added in the following way
Uz =U;(14+0.1)

where plus or minus is chosen in a random way.
At this point there remains to choose the parameter values A, B, C, D, U,

and S; for N = 10, HT chose the following values for the parameters

A=B=D=500 C=200 U,=002 S5=01
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but we found better choice for A, B, C, D, as we will see later. Before pre-
senting the results of our simulation, we would like to discuss the termination
criterion. At each step HT construct the permutation matrix. If it corre-
sponds to a valid tour, the computation will be stopped, and the system is
considered to have fallen in a stable state. The computation will be stopped
also if a valid tour is not reached within 1000, say, iterations. This criterion
is not correct, because, for the chosen expression of the energy, the system
may converge to a stable state that doesn’t correspond to a valid tour. A

deeper analysis is required.

Now we can write the equations for each neuron as

aUu; Uss
7 :—T ——AZV"’J'——BZVW—‘—
J# yFz

O[S S Vei =N | =D (Vyiwr + V1) (2.10)
z j Y

Updating rules are given by:

dUg A

n+1 __ n
Ui:c - Uzz + dt

(2.11)
Asin HT, we put 7 =1 and A = 1075,

Let’s see the results of computations for 10 different city sets. In (Tab. 1) we
present the number of valid tours starting with 100 different initial conditions;

the parameter set and the termination criterion are the same which are used

by Hopfield-Tank.

23



CITY SET TOURS

1 5
2 6
3 3
4 5
3 4
6 2
7 4
8 11
9 6
10 9

AVERAGE =5.5

Table 1 Number of valid tours for 10 different city set of 10 cities, putting
A=B=D=500 C=200. For each set we have considered 100 different initial condi-

tions. The termination criterion is the same used by HT.

The system does not seem very efficient, so HT were luckily in their simu-
lation, as Wilson and Pawley affirmed [20]; HT obtained 16 legitimate tours
out of 20 different starting states (convergence of about 80%). In our simula-
tion we have a convergence of about 5.5%, Wilson and Pawley a convergence
of 5%. It might be possible to improve the convergence of the network, but
it is certainly necessary to understand better its behaviour. Moreover having
a system out of any control it is not so satisfying. Therefore we will try to
analyse the process time evolution. As a first step let’s consider the number
of valid tours by putting all parameters equal. This choice is simpler and
also more efficient than the HT choice. The results of computation for three

different city sets are displayed in the TAB 2.
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A=B=C=D SET1 SET2 SET3

100 17 22 14
200 20 23 20
300 22 26 18
400 20 28 14
500 26 31 15
600 25 31 19
700 30 34 20
800 31 34 17
900 27 33 20
1000 33 32 19
AVERAGE 25.1 294  17.6

Table 2 Number of valid tours for 3 different city sets obtained by varying the
parameter values. We used the same termination criterion of HT, and the same

initial conditions as in Tab.1.

As we can see, the set of parameters chosen by HT doesn’t seem the best
one, however also with the new parameter set the efficiency of the network
is not so good.

The point at which the system finds a valid tours is variable, usually within
100 and 200 iterations. But if we let the system run and analyze some
processes after 1000 iterations , we see that the states are changed and the
number of valid tours is decreased. This means that valid tours don’t always
correspond to fixed points. This result is not strange because we know that
fixed points can be obtained only asintotically, so some valid tours may be
produced quite casually during the computation. This important fact is not

considered by Hopfield and Tank.
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2.4 The energy course »

Some interesting aspects, that can be useful for better understanding the
behaviour of the network, are now analysed. The energy course for different
parameter sets are shown in Fig. (2.3) and Fig.(2.4). It is evident that
the system depends strongly on the parameter value. When these values
exceed a threshold (critical value) the energy begins to oscillate, meaning an
instability is present. So, it is not always true that %}f— <0, as HT claim in
[19]. This oscillatory behaviour represents a transient, after which the energy

decreases.

1500—1i1;||1|]|l|11l11

1000 — —

ENERGY
1
!

500 |— ‘ —

0 100 200 300 400
ITERATION NUMBER

Figure (2.3) Energy course for A=B=C=D=100. The city set is that labelled
with 1 in the Tab. 1.
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Figure (2.4) Energy course for A=B=C=D=300. The city set is that labelled
with 1 in the Tab. 1.

The length of transient period is quite constant and, after about 60 iterations,
the system goes into a decreasing regime. In the example associated to
Fig.(2.3) and Fig.(2.4), we have a critical value equal to 226. Varying the
city sets and the initial conditions the critical value changes very little (in
other cases we have obtained for it either 224 or 225). So it can be considered
as a characteristic of the system. If we put A=B=D and vary C, we observe a
similar behaviour. The C—parameter seems to control the system stability. A
better understanding of this conjecture will be possible if we analyze a system
controlled by an energy which depends only on C-term. It is interesting to
notice that the critical value is the same we have obtained when A,B,D are

different from zero. The excitatory term regulates the oscillations in the
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network, while the inhibitory term modifies the numerical values. When C

is less than the critical value, the energy has the qualitative behaviour seen

for A, B, D different from zero. When C exceeds the threshold, the system

goes into an oscillatory phase.

| T T 1 I I T 1 T T L

ENERGY
T
!

0 20 40 60 80 100
ITERATION NUMBER

Figure (2.5) Energy course for A=B=D=0 and C=200. The city set is that
labelled with 1 in the Tab. 1.

2.5 Iterated Maps

Let’s return to the system in which A,B,C,D are equal and different from
zero. We know that the system is sensitive to the parameter values; but it is
curious to note that the permutation matrices, after many iterations (more

than 500), obtained using different parameter sets, are quite the same. While
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Figure (2.6) Energy course for A=B=D=0 and C=300. The city set is that
labelled with 1 in Tab. 1.

the parameter set modifies the evolution of the network, it does not modify
the final state. The final state mainly depends on the initial conditions.
This is very interesting. A change of the parameter set modifies the energy
structure without altering its local minima. In other words, by altering the
parameter set we get a changing of convergence processes, but not a changing
of the convergence state. Now we try to understand better this peculiarity.
An useful tool is the iterated map of the input (U™*t! wvs. U™), through
which the behaviour of a single neuron during the process can be visualized.
In Fig. (2.7) and (2.8) we have some iterated maps associated to given neuron

for different values of the parameters.
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Figure (2.7) Iterated map for the input of the (1,1) neuron. The parameter set
is A=B=C=D=600. The number of iterations is 150.

When the parameters value is small, we have a quite linear behaviour. In-
stead, for great values of the parameters the map is composed of two different
regions. In the first region occur rapid changes of the input step to step. In
the second region the neuron goes into almost linear course. The first period
becomes more evident (i.e. longer), when the parameters increase. Consider

the updating rule for the input
Urtl = U1 - A)+ F"A (2.12)

we can suppose that, in the linear region, F is quite constant. It is possible to
control this conjecture by analyzing the force course. An example is shown
in Fig.(2.9)

After many iterations the force remains approximately constant, so the con-
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Figure (2.8) Iterated map for the input of the (1,2) neuron. The parameter set
is A=B=C=D=600. The number of iterations is 150.

jecture is verified. Fig.(2.8) is associated to an output value less than the
threshold (V — 0), while Fig.(2.7) is associated to an output value greater
than the threshold (V — 1). But in some cases the situation is not so simple,
and a sort of small oscillations may be present in the linear region. So it is
not possible to predict the final behaviour of the network, also when each
iterative map is known. At any rate, we try to find conditions in which this

prediction turns possible.

2.6 Stability tests
We suppose that at a given point in the computation, the variation of F ( for

a particular neuron ) between two steps is small, i.e. F*"T1 — F™ = ¢, with ¢
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Figure (2.9) The force course applied to (1,1) neuron for 100 iterations. The

parameter set is A=B=C=D=300.

is a small real number. Writing the updating rule in a slightly different form

U™l = U™ 4 (F* = U™)A

and putting F™ — U™ = Q7, yields
QUtl=Frtl _yrtl = T U —(FP = U™)A =
=F" (UM +Q"A) =
=F"+e-U"-Q"A =
=QM1-A)+e

Let’s write eq.(2.8) as

Qn+1 — Qn(l - A +a)
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If the following relation is satisfied
(1-A—-a)>0) (2.14)

@™*! has the same sign as Qn

This is the first test that we can apply to our system. At this point two
situations can be single out,in which the permutation matrix doesn’t change
when going to the n+1 iteration from the n—th one.

The situation are as follow.

if U>S and Q™ >0 then U™ >U" (2.15)
if UM< S and Q™ <0 then U™ < U™ (2.16)

If inequality (2.14) and one of two condition (2.15) or (2.16) are satisfied, the
system doesn’t change its state within a single iteration. In fact, in general,
we cannot anticipate the final state, but it is likely that, after many iterations,
the variation of the forces is so small that the system cannot modify its state
by passing threshold. By the above tests, we have analyzed the state of each
neuron after the transient period. This seems reasonable, for, after a large
number of iterations, the system is affected by small changes. Tab.3 shows

the percentage of the neurons that don’t satisfied both the tests.
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A=B=C=D PERCENTAGE

100 0.011
200 0.008
300 0.0071
400 0.0061
500 0.0059
600 0.0060
700 0.0054
800 0.0045
900 0.0045
1000 0.0027

Table 3 Percentage of neurons that don’t satisfy the tests.

For small parameters values a 1.1% percentage of neurons satisfies the tests.
Probably doesn’t change its state after 500 iterations. Moreover, a stronger
stability occurs when the value of the parameter increases, although a certain
indeterminacy is always present. It is not possible to make serious forecasts
as final state of the network. Another interesting question is related to the
tour lengths. For 100 different intial conditions we obtain many good tours;
many of them are different.

The distribution of the lengths of the good tours are in Fig.(2.11). The
distribution is approximately gaussian, therefore the system does not grant
a privilege to the shortest tours. The energy has many local minima, and
which of them is reached seems to depend only on the initial conditions. An
important characteristic of a computational algorithm is its scaling property.
The HT when implemented on a serial digital computer scales as O(n®);
it is easy to control this property by analyzing the eq.(2.10) or, in a more

direct way, by determining the time required for convergehce of systems with
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Figure (2.10) The best tour obtained with A=B=C=D=800 The city set is that
labelled with 1 in the Tab. 1. The length of the tour is 2.90 units.

different number of cities. At this point we have a deeper understanding of

the network behaviour, also if some aspects remain unclear.
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Chapter 3

The modified Hopfield-Tank Model

In this Chapter an attempt to improve the computation efficiency of the
Hopfield~Tank model is presented. A correction term is added to the energy
and the results of computation of the modified model are given for the same
city sets and the same parameter sets considered in the unchanged network
model. A significant improvement of efficiency is obtained: more than 80
good tours out of 100 different initial conditions are obtained for different
city sets. It has also been analyzed the dynamical behaviour of the network,

and a comparison with the unchanged network has been done.

3.1 The correction term

The application of the HT model to the TSP is not very satisfying. So,
it would be important to try to improve the computation efficiency of the
network. The most natural approach to doing this consists of adding to
the energy expression an excitatory term. In fact the permutation matrix
corresponding to no-good tours, has too many zeros. In other words, the
number of ones is less than the number of the city. This means that the

excitatory term is too weak. Modifications to increase the excitatory term
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might be done in many different ways. We have obtained good results by

adding to the energy the following term

Es = —?ZZ(V ”—-1)2 (3.1)

with G a positive parameter.
So the total energy expression becomes

A B
E=33 3 > VaiVajb 52,0 D VeVt

z i jF#i 7 T y#Fz

2 (Z S Vi N> T (3.2)
modIN

‘g‘ Z Z Z doy(Vyivr + Vyic1)Vait

z yFz 1
G
S SN

The term in eq.(3.1) is minimum if all the output voltages are 1. It is an
antagonist to the first and the second term in the energy. The effect of the
correction term is simple to understand analyzing the corresponding force.
From eq.(3.1) we have

Fip = -G(Viz — 1) (3.3)

The most evident characteristics of the force in (3.3) term are

1 It is always positive or null, because V;; < 1. So, (3.3) term it is an
excitatory term. |

2 It has a local character. Only one output voltage is present. The output
voltage is associated to the neuron we are considering.

31t tal;es effect only on the neurons with output different from 1. This action

increases while V;, decreases and viceversa. So, it is clear a feedback action.
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Finally (3.3) term adds to all neurons a positive force, and tries to push
the system to increase the number of ones. Some problems could be if this
term were too strong, but it is possible to regulate its force by varying the

parameter G.

3.2 Results
Like first choice we have put A=B=C=D=G. At least for small modifications
of the parameter set, this choice is revealed as the best one.
The number of valid tours obtained out of 100 different initial conditions
is reported in the Tab. 4 for three city sets. Different parameter sets are
considered. We have used the same initial conditions and the same city sets
as in the Chapter 2.

A=B=C=D=G SET1 SET2 SET3

100 72 73 62
200 78 82 65
300 80 83 66
400 84 89 69
500 87 91 66
600 88 90 71
700 94 92 81
800 94 93 7
900 91 95 82
1000 94 92 80

Table 4 Number of valid tours for 3 different city sets obtained by varying the
parameter values. We used the same termination criterion of HT, and the same

initial conditions as in Tab.1.

It is evident a great improvement of the network efficiency. In 100 different

guesses the network obtains, in average, 81 good tours. So, the addiction of
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the new term is able to increase the number of valid tours. To understand
how this is realized, let’s pass to analyze the energy behaviour.

An example of the energy course is shown in Fig.(3.1).
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Figure (3.1) Energy course for A=B=C=D=G=300. The city set is that labelled
with 1 in Tab.1.

The G term doesn’t change the qualitative course of the energy, but there
are some difference. The transient period is now longer. Without the cor-
rection term, the transient period lasts until 100th step, now it may last
until 150th step. It seems as if the network needs more time to burn out the
increased excitation and to reach a “stationary state”. Another difference
is the decreasing of the critical value ,‘i.e. the value for which the energy
begins to oscillate during the time evolution. Without the correction term

the critical value is equal to 226, now it is 204. This fact is in agreement
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with the increasing of the excitatory term that controls the energy course,
as we have seen in the previous part.

Anyway we can conclude that the network works in the same way as in
the previous case. During the computation the system tries to reach local
minima, the majority of these corresponds to valid tours. So, the energy
structure is quite unchanged, instead the final states (or fixed points ) of
our system are modified. Another interesting point to analyze is the present
stability of the network. In the Tab.5 there are, for different parameter sets,
the percentage of neurons that don’t satisfy the conditions (2.14) and (2.15)
or (2.16). Comparing Tab. 3 and Tab. 5 it is evident an increasing of the
instability, in fact more neurons than in the HT process don’t satisfy the

conditions.

A=B=C=D=G PERCENTAGE

100 0.040
200 0.034
300 0.034
400 0.034
500 0.034
600 0.034
700 0.034
800 0.035
900 0.035
1000 0.036

Table 5 Percentage of neurons that don’t satisfy the tests.

On the contrary, this instability is not present in the permutation matrices.
In other words, we don’t observe changes of these matrices after many it-
erations. This apparent contradiction can be understood by observing the

iterated maps. Sometimes in the iterated maps small oscillations are present
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in the linear region. These oscillations are small so quite always they are

not able to affect the permutation matrix, i.e. they don’t pass through the

threshold. In Fig.(3.2) is shown the iterated map with the same input data

of the Fig.(2.8).
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Figure (3.2) Iterated map for the input of the (1,1) neuron.
is A=B=C=D=G=600. The number of iterations is 150.

The parameter set

The increasing of the instability might be attributed to the feedback effect.

The best tour obtained out of 100 different initial condition and with A=B=C

=D=G=800, is the same as the HT model.
Consider the distribution of the length of the good tours (Fig.(3.3)) It is

approximatively a gaussian. In the example in Fig.(3.3) the distribution

seems centred around a value smaller than that in Fig.(2.11). In other cases

we have obtained similar results. So, the system is more efficient also .
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with regard to the tour length. So, a simple modification of the energy
expression can improve the network behaviour. This is very satisfying, and
it proves the potentiality of the Hopfield model. An opportune choice of
the energy expression is able to guarantee a good behaviour of the network
with respect its task. But the way of choosing the correct term or the best
expression is not very well-defined. There are no rules, and in some way it is
not possible a real control of the system. At this stage it is still necessary an
empirical approach, but a deeper understanding of parallel processes could

be modify the situation.
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Figure (3.3) Distribution of lengths of the valid tours for A=B=C=D=G=800.



Chapter 4

Other Applications of Neural Networks
to the TSP

Other two methods to solve the TSP and based on a neural network
approach are presented. The methods are similar, both of them describe how
is possible to obtain valid tours by deforming a circular path in a opportune
way. Some results of the computation by varying parameters are given. A
comparison between the two methods has been done. For the same city
set are presented also the results obtained by applying the Hopfield-Tank
method.

4.1 The Elastic Net Method

Durbin and Willshaw [22] describe a parallel analogue algorithm. This ap-
proach is essentially geometrical: a tour can be viewed as a mapping from
a circle to the plane. Consider a continuos mapping from a set of points
belonging to a circular path of points to a corrisponding set of points in
the plain so that neighbouring points on the circle are mapped as close as
possible on the plane. The algorithm is a procedure for the successive mod-

ification of the mapping i.e. sccessive recalculation of the positions of the
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image of points in the plane of cities. The image points describe a closed
path which is initially a small circle centred on the centre of the distribution
of cities and is gradually elongated non—uniformly to pasé eventually near
all the cities and thus define a tour around them (Fig.(4.1)). Each point on
the path moves under the influence of two types of forces. The first force
moves the point towards those cities to which it is nearest; the second pulls it
towards its neighbours on the path acting to minimize the total path length.
By this means, each city becomes associated with a particular section of the
path (not necessarily to a singular point). The tightness of the association
is determinated by how the force from a city depends on distance, and the
form of this dependence changes as the algorithm progresses.
Initially all cities have a roughly equal influence on each point on the path.
Subsequently, longer distances become less favoured, and each city gradually
becomes more specific for the points on the path closest to it. This gradual
increase of specificity is controlled by a reduction of the length parameter K.
The algorithm is called Elastic Net Method because of the way in which the
initial path is gradually deformed to produce the final tour.

The position of a typical city i is denoted by the vector x;, and those of
a typical point j on the path by y;.

An energy function can be defined as

E:—aKZln Z¢(|x;—yj|,1{) +ﬂZ|yj+1~yJ‘12 (4.1)

where ¢(d,K) is a positive, bounded decreasing function of d, that ap-

proaches zero for d > K.
The authors have chosen for ¢(d, K) the following form

a2

#(d, K) = eap(~#%) (4.2)
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Figure (4.1) A set of 20 cities in the unit square. The initial path is shown.

The constants o and 3 determine respectively the relative strenghs of the
forces from the cities and from its neighbours on the path. In the limit
where K tends to zero, for E to remain bounded the limiting path must pass
through all cities. The rule for the change Ayj in the coordinates y; of the

point j at each iteration is

which means that any change in y; according to eq. (4.3) results in a reduc-
tion in the value of E and, because it is limited below, local minima of E will

eventually be reached. So one obtain

Ayj=a wa — ¥5) + BE(¥ie1 — 295 + yi-1) (4.4)
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where w;; is given by:

o8 — il K)
N 2ok O(1xi — yil, K)

In the limit where K tends to zero and the number of points M on the

(4.5)

path tends to infinite, the global minima of the energy function are optimal
solutions of the TSP. This suggests that even when these limits are not
achieved, good tours will be obtained.

The elastic net method operates by integrating a set of simultaneous first
order differential equations, an essential parallel operation, and it therefore
naturally lends itelf to implementation in parallel hardware. For applying
the algoritm to a given set of N points, we have to know the values of a and
B3, the number of the points in the path (usually it is 2 N ), the initial value
of K and its decreasing at each iterative step.

If we put good values of the parameters, the system works very well, but it
is sensitive to them. Changing the city set it is necessary to find new values
for the parameters, this it is not satisfying. In some cases it is sufficient a
small modification of these parameters, but in other cases the search is more
complex. In the example shown in Fig.(4.2) the best tour for 20 cities is
found with a partial search on the parameter space.

For the same city set let’s apply the HT method. Putting A=B=C=D=800
we obtain 10 good tours out of 100 different initial conditions, the shortest
tour is shown in Fig.(4.3). It is evident that the elastic net method yields
a better tour than the HT model, in fact the tour is shorter and without
intersections. Moreover it is interesting to observe that some pieces of the
two tours are the same, so the methods locally find same solutions. The HT
method with the correction term yields 43 good tours out of 100 different
initial conditions, the best one is in the Fig.(4.4). The tour in Fig.(4.4) is
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is quite identical to that obtained by the elastic net method (Fig.(4.2)).
Only a small local modification is present. Finally, all methods yield, as the
best tour, similar paths, so it is problably that the assolute best tour has a

structure near to that shown in Fig.(4.2) and Fig.(4.4).
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Figure (4.2) A tour obtained by the Elastic Net Method putting a = 0.07, § =
0.3, K = 0.4, N =20, M = 40. The tour length is 3.46 units. The city set is
the same shown in Fig.(4.1)

Let’s summarize the principal characteristics of the elastic net method.
This network, as the HT network, is dedicated, i.e. the energy expression,
that can be implemented as hardware, is written for solving the TSP. More-
over it can be implemented in a parallel computer. Unlike the HT model, the
elastic method has a deterministic character, in fact neither random choice,

nor noise are present. Another important aspect to consider is how the al-
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Figure (4.3) The best tour obtained by the HT method putting A=B=C=D=
800. The tour length is 3.84 units. The city set is the same shown in fig.(4.1)

gorithm scales with the number of the cities. The main computational cost
is in calculating the distances | z; — y; | at each iteration and it is there-
fore proportional to the product of the number of iterations required by the
number of significant connection. The number of connection is of the order
N? (given the number of the points on the path is of order N) given that the
number of iterations does not scale.

So this algorithm scales as O(/N?) and it is better than the Hopfield-Tank

method, that, as we have seen, scales as O(N?).

4.2 The Kohonen Method
Another method that applies neural networks to the problem of TSP is the
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Figure (4.4) The best tour obtained by the HT method with the correction
putting A=B=C=D=G=800. The tour length is 3.53 units. The city set is the
same shown in fig.(4.1)

Kohonen Method. In 1982 Kohonen [23],[24] proposed a stochastic algorithm
which he called a self-organizing process. The basic property of this process
is to build a mapping from a topologically ordered set into a continuous or
discrete topological set, this mapping preserves the topological properties of
the first set. Kohonen was attempting to construct an artificial system that
can show some behaviours as the brain. The brain is organized in many
places so that aspects of the sensory environment are represented in form of
two dimensional maps. For example, in the visual system, there are several
topographic mappings of visual space onto the surface of the visual cortex.
The fundamental fact that must hold true for a topographically organized
system is that nearby units respond similarly. Although the Kohonen algo-
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rithm seems far from the TSP, it is possible to reformulate it in a suitable
form to solve it ([25], [26]). An approximate tour in this approach is given
by a set of nodes joined together in a one dimensional ring, evolving in a
continuous manner towards the ultimate solution path. All nodes are freely
moving in the plane through an iterative process; eventually, an actual tour
will be obtained, when every city has caught one node in the ring. An in-
tuitive view of the algorithm is as follows. An iteration step consists in the
presentation of one city. The node closest to the city being presented moved
towards it and induces its neighbours on the rings to do so as well, but with
decreasing intensity along the ring. The nodes will progressively become in-
dependent from one another, and, eventually, each will attach to one city.
Let A1, As,...An be N points (cities), we want to find a circular permutation
o* so that
N
d=3 [ Aidoes
i=1

reaches its minimum at o*.

The Kohonen method does not preserve the discrete feature of the problem.
It is embedded in a continuous state space problem, and it could be treated
also in continuous time, but the authors have chosen a discrete time process.
Consider a circular array, done by points zg,z1,...zp_1 € [0.1]? with the
natural following neighbourhood structure: let l, an integer and [, <« M,

the neighbours of z; are the z's € v(i), where
v(i) = {4,7 € [i — loyi + 1] moduloM } (4.6)

Then we define the process Xt = (X¢, X4, ..., X}t;_1), putting an initial value

for JYO

_Xo = (:Bo,:vl,...,icN._l)

o1



and
617627 °*y €t7 A

a sequence of independent i.i.d. random variables uniformly distributed over
the Als.
We denote by ,(¢) the index such that

162X oyl = inf{]|€F X} (4.7)
And now we can define X**! by:

X = (1 — €)X + 6t for © € v(i,(t))
(4.8)
Xttt = xt otherwise
€¢ is a small parameter going to 0 as t goes to infinite.

So we get a circular array X* which is moving in [0,1]?. Then we put A

| the square distance from the city j to city k
Aji = || 4; A
and ij the square distance from the moving point i to the city j
ij = ||XZ'AJ'”2

At this point it can be shown by using the eq. (4.8) the following updating

rule

Df;H = ij + € [Ajjo - (ij + ijo) + fthjo] for i € v(i0())
(4.9)
Df}H == ij otherwise

A little bit different algorithm has been proposed considering a closer bio-

logical modelizzation, but this algorithm is less efficient in the computation.
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Before doing simulations some practical problems are to be taken in account.
The way of decreasing ¢; is essential to get a good convergence. Fort considers

a good choice the following

_C
(14+1Int)

with different value of C, according to each case. This is a very delicate point

(4.10)

€y =

as we will see later. At the beginning of the process a large neighbourhood
(for example [, = 5) is chosen and it decreased during the computation. We
end the process by taking [, = 0. A faster convergence is obtained if the
number of the points in the array (M) is greater than the number of the
cities (N). For N=20 we have put M=50.

Consider the same city set shown in figures (4.1)-(4.4), and apply the Ko-
honen Algorithm. From the results of the computation we can observe that
by varying the C—parameter quite all guesses converge to a good tour. So,
the algorithm can be considered very efficient; in fact it is not necessary to
choose right values of parameters to obtain good paths. The tours obtained
for small changes of the C—value, are very different. An example of this is
given in Fig.(4.5) in which the course of the tour lengths by vaying C is
shown. The stability of the process is only apparent, besides a strong insta-
bility is present, and it may be attributed to the stochastic character of the
algorithm. The best tour obtained with an automatic search of the optimal

value of the C—parameter is shown in Fig.(4.6).

The Kohonen Algorithm is similar to the Elastic Method in fact the basic
idea is essentially the same. But some important differences must be pointed
out. The elastic method is deterministic, while the Kohonen Method is a

stochastic process. The elastic method, as the HT method, is dedicated to
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Figure (4.5) Tour lengths by varying the C-parameter with N=20, M=50.

the TSP through an energy function, while the KA only needs of defining a
task to perform it in a topological way. Moreover, as the other two methods,
also the Kohonen algorithm can be parallelized. But this operation is not as

immediate as in the other two methods.
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Figure (4.6) The best tour obtained by The Kohonen Method putting C=4.1,
N=20, M=50. The tour length is 3.66 units. The city set is the same shown in
Fig.(4.1)
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