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1. Introduction

One of the open problems in Quantum Field Theory (Q.F.T.) regards the
possibility of constructing a consistent quantum theory of gravitation. The per-
turbative computations of t’"Hooft and Veltman (1975), showing that pure gravity
is one-loop finite on shell, revealed the possible existence of a hidden symmetry in
the pure gravity sector, ensuring the absence of divergences, and raised the hope
that the theory is actually finite. But recently, the analysis of Goroff and Sagnotti
(1986) [GS] proved that pure gravity is two—loop divergent even on shell: there is
no hidden symmetry, neither in the simplest gravitational theory, which ensures

its finiteness.

Although the introduction of supersymmetry improves the ultraviolet behav-
ior of gravity (IV = 1 supergravity is expected to be two-loop finite) nowadays
also the N = 8 supergravity theory in four dimensions is believed to be not renor-

malizable: there are candidates for counterterms from seven loops onwards.

Various attempts of unification of the fundamental forces during the last years,
revived the ideas of Kaluza and Klein of extra dimensions, enlarging in this way
the scenario of the conventional Q.F.T.’s, but introducing, at the same time, also
several drawbacks with respect to four dimensional models. Yang—Mills theories,
at present the cornerstones in the description of the fundamental interactions, are
not renormalizable for D > 4, there are Lorentz anomalies in D = 4n — 2, and in
particular in ten dimensions, and, moreover, the introduction of new dimensions
implies that one has to ”invent” some compactification ‘schemes which bring us
down to our four observed dimensions.

The discovery of the Green—Schwarz anomaly cancellation mechanism [GSW]
in the minimal Supergravity Super-Yang-Mills theory in ten dimensions, which
can be thought of as an effective low energy theory of superstrings, and espe-
cially the proof of the finiteness of one-loop scattering amplitudes in string the-

ories (1984), raised the hope that (at least at the perturbative level) a consistent
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quantum theory of gravitation can be found. One of the appealing features of
string theories is that the presence of gravity is required by consistency, for exam-
ple in the Green—Schwarz mechanism, where Yang—Mills anomalies cancel versus
Lorentz—anomalies, while in conventional Q.F.T.’s the introduction of gravity usu-

ally spoils their consistency.

Although presently no deep understanding of the role of Superstring Theory
in the outstanding problems of elementary particle physics, like the fermion family
replication or the large splitting between the fermion mass scales, has been reached,
String Theories offer for the first time the possibility of computing, in principle,
quantum gravitational effects. One expects not only to reproduce classical General
Relativity in some large-distance regime, but to get also a deeper insight into the

nature of quantum corrections to General Relativity.

String Theory is an S—matrix theory, so only on-shell transition elements of
scattering processes can be obtained. Although the perturbative approach for
closed strings has been very well established, at least up to two loops, presently
no non perturbative formulation of String Theories is available. Nevertheless in
various asymptotic regions of the (s,t) space, s being the total energy squared in the
center-of-mass frame and t the square of the momentum transfer, the evaluation
of scattering amplitudes, especially of four—graviton amplitudes, has been possible
also at higher genus: the employed techniques are mainly Regge~Gribov methods
[ACV,SU], which are suitable for the study of large s and small t, and saddle point
evaluations [GM], the latter being appropriate for large momenta and fixed angle

configurations.

One of the peculiar features of the situations studied in [ACV,SU,GM] is the
existence of non-renormalization theorems. These theorems, which are rigorously
proved up to two loops and supposed to hold at all orders in perturbation theory,
ensure the vanishing of one—, two— and three-point functions with external mass-
less legs (even "off shell”) in ten dimensional type II and heterotic Superstring

Theories [MA]. The absence of those radiative corrections implies, in particular,
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that in the limit of s — co and ¢ — 0, in the four-graviton amplitude at one-loop
only rescattering diagrams are present, and that, at all orders, no one-particle—

reducible (1IPR) contribution appears.

In this thesis we are concerned, at one loop, with situations in which the
non-renormalization theorem does no longer hold, devoting special attention to

the 1PR contributions to the amplitudes.

Two are the cases that we have analysed. The first case treats with a scatter-
ing of a scalar massive particle, of the first excited level of a type II superstring
model in a four dimensional target space, with a massless graviton. This can be
seen as a kind of gravitational version of the Compton scattering in QED. Our
analysis of the 1PR contributions to the amplitude, for large s and small t, reveals,
as leading contribution, a term proportional to —1\/—; from which the a'-dependence
drops out. It can be interpreted as a long range correction to Newton’s potential
like the first order expansion of the Schwarzschild metric. We show also that this
leading term is produced, as expected by general arguments, by the elastic” part
of the 1PR contribution to the amplitude. For this leading term and for other (for
t — 0 subleading) contributions we found an interpretation in terms of ordinary
Feynman diagrams, where also a state of the second excited level of the string

spectrum appears.

The second topic, that we considered, is four—graviton scattering (to which
in the literature great attention has been paid) at one-loop in a four dimensional
model with low (N < 8) space-time supersymmetry. The break-down of the
N = 8 supersymmetry, in the case considered by us down to N = 4, implies also
the break-down of the non-renormalization theorem. The amplitude turns out
to be a sum of two parts, AV=% + AN=% where the first one is the amplitude of
the model with unbroken N = 8 supersymmetry, while the second one, ANV=%
breaks this high supersymmetry and allows for non vanishing graviton two— and
three—point functions. Performing also in this case an analysis at large s and

small t we find 1PR configurations containing three-graviton vertex corrections,
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corresponding to one-loop three—point functions, and graviton self-energies, cor-
responding to one-loop two-point functions. These features resemble much what
happens in ordinary Q.F.T’s; we found, however, the interesting result, that, in
spite of absence of non-renormalization theorems, neither the tree-level graviton
propagator 1/t, nor the tree-level "three-graviton-vertex” v/Gs, get renormalized.
In this case ”"Schwarzschild-like” corrections, exhibiting a factor of —1—2, are seen to
be absent. The leading behavior of the amplitude is in both cases rather be seen to
be G?s2(Int)™, n=2,1 respectively, which has no "classical” counterpart and which

is subleading with respect to the leading rescattering contributions.

Furthermore we detected infrared divergences in the vertex correction, typical
of four dimensions, whose presence can already be understood at the Q.F.T. level
and which should be of the Bloch-Nordsieck type. Of course, the check of such
a statement would involve the explicit implementation of the Bloch—Nordsieck

cancellation mechanism, a problem which is outside the present investigation.

Throughout this thesis a constant attention has been paid to the compari-
son of the obtained results with ordinary Feynman diagrams in their parametric
representation. In all cases under investigation String Theory is seen to reduce to
Q.F.T. in the limit in which s — oo and ¢ — 0. Moreover, the parametric repre-
sentations of Feynman diagrams are seen to be reproduced by the string in certain
"pinching limits”, which correspond to degenerate configurations in the moduli
space. This allows us to speculate about a more deep correspondence between
strings and ordinary field theories, which, perhaps covers also certain subleading
terms for s — oo and ¢ — 0.

The thesis is organized as follows. In Chapter 2 we describe the compactifi-
cation scheme of Antoniadis et al. and work out the particular four dimensional
string models, on which our investigations in Chapters 4 and 5 are based. Partic-
ular attention is devoted to the sums over spin structures.

In Chapter 3 we present the hyperelliptic language, in which all our investiga-

tions are carried out, and establish also its relation with the §—function formalism.
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We derive several ”pinching limit” identities that are then extensively used in the
subsequent chapters.

In Chapter 4 we present our ”"Compton-like” scattering, perform the rele-
vant pinching limit, we are interested in and derive our results, among which the
Schwarzschild correction is probably the most significant one. In the last section
of this chapter we make a comparison with Feynman diagrams.

In Chapter 5 we study four—graviton scattering at N = 4 supersymmetry. We
revisit the leading rescattering terms in the N = 8 contribution to the amplitude,
with the aim of depicting their relation with the parametric representations of
the corresponding ordinary Feynman diagrams. In the last section we study the
effects of non vanishing two— and three—point‘ functions in the supersymmetry
breaking contribution to the amplitude, proving "non-renormalization-theorems”
when there are no a priori non-renormalization theorems. Wé depict the infrared
divergence and make also here a comparison with Feynman diagrams. Chapter 6

is devoted to some concluding remarks.



2.  Four dimensional strings

In a fermionic formulation of compactified strings the set of free Majorana-
Weyl fermions which enter in D - dimensional type II string theories is given by

the set [SC]
F = {g*,$#,34,34} (2.1)

Here p runs from one to D—2, the number of transverse space-time dimensions, and
A goes from 1 to 3(10— D) and labels the internal compactified degrees of freedom.
Bared and unbared fields refer to right- and left-moving modes respectively.

In addition to these fermions we have a space-time vector of uncompactified
bosonic coordinates, 8, X* and 8; X*, where p =1,2,...,D.

In a covariant BRS-quantization of strings one has to add (for each chirality
sector) also Fadeev-Popov ghosts; these are made out of an anticommuting b,c
system of conformal weight 2 and -1 respectively and of their commuting super-
partners 3, with conformal weight 3/2 and -1/2 respectively.

For completeness we remark that for the heterotic string we have to replace

the right sector with the following fields:

bosonic coordinates — 0;X*, p=1,2,...,D
compensating fermions — %*, A=1,2,...,2(26 — D)
reparametrization ghosts — b,c

This content of primary fields is basically fixed by the requirement of cancel-
lation of the conformal anomaly. In fact, each Majorana-Weyl fermion contributes
to the central charge with ¢ = 1/2 and each bosonic coordinate with ¢ = 1 while
the conformal systems, (b,c) and (3,7), give universal contributions of ¢ = —26
and ¢ = +15 respectively. Thus the conformal anomaly cancels in each sector
separately.

In the following we are interested in D = 4 and in the case of type II super-

strings.



In the construction of string models in D < 10 dimensions one has to take

into account the following consistency requirements [ABK,ABKW,FG,KLT,N]:

1) Local world-sheet supersymmetry should be realized (non linearly) in both
chirality sectors. This property allows a consistent decoupling of negative
norm states and requires, in turn, that the supercurrent has a definite spin
structure.

2) Multiloop string amplitudes on higher genus Riemann surfaces must exhibit
modular invariance. This implies, in particular, that we have to sum over
spinstructers [SW] and that GSO-projections [GSO] are automatically per-

formed.
3) We make the unitarity requirement of factorization of multiloop amplitudes.

These properties will (in particular models) imply the absence of tachyons, ensure
the presence of space-time gravitinos and gravitons and of space-time supersym-
metry; the cosmological constant in these models was shown to be zero up to two

loops [ABRV,ISZ,MO] and some of the models have, from the phenomenological

point of view, promising underlying gauge groups.

2.1 The compactification scheme of Antoniadis et al.

The models which satisfy the requirements (1-3) of the preceding paragraph
can be classified (for example) by means of the set-notation, introduced by Anto-
niadis et. al. [ABK], which is appropriate for the description of spin structures

for the fermionic variables. We will use this approach in the following.

On the torus, which constitutes, via factorization, the basic block for higher
genus Riemann surfaces, the homology basis is given by the a- and b-cycle which
are often also called the 1- and 7-cycle respectively. The spin structure for one

fermion is then specified by a couple of numbers, [‘Iﬂ , where a and b can assume
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the values 1 and 0, which refer to periodicity and antiperiodicity respectively along
the a- and b-cycle.
The possible spin structures on the torus are therefore given by [g], [3] and

0 . .
[1], which are the even omnes, corresponding to an even number of zero modes of

the Dirac operator (in fact, they have none), and by [ﬂ which is the odd one,
corresponding to one Dirac zero mode.

A given spin structure of all the fermions can then be specified by an ordered
pair of subsets of F, («|8), where a and § are the sets of fermions that are periodic
in the directions 1 and r respectively. The one-loop vacuum to vacuum amplitude
for a consistent string model can then be written as (see for example [ABK]):

Z= ), C(alf)Z(ap (2.2)

a,BE€ED
In (2.2) T is a subgroup of Y = 2F, the set of all subsets of F, where the compo-

sition law is given by the ”symmetric difference”
af=alUf—anp (2.3)

Z(«|p), Whose explicit form will be given later on in the hyperelliptic language,
is the contribution to Z of a fixed spin structure and involves a factor §/2 [‘Z] =
/2 [+](0|7) for each left-moving fermion with spin structure [5]; this factor has to
be complex conjugated for each right-moving fermion. C(«|83) are phases which
can assume the values +1 and -1 and are constrained by the requirements (1-3).
Defining n(«) as the number of left-moving fermions minus the number of

right-moving fermions in the set a:

n(a) =ng(a) — nr(a) (2.4)
and setting:
e(a) = emm()/8 (2.5)

the requirement 2) at one loop becomes [SC]:

C(alB) = e(F)e(«)C(a|Fap)
C(alf) = € (an B)C(Bla)
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where conventionally we set:

C(09) =1 ‘ (2.7)

We remark that for even spin structures (e N ) = 1 and that e(F') equals -1 for
for the heterotic string and +1 for type II strings.

Requirement 3), applied to the factorization of a two-loop amplitude, gives
[ABK]:

C(alB)C(aly) = 6(a)C(alBy) (2.8)
Here 6(c) is defined as -1 if o contains % or ¥ and as +1 if it contains both or
none of them.

Equations (2.6) and (2.8) suffice to determine all coefficients C once a basic
set of coeflicients has been given. To be more explicit: when computing the
cosmological constant or bosonic 4-point amplitudes the odd spin structures drop
out; therefore we are interested only in the even ones, which means, only in the
coeflicients C'(«|f) such that a N B = 0. For those coefficients (2.5)-(2.8) imply
the following relations (for type II strings):

C(alB) = C(Bla)
C(e]0) = 6(a)
C(Fald) = §(cx) (2.9)
C(alFa) = ¢(a)8(a)
e(F) = e(0) = 6(F) = 6(0) = 1

At this point, in order to determine all the phases C, we have to make a set of

assignments +1 for C(b;]b;),7 < j, for those generators b;,b; of & such that
b = 0 (2.10)

To fix the model completely we have to give the generators G' = {b;} of ¥. This

set {b;} has again be constrained by a set of rules in reference [ABK). In particular
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the requirement 1) imposes on the 18 compactified fermions the SU(2)®-structure.

Consequently the supercurrent assumes the following form:

3 6
G(z)= > 8. X, + Y z'y"s" +2c08 — vb+ 30ch (2.11)
n=90 I=1
where
M= (!0} IT=1,...,6 (2.12)

and analogous relations hold for the right-movers. Supersymmmetry requires then

G(z), ¥ and the world sheet gravitino to have the same spin structure.

2.2 Specific models

Without entering in the details of the rules mentioned above we will just give
some representative examples (which fulfill those rules) and which will then be

used in the following. For this purpose we define the generators:

§= {¢1,¢2731,'-'736}
E:{'J’-ly";z,ilw--aie} (2'13)
b= {¢17¢27m17z27937'--7y6a53a"'7567:?37"' agﬁ}

and consider the following sets of generators each of which corresponds to a con-

sistent 4-dimensional string model:

Gy = {F75}
Gy = {F,s,5} (2.14)
G3 :{Fasvg,b}

The set 3; is given for example by:

¥, ={F,s, Fs,0} (2.15)
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while ¥, and 3 involve correspondingly more elements. We note that the models
corresponding to ¥1,%, and £; have space-time supersymmetry N = 4,8 and 4
respectively (see Chapter 5). Although this high supersymmetry seems extremely
unreasonable from a ”phenomenological” point of view there exists an entire class
of more realistic models [DKV], with N = 4,2 or 1, whose amplitudes contain as
principal building block the amplitudes of the models described by ¥, X5 and %j.

To illustrate how to build a model from the above rules we construct now the
sum over spin structures, and correspondingly the scattering amplitudes, for the
simplest model, which is the one given by X;, even though in the following we will

consider mainly the models X, 3.

We begin by writing (2.2)) for X; (writing only the spin structure dependent

part):

7, = C(0)0)6* g 6° 8 5o g © o))t mee m 1o [g}
+ C(s/0)e" (1) o070 + cipse g % 2 o ‘1)
+ oo |)|ee %] ae %] + o 1o )5 (2.16)
rowsmet| e a2 + oo 2o 7o
17 - [17 =0 [1]
+ C(F|0)6* o) 68 o) 610 o

In this case (2.9)) is sufficient to fix all the phases C because b; N b; 7 ( for all
bi,bj & G1:

C(0]0) = C(B|F) = C(s|Fs) = C(Fs|s) = C(F|0) = +1 -
C(0]s) = C(s|0) = C(B|Fs) = C(Fs|0) = —1 '
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Defining:

1
01 - 0 _1- - 0
-
g, =90 0
o] (2.18)
03 = 0 .O_
o]
94 = 9 -1-
and
m=—1=mn
(2.19)
73 = +1
we obtain:

4 4
Zy = (Z n,-[a,-}”é;*) anej. (2.20)
i=2 j=2

The cosmological constant, eq.(2.20), is manifestly modular invariant due to the
well known transformation properties of the Jacobi theta-functions; in fact it van-
ishes due to the Jacobi identity as it should for "realistic” models.

When we have also insertion of vertex operators, or, more specifically, of an
operator O;; which depends on the spin structures only through v;, with spin

structure i, and 1Zj, with spin structure j, we get:

4 4

<O >1= Y "nim; (Oy5) 16:]*26 85 (2.21)
i=2 j=—2

Actually (2.21) holds if we suppose that 1/2-fields with odd spin structure do not
contribute. This depends on how many, and which, 1/2-fields are present in the
operator O;;. As we shall explain in section 4.2, in our applications the odd spin

structures will never contribute to the amplitudes and so we can apply (2.21).
For what concerns the models ¥, 3 we note that their partition functions
contain always Z; and in addition pieces corresponding to the elements in X5 3
which are not present in %;. In these cases, due to the fact that s N5 = 0, the

unique phase which is not fixed by (2.5)-(2.9) is C(s|3) while all other generators
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have intersections among them self which are different from 0. Remarkably enough
both choices, C(s]|5) =1 and C(s|5) = —1, lead (as must be) to modular invariant
theories while only C(s|3) = 1 leads to a vanishing cosmological constant. We will

therefore choose:

C(s|5) = +1 (2.22)

Repeating then the above procedure, which is now slightly more involved, (2.21)
is completed to the following left-right symmetric form for < O >,:

4

4 4
<0 >,= Z Z'l’]inj <Oij> 935? (Z 19k|12> (2.23)
k=2

1=2 j=2

For < O >3 we get instead:

4
<O >3=< 0>+ > [6:[°16;1° (16:]* + 16;]*) (O — Os; — Oji + 055) (2.24)
Usually in string theory the spin structure dependent part of O;; factorizes in a

left and a right part:
0;; = 0,;0; (2.25)

In this case we get:

4
<O >3=< 0>+ Y [6:°16;° (16:* +16;1*) ((0: — 05) (0: — Oj)) (2.26)
1< J=2
Also in (2.26) the odd spin structures are supposed to not contribute to the right
hand side (see chapter 5). The cosmological constants are recovered from (2.23)
and (2.24) setting O;; = 1 and are easily seen to vanish.

The model described by X, (which contains in some sense the model %) is the
simplest one and will be used to study the scattering of a massive particle with
a graviton; in fact, in this case the non-renormalization theorem does not hold
(even in 10 dimensions) and we expect genuine field theoretic one-loop corrections

to gravity.
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The model X3 will be used to investigate 4-graviton scattering amplitudes;
it is this model, with low space-time supersymmetry, which allows non vanishing
two-and three-graviton amplitudes. Thus this is the appropriate situation where
the new effects we are searching for should appear.

Before entering in the details of the computation of these amplitudes we will
in the next section present the hyperelliptic language, which is appropriate, as we
will see, for the extraction of field-theoretic corrections from superstrings and give

some useful formulae.
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3. The hyperelliptic language

3.1 The hyperelliptic torus and the main correlators

Every genus one (and two) Riemann surface can be realized as a hyperellip-
tic .surface in CP2. We will give here only the explicit formulas for the genus
one case, which is the one needed in the following, generalizations being almost

straightforward [BR,GIS,KN,MO].

The genus one surface is described by:

(3.1)

where the complex numbers {a;} are the four branch points three of which are
fixed by Mobius invariance while the remaining one is the modulus of the torus.
However, sometimes other choices for the gauge fixing will be more convenient.
Modular invariance, in this language, corresponds to complete symmetry in the
branch points. As a convention the + sign in (3.1) refers to the upper sheet while
the - sign refers to the lower sheet; we denote the corresponding points on the two
sheets as z+. The torus is thus seen as a double covering of the Riemann sphere,
S?, introducing, for example, analyticity cuts from a; to a; and from a3 to a4, see
Fig.2.

The unique abelian holomorphic differential is given by:

dz
Qz) = 3.2
()= 55 (2)
where as uniformizer coordinate near the branch points on should use u:
2 _
v’ =z — a; (3.3)
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Choosing the canonical homology basis as shown in Fig.2 we define:

K:%QM& (3.4)

and
w(z) = QI(;) (3.5)

w(z) is then the usual abelian differential with the canonical normalization:
fw@ﬂz=1 (3.6)
The period "matrix” is defined as:
T = fbw(z)dz (3.7)

A spin structure on the hyperelliptic torus is defined by splitting the branch points

into two non intersecting sets. The three even ones are given by the pairs:

(A17A2lBlaB2) (3‘8)
while the odd one is given by:
(a'laa'27a'3’a'4[@) (39)
with the identifications: "
(12 34) «— 1 1
:1:
(12[34) «— 0 — 2
:O: (3.10)
(13]24) «— 0 — 3
0]
(14]23) «— X — 4

The connection with the §-function formalism is established by the Thomae [F]
formula (for 1=2,3,4):
4(0]r) = £K*(0)Qs(a) (3.11)
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where Q; is defined by:

) .
Qi = H Akt B (3.12)

k<=1
and Akz = Ak — Az, Bkz = Bk — Bz.
The role of the Dedekind eta-function, n(r), is played by the completely an-

tisymmetric polynomial P:

4
P(a) = H aij = Q2Q3Q4 (3.13)
1<j=1
where a;; = a; — a;. In fact, translating Jacobi’s triple product formula for n(7)

[HP] in the hyperelliptic language and using the Thomae formula (3.11) we obtain:
16n*%(7) = K®(a)P(a) (3.14)

Another useful formula is given by:

= —————~——d22 —1 a)|*Tmr .
T(a’) = |y(z)]2 - 2IK( )l I (3 15)

We give now the correlators of primary fields which will be used in the com-
putation of scattering amplitudes. These correlators are uniquely fixed imposing
the right transformation properties under conformal transformations, requiring
holomorphicity and by cancelling poles when points lie on opposite sheets. We

introduce the convenient notation

Zab = Zgq — Zp

b 3.16
Vap = / w(z)dz ( )
First we give the correlator:
11 1 Y(z2) 1 21—z d’z
< 0X(z1)X (= >=———-+-—/ —
(22) X (z2) 2212 2T J y(z1) z12 22 — z |y(2)|? (3.17)

1L (1), Lt L

2z y(z1) 2T y(z1) J (22 — 2) |y(2)[?
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This correlator is well defined when it appears in a combination in which the total

charge is 0:

i < 6X(z1 )X('L) > ¢y, Z c; =0 (3.18)

i==1 =1
Deriving (3.17) with respect to z; and symmetrizing in 1 and 2 one gets easily the
one-loop version of the two-loop formula given by Knizhnik [KN2]:

1 + 1 0 d?z y(zz)i_zl—z
422, AT 0z J |y(2)|? y(21) z12 22 — 2

< 80X (21)0X (23) >= [ } +(12)

(3.19)
Deriving (3.17) with respect to z; we get:

z1, 23 on the same sheet

_ —7r52(z12) + T —7=
< 0X(21)0X(22) >= ______lf_______ZTy #J9(%) z1, 23 on opposite sheets
2Ty(21)y(Z2) ’
(3.20)
As a consistency check of equation (3.20) one verifies easily that
/ w(22) < 8X(21)0X () > d?23 = 0 (3.21)

where in (3.21) the left hand side has to be viewed as a double-sheeded integral.
Deriving, instead, (3.17) with respect to Z; and summing over a neutral system

of charges we get:

n

Z c; < 00X (21)X () >= i ci62(z1i) (3.22)

i=1 i=1
where again the delta function on the right hand side has to be dropped if z; and
z; lie on opposite sheets.
Equation (3.22) permits to derive the following formula whose importance

will become clear in the next section:
< (X(1) - X(3)(X(2) —X(4)) >=

_%/de <OX(2)(X(1) - X(3)) >< 0X(2)(X(2) — X(4)) > (3.23)

Also the integral in (3.23) is an integral over a double sphere.
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Sometimes it is more useful to work with a f-function representation of the
X-correlators. By general arguments [B] one can give a formula for the propagator

< X(1)X(2) > in terms of the odd #-function §[7](v|7) = O(v):

@(1/12) 2 (ImV12)2
= —_— 2 (3.24
<X(1)X(2) > 1n'h(1)h(2)[ T (3.24)
In (3.24) we defined the 1/2 differential h(z) by:
00(v)
= 2
M= 3| (3.25)
while the odd ©-function in turn is given by [GSW]:
O(v) = 2f(¢%)q? sen(mv) H(l — 2¢*"cos(2mv) + ¢*™)
n=1
99(v) 3, 2y 1
=27 <
O |,= Fe)e (3.26)
f(@*) =T =) =n(r)g™"/*
n=1
qg= ei-lr-r
The last formula needed is the propagator for the 1/2 - differentials [MU]:
$a ui(z) + ui(y
< PaloWply) >i= i WL T 1) (3.27)

Y 2y/ui(z)ui(y)

where:

ui(zt) = ii[l (: - §z>1/2 (3.28)

In the last equation the + signs correspond to the two different sheets of the
Riemann sphere and are needed in order to cancel the pole when x and y lie on

opposite sheets.
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3.2 A degenerate configuration in the moduli space

The formulae given in the preceeding section involve frequently integral rep-

resentations which can not be simplified further. However, in the limit

as; — ap z=In Q3 +o0
a
L (3.29)
a4 — ag y=ln|—| — +o0
as34

the integrals can be explicitly evaluated. The limit (3.29), to which in the following
we will refer to as "pinching limit”, is precisely the one we are interested in in our
later calculations; in fact it corresponds, as we will see in Chapters 4 and 5, to
the one-loop exchange of gravitons between energetic external particles [GIZ,IL]:
the hyperelliptic surface splits into two spheres which are attached to each other
through the punctures a7, @, and a3, ds. We will now evaluate some of the previous
formulae in this degenerate configuration of the moduli space. It is straightforward
to obtain:

y(z) = £(z — a1 )(z — a3)

P(a) — (a13)*aiza34

K 2
w(z)-—+:i:——1—.( Lo )

2mi \z—a; z— as
27
T— ——(z +
Ialﬁlz( )
T — Tty . (3.30)
T
Imvys — iln (21— a1)(z2 — as)
21 | (21 —as3)(z2 —a1)

(22 — a1)(z3 — a1)
(22 — a3)(2z3 — a3)

P(a) - 6112(134(&13)4
4
(Z Ile3> ~ 2la1s]°
k=2
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The relations for Imuy, and Imuv,; are valid if z; and 2, lie on the (same) upper
sheet and z3 lies on the lower sheet. For v23 we chose an integration path which
crosses the cut between a; and a, giving an 2. Analogous relations hold for
other configurations, e.g. if z; and z, lie on the lower sheet the formula for Imv,,

changes its sign and so on.

Equation (3.17) becomes, in first approximation:

< 0X(z21)X(z2) >—
1 1 1 [ llllalzl ln|a34l

Z B 5]11‘&120,34! (21 - as) (Zl - al)
L 1 [ lnlau[ + ln}a34! ]
2 1n|a12a34| (Zl — a,3) (21 — al)

Eq. (3.31), when inserted in (3.23), would produce a formula for G(1,2,3,4) =<

(X(1) — X(3))(X(2) — X(4)) >. We are interested in this formula when 1 and 2

] z1, 22 on the same sheet

(3.31)

z1, 2z on different sheets

lie on the upper sheet and 3 and 4 on the lower sheet (see Fig.4).

However, to illustrate the connection between the #-function formalism and
the hyperelliptic language we will derive now that formula from (3.24)-(3.26). We
have in fact:

I -1
4 g3 T b2 (3.32)

Im7

G(1,2,3,4):mlg%%%

Under the pinching limit (3.29) Im7 — +o0 and ¢ — 0. Therefore:

'@(1/12)@(1/34) 2
@(V23)@(V14)

Under the same limit Imv,s, Imris — +o0o, as can be seen from (3.30) and an

sin(muy2 )sin(ryss) 2

(3.33)

sin(mves )sin(ryrs)

analogous formula for Imu4, while, Imvy, and Imyss acquire finite limits (see

(3.30)). We have therefore for the formers:
1 1
|sin(7v)|? = —é[cosh(27rIm1/) — cos(2w Rev)] — ZeZﬂm” (3.34)

Using (3.34) for 123 and vy4 we get:

G(1,2,3,4) — In |4sin(7v12)sin(7vse)|* + 27 (Imry s — Imysg)
ImV13 . Imz/42 (335)

—4
T ImT
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Due to the well known transformation properties of the odd #-function under
the two independent modular transformations of the torus [GSW] the formula
(3.24) is independent of the integration path we choose for v;3. In contrast, in
(3.35) the integration pathes of 143 and vy are, by definition, the ones depicted
in Fig.4 while 112 and v34 are obtained integrating on the upper and lower sheet
respectively (without crossing any cut).

Substituting now the relations (3.30) in (3.35) we obtain finally:

(G(1,2,3,4) — ln|2sin(mvy,)|* + 27lmey,

+ 1n|2sin(m/34)]2 — 27wImuysy

4 4
it - Tz (ImVlz - ImV34) (336)
zT+Yy z-+y

2(z ~y) (f(1) + F(3))(f(2) + f(4))
+ W(f(1)+f(3))+ ——

where we defined:

f(z) =1In

(3.37)

z—ag
The (only apparent) asymmetric form of (3.36) has been chosen for later conve-
nience and adapted for the situation(s) we are going to study.

Finally we give a formula whose derivation requires a more accurate approx-
imation then (3.31) in that it goes to zero under the pinching limit (3.29) (zo lies

on the upper sheet and z3 4 lie on the lower sheet):

ay3lmuyszy

< 0X(0)X(3) > — < 8X(0)X(4) >— "0z + ) ,

(3.38)

(3.38) can be derived using the second equation.of (3.17) and several times the

pinching limit identity:
zdby(c) + zbcy(a) + an,y(b) = ZabZacZbc (339)

where here all y’s are supposed (by definition) to have the plus sign in front of the

square root.
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A (more quick) alternative derivation of this formula runs through the appli-
cation of (3.24) noting that in the limit (3.29) the f-function contribution drops
out of the difference at the r.h.s. of (3.38) while the ”period matrix” part of
(3.24) (using again (3.30)) gives directly (3.38). This illustrates, once more, the
relation existing between the hyperelliptic language and the canonical §-function
formalism.

To conclude this chapter we note that in the hyperelliptic approach the pro-
jective invariance survives also at the loop level, due to the fact that we are working
on a cut sphere. This means that, in order to be able to factorize out the (in-
finite) volume of the projective group, G = PSL(2,C) = SL(2,C)/{£l}, of a
scattering amplitude in a consistent manner, the amplitude itself must be invari-

ant under G. To be more precise, we require invariance under the following Maobius

transformations:
az + b
.40
z — 1 d (3.40)
with:
ad —bc=1 (3.41)

When checking that the formulae given in this chapter have the right "Mobius
weight” the key transformation property is zap — zaB/v(4)7(B) where y(z) =
cz + d. When checking Mdbius invariance in the approximated formulas (3.30)-
(3.38) one has to take into account in a consistent manner the limit we have taken.

In the next chapter we will construct the 4-point amplitude corresponding to
the scattering of a graviton with a massive scalar particle and use the relations of

this section to extract the physical informations we are searching for.
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4. A Compton-like scattering

4.1 Motivations

The present formulation of string perturbation theory deals with on shell
scattering amplitudes and therefore questions about Quantum Gravity have to be
put in terms of scattering experiments.

The first thing to study seems to be the scattering among the lowest states
of the theory, i.e. massless particles, gravitons or photons etc. The scattering
amplitude at tree level is dominated in the limit of s — oo and ¢ — 0 (s being
the Mandelstam variable squared energy in the CM frame and t the square of
the momentum transfer) by the one graviton exchange, due to the fact that it
is massless, giving a pole 1/t, and that it couples to the energy, giving a power
of s. The tree level corresponds of course to (a relativistic version of) Newton’s
potential.

One can then compute the loop contributions in the same limit. Since ¢t — 0
corresponds to large distances, this will provide correction terms of the form of
powers of {(energy) x (Newton’s constant)/distance }. Indeed, this expansion is
suitable to be studied by perturbation theory in a configuration where the distance
is large as compared to the ”Schwarzschild radius” (energy x Newton’s constant)
as it is likely to be typical of possible astronomical observations. A second order
correction of this kind has been in fact evaluated in Superstring Theory at two
loops in ref. [GIZ]. It happens that, due to non-renormalization theorems, the
scattering amplitude for lowest (massless) string states receives interesting contri-
butions coming from non linear gravity interactions beginning at two loops. This
is the case for superstrings and heterotic strings in D=10 and also for compacti-

fied models with highest space-time supersymmetry (e.g. N=8 in D=4 for type II

25



strings) which represent the simplest and more viable cases for doing explicit com-
putations. In fact, in these models the one-loop order gives rise, in the above limit,
to rescattering terms, which are dictated by unitarity [ACV,SU] where gravitons
are exchanged between the external massless particles, but do not interact among

themselves, whereas at two loops they begin to interact.

In this chapter we present an analysis of the one-loop contribution to the
scattering amplitude of a massless particle (say, a graviton) against a massive
one (a scalar of the first excited level) with mass o' M? = 4 in a type II string
model (the one characterized by G» in (2.14)). This can be seen as a gravitational
version of a Compton scattering in Q.E.D. The just mentioned model lives in a four
dimensional target space equipped with an N=8 space-time supersymmetry, but
this time, due to the presence of massive vertices, the non renormalization theorem
does no longer hold. Therefore the configuration of Filg.l, where the blob represents
a string one-loop three-point function, gives a non vanishing contribution and can
be interpreted as a first order correction to the gravitational interaction of the
massless particle (wavy external lines) and the massive one (solid lines). The
vertex correction of Fig.l will provide a factor V(t) which multiplies the Gs?/¢
term of the tree level single graviton exchange, G being Newton’s constant. We
are interested in the IR behavior for ¢ — 0, where V(t) is expected to contain a
term of order R, = GM, the Schwarzschild radius of the massive particle. This
would give for dimensional reasons V(t) ~ R,+/t corresponding in configuration
space to a factor ~ R,/r multiplying the Newton potential. The singular behavior
~ 4/t of the graph is related to the exchange of massless particles in the t-channel.
In our high energy configuration the gravitons dominate and at the first order in

G the effect is due to a three graviton interaction (section 4.4).

Our task is to look for a term of this kind at one-loop. By general reasons on
infrared behavior it is expected to come from a particular degenerate configuration
(a "pinching limit”) in the moduli space. We found it convenient to carry out this

analysis by using the hyperelliptic formalism which was also used in [GIZ] and has
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been proved to be very powerful in providing the first explicit description of the

two-loop amplitude in Superstring Theory [IZ].

In section 4.2 we construct the amplitude and give the vertices which describe
the specific scattering we are going to study. In section 4.3 we work out the relevant
pinching limit in the moduli space and give some one-loop summation formula for
the correlators which are needed when massive vertices are present. In section 4.4
we derive our main result, i.e. precisely a term of the above form, while in section
4.5 we make a comparison of our computation with would-be Quantum Gravity

Feynman diagrams.

As a last remark we stress again that we are working (at one loop order) in
a perturbative framework, corresponding to a study of large distances, i.e. of the
-infrared region t — 0, the expansion parameter being the Schwarzschild radius
over distance. This has not to be confused with different studies of asymptotic
configurations in String Theory, like the s,¢ — oo limit at fixed t/s of Ref. [GM]
which requires an analysis of the amplitudes at all orders. In particular we do not
attempt to resum a perturbative series of which we have only evaluated the first
two terms (a task which seems beyond the available knowledges in String Theory)
and therefore we cannot answer questions like the presence of a Schwarzschild
singularity. Our computation should rather be seen as an evaluation of Post—

Newtonian corrections in a String based Quantum Gravity.

4.2 Construction of the amplitude

The model that we will use in this chapter to search for Post-Newtonian
corrections to Gravity is the one characterized by G, in (2.14) where the corre-
sponding sum over spin structures is given in (2.23). We adopt the functional

approach to string theory [P,VV] to write down the amplitude and will not en-
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ter into details because, at least in the case of the torus, the functional approach
has been largely established [HP] and is well known in the literature. We ob-
serve only that on the torus we have one zero mode for each p-differential with
p integer, in particular also for the b,c ghosts, and one zero mode for the 1/2-
differentials with odd spin structure while we have none for the 1/2-differentials
with even spin structure. The b,c-ghost zero modes are absorbed, as usual, by the
insertion of b(x)c(y) in the path integral: the b zero mode represents the unique
holomorphic two-differential on the torus, which in th-e hyperellptic language is
the square of (3.2), while the ¢ zero mode represents the unique conformal Killing
vector, i.e. translational invariance. So, in addition to the volume of the group
of "small” diffeomorphisms, we have to factor out also the volume of the group of
translations, which in the #—function approach is simply Imt [HP], the area of the

Fuchsian-torus.

For what concerns the 1/2-differentials with odd spin structure we note that,
due to the presence of one zero mode, in order to get a non vanishing contribution
to the amplitude, the product of all the vertex operators should contain at least
one fermion field of each type, to soake up the zero modes of the corresponding
Dirac determinants. If the vertices contain, besides the X—fields, only the ¥#* (as
in the case we will consider), there are a priori, see below, enough ¥*-fields to
soake up the four zero modes of the space-time fermions. However, as one can
deduce easily from (2.13,14), in the Ga—model the 6 z'-fields have always the same
spin structure as the ¢#, in the present case the odd one. Due to the fact that
none of the z/ fields will be present in our vertices, their six zero modes send the

contributions with odd spin structures to zero.

Far what concerns the world—-sheet gravitini zero modes, i.e. holomorphic
3/2—differentials, we note that on the torus there is no such zero mode for the
even spin structures, while there is precisely one zero mode for the odd ones. As
we have just seen the last ones do not contribute and so we have no supercurrent

insertions. This has to be viewed as opposite to the case g > 1 where there are
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2(g-1) gravitini zero modes, independently of the spin structure.
Considering thus, in four dimensions, only the even spin structures, we can
write the one—loop contribution to the amplitude following (2.21) [GIS,GIZ]:

dM(a)
1 — Q2
1=G _/ (det Im7)P/2 T|det61

(d€t61/2)h
1det32 (detag/g)h

IXI‘ |b,c

1) PE
B+, (4.1)

(Zl (detd /2 )k ) Z nin;(detd; /)i (detdy »)} <H Oz>

1,j==2 =1

Here G denotes Newton’s constant in four dimensions while our choice for o', which
is consistent with the normalizations of the propagators (3.17), (3.24) and (3.27),
is &' = 2. We obmitted an overall normalization constant which has to be fixed
by unitarity through factorization. In (4.1) we indicated explicitly the origin of
the various determinants, (X,b,¢,8,7), and we put in evidence the determinants
corresponding to two longitudinal space-time fermions %¥. The origin of the
remaining fermionic determinants should be clear in view of equation (2.23). The
index ”h” refers to the spin structures of the ¢ and of the 3,y—ghosts (as well as
of the world sheet gravitino) which have to be equal as noted several times; dM(a)
stands for the moduli measure whose explicit form will be given below. The
factor % in (4.1), corresponding to the inverse of the ”area” of the hyperelliptic
surface, results from factoring out the finite volume of the group of translations
as mentioned above.

On hyperelliptic surfaces the determinants admit explicit and rather simple
expressions [G,KN1,MO]:
detd; = K(a)P(a)*/*
detd, = P(a)®/*
~ (4.2)
(det63/2)i = P(G)3/8 Qi/4
(detél/z)i = P(a)_l/sQi/‘i
The normalizations of the determinants in (4.2), dictated by the normalizations

of the zero modes (if any), have been taken from ref. [GIS]. Correspondingly the
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moduli measure takes the form:

dM(a) = d%rzl—ﬁ% (4.3)

where dV,,, is the projective volume associated to the Mobius invariance of the
hyperelliptic torus. Putting everthing together we get:

A _ G2 H?::l dza"’: : ~ : O
1= P(a) P T7aV., E 7:im; Qi Q) I l !
‘i,j=2 I=1 P

X

(Z le|3> (4.4)

We have still to specify the vertex operators O; = [ O;(z)d?z. We choose for
01,2 = V1,5 the usual superstring vertex for gravitons [GSW]
Vi3, 25) = (- 0X () 4149 ()P ())& OX () +i AL ()P (7)) X 1)
(4.5)
with
Ai/a = k[jae/’;] (4.6)
where the antisymmetrization is understood with unit weight. For O3z, = Wiz 4 we
choose a scalar massive particle of the first excited level of the type II superstring
spectrum with mass M2 = 2 [ABIN2]:
W (25,2;) =(3Blg, 0X (3) 4P (5)%7(5) + iki, BS 5 b*(7)%° (3)7 (5)%° (7))
(3B15,0X(3)*4P(5)97(5) + ik, BS b3 )8 ()P (5)%° (4))-

Sk - X (5)
(4.7)
The mass shell (and irreducibility) conditions are:
Ejkj:ka- =€;-€;,=0
6?‘5/1-3 = e(.aég) for gravitons 18)
k¢Bl, =0, k? = M? (8-
Biﬁ'y = B[jaﬂy] for scalars

These relations imply, in particular, that we have not to worry about selfcontrac-

tions [ABIN2] and that the polarization tensors of the scalar satisfy:

. k¢
J
BZ!,B“{ = Eapfvs M

. 1
B =~ Mo
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Our key observation is that contrary to the four graviton amplitude in ten dimen-
sional strings, or in four dimensional models with highest space-time supersymme-
try, for the amplitude (4.4) the non renormalization theorem [MA,NNS| does no
longer hold. In fact, there are now diagrams like the one in Fig.1: the exchange of
a graviton in the t-channel which couples to the massive scalar via a non vanishing
one-loop three-point function. In this paper we will examine this new feature and

evaluate the contribution represented by Fig.1 in the limit:

s = (k1 +k3)2 — 00
(4.10)
t:(kl +k2)2 - O

We should note that, properly speaking, the expression (4.4) is divergent due to
the fact that string theories provide us with on-shell Green’s functions which are
one particle reducible and contain therefore (physical) singularities corresponding
to the on shell poles of the propagators of the massive external lines as indicated in
Fig.3. The physical scattering amplitude should then be obtained after a suitable
subtraction. However, as we will see, the contribution we are going to study is not

affected by these singularities and will in fact be finite.

4.3 The relevant pinching limit

The emission of the graviton in the t-channel as in Fig.1 corresponds to the
limit in which the Koba-Nielsen variables z; and z, collide; so we have to evaluate

V(1)V(2) in this limit. Setting z; = zo + £ and 2z = z0 — £ we get:
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_i_(;l -e2)(&r - &) (1 " %)2

V1)V(2)amo — e HX(DX(2) g 0gikoX(0) {
|212l4

FonEl (e - X(0) + 1 Aapp™(0)y” (0))(right) + 2(51 -€2)(1 - &2)ko - 80X (0)
+¢(0)((81 - E2) (k1 - £2)(k2 - £1)
+ (e1 - €2)(k1 - &2)(k2 - &1)) + (&1 - €2)(ka - E2)(k2 - €1)
+ (€1 - &2)(k1 - €2)(k2 - €1)) <8X(0)5X(0)>reg:| }
(4.11)
We defined:
ko = k1 + ks
e = (e1 - k2)eg — (€2 - k1)el’ + %(51 -e2)(k1 — k2)”
AP — ple <51 ke ey -kle‘fl) _ %ef;’eéf] ~ (e1 - £2) kLR (4.12)

1
12

Of the last correlator in (4.11) we have to take only the regular part and we
neglected contributions to the poles in z12 coming from the regular parts in
e~ #(X(1)X(2)) these last ones being of order oft).

In (4.11) we note the presence of a quadruple pole in |z12|, corresponding to
the propagation of a tachyon, which is however canceled by the factor (1 + ¢/2)?,
and a double pole which corresponds to the propagation of the massless state we
are looking for. We will therefore concentrate on this last contribution.

| First we remark that 90X (0) does not contribute to the amplitude in the limit
(4.10). In fact, after summing over spin structures (see later), due to the fact that
88X (0) is spin structure independent, the surviving X-dependence in W(3)W(4)
sits in the exponentials and we remain with:
<k0 . BgX(O)eing(B)eik4X(4) eikoX(0)> _

: : . . (4.13)
— = [(90X(0)X(3)) + (90X (0)X (4))] (R0 X (0)ethaX(3)iha X (4))
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In deriving (4.13) we used the kynematical relations kg - ks = kg - ks = —1/2. So we
see that this term is suppressed by a factor of t, the correlators in the square bracket
containing §-functions, see (3.22), which go to zero under analytic continuation on
the external momenta, and zero mode projectdrs, (3.24), which do not contain
any singularity in the Koba-Nielsen variables, giving thus a contribution to the
amplitude which is order o(t). Moreover (4.13) does not exhibit any power of s,
while the leading contributions, as we will see in the following, carry an s? factor.
On the safne footing the c-number terms in (4.11), even if they are not suppressed

by a power of t, will not give any power of s.

Thus we remain with the following effective vertex:

1 —% (X(l)X(z))Aere'ikQX(O)

VOV E) - -
(- 0X(0) + idapp™(0)3(0))(€ - X (0) + iAapp™(0)4°(0))
=V(0)
(4.14)
Next we evaluate the sum in the first bracket of eq. (4.4):
> mmiQiQ; (V(OW(3)W(4), (4.15)

1,j=2

To this order we apply Wick’s theorem (first to fermions) and sum over spin
structures. To carry out this sum we need the following identities which can easily

be derived by explicit computation:

ngi (%4—5%) =0

(4.16)

- A (e(L)u(2) | u(3)u(4) — _p(g)A371¢%23 224
Yo (S * o), =T T v

1=2

Using (4.16) we can evaluate all the kinds of fermionic contractions which appear
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Zm (B 1pa(1)p(1)C " (2)15(2) DP9, (3)9s (3)8(3)%0 (3)),

4! P(a)
y(1)y(2)y(3)?

Z 7 Qi (FP 4o (1) (1) (1)1 (1) GH*P7 (20 (2)%6(2)8(2))

_ 3y E Gapas
= PR

2
Z 1:Qi (FPY59h (15 (1) (1)16 (1) GH* 7% ,u(2)3hs (2)%p(2)100 (2)

(4.17)

H*.(3)p(3)), = 0

The F, G and D tensors in (4.17) are e-tensors times a constant (in 4 dimensions).
Due to the antisymmetry of H*? in the last line of (4.17) no Lorentz-scalar can
be formed and so the last identity follows. Specializing the generic polarizations

B,C, etc. of (4.17) to the particular ones appearing in (4.15) we obtain:

- ot
S 0in; Q305 (VOW(B)W(4)),; = — — 5 (X)X (2) a0

€
1,5=2 IZIZIZ

< (M%-@X(O) 20X*(3)k Aap 26X°‘(4)kaa,3> _ (m_ght)_

y3¥(4?  vWyB@?  y(Ly()y(3)?
eikoX(O)eing(S)eik4X(4)>

(4.18)
We are now left with X-correlators only which can be computed by standard
techniques. In addition to the contractions which are non zero at tree level we
have now at one-loop also non vanishing mixed contractions between the two
chirality sectors. However, it can be seen that those contractions lead to subleading
contributions for ¢ — 0 and s — oco. This is due to the fact that they are made out
of a é-function contribution which goes to zero (under analytic continuation on

external momenta as before) and of a projector onto the zero modes, eq. (3.24),
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which contains Imr at the denominator. As we will see below the small t behavior
comes from the region Im7 — co.
Neglecting, therefore, the mixed contractions and computing the kynematical

factors in the leading orders of s and t we get:

s2(e1 - &2)(&1 - sz)
212

Z niﬂjQiQJ‘ (V(O)W(3)W(4))ij -

1,j=2

M2
{ - (0XO)X(3) - XX (@)

~ O - (4.19)
Ty (3) (OX(B)X(0) — (0X(3)X(4)))

t .
R (OXWX(O) - (0X(4)X(3) } - {rzght}-

e E<(X (1)~ X()NX(2)=X(4)>a— o+ M><X(3)X(4)>

In the last exponent we neglected a term proportional to s which vanishes as
z19 — 0. This amounts to take tlns — 0. From (4.19) we read off a leading overall
s* behavior of the amplitude while the t behavior is still encoded in the exponential.
In our limit, eq. (4.10), we can neglect the terms which are multiplied by t in
(4.19). (These terms contain also poles in the z—plane representing singularities
of the massive external propagators. As we said at the beginning we do not dwell

upon them.) We remain therefore with (M? = 2) :

=1 Zk 2’Qk|
4 "*N/ IP(a)IzT“der / Pl 4)14
e—-§<(X(1)—X(3>)(X<2)~X(4)>>Aqo+2<X(3>X(4)> (4.20)
((8X(0)X(3)) — (DX (0)X(4))) -
((3X(0)X(3)) — (X (0)X(4)))

where we defined N = ¢ G%s%(e; - €2)(€1 - £2) and ¢ is a numerical constant in

which in the following we will absorb all overall constants.
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For our purposes it is convenient to fix the Mdbius invariance by fixing a1, a3
and z3. Then the projective volume becomes:
dza,]_ d2a3 d223

|a13(23 - 01)(7«’3 - as)lz

dVyr = (4.21)

The integration region in the remaining moduli space (a3, as) which is responsible

for the small t behavior is given by the following pinching limit:

a
as — ap t=In|—>| > +oo
a
1 (4.22)
a13
a4 — as y=ln{—| — +o0
Qg4

In taking this imit we keep z; and 25 on the upper sheet and z; and z4 on the
lower sheet (Fig.4). In the limit (4.22) the upper and the lower sheet become an
upper sphere attached with two punctures to a lower sphere: intermediate massless
particles (i.e. gravitons in our limit) are exchanged through the punctures. We
evaluated the relevant quantities, appearing in (4.20), in this limit already in
section 3.2. The corresponding formulae are given in (3.30). Inserting (3.30) and
(4.21) in (4.20) we get:

Al NN/ d2a2d2a4|a13[4 / d221d2Z2d2Z4 .
lanaulzT(w +y)2 ) |z ly(3)y(4)% 2

((0X(0)X(3)) — (8X(0)X(4))) - (right)- (4.23)
e*% (X (1) = X(3))(X(2) — X(4))) oo +2(X(3)X(4))

As a check of the consistency of our limit one can readily verify the Mobius in-
variance of (4.23) (see section 3.2). So, for example, z + y and the v—variables
(3.16) are Mo&bius invariant as well as the combination which multiplies t in the
exponential of (4.23) which depends, in fact, only on v, and 7. Using (3.17) and
(3.24), and taking into account that also the moduli have to undergo a Mdbius
transformation, also the remaining part of (4.23) can easily be seen to be invariant.

In the limit (4.22) we can also evaluate the X-correlators, keeping z; » on the

upper sheet and z; 4 on the lower one. Again, this has already been done in section
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3.2. We observe that the combination (8X(0)X(3)) — (80X (0)X(4)) is precisely
the one which has been evaluated in (3.38) and can thus be directly substituted

in (4.23). The combination of propagators

G(1,2,3,4) = ((X(1) - X(3))(X(2) — X(4))) (4.24)
has been evaluated in (3.36) for generic z;—variables and is correct up to orders
o(1/z,1/y,1/z +y). A convenient Mobius gauge fixing is given by choosing a1, a3
and z3 such that |z3 — a;| = |z3 — a3| which is always possible; then we have
f(3) =0, see eq. (3.37). Moreover, in (3.36) we can neglect the last term, which

goes to zero as z,y — oo, and, taking the imit A — 0, of the z; » dependence we

keep only the singularity arising from:
In|2sin(7rv12)[2 — In|vya|?
We obtain then:

T yImI/34 (425)
T+yY

—4
G(1,2,3,4) — St A 2ln|2sin(7vss)| + 27
T+y

Eq. (4.25) can also be justified observing that we can still fix one of the integration
variables, say z;, by the tra.nsiation invariance of the torus (see Chapter 5); so we
could put also f(1) = 0 and, for A — 0, (3.36) would reduce directly to (4.25).
(Clearly in this case we should factor out also an appropriate translational invariant
measure, [ d?z12/|y(1)|2 = T, see again chapter 5, and of course the result would
be the same).

It remains to evaluate (X(3)X(4)) in the limit (4.22). Using again (3.24) we
obtain:

(Imy34)2

(X(3)X(4) ~1n o

~2 (4.26)

™

Koy(3)y(4) (—‘1(1-——3)

So, taking into account also the h/—(é)_lz factor arising from (3.38) we can integrate

over z;,5 observing that, in this limit:

i

d221d2Z2 “"ilanIZIz d220 d21/12 T
<€ - —_— —

|212[*|y(0)[2 ly(0)1* J [vaaf?t® 2
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The 1/t pole represents the massless state emitted from the two external gravitons
with momenta k; and k, in Fig.1.

Inserting the above formulae we have then:
N d*asd?ay|a;s|? d?z4
tJ laassP(z+y)t J |y(4)?

2 — I 2
t( %Y In|2sin(nuss)] — mo yImz/34) G
e \Tt+Y z+y e T+ Y

IR

Ax

(Imy34)2 ]sin(7r1/34)]4-

(4.27)

In the next section we will evaluate this formula, investigate its physical content
and state our results. To this order we will specify the integration limits of the
various integration variables and, in particular, determine the region of Imuvsy

which contributes mainly to the amplitude.

4.4 Evaluation of the amplitude and results

To evaluate the amplitude it is convenient to switch from the variables a;, a4

and z4 to x,y and va4:

z4
1/34———/ w(z)dz,

z3

2

13 dzy = (27r)2d21/34

y(4)

We recall that one usually takes —1/2 < Rer < 1/2,(1 — (Rer)?)}/? < ImT < 0
and 0 < Imv < Im7,—1/2 < Rer < 1/2. However, our computation is sensitive
to large values of Imr, so we can safely restrict Imr > 1. Furthermore, we are
integrating z4 on the lower sheet of the hyperelliptic torus, see Fig.4, and in our

variables Imvsq can become negative, see (3.30):

(4.28)



Let us comment briefly on the integration region of Imvzs. The z3 4 variables
live, by our definition, on the lower sheet of the hyperelliptic torus which covers

only one halph of Imr. Therefore, the integration interval of Imvss should have
z-+y

27

a length of . However, by unitarity, we should allow Imuvs4, which is the last
Koba Nielsen variable that survived, and which is therefore unconstrained, to run
over the entire hyperelliptic torus. This gives (4.28). We remark that in the limit
(4.22) this does not contraddict our assumption that 34 "lives” on the lower sheet;
in fact, z3 is fixed, by M6bius invariance, to stay on the lower sheet and z, does

never cross the upper sheet.

Then we fix a "fundamental region” for a; and a4 which encloses a; and a3

respectively:
0< |22l <1:0<z< 0
a3
0< |21 <100<y< oo
a13
Setting finally:
vee = 2P (4.29)
2T

we get:

2

Al_ﬁ_—]—\i(/mdm/wdy> —E—-Z/zydﬁ fZe T+Y.
t 0 0 z+y>n (z+y)* J 2

_ : ( 2ey  fz-y }—ln(Q(coshﬂ — cosa)))
/ da(coshf — cosa)? e \% ty Zzty 2

—T

(4.30)
Let us comment further on the coefficient of t in the exponential of eq. (4.30). The
first term goes to infinity as z,y — co while the other two terms remain finite;
therefore they contribute sensitively to the exponential only if In(coshf — cosa) —
+oo and f — Foo. The first condition is satisfied if the second one holds or if
a—0 and [ — 0. However, in this last case (corresponding to z4 — 23, see
eq. (4.29)) the factor in front of the exponential in the second row of eq. (4.30)

vanishes; the limit z4 — z3 would correspond to the diagram of Fig.5, where there
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appears a one—loop two—point function between massless states, and, although
the non renormalization theorem does not hold for the three-point function we
are considering, it forbids still a non vanishing two—point function for massless
states. We should therefore evaluate the exponential in eq. (4.30) in the relevant
integration region 8 — +oo:

Bz

1 _ - f — +oo
——In(2(coshfB — cosa)) — Pr—Yy "E’é‘*' Y

2 2z+4+vy n Y 8- —co
T+y

In this limit we can also integrate over a to get:

2

wt (e[ 8), e
1 =— T Y JE .
3 0 0 z+y>T (w +y)4 0

t( 2zy By > (4.31)
(2 + cosh(28)) e \TFTY TTY
E%N—I(t)

Eq. (4.31) is our final result. Let us study first the convergence properties of

I(t) and its behavior as ¢ — 0. To this order the following change of variables is

convenient:
z=¢L
y=(1-¢°L
B =2al

So we get:

1 ) £ .
I(t) = / d¢ / dL / do (2 + cosh(daL))e 40 L2L(L = )¢ — @)
0 T 0

(4.32)
The convergence of I(0) can be established integrating, by analytic continuation,
over L (the need for analytic continuation is due to the positive exponential in
cosh(4aL), which in section 4.5 will be seen to correspond to a Feynman diagram

where the massive particle disintegrates into two massless ones):

1! ¢ 2 _
I(O):§/0 d§/0 do e~4me (4—-1-—_‘-)‘_—-&—e4”0‘+£—-1-e 4”0‘) (4.33)
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Eq. (4.33) is easily seen to be finite.
We show now that the small t behavior of I(t) is as follows:

I(t)—+I(O)—{—a\/ﬁ—| as t-—;O

This amounts to show that

lim 2 ( ]t|%(tt)> =a#0 (4.34)

t—0

Taking the derivative of (4.32) and integrating over L, the term proportional to
cosh(4aL) gives an integrand in « which is regular for @ — 0 even for t=0 and
provides a contribution to dI(t)/dt which is regular for ¢ — 0. Therefore it gives
a vanishing contribution to (4.34). By computing the remaining part, making use

of the rescalings o — |t|Ze, L — [¢|"1L, we get:
a=——m". (4.35)

Restoring now the dimensionful constants we get for the subdiagram (Fig.1), we

considered in our computation in the limit ¢ — 0 and s — oo,

A1 = c(eg - e2)(E1 - &) (2\/5.?(0)@22— - w2ﬁM(—gfi | 9—(—Q> (4.36)

o't 4 It|2 t

Let us now comment on this result. First of all we observe that the first term in
(4.36) would correspond to a finite one-loop renormalization of Newton’s constant.
However, our pinching limit computation was designed to look for the 1/|¢[/?
behavior of the diagram of Fig.l and therefore the numerical constant I(0) of
(4.33) represents only a part of the contribution. Accordingly, we corrected it
to I(0) in (4.36). By looking at eq. (4.19) at ¢ — 0 one sees formally at the
right hand side a total derivative in zp, which would vanish when integrated in
g, giving I(O) = 0. But the integrand in 2z has poles for zp — z3 4 corresponding
to the diagrams of Fig.3, i.e. the above recalled singularities due to the fact that

the massive external lines are on the mass shell. The ¢t — 0 limit of (4.19) is
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therefore a total derivative plus diverging terms proportional to §)(z — z3.4).
In order to discuss properly the computation of I(0) one should then require a
careful treatment of the amputation of the singular external on—shell propagators,
a problem which is outside the present investigation and which is probably not
yet fully understood in String Theory. However, let us observe that, due to the
fact that I(0) receives contributions only from the pinching limit corresponding to
Fig.3, which would provide only a finite shift of the mass and of the wave function
normalization of the massive states, one would expect that it cancels with a proper

normalization of the external states.

The second term in (4.36) is our main result and corresponds to a genuine
o(G?) Schwarzschild-like correction to the Newton potential. In other words, re-
calling that the standard Einstein deflection of a photon (here a graviton) by a
massive body comes from the first order gravitational potential GM/r, correspond-
ing to the 1/t singularity of the one graviton exchange in the tree diagram, the
contribution which we find at one loop corresponds to a correction proportional
to (GM/r)z, like the first correction to Newton’s potential resulting from an ex-

pansion of the Schwarzschild metric.

4.5 Comparison with Feynman diagrams

In this section we compare the computation from String Theory with Quan-

tum Gravity Feynman diagrams.

We analysed three possible Feynman diagrams: in Fig.6 the massive particle
scatters by graviton exchanges at one loop, in Fig.7 the intermediate states in the
loop are made out only of gravitons and in Fig.8 the massive external particle gets
excited to a state belonging to the second excited level of the string with mass

o'M?* = 8. Of course, the Feynman diagrams are ill-defined due to UV diver-
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gences, and we will only pay attention to their IR behavior. We find qualitatively
the behavior which we obtain in string theory, even though the details, giving rise
to subleading terms, are different.

The 1/|t|*/? behavior, which is our main concern, here is seen in the diagram of
Fig.6, whereas the diagrams of Fig.7 and Fig.8 appear to give contributions similar
to the ones coming respectively from the two exponentials e**F and e~%*L of the
cosh(4aL) in (4.32), which is subleading. The diagram in Fig.6 corresponds to an
"elastic” scattering where the lower massive line itself gets not excited but retains
its mass. This shows that the dominant contributions for £ — 0 and s — oo are the
"elastic” ones. This is precisely what happens also in the rescattering diagrams of

four-graviton scattering (see chapter 5).

To make the comparison more precise we write our result (4.32) in the form:

I(t) = I1(t) + Io(t) + Is(t)

with

Ii(t) = —;-/01 d¢ 400 dL /05 clacxze_azI’e(t/?")L(1 =&)(¢— ) (4.37)

L(t) = %/01 de /:o drL /05 doa?e®(t = @) Lo(t/2)L(1 = €)(€ =) (433

I(t) = %/01 de /:o dL /: daote™ (1 + )L (t/2)L(1 = £)(€ ~ ) (439

We will see that I;(t), I5(t) and I5(t) can be viewed as ”stringy” versions of the
diagrams in Figs.6, 7 and 8 respectively.

To write the amplitude corresponding to Fig.6 we have to decide what vertices
we will choose for the three graviton interaction, V4pc, and for the emission of a
massless particle from a massive scalar V,. For the latter we choose the minimal

coupling (for factorized polarizations and incoming momenta):

Ve = [(k1 — k2) - €][(k1 — k2) - €] (4.40)
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while for the former we choose the string induced vertex [GSW]:
Vasc = [(ea-eB)ec - (ka — kB) + (¢ -e0)ea - (kB — ko)+

(ec-eca)em - (ke — kA)] [T'ight]
In (4.41) we invoked Bose symmetry to get rid of the fact that string theory pro-

(4.41)

duces only on—shell vertices. Choosing for the massless particles propagators in a
Feynman-like gauge (the trace part, corresponding to a dilaton, gives a subleading

contribution in s):

D;Lv,pa - gﬂngf (4.42)
p
we get for the numerator of the one-loop integral representing Fig.6 (s > M?,s >

t,M? > 1):
Nl(k) = G2(€1 . 62)(6_"1 . 5_2) {(k . kl)(4M2 — 2k - ka) + S(kz -2k - k3)}2 (443)
The diagram of Fig.6 becomes then (k2 = t):

1 Ny(k)d*k
B=3 / k2(k + ko)2((k — ks)? — M2) (4.44)

Exponentiating in the usual way the propagators:

1 *® 2
——2“:/ e up d'lL
p 0

we obtain:

Flz—/d4k/ dx/ cly/ dz Nl(k—»,k—y——o———i—s’-)
1 0 0 0 z+y+=z

M 4 ey (4.45)
e~(w+y+z)kze[ z+y+2 }

Of the numerator N; (with shifted argument) in eq. (4.45) we have to extract
those contributions which give a factor of s? and get the leading t~behavior from
the integration region of large x, y and z. With rescalings analogous to the ones

which led to eq. (4.35) we deduce that those contributions are of the form:

> ) :stz(c‘:l '62)(51 '52)'

2 (
M2 + e M* | ————
{Cl +c2 (m—}-y—i—z

44

yko — zks

Nl (k——)k—
‘ z+y+z

4.46)



where ¢; and ¢, are numerical constants. Rescaling x, y and z by a factor of -Ml—z—

and changing then also here variables:

z=(1-¢)L
y=({—-a)l
z=al

we get:

220020, . =
7 :WzGSM(Elt €2)(€1 - &2 / df/ dL/ .

) . ] (4.47)
(clz b ) —a’ L (¢/M*)L(1 - €)(¢
Substituting M? = 2 in (4.47) we can compare this result with (4.37): The two
different pieces (in ¢; and c, respectively) of (4.47) coming from the numerator
(4.43) lead to the same :}? behavior, coming from the region of large L, as (4.37).
The structure of the propagators, that is, of the exponentials of (4.47), is exactly
reproduced by the string in the pinching limit while the string seems to use a
different numerator as Q.F.T. (at least in our very simple ”Q.F.T. model” repre-
sented by egs. (4.40)~(4.42): in fact, an explicit computation gives ¢; # 0,¢c; = 0,
whereas in the previous string computation ¢; = 0, ¢, # 0).

We note also the presence of an ultraviolett cut-off 47 in I (t), which appears
naturally in the string computation, and which is absent in F, i.e. in the field
theoretic counterpart of Iy(t). It is a remarkable fact that the string reproduces
in the infrared region almost precisely the pattern of ordinary Feynman diagrams:
the role of the Feynman parameters is played by the logarithms of differences of
moduli and by the imaginary parts of the v variables. We will check this fact ones

again in chapter 5 in the case of a rescattering diagram.

We comment now briefly on the diagrams of Fig.7 and Fig.8. Fig.7 describes

the virtual decay of the massive external scalars in massless particles. Proceeding
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in the same manner as before we get now:

1 0 poo oo ko — 2k
:_/d’*k/ da:/ dy/ dz N, kﬁk_Yi“—f—-i)
t 0 0 0 Tt+y+z

|:w—z(:z: +y)M?* + tmy] (4.48)
e—(m+y—}—z)kze z+y+z

Instead of investigating a precise Q.F.T. model for this diagram, as we did before,

we examine the effect of a contribution to Ny of the form:
ANg(k) = CGZ(El . 62)(51 . fz)Mé(k . kl)z (449)

which is allowed by dimensional reasoning. Then, as before, we get:

2
yko — zk3 C 5 9 o 4 z
AN, [ k - S . )M | —————
2( s w+y+2> s 4GS(€1 @2)(& - €2) T+y+z
1—0

Scaling and changing variables as in the previous case we obtain:

em? GPs2 M2 (g1 - €3)(81 - &2
Fe= ¢ : / dé/ dL/ do (4.50)
a(l — o)L (t/Mz)L(l —&)(€ - a)

o’e

which reproduces (4.38) modulo the differences we noted before.
Finally in Fig.8 the double line represents a particle with mass m? = 2M?
belonging to the second excited level of the superstring spectrum as noted before.

With this value for the mass we get:

ko — zk
/d"‘/ dm/ dy/ dz Ng(k——)k Y=o ”)
z+y+z
[——z(a: +y+ 2Z)M2 + t:cy} (4.51)
e—(z—i—y—}—z)kze z+y+z

and choosing a possible contribution AN3(k) as in (4.49) we get then:

Fy = CWZGZ M (e 52) 62)/ dg/ dL/ da-
o? ——a(1+ a)L (t/M

(4.52)

This expression reproduces (4.39) and the comments we made above are in order

also here.
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5. Four-graviton scattering with low space—time super-

symmetry

5.1 Supersymmetry and the cosmological constant

In this chapter we will investigate the four-graviton amplitude in a type II
model in 4 dimensions with low space-time supersymmetry.

The model we chose is the one described by G5 given in (2.14). Although its
defining set of generators G'3 is not symmetric between the interchange of left- and
right-chirality fields, the model itself is indeed left-right symmetric. This can be

seen noting that:

b= bs3 (5.1)

where the composition law is given by (2.3). Eq. (5.1) implies that the set X3,
generated by Gs, is left-right symmetric, giving thus a model which exhibits this
symmetry too. As a consequence also the general form of the correlators (2.24) has
this symmetry, which will provide some simplification in the computations that
we will do in short and, moreover, the space-time supersymmetry of this model
can be only N =4,2 or 1.

So let us first determine its space-time supersymmetry counting the number
of (massless) gravitini which survive the generalized GSO- projections imposéd by
the sum over spin structures.

We note that the physical Hilbert space is a direct sum of sectors of the kind
R*NF= [SC,ABKW] on which all other sets 8 € T3 act as GSO-projectors. In
particular, the corresonding vacuum |0), must represent the Clifford algebra of
zero-modes of all fermions in . Here "R” and ”N” refer to Ramond and Neveu-

Schwarz boundary conditions respectively. The mass—shell conditions (coming
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from the zeroth-momentum Virasoro conditions) are given by:

M} = nli(ﬁa) — % +1 ﬁ;v rsi(oscz’llators)
( ) . e move (52)
M3 = n};; -3 + Z (oscillators)

right —movers

and M} = M}. Eqgs. (5.2) imply that massless states (and in particular gravitini)
can arise only in a sector R* N such that ny(a) = 0 or 8 and np(a) = 0 or 8
separately. It is easily seen that the only sets in ¥3 which fulfill these requirements
are s and 8. We will now concentrate on s, the discussion about 5 beeing completely
analogous. In s we have potential gravitini of the form ¥# = " L |0)s which fulfill
(5.2). Recalling the definition of s:

§ = {¢1’¢2,w1’“.,m6}

we see that the vacuum |0), is a four-dimensional Weyl spinor and carries fur-
thermore an internal SO(6) spinor index. So the states U* describe 8 Weyl spin
3/2 particles (in addition to 8 Weyl spin 1/2 particles). However, we have still
to perform the GSO projections for all @ € £3. These projections assume on the

states in R*N¥* the form [ABKW]:
()" = C(slai(s) =7 = ~Clsla) (53)

where the o parity operator (—)® is defined as (—)® = [licarpfoifanp #10
where fo is the zero mode (i.e. Dirac-matrix part) of the fermion f. If a NG = 0
we must keep only those states built on all components of the vacuum |0), with an
even (when v = 1) or odd (when v = —1) number of a—oscillators. It is sufficient
to perform the projections imposed by the set of generators G in (2.14). So half of
the states U# are always eliminated by the projector (—)* = HfES‘fg = §(s)C(s]s)
itself (corresponding to the usual chirality projection in 10 dimensions), leaving
us therfore with 4 gravitini. The remaining non trivial projection can be seen to

come from (—)° = y3¢tzizl = —C(s|b) which truncates ones again half of the
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W#, leaving 2 massless gravitini in each chirality sector and giving, therefore, an
N = 4 space-time supersymmetry.
We conclude this section by noting the interesting role of the 3 projection. It

gives in fact:

(=) =-C(s5) = -1 (5.4)

The relation (5.4) means that only those states survive which are built with an
odd number of s—oscillators acting on [0),. So the gravitini states we found, and
therfore supersymmetry, survive thanks to our choise for C(s]3) madein eq. (2.22).
We remember that it was precisley this choise which assured also the vanishing
of the cosmological constant. Choosing C(s]5) = —1 would break completely
supersymmetry and produce a non zero cosmological constant. We regard this
fact as a signal of the deep relation existing between the two subjects which is still

under investigation in string theory.

5.2 Rescattering revisited

We write now down the one—loop contribution to the four—graviton amplitude
which is our main concern in this chapter. Reading the structure of the sum over
spin structures from formula (2.26), taking into account also (2.23), one can write

down the expression for this amplitude as follows:

— H‘%zl d2a'i : - 4 4 5
A = GZ/ |P(a)[*T3dV,, ijz.—_znianin <£[1 01>“ (;IQH )

+ 2 1Q:Q;1* (1Q:] + 1Q51) <H0z> —<Hoz>

i< =1

4 4
_ <H 0,> + <H Oz> = AN=8 | gN=4
ji ii

(5.5)



This time all vertex operators O; = [ Vj(z,%)d*z, 1 < j < 4, are of the form

V(25,25) =( - 0X(j) + 14l 59 (1P ()N(E 80X (5) + i AL %™ (5)1¥° (4))-

. 5.6
kX (5) (5.6)

where Aiﬁ is defined in (4.6). The on-shell and irreducibility conditions are:
Ej-kagj-ijk?ZE[jaz‘f’?]:—j-EjZO (5.7)

The contribution in the first line in (5.5), AN=8, is present also in models with
highest N = 8 space-time supersymmetry, for example in the model we used
to analyze the Compton-like scattering in Chapter 4, and has been extensively
studied by various authors (see [ACV] and references therein). In particular in
the Hmit s — oo and ¢ — 0 the leading contributions are seen to correspond
to rescattering terms [ACV2], see Fig.9, in which the external massless energetic
lines ki, k3 exchange gravitons (vertical lines) among themself and get excited into
massive states (horizontal lines); the horizontal lines, however, may remain also
massless. Actually, the contributions with massless horizontal lines are the ones
which dominate in the above limit. The corresponding expressions, like eq. (14) in
Ref. [ACV1], contain momentum integrations [ d”~?k over the transverse D — 2
dimensional phase space which appear typically in eikonal approximations. In this
section we will extract a Feynman parameter like representation of a rescattering
term in the limit of small momentum transfer ¢ — 0, represented by a suitable
region in the integration domain of Koba-Nielsen variables and moduli (i.e. branch
points). It is generally believed that string theories reduce to ordinary Q.F.T’s at
low energies which is usually expressed saying that o' — 0. Interpreting the "low
energies” as small transferred energies we check this believe at one loop, showing
that our Feynman diagram like representation reproduces actually, in the just
mentioned integration region (modulo some difference) a true Feynman diagram.
Of course, for s — co the obtained expression reduces to the eikonal approximation

of graviton scattering.
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In the next section, instead, we will investigate AN=*% represented by the
second and third lines in (5.5), which represents genuine new features.

The sum over spin structures in AY=® can easily been carried out using (4.16)
and (3.27) and noting that among the various correlators which appear in AN=8

?

only the ones with eight 1’s survive [NNS]:

N=8 _ ~2 . H?:l d®a; 2 3 : d*z;
4 ‘G“”/wmmww<§@”n5ww

(X)) - XE)X() - X(4) (5:8)

€

e

(X(1) = X(2))(X(3) — X(4)))

[N

The non renormalization theorem is reflected in this ampitude in the fact that the
integrand does not contain any pole in the Koba Nielsen variables z; (a part from
the ones in the exponentials): this implies, in particular, that diagrams like the
one in Fig.1 (where now also the lower line is massless) are not present. In (5.8)‘
K(k;) is the usual kynematical factor which appears also at tree level [GSW] and
at two loops [IZ] with the leading s-behavior:

K(kl) — S4T’I‘(€1 . 62)T7‘(€3 . 64) (59)

Before going on we remark that the integrand in (5.8) depends on the z; (besides
the |y(¢)|® factors in the measure) only through the v 5—variables as can be seen
from (3.24). Thus this integrand can be arranged to depend, for example, only on
V12,013 and vy4. So we switch from the variables 23, z3 and z4 to these v—variables

noting that:
d2 4]
[%(2)1?

with analogous relations for z3 and z4. Then we can integrate over d?z; /|y(1)|?

= |K(a)|*d*v12 (5.10)

with the result that one power of T in (5.8) gets canceled. At this point we can
fix z; in the exponentials of (5.8) arbitrarily. This is clearly a consequence of

the translational invariance of the torus. Moreover, due to the fact that the v
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variables are Mobius invariant, the amplitude is still PSL(2,C) invariant and we

fix the projective volume as in (4.21). Putting everthing together we get:

d?ayd®asd®vi2dv14|K (a))®
ly(3)|?|P(a)>T?

(Z lel3> (23 — a1)(2s — a3)as |’
k=2
(X(1) = X(3))(X(2) — X(4)))

Y =GR (k) |

(5.11)

e

e

(X(1) = X@NEX(3) - X(4))

Nj® N[ =

We are searching for rescattering configurations in which the two massless external
lines 1,3 exchange gravitons. As seen in section 4.3 this situation is represented by
the imit a3 — a3,a4 — a3. The integration region in the space of Koba~Nielsen
variables which gives rise to the dominant contributions is given by z; — a; and
z4 — a3 (or z2 — a3 and z4 — a3) which represents the ”direct” diagram, Fig.10,
and by z; — a; and z4 — a3 (or viceversa) which represents the diagram where
k1 and k; are exchanged, Fig. 11, as we will see in the following. We concentrate
here on the first diagram: 2,24 — a;. In this case the lines z; 4 are attached to
the same exchanged graviton. Keeping again z;,» on the upper sheet and z3 4 on
the lower sheet, and fixing z; and z; such that f(1) = f(3) = 0 this means that
a = Imvy; — 400 and —b = Imr3s — —oo. In these limits we have (see(3.36)):

dzy N dry(a +b)
zt+y  (e+y)

((X() - X)X () - X()) - -T2

(X(1) - X@))X(2) - X(4) —

(5.12)

The second relation is valid also a and b remain finite, while the term proportional
to (a+b) in the first row goes to zero if a and b are kept finite. We will see in short
that the term in (a+b) does actually not contribute if s — co. Here we kept it to
make our comparison with the Feynman diagram more precise. In (5.11) we can

change integration variable from 14 to v34 substituting simply d?v;4 with d?vsq.
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In the case under investigation we choose for the integration limits of Imuv;4, Imvsg

the following ones:

0 <Imv;s < =
2m (5.13)

0< ~Imygy < —
2r

which are dictated by the fact that z, and z; have to live on opposite sheets.
Substituting the above relations and (3.30) we get for the contribution we studied:

AAN=? %const.G’zK(ki)( dmdy2> / da /
(CB + y) zty>w

2ab 2y(:1:—( + b))
s
e TTY Tty

(5.14)

This can also be rewritten as follows:

&/2 5/2
AANT8 ~ const. P K / LdL / d¢ / do /
271 (515)
oL(saB + (1 — a+fF)))

Eq. (5.15) is the Feynman—parameter-like representation of a rescattering term
we searched for. In order to oBtain the eikonal approximation of rescattering one
should add also the contribution in which z; — a; and z4 — a3 (or viceversa).
This would provide for one of the variables o, an integration region of negative
values, such that, after performing the rescalings u = a+/s,v = 8+/s and sending
s to co the integration region would extend over the entire real axis giving us
back the eikonal approximation of graviton scattering at one loop [ACV,GIZ] with

amplitude 4 = G%s®/t; also the Coulomb infrared divergence [ACV] is recovered
in this way. We remark that under the above rescalings the term proportional to
a + B in the exponential of eq. (5.15) goes to zero as s — oo and is therefore
unessential in this limit as asserted previously. The addition of the just mentioned
contribution corresponds, in a Q.F.T. language, to add the diagram in which k;
and k; get interchanged, Fig.11. This sends s — —s —¢t = —s and ¢t — ¢ and

extends the relevant integration regions also in this case over the entire real axis.
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To conclude this section we write down the expression for the genuine Feyn-
man diagram, Fig.10, which should correspond to the contribution (5.15), we ex-
tracted from (5.11). We give here simply the result written in terms of Feynman

parameters:

AR_/d4/ LdL/ dg( do ldﬁ) N(Zf-/—z—)ff-ﬁ-cg)e—kz
0 0 a+p<E
L(saB +1(1 —€)(€ — (a+8)))

(5.16)
where Q is defined as Q = k2({ —a — 8) + k1(é — 8 — 1) — k3. Of course, also
in this expression the (o + #)~term in the exponential is unessential for large s.
Here N(k) is a numerator whose explicit form in conventional Quantum Gravity
is very complicated and will not be given here; in fact, it would result from the
contraction of four three—graviton vertices (and in a "consistent” quantization
of gravity it should contain also contributions of ghosts), but for s — oo it is
just s*Tr(e1e3)Tr(eses). Eq. (5.16) can be compared with (5.15): as differences
we note the presence of the usual ultraviolet cut—off in (5.15) and the slightly
different integration region for o, in the two expressions. Similar differences
are encountered also in the comparison of the diagram with the lines 1 and 2
interchanged. We conclude saying that, although the string admits at low energies

"classical” unitarity interpretation in terms of Feynman diagrams and Feynman
loops and particles circulating there, the details which arise in string theory are
different from those arising in Q.F.T. As a rule, the details where they differ give
non leading contributions for s — oo and ¢ — 0: it is in this limit that String

Theory is equivalent to Quantum Field Theory.

In the next section we investigate ANV=* which, with respect to the rescattering
terms of the present section, will give rise to genuinely new features due to the
breakdown of the non renormalzation theorem which holds, on the other side, for
AN=%_ We will again be able to give to those features, in the asymptotic limit of

small t and large s, a ”classical” Q.F.T.-like interpretation.
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5.3 New effects from low space—time supersymmetry

We study in the last section of this thesis the supersymmetry (N=8) and non
renormalization theorem breaking contribution to the one-loop amplitude (5.5)

which we repeat here for definiteness:

( (f{ (0F), - fI (of)j) - (fl (o), - f‘[ (of*>j) )

=1 =1 l=1 I=1

(5.17)

We wrote here the vertices in the factorized form as anticipated in (2.26). OF
and OF are respectively the left— and right-parts of the vertices (5.6) where the
exponentials e**¥(2) are understood to belong to one of O®L. In (5.17) there
are now non vanishing contributions also from correlators of 4 and 6 %’s besides
the ones with 8 1’s which we encountered in (5.8). To carry out the sum over
spin structures we need now generalized identities analogous to the ones of (4.16).

These identities assume now, partly, a more complicated form. We give them here

for completeness. Defining

_ (#(1u3) |, u(2u(4)
H(13]24); = (u(2)u(4) T u(l)u(3))i

(o)

and taking a look at (5.17) we see that we have to compute differences like H; — H;

(5.18)
G(1]2);

and G; — G;. After some simple (but tedious) algebra we can verify the following
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two identities:

H(13|24)2 — H(13]24); = ﬁ“;‘94—k : {212214232234<Zai sz - Zzzz
i 7 i

r=1Y(k)
— (214 23)(22 + 22) = 2 aiaj + (a1 + as)(az + a3)>
i<j
+ 23423297 (1) + 24122397 (2) + z122129°(3) + 7-2122329'2(4)}
Q4

= ———— {215[(23 — a2)(2a — az) + (23 & zq)]

Hi:l y(k)
+ z34(2z3 & 21,29 & z,i]} . {al “ ay,a3 < a4}

(5.19)
The second identity exhibits explicitly the invariance under Mébius transforma-
tions of the left hand side, which follows from (3.28), while in the first identity the
symmetry properties of H, — H; under interchange of the z; variables is manifest.
Furthermore, setting in the first identity z3 = z4 we get directly the other identity

we need:

(212)*
y(1)y(2)
Completely analogous relations hold for Hy — Hy and Hs — Hy, and consequently
for G3 — G4 and G3 — G4, which exhibit on the right hand side a factor of Qs
and @) respectively, instead of the Q4 in (5.19) and (5.20). In-addition, in (5.19)

G(1]2), — G(1]2)s = Q4 (5.20)

we have to substitute the term (a; + a4)(az + a3) with (az + a4)(a1 + a3) in the
first case and (a1 + az)(as + a4) in the second case. Egs. (5.19) and (5.20) suffice
to "evaluate” AN=*% In particular, we note that the Qy—factors appearing in the
above formulae, one for the left sector and one for the right sector, combine with
the term |@;Q;|* in (5.17) to give |P(a)|?, which cancels with a corresponding fac-
tor in the denominator. This resembles much what happened in our Compton-like
scattering and also in the contribution to 4-graviton scattering with high space—
time supersymmetry (5.8). One of the main differences between (5.17) and (5.8)
is that the unique kynematical factor K(k;) which appears in (5.8) is spoiled in

(5.17), i.e., while in eq. (5.8) we have one kynematical factor which multiplies one
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multiple integral, in (5.17) we have various kynematical factors, tr(4; A, A4544),
tr(A; Az )tr(As Ay) etc. which multiply different multiple integrals and can thus
not be combined to give K(k;). The origin of this fact is twofold: first, the 8-
correlators, when summed over spin structures, are now not all equal among them
and, second, we have now also non vanishing correlators involving X-fields too,
and thus less then 8 1's, which, in turn, give kynematical factors which are not
made out only of traces. This spoiling of the factor K(k;) can be linked to the su-
persymmetry breakdown from N = 8 to N < 8 (although we are considering only
bosonic amplitudes and have thus no direct control over space—time supersymme-
try). In fact, the ten-dimensional supersymmetric origin of K(k;) can be inferred
by noting that a model with an N = 8 SUSY in four dimensions corresponds ba-
sically to a dimensionally reduced N = 2 Supergravity model in ten dimensions.
In an effective ten—dimensional bosonic Lagrangian the term K (k;) (or rather, its
ten dimensional counterpart of which it is a dimensional reduction) corresponds
to a contribution which is quartic in a (generalized) Riemann curvature (see ref.

[GRS] for the tree-level contribution and ref. [ST] for the one-loop contribution):
AL = RabcdRefghRijklRmnopfabcdefghijklmnop (521)

where %< is a particular (and rather complicated) D = 10 Lorentz invariant
tensor, made out of Kroneckers §’s, which is fixed by K(k;). The supersym-
metrizability of (5.21) relies crucially on the fact that, remarkably enough, the
ten~d’imensional N = 1 superspace integral ‘of the dilaton superfield (see [LP]
and references therein) [ ®(z,6)d'®6 yields a contribution which is proportional
to (5.21) where the invariant tensor %" is precisely the one coming out from
K (k;). This supersymmetrization procedure is no longer valid for our ”spoiled”
kynematical factors, i.e. for their ten dimensional counterparts, the superspace
integral of the dilaton superfield giving just one fixed particular combination of
R*. This shows that our model can not be viewed as a dimensional reduction of

a supersymmetric ten dimensional theory. Actually, we showed the breakdown of
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the N =1, D = 10 SUSY, but of course this implies also the breakdown of the
N =2, D =10 and therefore of the N =8, D = 4 SUSY.

After this digression we will now come back to our main task, i.e. the inves-
tigation of (5.17). Also in this case rescattering terms are depicted by the same
integration region of Koba—Nielsen variables and moduli as in the case of (5.8)
and, looking at particular terms, they are seen to be there. However, in order to
establish definitively their presence, one should take care of all the various corre-
lators appearing in (5.17), compute the asymptotic behavior of their kynematical
factors and look at possible cancellations. We did not the tedious (even if straight-

forward) calculations but we think that rescattering terms can be present also in

(5.17).

Here we will not consider them any more and jump directly to the study of

new effects.

The first new effect is depicted by Fig. 12. The lines z; and z; collide on
the upper sheet emitting a graviton and the lines z3 and z; collide on the lower
sheet emitting a graviton too. What remains is a one—particle-reducible diagram
containing a graviton one-loop two—point function: this two—point function is now
different from zero due to the fact that the non renormalization theorem does not
hold in this case. In fact, the right hand side of (5.20) is now different from zero,
in contrast to the first eq. of (4.16) which, in turn, implies the vanishing of two—
and three-point functions for gravitons in the model considered in the preceding

chapter.

In summary, we have to evaluate V(1)V(2) and V(3)V(4) in the limit of
Ay — 0 and A. — 0 where we defined: z; = z, + %ﬁ, Zg = zp — A—z"-, z3 =

zZc + %—‘i, Zy = Zo — %—Q This has already been done in (4.14). We repeat here the
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results:

V) - L5 KX @harm iy x(t)
|212[?
(20X (5) + A% 582 (D92 (B))(e° - DX (b) + i A2 9° (8)P (8))
= V(b)
VEVE) - - ﬁe“% KX s —ikoX (0
(° - 0X(c) + ALz (WP ()(E - DX (c) +1As5B()F(2))
= V()

(5.22)
Here e® = ¢ and Abﬁ = A.p are kynematical factors which are given in eq. (4.12)
and € and A s are obtained from the formers by the substitution 1 — 3,2 —
4,kg — —ko. According to (5.17) we have to evaluate

Wi = (((VEOVEE), - (VEOVE(),) - (Right))  (5.28)
The unique correlator which survives in (5.23) is the one involving 4 %’s. This is

essentially due to the fact that the cosmological constant is zero in our model. For

this correlator we get from (5.20):
*( B (e (e — (same). = Tr(A°A7) @k
<A ﬁ"p b)"/’ (b)) 6'¢ ( )¢ ( ))>, ( )_7 9 y(a)y(b)

and an analogous formula for the (bared) fermions in the other chirality sector.

With the help of (5.24) we get:

(5.24)

- - 1
|Q|* Tr(APA°)Tr(AbA°) —5G(1,2,3,4)a, .0
e
4 Jy(B)y(c)*|AsAcl?
where G(1,2,3,4) has been defined in (4.24). For the combination appearing in
(5.17) we get then:

- Nz , . _.___1_ 22 * . Tr(AbAc)Tr(AbAc)
;leQJI (1Q:l +1Qs ) Wiy = 51P(a)] (;m) SOV FIAAT

Wi = (5.25)

(5.26)
1
_iG(la 27 37 4)Ab,c—"0

€
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Fixing again the projective and translational invariances in the usual way (4.21),
with f(a) = f(b) = 0, (see 3.37) the amplitude becomes now an integral over the
remaining moduli ay 4 and over Ay, (z, is fixed by translational invariance and

zp,a1 and a3 are fixed by projective invariance):

)fd2a2d2a4d2Abd2Ac|a13(zb —a1)(zp — a3))? ”

~ 2 b 4¢ Ab Ac
Az—pr = GPTr(AP A°)Tr(A° 4 |P(a)]2T2|ApAc|2y(b)]2

=2

(5.27)
The leading behavior of this contribution for s — oo and ¢ — 0 is again given by

the pinching limit (4.22). In this case (3.36) becomes simply:
dzy 5
G(1,2,3,4) = ——— + In|ApA,] (5.28)
Tty

So we can integrate over A . to get a factor of % which represents, of course, the
propagation of the two gravitons emitted respectively from z; > and z3 4 in Fig.12.
Again we can use (3.30) to evaluate the remaining formula, clearly Z?:z 1Q:| —
2!0,13 !23

2tzy

2
o dzd
Ap_py & (—G-) Tr(A>A°)Tr( A% A°) ( —”’%) e+ (5.29)
t (.’I] + y) z4y>T

The kynematical factors can be evaluated by their very definition (4.12) and in

our limit of small t and large s we get:

Tr(AP4°) — z—t(sl ce3)(es - 1) (5.30)

Switching also here from the variables (z,y) to (§,L) with z = (L, y = (1 — ¢)L

we get our final result:

1 > dL -
Az pi & (Gs)*Tr(er - £2)Tr(es -54)/0 d¢ - “E’etg(l O (5.31)

= (GS)ZTI'(El . 62)T1‘(€3 . E4)G(t)
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First we observe that G(t) is finite and has, in particular, no infrared divergence.
In fact, the integral over L converges for ¢ # 0,1, while, for example, for £ — 0

the integral over L goes as In{, which has a finite integral in £. Moreover

— 2”t 1 .
and therefore fOI‘ t - O
.A.z_p-t :_ (Gs) 1I1(a't)Tr(€] . 62)Tr(€3 . 64) (5-33)

We note in particular that the t-pole appearing in the tree-level amplitude G2/t
gets not renormalized by the self-energy of the graviton, although we are consid-
ering a case in which there is no a priori non-renormalization theorem. That the
contribution, we found, can be interpreted as a self-interaction of the graviton,
can indeed be seen writing down the contribution to the amplitude of the Feynman

diagram in Fig.13. This time we get:

Fy_pe = tizfol de /000 %etf(l —&)L /d’*ke_kzN (k/Ll/2 + §k0) (5.34)

It is interesting to note that the string cancels both of the 1/t poles appearing
in (5.34). We remark that, in order to reproduce the expression (5.31), Quantum
Gravity should necessarily provide a contribution to the numerator of the form
AN(k) = (Gst)®Tr(e; - €2)Tr(es - €4) from the beginning, because otherwise the
powers of I and £ would not match. Choosing the three—graviton vertices, ap-
pearing in Fig.13, as in (4.41) and using propagators as in (4.42) this is actually
seen to be the case.

The last object of investigation of this thesis is a contribution to the amplitude
like the one in Fig.14, where a graviton one-loop three—point function appears.
This will allow us also to compare this contribution with the results of Chapter 4.

Again we have to take the product V(1)V(2) in the limit in which |z; —z2| — 0.
We return here to the notation of (4.14) since no confusion should arise. What we

have to evaluate now is:
Vi = ((VHOVEEVE®), - (VEO)VEE)VE4),) (Right))  (5.35)
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In addition to the correlators of four %’s, which we encountered already in the
previous case, we have now also to evaluate correlators of six ¢’s. This can again be
done with the aid of the identity (5.20), which gives now, for general polarizations
AB,C:

(Aapt® (1) (1)) Bys7(2)4°(2))Cus$* (34" (3))),; — (same); =

! 5.36
lezjziy(éig))y@) ((212)°9(3) + (225)*y(1) + (215)°9(2)) (5:36)

and an analogous formula for the other chirality sector. We stress ones more

that this formula has the right transformation properties under Mdbius transfor-
mations; in fact, under these transformations the one—loop fermion correlators
transform in the same way as the tree-level correlators. We remember also that
the y(i), appearing in (5.36), are understood, as always, to appear together with
their signes, depending on whether the z; lie on the upper or on the lower sheet.
Taking into account also the contributions from the correlators of four ¢, and

hence using ones more (5.24), we get:

o ar twoxe.,
| |z12]* 41y(0)y(3)y(4)]*
<{ : »;Io‘z(;jizfé) ((ngy(él) + (204)*y(3) + (z34)2y(0)) (5.37)

+ 4 Tr( Ads Jy(4)es - DX (4) + > Tr(AAs)y(3)es - HX(3) |
+ i3 Te(Ag As y(0)e - aX(O)} : {Rjght}eikox (0)¢iks X (3) gtka X (4)>

In (5.37) we have evaluated all fermionic correlators while the X—correlators have
still to be performed. The asymptotic behavior of the kynematical factors is as
follows:

1
TI(AA3A4) —F —Est(sl . 62)(63 . 64)
Tr(AAs) — _§k4 &3

5.38
TI‘(AA4) - ikg &4 ( )
1 1
TI(A3A4) = 5 <E3 . k4€4 . k3 - 563 . €4>
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In deriving (5.38) we took into account the following behavior of the contractions
between polarizations and momenta: in one case we have €1 - ky = €1 - kg — /1
etc. while the ones of the kind e; - k3 can be sent to zero by suitable gauge—
choices. This can, in fact, be seen by going to the center—of-mass frame where
ki1 = (k,k,0,0), ks = (k,—k,0,0) and &; = (0,0,a1,b1), €3 = (0,0, as,b3). From
these behaviors we can deduce that, after performing also the X-contractions,
all the kynematical factors in front of the various terms in (5.37) become of the
leading order (st) which becomes (st)> when we combine both chirality sectors.
One can see that also the integrals, which multiply these kynematical factors,
behave, under the usual pinching limit that we will consider in short, essentially
in the same way. For simplicity we will here present the study of only a class of
contributions, probably the most significant one, and explain at the end which are
the details for which the other contributions differ from the ones we are going to
study.

The class we consider here is the one that exhibits the ”direct” combination
of polarizations:

Tr(e1e2)Tr(eses) (5.39)

which multiplies also the leading contributions of the rescattering terms (5.9) and
of the diagram in Fig.12. This means that we have to take of eq. (5.37) the term
in the second row and the first term in the fourth row. We perform now for this
contributions also the X-contractions:

Vi - |Qx|? (st)’ Tr(e1e2)Tr(eses) { (203)y(4) + (204)*y(3) + (234)*y(0)
T8 P jy(0)y3)y(4)’

203204234

+3(0) (8 (0)X(3) — BX(0)X(4)) }

t
—26(1,2,3,4)a
{Rjght}e 5Ol Ja—o

(5.40)
To derive this formula we used the asymptotic relations ¢ - k3 = —¢ - kg — 5/2(e7 -

€2)(e3 - €4) and substituted the kynematical factors of egs. (5.38). We should also
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note that in eq. (5.40) we neglected a term coming from a (mixed) contraction

between the left and the right sector:

Although this looks like a selfcontraction which should not be kept, we have to
remember that z; results from the collision between z; and z;. Therefore in (5.41)
we have §~function contributions, which go to zero under analytic continuation on
external momenta, and a zero m;)de part (3.20) which survives. Actually (5.41) is
suppressed for kynematical reasons, indeed, (¢ - €) & ¢, which gives alltogether #°
and no power of s.

In the pinching limit (4.22), with the usual distribution of the z; variables on

the two sheets (Fig.4), we can apply (3.38) and use the relation:

(285y(4) + (204)°y(3) + (234)7y(0) =

—204203 ((23 — a1)(z4 — as) + (23 — a3)(za — a1))

(5.42)

to evaluate further (5.40). The relation (5.42) is a consequence of the fact that
we keep zo and z3,4 on different sheets. This implies that the correlator (5.36)
has not to have poles for z — 23 or zy — 2z4. As a consequence the numerator
in (5.36), which in the pinching limit becomes polinomial, must have one zero
for z9 = z3 and one for zp = z;. The form of the "residue” in (5.42) is fixed, a
part from a constant, by Moébius covariance and by the requirement of symmetry
under a; + az. Substituting (5.42) and (3.38) in (5.40) we can now compute the

combination which appears in (5.17):

0 10:; 2 (194l + 1Q51) Vis — 1P(a) (}: !Qil> -

i<j =2
1
|Qr [2 (st)zTr(el €9 )TI‘(Es 54) e_ §G(17 2,3,4)a-0 . (5.43)
22212 (y(0)y(3)y(4)/?
(23 _al)(z4~a3)+(23—CL3)(Z4-—G,1) ImV34 2
mais
Z43 z+y
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Inserting this in (5.17) we can apply (3.30) and proceed in the usual manner to

obtain:

dza dza, de
Aa—-pt%Tr(6162)Tr(63€4)(G8t)2/la12a34a123|2(:+y)2/ 12 /d2U34

¢
~5G(1,2,3,4)a—0

€

(z3 — a1)(24 — a3) + (23 — a3)(z4 — a1) + MlslmVu 2

Z43 z+y

The leading graviton exchange corresponds here to the integration regions z4 — a;
or z4 — a3, which can be seen to give the same contribution; so we multiply by two

and compute only one of them, say the one for z; — as. Setting vss = 1(a +18)
(3.36) gives:

4 —
G(1’27374)A———)O - 1n[z12|2 + _:_B._(__ﬂ____}'L)_.

z+y

and the modulus squared in the second row of (5.44) becomes:

i (1 £)
|a1s] <1+:1:+y

The integration over z1, cancels just one power of t and we get:

(z +y)?
2tz(y — B) (5.45)

/ydﬂ(1+ & )e z+y
0 T4y

This can be rewritten as:

dzd
As_pt = Tr(slsz)Tr(sga4)G232t/ (..__“i__lf__)
zty>n

* dL

D
Do

A3—pt = TI(€1€2)TI(€3E4)G232t/

/1 d¢ /6 da(l + a)zet(1 — )€~ a)L (5.46)
EO TI’(€1052)TI‘(E3E4)G232tH(t)

Eq. (5.45) is actually ill defined and so we performed a "dimensional” regular-
ization in (5.46) with D = 4 4 2e. This corresponds essentially to substitute in

(5.17) T® with T%+! with similar modifications in the powers of the Q’s in order
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to preserve Mo&bius invariance. Although the factor TF+1 appears always in
the amplitudes of D-dimensional models, it is not clear how one can really extend
our model to D # 4. However, when comparing with the corresponding Feynman
diagram, we will see that our regularization procedure reflects indeed the ordinary
dimensional regularization of Q.F.T.

The terms which we did not consider in our computation, i.e. the ones with
kynematical factors which differ from Tr(e;e2)Tr(ese4)(Gst)?, even if they are of
the same order in s,t, change in (5.46) the "numerator” (1 + a)® by a polynomial
in a, but the conclusions we will reach are not sensitive to these details. Scaling
in eq. (5.46) L — L/(—t) we get:

Hit) =2 /oo dL /1 de /E do(1 + a)?e~(1 =€ —a)L (5.47)
0 0

D
t 2wt L=z~2

which for ¢t — 0 becomes:

1/ Int 1
H(t) — " (cl(lnt)z +62111i+03D_4 TeH Ty +C5(D_4)2>

(5.48)

where the ¢; are numerical constants. Thus one gets for the finite part of the

amplitude in our limit:
Agfi_T;t = Tr(e162)Tr(ese4)G?s* (er(In(a't))? + czln(a't)) (5.49)

Also in this case we note that, due to the fact that the 1/t poles have been
cancelled, the three-graviton ”vertex” +/Gs gets not renormalized.

Needless to say that (5.46) can be represented in terms of Feynman diagrams

by Fig.15:

FI%/“’ 4L /)ldgfofdaet(1~e>(s-a)L.

D
L72

(5.50)

_L2 k
/d‘%e k N(L1/2 —-(é—&)ko—*—akg)

The —51:;1— poles appearing in (5.48) have to be interpreted as infrared singularities;

they result, in fact, from the integration region of large L. In the corresponding
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Feynman diagram, Fig.15, they would result from & — 0, where k is the momentum
of the horizontal propagator in the loop of Fig. 15. For these values of the loop
momentum also the other two propagators become singular.

The infrared nature of the singularities appearing in the string one-loop am-
plitude corresponding to Fig.14 can be inferred also observing that they are absent
in the diagram of Fig.1 (as we saw in the preceding chapter) where the lower line
is massive. However, in our opinion, a more accurate analysis is necessary to see
if these infrared divergences are only artifacts of our approximation scheme, and
so are ficticious, or if they are true infrared divergences, and so, hopefully, of the
Bloch—Nordsieck type [W]. This question is still under investigation.

Finally we observe that in the case of four—graviton scattering with low space—
time SUSY no Schwarzschild-like correction to Newton’s potential appeares. This
laz: ne would have been of the kind (Gs)? \/g , i.e. the true Schwarzschild-like
-crrection where the mass M has been replaced by /s. In particular, the % be-
havicr. found in the preceding chapter, which represents a longe range correction
to Newton’s potential, is absent here. Although the tree-level amplitudes, corre-
sponding to the two kinds of scattering that we studied in chapters 4 and 5, i.e.
the Comtpon-like scattering and four—graviton scattering respectively, have the
same asymptotic behavior for high energies (and therefore the presence of a mass
is not felt) this is no longer true at one-loop level for the one—particle-reducible
contributions that we studied in this thesis. In particular (5.49) has no ”classical”

counterpart [AS].
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6. Concluding remarks

In this thesis we were concerned mainly with situations, at one-loop level in
string perturbation theory, in which the non renormalization theorem does not
hold. In the presence of such a theorem the non abelian nature of the gravita-
tional interaction is revealed only from two loops onwards, while in the absence
of such a theorem it is manifest already at one loop, see Figs.13,15. We evalu-
ated the effects of such contributions in the case of a scattering between a massive
scalar and a graviton and in the case of four-graviton scattering at low space-time

supersymmetry in type II models.

While basically there is no real classical counterpart of a four graviton scat-
tering (beyond tree level), and thus it is not so meaningful to speak about post—
Newtonian corrections to this scattering, there exists a par ezcellence example of a
classical gravitational interaction between a massive body and a massless particle,
which is in fact Einstein’s deflection of light rays which pass near the sun. The
situation is described classically by the Schwarzschild metric and we were able to
compare our results with the predictions made by it. Massive scattering turns
out to be more appropriate for the comparison between classical and ”stringy”

gravitational effects.

One of the drawbacks of massive scattering remains that the amplitudes are
ill-defined due to the presence of the singular on-shell propagators of the external
legs. Nevertheless, it is possible to compute finite quantum corrections. It would,
in particular, be interesting to fix the absolute normalization of the Schwarzschild—
correction we found, employing unitarity. To this order it is sufficient to compute
the overall normalization of the amplitude. This can most conveniently be done
by evaluating the rescattering term in the eikonal approximation and imposing the

exponentiation of the eikonal phase, adding tree-level and one-loop contributions.

Another interesting question would be if the breakdown of supersymme-

try, from N = 8 down to N = 4, implies a further renormalization of the
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Schwarzschild—term. In this case there would be a non vanishing contribution
also from the diagram in Fig.5. This diagram could also be used to check further
the non renormalization of the 1/t pole discussed in section 5.3. ‘
Finally, we note that the hyperelliptic language can be readily extended to
two-loop level [GIS,IZ], the unique essential technical complication being supercur-
rent insertions. However, in the case of absence of non renormalization theorems,
the sum over spin structures would assume a rather involved form. Nevertheless,
when investigating one—particle-reducible contributions to the two-loop ampli-
tude, in the relevant pinching limit(s) several simplifications are expected to occur
[GIZ]. This time two-loop Schwarzschild-like corrections would be represented by
G®s*M?ZInt. It would also be interesting to see whether the Q.F.T.—structure ex-
hibited by the string at one-loop for large s and small t persists also at the much

richer two—loop level.
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10.

11.

12.

13.

14.

Figure Captions

. A one-loop stringy three point function with massive external legs.

The hyperelliptic torus: the two non—contractible loops are shown.

. One particle reducible diagrams with singular on shell propagators.

The positions of the Koba—Nielsen variables on the two sheets of the hyper-

elliptic torus in our "pinching limit”.

. In string models with highest spacetime supersymmetry this contribution is

Z€TOo.

The leading Feynman diagram for ¢ — 0 and s — oo.

A diagram in which the massive particles decay virtually into massless ones.

- A diagram in which in the loop a state of the second excited level of the string

appears.

”Elastic” and "anelastic” contributions to four—graviton rescattering.

Leading contributions to rescattering: the ”direct” diagram.

The leading "flipped” rescattering diagram.

A one particle reducible diagram with a stringy one-loop graviton two-point

function.

Graviton self-energy in ”conventional” Quantum Gravity.

A stringy one-loop graviton three-point function.
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15. A Feynman diagram, which is infrared divergent due to soft gravitons which

are exchanged between k3 and k4 through the horizontal propagator.
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