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Introduction.

In this thesis we consider the problems of the existence, the uniqueness and the qual-
itative properties (symmetry) of the minima to the problem

!

min /B lo(J2], [Vau(@)]) + h(u(z))lda

w€W, H(B)

where B is the unit ball of JR" and the map v — g(r,v) is lower semicontinuous but not
necessarily convex.

Problems of this kind arise in domains as different as non-linear elasticity, fluidody-
namics and shape optimization, and are considered in [B-P], [G-K-R], [K], [K-S], [M], [R],
[T]. In particular, the very same problem is considered in [T].

Our existence and uniqueness results present the following features:

a) no smoothness on g or h is required: g is either a normal integrand or a lower semicon-
tinuous function;

b) the case h = 0 is allowed; in this case the assumption on g reduce, for the existence of
solutions, to g being lower semicontinuous and growing at infinity, as is to be expected;
for the uniqueness, in addition,on g** being strictly increasing, as also is to be expected;
c) for the case h linear, h not zero, our Theorems yield at once existence and uniqueness
of solutions with no further assumptions on g besides lower semicontinuity and growth at
infinity.

Basic notations.

In what follows we shall assume that: JR" is endowed with the Euclidean normi |- |;
B is the unit ball, whose measure is w,. The (n-1)-dimensional Hausdorff measure of B
is nw,.

The subgradient of a convex function g is denoted by dg.

A map g:[0,1] x [0,00) — IR is termed a normal integrand, [E-T], if

i) for a.e. r € [0,1] g(r,) is L.s.c. on [0, 00);
i1) 3 a Borel function §:[0,1] x [0,00) — IR : §(r,-) = g(r,-) for a.e.7 € [0,1].

Consider g : [0,1]x[0,00) — IR. Let § : BxIR™ — IR be defined by §(z,¢) = g(|z|, |¢]).
Whenever the bipolar of g, g**, is defined, by extension we call bipolar of g, g**, the map
defined by ¢**(|z|,|¢]) = g**(z,£). Remark that the map & — g**(r,£) is increasing. It is
known, [E-T], that g** is a normal integrand whenever so is § and that §** satisfies the
same growth assumptions as g.




Main results.

We shall consider the following problem (P):

(P) min /B lg(lz], [Va(2)]) + h(u(z)))de

' u€W, 1 (B)

where B = {z € R":|z| < 1}, n > 2, g:[0,1] x [0,00) — IR is a normal integrand and
h: IR — IR is convex.
We shall assume throughout the following growth assumption:

there exist : a convex lis.c. increasing function ¢:[0,00) — [0, 00) :

(GA) 0 — 00 as s — oo and a € L*(]0,1]) satisfying
s

g(r,s) > a(r) + ¢(s) for all s € [0,00),for a.e. 7 € [0,1].

The following result guarantees the existence of at least one radially symmetric solu-
tion to the minimum problem (P) associated to a convex function g.

Theorem 1.

Let g be a normal integrand satisfying assumptions (GA). Assume further that g** = g.
Let h : IR — IR be convex. Then problem (P) admits at least one radially symmetric
solution. Moreover, if h is monotonic and either g(r,.) or h is strictly monotonic, then
every solution to (P) is radially symmetric.

Proof.

Let u be a solution to problem (P). Consider the function @ defined by

1
1 i(z) = u(w|z|)dw
(1 @)= o [ ke

nWwny,

where nw,, is the (n — 1)-dimensional Hausdorff measure of 4B.

It is our purpose to show that @ is a radially symmetric solution to (P). The symmetry
comes from the very definition.

a) We claim that

Vi(z) = 1 @ (Vu(w|z|),w)dw, z#0

(2) nwn (2] Ju=1

V(0) = 0.

First remark that the above is true when u is of class C'. In this case, when |z| # 0 one
can differentiate with respect to the parameter z to obtain
0t 1

Oz; nwy,

[ (vutolel,e) Zao
fw]=1 lml
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while, for z =0

%(0) = hl:l-—+0 %; (nin /lwl:l(u(Whi) - u(0))dw> :
S hfo';%;(nin /lwl:l(hi(w,vu(O» + hilwle(h,-}w|)dw) -
= 0.

To show the validity of the above formula for any w in W(B) let us consider a
sequence {uy}, each uj of class C! and up — u in W1 !(B). Hence, from the previous
result, Vi, satisfy (2). We are going to show first that the functions @, defined by (1)
convege to @ strongly in L?.

Set w to be

w(z) =

n_f,lu—;[—:,%f flwl___1<VU(wl:I:|),w>dw, z # 0
07 z =0.

To prove the claim hence it will be left to show that Vi, converges to w strongly in L*(B).

We have
| @ — g |1 < /B (nin [w|=1 lu(wlz]) — ug(w|z])| dw) de —
- nin /lwl=1 (/;9 lu(wl|z]) — uk(w|z])] dm) dw =

= [ (e fufar) — s+ ) do =

= / lu(z) — uk(z)| de =|| v —ug |1 -
B

Through the same steps,

[ w—Vay 1=

__/ 1
- B MWy

1
< /B /|L;|=1 |Vu(w|z|) — Vup(wlz|)| dwde

nwy,

T

= [.]=1(VU(WI$I) — Vup(wlz]), w)dw

dz <
|z|

and, by applying again Fubini’s Theorem,
| w— Vi |1<|| Vu — Vug ||z -

The claim is proved.




The above arguments defining % out of u are similar to those employed in [C-F| and
F| for a problem involving the Laplacian.
g

b) From the convexity of A we obtain

| Aﬁ@@mmzﬁﬁmgwm

/ h{i(z))dz </ / u(w|z]))dwdz =
B "Wn J|w|=1
/ / (wr))r" tdrdw = / ))dz.
|w]=1

In particular the same computation in the case h(u) = u yields

(3) Lq@@sz@w.

To prove that 4 is a solution it is left to show that

In fact

[ steh 1va)ds < [ (el 19u(e))da.
B B

Since
1

T Ny jw|=1

IV Vau(wlel)| d

and s — g(r, s) is monotonic,

_ 1
[ atiel.vate)yae < [ g(lfvl,nwn /le Va(wlel)| dw) do.

By the convexity of s +— g(r,s) and Jensen’s inequality,

1
'/;Bg<|$|7nwn /|‘w|=1 IVu(wI:v])]dw) dz <
1
z|, |Vu(w|z|)|)dw | dz =
s/B(Wn [, oel uteleD) )

=</|‘wl=1 Alg(r,!Vu(wr)|)Tn—1dTM=/Bg(lml,;vu(m)l)dm_

Hence % is a radially symmetric solution to (P).
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c) Assume now that h is monotonic and let us prove the result first in the case A
monotonic increasing. The map v — g(r,v) is non decreasing; by assumption, either g or
h is strictly increasing. Let us show that every solution is radially symmetric.

Let u be any solution and set @ to be

1 /
u(w|z|)dw.
e L)

From the above, % is a solution. Consider the average w = %(u + ). By the convexity
of the problem, w is a solution. In particular,

a(z) =

@ [ ateliVulel)ds =5 [ allel,1u@)dz + 5 [ gllel,[Va(e))da.

By the monotonicity and the convexity of g, we have

a(leh V(=) < (Iel, 3 (Vu@)| + [Va(@) ) < Gallel [Vala)) + allel, Va(2))

so that, by (4), equality holds:

allz} [Vu(e)) = g (Jal 3 (Va(e)] +Va(e)) ) =
(5) 1 1
= 59(l=l,[Vu(@)]) + S 9(|2], | Va(=)]).

Set T(r) to be T(r) = sup{v : g(r,v) — g(r,0) = 0}. The supremum is actually a
maximum.

We wish to show that for almost every z, |Vw(z)| > T'(|z]). In the case g strictly in-
creasing, T' = 0 and there is nothing to prove. Assume that h is strictly increasing. Remark
that v — g(r,v) is strictly increasing for v > T'(r). Hence, notice the following property of
w to be used later: for those x such that the gradient exists, whenever |Vw(z)| > T'(|z|),

there exists A(z) > 0 such that Vu(z) = A(z)Vi(z). In fact in this case the first equality
in (5) implies that

[Va(e)| = 5(1Vu(e)] + [Va(a))

and by the strict convexity of the euclidean norm, this is true only if Vu(z) = A(z)Vi(z).

We claim that the map » — T(r) is measurable. Fix € > 0. Since g(r,v) is a
normal integrand, by Theorem 1.1, p.232 of [E-T], there exists a compact K, in [0,1],
m([0,1\K¢) < ¢, such that the restriction of g to K. x IR is lower semicontinuous and
the restrictions of 7 — g(r,0) and of r — a(r) to K, are continuous. In particular, there
exists M. : g(r,0) — a(r) < M, in K.. Hence, for every v satisfying g(r,v) — g(r,0) = 0
for some r in K. we have ¥(v) < g(r,0) — a(r) < M, that implies |v| < V. for some
Ve . Consider a sequence (r,) in K, converging to 7* and set T* to be the limsup of
T'(ryn). By taking a subsequence we can assume that g(r,,T(r,)) converges to y satisfying
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y — g(r*,0) = 0; hence g(r*,T*) — g(r*,0) < 0 . Being g non decreasing in v, we have
g(r*,T*) — g(r*,0) = 0, hence T(r*) > T™, i.e. the restriction to K¢ of r — T(r) is upper
semicontinuous. By Lusin’s Theorem this proves the claim.

Let us first show that |Va(z)| > T(|z|). In fact set A = {|z| : |[Vi(z)| < T(|z])} and
assume that m(4) > 0. Define v:[0,1] — IR by v(|z|) = @(z). Remark that r — v(r)
is locally absolutely continuous in (0,1]. In fact apply the change of variable formula to
the transformation from Cartesian to polar coordinates, and obtain for the map %(r,0) =
u(¢(r,0)) that for almost every 8 , the map v : 7 — (r, 8) is locally absolutely continuous
n (0,1] and

v'(r) = ( ,0) = ( W(qﬁ(r, 0)))-

Since 4 is radially symmetric, I(Vu(m) )I |Va(z)|; by the chain rule, v'(z) =
(Viu(z), Iml> hence

v'(2)] = |(Va(e), ‘—f;-n

Set 9(r) to be fl (v'(8)xe(ay(s) + T(s)x 4(s)) ds and 5: B — IR to be 5(z) = 9(|z|). Then,
from the very definition, (z) < @(z) and the strict inequality holds on a subset of B of

positive measure, hence
/h(ﬁ(m))dm</ h(i(z))dz.
B B

g(lzl,|Va(2)|) = g(l=], [Va(z)]),

so that @ cannot be a minimum. Hence |Vi(z)| > T'(|z]) a.e..
To show that the same inequality holds for w, remark that by the definitions one also

On the other hand

has .
ia{z) = w(w|z|)dw
O )
so that
1 T

Vi(z) = (Vw(wlz|),w)dw

nwn |iIJ‘ jwl=1

/Ba(m)dmngw(w)dm.

Assume that there exists a subset S of B, m(S) > 0, such that |Vw(z)| < T(|z|) for
z in S. Since Vw = 1Vu + 1V, on § we must have [Vu(z)| < T'(|z|); moreover |[Vi(z)|
must be equal to T'(|z|). In fact, if it is not so,

and, by the definition and (3),

o(lel, [Vu(=)) < Zo(le), [Vu(z)]) + 59(le], V()

contradicting (5).




Set
Sy ={w : |Vw(wr)| < T(r)}

m(S) = /: pnl (/|w|=1 Xs@ﬂm) dr = fulr"*l /ugzlxs”(w)dwdr

so that for r in, a subset E C [0,1] of positive measure,

/ xs, (w)dw > 0.
Jw|=1

Consider one such r in E. Since, for |z| =7,

T(r) = |Vi(z)] < — [ | IVuleleD)] de,

nWwy,

on a subset of C(S,) of a positive measure we must have |Vw(wr)| > T(r). Again for r in

E,
[ st Ivwenias =

- / o(r, T(r))ds + / o, |Vw(wr)|dw >
s, ¢(s)

> [ s TN = [ ol Vaenas

lw]=1

Set X tobe {z =wr : |w|=1,r € E}. Then

/X o(lz], [Vw(z)]) do = nwn f /Iw!___lxx(wr)g(r,|Vw<wr>|)dwdr=

= / 1y g (r) ( /M:__I o(r, le(wr)l)dw) dr >

nwy, Pt T r,|Vi(wr)|)dw | dr =
> nn [ XE()(/leg(l (@) )
= [ ollal,1Va(a)))de.

X

For z not in X, by a previous remark, Vu(z) = A(z)Vi(z), so that Vw(z) = (A(z) +
1)Vi(z); hence on B\ X, w itself is radially symmetric,i.e. w coincides with 4. By Lemma

7.71n [G-T], Vw = Vi a.e. in B\X. Hence
/ o(lzl, [Vew(z) )z = / o(lel, V(@) bex (@) + x5\ x(@)de >
B B
> fB o(lz], V()| de,
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a contradiction, since w is a solution and

/B h(w(z))de > / h(a(z))de.

B

Then m(S) = 0, i.e. for almost every z in B, |Vw(z)| > T'(|z|). Hence, for almost every
z, Vu(z) = AMz)Vi(z).

This proves the Theorem in the case h increasing.

d) Finally, notice that the case of a decreasing functiori A can be reduced to the
previous one by setting

h(§) = h(=¢), ¢ € R

Now, & is increasing and each solution to the problem

(P) min /B lo(lzl, [Va(@)]) + A(u(z))]do

vEW(B)

is radially symmetric.

Since 4 is a solution to (P) if and only if — is a solution to (P), we see that every
solution to (P) is radially symmetric.

Remark. To see how the assumptions of the previous Theorem are sharp, consider
the case h = 0 ( h is monotonic, but not strictly monotonic) and g = g(v) to be the
indicator of the interval [0,1] (g is convex and monotonic, but not strictly monotonic).
Clearly there exist non radially symmetric solutions to (P).

The next results are concerned with existence and uniqueness of solutions for the min-
imum problem (P) when g is (possibly) non convex. We shall assume that g is independent

on |z|, i.e: g(r, &) = g(&).

Theorem 2.
Assume that: g(r,€) = g(§) is l.s.c. and satsfies (GA); h : IR — IR is convez and

monotonic.

Then the minimum problem (P) admits at least a solution u in W, ' (B).
Proof.

a) As in the proof of the Theorem 1, it is enough to consider the case where A is
monotonic decreasing.

Let u be a radially symmetric solution to the convexified problem

(P) emin [l (vu(e) + hu)lds

8



Define u:[0,1] — IR by u(|z|) = @(z). Remark that the map 7 — u(r) is locally
absolutely continuous on (0,1], and ¥/(|z]) = <|_f:—l’ Vi(z)).

We are going to show that |u/| cannot take its values (for 7 in a set of positive measure)
on any interval (a,b) where g** is affine. This in particular shows that |u'| takes its values
where ¢ and ¢** coincide, hence proves that u is a solution to the original problem.

Let R (u) be the right derivative of h at u; the map r — h! (u(r)) is positive and
bounded; consider H defined by

H(r) = /(; " Th (u(s))ds.

Assume g**' = a on (a,b). Consider first the case o = 0; in this case (a,b) = (0,7,
and consider those r such that |u/(r)| < T. The same reasoning as in Theorem 1, point
c), imply that there exists another radial solution v such that |v'| > T. Hence we can as
well assume o > 0. Set E, = {r : |u'(r)| € (a + 0,b — 0)} and assume that for some
o, m(E,) > 0. Call E this E,. Consider A(r) = (ar"™! — H(r))xe(r). Let r; and 7,
r1 < T2, be points of density for F and Lebesgue points for A4, so that

1

r1+6
5 / A(r)dr — A(ry) = (ar} ™! — H(r1)).

ro+6
%/ A(r)dr — A(rs) = (ary ™" = H(r2)).

Since A is monotonic, A(rs) — A(r1) = 2X > 0. Set o = §*(8) to be m[('llg —é,r2) N E].
Since 7y is of density for E, §*/6 — 1,1i.e. §* > 0. Let § be such that § < § implies

1 frete A
: f A(r)dr — A(r)| < 3
1 A

'5 o A(r)dr — A(rp)| < R

Set i’ to be
L1 1
n = _X[rl,r1+6*]ﬁE - _;X[rg——&,r;]ﬂE
) )

and define n as n(r) = flr n'(s)ds so that n(1) = 0 and, by the choice of §*, n(r) > 0. Let
us remark that u'(r) 4 en'(r) coincides with v/(r) for r not in E, and, for r in E, is in (a, b)
whenever € is sufficiently small. Hence g**(Ju'(r) + en’(r)|) is well defined and integrable.

b) Let us consider the family {u + en}. By the mean value Theorem there exists:
1(r) € [0,€¢] and ¢**'(r) € 8g**(Ju'(r) + &1 (r)n(r)]) such that

g (lu'(r) + en'(r)]) = g™ (e (r)]) = eg2*' ()’ (r).

Moreover, since the subgradient of h is monotonic, there exists £2(r) € [0, €] such that
h(u(r) + en(r)) — h(u(r)) < eh’y (u(r) + &a(r)n(r))n(r).

9




Then

1 1 .
Ae = /{; " g™ (u' + en') + h(u + en)]dr — /O " g™ (w') + h(w)dr <

< e [ ) + Raulr) + I
Set H, to be .
H(r) = [ TR u(s) + Ealon(e))is
Since He(0) = 0 and (1) = 0, we have

|t + ey = - [ Helo ().

Hence

A<e/[r“** Ho(r)l'(r)dr

rl+6 T2
s [ ) — B ez [ 67 0) - Hdnee ()
T2 —
For every fixed s, u(s) + £2(s)n(s) converges to u(s) from the right, so that, being the
subdifferential of a convex function monotonic, we have A/, (u(s) + €2 (s)n(s)) — R/ (u(s))
as € — 0 . Moreover since h is finite on IR, there exists M that bounds all the values
of |h!, (v)| for v in a neighborhood of the image of the solution u. Hence H(r) — H(r)
pointwise and is dominated by a constant.
B

Moreover, for every » € E, g7*'(r) = «, for every e sufficiently small. By integrating
we obtain that, for every e sufficiently small,

1 r+6” , 1 ri+6*
5 / [Pl gk (r) — He(r)]xe(r)dr — 3 / A(r)dr| <

T2

[ e - By - 5 [ A

2—6

Finally, for some positive e,

2 —

by 1 ri+6* 1 T2
z _—— <
{2 A(r)dr 5 /1: 6 A(r)dr} <
A A
{§+A(T1 +‘-—A(7'2) 4}3—/\6<0

10



i.e. for some positive ¢, the function 4. defined by u.(z) = u(|z|) + en(|z]) yields a value
for the integral in (P**) less than the value computed at @, a contradiction.

Remark. In the case h = 0, the assumptions of the above Theorem reduce to lower

semicontinuity and growth at infinity for g, as it is to be expected.
!

Theorem 3.
Let g and h satisfy the same assumption as in Theorem 2; in addition assume that
either g** or h is strictly monotonic. Then problem (P) admits one and only one solution.

Proof.

Assume that u,v : [0,1] — IR are such that the maps ¢ — u(|z|) and z — v(|z]) are
two distinct solutions to (P). There exists an interval (ry,73) such that: u(r) > v(r),r €
(r1,72); w(r2) = v(r2) and, when r1 > 0, u(r1) = v(r1). Set w to be %(u + v). The map
z — w(|z|) is a further solution to (P**) so that

~12" /:2 " g™ (' (7)]) + R(v(r))ldr + *;- /’"2 g™ (| (0)]) + h(u(r))]dr =

rL

B / " g™ (Jw' ()]) + h(w(r)))dr.

The convexity of both ¢** and h implies, in particular, that
/ " h(w(r))dr = / 7" h(u(r))dr.

Being h monotonic we infer

(6) h(w(r)) = h(u(r)), Vr € (r1,72).

The above is a contradiction to the existence of v and v in the case h is strictly monotonic.

Assume now g** strictly monotonic. Since h is convex there exists at most an interval
I on which h is constant and attains its minimum. Set 7* to be sup{r < 1: u(r) € I'} and
consider the map u* defined by

u(z) = {’“(7’*) for r < r*

u(r)  for r>r*.
Then both . )
/ " h(u*(r))dr < / " h(u(r))dr
0 0

and

[ G e < [

11




hold, and the last inequality is strict in the case |u*'| differs from |u'| for » on a set of
positive measure. Since u is a minimum, »'(r) must be 0 on (0,7*). From (6) one has
that w(r) € I if and only if u(r) € I. Since w is a solution, the above reasoning implies
that also w'(r) = 0 on (0,r*) i.e. u/(r) = w/(r) on (0,7*). The case r* > r; would violate
the assumptions on 71,77,u,v. Hence on (r1,r;) the inequality w(r) > u(r) implies the
inequality h(w(r)) > h(u(r)) a contradiction to (6).

Remark. Whenever £ is linear, h not zero, uniqueness (besides existence) is guaran-
teed simply by the lower semicontinuity and growth at infinity of g.
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